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Abstract 

In this study, the inelastic buckling equation of thin plate subjected to all in-plane loads is analytically solved and the 

inelastic buckling coefficient is explicitly estimated. Using the deformation theory of plasticity, a multiaxial nonlinear 

stress-strain curve is supposed which is described by Ramberg-Osgood representation and von-Mises criterion. Due 

to buckling, the variations are applied on the secant modulus, the Poisson’s ratio and normal and shear strains. Then, 

inelastic buckling equation of perfect thin rectangular plate subjected to combined biaxial and shear loads is 

completely developed. Applying the generalized integral transform technique (GITT), the equation is 

straightforwardly converted to an eigenvalue problem in a dimensionless form. Initially, a geometrical solution and 

an algorithm are presented to find the lowest inelastic buckling coefficient ����. The solution is successfully validated 

by some results in the literature. Then, a semi-analytical solution is proposed to simplify the calculation of ��. The 

method of linear least squares (LLS) is applied in two stages on the obtained results and an approximate polynomial 

equation is found which is usually solved by trial and error method. The obtained results show good agreement 

between the proposed semi-analytical and geometrical methods, so that the differences are less than 12%. The semi-

analytical solution is easily programmed in the usual scientific calculators and can be applied for the practical 

purposes. 

 

Keywords: Deformation theory of plasticity; Inelastic buckling of plate; Biaxial and shear loads; Ramberg-Osgood 

representation; Generalized integral transform technique; Eigenvalue problem.   

 

1 Introduction 

The stability of structural plates is one of the most important design criteria in mechanics, civil, aerospace and marine 

engineering. During their lifetime, various loads are applied on them to perform in-plane stresses on their edges. In 

addition to shear stress, the edges may experience compressive or tensile (biaxial) stresses and due to the geometrical 

and material properties of plate, inelastic buckling may occur. An analytical procedure may be quite complicated for 

solution of the inelastic buckling equation of plate with diverse boundary conditions and under multiaxial loadings. 

Thus, an explicit solution should be preferably developed using the theories of plasticity to predict the inelastic 

buckling load of plates. 
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In the 1940s, two main plasticity models were applied to describe the inelastic buckling of plates. Ilyushin [1], Stowell 

[2] and Bijlaard [3] used the deformation (total) theory of plasticity while Handelman and Prager [4] used the 

incremental (flow) theory of plasticity. In the deformation theory of plasticity, the total strain is related to the total 

stress by the secant modulus without any consideration of stress history and then, the surveyed path to get a particular 

point on the stress-strain curve is not definitely important. As only the secant modulus appears in the stress-strain 

relations, the hardening is isotropic in this theory. Nevertheless, in the incremental theory of plasticity, the stress at 

any point and time is a function of the current strain as well as the history of strain. In other words, increments of 

strain are related to increments of stress by the tangent modulus which lead to a complicated nonlinear stress-strain 

relation. Applying the variational approach on the stress-strain relations, only the tangent modulus appears in the 

incremental theory while both the secant and tangent modulus appear in the deformation theory. Generally, the not 

very complicated deformation theory relations are comparable with very complicated incremental theory relations for 

inelastic stress analysis. Although the incremental theory of plasticity is more general than the deformation theory, 

the latter one can be successfully applicable to the proportional loading problems in which the components of stress 

tensor increase in constant ratio to each other [5, 6]. In addition, the deformation theory is an acceptable approach for 

the bifurcation check in the buckling of plates and provides good agreement with measured buckling loads for bars, 

plates and shells, while the incremental theory predicts much higher than the measured buckling loads [7]. This 

discrepancy which is called ‘plastic buckling paradox’ [7], has not generally solved until recent times [8]. One of the 

oldest problems which directly refers to this ‘paradox’ and reported in the literature, is the inelastic stability of 

cruciform columns [7, 9-11]. Recently, Guarracino and Simonelli [12] showed that the torsional buckling of a 

cruciform column in the inelastic range is not actually ‘plastic buckling paradox’ if effects of the imperfections are 

accurately computed up to the limit load. Their analytical procedure represented very good agreement between flow 

and deformation theories for this problem. The ‘plastic buckling paradox’ was also tried to solve for circular 

cylindrical shells under both axial and non-proportional loading [13, 14]. The results of finite element analysis were 

compared with those of the experimental studies and concluded that the adaptation of flow theory of plasticity with 

the experimental findings depends on the assuming of initial imperfections and buckling shapes.  

Shamass [15] reviewed in detail many aspects which are effect on the ‘plastic buckling paradox’. In this review, the 

considered aspects are the effective shear modulus, initial imperfections, different material constitutive models, 

transverse shear deformation, deformations in the pre-bifurcation state, actual boundary conditions, sensitivity of the 
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predictions by different plasticity theories and effect of the kinematic constraints used in analytical treatments. It is 

concluded that the incremental theory does not have any limitation and a number of combined approximations effect 

on the results predicted by the incremental theory.  

Generally, the variations of strains and stresses during buckling are used to develop inelastic buckling equation of 

plates. In the initial studies of deformation theory of plasticity, the material was supposed to be incompressible in the 

nonlinear (elastoplastic) region of stress-strain curve and then, the Poisson’s ratio was always ½ for isotropic materials. 

As a result, the variation was being only applied on the strains and secant modulus in the stress-strain relations 

(Hooke’s low) as seen in the approaches of Ilyushin [1] and Stowell [2]. Pifko and Isakson [16],  Bradford and Azhari 

[17], Ibearugbulem, et al. [18, 19], Onwuka, et al. [20] and Eziefula, et al. [21] applied Stowell’s procedure in their 

studies. However, in several investigations [22-35], Bijlaard’s formulation [3] has been applied in which the Poisson’s 

ratio appears in the elastic value during the inelastic buckling. Gerard and Wildhorn [36] showed that for a nonlinear 

stress-strain curve such as Ramberg-Osgood representation [37], the Poisson’s ratio changes from the elastic value to 

the incompressible value of ½ as the stress is increased above the yield stress, 

� = 12 − 
���
 
12 − ��� 
(1) 

where 
 is the Young’s modulus (or the slop of stress-stain curve at zero stress), 
��� is the secant modulus and ��  is 

the elastic Poisson’s ratio. Using Eq. (1), the variable Poisson’s ratio is considered in the elastoplastic region of stress-

strain curve as well as the other parameters [38-43]. Jones [6] successfully applied variation to the Poisson’s ratio and 

developed the inelastic buckling equation of plate subjected to biaxial loads, although the obtained equation was only 

solved for the uniaxial loading.  

The elastic / Inelastic buckling of plates is analytically formulated with a fourth order linear partial differential 

equation. In recent decades, several numerical and semi-analytical methods have been proposed to solve this equation 

with different boundary conditions and mostly uniaxial loading. The most important of these methods are finite 

element (FE) [16, 44, 45], finite difference [42], finite strip [31], spline finite strip [24], isoparametric spline finite 

strip [29, 46], complex finite strip [17, 26, 47], finite layer (FL) [48], differential quadrature (DQ) [30, 43], generalized 

differential quadrature (GDQ) [33-35], element-free Galerkin (EFG) [32], funicular polygon (FP) [23], p-Ritz [49, 

50], Rayleigh-Ritz [51-53], and virtual work principle [18-21]. The integral transforms have been already used for 

solving complex boundary value problems in elastic bending, buckling and vibration of beams. Fourier series were 
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differentiated as many as four time to solve the corresponding ordinary differential equations. In 1944, Green [54] 

extended double Fourier series for solving elastic problems of isotropic rectangular plates in which partial differential 

equations appear. Later, this method was used for the buckling of simply supported orthotropic and isotropic skew 

plates, subjected to in-plane compressive and shear edge loads [55]. Afterward, double finite integral transform and 

the corresponding invention formula were analytically used to solve the bending equation of rectangular thin / thick 

plates with different boundary conditions [56-60]. As double finite integral transform has some restrictions for 

complex boundary conditions, it may be modified to the generalized integral transform technique (GITT) which is 

mathematically more general with faster convergence. This technique was previously applied in the automatic and 

accuracy-controlled solution of nonlinear diffusion and convection-diffusion problems as well as solution of Navier-

Stokes equations [61]. In the GITT, an appropriate auxiliary eigenvalue problem is solved to find the kernel of integral 

transform. Then, applying the integral transformation to an ordinary / a partial differential equation, it is transformed 

into infinite algebraic / ordinary differential equations and then, they are truncated at finite terms to allow the 

computational solution. Alternatively, double integral transformation can be directly applied to a PDE for obtaining 

the infinite algebraic equations. For bending, buckling and vibration problems of rectangular plates, the kernels of 

double integral transform are similar to the vibrating functions of two beams which have the same material properties 

and boundary conditions of plates in two orthogonal directions. If the original PDE is linear, then the linear algebraic 

equations are naturally obtained, so that they can be analytically solved for the bending problem and on the other hand, 

lead to an eigenvalue problem for buckling / vibration of plate. Thus, the buckling load / natural frequency is obtained 

for each mode as well as the corresponding mode shape. An et al. [62] used the GITT as single integral transform, so 

that the original PDE is transformed into a set of coupled ordinary differential equations. Furthermore, Ullah et al. 

[63] employed the GITT and solved an eigenvalue problem to obtain the elastic buckling coefficient of uniaxial loaded 

fully clamped plates (CCCC), plates with three clamped and one edge simply supported (CCCS), and plates with two 

adjacent edges clamped and the other edges simply supported (CCSS). The GITT has been also applied for the bending 

solution of orthotropic rectangular thin foundation plates [64] as well as free vibration of orthotropic rectangular plates 

with free edges [65].   

In this study, using the deformation theory of plasticity [6] and applying variations to all mechanical components of 

an isotropic perfect rectangular plate, the complete equation of inelastic buckling of plates under combined biaxial 

and shear stresses is developed. The parameters of Ramberg-Osgood representation are used to find the secant and 
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tangent moduli in the nonlinear region of stress-strain curve. Then, using the generalized integral transform technique 

(GITT) [62-65], the inelastic buckling equation is solved for simply supported (SSSS) and fully clamped (CCCC) 

plates and the effect of variation of Poisson’s ratio on the inelastic buckling load is compared with those of previous 

studies. The rectangular plate may be subjected to compressive-compressive-shear (CCS), compressive-tensile-shear 

(CTS), tensile-compressive-shear (TCS) or tensile-tensile-shear (TTS) loads. A geometrical solution and an algorithm 

are presented to find the inelastic buckling coefficient of plate based on the aspect ratio, thickness ratio, load ratios, 

secant to Young’s modules ratio, elastic Poisson’s ratio and Ramberg-Osgood parameters. Using the obtained results 

and linear regression technique (linear least squares), a semi-analytical procedure is also suggested to calculate the 

lowest inelastic buckling coefficient. In this procedure, a qth order equation must be solved using trial and error method 

in which q is the shape parameter of Ramberg-Osgood representation. The procedure is applicable in the practical 

purposes and can be easily programed in usual scientific calculators.  

 

2 Analytical approach 

2.1 Inelastic buckling equation of plate 

Consider a rectangular plate with dimensions of a×b×t subjected to CCS, CTS, TCS or TTS loads in the shown 

Cartesian coordinate system in Figure 1. In this Figure, �� = ���, �� = ��� and ��� = �� are the applied loads per 

unit length on the plate edges in x-, y- and xy- directions respectively. Also, ��, �� and � are the stresses in x-, y- and 

xy- directions respectively. 
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Fig. 1 A rectangular plate subjected to (a) CCS, (b) CTS, (c) TCS and (d) TTS loads 

 

In the deformation theory of plasticity, using general nonlinear materials properties (
��� and ��, the two-dimensional 

stress-strain relations are established as shown in Eq. 2. In these relations, ��, �� and � are the strains in x-, y- and xy- 

directions respectively and � is obtained from Eq. (1).  

������ � = 
���1 − �� �1 � 0� 1 00 0 1 − �2 � ������ � (2) 

After applying the variations to all components of Eq. (2), 

 

� �� �� � � = 
���1 − �� �!"" !"� !"#!"� !�� !�#!"# !�# !##� $ �%� + ' �� ��% + ' �� �% + ' ���( (3) 
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where  �%�  ,  ��% and  �%  are the variations of middle surface strains in x-, y- and xy- directions respectively,  *� =
− +,-.+�, ,  *� = − +,-.+�,  are the variation of curvatures in x- and y- directions respectively,  *�� = −2 +,-.+�+�  is the 

variation of twist and z is the distance from the middle surface of plate as shown in Figure 1. In addition, 

!"" = 1 − /04�1 − ��� 2�2 − ���� − �1 − 2����3�
 

 

(4) 

!"� = � − /04�1 − ��� 2�2 − ���� − �1 − 2����32�2 − ���� − �1 − 2����3 
!"# = − 3/0�4�1 + �� 2�2 − ���� − �1 − 2����3 
!�� = 1 − /04�1 − ��� 2�2 − ���� − �1 − 2����3�

 

!�# = − 3/0�4�1 + �� 2�2 − ���� − �1 − 2����3 
!## = 1 − �2 �1 − 9/0��2�1 + ��� 

 

In Eqs. (4), /0 = "67,80 91 − :;<=:>?@ A where �B = C��� − ���� + ��� + 3�� is the stress intensity based on von-Mises criteria 

and 
DEF is the tangent modulus. Also,  

G0 = 1 − 1 − 2�2�1 − ��� 
���
 
1 − 
DEF
��� � �2� − �1 + 2��H��� + ���I − 2�2 + ������ + 6�1 + ����2�B� � (5) 

 

Substituting Eq. (3) into Eq. (6), the moment-curvature relations can be determined (Eq. 7). 

$  K� K� K��( = L � �� �� � � ' M'D�
ND�  (6) 

$  K� K� K��( = 
����#12�1 − ��� �!"" !"� !"#!"� !�� !�#!"# !�# !##� $  �� �� ���( (7) 

Substituting Eq. (7) into the equilibrium equation,  

O�� K��OP� + O�H K��IOPOQ + O�H K�IOQ� = �� O�� R�OP� + 2��� O�� R�OPOQ + �� O�� R�OQ�  

the inelastic buckling equation of plate will be obtained: 
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!"" OS� R�OPS + 4!"# OS� R�OP#OQ + 2�!"� + 2!##� OS� R�OP�OQ� + 4!�# OS� R�OPOQ# + !�� OS� R�OQS
+ 12�1 − ���
����# ��� O�� R�OP� + 2��� O�� R�OPOQ + �� O�� R�OQ� � = 0 

(8) 

 

2.2 Generalized integral transform technique (GITT) 

When the GITT is used for a two-dimensional boundary value problem, two appropriate auxiliary ODEs must be 

solved. Here, they are the vibrating beam equations (Eqs. 9) which satisfy the corresponding boundary conditions 

(Eqs. 10 and 11) and orthogonality (Eqs. 12 and 13) in x- and y- directions: 

⎩⎪⎨
⎪⎧MSXY�P�MPS = ZYS XY�P�MS[F�Q�MQS = \FS[F�Q�  (9) 

 P = 0, ] → _ XY�P� = 0M�XY�P�MP� = 0
Q = 0, ` → _ [F�Q� = 0M�[F�Q�MQ� = 0 ⎭⎪⎪

⎬⎪
⎪⎫ ; ee (10) 

P = 0, ] → _ XY�P� = 0MXY�P�MP = 0
Q = 0, ` → _ [F�Q� = 0M[F�Q�MQ = 0⎭⎪⎪

⎬⎪
⎪⎫ ; ff (11) 

L XY�P�Xg�P�MP = h]2  ;  i = j0  ;  i ≠ j
E

%
L [F�Q�[��Q�MQ = h2̀  ;  l = m0  ; l ≠ m

n
% ⎭⎪⎬

⎪⎫ ; ee 
(12) 

L XY�P�Xg�P�MP = o]  ;  i = j0  ;  i ≠ jE
%L [F�Q�[��Q�MQ = p`  ;  l = m0  ;  l ≠ mn

% ⎭⎪⎬
⎪⎫ ; ff 

(13) 
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where SS and CC are used for simply supported and clamped beams respectively and m, n, r and s are positive integers. 

Eqs. (9) are readily solved for the different boundary conditions (Eqs. 10 and 11) to yield the related eigenfunctions 

which are shown in Eqs. (14) and (15) for SS and CC beams respectively: 

pXY�P� = sin ZYP[F�Q� = sin \FQ  
(14) 

pXY�P� = cosh ZYP − cos ZYP − wY�sinh ZYP − sin ZYP�[F�Q� = cosh \FQ − cos \FQ − wF�sinh \FQ − sin \FQ�  
(15) 

 where 

⎩⎨
⎧wY = cosh ZY] − cos ZY]sinh ZY] − sin ZY]wF = cosh \F` − cos \F`sinh \F` − sin \F`  (16) 

In Eqs. (14) and (15), ZY and \F  are the roots of transcendental beam frequency equations : 

psin ZY] . sinh ZY] = 0 ⟹  ZY] = izsin \F` . sinh \F` = 0 ⟹  \F` = lz { ; eeee 
(17) 

|cosh ZY] . cos ZY] = 1 ⇒  ZY] ≅ ��2i + 1� z2 + 2�−1�Y�"�N��Y�"��� �
cosh \F` . cos \F` = 1 ⇒  \F` ≅ ��2l + 1� z2 + 2�−1�F�"�N��F�"��� � � ; ffff (18) 

Using the obtained eigenfunctions in Eqs (14 and 15), two-dimensional generalized finite integral transform and the 

corresponding inversion are defined as: 

 RYF = L L  R�P, Q�XY�P�[F�Q� MPn
% MQE

%  (19) 

 R�P, Q� = 1��`� � �  RYFXY�P�[F�Q��
F�"

�
Y�"  (20) 

where  

� = 1�`� L XY� �P�MPE
% . L [F��Q�MQn

% = h14  ;   eeee1  ;   ffff (21) 

and � = En is the plate aspect ratio. 
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2.3 Analytical procedure for inelastic buckling 

The GITT should be applied on all terms of Eq. (8). Using integration by parts in the successive steps, fourth and 

second orders partial derivatives in Eq. (8) are reduced and finally,  R�P, Q� is transformed to  RYF based on Eq. 

(19). In Eqs. (22)-(29), these transformations are shown with the dimensionless coefficients. 

`S L L OS� R�OPS XY�P�[F�Q� MPn
% MQE

% = 
ZY]� �S  RYF (22) 

`S L L OS� R�OP#OQ XY�P�[F�Q� MPn
% MQE

% = 1��# � �  Rg����Yg]�� + ��Yg]����F�
�

��"
�

g�"  (23) 

`S L L OS� R�OP�OQ� XY�P�[F�Q� MPn
% MQE

% = 1��� � �  Rg���Yg]���F�`��
��"

�
g�"  (24) 

`S L L OS� R�OPOQ# XY�P�[F�Q� MPn
% MQE

% = 1�� � �  Rg����F�`�� + ��F�`���GYg
�

��"
�

g�"  (25) 

`S L L OS� R�OQS XY�P�[F�Q� MPn
% MQE

% = �\F`�S RYF (26) 

`� L L O�� R�OP� XY�P�[F�Q� MPn
% MQE

% = 1��� � �  Rg���Yg]� 
/F�` ��
��"

�
g�"  (27) 

`� L L O�� R�OPOQ XY�P�[F�Q� MPn
% MQE

% = 1�� � �  Rg�GYg�F�
�

��"
�

g�"  (28) 

`� L L O�� R�OQ� XY�P�[F�Q� MPn
% MQE

% = 1� � �  Rg� 
�Yg] � ��F�`��
��"

�
g�"  (29) 

where 

]��Yg = ]� 
MXgMP ���E . MXYMP ���E − MXgMP ���% . MXYMP ���%� = p −�1 − �−1�Y�g�ijz�;  ee0                                          ;  ff (30) 

�Yg] = 1] L Xg�P�XY�P�MP =E
% ⎩⎪⎨

⎪⎧h12   ;  i = j0   ;  i ≠ j� ; ee
o1   ;  i = j0   ;  i ≠ j� ; ff (31) 
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GYg = L Xg�P� MXY�P�MP MP =
⎩⎪
⎨
⎪⎧h 2ijj� − i�                                     ; i ± j = �MM0                                                ; i ± j = ���l� ; ee

_0                                                             ; i = j4�ZY]���Zg]���Zg]�S − �ZY]�S �1 − �−1�Y�g�  ; i ≠ j� ; ff
E

%  (32) 

]�Yg = ] L Xg�P� M�XY�P�MP� MPE
%

=
⎩⎪⎪
⎨⎪
⎪⎧ h− i�z�2                                                                                          ;   i = j0                                                                                                      ;  i ≠ j � ; ee

_wY�ZY]��2 − wY�ZY]��                                                             ; i = j4�ZY]���Zg]���ZY]�S − �Zg]�S �wY�ZY]� − wg�Zg]���1 + �−1�Y�g�    ; i ≠ j� ; ff 

(33) 

]��Yg = ]� L Xg�P� M#XY�P�MP# MPE
% =

⎩⎪⎪
⎨⎪
⎪⎧ h 2i#jz�i� − j�                                          ; i ± j = �MM0                                                       ; i ± j = ���l� ; ee

_0                                                                       ; i = j4�ZY]�#�Zg]�#�ZY]�S − �Zg]�S wYwg�1 − �−1�Y�g�  ; i ≠ j� ; ff (34) 

`��F� = `� �M[�MQ ���n . M[FMQ ���n − M[�MQ ���% . M[FMQ ���%� = p −�1 − �−1�F���lmz� ;   ee0                                        ;   ff (35) 

/F�` = 1̀ L [��Q�[F�Q�MQ =n
% ⎩⎪⎨

⎪⎧h12   ;  l = m0   ;  l ≠ m� ; ee
o1   ;  l = m0   ;  l ≠ m� ; ff (36) 

�F� = L [��Q� M[F�Q�MP MQ =
⎩⎪
⎨
⎪⎧h 2lmm� − l�                                  ; l ± m = �MM0                                              ; l ± m = ���l� ; ee

_0                                                          ; l = m4�\F`���\�`���\�`�S − �\F`�S �1 − �−1�F��� ; l ≠ m� ; ff
n

%  (37) 
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`�F� = ` L [��Q� M�[F�Q�MQ� MQn
% =

⎩⎪⎪
⎨⎪
⎪⎧h− l�z�2                                                                                       ; l = m0                                                                                                   ; l ≠ m� ; ee

_ wF�\F`��2 − wF�\F`��                                                        ; l = m4�\F`���\�`���\F`�S − �\�`�S �wF�\F`� − w��\�`���1 + �−1�F���  ; l ≠ m� ; ff (38) 

`��F� = `� L [��Q� M#[F�Q�MQ# MQn
% =

⎩⎪⎪
⎨⎪
⎪⎧ h 2l#mz�l� − m�                                       ; l ± m = �MM0                                                   ; l ± m = ���l� ; ee

_0                                                                   ; l = m4�\F`�#�\�`�#�\F`�S − �\�`�S wFw��1 − �−1�F���  ; l ≠ m� ; ff (39) 

Applying the GITT into Eq. (8) and using Eqs. (22)-(29), the characteristic equation in dimensionless form will be 

obtained: 

�
ZY]� �S !"" + �\F`�S!���  RYF

+ 1�� � �  Rg� � 4�� !"#��]��Yg� + �]��Yg���F� + 2� �!"� + 2!##��]�Yg��`�F���
��"

�
g�"+ 4!�#��`��F�� + �`��F���GYg

+ 
�1 − ���
����1 − ���� ��z� � �� �]�Yg� 
/F�` � + 2GYg�F� + � � 
�Yg] � �`�F���¡ = 0 

(40) 

 

where  � = ¢£¢£¤ and  � = ¢¤¢£¤ are the load ratios supposing that ��� ≠ 0 and �� = "�H"N¥?,I�, 9nDA� ¢£¤:D  is the inelastic 

buckling coefficient. 

Eq. (40) establishes an infinite system of linear equations. For a practical calculation, the positive integers, m, n, r and 

s must be limited to upper value, h. Thus, Eq. (40) can be shown with a finite number of linear equations in matrix 

form: 
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⎣⎢
⎢⎢⎢
⎢⎡K""""⋮K"ª""⋮Kª"""⋮Kªª""

   …   ⋱…⋱…⋱…

K"""ª⋮K"ª"ª⋮Kª""ª⋮Kªª"ª

  …  ⋱ …⋱…⋱…

   K""ª"   ⋮K"ªª"⋮Kª"ª"⋮Kªªª"

…⋱…⋱…⋱…

   K""ªª⋮K"ªªª⋮Kª"ªª⋮Kªªªª ⎦⎥
⎥⎥⎥
⎥⎤

⎣⎢⎢
⎢⎢⎢
⎡ R""⋮ R"ª⋮ Rª"⋮ Rªª⎦⎥⎥

⎥⎥⎥
⎤

=
⎣⎢⎢
⎢⎢⎢
⎡0⋮0⋮0⋮0⎦⎥⎥

⎥⎥⎥
⎤
 

(41) 

where 

KYFg� = _
ZY]� �S !"" + �\F`�S!�� + °YFg�   ;  i = j ]lM l = m°YFg�                                             ;  ��ℎ�jR²m�  (42) 

and 

°YFg� = 1�� � 4�� !"#��]��Yg� + �]��Yg���F� + 2� �!"� + 2!##��]�Yg��`�F��+ 4!�#��`��F�� + �`��F���GYg+ 
�1 − ���
����1 − ���� ��z� � �� �]�Yg� 
/F�` � + 2GYg�F� + � � 
�Yg] � �`�F���¡ (43) 

Supposing  �,  �, �� , 
:>?@: , 

:;<=:>?@ , ��, � and h in Eq. (41), the eigenvalues of coefficient matrix can be calculated for 

SSSS or CCCC plates. If the smallest eigenvalue is zero, the supposed �� will be the lowest inelastic critical coefficient 

H��,�g�"� = ��I. Likewise, if the second, third, …. or ith eigenvalue is zero, the inelastic critical coefficient is obtained 

for the corresponding mode. Using the general software python [66] and selecting a few series terms (h) for arrays of 

coefficient matrix in Eq. (41), the inelastic critical coefficient H��,�gI can be accurately enough obtained for the 

different buckling modes. However, the secant and tangent moduli relation obviously effects on the inelastic buckling 

coefficient. For a Ramberg-Osgood stress-strain model, the secant and tangent moduli are defined as [37]: 


��� = 
1 + 37 9 �B�.´:AµN" 
(44) 


DEF = 
1 + 3¶7 9 �B�.´:AµN" 
(45) 

where �.´: is the stress at which the line with slope 0.7
 intersects the stress-strain curve and q is a shape parameter 

which describes the curvature of stress-strain curve. Considering two dimensionless parameters, · = :>?@: ≤ 1 and  ¹ =
:;<=:>?@ ≤ 1, Eqs. (44) and (45) may be combined as 
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¹ = 1¶�1 − ·� + · (46) 

so that all terms of arrays of coefficient matrix (Eq. 42) can be expressed by �,  � ,  � , ·, ¶, �� and ��. Then using an 

implicit function, �� can be briefly described as:  

�� = ºH�,  � ,  � , ·, ¶, ��I (47) 

On the other hand, using Eq. (44), �� can be expressed with an explicit function: 

�� = » 
¼, 
�.´: ,  � ,  � , ·, ¶, ��� = 12�1 − ����¼�z� ∙ �.´:
 ∙ �73 91· − 1A� "µN"
H �� −  � � +  �� + 3I"� (48) 

where ¼ = nD  is the plate thickness ratio.  

In Eqs. (47) and (48), · is a mutual variable in both º and » as well as  � ,  � , ��  and q. As · is a continuous variable 

�0 ≤ · ≤ 1�, both º and » can be plotted in �� − · plane. The intersection of two plotted curves gives the inelastic 

buckling coefficient as well as the corresponding secant modulus. The described geometrical solution may be 

summarized by an algorithm as shown in Figure 2. In this algorithm, an initial value of · is assumed ( ·BFB in Figure 

2). In the next steps, · is increased by  · unless · > 1. In this study, ·BFB =  · = 0.025. In addition, defining a 

dimensionless parameter, Ω = H �� −  � � +  �� + 3IÁ,, Eqs. (4) and (5) are briefly rewritten and finally, the 

coefficients matrix in Eq. (41) is re-established. In the end of procedure, the �� − · curve will be found for the 

corresponding buckling mode based on the known parameters:  �,  � ,  � , ��  and ¶.  In this study, the lowest buckling 

coefficient is calculated. The procedure can be repeated by the new parameters to find new curves.  
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Fig. 2 An algorithm to plot �� − · curve of plate  
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3 Results and discussion 

In this study, the Ramberg-Osgood representation is used for the nonlinear mechanical properties of material, although 

this approach can be developed for the other known models of nonlinear behavior.   

3.1 Validation, effects of variation of Poisson’s ratio and number of series terms  

In order to verify the analytical approach, four studies are considered. The first one is an experimental study for plastic 

buckling of simply supported uniaxial compressed plates [67]. In the second study [45], the solution of ‘plastic 

buckling paradox’ was sought in the mode of testing which had previously done in Ref. [67]. The authors applied the 

incremental theory of plate buckling and considered the boundary stresses introduced by the friction between the plate 

and the testing machine heads. For the pre-buckling stress analysis, an incremental finite element procedure was 

performed by ANSYS, so that the load was subdivided into a sequence of small increments. The material properties 

and dimensions of the plates were the same or similar to those in Ref. [67] as shown in Tables 1 and 2 respectively. 

The plate was divided into 80 rectangular elements and the boundary conditions were zero force on the two 

longitudinal edges, zero displacement on the lower edge in both directions. On the upper edge, uniform and zero 

displacements are applied in the longitudinal and transverse directions respectively. In the buckling analysis, the finite 

element procedure for plastic plate buckling described in Ref. [16], was generalized to the case of nonuniform pre-

buckling stress state. In the third and fourth studies [16, 23], the finite element and funicular polygon methods are 

employed for plastic buckling of simply supported and fully clamped plates under uniaxial, biaxial or shear loads.  

The suggested algorithm (Fig. 2) can be changed for the uniaxial and biaxial loadings in which ��� = 0. In these 

cases, new load ratios are defined as  Â� = ¢¤¢£ and  Â�� = ¢£¤¢£ . The arrays of stiffness matrix (Eqs. 4) and the 

characteristic equation (Eq. 40) should be rewritten by the new load ratios. As a result, �� will be obtained instead of 

�� and then ��,�g = Ã£�,:"�H"N¥?,I 9DnA�
. Table 1 shows the boundary and load conditions and Ramberg-Osgood parameters 

in the experimental and numerical studies. In this section, the dimensions of parameters are represented by Imperial 

units to match the results found from the literatures.     
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Table 1 Boundary and loading conditions and mechanical properties in the considered studies (1 ksi = 6.895 MPa) 

No. Method B.C. L.C. Material 
E ×104 

(ksi) 

�.´: 

(ksi) 
q ��  

1 
Experimental 

[67] 
SSSS Uniaxial 

Al 14S – T6 1.07 

63.2 19 

0.33 2 
FEM (ANSYS) 

[45] 

3 
Funicular polygon 

[23] 
CCCC Shear 61.4 20 

4 
FEM 

[16] 

SSSS 

Uniaxial 

Biaxial 

Shear 
Al 24S - T 1 100 10 0.33 

CCCC Uniaxial 

   

In Tables 2 and 3, the results of analytical approach (h = 20) are compared with those of experimental study [67], 

numerical analysis (ANSYS) [45] and funicular polygon method [23]. These comparisons show excellent agreement 

for both uniaxial loaded simply supported and shear loaded fully clamped plates. The maximum differences are less 

than 4%, 2.6% and 2% for the experimental, FE (ANSYS) and funicular polygon methods respectively.  

 

Table 2 Comparison of critical uniaxial stresses for SSSS plates 

Specimen 

[67] 
1a 6a 8a 9a 10a 

b (in.) 6.69 4.68 3.94 3.44 3.19 � 4 4 4 4.5 4.5 ¼ 42.5 30.1 25.6 22.5 20.8 

��,�g  

 (psi) 

[67] 21200 42800 53300 57800 61400 

[45] 21900 43200 54600 58600 61400 

Present 21871 43532 55343 60090 62030 

 

Table 3 Comparison of critical shear stresses for CCCC square plates ���� = 14.6� 

¼ 56.3 59.3 62 64.5 66.9 68.9 70.7 ��g 

(psi) 

[23] 34000 33000 32000 31000 30000 29000 28000 

Present 33463 32803 31421 30433 29701 29042 28135 
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�� Present 10.74 11.68 12.23 12.82 13.46 13.96 14.24 

 

In the fourth study [16], a finite element technique was used in conjunction with the Stowell’s theory [2]. Thus, the 

incompressible material was considered (the Poisson’s ratio was 0.5) during inelastic buckling. Here, the analytical 

approach is applied for two states: initially, the incompressible material is used �� = 0.5� to compare the analytical 

and numerical methods; and then, it is repeated using variable Poisson’s ratio (Eq. 1) to compare the results of two 

situations. In Tables 4 and 5, the results are shown for the simply supported plates with aspect ratios 1 and 1.5 

respectively which are under uniaxial and biaxial loads. Table 6 shows the results for the fully clamped and simply 

supported square plates under uniaxial and pure shear loads respectively. In Tables 4 and 5, there is no difference 

between the analytical and numerical methods when the incompressible material is supposed, likewise in Table 6, 

negligible difference (less than 0.5%) is seen. 

In the last row of each section of Tables 4-6, results of the second state are compares. These comparisons show that 

due to variation of Poisson’s ratio, in both uniaxial and shear loadings the inelastic buckling loads decrease. As 

expected,  increasing λ makes more slender plate and less plasticity occurs prior to buckling. In Figures 3-5, the 

differences are obviously shown for the different aspect ratios, thickness ratios, boundary and loading conditions. As 

seen in these Figures, increasing the thickness ratio in all cases, the difference increases up to 18.8%. This upper bound 

only depends on the elastic Poisson’s ratio and can be analytically expressed as 
"NS¥?,# . In addition, increasing the plate 

aspect ratio, slope of difference curve increases and reaches to a constant value for � ≥ 1,  � ≥ 4 and � ≥ 5 as seen 

in Figures 3-5 respectively. 

 

Table 4 Comparison of critical stresses for SSSS square plates (a = b = 20 in.) 

1 Uniaxial, H�� ≠ 0, �� = � = 0I ���� = 4� 

t (in.) 2.39053 1.76752 1.36678 1.12019 0.96449 0.858 0.77867 ¼ 8.3664 11.3152 14.6329 17.8541 20.7363 23.31 25.6848 

��,�g 

(psi) 

[16] 125000 115000 105000 95000 85000 75000 65000 

Present 
(a) ν = 0.5 125000 115000 105000 95000 85000 75000 65000 

(b) �  (Eq. 1) 124498 114060 103186 91521 79020 66556 55719 �]� − �`��`� × 100 0.4 0.82 1.8 3.8 7.6 12.7 16.7 



20 

 

�� Present �  (Eq. 1) 0.944 1.58 2.39 3.16 3.68 3.92 3.98 

2 Biaxial H�� = �� , � = 0I ���� = 2� 

t (in.) 5.26002 3.78569 2.77755 2.08258 1.60231 1.2998 1.125 ¼ 3.8023 5.2831 7.2006 9.6035 12.4820 15.3870 17.7778 

��,�g 

(psi) 

[16] 125000 115000 105000 95000 85000 75000 65000 

Present 
(a) ν = 0.5 125000 115000 105000 95000 85000 75000 65000 

(b) �  (Eq. 1) 125253 115390 105457 95108 83810 70873 57507 �]� − �`��`� × 100 0.2 0.35 0.44 0.11 1.4 5.8 13 

�� Present �  (Eq. 1) 0.196 0.349 0.592 0.95 1.41 1.82 1.97 

3 Biaxial H�� = 0.5�� , � = 0I ���� = 2.667� 

t (in.) 2.42382 1.93707 1.58816 1.33364 1.15727 1.03884 0.94979 ¼ 8.25144 10.3249 12.5932 14.9966 17.2821 19.2522 21.0573 

��,�g 

(psi) 

[16] 125000 115000 105000 95000 85000 75000 65000 

Present 
(a) ν = 0.5 125000 115000 105000 95000 85000 75000 65000 

(b) �  (Eq. 1) 125055 114703 103669 91570 78284 65671 55374 �]� − �`��`� × 100 0.04 0.26 1.3 3.8 8.6 14.2 17.4 

�� Present �  (Eq. 1) 0.923 1.325 1.78 2.23 2.53 2.64 2.66 

 

 

Table 5 Comparison of critical stresses for SSSS plates with a = 30 in. and b = 20 in. 

1 Uniaxial H�� ≠ 0, �� = � = 0I ���� = 4.694� 

t (in.) 2.45321 1.80884 1.39064 1.1271 0.95429 0.83518 0.75088 ¼ 8.15258 11.0568 14.3819 17.7447 20.958 23.9469 26.6354 ��,�g 

(psi) 

[16] 125000 115000 105000 95000 85000 75000 65000 

Present 
(a) ν = 0.5 125000 115000 105000 95000 85000 75000 65000 

(b) �  (Eq. 1) 124520 114104 103296 91864 79835 67403 56059 �]� − �`��`� × 100 0.39 0.79 1.7 3.4 6.5 11.3 15.9 

�� Present �  (Eq. 1) 0.897 1.511 2.315 3.134 3.799 4.188 4.309 

2 Biaxial H�� = �� , � = 0I ���� = 2.778� 

t (in.) 4.46327 3.21226 2.35683 1.76713 1.3596 1.10292 0.9546 ¼ 4.481 6.2261 8.486 11.3178 14.7102 18.1337 20.9512 

[16] 125000 115000 105000 95000 85000 75000 65000 
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��,�g 

(psi) 
Present 

(a) ν = 0.5 125000 115000 105000 95000 85000 75000 65000 

(b) �  (Eq. 1) 125253 115390 105457 95108 83810 70873 57507 �]� − �`��`� × 100 0.2 0.34 0.44 0.11 1.4 5.8 13 

�� Present �  (Eq. 1) 0.272 0.485 0.823 1.320 1.965 2.525 2.735 

3 Biaxial H�� = 0.5�� , � = 0I ���� = 3.388� 

t (in.) 2.35015 1.84729 1.48109 1.21632 1.03918 0.92558 0.8437 ¼ 8.5101 10.8267 13.5036 16.443 19.2459 21.6081 23.7051 ��,�g 

(psi) 

[16] 125000 115000 105000 95000 85000 75000 65000 

Present 
(a) ν = 0.5 125000 115000 105000 95000 85000 75000 65000 

(b) �  (Eq. 1) 125100 114768 103845 91994 78873 66006 55471 �]� − �`��`� × 100 0.08 0.2 1.1 3.3 7.8 13.6 17.2 

�� Present �  (Eq. 1) 0.982 1.458 2.052 2.695 3.165 3.339 3.377 

 

 

Table 6 Comparison of critical stresses for square plates (a = b = 20 in.) with different boundary and loading 

conditions 

1 CCCC - Uniaxial H�� ≠ 0, �� = � = 0I    ���� = 10.078� 

t (in.) 0.8 0.7 0.6 0.5 ¼ 25 28.571 33.333 40 ��,�g 

(psi) 

[16] 97549 91234 81712 66414 

Present 
(a) ν = 0.5 97130 91033 81714 66420 

(b) �  (Eq. 1) 94216 86932 75525 57528 �E�N�n��n� × 100  3.1 4.7 8.2 15.5 �� Present �  (Eq. 1) 6.38 7.689 9.092 9.973 

2 SSSS - Shear H�� = �� = 0, � ≠ 0I  ���� = 9.34�  

t (in.) 0.7 0.6 0.5 0.4 ¼ 28.571 33.333 40 50 ��g 

(psi) 

[16] 60792 56604 50313 39414 

Present 
(a) ν = 0.5 60760 56565 50251 39335 

(b) �  (Eq. 1) 57132 52690 45578 33991 �]� − �`��`� × 100 6.4 7.4 10.3 15.7 

�� Present �  (Eq. 1) 5.053 6.343 7.901 9.207 
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Fig. 3 Difference of ��,�g�� = 0.5� and ��,�g�� < 0.5�  for a SSSS square plate under uniaxial load 

 

Fig. 4 Difference of ��g�� = 0.5� and ��g�� < 0.5�  for a SSSS square plate under pure shear load 
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Fig. 5 Difference of ��,�g�� = 0.5� and ��,�g�� < 0.5�  for a CCCC square plate under uniaxial stress 

 

The number of series terms (h) directly effects on the accuracy of GITT. Table 7  shows a sensitivity analysis of 

inelastic buckling coefficient ���� with �� = 0.33, 
:6È.ÉÊ = 100 and q =10. Considering this Table, it can be concluded 

that for small thickness ratios, �� converges with 10 to 15 terms very well for all aspect ratios, boundary conditions 

and loading combinations. For larger thickness ratios, 20 terms are usually necessary for the convergence, although in 

TTS loading more terms may be used for more accuracy. However, 20 terms are used for the considered cases in this 

study.   

 

Table 7 Convergence of �� with different geometrical, boundary and loading conditions   

� ¼ h 

SSSS  CCCC  �  �  �  �  �  �  �  �   �  �  �  �  �  �  �  � 

-1 -0.5 -1 0.5 1 -0.5 1 0.5  -1 -0.5 -1 0.5 1 -0.5 1 0.5 

1 10 5 0.9899 0.7417 0.6788 0.6715  1.0692 0.7768 0.7159 0.7335 

10 0.9855 0.7415 0.6788 0.6717  1.0654 0.7762 0.7157 0.7334 

15 0.9851 0.7414 0.6788 0.6717  1.0650 0.7761 0.7157 0.7334 

20 0.9851 0.7414 0.6788 0.6717  1.0649 0.7761 0.7157 0.7334 

25 0.9850 0.7414 0.6788 0.6717  1.0649 0.7761 0.7157 0.7334 

30 0.9850 0.7414 0.6788 0.6717  1.0649 0.7761 0.7157 0.7334 
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100 5 55.087 12.0062 5.3478 2.4806  63.0118 18.1148 9.4169 5.7614 

10 54.552 11.9748 5.3423 2.4798  62.6175 17.9889 9.3967 5.7577 

15 54.512 11.9732 5.342 2.4798  62.5731 17.9835 9.3958 5.7575 

20 54.505 11.9730 5.342 2.4798  62.5625 17.9820 9.3956 5.7575 

25 54.503 11.9729 5.342 2.4798  62.5586 17.9817 9.3955 5.7575 

30 54.502 11.9729 5.342 2.4798  62.5574 17.9816 9.3955 5.7575 

4 10 5 1.0799 0.6218 0.6629 0.6553  0.8936 0.7398 0.6727 0.7177 

10 0.9270 0.6217 0.6552 0.6554  0.8894 0.7390 0.6549 0.6937 

15 0.9266 0.6217 0.6551 0.6554  0.8894 0.7390 0.6548 0.6936 

20 0.9265 0.6217 0.6551 0.6554  0.8893 0.7389 0.6548 0.6936 

25 0.9265 0.6217 0.6551 0.6554  0.8893 0.7389 0.6548 0.6936 

30 0.9265 0.6217 0.6551 0.6554  0.8893 0.7389 0.6548 0.6936 

100 5 64.622 2.4320 4.5781 1.8840  21.6047 11.5113 4.6996 4.0538 

10 44.575 2.4293 4.0996 1.8807  20.2025 11.4142 4.0029 3.6235 

15 44.493 2.4290 4.0958 1.8804  20.1751 11.4095 4.0006 3.6222 

20 44.482 2.4290 4.0951 1.8803  20.1699 11.4086 4.0002 3.6221 

25 44.479 2.4290 4.095 1.8803  20.1683 11.4083 4.0001 3.6221 

30 44.477 2.4290 4.095 1.8803  20.1677 11.4082 4.0001 3.6221 

  

 

3.2 Estimation of inelastic buckling coefficient 

In the proposed geometrical solution, the curves of  �� = ºH·, �,  � ,  � , ¶, ��I and �� = » 9·,  � ,  � , ¶, �� , ¼, :6.ÉÊA are 

intersected in the �� − · plane to find �� as well as the corresponding ·. Figures 6 and 7 show some interaction curves 

in which  º and » are plotted with solid and dashed curves respectively. In each Figure, 
:6.ÉÊ ,  � ,  � , ¶ and ��  are 

constants and � and ¼ are variables to provide the interaction curves. In addition, the intersections of � = 1 curves 

and some ¼ curves are highlighted which are corresponded to the shown results in Table 3 and the second section of 

Table 6 respectively. The comparisons show the adequate accuracy of geometrical solution.  
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Fig. 6 Interaction curves of �� − · for fully clamped plates with  � = 0 and  � = 0 

 

 
Fig. 7 Interaction curves of �� − · for simply supported plates with  � = 0 and  � = 0 

 

In addition to the geometrical solution, a semi analytical approach may be supposed to simplify the calculation of 

inelastic buckling coefficient.  The depicted Figures in Appendix A show that the variation of º with constant values 

of �� ,  �,  �, � and ¶ may be estimated by linear or bilinear curves in the  �� − · plane. Eq. (49) shows the general 

form of bilinear (or linear, if f = 0 and e" = e�) description of �� . If the correlation coefficient of the linear 

approximation, Ë < 0.999, then the bilinear curve is considered to estimate.  

�� = �e"·           ;        · ≤ ·̅e�· + f   ;        · > ·̅ (49) 
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where ·̅ = ÍÎÁNÎ,. The depicted Figures in Appendix B show that e", e� and f with a constant value of �� ,  �,  �, � 

may be estimated by linear curves in e" − ln ¶, e� − ln ¶ and f − ln ¶ planes respectively. Thus, 

�e"e�f � = �m""m�"w"
m"�m��w� � �ln ¶1 � (50) 

where m"", m"�, m�", m��, w" and w� are numerically presented in Tables 8 and 9 for SSSS and CCCC plates respectively.  

The method of linear least squares (LLS) is applied in two stages on the results with � = 1, 1.5, 2 & 4,  �,  � =
−1, −0.5, 0, 0.5 & 1, ¶ = 2, 3, 5, 10, 15 & 20 and �� = 0.33 to find e", e�  and f as well as mBÑ  �², Ò = 1, 2� and 

wB  �² = 1, 2�.  If  � =  � = −1, then no shear buckling occurs in the plate and this case is naturally eliminated. In 

Tables 8 and 9, ¶Â is the smallest integer of ¶, so that Ë < 0.999.  Therefore, if ¶ < ¶Â  (i.e. Ë ≥ 0.999), then the linear 

approximation must be considered and vice versa. 

Substituting Eq. (49) into Eq. (48), qth order equations will be obtained (Eqs. 51) which can be solved by trial and 

error method and usual scientific calculators. It can be shown that each of them always has a positive root which is 

the acceptable ��.   

���µ + ÓµN"�� − ÓµN"e" = 0                                   ;  Ó ≤ Ó̅��µ − f��µN" + ÓµN"�� − ÓµN"�e� + f� = 0     ;  Ó > Ó̅ (51) 

where 

Ó = 12�1 − ����¼�z�Ω ∙ �.´:
 
73� "µN"
 (52) 

and 

Ó̅ = e" � ·̅µ1 − ·̅�
"µN"

 (53) 

The semi-analytical approach can be summarized by a step by step procedure as follows: 

1- Select mBÑ  �², Ò = 1, 2�, wB  �² = 1, 2� and ¶Â from Tables 8 and 9 according to the boundary conditions and �� , 

 �,  � and �. In this study, the fundamental parameters HmBÑ  & wBI are obtained for SSSS and CCCC plates 

with �� = 0.33, � = 1, 1.5, 2 & 4 and  � ,  � = −1, −0.5, 0, 0.5 & 1 except  � =  � = −1. It is evident that 

the fundamental parameters can be also found for the other states. 

2- If ¶ < ¶Â, then 

2-1-   using the first equation of Eqs. (50),  e" is calculated. 
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2-2-   using Eq. (52), Ó is calculated by the known parameters:  
:6.ÉÊ, Ω, ¼, ��  and ¶.  

2-3-   using the first equation of Eqs. (51), �� is calculated by trial and error method.  

3- If ¶ ≥ ¶Â, then 

3-1-  e", e� and f are calculated using Eqs. (50) and then ·̅ = ÍÎÁNÎ,. 

3-2- Using Eqs. (52) and (53), Ó and Ó̅ are calculated respectively by the known parameters: 
:6.ÉÊ, Ω, ¼, 

��  and ¶.  

3-3- If Ó ≤ Ó̅, then the first equation of Eqs. (51) is solved and �� is calculated by trial and error method. 

3-4- If Ó > Ó̅, then the second equation of Eqs. (51) is solved and �� is calculated by trial and error 

method. 

Note that if ¶ = 2 or ¶ = 3, Eqs. (51) have the explicit solutions. 

 

Table 8 Fundamental parameters for SSSS plates with �� = 0.33 

 �  � 
¶ m""  m"�  m�" m�� w" w� 

 ¶ m""  m"�  m�" m�� w" w� 

 � = 1  � = 1.5 

-1 -0.5 - -1.294 117.37 - - - -  - -0.968 93.12 - - - - 

0 16 -0.711 29.43 6.007 26.62 -6.350 2.510  20 -0.499 24.46 3.770 24.13 -4.047 0.126 

0.5 9 -0.490 12.38 4.052 10.12 -4.228 2.152  10 -0.396 11.11 3.337 9.097 -3.482 1.901 

1 6 -0.347 6.942 2.727 5.565 -2.841 1.337  10 -0.242 6.231 1.970 5.052 -2.052 1.114 

-0.5 -1 - -1.294 117.37 - - - -  - -0.892 77.41 - - - - 

-0.5 16 -0.936 38.87 8.026 34.81 -8.473 3.648  17 -0.655 29.35 5.581 26.63 -5.907 2.394 

0 6 -0.840 17.70 6.873 14.05 -7.164 3.538  8 -0.592 13.81 4.917 11.02 -5.125 2.679 

0.5 4 -0.615 9.482 5.220 6.292 -5.377 3.121  5 -0.433 7.471 3.713 5.048 -3.823 2.346 

1 4 -0.368 5.508 3.068 3.614 -3.158 1.854  4 -0.291 4.606 2.438 3.035 -2.509 1.530 

0 -1 16 -0.713 29.43 6.007 26.62 -6.350 2.510  13 -0.524 18.01 5.070 14.10 -5.285 3.709 

-0.5 6 -0.840 17.70 6.873 14.05 -7.164 3.538  6 -0.561 11.22 4.551 8.944 -4.745 2.224 

0 3 -0.754 9.552 6.531 5.836 -6.692 3.672  4 -0.502 7.292 4.244 4.731 -4.371 2.515 

0.5 3 -0.521 5.467 4.426 3.087 -4.534 2.392  3 -0.373 4.977 3.169 3.137 -3.247 1.811 

1 3 -0.327 3.531 2.724 2.012 -2.789 1.517  3 -0.334 3.582 2.764 2.003 -2.828 1.573 

0.5 -1 9 -0.490 12.38 4.052 10.12 -4.228 2.152  6 -0.341 6.873 2.734 5.556 -2.852 1.287 

-0.5 4 -0.615 9.482 5.220 6.292 -5.377 3.121  4 -0.338 4.698 2.893 2.947 -2.974 1.718 

0 3 -0.521 5.467 4.426 3.087 -4.534 2.392  3 -0.305 3.376 2.589 1.975 -2.653 1.405 

0.5 3 -0.406 3.521 3.366 1.746 -3.445 1.800  3 -0.261 2.591 2.163 1.404 -2.214 1.190 

1 4 -0.305 2.536 2.477 1.153 -2.533 1.391  3 -0.201 2.085 1.634 1.145 -1.672 0.935 

1 -1 6 -0.347 6.942 2.727 5.566 -2.841 1.337  5 -0.169 3.182 1.459 2.215 -1.505 0.937 

-0.5 4 -0.367 5.508 3.063 3.621 -3.154 1.848  4 -0.185 2.470 1.506 1.603 -1.551 0.854 

0 3 -0.327 3.531 2.724 2.011 -2.789 1.517  3 -0.193 1.984 1.596 1.081 -1.633 0.901 

0.5 3 -0.305 2.536 2.477 1.153 -2.533 1.391  3 -0.195 1.662 1.578 0.757 -1.613 0.907 

1 2 -0.265 1.946 2.092 0.886 -2.131 1.067  3 -0.178 1.429 1.405 0.594 -1.435 0.833 

   � = 2   � = 4 

-1 -0.5 - -0.852 85.27 - - - -  - -0.739 78.19 - - - - 

0 - -0.452 22.64 - - - -  - -0.374 20.59 - - - - 
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0.5 14 -0.311 10.27 2.424 9.325 -2.556 0.857  15 -0.274 9.520 2.158 8.618 -2.271 0.804 

1 10 -0.225 5.807 1.810 4.767 -1.888 0.984  12 -0.191 5.548 1.428 5.038 -1.503 0.471 

-0.5 -1 - -0.760 66.05 - - - -  - -0.623 56.31 - - - - 

-0.5 19 -0.518 25.57 4.026 24.92 -4.314 0.427  20 -0.435 22.38 3.548 21.27 -3.781 0.859 

0 10 -0.500 12.68 4.207 10.14 -4.384 2.423  7 -0.401 11.21 3.430 9.018 -3.575 2.072 

0.5 5 -0.391 7.149 3.372 4.876 -3.472 2.190  7 -0.314 6.512 2.516 5.078 -2.616 1.380 

1 4 -0.290 4.588 2.415 3.040 -2.486 1.506  5 -0.225 4.225 1.903 2.911 -1.959 1.262 

0 -1 13 -0.393 13.83 3.248 12.40 -3.425 1.305  15 -0.282 11.11 2.400 9.854 -2.532 1.145 

-0.5 7 -0.411 9.542 3.387 7.722 -3.532 1.751  8 -0.348 8.198 3.120 5.721 -3.232 2.374 

0 4 -0.479 6.782 4.097 3.997 -4.216 2.726  4 -0.354 5.810 3.020 3.807 -3.108 1.940 

0.5 3 -0.374 4.502 3.167 2.664 -3.243 1.817  3 -0.318 4.153 2.689 2.525 -2.753 1.594 

1 3 -0.261 3.178 2.188 1.891 -2.240 1.272  3 -0.235 3.033 1.956 1.840 -2.002 1.169 

0.5 -1 6 -0.205 4.306 1.677 3.425 -1.746 0.852  17 -0.068 2.508 0.537 2.276 -0.574 0.227 

-0.5 4 -0.214 3.392 1.795 2.322 -1.850 1.044  13 -0.078 2.359 0.504 2.368 -0.538 -0.020 

0 3 -0.207 2.751 1.763 1.703 -1.806 1.030  11 -0.083 2.224 0.623 1.903 -0.654 0.306 

0.5 3 -0.184 2.308 1.526 1.396 -1.561 0.896  6 -0.150 2.167 1.617 -0.347 -1.636 2.419 

1 4 -0.162 2.010 1.205 1.176 -1.237 0.800  4 -0.187 1.982 1.568 0.438 -1.596 1.484 

1 -1 5 -0.106 1.996 0.907 1.407 -0.934 0.566  7 -0.057 1.229 0.448 0.989 -0.468 0.232 

-0.5 4 -0.124 1.743 1.064 1.044 -1.091 0.681  5 -0.067 1.188 0.564 0.809 -0.581 0.365 

0 3 -0.136 1.533 1.124 0.871 -1.151 0.654  3 -0.076 1.152 0.613 0.726 -0.630 0.413 

0.5 3 -0.141 1.375 1.136 0.698 -1.161 0.672  4 -0.076 1.118 0.633 0.590 -0.648 0.512 

1 3 -0.129 1.248 1.026 0.574 -1.047 0.663  5 -0.081 1.103 0.516 0.681 -0.529 0.388 

 

 

Table 9 Fundamental parameters for CCCC plates with �� = 0.33 

 �  � 
¶ m""  m"�  m�" m�� w" w� 

 ¶ m""  m"�  m�" m�� w" w� 

 � = 1  � = 1.5 

-1 -0.5 - -1.459 131.36 - - - -  - -1.147 104.15 - - - - 

0 20 -0.803 37.53 6.014 36.95 -6.475 0.378  - -0.649 30.23 - - - - 

0.5 9 -0.716 18.43 5.967 14.88 -6.219 3.379  10 -0.542 15.04 4.573 12.14 -4.764 2.731 

1 5 -0.623 11.43 5.296 7.806 -5.453 3.456  7 -0.441 9.339 3.632 6.833 -3.768 2.405 

-0.5 -1 - -1.459 131.36 - - - -  - -0.944 89.15 - - - - 

-0.5 - -0.945 47.57 - - - -  - -0.697 36.15 - - - - 

0 10 -0.855 23.74 7.260 19.22 -7.567 4.269  11 -0.623 18.58 4.885 16.62 -5.141 1.835 

0.5 5 -0.749 14.24 6.472 9.813 -6.664 4.253  6 -0.552 11.23 4.359 8.882 -4.540 2.277 

1 4 -0.630 9.625 5.239 6.225 -5.390 3.310  5 -0.451 7.572 3.780 5.013 -3.889 2.473 

0 -1 20 -0.803 37.53 6.014 36.947 -6.475 0.378  18 -0.531 23.89 3.941 23.71 -4.248 0.082 

-0.5 10 -0.855 23.74 7.260 19.218 -7.567 4.269  11 -0.577 16.56 4.935 13.42 -5.145 2.958 

0 5 -0.825 15.11 7.113 10.292 -7.323 4.640  6 -0.588 11.86 4.657 9.308 -4.849 2.474 

0.5 4 -0.751 10.30 6.172 6.373 -6.349 3.849  4 -0.617 8.503 5.076 5.237 -5.220 3.196 

1 3 -0.620 7.453 5.095 4.300 -5.211 3.091  3 -0.508 6.188 4.179 3.602 -4.275 2.535 

0.5 -1 9 -0.715 18.43 5.967 14.88 -6.219 3.379  8 -0.479 11.31 3.943 9.111 -4.109 2.103 

-0.5 5 -0.749 14.24 6.471 9.814 -6.663 4.252  5 -0.505 9.023 4.339 6.113 -4.468 2.809 

0 4 -0.751 10.30 6.172 6.373 -6.348 3.848  4 -0.528 7.316 4.340 4.492 -4.462 2.760 

0.5 3 -0.704 7.611 5.723 4.097 -5.850 3.460  3 -0.503 5.984 4.088 3.342 -4.177 2.576 

1 3 -0.636 5.901 5.028 2.739 -5.134 3.115  3 -0.543 5.066 4.185 1.753 -4.252 3.162 

1 -1 5 -0.614 11.40 5.296 7.806 -5.453 3.456  5 -0.391 6.702 3.348 4.520 -3.448 2.115 

-0.5 4 -0.630 9.625 5.239 6.225 -5.390 3.310  4 -0.427 5.725 3.516 3.529 -3.617 2.156 

0 3 -0.620 7.453 5.095 4.300 -5.211 3.091  3 -0.450 4.900 3.684 2.661 -3.767 2.207 

0.5 3 -0.636 5.901 5.028 2.739 -5.134 3.115  3 -0.468 4.271 3.696 1.932 -3.773 2.304 

1 3 -0.624 4.810 4.785 1.670 -4.878 3.085  3 -0.451 3.767 3.433 1.437 -3.499 2.274 

   � = 2   � = 4 
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-1 -0.5 - -1.044 95.66 - - - -  - -0.948 88.41 - - - - 

0 - -0.582 27.75 - - - -  - -0.517 25.45 - - - - 

0.5 13 -0.449 13.75 3.506 12.24 -3.687 1.393  14 -0.392 12.57 3.089 11.12 -3.244 1.326 

1 8 -0.366 8.494 2.943 6.752 -3.064 1.666  9 -0.318 7.784 2.578 6.186 -2.683 1.518 

-0.5 -1 - -0.798 77.12 - - - -  - -0.664 67.51 - - - - 

-0.5 - -0.587 32.36 - - - -  - -0.519 28.95 - - - - 

0 12 -0.553 17.00 4.366 15.14 -4.594 1.728  14 -0.473 15.40 3.797 13.57 -3.987 1.676 

0.5 7 -0.494 10.34 3.920 8.160 -4.082 2.107  8 -0.420 9.447 3.374 7.430 -3.511 1.931 

1 5 -0.405 6.999 3.404 4.659 -3.501 2.257  6 -0.346 6.443 2.680 4.894 -2.786 1.504 

0 -1 - -0.429 20.50 - - - -  - -0.372 17.76 - - - - 

-0.5 10 -0.548 15.05 4.675 12.10 -4.872 2.784  11 -0.450 13.24 3.630 11.52 -3.806 1.604 

0 6 -0.554 10.61 4.351 8.310 -4.531 2.243  6 -0.494 9.636 4.017 7.063 -4.170 2.491 

0.5 4 -0.498 7.663 4.130 4.872 -4.246 2.708  4 -0.458 6.990 3.799 4.421 -3.906 2.494 

1 4 -0.472 5.804 3.968 2.547 -4.059 3.158  4 -0.394 5.249 3.193 2.922 -3.275 2.254 

0.5 -1 9 -0.364 9.141 3.035 7.347 -3.163 1.708  12 -0.279 8.055 2.680 5.335 -2.775 2.596 

-0.5 6 -0.410 7.879 3.238 6.113 -3.370 1.720  6 -0.395 7.272 3.112 5.394 -3.234 1.820 

0 4 -0.457 6.776 3.762 4.113 -3.864 2.575  4 -0.473 6.230 3.860 3.704 -3.968 2.469 

0.5 3 -0.530 5.617 4.322 3.035 -4.419 2.554  3 -0.473 5.126 3.851 2.770 -3.937 2.322 

1 3 -0.457 4.533 3.626 2.262 -3.704 2.236  3 -0.431 4.203 3.445 1.857 -3.513 2.293 

1 -1 5 -0.307 5.266 2.629 3.521 -2.706 1.688  6 -0.214 4.336 1.697 3.396 -1.767 0.911 

-0.5 4 -0.351 4.787 2.893 2.924 -2.975 1.824  5 -0.257 4.225 2.122 2.680 -2.180 1.483 

0 3 -0.382 4.337 3.112 2.379 -3.180 1.919  3 -0.386 4.121 3.143 1.746 -3.205 2.300 

0.5 3 -0.416 3.978 3.217 1.821 -3.282 2.098  3 -0.453 3.789 3.562 1.538 -3.637 2.226 

1 3 -0.493 3.660 3.937 0.471 -3.999 3.099  3 -0.447 3.359 3.492 0.967 -3.557 2.352 

 

The shown examples in Tables 3 and the second section of Table 6 are resolved using the suggested step by step 

procedure. Table 10 shows the obtained results for which the differences are less than 3%. In this Table, for CCCC 

and SSSS plates,  · > 0.8 and · > 0.6 as seen in Figures 6 and 7 respectively. The semi-analytical method is also 

applied for SSSS and CCCC plates with four aspect ratios and load ratios (TTS, CTS, TCS and CCS) as shown in 

Tables 11 and 12 respectively. In these examples, the required Ramberg-Osgood parameters are ¶ = 10 and 
:6.ÉÊ =

100. For each aspect ratio in SSSS and CCCC plates, a maximum of four thickness ratios �¼B , ² = 1, 2, 3, 4� are 

selected provided that ¼B = 5�Ò + 1�;  Ò = 1,2,3, …  and: 

(a) ¼" is the last ¼ where  ·" ≤ 0.2, otherwise is the first ¼ where 0.2 ≤ ·" ≤ 0.3. 

(b) ¼� is the first ¼ where 0.3 ≤ ·� ≤ 0.5. 

(c) ¼# is the first ¼ where 0.6 ≤ ·# ≤ 0.8. 

(d) ¼S is the first ¼ where 0.9 ≤ ·S ≤ 1. 

Tables 11 and 12 show that the difference between two methods are less than 12% for all examples. For each loading 

state, the maximum difference (M.D.) appears as follow: 

• TTS loading: 10% < M.D. < 12% where 0.1 ≤ · ≤ 0.2 for all plates. 
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•  CTS loading: 5% < M.D.  < 7% where 0.1 ≤ · ≤ 0.2 for SSSS plates and 5% < M.D. < 8% where 0.1 ≤
· ≤ 0.2 for CCCC plates. 

• TCS loading: 7% < M.D.  < 11% where 0.1 ≤ · ≤ 0.3 for SSSS plates and 8% < M.D. < 10% where 0.1 ≤
· ≤ 0.2 for CCCC plates. 

•  CCS loading: 2% < M.D. < 10% where 0.4 ≤ · ≤ 0.7 for SSSS plates and 8% < M.D. < 10% where 0.2 ≤
· ≤ 0.3 for CCCC plates. 

In addition, the results show that increasing the thickness ratio in each aspect ratio, the differences are usually 

decreased. As a result, the semi-analytical method has more accuracy for  ¼ > 70 in TTS loading and  ¼ > 20 in CTS, 

TCS and CCS loadings. Of course, if  
:6.ÉÊ, ¶,  � and  � are changed, the appeared differences may be slowly varied.  

   

 

 

 

Table 10 Estimation of �� for the shown examples in Table 3 and the second section of Table 6 (� = 1 and  � = � = 0) 

B.C. 

�.´: ¶ ¶Â e" e� f ·̅ Ó̅ ¼ A 

�� 
Diff.  

(%) 
· Analytical 

Method 

Eq.  

(51) 

CCCC 

 

174.27 20 5 12.64 31.60 -

17.30 

0.9122 13.04 56.3 11.90 10.74 10.83 0.8 0.8567 

59.3 13.20 11.68 11.64 0.3 0.9157 

62 14.43 12.23 12.46 1.9 0.9417 

64.5 15.61 12.82 13.15 2.6 0.9634 

66.9 16.80 13.46 13.68 1.6 0.9802 

68.9 17.82 13.96 13.99 0.2 0.9900 

70.4 18.60 14.24 14.13 0.8 0.9946 

SSSS 100 10 3 7.816 20.87 -
11.74 

0.8988 8.954 28.57 5.610 5.053 5.198 2.9 0.6651 

33.33 7.636 6.343 6.436 1.5 0.8234 

40 11.00 7.901 8.005 1.3 0.9457 

50 17.18 9.207 9.071 1.5 0.9968 

 

 

Table 11 Estimation of �� for SSSS plates with  ¶ = 10 and  
:6.ÉÊ = 100 

 �  � ¶Â � e" e� f ·̅ Ó̅ ¼ A 

�� 
Diff.  
(%) 

· Analytical 

Method 
Eq. (51) 

-1 -0.5 - 1 114.39 - - - - 55 18.59 24.25 21.83 11.1 0.1909 

75 34.58 40.31 37.46 7.6 0.3274 

110 74.38 71.48 70.55 1.3 0.6168 

150 138.31 102.77 105.32 2.5 0.9207 

- 1.5 90.891 - - - - 50 15.37 19.91 17.96 10.9 0.1976 
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65 25.97 30.63 28.36 8 0.3120 

100 61.47 58.37 57.78 1 0.6357 

135 112.03 82.30 84.34 2.5 0.9279 

- 2 83.308 - - - - 45 12.45 16.45 14.76 11.4 0.1772 

65 25.97 30.09 28.01 7.4 0.3362 

95 55.48 52.96 52.34 1.2 0.6282 

125 96.05 73.27 75.10 2.5 0.9015 

- 4 76.488 - - - - 45 12.45 16.23 14.61 11.1 0.1911 

60 22.13 26.04 24.12 8 0.3154 

90 49.79 47.90 47.22 1.4 0.6173 

120 88.52 67.39 69.08 2.5 0.9031 

-0.5 1 4 1 4.661 10.68 -5.418 0.9 5.36 10 0.546 0.708 0.666 6.3 0.1430 

20 2.185 2.202 2.210 0.4 0.4742 

25 3.414 3.074 3.147 2.4 0.6752 

35 6.691 4.713 4.773 1.3 0.9543 

4 1.5 3.936 8.649 -4.247 0.901 4.53 10 0.546 0.691 0.654 5.7 0.1660 

15 1.229 1.353 1.325 2.1 0.3367 

25 3.414 2.936 3 2.2 0.7621 

30 4.916 3.754 3.732 0.6 0.9226 

4 2 3.920 8.565 -4.218 0.908 4.59 10 0.546 0.689 0.653 5.5 0.1666 

15 1.229 1.351 1.324 2 0.3378 

25 3.414 2.933 2.996 2.1 0.7642 

30 4.916 3.732 3.713 0.5 0.9260 

5 4 3.707 7.293 -3.249 0.906 4.32 10 0.546 0.687 0.649 5.9 0.1750 

15 1.229 1.343 1.314 2.2 0.3544 

25 3.414 2.887 2.940 1.8 0.7932 

30 4.916 3.586 3.614 0.8 0.9410 

0.5 -1 9 1 11.25 19.45 -7.583 0.925 13.76 15 1.229 1.663 1.512 10 0.1343 

25 3.414 3.878 3.696 4.9 0.3285 

40 8.739 7.791 7.933 1.8 0.7050 

50 13.65 10.33 10.38 0.5 0.9221 

6 1.5 6.088 11.85 -5.28 0.916 7.274 10 0.546 0.757 0.687 10.2 0.1128 

20 2.184 2.383 2.308 3.2 0.3791 

30 4.916 4.314 4.414 2.3 0.7250 

40 8.739 6.047 6.114 1.1 0.9614 

6 2 3.834 7.286 -3.168 0.918 4.6 10 0.546 0.708 0.651 8.8 0.1699 

15 1.229 1.376 1.320 4.2 0.3443 

25 3.414 2.906 2.974 2.3 0.7757 

30 4.916 3.626 3.650 0.7 0.9358 

17 4 2.351 3.512 -1.095 0.943 3.027 10 0.546 0.656 0.613 7 0.2608 

15 1.229 1.236 1.219 1.4 0.5184 

20 2.185 1.836 1.876 2.2 0.7978 

25 3.414 2.310 2.289 0.9 0.9734 

1 1 2 1 1.336 5.703 -3.840 0.879 1.464 10 0.595 0.556 0.607 9.2 0.4547 

15 1.339 1.155 1.117 3.4 0.8363 

20 2.381 1.629 1.655 1.6 0.9635 

3 1.5 1.019 3.829 -2.471 0.879 1.118 10 0.595 0.541 0.578 6.8 0.5668 

15 1.339 1.039 1.030 0.9 0.9142 

20 2.381 1.357 1.337 1.5 0.9945 

3 2 0.951 2.936 -1.748 0.880 1.045 10 0.595 0.544 0.569 4.6 0.5987 

15 1.339 0.989 0.997 0.8 0.9346 

20 2.381 1.205 1.183 1.9 0.9981 

5 4 0.916 1.869 -0.830 0.871 0.988 10 0.595 0.551 0.565 2.5 0.6161 

15 1.339 0.947 0.954 0.7 0.9547 

20 2.381 1.047 1.038 0.9 0.9994 
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Table 12 Estimation of �� for CCCC plates with  ¶ = 10 and  
:6.ÉÊ = 100 

 �  � ¶Â � e" e� f ·̅ Ó̅ ¼ A 

�� 
Diff.  
(%) 

· Analytical 
Method 

Eq. (51) 

-1 -0.5 

- 1 128.00 - - - - 

55 18.60 24.62 22.13 11.3 0.1729 

80 39.34 45.63 42.52 7.3 0.3322 

115 81.30 78.69 77.51 1.5 0.6056 

155 147.69 112.74 115.43 2.4 0.9018 

- 1.5 101.51 - - - - 

50 15.37 20.21 18.20 11 0.1793 

70 30.12 35.17 32.71 7.5 0.3223 

105 67.77 64.59 63.90 1.1 0.6295 

140 120.49 90.58 92.73 2.4 0.9135 

- 2 93.26 - - - - 

50 15.37 19.93 18.01 10.7 0.1932 

65 25.97 30.70 28.46 7.9 0.3052 

100 61.47 58.82 58.13 1.2 0.6233 

135 112.03 83.67 85.63 2.3 0.9182 

- 4 86.23 - - - - 

45 12.45 16.47 14.82 11.1 0.1720 

65 25.97 30.21 28.15 7.3 0.3264 

95 55.48 53.49 52.75 1.4 0.6117 

130 103.89 77.47 79.27 2.3 0.9194 

-0.5 1 

4 1 8.174 18.30 -9.100 0.899 9.362 

15 1.229 1.533 1.456 5.3 0.1782 

25 3.414 3.532 3.521 0.3 0.4308 

35 6.691 5.849 5.984 2.3 0.7320 

45 11.06 8.039 8.120 1 0.9417 

5 1.5 6.534 13.72 -6.482 0.902 7.542 

10 0.546 0.743 0.692 7.4 0.1060 

20 2.185 2.378 2.332 2 0.3570 

30 4.916 4.407 4.500 2.1 0.6888 

40 8.739 6.369 6.425 0.9 0.9409 

5 2 6.066 12.50 -5.804 0.903 7.013 

10 0.546 0.737 0.687 7.3 0.1132 

20 2.185 2.345 2.307 1.6 0.3802 

30 4.916 4.318 4.409 2.1 0.7268 

40 8.739 6.106 6.170 1 0.9582 

6 4 5.646 11.06 -4.911 0.906 6.585 

10 0.546 0.730 0.681 7.2 0.1206 

20 2.185 2.313 2.281 1.4 0.4040 

30 4.916 4.226 4.314 2.1 0.7641 

35 6.691 5.187 5.168 0.4 0.9109 

0.5 -1 

9 1 16.78 28.62 -10.94 0.924 20.49 

20 2.185 2.883 2.634 9.5 0.1569 

30 4.916 5.631 5.349 5.3 0.3187 

45 11.06 10.39 10.46 0.7 0.6232 

60 19.66 15.13 15.24 0.7 0.9082 

8 1.5 10.21 18.19 -7.358 0.922 12.37 

15 1.229 1.639 1.495 9.6 0.1464 

25 3.414 3.797 3.644 4.2 0.3570 

35 6.691 6.281 6.335 0.9 0.6206 

50 13.655 9.799 9.888 0.9 0.9481 

9 2 8.303 14.34 -5.575 0.924 10.13 

15 1.229 1.591 1.459 9 0.1757 

25 3.414 3.632 3.530 2.9 0.4252 

35 6.691 5.898 6.011 1.9 0.7240 

45 11.06 7.947 8.013 0.8 0.9479 

12 4 7.413 11.51 -3.794 0.927 9.108 

15 1.229 1.564 1.439 8.7 0.1942 

20 2.185 2.503 2.375 5.4 0.3204 

30 4.916 4.610 4.642 0.7 0.6262 

40 8.739 6.704 6.751 0.7 0.9108 

1 1 
3 1 3.373 12.69 -8.147 0.875 3.661 

10 0.595 0.629 0.692 10 0.2051 

15 1.339 1.269 1.393 9.8 0.4129 

20 2.381 2.097 2.215 5.6 0.6567 

30 5.357 3.832 3.880 1.3 0.9479 

3 1.5 2.729     9.342         -5.783        0.874        2.960 10 0.595 0.621 0.674 8.5 0.2469 
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15 1.339 1.247 1.344 7.8 0.4925 

20 2.381 2.068 2.088 1 0.7652 

25 3.720 2.835 2.828 0.2 0.9218 

3 2 2.525       9.536         -6.109       0.871       2.721 

10 0.595 0.602 0.667 10.8 0.2642 

15 1.339 1.214 1.325 9.1 0.5246 

20 2.381 2.061 2.033 1.4 0.8053 

25 3.720 2.769 2.780 0.4 0.9322 

3 4 2.330      9.008         -5.838          0.874 2.527 

10 0.595 0.597 0.660 10.6 0.2832 

15 1.339 1.204 1.304 8.3 0.5597 

20 2.381 2.061 1.971 4.6 0.8458 

25 3.720 2.663 2.697 1.3 0.9476 

 

 

4 Conclusion 

An analytical approach is presented to obtain the inelastic buckling coefficient of simply supported and fully clamped 

rectangular plates subjected to combined biaxial (both compressive and tensile) and shear loads. The deformation 

theory of plasticity, variations to all mechanical properties of plate, the generalized integral transform technique 

(GITT) and eigenvalue solution are applied in the different sequences to obtain the inelastic buckling coefficient of 

plate. Ramberg-Osgood parameters are used to describe the nonlinear stress-strain behavior of material, although the 

solution can be generalized for the other nonlinear behaviors. Then applying the method of linear least squares (LLS) 

on the obtained results, a semi-analytical solution is also proposed. An approximate polynomial equation is obtained 

and solved by trial and error method to simplify the calculation of the inelastic buckling coefficient. The proposed 

semi-analytical solution is simple and applicable for the practical purposes. The calculated results show that good 

accuracy may be obtained for all loading cases, so that the maximum difference (less than 12%) is seen in tensile-

tensile-shear loading state; nevertheless, increasing thickness ratio of plate, the accuracy increases.  

Appendix A: Linear / Bilinear approximation of �� = ºH·; �,  � ,  � , ¶, ��I 

Supposing the boundary conditions of plate and the specific values for 0 < �� < 0.5, 1 ≤ � ≤ 4, −1 ≤  � ≤ 1, −1 ≤
 � ≤ 1 and 2 ≤ ¶ ≤ 20, the suggested algorithm (Fig. 2) is applied and several examples may be solved to obtain the 

curves of �� − ·. Figs. A1-A12 show the obtained curves for some examples in which the curves of SSSS and CCCC 

plates are drawn in Figs. A1-A6 and Figs. A7-A12 respectively. In these Figures, �� = 0.33,  � = 1, 1.5, 2, 4,  � =
−0.5, 1,  � = −1, 1 and ¶ = 3, 10, 20. Initially, the method of linear least squares (LLS) is used and the correlation 

coefficient (R) of linear estimation is obtained for each curve as shown in Figs. A1-A12. If Ë ≥ 0.999 the linear 

estimation is proposed; otherwise, the bilinear estimation (Eq. 49) is replaced to improve the approximation. In Figs. 



34 

 

A1-A12, the linear / bilinear approximations are only plotted for � = 1 (the dashed lines). The similar approximated 

curves can be evidently plotted for the other aspect ratios. Supposing constant values of ¶ and � and increasing  � 

and  �, the linear estimations are mostly converted to the bilinear estimations. If Ë = 0.999, the boundary of 

conversion is found for which the integer value of corresponding ¶ is only considered (¶Â in Tables 8 and 9). For 

example, if � = 4 and  � =  � = 1, then ¶Â = 5 for SSSS plates; thus, if ¶ = 3 or ¶ = 10, then Ë = 0.9996 (linear 

estimation, Fig. A2) or Ë = 0.9964 (bilinear estimation, Fig. A4). 

  

Fig. A1 Linear approximations of �� − · curves for all 

aspect ratios 

Fig. A2 Bilinear and linear approximations of �� − · 

curves for � = 1, 1.5, 2 and � = 4 respectively 

 
Fig. A3 Linear approximations of �� − · curves for all 

aspect ratios 

 
Fig. A4 Bilinear approximations of �� − · curves for 

all aspect ratios 
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Fig. A5 Linear approximations of �� − · curves for all 

aspect ratios 

 
Fig. A6 Bilinear approximations of �� − · curves for 

all aspect ratios 

 
Fig. A7 Linear approximations of �� − · curves for all 

aspect ratios 

 
Fig. A8 Bilinear approximations of �� − · curves for 

all aspect ratios 

 
Fig. A9 Linear approximations of �� − · curves for all 

aspect ratios 

 
Fig. A10 Bilinear approximations of �� − · curves for 

all aspect ratios 
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Fig. A11 Linear approximations of �� − · curves for 

all aspect ratios 

 
Fig. A12 Bilinear approximations of �� − · curves for 

all aspect ratios 

 

 

Appendix B: Semi-logarithm estimation of e", e� and f 

In Appendix A and Eq. (49), a bilinear approximation is described with both slopes of lines (e" and e�) and intercept 

of the second line (f) while a linear approximation is only described with slope of a line (e"). Applying the method 

of linear least squares (LLS) on several examples, e", e� and f can be linearly estimated versus ln ¶.  Figs. B1-B4 and 

B5-B8 show the estimations for SSSS and CCCC plates respectively. If linear approximation is applied on �� − · 

curves, then e" is only estimated as shown in Figs. B1 and B5 ( � = −0.5,  � = −1); if bilinear approximation is 

applied, then e" (Figs. B2 and B6), e� (B3 and B7) and f (B4 and B8) are estimated ( � =  � = 1). Eqs. (B1) show 

the semi-logarithm estimation, 

he" = m"" ln ¶ + m"�e� = m�" ln ¶ + m��f = w" ln ¶ + w�  B1 

 

 where m"", m�" and w" are the slopes and m"�, m�� and w� are the intercept of e", e� and f respectively. For SSSS plates 

with � = 1,  � = −0.5 and  � = −1, Fig. B1 shows that m"" = −1.294 and m"� = 117.37. Similarly, the parameters 

of Eq. (B1) will be obtained for the different boundary and load conditions as shown in Table 8 and 9. The obtained 

correlation coefficients show that the semi-logarithm estimation is acceptable in this step.    
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Fig. B1 Linear approximation of  e" − ln ¶ in Figs. 

A1, A3 and A5 

 
Fig. B2 Linear approximation of  e" − ln ¶ in Fig. 

A2, A4 and A6 

 
Fig. B3 Linear approximation of  e� − ln ¶ in Figs. 

A2, A4 and A6 

 
Fig. B4 Linear approximation of  f − ln ¶ in Figs. 

A2, A4 and A6 

 
Fig. B5 Linear approximation of  e" − ln ¶ in Figs. 

A7, A9 and A11 

 
Fig. B6 Linear approximation of  e" − ln ¶ in Fig. 

A8, A10 and A12 
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Fig. B7 Linear approximation of  e� − ln ¶ in Fig. 

A8, A10 and A12 

 
Fig. B8 Linear approximation of  f − ln ¶ in Fig. 

A8, A10 and A12 

 

Notations 

a Length of plate 

b Width of plate 

h Number of series terms in the GITT ��, �� Inelastic buckling coefficients ���, ��� Elastic buckling coefficients 

m, n, r, s Positive integers 

q Shape parameter to describe the curvature of stress-strain curve in the Ramberg-

Osgood representation ¶ Integer of corresponding q in the boundary of linear and bilinear approximations ( Ë = 0.999)  mBÑ , wB Fundamental parameters to find e" , e� and f (i, j = 1, 2) 

t Thickness of plate 

z Distance from the middle surface of plate f Intercept of the second line in bilinear approximation of �� − · curve !BÑ Arrays of stiffness matrix (i, j = 1, 2, 3) 
 Young’s modulus (or the slop of stress-stain curve at zero stress) 
��� Secant modulus 
DEF Tangent modulus KYFg�  Arrays of coefficient matrix (m, n, r, s = 1, 2, …, h) �� , ��, ��� In-plane loads in the x-, y- and xy- directions per unit length Ë Correlation coefficient of linear approximation in linear least squares e" , e� Slope of the first and the second line for approximation of �� − · curve XY�P�, [F�Q� Kernels of double integral transform in x- and y-direction (m, n = 1, 2, …, h) ZY , \F  Roots of transcendental beam frequency equations in x- and y- directions (m, n = 1, 

2, …, h) � Shear strain  R�P, Q� Variation of out of plane displacements in z- direction  RYF Variation of transformed out of plane displacements (m, n = 1, 2, …, h) 
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 K� ,  K� Variation of bending moments in the x- and y- directions per unit length  K�� Variation of twisting moment per unit length  �%  Variation of middle surface shear strain  �%� ,  �%� Variation of middle surface strains in x- and y- directions   *� ,  *� Variation of curvatures in x- and y- directions  *�� Variation of twist  �� ,  �� Variation of stresses in x- and y- directions   � Variation of shear stress �� , �� Strain in x- and y- directions  · Secant modulus to Young’s modulus ratio  ¹ Tangent modulus to Secant modulus ratio ¼ Thickness ratio of plate � Poisson’s ratio ��  Elastic Poisson’s ratio �.´: Stress corresponding to intersection of the stress-strain curve and a secant of 0.7E in 

Ramberg-Osgood representation �B Stress intensity �� ,  �� Stresses in x- and y- directions  � Shear stress ��,�g ,  ��g Critical stresses � Aspect ratio of plate  � ,  �,  Â� ,  Â�� Load ratios 
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