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Abstract: Electronic structure calculations are mostly carried out with Coulomb potential singularity
adapted basis sets such as STO or contracted GTO. With another basis or for heavy elements, the
pseudopotentials may appear as a practical alternative. Here, we introduce the exact pseudopotential
(EPP) to remove the Coulomb singularity and test it for orbitals of small atoms with the interpolating
wavelet basis set. We apply EPP to the Galerkin method with a basis set consisting of Deslauriers–
Dubuc scaling functions on the half-infinite real interval. We demonstrate the EPP–Galerkin method
by computing the hydrogen atom 1s, 2s, and 2p orbitals and helium atom configurations He 1s2,
He 1s2s 1S, and He 1s2s 3S. We compare the method to the ordinary interpolating wavelet Galerkin
method (OIW–Galerkin), handling the singularity at the nucleus by excluding the scaling function
located at the origin from the basis. We also compare the performance of our approach to that
of finite-difference approach, which is another practical method for spherical atoms. We find the
accuracy of the EPP–Galerkin method to be better than both of the above-mentioned methods.

Keywords: interpolating wavelet; electronic structure; Schrödinger equation; Hartree–Fock
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1. Introduction

The Coulomb singularity in the hamiltonian may appear as a challenge in electronic
structure calculations. Singularity-adapted Slater type-atomic orbitals (STO) basis is the
usual solution to this, and Gaussian-type contracted basis functions (GTO) have turned
out to be useful with sufficient accuracy. The latter one is more popular due to other
practical advantages.

Pseudopotentials removing the singularity are another possible solution to this prob-
lem. In this case, the core electrons do not play an essential role in the problem at hand or
valence electrons are expanded in plane waves, like with heavy elements or periodic crys-
talline systems. In those cases, the pseudopotentials typically replace the nuclei and a number
of core electrons with their charge distribution, and possibly, some other core properties.

One-dimensional interpolating wavelets have been used for atomic computations, for
example, in Ref. [1]. Fischer and Defranceschi [2] have also solved hydrogen-like atoms with
wavelets. In Ref. [1], we used ordinary Deslauriers–Dubuc interpolating wavelets [3–5]
defined on the whole real axis, so including the negative real axis in the computations. We
handled the singularity at the origin by excluding the scaling function at the origin from
the basis. We used the nonstandard operator form for the various operators needed in the
computations. We computed the Schrödinger equation of hydrogenlike atoms (ions) and
Hartree–Fock equations of some light many-electron atoms (helium, lithium, beryllium,
neon, sodium, magnesium, and argon). In this article, we repeat similar computations for
hydrogen and helium atoms, but using a different method to handle the singularity of
the potential and only one resolution level. We handle the singularity by computing the
Schrödinger and Hartree–Fock equations for a range of variables r ∈ [a, ∞], which does
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not contain the origin. Here, r is the position coordinate. The range r ∈ [0, a] is neglected
for hydrogen, and for helium, its contribution to the Slater integrals is computed using the
hydrogenic orbitals.

Arias [6] developed formalism for electronic structure calculations with interpolating
wavelets so that matrix elements of the operators are computed as usual, and overlap matri-
ces are used in the matrix form of the Schrödinger equation. On the other hand, we use the
interpolating dual scaling functions and wavelets for the computation of matrix elements.

One-dimensional interpolating multiresolution analysis in space Cu(R) consisting of
uniformly continuous bounded functions in R was conducted in Ref. [4]. One-dimensional
interpolating multiresolution analysis in space C0(R) consisting of continuous functions
in R and vanishing at infinity was constructed in [5]. Both of these constructions are
based on Deslauriers–Dubuc functions [3]. Donoho [5] constructs wavelets on a finite real
interval, too. We compute the eigenenergies of hydrogen atom 1s, 2s, and 2p orbitals and
helium atom configurations He 1s2, He 1s2s 1S, and He 1s2s 3S with the EPP method Exact
Pseudopotential Method (EPP) using both the Galerkin method with interpolating wavelets
and the finite difference method.

We denote the pointwise product of functions f and g by f ? g. We use atomic units
throughout this article (e = me = h̄ = 4πε0 = 1) and denote the atomic unit of energy by
Ha (Hartree).

2. Interpolating Wavelets on Half-Infinite Interval
2.1. Interpolating Wavelets

Interpolating wavelets are a biorthogonal wavelet family. Since the dual scaling
functions and dual wavelets of these functions are finite sums of Dirac delta functions, the
matrix elements involving interpolating wavelets usually require evaluating some functions
in a finite set of points. An interpolating wavelet family is defined by a mother scaling
function ϕ, mother wavelet ψ, and four finite filters hj, gj, h̃j, and g̃j where j = −m, . . . , m.
The functions ϕ, ψ, ϕ̃, and ψ̃ satisfy equations

ϕ(x) =
m

∑
j=−m

hj ϕ(2x− j), (1)

ψ(x) =
m

∑
j=−m

gj ϕ(2x− j), (2)

ϕ̃(x) =
m

∑
j=−m

h̃j ϕ̃(2x− j), (3)

and

ψ̃(x) =
m

∑
j=−m

g̃j ϕ̃(2x− j). (4)

The two-index basis functions and dual basis functions are

ϕj,k(x) = ϕ(2jx− k), (5)

ψj,k(x) = ψ(2jx− k), (6)

ϕ̃j,k(x) = 2j ϕ̃(2jx− k), (7)

and
ψ̃j,k(x) = 2jψ̃(2jx− k). (8)
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A wavelet basis consists of scaling functions ϕj0,k, k ∈ Z, and wavelets ψj,k, j ≥ j0,
k ∈ Z, where j0 ∈ Z is the minimum resolution level. The expansion of an arbitrary (regular
enough) function f : R→ R in the wavelet basis is

f (x) = ∑
k∈Z

sk ϕj0,k(x) + ∑
j≥j0

∑
k∈Z

dj,kψj,k(x). (9)

2.2. The Basis Set

This derivation is based on Section 3 in [5]. We construct a basis set on half-infinite
interval R0 = {r ≥ 0|r ∈ R}. We define ϕ to be a Deslauriers–Dubuc scaling function of
some order D and ϕj,k(x) := ϕ(2jx− k) for j, k ∈ Z.

Suppose that we are given samples β j,k = f (2−jk) for k ∈ N and f is some func-
tion from [0, ∞] into R. We define π#

j to be the polynomial of degree D for which

π#
j (2
−jk) = f (2−jk) for all k = 0, . . . , D. We define

β̃ j,k := π#
j (2
−jk) (10)

for k < 0 and
β̃ j,k := β j,k (11)

for k ≥ 0. Now, f can be extrapolated onto the whole real line by

f̃ =
∞

∑
k=−∞

β̃ j,k ϕj,k. (12)

As each coefficient β̃ j,k is a linear functional of coefficients β j,k′ , we may define extrap-
olation weights e#

k,k′ so that

β̃ j,k =
D

∑
k′=0

e#
k,k′β j,k′ (13)

for k < 0. When f := ϕj,l , we have
β̃ j,k = e#

k,l (14)

where l ∈ {0, . . . , D}. Consequently, the quantities e#
k,l can be computed by polynomial

interpolation of functions ϕj,l . As

supp ϕj,k ⊂ 2−j[k− D, k + D] (15)

we need only values k ∈ {−D, . . . ,−1}. We define

ϕ#
j,k := ϕj,k + ∑

l<0
e#

l,k ϕj,l (16)

for k = 0, . . . , D. Note that 〈
ϕ̃j,k, ϕ#

j,l

〉
= δk,l (17)

for k ≥ 0 and 0 ≤ l ≤ D.
We define a wavelet expansion of function f by

f̃ :=
D

∑
k=0

β j,k ϕ#
j,k +

∞

∑
k=D+1

β j,k ϕj,k. (18)

When we use a finite basis of size W, we have

f̃ :=
D

∑
k=0

β j,k ϕ#
j,k +

W−1

∑
k=D+1

β j,k ϕj,k. (19)
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We must have W > 2D so that functions ϕ#
j,k(x), 0 ≤ k ≤ D, vanish for x ≥ 2−jW.

This kind of truncation of the basis requires that the function f approximately vanishes for
x > 2−jW.

Let A be a linear operator from C0(R) to C0(R). The matrix elements Ak,l , l = 0, . . . , D
are given by 〈

ϕ̃j,k, Aϕ#
j,l

〉
=
〈

ϕ̃j,k, Aϕj,l

〉
+ ∑

α<0
e#

α,l

〈
ϕ̃j,k, Aϕj,α

〉
. (20)

Let v( f ) denote the coefficient vector (β j,k)
W−1
k=0 defined by Equation (19) and define

M( f ) :=
(

f (2−jk)δk,k′
)W−1,W−1

k,k′=0
(21)

for some function f : R→ R.

3. Schrödinger Equations of Hydrogen-like Atoms and Helium Atoms in the
EPP-Wavelet Basis
3.1. General

Suppose that we have a system consisting of a positively charged nucleus at the
origin and N electrons. In the EPP method, we choose a small radius r0 so that inside the
sphere with radius r0, the wavefunctions of the system are approximated by hydrogenic
wavefunctions, and the actual computations are performed only for values r ≥ r0. Actually,
we define a basis set for the half-infinite interval [0, ∞] and make a change of the variables
s = r− r0. For Hartree–Fock calculations, the Slater integrals are computed by

ȳ0
ab(s) =

Qab
s + r0

+
1

s + r0

∫ s

0
P̄a(s′)P̄b(s′)ds′

+
∫ ∞

s

1
s′ + r0

P̄a(s′)P̄b(s′)ds′ (22)

where s ≥ 0 and Qab is a system-dependent quantity that approximates the contribution of
the EPP core region to the Slater integral.

3.2. Hydrogen-like Atoms

The Schrödinger equation of the hydrogen atom and Hartree–Fock equations of
atoms [7] and their representation in the interpolating wavelet basis [1] denote our starting
point. With a change in variables s := r− r0, the Schrödinger equation of a hydrogen-like
atom in interval r ≥ r0 takes the form(

−1
2

d2

ds2 −
Z

s + r0
+

l(l + 1)
2(s + r0)2

)
P̄(s) = EP̄(s), s ≥ 0 (23)

where Z is the charge of the nucleus, l is the angular momentum quantum number, and
P̄(s) = P(r0 + s) for s ≥ 0.

We define the second derivative filter by

ak :=
〈

ϕ̃, D2 ϕ(· − k)
〉

. (24)

Matrix elements of the Laplacian operator L are computed by

Lk,l :=
〈

ϕ̃j,k, Lϕ#
j,l

〉
= 22j

(
al−k +

−1

∑
α=−D

e#
α,laα−k

)
(25)

for 0 ≤ l ≤ D and
Lk,l :=

〈
ϕ̃j,k, Lϕj,l

〉
= 22jal−k (26)
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for D < l < W. Note that matrix L is generally not hermitian. The potential energy
operator is computed as a diagonal matrix

V̂k,k = V(2−jk) (27)

where
V(y) = − Z

y + a
(28)

for y ≥ 0. The centrifugal potential is computed in the same way.

3.3. Hartree–Fock Equations for Helium Atom

Define the Slater integrals as

y0
ab(r) =

∫ ∞

r′=0
Pa(r′)γ(r, r′)Pb(r′)dr′ (29)

where a and b denote the atomic orbitals and

γ(r, r′) =
1

max{r, r′} . (30)

We use symbol y instead of Y to avoid confusion with spherical harmonics. By carrying
out a similar change in variables s := r− r0, the Hartree–Fock equation of the ground state
of the helium atom in interval r ≥ r0 takes the form(

−1
2

d2

ds2 −
2

s + r0
+ y0

1s1s(s + r0)

)
P̄1s(s) = ε1sP̄1s(s), s ≥ 0. (31)

The Hartree–Fock equations for the helium 1s2s 1S configuration are(
−1

2
d2

ds2 −
2

s + r0
+ y0

2s2s(s + r0)

)
P̄1s(s) = ε1sP̄1s(s) (32)(

−1
2

d2

ds2 −
2

s + r0
+ y0

1s1s(s + r0)

)
P̄2s(s) = ε2sP̄2s(s) (33)

and for helium 1s2s 3S configuration(
−1

2
d2

ds2 −
2

s + r0
+ y0

2s2s(s + r0)

)
P̄1s(s) = ε1sP̄1s(s) +

y0
1s2s(s + r0)P̄2s(s) (34)(

−1
2

d2

ds2 −
2

s + r0
+ y0

1s1s(s + r0)

)
P̄2s(s) = ε2sP̄2s(s) +

y0
2s1s(s + r0)P̄1s(s) (35)

3.4. EPP of Helium Atom

We define Pa(r) to be the exact Hartree–Fock wavefunction of the orbital a of the atom.
We define the operators Û0 and Û∞ [1] by

(Û0 f )(s) =
∫ s

0
f (s′)ds′ (36)

and
(Û∞ f )(s) =

∫ ∞

s
f (s′)ds′. (37)
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Define P1s,H(r′) and P2s,H(r′) to be the hydrogenic orbitals of the helium atom. Then,
we have

〈ϕ̃j,kÛ0 ϕj,l〉 = 2−j(Φ(|k| − l)−Φ−l) (38)

and
〈ϕ̃j,kÛ∞ ϕj,l〉 = 2−j(1−Φ(|k| − l)) (39)

where
Φ(x) =

∫ x

−∞
ϕ(y)dy. (40)

The Slater integrals in the shifted variables are obtained from Equation (22) where we
set

Qab :=
P̄a(0)

Pa,H(r0)

P̄b(0)
Pb,H(r0)

∫ r0

0
Pa,H(r′)Pb,H(r′)dr′ (41)

for the helium ground state, and

Qab :=
∫ r0

0
Pa,H(r′)Pb,H(r′)dr′ (42)

for the excited states of helium. Define

q(s) :=
1

s + r0
(43)

and
S0 := M(q)U0 + U∞ M(q). (44)

Now,
v(ȳ0

ab) = Qabv(q) + S0(v(P̄a ? P̄b)) (45)

where U0 and U∞ are the matrices of operators Û0 and Û∞ in the basis set constructed
in Section 2. We define va = v(P̄a) and vb = v(P̄b). The matrix of the exchange integral
operator

(K̂aP̄a)(s) := ȳ0
ab(s)P̄b(s) (46)

is computed by
Ka := Wa + M(vb)S0M(vb). (47)

The term Wava approximates the first term in Equation (22) as a linear function of va.
For this, we approximate the wavefunction Pa(r) in region r ∈ [0, r0] by a linear function
that is zero at the origin and P̄a(0) at r0. We have

Qab
s + r0

P̄b(s) ≈
1

s + r0
P̄a(0)

(∫ 0

s′=−r0

(
1 +

s′

r0

)
Pb,H(s′ + r0)ds′

)
P̄b(s). (48)

The wavefunction P̄b(s) is taken from the previous step of the Hartree–Fock itera-
tion. By approximating the wavefunctions by hydrogenic ones, we find the hydrogenic
Slater integrals

y0
1s1s,H(r) =

1
r
− e−2Zr

(
1
r
+ Z

)
(49)

y0
2s2s,H(r) =

1
r
+ e−Zr

(
−Z3

8
r2 − 1

4
Z2r− 3Z

4
− 1

r

)
(50)

y0
1s2s,H(r) =

1
27
√

2

(
12Z2r + 8Z

)
e−3Zr/2 (51)
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for r ≥ 0. The scalar products involving the Slater integrals are approximated as

〈
Pa|y0

ab|Pb

〉
≈

(
P̄a(0)

Pa,H(r0)

)2( P̄b(0)
Pb,H(r0)

)2

·
∫ r0

r′=0
Pa,H(r′)y0

ab,H(r
′)Pb,H(r′)dr′

+
∫ ∞

s=0
P̄a(s)ȳ0

ab(s)P̄b(s)ds (52)

for the helium ground state and〈
Pa|y0

ab|Pb

〉
≈

∫ r0

r′=0
Pa,H(r′)y0

ab,H(r
′)Pb,H(r′)dr′

+
∫ ∞

s=0
P̄a(s)ȳ0

ab(s)P̄b(s)ds (53)

for the excited states of helium.

3.5. Total Energy of Helium Atom

The total energy of the ground state of the helium atom is

E(He 1s2) = 2ε1s −
〈

P1s|y0
1s1s|P1s

〉
. (54)

The total energy of the 1s2s 1S configuration of the helium atom is

E(He 1s2s 1S) = ε1s + ε2s

−1
2

〈
P1s|y0

2s2s|P1s

〉
− 1

2

〈
P2s|y0

1s1s|P2s

〉
(55)

and for the 1s2s 3S configuration

E(He 1s2s 3S) = ε1s + ε2s

−1
2

〈
P1s|y0

2s2s|P1s

〉
− 1

2

〈
P2s|y0

1s1s|P2s

〉
+
〈

P1s|y0
1s2s|P2s

〉
. (56)

4. Combination of EPP with Finite Difference Method

The Schrödinger and Hartree–Fock equations are converted to matrix equations using
the biorthogonality relations of interpolating wavelets [1]. We compare these computations
with the Finite Difference Method, which is a straightforward method for solving differen-
tial equations. The spatial and time domains are discretized, and the derivative at a point is
computed with a stencil applied to the nearby points. This way the differential equation is
converted to a matrix equation. The Laplacian operator is approximated by

u′′(x) ≈ u(x− h)− 2u(x) + u(x + h)
h2 (57)

where h is the discretization step size.
We discretize the Schrödinger Equation (23) at points pj = jh, j = 0, . . . , J + 1, where J

is the number of actual computation points and h ∈ R+ is the grid spacing. We define the
discretized potential by vj = V̄(sj). The boundary condition at the end of the interval is set
by pJ+1 = 0. We have

−
pj+1 + (−2− 2h2vj)pj + pj−1

2h2 = Epj (58)
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for j = 2, . . . , J. We handle case j = 1 by extrapolating p0 linearly from p1 and p2. We
obtain p0 = 2p1 − p2 from which it follows that p2 + (−2− 2h2vj)p1 + p0 = −2h2v1 p1.
Hence, the difference equation for j = 1 is

v1 p1 = Ep1. (59)

In order to discretize the exchange operator K̂a we need to discretize the integral
operators

( Îg( f ))(s) =
∫ s

0
g(s′) f (s′)ds′ (60)

and
( Îcompl

g ( f ))(s) =
∫ ∞

s
g(s′) f (s′)ds′. (61)

We define

(I(g))j,k :=
{

hgk; k < j
0; k ≥ j

(62)

and

(Icompl(g))j,k :=
{

hgk; k ≥ j
0; k < j

(63)

where gk = g(sk). When f is a real function, we define w( f ) := ( f (sk))
J
k=1. Now, the matrix

of the exchange integral operator is computed by

Ka := Wa + K0
a (64)

where Wa is computed as in the case of wavelets,

K0
a := diag(w( f1))I(P̄b) + Icompl( f1 ? P̄b), (65)

and
f1(s) :=

1
s + r0

, s ≥ 0. (66)

5. Results

We demonstrate the EPP method by performing computations where the EPP radius
r0 and the basis size W are varied. We actually select a length scale u = R/W and conduct
a change of variables s = us′ in Equations (23) and (31)–(35). The length scale u specifies
how many atomic units of length a length unit in our own coordinate system is. Here, R is
the size of the computation domain. For hydrogen 1s, we have R = 15 a.u., for hydrogen
2s and 2p R = 25 a.u., for He 1s2 R = 15 a.u., and for He 1s2s 1S and 3S R = 20 a.u.. We
also set j = 0 for the basis set (see Section 2), and hence u is equal to the grid spacing hEPP.
The relative errors of the quantities are given as

ε =

∣∣∣∣ xcomputed − xexact

xexact

∣∣∣∣. (67)

The amount of discontinuity of a computed wavefunction at point r = r0 is measured
by computing the relative error of the computed wavefunction value P̄(0) compared to the
hydrogenic wavefunction value PH(r0).

The results for the ground state of the hydrogen atom are presented in Figures 1 and 2,
for the 2s state in Figures 3 and 4, and for the 2p state in Figures 5 and 6. The results of the
ground state of the helium atom are presented in Figures 7 and 8. The results for He 1s2s 1S
are given in Figure 9 and the results for He 1s2s 3S in Figure 10. As expected, the energy
results are best for large values of W and small values of r0. Using 200 basis functions for
the helium ground state and computing the atom energies for r0 = 10k, k = −10, ...,−1
shows that atom energies are equal up to seven decimal places for r0 ≤ 10−6. Similar
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computation for the hydrogen 1s orbital shows that the H 1s energy is equal to −0.5 Ha up
to seven decimal places for r0 ≤ 0.01. For hydrogen 2s and 2p, the corresponding limit is
r0 ≤ 0.01, too.

We also found that when the number of basis functions is sufficiently large for a given
system, there is an approximate threshold value so that reducing r0 below it does not
make the accuracy of the computed energy better. When the number of basis functions
is sufficiently large and r0 is sufficiently small, the hydrogenic orbitals are approximately
continuous at r0.
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Figure 1. Hydrogen 1s orbital eigenenergy relative error. The r0 is the EPP radius in atomic units and
W is the basis size.
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Figure 2. Relative error of the wavefunction value at the core radius for the hydrogen 1s orbital.
Notations as in Figure 1.
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Figure 3. Hydrogen 2s orbital eigenenergy relative error. Notations as in Figure 1.
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Figure 5. Hydrogen 2p orbital eigenenergy relative error. Notations as in Figure 1.
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Figure 7. The ground state energy of helium atom. The HF limit is given in Table 1. Notations as in
Figure 1.
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Figure 10. Helium 1s2s 3S total energy. The HF limit is given in Table 1. Notations as in Figure 1.

The most accurate computations are in the upper left corners of the figures. The
orbitals of He 1s2s, except He 1s2s 3S 1s, are not continuous at all at r0, and no continuity
plots are presented for them. The computation results and exact results are given in
Table 1. For the EPP–Galerkin method the best energies (largest basis and smallest r0) of
the computed systems are presented. The OIW–Galerkin results with same number of
basis functions and grid spacing the same order of magnitude as for the most accurate EPP
results are given, too. The accuracies of both of the methods depend on the grid spacing.
The EPP–Galerkin method gives better results with the same number of basis functions and
larger grid spacing. The results of the Finite Difference Method are also given. Note that for
He 1s2s systems, the OIW–Galerkin method with a basis set of 601 functions and finest grid
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point distance 2−9 a.u. gives EHe 1s2s 1S = −2.153 Ha and EHe 1s2s 3S = −2.174 Ha, which
are approximately the same as the results of the EPP–Galerkin method.

Table 1. Hartree–Fock total energies of H and He occupation configurations. Eref are chosen reference
values. EEPP is the energy given by the EPP–Galerkin-method, hEPP is the grid spacing in the EPP–
Galerkin method, EOIW is the energy given by the OIW–Galerkin method, EFDM is the energy given
by the Finite Difference Method, and NFDM is the number of grid points in the Finite Difference
Method. For EPP, the most accurate results are given. For OIW computations, the number of basis
functions is 201 and the finest grid spacing is 0.00625 a.u..

System Eref/Ha EEPP/Ha hEPP/a.u. EOIW/Ha EFDM/Ha NFDM

H 1s −0.5 ∗† −0.500000 0.075 −0.50 −0.49803 1001
H 2s −0.125 ∗† −0.125000 0.125 −0.125 −0.124741 2001
H 2p −0.125 ∗† −0.125000 0.125 −0.124998 −0.124995 2001
He 1s2 −2.8616800 † [8] −2.8617 0.075 −2.834868 −2.839 1001

−2.903724 ∗ [9]
He 1s2s 1S −2.147 ◦ [10] −2.1532 0.1 −2.133579 −2.132 1001

−2.145974 ∗ [9]
He 1s2s 3S −2.171 ◦ [10] −2.1742 0.1 −2.154536 −2.155 1001

−2.175229 ∗ [9]

* : exact energy; †: HF limit; ◦: HF result.

Some of the computations using the diagonalization of the Hamiltonian operator yield
an unphysical state for the minimum eigenvalue. For 1s and 2s orbitals, this eigenvalue
seems to be about −Z/r0 (in atomic units) and the corresponding eigenvector v(P̄) =
(−δk,0)k≥0. For the hydrogen 2p orbital, the unphysical eigenvector does not appear. The
unphysical state remains the same during the HF iteration of He 1s2, He 1s2s 1S, and
He 1s2s 3S. The physical admissibility of the wavefunctions Pnl(r) was characterized by
the condition

lim
r→0

Pnl(r) = 0. (68)

We checked this condition by extrapolating solutions Pnl(r) polynomially at r = 0.
Actually, we extrapolate polynomially P̄(s) at s = −r0 using some points s near 0. Note
that Fischer and Defranceschi [2] also find unphysical states in wavelet computations of
hydrogen-like atoms. Their iteration scheme yields an unphysical result that is actually the
mathematical ground state corresponding to the pseudopotential.

6. Discussion

The EPP–Galerkin method gives seven correct decimal places for the hydrogenic 1s
orbital, six correct decimal places for the hydrogenic 2s and 2p orbitals, and four correct
decimal places for He 1s2. For He 1s2s 1S and 3S, we obtain energies close to the HF limit.
The OIW–Galerkin method with the finest grid spacing 0.0625 a.u. gives energies with
two to five correct decimal places. The grid size of OIW–Galerkin calculations is smaller
compared to the EPP–Galerkin calculations. The Finite Difference Method yields rather
inaccurate results even though the grid spacing is considerably smaller compared to the
EPP–Galerkin calculations.

To our surprise, the EPP Hartree–Fock total energy of the He excited state configuration
1s2s 1S is lower than the exact energy including correlations. This has been observed earlier
in Ref. [10], and Cohen and Kelly [11] have shown that the reason is the nonorthogonality
of this particular state and the ground state 1s2 1S. Thus, the kind of "orbital relaxation" of
the excited HF state 1s2s 1S lowers the total energy by mixing a little of the ground state
with the excited state wave function. In the present case, the EPP overlap integral of these
two states is 0.0274, and there are obvious ways to work out the pure excited states, but
this is out of the scope of this study.
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We were able to obtain results near the Hartree–Fock limit by using a large enough
basis and small enough parameter r0. It turns out that the EPP–Galerkin method yields
better methods than the OIW–Galerkin method and considerably better results than the
Finite Difference Method.
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