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Mathematicalmodels of the cardiovascular systemhave come
a long way since they were first introduced in the early
19th century. Driven by a rapid development of experi-
mental techniques, numerical methods and computer hard-
ware, detailed models that describe physical scales from
the molecular level up to organs and organ systems have
been derived and used for physiological research. Mathe-
matical and computationalmodels can be seen as condensed
and quantitative formulations of extensive physiological knowl-
edge, and are used for formulating and testing hypothe-
ses, interpreting and directing experimental research, and
have contributed substantially to our understanding of car-
diovascular physiology. However, in spite of the strengths
of mathematics to precisely describe complex relationships,
and the obvious need for the mathematical and computa-
tional models to be informed by experimental data, there
still exist considerable barriers between experimental and
computational physiological research.

In this review we present a historical overview of the
development of mathematical and computational models
in cardiovascular physiology, including the current state of
the art. We further argue for why a tighter integration is
needed between experimental and computational scientists
in physiology, and point out important obstacles and chal-
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lenges that must be overcome in order to fully realize the
synergy of experimental and computational physiological
research.
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1 | INTRODUCTION
The aim of this review is to promote and facilitate a tighter integration between experimental and computational
physiological research. Detailed computational models describing multiscale physiological processes - ranging from
the molecular level to organs and organ systems - have become indispensable research tools in recent decades, as
enabled by the rapid development of both experimental techniques and computer technology. However, in spite of the
obvious strengths of mathematics in formulating and testing physiological hypotheses, and the equally obvious need
for computational research to be guided and driven by experimental data, there are still considerable barriers between
experimental and computational physiology. While these barriers may come in many forms, limited interdisciplinary
understanding and lack of effective communication across fields is usually a key factor. In the present review, we
aim to explain and demystify important concepts of computational physiology and scientific computing, hoping to
make in silico physiology more accessible to researchers most familiar with in vivo and in vitro experimental research.
Figure 1 provides a graphic illustration of the terms and concepts included here, with font size indicating the relative
importance of each term. While we make no attempt to provide an in-depth explanation of all of these, our aim is to
open up some black boxes and to provide content and context to the jargon and buzzwords of computational science.
Focusing on cardiovascular research, we present a historical overview of the important contributions of mathematics
and computations in physiology, and explain key terms of scientific computing and their relevance. We also draw some
parallels between computational efforts in studies of the heart and the brain, aiming to identify tools and practices that
should be shared between these communities for their mutual benefit. Hopefully, this review may facilitate essential
communication between scientific disciplines.

Computational Modeling & Simulation are commonly used for formulating and testing hypotheses, interpreting,
and even directing experimental research, and have contributed substantially to progress in physiological research [1].
This is particularly true of the cardiovascular system, where mathematical models have been used in groundbreaking
basic science and translational research in the cardiovascular field, see, e.g., [2, 3], and have even provided new clin-
ical methods in the form of in silico medicine [4]. Models offer essential tools to further mechanistic understanding
of physiological processes. Examples of particular importance include the case where state-of-the-art experimental
methods are insufficient to resolve the desired information (e.g., the flow of ions within a subdomain of an intact cell),
a scenario wherein data is overly sparse for mechanistic conclusions (e.g., a limited number of patients with a given
pathology or few clinical measurements), or to provide efficacy and safety for repeated testing (e.g., as part of clinical
trials for new pharmacological compounds). Therefore, multi-scale computational cardiac models may serve several
roles in research, and have served as knowledge integrators, permitting the development of conceptual models re-
lying upon diverse sources of information. Additionally, these have enabled mechanism-driven experimental design,
as models permit precise isolation of individual variables, a scenario often extremely difficult to achieve in vitro due
to the complexity and interdependencies of biological systems. Thus mathematics can serve as an "alternative mi-
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F IGURE 1 Word cloud illustration of the concepts and terminology covered in this review. Font size indicates
the relative emphasis within the scope. The aim of this review is to provide a brief introduction to these terms, in
order to facilitate interdisciplinary communication as well as motivate further reading.

croscope” – a supplementary tool to see where systems confound and current experimental technologies cannot yet
clarify. Computational cardiac models can additionally operate as hypothesis generators; there are several notable
cases for which a physiological phenomenon was first observed in silico, often years before it was achieved in an
experimental setting [5]. Finally, as in silico models keep improving, they have the potential to provide insights that
are not available via current experimental methods, be these enabled by, for example, advanced imaging techniques
or animal models. Beyond the cutting-edge, the benefits of using computational modeling in cardiac research and
cardiology are pragmatic. Computer models based on physical principles effectively encode and represent centuries
of scientific knowledge, which may be immensely useful in data-driven research based on statistical methods and
machine learning. The models may offer a modest, often predictable expense in development and use, enabling cost-
savings for projects [6], and can also be employed together with traditional experimental methods, enabling attention
to the responsible use of animal models [7].

Despite these key advantages of applications of computational modeling and recent inclusion into both the
biomedical science and health domains, much wider knowledge and adoption in cardiovascular research would be
beneficial. Shared competence in computational cardiac modeling will continue to deepen insight and accelerate
knowledge in cardiovascular physiology, as well as create downstream benefits in cardiology care. In this review we
aim to present and discuss the current state of the art in computational cardiac physiology, including its potential
clinical applications. The potential for clinical applications, as well as the clinical utility of improved understanding
of cardiac (patho-)physiology, have been important drivers for the development of computational physiology models.
The clinically motivated development of fundamental physiological models makes it difficult to clearly separate com-
putational physiology and computational medicine, and we will therefore address both. Wemainly focus on the classical
style of physiology models that are derived from physical principles and theory, but for context and perspective, we
also touch upon relevant data-driven methods such as machine learning. The remainder of the review is organized
as follows. In Section 2.1, we explain what we mean by computational modeling and give a brief introduction to key
concepts of modeling as well as fundamental cardiac physiology. Section 3 summarizes the current state of the art in
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cardiovascular modeling and provides a brief summary of alternative and supplementary model frameworks, including
machine learning, as well as methods for assessing the quality of model results. Section 4 outlines a number of key
barriers to further exploitation of computational models, while Section 5 delineates possible directions to overcome
these barriers and presents brief concluding remarks.

2 | MODEL FOUNDATIONS
2.1 | Foundations of mathematical and computational modeling
The term model can have many different meanings in the context of medicine and biology. Here, we restricted our
attention to mathematical and computational models, that is, models defined by a system of equations or a well-
defined set of rules (i.e., an algorithm) and are intended to describe some biomedical phenomenon. Even with this
restriction, there are numerous and vastly different categories of these models. For instance, statistical models em-
body certain assumptions on the statistical properties of observed data, biophysical models aim to describe the under-
lying mechanisms that give rise to such observations, while phenomenological models aim to describe an observed
phenomenon with a simplified set of mathematical relations and parameters, not necessarily aiming to capture the
underlying physics. Although this nomenclature and classification of models is relevant and useful in many cases, the
borders between the model classes are not sharp. Many biophysical models include model components of a statisti-
cal or phenomenological nature, and phenomenological models can often be viewed as simplified biophysical models.
Although all three modeling approaches have been used with success in medical research, statistical models are by
far the most ubiquitous, being a cornerstone of both clinical and experimental research.

In recent years, these traditional modeling approaches have been supplemented by machine learning (ML) and
artificial intelligence (AI), which have had a massive impact on many fields and are emerging as important tools in
medicine as well. In terms of model categorisation, many ML methods are examples of classical statistical models,
while artificial neural networks (ANNs) can be viewed as a distinct category of statistical models: biologically-inspired
computer models used for tasks such as prediction or classification (see, e.g., [8, 9]). In certain ANN architectures,
these may popularly be termed "deep learning" models. The emerging success of ML methods has also increased the
relevance of another categorisation of modeling approaches: that of data-driven versus theory-driven modeling. The
typical example of a data-drivenmodel is anML algorithmwith no built-in knowledge or assumptions of the underlying
physics, which is trained on empirical data to give predictive capabilities. On the other hand, a typical theory-driven
model involves a mathematical formulation that describes the underlying physics, for instance, a biophysical model
of an excitable membrane, where all variables and parameters have a physical interpretation. In reality, the border
between these categories is blurred, since theory-driven models often include constitutive relations based solely on
empirical data, and data-driven models may be informed or constrained by physical reasoning (see, e.g. [10, 11]).

In this review, we will mainly focus on the huge and largely unrealized potential of theory-driven models, used
on their own for hypothesis testing or clinical decision support, or as a supplement to ANNs and other ML methods.
The latter application, effectively combining classical theory-driven models with modern ML, is an emerging sub-field
which is particularly promising for reducing training data requirements by encoding established information into ML
techniques. Typical examples of theory-driven models are electrophysiology models derived from fundamental laws
such as Maxwell’s equations and Kirchhoff’s laws, tissue mechanics and fluid flow models based on Newton’s laws
of motion, and biochemical transitions described by the fundamental principles of chemistry. Such models have a
long history in physiology and medicine, including models of blood flow derived centuries ago (e.g., [12]), and detailed
models of neurons [13] andmuscle mechanics [14] dating back to the 1950s. However, the potential of suchmodeling
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has increased substantially in the last 3-4 decades, driven by rapid advances in computing power, numerical methods,
medical imaging, and experimental techniques. Patient-specific and clinically-driven models have been active areas
of research for at least two decades, see, for instance [15, 16, 17, 6, 18, 19], but there are still relatively few examples
(e.g., [4]) of direct clinical use of computational models. The purpose of this review is to advance this situation by
presenting and discussing the state of the art and the success stories of computational models in medicine, as well as
the important challenges and obstacles towards increased use in cardiovascular research and in clinical settings.

Common tomost of these biophysically based models is their formulation in terms of differential equations: math-
ematical relations between unknown functions and their derivatives, i.e., between physical quantities and their rate of
change. A simple example is the relationship between position, velocity, and acceleration in kinematics, and how these
relate to forces through Newton’s second law. Because of the complexity of the processes involved, relevant mod-
els in physiology tend to be complex systems of partial differential equations (PDEs) that relate spatial variations of
physical quantities to their temporal dynamics. The most important of these models in the context of cardiovascular
physiology include the bidomain model coupled to cell electro-chemistry models, for describing cardiac electrophysi-
ology [20]; soft tissue continuummechanics models describing the deformation of blood vessels and the heart muscle
[21, 22]; and Navier-Stokes equations describing the flow of blood [23]. All of these models are complex systems of
nonlinear PDEs, which are impossible to solve analytically, and need to be solved using numerical methods and com-
puters. These computational tools have evolved immensely over the last few decades, and this evolution has been an
important driver for a rapid increase in complexity, realism, and relevance of physiological models that can be derived
and studied.

2.2 | From differential equations to algorithms and software.
A challenge of dealingwith increasingly complex physiological models is that the fundamental equations, and therefore
the underlying physics, tend to be hidden inside black boxes of complex algorithms and software. Model users are
often left with the choice of either trusting the models, with little insight into the underlying computations, or of
diving deep into the details of complex numerical software tools. Neither of these solutions is very satisfying, and it
should be a key goal for computational software developers to include appropriate documentation as well as thorough
verification and validation of software tools. Such measures, discussed in more detail below, will allow non-technical
and new users to gain the necessary insight and trust without having to perform an in-depth assessment of numerical
and algorithmic details.

Nevertheless, some degree of fundamental knowledge about numerical methods and software is, of course, valu-
able for any user of such tools. An introduction to numerical methods is well beyond the scope of this text, but in
this paragraph, we provide a brief explanatory presentation of the fundamental ideas common to all computational
software. Mathematically, classical solutions to differential equations come in the form of mathematical formulae
that solve the equations of interest, and typically offer the quantity or quantities of interest as a function of space
and time. However, the analytical treatment of differential equations is based on the concept of infinity, which is an
ill-suited concept for a computer, which deals only with finite numbers. As a concrete example, consider a model (i.e.,
a differential equation) describing blood flow in an artery, for which the solution is the fluid velocity and pressure in
every point inside the vessel. Since there are infinitely many points, the solution is infinite-dimensional, and ideally
we would aim to find mathematical formulae that specify the velocity and pressure as functions of position and time.
However, for most realistic and relevant models such formulae is impossible to find, and the solution must instead rely
on numerical methods based on finite numbers, which construct approximate solutions to the equations. Common to
all such methods is that the solution is approximated as a parameterized mathematical function, e.g., u = f (t , x , λ) ,
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where t is time, x is the spatial coordinates, and λ = λi , i = 1, . . . , n is a list of parameters. The n parameters are then
determined so that u approximates the true solution uexact for all values of x and t .

Depending on the choice of solution method, i.e., the choice of the approximation function u = f (t , x , λ) , the
parameters λi may or may not have a physical interpretation. In commonly applied engineering methods such as finite
element, finite volume, and finite difference methods, these parameters actually represent approximate values of the
solution in discrete points in space and time. We then have λi = ui , where ui are approximates to the true solution
uexact in discrete points, corresponding to nodes in a mesh that approximates the physical domain of interest, see
Figure 4 for an example. While it is somewhat unusual in these methods to view the discrete solution values ui as
parameters in an approximating function, formulating the methods in this general way is useful to see the relation
between all the methods, and in particular the commonalities between classical engineering methods and emerging
methods such as deep learning. Other relevant methods include spectral methods, which approximate the solution
as a weighted sum of predefined mathematical functions, or deep neural networks, where the parameters represent
the weights and biases of the activation functions [24].

Methods for determining the parameters λ fall into three categories: (i) minimization methods, where the approx-
imation is selected from a finite dimensional approximation space as the function which minimizes a residual, that is,
the degree to which a function fails to satisfy the differential equation; (ii) projection methods, where the approxima-
tion is obtained by orthogonal projection, as the function for which the residual is orthogonal to the finite dimensional
approximation space; or (iii) collocation methods, where the approximation is determined to be exact in a finite num-
ber of collocation points. A least squares method is an example of a minimization method, a Galerkin finite element
method is a projectionmethod, and a finite differencemethod is an example of a collocationmethod. See, for instance,
[25] for a comprehensive overview of computational methods.

The accuracy of the solution depends on the number of parameters used in the approximating function, often
referred to as the solution’s degrees of freedom. In finite element and finite difference methods, increasing the number
of degrees of freedom involves increasing the density of nodes in the mesh, which allows for improved accuracy of
the geometrical representation as well as that of the solution itself. In spectral methods, increasing the number of
degrees of freedom means that we approximate the solution using a richer set of mathematical functions, while in
the case of a deep neural network, it means to increase the number of layers in the network or the number of nodes
in each layer. In all cases, the result of more degrees of freedom is a potentially more accurate solution, at the cost of
increased computational effort. Accurate simulations of complex physical phenomena may require billions of degrees
of freedom and the computational expense can be substantial. In such cases, it becomes essential to utilize efficient
numerical methods that run on powerful computational hardware. The complexity of deriving and implementing such
methods is a significant obstacle towards more widespread use of detailed computational models in cardiovascular
research. Increasing the availability of reliable andwell documented computational software tools is an important step
for advancing the use of biophysical models, and in particular for advancing their use among researchers and clinicians
without formal training in mathematics or scientific computing. Such software tools are being developed for a number
of cardiovascular modeling applications, and many of them are made freely available to the research community (see,
e.g., [26, 27, 28, 29, 30, 31]). However, although many of these packages have been developed over several decades
and are highly capable and feature-rich, most of them are still lacking in documentation and user-friendliness and have
a very steep learning curve for non-expert users. These topics will be discussed in more detail below.
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2.3 | Anatomical and physiological background
Here, we offer an overview of heart anatomy and the physiological processes that are the main targets in computa-
tional cardiovascular modeling. A more nuanced and detailed presentation can be found in, for instance [32, 33] and
the reviews cited in this section.

In spite of all of its emotional connotations, the heart’s fundamental function is that of a mechanical pump that
drives blood through the circulatory system. The heart consists of four chambers; the smaller left and right atria (LA
and RA, respectively) and the larger left and right ventricles (LV and RV, respectively). From the lungs, i.e., the pul-
monary circulation, oxygen-rich blood enters the LA, is pumped into the LV, and then out into the systemic circulation
through the aorta. At the capillaries of the systemic circulation, the blood perfuses tissue to deliver nutrients and
remove waste. Deoxygenated blood returns to the heart via the venous system into the RA, the RV and back to the
lungs through the pulmonary circulation. This flow of blood is driven by the rhythmic contraction and relaxation of the
heart muscle tissue, in combination with valves at the openings in and out of the ventricles to keep the blood flowing
in the correct direction. During the relaxation phase, known as diastole, the cavity pressures in both ventricles drop
below the venous pressures, causing the inlet valves to open and the ventricles to fill with venous blood. Then, as the
heart tissue contracts, known as systole, the cavity pressures increase, first causing the inlet valves to close, and then
the outlet valves to open when the pressures rise above the arterial pressure. The pressure differences between the
ventricles and arteries then drive the blood flow into the arterial system. Pressure differences in the cardiovascular
system are also reflected in the overall anatomy of the heart. The resistance of the systemic circulation is much higher
than that of the pulmonary circulation, and, consequentially, the pressure needed to drive the flow into the body’s
arteries is much higher. The cavity pressure in the LV is therefore higher than that in the RV, and, thus, the LV is the
thickest and strongest muscle in the heart. The movement of the heart is constrained by connections to surrounding
tissues and organs, though between the pericardium (the fibrous connective tissue surrounding most of the heart)
and the outer layer (epicardium) of the heart, a thin film of pericardial fluid allows the movement of the heart to be
almost frictionless [34].

The contraction of the myocardium is initiated and regulated by an electrical signal originating in the sino-atrial
(SA) node, which is a collection of so-called pacemaker cells (which generate their own action potentials; see next
paragraph) located in the RA. From the SA node, the electrical signal first propagates through the atria to trigger their
contraction, then enters the ventricles through the atrio-ventricular (AV) node, and then propagates quickly through
the ventricles via the bundle of His and the Purkinje system (see e.g., [32] for a detailed illustration and explanation
of this specialized cardiac conduction system). At the end of the Purkinje cells, the signal enters the cardiomyocytes
(CMs, cardiac muscle cells), and is conducted through the rest of the cardiac muscle by the auto-excitability of these
CMs, as explained below.

CMs are excitable cells, just like neurons and other muscle cells, meaning that they respond to an electrical stim-
ulus by going through an action potential (AP). At rest, the interior of CMs are negatively charged compared with the
surrounding domain, giving rise to a transmembrane potential difference close to -90mV (for e.g., ventricular CMs).
During the AP, the membrane quickly depolarizes, then stays at approximately zero (0) potential difference for a while
( 100-300 millseconds in human CMs; the plateau phase), and then returns to the negative resting potential (via a
process known as repolarization). This cycle is achieved via membrane channel proteins, principally voltage-gated ion
channels permeable to specifically sodium, calcium and potassium ions, as well as a number of ion pumps and exchang-
ers. While all of these ions are crucial for the excitability of the cells, calcium plays a special role in CMs and other
muscle cells as the trigger for contraction. During the plateau phase of the AP, calcium flows into the cell through the
cell membrane, which triggers a release of more calcium from a complex intracellular storage system known as the
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sarcoplasmic reticulum (SR) [35]. This process, known as calcium-induced-calcium-release, gives a tenfold increase
in the intracellular calcium concentration, which triggers the contractile apparatus of the CMs. The main contractile
units of the CMs, called sarcomeres, are made up of overlapping thick and thin filaments. The increase in intracellular
calcium concentration causes calcium to bind to dedicated proteins (troponin C) on the thin filaments, which allows
the formation of crossbridges between the thin and thick filaments that make up the sarcomeres, which are the main
contractile units of the myocytes. The resulting cross-bridge cycling, where cross-bridges continuously attach, twist,
and detach, cause the individual sarcomeres and the entire myocyte to shorten.

The CMs constitute independent excitable and contractile units, and substantial knowledge about the heart’s
function has been extracted from studies and models of individual cells. However, the function of the heart results
from the coordinated action of billions of cells, and many important aspects of its function can only be studied and
understood at the tissue- and organ scale. CMs have cylindrical shape, and are organized in a fibre-like structure,
which gives the heart tissue direction-dependent (anisotropic) electrical and mechanical properties. While excitation
and contraction occurs at the level of the individual heart cell, the cells are both electrically and mechanically cou-
pled, and they can be viewed as a functional syncytium, meaning that their micro- and ultrastructure allow them to
function as a continuously excitable and contractile tissue. This property is conveniently utilized in models of both
electrophysiology and mechanics, as will be summarized in subsequent sections. Electrical conduction through the
tissue takes the form of a sharp wavefront of depolarization, which is typically modeled as a reaction-diffusion process
described by the bidomain equations, as briefly mentioned above.

The excitation-contraction coupling process described for individual myocytes above, initiated by the AP and
resulting in myocardial contraction, governs the development of active force in the muscle. However, the overall
mechanical state of the heart additionally depends on its passive properties. The stress in the myocardium (force
per area) is set up by both the elastic force counteracting material stretching during contraction and the active force
generated from the cross-bridge cycling. Even at the most relaxed phase of the heart cycle, some stress remains from
the previous contraction and the low cavity pressure in early diastole. Thus, the heart and the cardiovascular system
at large is a system which is always loaded, and continuously adapting.

3 | STATE OF THE ART
A primary goal of this review is to motivate and facilitate increased collaboration between experimental and compu-
tational physiologists. As such, it is useful to give a brief overview of the state of the art in computational cardiac
physiology, focusing on the status of models for individual components of the cardiovascular system, ranging from
models for ion channels and CM electrophysiology to tissue mechanics and blood flow. Advances in medical imaging
and experimental methods have been central to the development of increasingly complex and detailed models of the
cardiovascular system. A few examples of image based modeling are provided in Figure 2, which illustrates the close
link between computational models and imaging on all spatial scales.

3.1 | Models of ion channel and cell electrophysiology
As CM electrophysiology has many similarities with neuronal cells, the basis for modeling has been drawn from the
pioneering squid giant axon work of Hodgkin and Huxley [13]. The first CM model by Noble [36] predicted the AP
in a generic mammalian Purkinje cell model based on three currents: sodium, potassium, and a background current.
Since then, the number of models describing the specifics of different species and CM types has grown steadily [37].
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F IGURE 2 Examples of linking imaging and functional data to computational models and simulations at different
biophysical scales. A) 3D direct stochastic optical reconstruction microscopy (dSTORM) imaging of Ryanodine
receptors (RyRs) combined with confocal imaging of transverse tubules (T-tubules), and corresponding 3D mesh for
reaction diffusion (R-D) simulations for calcium ions. B) Labeled imaging of gap junctions in a cardiomyocyte, and the
analogous mesh for mechanical simulations using the so-called EMI model that represents explicitly the extracellular
Space (E), cell membrane (M) and intracellular space (I) of a collection of cardiomyocytes. C) Light microscopic
imaging of cardiac fibrotic tissue, and an electrophysiological simulation (membrane voltage displayed) based on that
geometrical mesh. D) Segmentation of ventricles and infarct scar from late gadolinium enhanced (LGE) magnetic
resonance imaging (MRI), and visualization of the damaged tissue in a finite element mesh.
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However, for decades there was cross-species parameter inheritance [38]. This was common also for the early human
ventricular cardiomyocyte (hV-CM) models [39, 40, 41], but more recent ventricular cell models have been based fully
on human data [42, 43]. A full species coherence in source of parameters is yet to be reached in the atrial, sinoatrial,
and induced pluripotent stem cell-derived (hiPSC-CM) models, for reviews, see e.g., [44, 45, 46].

While the Hodgkin-Huxley channel gating formalism remains widely used in CM electrophysiology models, re-
cent models are increasingly replacing it with more general Markov chain models, that may more readily be linked
to the underlying protein function. A Markov model consists of a set of states that correspond to different protein
configurations, for example, the open and closed state of an ion channel. A set of equations which describe the transi-
tions between these states can depend on, for instance, ion concentrations, membrane voltage (Vm ), temperature, or
drug concentrations. When a channel is in the open state, it allows specific ions to flow through and carry electrical
current, driven by the electrical potential difference and concentration difference across the membrane. A fundamen-
tal concept for describing the ion movement is the reversal potential, i.e., the Nernst equilibrium potential for ion X
(EX ), which is the membrane potential for which the net flux of ion X is zero. A membrane voltage Vm , EX will
drive electrical current through the open ion channels. The most common model for calculating the current is a linear
model based on Ohm’s law, i.e., IX = gX (Vm , t ime) (Vm − EX ) , where IX is the current carried by ion X and gX is
the conductivity of the given channel. However, some ion currents are better described by the more complex and
nonlinear Goldman–Hodgkin–Katz equation [47, 48]. For a comprehensive review of this topic, see, e.g., [49].

CMs contain a large number of different ion channels, pumps, and exchangers, and the composition varies be-
tween different species as well as between different regions of the heart. The extent to which this complexity is
accounted for in a mathematical CM model ranges from phenomenological to mechanistically detailed models. For
example, the ventricular CM model by Fenton and Karma [50] contains only three prototypical transmembrane cur-
rents: a fast inward Na+, slow inward Ca2+, and slow outward K+. Despite its simplicity, the model can still reproduce
“higher level” features of electrophysiological data, such as AP morphology and conduction velocity restitution. At the
other end of the complexity spectrum is, for example, the O’Hara et al. [42] hV-CM model that describes 1) unique
properties of close to 20 different ion channels, pumps and exchangers, 2) fluxes and concentrations of Na+, Ca2+
and K+ in three different intracellular compartments, and 3) even some aspects of enzymatic signalling. The principle
of AP simulation is exactly the same in these two very different CM models; calculating the net transmembrane flux
of ions gives the time course ofVm . The iterative nature of model development is demonstrated well in the case of the
O’Hara et al. hV-CM model [42]. After its publication in 2011, this model has been updated and extended to include
features such as cellular myofilament mechanics [51], beta-adrenergic regulation of ion transporters [52], improved
prediction accuracy of drug-induced arrhythmias [53], physiologically accurate balance of de-/repolarizing currents
[54], and more detailed intracellular Ca2+ dynamics [55].

3.2 | Modelling action potential propagation
As noted above, the structure of CMs and their coupling allows the cardiac tissue to be modeled as a functional syn-
cytium, thereby neglecting the discrete and cell-based nature of the process (for a review see, e.g., [56]). A continuous
description of cardiac tissue can be obtained by homogenizing the discrete representation as a resistor network [57],
where CMs are coupled diffusively viaVm [58]. While recent work has highlighted applications and mechanisms that
require a representation of the tissue’s discrete nature [59, 60, 61], a continuum approximation remains the standard
for tissue-scale cardiac electrophysiology. The reference model is the bidomain model [62], which assumes continuous
and overlapping extra- and intracellular spaces, as well as a continuous and spatially distributed cell membrane. The
model is derived from first principles: conservation of charge in these domains in combination with known properties
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F IGURE 3 Illustration of the multiscale nature of cardiac electro-mechanics models. The functional units of the
heart tissue are the cardiomyocytes, which in turn are filled with bundles of contractile units called myofibrils
(bottom right). The contraction of the myofibrils is controlled by calcium concentration within the cardiomyocyte, in
turn controlled by the electrical activation of the cell membrane, which is driven by the opening and closing of highly
specific ion channels in this membrane. State-of-the-art electro-mechanics models describe the two-way coupling
between electrophysiology and mechanics on the cellular level, and how these integrate to define the function of
the complete organ. (Figure adapted from https://commons.wikimedia.org/wiki/User:BruceBlaus)

of current across the membrane, i.e., the CMmembrane models outlined above. A popular simplification of the model
is themonodomain model, which assumes equal ratios of anisotropy between the intra- and extracellular spaces. Mod-
els with more domains have also been derived. For example, [63] expanded the bidomain model to include a third
domain representing cardiac fibroblasts. However, the standard bi- and monodomain models remain, by far, the most
widely used, and capture many important characteristics of cardiac electrophysiology.

3.3 | Models for cell- and tissue contraction
The force generation in muscle cells results from a complex interplay of thin and thick filaments, and mathematical
models for these processes date back to the seminal works of Hill in the 1930s [64], and Huxley in the 1950s [14].
The Hill muscle model is a phenomenological model providing a fairly simple relation between developed force and
the velocity of shortening, and is widely used in musculo-skeletal models and cardiac models alike. Huxley’s models,
on the other hand, provide a detailed description of the formation of cross-bridges between thin and thick filaments,
and how the cross-bridge formation and consequent force development depend on muscle length and shortening
velocity. Although being a huge contribution to the fundamental understanding of muscle cell mechanics, and still
having wide utility in physiological research, Huxley’s models are generally considered too complex and computa-
tionally demanding to be used in tissue-level mechanics models. Intermediate models have been derived that aim to
describe the underlying physics using a lumped approach based on ordinary differential equations (ODEs), and avoid
the extensive complexity of the Huxley type of models. Important contributions in this category include the so-called
HMT model and subsequent developments [22, 65]. These models are structurally similar to the ODE-based models
for cell electrophysiology in Section 3.1, and describe the dynamics of calcium binding the thin filaments, exposing
the binding sites for cross-bridges, and the subsequent cross-bridge formation and force development. The important
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force-velocity relationship is captured by a phenomenological model of Hill type. More recent model approaches aim
to capture even more of the underlying physics, by describing the cross-bridges as linear springs, where the devel-
oped force is the product of the spring stiffness and the cross-bridge distortion [66, 67]. Arguably, the most influential
model of this kind in the cardiac modeling community is that of Rice et al [67], which was deliberately developed to
faithfully capture as much physical detail as possible while retaining a computationally efficient ODE-based frame-
work. The overall model is a mix of biophysical and phenomenological components, and is readily coupled with both
cell level electrophysiology and tissue level mechanics models. More recent models have been derived and adapted
to experimental data from various species, most notably human [68]. As noted in Section 2.3, the deformation of
the heart muscle results from the interplay between the active contraction of the cardiomyocytes and the passive
mechanical properties of the tissue. The dynamics of the tissue is described within the framework of continuum
mechanics, or more specifically within nonlinear solid mechanics, see, e.g., [69] for a detailed overview. Building on
the well established framework of continuum mechanics means that models and solvers can exploit vast amounts of
tools and theory developed over several decades. Typically, the mechanics model itself is a fairly standard version
of an fundamental mechanics law called Cauchy’s first equation of motion, which expresses balance of internal and
external forces. However, application of such models in a realistic scenario is challenged by complex geometries, dy-
namic boundary conditions, strongly nonlinear material behavior, as well as the dynamic and adaptive behavior of
living tissue. Figure 3 illustrates the multiscale nature of cardiac electro-mechanics models. The electrical and me-
chanical behavior of the complete organ is governed by sub-cellular structures such as ion channels and sarcomeres.
An interesting historical overview of the development of cardiac mechanics models can be found in [70].

3.4 | Fluid dynamics and fluid-structure interaction.
The Navier-Stokes equations is a system of nonlinear PDEs that models the fluid dynamics of the cardiovascular
system, in which the velocity and pressure of the blood is determined by its density, viscosity and the external forces
acting on the blood volume. The tissue mechanics of blood vessels also influences the velocity and pressure of the
blood flow, a coupled system of nonlinear PDEs, referred to as fluid-structure interaction. In the chambers of the
heart and the larger blood vessels, the macroscopic blood flow is often approximated to be Newtonian, i.e. assuming
a linear relationship between stress and strain. But in the smaller blood vessels, the nonlinear nature of the blood
must be taken into consideration, while on the other hand the 3D Navier-Stokes equations often can be reduced to
1D or 0D models [71].

Blood flow and the stiffness of the vessel walls is not the only fluid-structure interaction in the cardiovascular
system. The blood flow in the heart represents another fluid-structure interaction problem tomodel. The endocardium
is in contact with the blood inside the chambers, and the function of the heart valves relies on the interplay between
the blood and the leaflets. Fluid-structure interaction simulations are both used to study the native valves, and to
optimize the design of prosthetic heart valves, see e.g. [72, 73, 74].

Idealized models of blood flow in the heart can be used to improve diagnosis and treatment, see e.g. [75], and
computational modeling also enables sensitivity studies with respect to the different parts and parameters of the
flow system, see [76]. A more direct clinical application of computational methods is patient-specific simulations,
where computational models are tailored to individual patients based on data from medical imaging [2]. To date,
a majority of the patient-specific cardiovascular simulations have focused on the left ventricle of the heart, see e.g
[77, 78, 79, 80, 81, 82], but there alsomany other studies, addressing e.g., abdominal aortic aneurysms [83] or coronary
artery disease [4].
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F IGURE 4 Illustration of a pathway for patient-specific simulation of the blood flow in the left ventricle of the
heart, with all the steps from clinical image acquisition to data post-processing (reprinted from Larsson et al. [82]).
The steps described from left to right are: (i) acquisition of ultrasound images (echocardiography), (ii) segmentation
of the left ventricle endocardium for a series of time instants, (iii) identification of the mitral and aortic valves, (iv)
generation of a 3D tetrahedral mesh of the left ventricle which is deformed over the cardiac cycle according to the
segmented endocardium, (v) finite element simulation of the blood flow in the left ventricle, (vi) visualization and
analysis of the simulation data.

3.5 | Multiscale and multiphysics models
The components of the cardiovascular system are of course tightly interconnected, and the model components out-
lined above should, in principle, not be viewed in isolation. However, all models are simplifications, and the ability
to isolate individual mechanisms and sub-systems is one of the main strengths of mathematical and computational
models. Consequently, significant insight can be gained from studying individual system components using isolated
models as outlined above. The majority of developed cell models concern only electrophysiology and neglect cell
contraction, nearly all simulations studies based on the bidomain model completely neglect the deformation of the
heart, and most whole-heart mechanics models include very crude representations of both electrophysiology and
blood flow. Such simplifications are important for reducing the computational cost of the models, and for facilitating
analysis and interpretation of results, by reducing the overall model complexity and isolating the mechanisms under
study. It should also be noted that, even with these simplifications, most of the models discussed in this review de-
scribe complex processes occurring on a wide range of spatial and temporal scales. As such, most of the models could
be correctly classified as multiscale and multiphysics models, although the latter term is usually reserved for models
that couple electrophysiology and mechanics.

Significant exemptions where the individual model components cannot be viewed in isolation exist. The most
well-known case may be the study of mechano-electric feedback (MEF) mechanisms on the cell- and organ-levels,
which clearly require a degree of two-way coupling between the electrophysiology and mechanics models [84]. The
potential role of MEF in arrhythogenesis has been an important driver for this development, and a number of research
groups have developed advanced models of coupled electro-mechanics, see for instance [85, 86, 87, 88, 89, 90, 91,
92]. Similarly, the development of fluid-structure interaction (FSI) models that couple tissue mechanics with blood
flow has mainly been driven by investigations of valve mechanics. Valvular disorders are common and represent a
substantial clinical problem [93]. The healthy function of the heart valves relies on a complex interplay between
the valve leaflets, blood flow, and surrounding tissues. Capturing all these details in a computational model leads to
extremely challenging FSI problems. However, such complexity is needed to answer clinically relevant questions, and
this has driven the further development of advanced and complex models [94, 95, 74, 96, 93, 97, 98].
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A similar clinical or scientific driver has been more difficult to identify in the coupling of tissue electro-mechanics
with detailed models of blood flow, and the literature contains relatively few such models. Significant exemptions
are the multiphysics heart model implemented in the Alya code from Barcelona supercomputing center [99], and the
University of Tokyo multiphysics model of the heart implemented in the UTHeart code [100, 101].

3.6 | Alternative model frameworks and concepts
In this review, we have focused our attention on mathematical and computational models and broadly introduced
model classifications in terms of statistical and biophysical models, or, equivalently, data-driven and theory-driven
models. As noted, we have devoted the review primarily to biophysically-based modeling approaches for the cardio-
vascular system, underpinned by complex systems of nonlinear differential equations. However, although differential
equations are ubiquitous in physics and science, there are other relevant mathematical formalisms for computational
modeling of the cardiovascular system and its cells and tissues. A few examples will be offered here to orient the
reader and to suggest further reading.

Machine learning (ML) in cardiovascular medicine was introduced in Section 2.1 above. In the context of alterna-
tive model formulations, the most noteworthy subset of ML methods may be artificial neural networks (ANN). These
are models based on initially bio-mimetic neural networks, in which layers of "neurons" are activated, and the con-
nections between neurons are described by "weights" - the strength of connections - that are updated through an
optimization process as the network "learns" a given task. ANN architectures which use multiple layers of artificial
neurons to learn from the data have come to be known as deep learning. In recent years, deep learning has offered
revolutionary improvement to a wide variety of tasks in biological and biomedical research, including image processing
and classification, genomic analysis, drug discovery, and risk prediction, among others, with a focus on utilizing large
and disparate data sets ("big" and multi-modal data). In cardiovascular research, deep learning has increasingly been
used for predictive clinical tasks, see e.g. [102], and has also been combined with other mathematical formalisms,
including biophysical models, to both improve predictive capabilities of models and to lend mechanistic insight into
the system at hand [103, 104]. Also notably, agent-based modeling (ABM) [105] is a class of models used to simulate
the actions and interactions of many autonomous agents (which could be individuals, or themselves organizational
units) as a way to assess and predict the emergence of higher-level phenomena in complex systems. ABM have been
used, for example, to model blood vessels and blood flow [106], particularly during growth and remodeling, and may
be combined with reaction-diffusion systems (continuum approaches) as described by partial differential equations
[107, 108]. More broadly, this class of models is widely used in healthcare research and has been used to model
preventative interventions in at-risk populations over time [109].

Systems biology is a diverse and broadly defined field that takes an integrative rather than singular, reductionist
view, and may avail itself of the integration of multiple models and modeling approaches appropriate for the system
being studied. As such, most of the physiological models introduced in this review can be defined as systems biology
models, which aim to explain how components and mechanisms interact and function together in cells and tissues.
However, although systems biology is often defined in a way that includes models on all physical scales, the term is
more commonly used for models describing systems and interactions on the scale of genes and proteins. Furthermore,
systems medicine (https://www.casym.eu) approaches in cardiovascular healthcare are designed to systematically inte-
grate diverse and multimodal data, including regulatory RNAs and DNA, proteins, metabolites as well as knowledge
from cell biology, animal experiments and human phenotypic and clinical data [110]. These integrative research ap-
proaches rely heavily upon the use of omics-based science, bioinformatics, and network theory, additionally using
medical informatics to uncover mechanisms and to improve patient care [111]. Relevant mathematical formalisms
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include those already presented, as well as data-based models which help tease meaning out of high-throughput,
multi-modality data. Relevant, timely examples include e.g. probabalistic graphical models (Bayesian networks, Boolean
networks) used e.g. in computational network biology [112] andweighted correlation network analysis as used primarily
in genomics analysis. Probabalistic graphical models encode multivariate probability distributions of large numbers of
random variables that interact with one another, making use of theory from both statistics and computer science, and
have additionally been used to assess cardiovascular disease risk [113]. Weighted correlation network analysis, also
known as weighted gene co-expression network analysis (WGCNA), is a widely-used method for biological network
and particularly genomic analysis. It is based on pairwise correlations between variables, e.g. [114], and has recently
been used to identify specific modules and hub genes related to coronary artery disease [115]. For a broader survey
of models in biomedicine, the authors refer the reader to, e.g., [116].

3.7 | What level of detail is needed in a model, and how do we know how good it is?
Even from the very brief overview provided above, the complexity of the cardiovascular system is easily appreciated.
The system’s overall function is driven by a finely tuned network of biophysical processes, creating a multi-physics
and multi-scale system which is challenging to fully understand. It is natural to ask whether all these details need
to be captured and described in detail for a model to be useful. Fortunately, the answer is no, as the required level
of biophysical detail is strongly dependent on the application at hand. Indeed, the ability to precisely describe com-
plex processes and their interactions is one of the key strengths of mathematical models. As such, models are useful
for understanding complex systems and for integrating processes from the sub-cellular scale to the complete organ
system; a task which may be virtually impossible without the use of models. Multi-scale models of such biophysical
detail may be extremely useful in fundamental research, to advance our understanding of how the cardiovascular
system works, and, for instance, for predicting the effect of pharmacological interventions on cardiovascular function,
see, e.g., [117, 118, 119, 120, 121, 122]. However, for many tasks such fine-grained detail is not needed, and there
may not even be sufficient data available for constraining the model parameters. An important example is the de-
velopment of patient specific models of cardiac mechanics and electrophysiology, for use in the clinic. The purpose
of such models is typically to support diagnosis to predict a disease trajectory or optimize an intervention, and the
available parameterisation data is usually severely limited. Tuning the models to such a specific task, by sacrifizing
some biophysical detail to ease parameter fitting and interpretation, may be highly appropriate and necessary, see,
e.g., [123].

If we accept that models cannot capture all biophysical detail, and that they need to be selected and tuned for
the specific task at hand, how can we assess the quality of the models and ensure that the results are reliable and
accurate? Such questions are essential in all model-based research, and in particular if models are used to support
clinical decisions on actual patients. There are several tools that can be used to assess the trustworthiness of model
results. Sensitivity analysis and uncertainty quantification (UQ) [124] can be used to quantify the sensitivity of a
model’s output to uncertainty in parameters and input variables. Many parameters in biological models are difficult
to measure accurately, they may vary considerably between species and individuals, and may even change over time
for the same individual. If the confidence intervals or other statistical properties of the input parameters are known,
UQ is used to calculate the corresponding properties for the output quantities of interest. UQ is starting to make
inroads in the computational physiology community, with applications in neurophysiology [125, 126, 127] as well
as cardiovascular physiology [128, 129, 130, 131]. Such analysis is still not as widespread as it probably should be,
given the substantial uncertainty and natural variation inherent in biological systems. However, the more general
topic of model validation is getting increasingly relevant in the physiological modelling literature. While UQ may be
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one component of model validation, the most common understanding of the term model validation is some form
of comparing the models predictions with data that was not used to derive the model or fit its parameters. Such a
comparison is, in principle, very simple to perform, but in reality it is usually more challenging. There is often limited
data available for model development and parameter fitting, which makes it difficult to exclude high quality data from
the development process. Furthermore, all models have a limited domain of validity, and it is challenging to precisely
define the set of applications and input-parameter values for which a model is considered validated. We will discuss
these topics below, and refer the reader to [132] for further on-topic reading.

4 | LIMITATIONS, CHALLENGES, AND OPEN QUESTIONS
We have briefly reviewed key basics of cardiac physiology, as well as several classes of mathematical models that are
used to model cardiac physiology. As indicated above, the models’ level of detail and realism is increasing rapidly,
and the models can be seen as compact and quantitative condensations of vast amounts of physiological knowledge.
While their usage in general physiological research is also increasing, one may wonder why they are not even more
widespread. Physiology is about studying and understanding the mechanisms of living organisms, and one may argue
that advanced computer models are essential tools in the field. Furthermore, while the potential of cardiovascular
simulations for clinical applications is widely accepted by the research community, and comprehensive patient-specific
models were published more than a decade ago [17], actual examples of their use in the clinical setting are fairly few
and far between.

To understand the causes for the slow uptake of computer models, it is important to outline common pitfalls of
mathematical models and computational simulations.

4.1 | Barriers to full exploitation of biophysics-based models in physiological research
Often, models “fail” - that is - fail to offer the desired insight into a physiological phenomenon - because themodel type
or choice is inappropriate for the task. Thismay be due to operator error, because of an uninformed ormistaken choice,
failure to solve themodel equations with sufficient accuracy, or lack of empirical data to successfully parameterize and
constrain the model. Furthermore, models are often developed for a single application, or to generate mechanistic
insight and test a hypothesis in a single context. While biophysically-detailed models could, in principle, describe
many analogous applications, they often do not generalize well out of the box. Typically, a parameter set that makes
the model accurately predict experiments in one situation, does not give accurate predictions in another situation. A
goal of future cardiovascular modeling should be to work toward developing models with improved generalizability
with well-defined and well understood limitations and parameterizations.

Considering challenges in terms of subcultures of science, can also bewisewhen crafting interdisciplinary projects.
For instance, full appreciation of the challenges, time, and effort both experimental and computational work requires
will help weigh the costs and benefits of use of a variety of model types. We offer more detail on these challenges
with respect to the employ of biophysics-based models in physiological research, below.

It is also a rather common view in physiology that althoughmodels include a fair amount of biophysical detail, they
aremuch farther from the “real thing” in comparison to, for example, in vitromodels. There is, of course, noway around
the fact that biology will always be more complex than the knowledge accumulated in the models. Furthermore, often
times, the level of complexity in computational models has to be limited due to the practical considerations of the com-
putational load. However, it is worthwhile to consider another point of view. Although models are often developed
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and refined to ever increase their physiological detail and accuracy, they serve a purpose also in more rudimentary
implementations. That is, if a model includes all the mechanisms thought to be underlying a particular physiological
function yet it does not replicate experimental findings, that is a clear indication that the theoretical/conceptual model
is faulty. In the famous words of Richard Feynman, “what I cannot create, I do not understand.”

Although we argue that even simple models can lead to important insight, lack of biological detail and accuracy
represents a significant barrier towards broader use of models in physiology. In this context, it is important to review
the factors that limit the realism and accuracy of current physiological models. Besides computational load, the level
of complexity and mechanistic detail of biophysics-based models is limited by the access to and applicability of ex-
perimental data for model fitting, especially in the case of human data. Existing state-of-the-art models are based on
physical first principles, and offer a mechanistic and robust description of cardiovascular physiology. However, many
of the models include constitutive relations containing parameters that need to be measured or estimated. Typical
such parameters may include the conductance and density of a specific ion channel, the conductivity of cardiac tis-
sue, and mechanical properties of blood vessels and cardiac muscle. Most of these parameters are impossible or very
difficult to measure in vivo and need to be estimated from other observations such as medical images and ECGs, or
inferred from in vitro experiments which are limited both by access to cells and tissue and by how closely they repre-
sent in vivo conditions. The advent of hiPSC-based approaches has solved some of the challenges related to access
of human cardiac cells and tissue, although the engineered cardiomyocytes have phenotypes that do not quite match
the native ones. In spite of these challenges, the applicability of experimental data for modelling purposes could be
improved rather straightforwardly with a bit more profound inter-disciplinary knowledge. There have already been
significant efforts to allow models to guide the design of experiments [133, 134, 135, 136, 137], and to develop novel
measurement protocols that would be information-rich from the modelling perspective, while also being efficient to
use in the wet lab.

Last, but not least, the inherent complexity of available computational models represents a significant obstacle
towards widespread adoption by the biomedical research community. Many research groups develop and distribute
state-of-the-art modelling tools, which are made freely available for use by the research community either as open
or closed source software. However, most of these tools have a steep learning curve and are not developed or doc-
umented for use by researchers with limited computational backgrounds. Even high-end commercial software tools
have limitations in this area. For instance, widely used software for computational fluid dynamics simulations of blood
may be relatively simple to use for non-experts, and provides simulations that look reasonable, but assessing the
quality and accuracy of the simulation still requires expert technical knowledge [138]. Although much progress has
been made in recent years, both commercial tools and open, community-led software has much potential for improve-
ment in terms of model standardization, interoperability, and documentation. Efforts such as the MIRIAM (Minimal
information required in the annotation of models) and MIASE (Minimum Information About a Simulation Experiment)
guidelines [139, 140], markup languages like SED-ML [141], CellML [142], and others, are community-led efforts for
improving the reproducibility of computational modelling. Together with ongoing open-source software development
efforts, including openCARP [26], Chaste [27], lifeV [30], CRIMSON [143], and OpenCMISS [144], the operability of
models is being slowly, but steadily, extended beyond the traditional in-house expert users.

4.2 | What if we had unlimited data and computational resources?
In the previous sections we have introduced a number of detailed mathematical models of cardiovascular physiology,
covering spatial scales from ion channels and sarcomeres to thewhole organ. We have also reviewed a number of chal-
lenges in computational modeling, and repeatedly referred to the lack of experimental data and limited computational
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power as two of the most important obstacles for more widespread use of models. In this context, it is interesting to
ask what modelers could do in the absence of these limitations. The question is clearly hypothetical, but attempting
to answer it may still provide useful insight about where the field is moving.

First addressing the computational power, removing this limitation would allow us to solve models of arbitrary
detail and complexity in a reasonable time frame. But howwould this impact the field in terms of new insight and new
opportunities? First, reduced computation times will dramatically increase the utility of existing models for research
and clinical work. Many existing models, for instance, the bidomain model describing electrophysiology reviewed
earlier, can be solved with the accuracy and robustness required for widespread research and clinical use. However,
the solution often takes several hours on a supercomputer or large cluster, obviously limiting the use of the models
for many clinical timescales.

Second, a huge benefit may arise from the ability to run multiple instances of existing models, for parameter
estimation, uncertainty quantification, and sensitivity analysis. Such analyses are crucial for assessing the models’
quality and reliability, and may dramatically increase the predictive power and insight gained. Furthermore, improved
capability to explore variability would help us to better understand this fundamental feature of biology. Sampling-
based methods such as Monte-Carlo simulations [145, 146] and the so-called population of models approach [147, 44]
offer simple and powerful tools for the analyses, but these methods typically require running the baseline model up
to several hundred times. Their use is therefore currently limited to simplified and less computationally demanding
models.

Thirdly and finally, abundant computing power would open the possibility for entirely new model concepts and
frameworks, capturing more biophysical detail and with higher spatial and temporal resolution. Examples of emerging
concepts include tissue models with spatially resolved cells [148, 61], models of cardiovascular growth and remod-
eling over several months [149, 150, 151], and advanced multiphysics models that capture interactions across the
entire cardiovascular system [100, 101, 99]. All of these models exist, but the computational demand represents a
serious obstacle to further exploration and exploitation. The same is true for a detailed model of hemodynamics. It
is impossible today to realistically represent individual blood cells in a macroscopic model, due to a lack of both data
to specify constitutive relations and the computational power to resolve all (sometimes turbulent) scales in the blood
flow. If this were possible, that would offer a bridge from macroscopic flow structures in the heart and larger vessels,
such as vortices and shear layers, to the mechanical stimuli experienced by individual blood cells and endothelial cells.
Such simulations would, for example, be able to enhance the understanding of flow-induced thrombosis. Apart from
turbulent flow in the chambers of the heart, the geometry of the chambers generate coupled flow on multiple scales,
for example, through the fine geometric details of the trabeculae carneae. A full spatio-temporal resolution of this
multiscale problem is still out of reach [152].

5 | PERSPECTIVE AND OUTLOOK
In this review, we have thus far provided an introduction to mathematical and computational modeling in cardiovas-
cular physiology, offered historical context, as well as an overview of the state of the art for different physiological
components and at different spatio-temporal scales. Below, we consider bleeding-edge efforts in cardiovascular re-
search and medicine employing computational and mathematical modeling, and offer conjectures regarding promising
new research initiatives and their potential next steps.
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5.1 | Translational cardiac model applications, computational cardiology andpersonalised medicine
Personalised medicine supported by computational modeling, see for instance [153] for an overview of methods,
has also emerged in cardiology. This potential application of models, with the vision of creating a "digital twin" on
which various therapeutic options can be explored, remains a key driver for research in computational cardiovascular
physiology. Personalised models that accurately represents each patient’s heart and/or disease may offer the ability
to integrate existing patient data, to design new and optimal personal treatment plans, and potentially to guide care
in real time. Wide adoption of such virtual patient models likely presents the core of next-generation cardiology
care for many pathologies, and integrated commercial, clinical, and academic research efforts at the international
level towards this end are ongoing. For an example workflow wherein patient data is used to create a computational
model for individualized simulation, see Figure 4. This kind of data assimilation, where model parameters are adapted
to match certain measurements from patients or experimental data, has been an active research field for decades.
A related approach, which may be just as relevant from a clinical perspective, is to use models for regularizing or
augmenting sparse and noisy data. For instance, many data-driven approaches, in particular ANNs, require huge
volumes of training data, which is often difficult or impossible to obtain in the medical field. Combining such data-
driven techniques with physics-based models effectively encodes established knowledge into the model, thereby
reducing the training data requirement substantially and potentially increasing the applicability of the models. Physics-
informed neural networks (PINNs) and physics-based data augmentation are examples of active research areas at the
interface between data science and classical physiological modeling.

A key use case for computational cardiovascular modeling is the rapid translation of research for commercial
and/or clinical applications. Examples, as highlighted in the following paragraphs, may include drug development/
preclinical screening; device development and testing, ranging from e.g. pacemakers to blood pumps and artificial
valves), and use of model-derived or supported cardiovascular risk indices in the clinic. More details regarding no-
table community-driven coordinating bodies and efforts contributing to this translational impact follows below. The
Cardiac Physiome Society (https://www.cardiacphysiome.org/), incorporated and convening for several decades, has
the mission of "promoting integrative multi-scale simulation and analysis of cardiac physiology in health and disease,
spanning the full breadth of cardiac functions and all scales of biological organization from molecule to patient". The
Society aims to encourage and facilitate international collaboration, cooperation, sharing, exchange, and interoper-
ability in basic, translational and clinical research data, models and technology development. The Virtual Physiological
Human (VPH) - an effort synonymous with in silico medicine and the use of a digital twin - is a field that encom-
passes the use of individualised physiology-based computer simulations in all aspects of the prevention, diagnosis,
prognostic assessment, and treatment of a disease and development of a biomedical product. The VPH Initiative
(VPHi), incorporated into an Institute since 2011 (https://www.vph-institute.org/), has been aligned for decades with
many international research efforts broadly focused in computational cardiovascular physiology and medicine. There
are additionally many current efforts to combine computational cardiology and personalised medicine with powerful,
emerging machine learning and artificial intelligence techniqiues, e.g. the PROCardio Norwegian Center for Research-
Based Innovation, aimed to improved patient diagnostics and prognostics (https://www.heart-sfi.no/); the SimCar-
dioTest (https://www.inria.fr/en/simcardiotest-consortium-hearts) project aims to accelerate the adoption of digital
simulation for the design of cardiac drugs and medical devices. A notable example of personalised cardiovascular
simulation currently in the clinic is the FDA-approved use of fractional flow reserve in computational fluid dynamics
models for coronary artery disease, determining the ratio between the maximal achievable blood flow in a diseased
coronary artery, and the maximal flow in a normal coronary artery, as based on computed tomography imaging of the
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coronary vasculature [4].
Virtual patient models also serve personalised cardiac medicine in their ability to capture inter-patient variability.

These represent tools for rapidly developing personalised treatment protocols over large virtual cohorts using virtual
trials, as well as the opportunity to safely design and optimize clinical trials of pharmaceutical compounds or key car-
diac devices, facilitating validation and approvals for advances in cardiac care and cardiac safety. The aforementioned
VPHi was a major partner in the 2-year EU funded Avicenna project (https://www.vph-institute.org/avicenna.html),
which led to a published roadmap (https://avicenna-isct.org/roadmap/) outlining a strategy for in silico clinical trials,
with large focus on cardiovascular medicine in addition to other application areas in physiology. The Comprehensive
in vitro Proarrhythmia Assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability (CiPA,
https://cipaproject.org/) for pharmacological development pipelines [154], is now firmly in use in several international
regulatory settings, with an application focus in cardiac-safe commercial drug development.

5.2 | Brain-heart axis: shared goals, research questions, and methodological exchange
Although mathematical models have been developed for virtually every process in the human body, see, e.g., [155],
the cardiovascular system and the nervous system stand out in terms of both invested effort and progress. While
these systems share many common modeling challenges, the research communities are largely disjointed, and both
sub-fields could benefit from increased interaction and exchange of tools and ideas. In this section we discuss some
of the key similarities and differences, and point to significant research initiatives in computational neurophysiology
that could inspire similar efforts in the cardiovascular field.

From a cellular point of view, the heart and brain share several key features. Both consist of electrically excitable
cells and fire action potentials, albeit that the action potential in heart cells is about a factor hundred slower than in
nerve cells. This similarity is reflected in the use of Hodgkin-Huxley style ion-channel current models when modeling
cellular excitation. This common modeling foundation is reflected in the similar challenges facing the modeling in the
two domains. A joint challenge is inverse modeling, that is, fitting the parameters of the model so that it accounts for
experimental data. This problem is not only ill-posed in the sense that many combinations of model parameters can
fit the data, it is also made more difficult in that some of the model parameters may change over time. The density
of various ion channels, a key model parameter in electrophysiological modeling, is, for example, under the control of
the cellular mechanisms that dynamically modulate gene transcription.

It bears mention that, although the links between neurological and cardiovascular disorders are well known [156],
this path is to a great extent unexplored. Computational modelling is a very potential approach to shed light on that
path, as it enables integration of data and mechanistic insights from these two realms. For example, the pleiotropic
effects genetic variants that impact both neuronal and cardiac cellular excitability have been explored recently in the
context of schizophrenia and cardiac pacemaking [157].

There are, however, also clear differences. The mechanical tissue properties of the heart are critical for the heart’s
function. In the brain, the tissue is not supposed to move, and mechanical properties are mainly of interest when
studyingmechanical brain trauma. Likewise, fluid flow is less central for brain function, even thoughmodelling of blood
flow through the brain vasculature is important for understanding brain metabolism [158]. Another key difference is
that unlike in the heart, there are non-local interactions between cells in the brain. The nerve cells send pulse-like all-or-
nothing signals to each other via axons. These long and thin cable-like protrusions make direct connections between
cells that can bemany centimeters apart. In contrast, heart cells only signal to each other via changes in concentrations
of ions and molecules in their shared extracellular space. Thus, only rather local interactions are possible. This makes
the electrical network in the brain immensely more complicated than in the heart, allowing for a much richer behavior.
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This allows for the much richer dynamics required in efficient information processing compared to the the relatively
simple pumping action of the heart. In computational brain science most effort has gone into trying to understand
this information processing, and a host of simplified neuron and network models have been introduced to make this
endeavor computationally and conceptually tractable [159].

To address the complexity of the brain several large scale projects have been initiated, both for data collection and
modeling. In terms of modeling, two projects stand out. In the Human Brain Project, an EU Flagship project started
in 2013, a key goal is to develop an infrastructure for large-scale neural network simulation and comparison of model
predictions with experiments. This digital and distributed infrastrucure, labeled EBRAINS (ebrains.eu), will be a part of
ESFRI, that is part of the strategically supported European research infrastructure. At the Allen Institute for Brain Sci-
ence, the Mindscope program is developing large-scale network models for the mouse brain based on unprecedented
amounts of neurobiological data recorded in house with an industrial-style lab approach [160]. Another interesting
initiative in the neuroscience field is the establishment of the International Brain Laboratory where more than twenty
research groups in US and Europe have created a joint virtual laboratory for experimental and theoretical investiga-
tions of brainwide circuits for complex behavior (https://www.internationalbrainlab.com/). In contrast, while there
exist many national and international longer-term center-based efforts in cardiovascular sciences, including modeling,
the heart field lacks nucleating efforts similar in scope and depth to those in the computational neuroscience field,
as outlined above. As efforts at this level help to drive progress, particularly around community-driven, open-science
focused tool sharing, the cardiovascular modeling community would do well to focus efforts in this direction and to
learn from the good practices in use in computational neuroscience.

5.3 | Concluding remarks
In this review, we have aimed to offer the reader a comprehensive overview of cardiovascular computer simulations,
including their origins, to context, foundations, and physiological and computational background. We have offered
a succinct but thorough view of the state of the art, and have presented arguments for closer interaction between
modellers and experimental scientists. Finally, we have tried to capture the essence of current limitations and matters
of debate in this field, followed by musings on directions for expansions and where things are headed.

While the main focus of our review has been on how science and physiological knowledge can benefit from a
widespread use of computations, the natural next step is for personalised computational models to become an integral
part of healthcare and clinical practice. In the not-so-far future, indeed, the following scenario may become reality.
Consider a patient, Maria, 65 years of age, who has recently been diagnosed with hypertension, but is otherwise in
good health. While her mother and grandmother unfortunately developed heart failure and accompanying quality
of life issues in their old age, for Maria, it may be different. Her cardiac digital twin has incorporated all the general,
genetic, and specifically heart-related information from her doctor visits over the years, and is continuously updated
following new scans and treatments. After discussing with her health care providers, Maria has made herself familiar
with her own health data and her digital twin and she is happy with the added knowledge these tools bring in terms
of monitoring her heart health. Her physician consults this comprehensive, integrative model before meeting with
Maria, and so feels confident of the best way to monitor and treat her patient in a timely fashion.

While this vision may seem still firmly in the realm of science fiction, translation and integration of cardiovascu-
lar computational models into basic science and even clinical realms are rapidly becoming reality. It is our hope that,
through further technological advancement in software and hardware, open science practices, and wide cultural adop-
tion, computer modeling in the cardiovascular sciences can continue to accelerate discovery and to improve critical
cardiovascular healthcare.
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