'D Tampere University

Jarkko Passi

VERIFICATION OF A HETEROGENEOUS
MULTI-PROCESSOR SOC

Master of Science Thesis

Faculty of Information Technology and Communication Sciences
Examiners: Prof. Timo Hamalainen

Antti Rautakoura, M.Sc.

August 2023

ABSTRACT

Jarkko Passi: Verification of a heterogeneous multi-processor SoC
Master of Science Thesis

Tampere University

Master’s Programme in Electrical Engineering

August 2023

System-on-chip (SoC) designs are getting more and more complex due to the constantly evolv-
ing semiconductor business. A single SoC can consist of a great number of sub-blocks such as
CPUs, Al accelerators, memories, and interconnects. A heterogeneous structure enables the use
of different kinds of processing units on the same chip. Resulting in greatly improved performance
and power efficiency compared to homogeneous designs.

Verification is done to guarantee that a chip design is functional and ready for fabrication. More
complex designs can be seen in verification as more time-consumed and as a need for more
resources. The increasing complexity of the system greatly increases the number of configuration
combinations which makes it a challenge for verification to cover all possible scenarios.

This thesis presents the verification process of Ballast SoC. Ballast is a heterogenous multi-
processor SoC developed by SoC Hub. Firstly, the thesis studied SoCs and verification in general.
In addition, related work was explored. Secondly, the thesis outlines the strategy and implemen-
tation for the Ballast verification process. The strategy section shows how the planning was done
and what methods were used. The implementation section outlines the practical implementation
of the verification. Finally, the results are presented.

The results presented in the thesis prove that the tapeout of Ballast SoC was reached with
a high level of confidence. Later the Ballast samples arrived and the wake-up of the chip was
started. Ballast was proven to be functional and only one major issue was found which affected
only one of the nine subsystems.

Keywords: SoC, MPSoC, verification, RISC-V

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIVISTELMA

Jarkko Passi: Heterogeenisen moniprosessori-jarjestelmépiirin verifiointi
Diplomityd

Tampereen yliopisto

Séahkotekniikan DI-ohjelma

Elokuu 2023

Jarjestelmépiirit ovat kdymassa entistd monimutkaisemmiksi jatkuvasti kehittyvan puolijohde-
teollisuuden vuoksi. Yksi jarjestelmapiiri voi koostua suuresta maarasta erilaisia alilohkoja, ku-
ten prosessoreista, tekoalykiihdyttimista, muisteista ja vaylalitannéistéd. Heterogeeninen rakenne
mahdollistaa erilaisten prosessori-yksikkdjen kaytobn samassa piirissa, mika johtaa huomattavasti
parempaan suorituskykyyn ja pienempaan virrakulutukseen verrattuna homogeeniseen rakentee-
seen.

Verifiointi suoritetaan, jotta varmistutaan jarjestelmépiirin toiminnasta ja, ettd voidaan siirtya
piirin valmistukseen. Monimutkaisemmat jarjestelmapiirit lisdavat verifiointiin tarvittavaa aikaa ja
resurssien tarvetta. Jarjestelman kasvaessa erilaisten konfiguraatioiden maéaré kasvaa, miké aset-
taa haasteita verifioinnille, ettd saadaan katettua kaikki mahdolliset skenaariot.

Tama diplomity6 esittdd Ballast jarjestelmapiirin verifiointiprosessin. Ballast on heterogeeni-
nen moniprosessori-jarjestelmapiiri, joka on kehitetty SoC Hub projektissa, Tampereen yliopis-
tossa. Ensimmaiseksi, tydssé kdydaa lapi yleiset asiat liittyen jarjestelmépiireihin ja verifiointiin.
Lisaksi tutustuaan verifiointiin samankaltaisissa projekteissa. Toiseksi, tyd esittda strategian ja to-
teutuksen Ballastin verifiointiprosessille. Startegia osio esittdd, miten suunnittelu tehtiin ja mita
menetelmid kaytettiin. Toteutusosio kuvaa miten verifiointi tehtiin kdytanndssa.

Tydn tulokset osoittavat, etta Ballast-jarjestelmépiirin verifointi suoritettiin onnistuneesti ja voi-
tiin siirtyad valmistukseen hyvalla luottamuksella. Mydhemmin piirit saapuivat valmistuksesta ja
Ballastia alettiin testaamaan. Ballast osoittautui toimivaksi ja ainoastaan yksi merkittdva ongelma
I6ytyi, mika vaikutti vain yhteen yhdeksasta alijarjestelmasta.

Avainsanat: jarjestelmapiiri, verifiointi, RISC-V

Taman julkaisun alkuperaisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

PREFACE

This thesis was written as part of SoC Hub project hosted by Tampere University.

Thanks to my thesis examiners Prof. Timo Hamalainen and M.Sc Antti Rautakoura for
guidance during the writing process. SoC Hub was a great environment to work in. For
that, | would like to thank the entire Ballast development team for making this environment
possible.

Tampere, 13th August 2023

Jarkko Passi

CONTENTS

Introduction|.

2. [System-on-a-chip

2.1
2.2

SoC overview| .

Heterogeneous multi-processor SoCs

3. |Verification| .

3.1
3.2
3.3
3.4

3.5
3.6
3.7

Verification overview

Verifying a system-on-a-chip| .

Functional verification| .

Methodologies|.

341 UVM.
3.4.2 |FPGA prototyping|. . .
3.4.3 [HW-SW co-simulation| .
3.4.4 |Assertions,|.

Verification flow|

Bugs and debugging

Coverage|.

3.7.1 (Git Cl.

Related work] .

Ballast SoC]|.

5.1
5.2
5.3

Overview| .

Top level structure

Subsystems|.

Ballast verification strategy|.

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Verification overview

Subsystems|.

Top level| .

Boot].

Verification plans.

Verification re-use

Methods used,| .

6.7.1 |RTL simulation|. .
6.7.2 |Gate level simulation
6.7.3 |FPGA prototyping|.

0 N O O o W NN =

[\ T 2 T 1 TN o T o T 2 TR Ao TR 1N T N T N T 1 N T S e S N N S e e e e =
N OO OO0 OO O WD+ OO0 O N oo O =2 2 OO0 O

7. |Ballast verification implementation|.

7.1

7.2
7.3

Subsystem level| .

7.1.1

Processor subsystems).

7.1.2

Communication subsystems

7.1.3

Processing subsystems

Top level

FPGA

implementation|.

8. [Ballast verification results| .

8.1

8.2

8.3
8.4

Coverage results|.

8.1.1
8.1.2
8.1.3

Subsystem code coverage| .

Top level code coverage| .

Test plan coverage

Recap

of different methods|.

8.2.1
8.2.2
8.2.3

RTL simulation| .

FPGA

GLS| .

Bugs|.

Sample testing|.

9. |Conclusion| .

References|.

. 28
. 28
. 28
. 29
. 31
. 32
. 32
. 33
. 33
. 34
. 37
. 38
. 39
. 39
. 39
. 39
. 39
. 40
. 42
. 43

LIST OF SYMBOLS AND ABBREVIATIONS

Al
ASIC
AXI
ca2C
Cl
CPU
DMA
DSP
DUT
FLL
FPGA
HPC

Artificial Intelligence

Application Specific Integrated Circuit
Advanced eXtensible Interface
Chip-tp-Chip

Contineus Integration

Central Processing Unit

Direct Memory Access

Digital Signal Processor

Design Under Test
Frequency-Locked Loop

Field Programmable Gate Array
High Performance Computing
Hardware

Input-Output

Intellectual Property

Joint Test Action Group

Media Access Control

Medium Performance Computing

Phase-Locked Loop

Reduced Gigabit Media-Independent Interface

Read-Only Memory
Register Transfer Layer
Secure Digital Input Output
System-On-Chip

Serial Peripheral Interface
Software

Testbench

vi

Vii

UvM Universal Verification Methdology

VIP Verification Intellectual Property

1. INTRODUCTION

The constant need for more powerful and efficient electronics drives the development of
more complex SoC designs. SoCs enable us to integrate a vast amount of functionality
on a single chip. Nowadays SoCs power everything from wearables to high-performance
computing systems. A key element of modern SoCs is a heterogeneous design integrat-
ing different types of processing units on the same chip to increase performance and
energy efficiency.

The increasing complexity creates new challenges for the whole SoC design flow includ-
ing design, verification, and validation. This has driven the industry to use standardized
methodologies and complex tools to achieve functional SoCs. Verification is commonly
the most time-consuming part of the SoC flow and only increases as the SoC complexity
increases. Heterogeneous architecture leads to tailored verification approaches as the
different blocks need to function together which becomes a big challenge in the verifica-
tion process.

The goal of this thesis is to achieve the required confidence in the design so that it is
feasible to move to tapeout and fabrication of the SoC. The first part of the thesis focuses
on the relevant background by giving an introduction to SoCs and verification. Chapter
2 gives a general overview of SoCs and more detailed information about heterogeneous
SoCs. Chapter 3 studies verification in general and what needs to be taken into con-
sideration when verifying an SoC. In addition, the general verification flow and different
approaches and methodologies are explored in this chapter. Chapter 4 explores related
work and how verification is implemented in other projects.

The second part of the thesis focuses entirely on Ballast architecture, Verification strategy,
verification implementation, and results. Chapter 5 gives the first introduction to Ballast
SoC and goes through the structure in detail describing each subsystem. Chapter 6
presents the Ballast verification strategy including the used methods, plans, and areas
that were focused. Chapter 7 documents the practical implementation of the verification,
divided into processor, communication, and processing subsystems. In addition, top level
and FPGA implementations are presented. Chapter 8 shows the results of the verification
process to prove that the goal was achieved. Finally, chapter 9 includes the conclusions
of the thesis.

2. SYSTEM-ON-A-CHIP

This chapter provides relevant background regarding SoCs, their structure, challenges,
and things to consider.

2.1 SoC overview

System-on-a-chip is a complex digital device. It is an integrated circuit that implements
an entire electronic system. What makes them complex is that the whole system is im-
plemented on a single chip. That can include for example processing units, busses and
interconnects, I/0, and memories. [1] The SoC that this thesis revolves around is a multi-
processor SoC (MPSoC) containing multiple processing units.

The SoC structure contains multiple layers. System-level, also called top level, includes
multiple subsystems and usually a bus interconnect to handle communication between
the blocks. The next layer is the subsystem level which consists of smaller blocks which
are called intellectual properties (IP). The layered structure continues similarly. Figure [2.1]
contains a general block diagram of a multi-processor SoC.

CPU1 CPU2 CPU2

v { {

Bus interconnect

! { {

Memory I/O Peripherals

Figure 2.1. General SoC block diagram

2.2 Heterogeneous multi-processor SoCs

Modern SoCs are often heterogeneous, which means they have multiple processing sub-
systems with different architectures. These can include for example CPU subsystems,
Al subsystems, and DSP subsystems. The motivation is to enable parallel processing,
increase performance, lower power consumption, and reduce die area. Performance and
low power consumption are achieved by using specialized processing units for specific
tasks. For example, a CPU can do Al processing but does it with significantly lower effi-
ciency than an Al accelerator would that is designed specifically for the task. The structure
of such heterogeneous SoC is described later in section

Heterogeneous SoC trades some flexibility for other benefits such as mentioned above.
Heterogeneous SoCs are tailored to specific use cases to increase efficiency but in the
process specialize the usage for a limited amount of applications. In reality, this is not
an issue because heterogeneous SoCs are designed to serve a specific purpose. Such
specific use cases can be for example an SoC for a mobile phone or for a baseband
station.

On the other hand, the heterogeneous approach increases flexibility by making it possible
to develop a wide range of different applications. The opposite is a homogeneous system
that uses multiple identical processing subsystems, for example, general-purpose CPUs.
Homogeneous chips offer great flexibility while reducing efficiency, making them less ideal

for embedded applications such as mobile phones requiring high performance with low
energy consumption. To meet the demanding requirements of a modern SoC such as

high performance and low power consumption, the heterogeneous design approach is
the feasible way. [12]

3. VERIFICATION

This chapter provides background information about SoC verification, different verification
approaches, and methodologies. The chapter explains the content of the verification flow
and the challenges included.

3.1 Verification overview

Design verification is about making sure that the hardware fulfills the requirements and
functions according to the specification. However, this is not enough. In addition to that
the verification should be thorough enough, to prove that the design works in unexpected
scenarios and it behaves as expected in all circumstances. Bugs will be found and fixed
during the process. Figure [3.1]illustrates how the verification process sits in the whole
SoC project timeline. Verification activities are started at the same time with design to
achieve fluent testing from the ground up.

Artifacts

Prototyping
platforms and W
testcases

Verification |
environments
and testcases

Micro
Architecture
Specifications

I \

Metlists and Physical IC
GDsI product

High level HDL codes

models

Architecture
Specifications

High-level
Requirements

Life-cycle
Development sprints / Releases Multiple rounds needed
for product quality silican
< 5 . : i : : =
. 2 N Y . ™
> Exploration ; Planning //‘ Development P Production >
P i P /. /
Process milestones
MO (start) M1 (Models) M2-M5 (Development) M& (RTL freeze) M7 (Tapeout) M8 (Wake-up) M3 (validated samples &
" '] . demastrators)
' ; i
1N * S . . ~ ' ! !
i H H
. SO, . ™ '
i Modeling > RTL & MX Design > H
I 4 yod / \
1

o
H > Synthesis and physical design 1
e

! < N ;
i . ' '

< - [H
! P Verification P ; :
) | Z . ; I
| s S : S
: : > Prototyping (Emulation & FPGA) S, ample)
1 ' / A7 testing A
I ' H AN
) H e Low-level SW development b3
3 [s
i ' H H H
i ' H AN pN
i H E 7 HW/SW Integration and Validation P

.
™ .,

Application SW development

N
N

Figure 3.1. SoC flow diagram [23]

3.2 Verifying a system-on-a-chip

Verifying an SoC is a challenging task due to the complexity and size of the design.
Complexity naturally increases as the size of the design expands. When an SoC con-
tains several subsystems with heterogeneous processing blocks that require concurrent
functionality, the verification effort needed increases substantially. In the end, a lot of
resources are needed to complete the work within the tight project deadlines.

The challenge can be seen in the time it takes to close the verification. As seen in figure
3.1}, verification takes a notable space in the diagram. In addition to that, prototyping and
a lot of the SW development and HW/SW integration also contribute to the verification.
Thus in reality verification has even more ground than what can be quickly observed from
the diagram.

Because of the layered structure of the SoC, also the verification is performed in multiple
layers. An SoC consists of subsystems, subsystems include smaller IPs, and so on.
Verification is done on each hierarchy level. First, the IPs are verified before integrating
them into a subsystem. Subsystems are then verified before integrating them into the
system level also called as top level. Test case re-use is important because it can save a
lot of time and it is often possible to re-use test cases from lower levels to higher levels.
The figure [3.2/ shows an example of a subsystem structure in Ballast SoC.

‘-------------------------

" MPC sub-system '
I I
1 |
. Timer/WD JITAG GPIO 1
I I
1 Clk & rst ctrl HISC'V UART :
] uDMA APB

1
1 CV32E40P 39bit CPI ,
1

|
' _ 2c
' Memory ICN 32bit .
1
. SDIO
| Private Private Interleaved i
[SRAM 0 SRAM 1 shared SRAM SPI-M :
1
‘ - m - | | L | L} - | - - | - m - | m - [- | | - L} "‘

Figure 3.2. Example block diagram of a subsystem in Ballast [24]

Top level verification’s primary focus is integrating the subsystems and verifying the con-
nectivity between them. Top level verification can be done in multiple ways depending
on the SoC architecture. If the SoC has CPU subsystems, at least part of the top level
verification is done with HW-SW co-simulation by running SW on a capable subsystem.
In other cases for example verification IPs used to verify subsystems can be re-used to
verify the top level. Verification IP is an external component usually residing in the test-
bench and can interact with the design under test (DUT) while verifying its functionality.
The whole process is described in more detail in Ballast verification chapters [6]and [7]

3.3 Functional verification

The goal of functional verification is to verify, that the design is implemented according to
specification. Functional verification is done by reviewing the specification and producing
test cases to prove the specification is met. The process contains iteration back to RTL
design to get to the point where the design matches the specification. As shown in dia-
gram design, and verification go hand in hand for most of the design cycle. It is fairly
easy if to prove that some functionality is not correct if a discrepancy is found. However,
it is difficult to tell that the specification is met in the end, for example, if the specification
was not understood correctly. Luckily coverage metrics help to guarantee that every part
of the design is verified. [2] Coverage is explained in more detail in a later section.

Functional verification can be divided into three different approaches: black-box, white-
box, and grey-box verification. These approaches describe the transparency of the DUT.
In black-box verification, the internal architecture of the design is not visible to the veri-
fication engineer. In this approach, the engineer relies entirely on the interfaces of the
design. Stimulus is applied to the inputs of the design and the output is observed to de-
termine if the functionality is correct. The benefit of the black-box approach is that the
internal implementation doesn’t matter. The same black-box testbench can be utilized if
the implementation changes. However, it lacks the detailed low-level information needed
in nowadays complex designs. White-box approach is the opposite. It relies entirely on
the internal implementation of the design and has full visibility. Assertions are an ideal
way to do white-box verification. Bugs can be caught at the lowest level of implemen-
tation leading straight to the root cause. The issue here is that often when the internal
implementation changes, the white-box testbench also needs to be changed accordingly.
[2]

Grey-box approach is a compromise between the alternatives above. Combining the
lack of detail in the black-box approach and the lack of portability in the white-box ap-
proach. It retains the approach of only working with the interfaces of the design but
targets implementation-specific parts of the design. A common use case for the grey-box
approach is to patch coverage holes during the verification process. Either black-box or
gray-box verification needs to be used if the verification is executed in parallel with the
RTL implementation. Since white-box verification is dependent on the exact final imple-
mentation. [2]

3.4 Methodologies

3.4.1 UVM

Universal verification methodology (UVM) is an open-source verification framework that
focuses on re-usability. It's based on classes that enable re-usability and makes it highly
configurable. Being class-based, it inherits the pros that object-oriented programming
provides. [16] It is especially useful when verifying a design that has interfaces that use
a certain protocol. If one creates a UVM agent to drive such an interface, one can re-use
the same agent in the current and future projects using the same interface protocols.

UVM provides the UVM class library which holds the pre-made classes. These classes
are called UVM components. [16] An example of a UVM testbench is always built using
the same set of basic components. The user molds the components to fit the architecture
of the DUT.

The basic UVM hierarchy consists of multiple components. The top level is the testbench
which instantiates UVM test class, DUT, and the virtual interfaces connecting these to-

gether. Under the UVM test, there is a UVM environment, which instantiates a UVM
scoreboard, responsible for correctness checking and one or more UVM agents. UVM
agent is a UVM-based verification IP (VIP). The agent instantiates the components re-
sponsible for the interface handling which is protocol specific. These components are a
UVM sequencer, UVM driver, and UVM monitor. UVM sequencer is only responsible for
feeding the driver. UVM driver takes the higher level transaction items and converts them
to signal level, feeding the interface connected to DUT. UVM monitor is also connected
to the same interface. As the name suggests, the UVM monitor monitors the interface by
having access to the data within the interface. It converts the signal level data back to
transaction items and can feed those forward to the scoreboard for example. [16] Figure
[3-3)illustrates the hierarchy of a traditional UVM testbench.

UVM Testbench

uvm_config db

uvim_sequence

uvm_env
uvm_agent

uvm_ rver ,

uvm_monitor

© O dut_if

DUT

Figure 3.3. An example of a traditional UVM testbench environment @]

Because UVM is open-source, it opens the possibility to re-use work from open-source
projects. For example, open-source UVM agents can be found and reused. It can save
huge amounts of time but also brings in the possible downsides of the open-source world.
Often providing insufficient documentation and the use of these components can become
more difficult and take more time than expected. Caution needs to be taken because
verifying blocks with faulty VIPs can result in a faulty design.

10

3.4.2 FPGA prototyping

FPGA is a silicon chip containing millions of re-programmable digital blocks. This architec-
ture allows almost any digital design to be implemented on FPGA. It provides a reusable
platform for digital design applications. There are several drawbacks and pros when com-
paring FPGA to ASIC. The most important difference is that through reconfigurability,
FPGA provides excellent flexibility. The most notable drawback is the performance. FPGA
can’t achieve as fast clock frequencies as ASIC which decreases the performance. For
example, the FPGA clock frequency can be 1-quarter of the clock frequency on ASIC but
there is variance between applications. [26]

In ASIC SoC projects, FPGAs can be used for verification and software development.
Those can also happen at the same time through HW-SW co-simulation described in the
next section. FPGA setup can take a long time because the design meant for ASIC often
requires changes to implement it on FPGA. After setting up, FPGA prototyping is a great
tool for speeding up certain verification tasks and software development. In addition, it
enables the use of external physical components and tools to be used with the design on
FPGA. For example, external debugger, communicating via peripherals such as UART to
PC, and to monitor interfaces with tools such as oscilloscopes.

3.4.3 HW-SW co-simulation

In the hardware-software (HW-SW) co-simulation method, hardware, and software are
verified concurrently. For this method, the design must include a processor subsystem
capable of running software. The general flow of this method contains writing software
code, compiling it for the target platform, loading it into the hardware memory, and running
the simulation which starts the program execution from the memory. Co-simulation makes
it possible for software engineers to run and debug their code on the simulated hardware.
It offers visibility to the code execution process that other methods are unavailable to
deliver. For example, FPGA prototyping of the same system provides the same software
running capability but sacrifices visibility for speed. Speed is a common issue with co-
simulation as it can be very slow to run. This of course is not suitable when developing
software as you could be waiting for a day to be able to test a small code modification.
However, it is also useful from a hardware point of view as the hardware gets verified as
well in the process. This method is not optimal for IP level verification but for top level
verification, it is needed to cover the integration. [28] [13]

3.4.4 Assertions

Assertions are low-level correctness checks integrated into the design during the design
and verification processes. They are usually implemented when a block is designed but

11

can also be added during verification and become useful at any point in the verification
process. Basically, assertions set rules that even other blocks accessing the block in
question need to follow. They are useful for checking specific things for example verifying
an interface protocol. Assertions are based on checking transitions or states of individual
signals. It can for example reveal if a signal is not changing its state according to spec-
ification. Assertion coverage can be checked during coverage analysis to spot critical
assertions not being hit. During simulations, assertions can reveal illegal operations and
can stop the simulation accordingly and/or report the violation to the user.

3.5 Verification flow

The verification flow includes strategy planning, verification plan development, executing
the plan, and analyzing results. The flow is not straightforward and there is iteration
involved e.g. adding new tests to the plan after analyzing the results. These activities
also overlap and someone can be still developing the plan when the execution is already
started and vice versa. The verification strategy is the starting point. It defines the used
verification requirements, methods, goals, and debug methods. Based on the strategy,
the verification plan is created which defines the test cases and methods to be used for
each test case.

Verification is time-consuming and as the designs grow more complex, the time to verify it
increases. Verification can take even 70% of the total IC design cycle [29]. Poor planning
will definitely result in more time spent overall.

The verification plan defines all the tests that are to be completed. It also should deter-
mine how the test is executed, for example, RTL simulation or FPGA. The plan is used
to track the progress of the test cases. Meaning indication if the test is e.g. not started,
failing, or passing. Also, a detailed description of the tests should be included. Test cases
are defined based on requirements and use cases coming from the higher level. Progress
can be tracked with coverage methods described later.

3.6 Bugs and debugging

A lot of bugs are found during verification. Finding bugs should get rarer and rarer when
closing the tapeout. The most obvious ones are caught in the beginning and more com-
plex ones can be found as late as in gate level simulation (GLS) closer to tapeout. The
bug itself might not be more complex but if it is found during use case tests or GLS, it can
be more difficult to find due to a more complex environment. Unfortunately, any bug can
be critical for the SoC and that’s why the areas that can most likely cause a critical failure
are focused most during verification.

Debugging is a critical part of the process. When a fault is observed, it is critical to find the

12

root cause as quickly as possible. Transparency is an important aspect of founding the
issue, visibility of a black-boxed design is just not sufficient unless the cause is obvious
from the higher level which rarely is the case. In each verification method, the debugging
methods might differ. However, the general principle is the same.

There isn’t only one way to debug. Each person approaches the problem differently. The
general approach is to look at what failed, how it failed, and then why it failed. For example
in simulation, the method is to analyze the simulation log and waveform produced by
the simulator. The printed simulation log gives higher-level information that can point in
the correct direction. It requires that the test case and testbench environment provide
sufficient information in the form of prints. When the general direction of the issue is
discovered, it's time to move to the waveform to analyze the problem in more detail.
Verification engineers work together with design engineers to discover the root cause,
especially in more complex cases. It requires the verification engineer to provide sufficient
information to the design team so that they can reproduce the same error.

3.7 Coverage

For measuring the progress of verification, verification coverage is an important tool. Ver-
ification coverage uses coverage data that can be extracted from the simulator tools. The
data is commonly exported into an automatically generated report. The report shows
the coverage percentage, which indicates how thoroughly the design has been verified.
Engineers analyze this and use it to find areas where the coverage is lacking. Based on
the information, more tests can be created to target specific areas. The coverage goal
should always be 100% meaning that every tiny bit of the design is covered. However,
sometimes achieving 100% is not practically possible. In this case, careful thinking is re-
quired to determine when the coverage result is good enough. There are different types
of coverage metrics used to track different areas.

Code coverage often called implementation coverage is simply a measure of RTL code
lines executed during verification tests. It is automatically collected which makes it a
simple tool to use. Code coverage quickly exposes which areas of the designs are not
exercised. It can be used to spot such areas which might be caused by faulty test imple-
mentation or a missed block during the verification planning. [17]

Functional coverage is a more specific metric and it can be used to track covered features
and configurations. For example, the engineer is aiming to verify a block while covering
all the different configuration modes. Here functional coverage is useful to know when
everything required is covered. Compared to code coverage, functional coverage gives
more detailed information and also isn’t automatically collected. The engineer needs to
specify in detail what is monitored in the testbench environment. This metric is most
important on the block level because it's much more efficient to get the needed coverage

13

on the standalone environment versus a more complex top level setup. [17]

Test-based coverage in its simplicity is tracking the test cases from the verification plan.
Once all test cases are covered, test-based coverage is 100%. [17] Test-based coverage
on its own is not sufficient as it does not provide detailed information on the test case
quality. However, it is an important metric among others to track the verification progress.

3.7.1 GitClI

Git continuous integration pipeline (Cl) [6] automates building and testing the design.
Based on configuration the pipeline runs the complete build flow and all the test cases for
thorough regression testing. Every time a new commit is pushed, the pipeline checks that
everything is still working.

Automatic testing provides many benefits. The most significant benefit is that the design
stays sane in the main branch and the possibility for human error is decreased. For
example, a developer pushes changes that possibly compromise the design and doesn’t
run the test cases to confirm that. Another developer finishes their work and realizes that
the design is no longer functional. In the end, a lot of time can be wasted looking for the
root cause. With the Cl pipeline in place, time can be saved when every commit is verified
by the regression test run. The usual flow is that a development branch is merged with
the main branch. In that case, the pipeline makes sure that everything is passing before
the merge is accepted, thus keeping the main branch safe.

14

4. RELATED WORK

This section explores verification work done in other projects. The main point is to get an
idea about how verification is implemented in related projects.

OpenHW group is a global organization involving its members and individual contributors.
OpenHW specializes in open-source RISC-V cores and related areas including for exam-
ple software. [8] Their projects include multiple RISC-V cores targeting platforms such as
embedded, FPGA, and application class with full Linux support. [7]

CORE-V-VERIF is OpenHW group’s verification project for verifying the RISC-V cores. It
is advertised as an industrial-level verification environment. They use a thorough set of
verification methods including simulation, FPGA prototyping, emulation, and formal. The
verification environment for all cores is based on UVM which goes hand in hand with their
claims about industry-level verification and they also mention one of the benefits of UVM
to be industry standard. [8] Their verification planning is standard based on a verification
strategy document and a verification plan. The verification plan approach is explained in
verification plan 101 [9].

OpenTitan is an open-source silicon Root of Trust (RoT) project. The goal is to improve
silicon RoT design and implementation transparency and trustworthiness. It is a collab-
orative project to produce capable and high-quality IP. [20] OpenTitan offers thorough
documentation of the verification process.

OpenTitan pursues to achieve industry-strength verification. The goal is to achieve the
quality required for a full-production silicon chip tapeout. For this purpose, the project
uses UVM as the main verification platform. [21]

As the main verification documentation, OpenTitan has a testplan to track test case de-
velopment and functional coverage. DV document is used for higher-level documentation
such as strategy, goal, testbench structure, and used VIPs. They state the environment
structure is created in such a way that it enables high reusability. OpenTitan defines key
focus areas for verification that are common across different DUTs. Those range from
sanity tests to stress tests. To achieve coverage closure, OpenTitan uses coverage col-
lection to progress toward 100% coverage for all applicable verification metrics. [21]

15

5. BALLAST SOC

This chapter focuses on Ballast SoC structure and architectural overview. The following
sections contain top level structure and descriptions of the included subsystems.

5.1 Overview

Ballast is an MPSoC. Multiple processor subsystems and processing units provide a com-
petent platform for numerous applications. These applications include for example deep-
learning-based machine vision object detection and loT applications.

Ballast is developed in the cross-organization project SoC-hub, hosted by Tampere Uni-
versity.

5.2 Top level structure

Ballast’s top level structure includes 9 different subsystems. They are the System con-
trol subsystem, Medium-performance computing subsystem (MPC), High-performance
computing subsystem (HPC), Top level peripheral subsystem (TLP), Chip-to-chip inter-
face subsystem (C2C), NVDLA-based Al subsystem, Ethernet subsystem, AamuDSP
co-processor subsystem, and Interconnect subsystem. The Ballast structure is illustrated

in figure 5.1}

16

T legend SoC top
O R B = m e
B JHPC sub-system + 1 MPC sub-system v SysCtrl Sub-system N
' '
' RISC-V RISC-V " V! . e ot
Component ' " ! UART 3
. APB
» 2 Clk&rstetrl lefl.:l unfu; 1 (ckarstenl RISC.V o vary . ! RISC-V. 32bit B
lemory N ' ul APB uDMA) >
' L2 Cachs L CEZElE E O IBEXRV32EC <t o
Interconnect ' " ' ‘| cord
N ! o "y SPM <]
(IcN) " - ey '
' NODE ICN 64bit AXI " Loty (€ Vo Memory ICN 32bit N
- ' " o0y Global Clk & rst ctrl
N ' t +] ' 1 o Private Private Interleaved L BootRom Frivate Private]
— | ap GE @P GO ma S Enl = |
' Sub-system ! ' DEBUG " S N
S e 7 e
——emaae
1 C2Cubsystem T T T 7Y,
FPGA ' ' 1] | v [7
' L Address _y
O ' cc Remap 4 HP ICN (R LPICN CFGICN
' ' 64bit AXI 32bit AXI 32bit AXI
—_— B E— ~————— AXI32to64 -—
SDRAM '
................
JAl sub-system % Eth sub-system % +DSP subsystem '
'
* [Convolution R 'n 'y .
' c e Ve v} TTAbasedDSP IMEM '
N - ' ' Axito CEDalr e
' Activation 'R] N APB
v | (engnesop) NVDLA (maE), - ! : s2bie
. o " ICN 32bit
SDRAM Memory = T . mAC Ve H APB | SWinterrupt generator
' Engine PDP Buffer ' ! Clk&rstetrl |
' o Clk&rstetrl |+
' o ' DMEM :
' Chrstetd -. . - Ve -_ Config Registers
. 'l . ! ‘.
..

Ext RGMII Eth Phy.

Figure 5.1. Ballast block diagram [24]

Interconnect subsystem makes subsystem to subsystem communication possible using
AXI protocol. Off-chip communication is mainly possible through the C2C interface and
ethernet. The top level instantiates the interconnect subsystem and all the subsystem
wrappers and connects them together. The ballast top level has interfaces for off-chip
communications and control signals.

The structure consists of template-based subsystem wrappers. Each subsystem resides
in its own wrapper. Subsystem wrapper instantiates the subsystem top level, CDC com-
ponents for clock domain crossing, possible converters, subsystem clock control block,
and a phase-locked loop (PLL) block capable of generating high-speed clock frequen-
cies. The wrapper also has the connections to connect the components together. The
interface of the subsystem consists of the CDC component interfaces and possible con-
trol signals e.g. clock controls. The use of a template-based structure makes top level
integration cleaner and less time-consuming when each subsystem wrapper instance is
similar. PLL provides the capability of generating a high-speed clock. Having configurable
clocks creates multiple clock domains within the system which is why clock domain cross-
ing components are needed when transitioning from one clock domain to another. The
subsystem wrapper structure is illustrated in figure|5.2

17

| ﬁ | A PLL Control | % Reference clock and reset
[¥ v |

| AXI Slave AXI Master cDC

CDC Bridge CDC Bridge syncronizers
A

Clk and Reset —p»
Control -

o , 'y

AXI/AXI-Lite Slave AXI/AXI-Lite Wi Control inputs Staus and Clk Reset
Interface 32/64bit Interface 32/64bit interrupts |

outputs

Figure 5.2. Subsystem wrapper overview [24]

5.3 Subsystems

This section contains the descriptions of the subsystems in detail.

System control subsystem

The system control subsystem is based on the Pulpissimo microcontroller architecture
by Pulp-platform. The heart of this subsystem is a single-core IBEX CPU[15]. IBEX
core includes a 2-stage pipeline and support for the following extensions: base integer
instruction set(l), and compressed instructions(C). It also includes configuration options
for multiplication instruction set(M) and a reduced number of registers(E). [22]

System control subsystem’s primary use case is to boot the SoC. Because of the limited
use cases, Pulpissimo was stripped from excess peripherals to reduce the area and com-
plexity of the subsystem. Boot options include SDIO and SPI interfaces to load a software
image off an SD card, and JTAG to load the image through an external debugger

MPC

MPC is also based on the Pulpissimo microcontroller architecture by Pulp-platform. How-
ever, this subsystem is using a single RI5CY core. RI5CY core includes a 4-stage pipeline
and support for the following extensions: base integer instruction set(l), compressed in-
structions(C), multiplication instruction set(M), and configuration option for single-precision
floating-point instruction set. [22]

18

MPC is based on Pulpissimo with minimal changes. FLL clock generation is removed
and a PLL is used instead for high-speed clock generation. All the interfaces remain as
original. Sysctrl handles the boot procedure which includes loading a SW image to MPCs
SRAM thus bootROM was removed.

HPC

High-performance computing subsystem HPC is based on the Ariane[14] cores. It utilizes
two cores, a low-performance and a high-performance one. Ariane is based on RISC-V
architecture and includes a 6-stage pipeline and implements I, M, A, and C extensions.

In addition to the cores, the subsystem includes an L2 cache, standard RISC-V peripher-
als, and a boot RAM. The L2 cache is 256kB in size and implements an 8-way functionality
with 256b write-back. The peripherals include a timer, JTAG debug module, core local in-
terruptor (CLINT), and platform-level interrupt controller (PLIC). The boot RAM is a small
32kB SRAM to be used to run simple software. As the main memory, HPC is designed to
use external memory through C2C which is described next.

c2C

Chip-to-chip subsystem provides a data interface for off-chip communication. It has an
AXl interface and it is used as a memory-mapped region for easy access. C2C converts
AXIl into a packet-based protocol that is capable of high-performance data transfer. Doing
so decreases the number of signals needed significantly from the AXI protocol. There is
no dependency between clock domains across the interface.

C2C includes multiple configuration options. Those include AXI data width configuration,
physical interface width configuration, and configurable internal buffers. It supports the
full range of AXI burst length, incremental and fixed bursts, and supports simultaneous
requests.

Top level peripherals

Top level peripherals subsystem provides access to certain functionality for multiple sub-
systems. This functionality includes configuration registers and top level interrupts.

The configuration registers are EMA control registers for physical memory configuration,
C2C address re-map registers, and pad configuration registers for Ethernet, C2C, and
Sysctrl pads. Top level interrupt functionality contains top level interrupt routing and con-
figurable SW interrupts to trigger interrupts between subsystems to allow simple commu-
nication in an efficient way.

19

NVDLA (Nvidia deep learning accelerator)

Al subsystem provides the capability of Al processing for different kinds of applications
e.g. machine vision through MPC’s camera interface. The subsystem houses the NVDLA
which is an open-source Al accelerator, developed by NVIDIA. The main features of the
accelerator are that it is scalable, configurable and it is designed to simplify integration
[4]-

Ethernet

The Ethernet subsystem provides ethernet connectivity for the Ballast SoC. It includes
tri-mode ethernet MAC, based on IEEE802.3ab specification, and a DMA to transfer data
between the subsystem AXI interface and the MAC. Tri-mode MAC supports 10Mbps,
100Mbps, and 1Gbps transfer speeds and offers full-duplex in 1Gbps mode.

AamuDSP subsystem

AamuDSP subsystem is a co-processor designed for Ballast. It houses a custom VLIW
DSP core which is capable on many types of processing e.g. demosaic-ing, denoising,
color mapping / white balancing, gamut mapping, tone map- ping and audio processing.
On the top level, it communicates through AXI with the rest of the chip. [11]

ICN subsystem

Interconnect subsystem enables high-speed communication within the SoC. It's based
on high-speed AXI protocol and built from open-source components provided by Pulp-
platform. The key components are AXI crossbars, AXI converters, and clock-domain-
crossing components.

ICN subsystem hierarchy has a top level wrapper that instantiates three AXI crossbars.
High-performance crossbar, low-performance crossbar, and configuration crossbar. Hav-
ing a lot of ports on single crossbar increases die area and consumes more power. The
multi-crossbar structure is used to optimize it and also makes it possible to have different
data-width AXI interfaces within the SoC. The high-performance crossbar uses a 64-bit
data width while the other two are 32-bit. Two AXI converters make it possible to connect
low-performance and high-performance crossbars together. One AXI upsizer and one
downsizer are used. [5]

20

6. BALLAST VERIFICATION STRATEGY

This chapter goes through the verification strategy used in Ballast SoC verification.

6.1 Verification overview

Schedule and resources were taken into account when planning the verification. Many of
the components and subsystems are open-source and some were already been in use
in other projects. This means the majority of the IPs were already verified thus reducing
the amount of verification work in this project. This enabled us to focus on the critical
functionality instead of verifying everything. Verification progress is tracked by test plan
coverage and achieving high coverage on other areas is not the goal. The difficulty of this
approach is to define what should be verified. If high coverage is not the goal, it means
some parts of the design will be left at least partly unverified in this project. It is unknown
how thoroughly the re-used components have been verified previously. However, going
for 100% coverage in such a complex system would require a lot of resources and time.
The critical functionality is determined with the designers, the people responsible for the
area in question, and the verification team. Based on this collaboration, the verification
plans are constructed which are covered in the upcoming sections.

During the verification planning, a few critical areas were recognized. These key areas
include top level, interconnect, and boot. Each of these areas is critical for the SoC to be
functional. The strategy for each area is described in the upcoming sections.

6.2 Subsystems

The verification strategy for subsystems varies from subsystem to subsystem but the
principle is the same. In general, the subsystems that were acquired from open-source
as a whole came with a testbench and possibly test cases to do our own verification.
In addition, such subsystems are expected to be verified to a certain degree. Despite
that, all subsystems are verified in the project to some extent. For subsystems that are
designed in the project or need a testbench, a suitable approach is taken into creating
one. A general subsystem testbench using open-source UVM components is created to
have a reusable testbench environment.

21

Subsystem verification effort is concentrated on critical areas such as areas that were
modified after branching an open-source design. As an example, Sysctrl and MPC are
based on the open-source Pulpissimo architecture but modifications were made to suit
them better for our needs. During verification planning, those modifications are taken into
account, and implementation is done accordingly.

6.3 Top level

The main focus in top level verification is to verify that these subsystems can access all
parts of the system as specified and that the subsystems can work together. In Ballast,
there are no limitations in access between subsystems and all subsystems with the capa-
bility to initiate write and read operations should be able to access all parts of the design.
This includes subsystems with for example a CPU or a DMA. Accessing every possible
part of the address map is not feasible within the project schedule, the strategy focuses
on accessing all the memories in different subsystems and address boundaries of reg-
ister locations. The top level environment is based on a SystemVerilog testbench which
provides the needed components to interface the system and to initialize it. Top testbench
structure is illustrated in figure [6.1]

When planning top level verification, the general rule is that at this point standalone func-
tionality of subsystems should be verified. This enables us to focus only on subsystem
integration and use cases on the top level. Top level verification relies completely on HW-
SW co-simulation, which means that the subsystems capable of running software are
used to exercise the design. In Ballast, those subsystems are Sysctrl, MPC, and HPC.

In addition, the top level adds the subsystem wrappers. The wrappers are not included
in standalone subsystem verification. This introduces some risk to the top level which is
taken into account during top level strategy planning. The connectivity and functionality of
the wrapper components needs to be covered by the top level verification. Second thing
to take into account in top level verification is that for some of the subsystems the AXI
interfaces were not covered in subsystem verification and they will also rely completely
on top level verification

Interconnect subsystem can be seen as a part of the top level. In theory, the top level
integration tests and use cases would also cover the interconnect functionality. The is-
sue relying only on top level verification in this case is that exercising the interconnect in
top level can be fairly difficult because of the black-boxed nature of the top level. Also
the stimulus applied to the interconnect is limited by the features of the processor sub-
systems. To solve this issue, a separate testbench is created for interconnect to verify it
thoroughly. That way top level verification doesn’t need to worry about interconnect func-
tionality and can focus on integration verification alone. This is covered in the verification
implementation section.

22

Top level
testbench JTAG Clock and
reset
A
\ 4 \ 4
B
Monitor 3 /0
and
control
Al TLP
Ballast
Figure 6.1. Simplified image of top level testbench
6.4 Boot

The boot is considered to be one of the most critical areas in verification. The goal of the
boot verification is to guarantee the functionality of every possible boot option. In addition
to guarantee that one failing option doesn’t compromise others. Which is needed to have
a resilient boot process. [18]

The methods for verifying the boot process are RTL simulation, gate level simulation,
and FPGA prototyping. All the available methods were used to verify the functionality
thoroughly. Actual implementation using these methods is described in chapter|[7]

The autonomous boot process relies on the software executed from the bootROM. Being
read-only-memory, the software binary is set during fabrication and can’t be altered after-
ward. Thus it has to be verified to a point where we are sure it doesn’t contain any bugs.
Autonomous boot is one of the core features planned for the SoC. The verification steps
go according to the following list:

1. RTL simulation. The verification process starts by using RTL simulation to get
maximum visibility to the software execution. Most bugs needs to be get rid of
during this step to make prototyping more fluid which is the next step. Testbench
contains an SD card VIP with SDIO interface to emulate SD card behavior.

23

2. FPGA prototyping. With the use of an FPGA, the testing becomes much faster
but loses a lot of the visibility that RTL simulation offers. Most important gain here
is the moving to use the actual physical interfaces that are in use on the ASIC.
Most importantly SD card contains software loaded by the bootROM and external
debugger which provides access to the software execution.

3. Gate level simulation. GLS with annonated delays provides the most accurate plat-
form simulating the ASIC. However simulating the boot in GLS takes a lot of time,
thus it's used as a final step to check timing violations in the boot process. The
downside being the loss of physical interfaces gained in prototyping,

SDIO boot is the primary autonomous boot method and is verified most thoroughly. The
direct alternative is SPI boot which achieves the same results. SPIboot verification suffers
from the lack of a simulation model emulating an SD card with an SPI interface. This
leaves FPGA prototyping as the only possible verification method for it.

The third autonomous boot option is the external boot which can be entered by driving
an external pin which affects the boot location address in hardware. The external boot
went through all the above verification steps. This boot mode relies completely on hard-
ware implementation. This means it is accessible even if bootROM is corrupted in the
fabrication.

In addition to autonomous boot options, there is the JTAG interface to provide debugging
capability while also offering the option to boot the SoC. JTAG boot is thoroughly covered
in all of the boot verification steps. Gaining a high level of confidence in the process. In
the simulation environment, there is the possibility to emulate the JTAG access. During
prototyping an external debugger is used. [18]

6.5 \Verification plans

Verification plans were created to plan the verification process beforehand and to track
the verification progress. Verification plans were created for each subsystem and one
for top level. The basic structure of the plans include connectivity tests, integration tests,
use cases, and performance tests. An example verification plan structure is shown in
the following table The table has columns that give information about a test case
name, description, and status. Status can be for example not started, failing, or passing.
The FPGA column indicates if a test case is planned to be re-used in FPGA prototyping
phase. The target milestone describes a deadline for each test case, indicating on which
milestone the test case should be implemented and passing.

Connectivity tests are the simplest possible test cases to verify connectivity between IP
blocks and connectivity to available memories, in practice sanity checks for connections.
On the subsystem level that includes connectivity to possible peripherals and memories

24

Name Description Status Fpga Target mile-
yes/no stone
Connectivity tests Passing No HW1
Register tests Access all registers | Passing No HW1
Memory tests Access all memories | Passing No HW1
Integration tests Passing Yes HW2
Use cases Passing No HW4
Performance tests Passing Yes HW5

Table 6.1. Verification plan example

inside the subsystem. On top level it includes connections between subsystems, for ex-
ample accessing registers and memories through the top level interconnect. The purpose
of these tests is to guarantee that the most basic functionality is working before more com-
plicated test cases. By making sure the basic operations work first, we create a reliable
platform for further test cases. It saves time by having simpler tests to debug in a case
where some connections are not functional

Integration test cases are the next step after the connectivity tests are passing. Inte-
gration test cases are used to test top level functionality. Verifying that blocks that are
supposed to work together, do really work. On subsystem level, an example could be a
CPU subsystem using it's peripheral to verify peripheral connection out of top level. On
top level an example could be any subsystem to access off-chip through C2C interface or
managing external interrupts using Top level peripherals subsystem.

Use cases are again one step towards more complexity and shall be tested after all the
related integration tests are passing. Use cases provide information about system func-
tionality on a larger scale. It is up to the people planning the verification to decide, which
tests are considered as integration tests and which are use case tests. In practice, the
test can be defined as a use case if it’s significantly more complex than other integration
test cases. An example of a use case test could be utilizing Sysctrl to initialize Al sub-
system to perform processing which would then output the processed data through C2C
interface off-chip.

In addition to the test types above, there are performance tests. The purpose is not the
test the functionality anymore, but to evaluate the performance. After the performance
is measured, for example, how many transactions C2C can pass through in a certain
amount of time which gives information if the required bandwidth is achieved, usually
measured in Gbits/s. The results can be evaluated based on the requirements and spec-
ifications. The tests will guarantee that the requirements are met.

25

Standalone
verification SW

Top level verification

SW

Post-silicon validation
/ Sample testing

Figure 6.2. Verification re-use

6.6 Verification re-use

Ballast SoC includes three RISC-V processor subsystems. They are verified using hw/sw
co-simulation with RTL simulation. While running software in RTL simulation is slow, a
significant amount of time can be saved by re-using the software test cases from stan-
dalone level to top level.

In addition to re-using the test bottom-up, some of the tests can also be used between the
processor subsystems with none to minimal modifications. Sysctrl and MPC are based
on the same platform and most of the peripherals are identical. This enables to re-use
the same peripheral test cases between these systems. In addition to re-using sub-
sytem level test cases between the subsystems, also some of top level test cases can
be re-used between them. For example, top level connectivity tests where the processor
subsystems access memories and registers of the whole system. The tests only need
minimal changes to addressing and possible data width changes to run similar tests on
each processor subsystem. Re-use illustration in figure 6.2}

Another upside of the software-based test cases is to be able to re-use them again in
sample testing. The test cases can be run on the ASIC to verify the functionality after
fabrication. This strategy saves a lot of time during the sample testing activity.

26

6.7 Methods used

This section defines the methods used to verify the SoC. The methods are behavioral
RTL simulation, GLS, and FPGA prototyping.

6.7.1 RTL simulation

RTL simulation is the main method for the Ballast SoC verification. With RTL simulation, a
detailed analysis of the internal implementation is made possible. This allows us to verify
the functionality and debug the design with full transparency.

RTL simulation is used for the entire design cycle from start of the design until the tapeout.
It is used to verify the functionality of the design and it is the main way of debugging in
fault cases.The simulator provides a GUI to check the status of each signal in the design.

Downsides of the RTL simulation is that it doesn’t take account the physical delays in the
design which is why GLS is used and that is described in the next section. RTL simulation
can also be very slow as the design complexity increases which makes it not optimal for
example software development [3]. However in this project it is the main platform for
testing bare metal software.

In many cases RTL simulation relies on simulation models that are not designed to be
synthesised. These include most memories and mixed-signal designs. These models
are used to model the functionality and in later stages of the cycle, they are replaced by
the components that will be synthesised.

6.7.2 Gate level simulation

Gate level simulation relies on a synthesized netlist provided by the physical design team.
It includes all the final synthesized components used in the design and RTL simulation
models are replaced.

Gate level simulation is run with annotated delays that include information about flip-flop
set-up and hold time requirements. It provides information if the timing is met or produces
timing violations that need to be fixed before forwarding the design for fabrication.

GLS is incredibly slow compared to RTL simulation and it is not suitable for testing the full
functionality of the system. Common areas to cover in GLS are memory functionality and
other critical areas. On Ballast, the GLS is used to verify only the critical functionality for
example the boot process.

27

6.7.3 FPGA prototyping

FPGA prototyping is planned to be used in critical areas where there is significant benefit
from doing it. In this project, these areas include the boot process and interfacing external
hardware.

Sysctrl is planned to be prototyped mainly to cover the boot process. This is described
earlier in the boot section

MPC is planned to be prototyped to cover the camera interface it provides. It is done
by connecting an external camera to the interface. Then, the software is run on MPC to
utilize the camera interface to control an external camera module.

C2C is planned to be verified on FPGA to cover the physical interface. For example
two FPGAs with both having a C2C block to communicate across the interface between
FPGAs.

28

7. BALLAST VERIFICATION IMPLEMENTATION

This chapter presents how the verification implementation was done.

7.1 Subsystem level

Overview of how subsystems were verified.

7.1.1 Processor subsystems

Ballast includes Sysctrl, MPC, and HPC as the processor subsystems. The verification
process for each processor system is similar. They use pure SV (SystemVerilog) test-
benches with the functionality to load software test cases into the design. By running
different software, different parts of the design can be covered. A generic structure of a
processor subsystem testbench can be seen in figure[7.1]

Sysctrl and MPC use identical testbench structures. The testbench generates a clock for
the design and de-asserts the reset. JTAG is used to control the core execution and it
also loads the software binary into the SRAM memory from which the core executes the
software. The JTAG flow consists of halting the core, writing the boot address where the
core starts the software execution, loading the software into the design, and resuming
the core. After the JTAG interfacing is done, the testbench waits for CPU execution to
end which can be seen via the JTAG interface. After the end of execution is seen, the
simulation is stopped. HPC testbench differs in the software loading process. Instead of
JTAG, the memory is preloaded before the simulation starts. The benefit of this approach
is that it is faster than loading the binary using JTAG. The downside is that this approach
can’t be used with real ASIC and doesn’t cover JTAG functionality which can be used with
ASIC.

As described above, the verification is implemented through software. Software test
cases are implemented with C programming language. The implementation of the test
cases is defined by the verification plan. For each feature in the verification plan, a soft-
ware test case is created and that’s how the verification was completed on the subsystem
level.

29

Processor
subsystem
TE
JTAG Clock and_reset
generation
F l l
v
Debug module Processor
subsystem
o]
Peripherals
Inteconnect
SRAM
=_——= UART
= — = GPIO
Corel Core1

Figure 7.1. Processor subsystem testbench block diagram

7.1.2 Communication subsystems

Ballast includes three subsystems with the main purpose of communicating outside the
SoC or between subsystems. These are ICN, C2C, and Ethernet. Verification of these
subsystems is implemented by thoroughly covering different AXI transaction types that
they support. For that purpose, an open-source UVM environment was used. TVIP-AXI
includes AXI master and slave UVM agents with very detailed configurability [10]. Figure
illustrates the structure of this UVM testbench.

The implementation relies on random constrained verification, which randomizes the AXI
transactions fed by the master agent. By randomization, different types of transactions
can be verified with minimal configuration which leads to thorough coverage. On the
other side of the design is the AXI slave agent which is responsible for capturing the
transaction and saving the data of write transactions to an internal memory of the agent.

30

Subsystem Verification Testbench
(Top level)

Based on https://github.com/taichi-ishitani/tvip-axi

Subsystem with
AXI4 slave interface

tvip_axi_sample_configuration

tvip_axi_base_sequence

Figure 7.2. Subsystem testbench block diagram

The memory provides the ability to read the data afterward with read transactions to
provide bidirectional data flow. Both agents include a monitor which is responsible for
capturing the transaction from the interface.

The transactions from both agents are passed to a scoreboard which is responsible for
correctness checking. For a write transaction, the transaction is first captured when leav-
ing the master agent and then captured again arriving to the slave agent. The scoreboard
receives both transaction items and compares the payloads. For read transactions, the
functionality is a bit more complicated since the read transaction from the master agent
doesn’t contain any data. Instead, the read transaction is used to indicate the slave agent
to send data to the master. To verify the read transaction’s correctness, a memory struc-
ture was created in the scoreboard. When a write transaction is received by the score-
board, it saves the payload to the memory structure. Afterward, when a read transaction
is captured with the read data, the payload is compared against the memory structure to
verify that the same data written before is now read correctly.

C2C only required one master agent and one slave agent. Interconnect environment
required one agent per AXI port, which led to several master and slave agents. Because
UVM scales very well, adding multiple agents was a quite simple process. However using
multiple agents at the same time made the situation more difficult, when multiple agents
were sending transactions at the same time and in addition containing different sized ports
made comparing one transaction to another impossible. The issue was solved by adding

31

more memory structures to the scoreboard. The data of the transactions was saved to
the memory structures thus negating the need to compare transactions to each other, at
the end of the simulation the memory structures were compared to verify that all the data
matches.

The ethernet subsystem testbench is based on the same UVM environment but the struc-
ture is different. The subsystem communicates with the SoC using AXI interfaces, both a
master and a slave. On the other side ethernet subsystem has a reduced gigabit media-
independent interface (RGMII) interface. RGMII interface is looped back by connecting
RGMII tx to RGMII rx. With the loopback, it is possible to verify both transmit and receive
functionality just from the AXI interfaces. In the testbench environment data is driven
through the AXI master interface and after loopback, the data returns through the AXI
slave interface. Data integrity is verified by comparing transmitted data against received.

7.1.3 Processing subsystems

Ballast includes two subsystems whose main purpose is processing data. These subsys-
tems are Al and DSP. The main part of Al is the NVDLA core from Nvidia. It is verified
on IP level already which means only top level integration verification is performed. Ver-
ification for DPS was performed on the subsystem level and integration verification on
top level. DSP is based on TTA core which has been verified before this project which
reduces the amount of verification work.

Al subsystem top level verification utilizes Sysctrl and C2C. In addition to the basic inte-
gration tests mentioned in general top level verification, Al functionality is verified on top
level with a few different use cases. In these use cases Sysctrl is used to initialize the
SoC by enabling Al, ICN, and C2C. After enabling clocks and resets, Sysctrl configures
Al to perform actions needed for the use case. NVDLA then reads the input data from
a memory behind the C2C interface and starts processing it. After the processing is fin-
ished which is indicated by a status register or a system level interrupt, the results are
checked against reference data.

DSP uses a VHDL testbench for standalone verification in two different configurations. In
the first configuration, a program can be loaded into the DSP. After processing, results are
read and verified. The second configuration includes 2 DPSs in the same testbench. It is
used to verify DSP’s AXI read and write functionality. The DSP verification environment
includes a test program generator which is used to verify the DSP core functionality such
as different operations. On top level the test case used in the first testbench configuration
is replicated. Only this time MPC is used to load a program to DSP and it also reads the
results to verify the functionality. In addition, basic connectivity tests are executed on top
level.

32

7.2 Top level

As described earlier, by this point all the subsystems should be verified and fully func-
tional, thus top level verification focuses on integration verification by testing the connec-
tions and control between subsystems. The verification process is similar to processor
subsystems’ standalone verification. Top level testbench has the functionality to use each
processor subsystem separately or all together. At least one processor subsystem needs
to be active during the simulation. That is because non-processor subsystems rely on
initialization to be done by one of the processor subsystems. In addition, Sysctrl is al-
ways active when the SoC is powered on and reset is lifted and that is needed because it
contains the registers to control clocks and resets for all other subsystems. Control from
Sysctrl can be done either by software running on Sysctrl or configuring the registers
through JTAG. This approach is used for integration tests but also for use case tests. Use
cases especially try to use Sysctrl booting as it is the main way to boot the SoC.

Top level verification also covers the TLP subsystem. The subsystem was designed and
developed specifically for Ballast. Thus all verification is also completed within the project.
TLP is only verified on top level because of the relatively simple functionality that gets cov-
ered by running integration test cases on top level. This includes testing all the registers,
C2C configuration, and top level interrupt routing. In addition, a formal sanity test case is
to check registers and routing.

7.3 FPGA implementation

FPGA prototyping was implemented in a few phases. The reason for this was to be able
to cover as much as possible in the time available. Having the whole SoC design on the
FPGA at once wasn’t possible due to the time-consuming nature of the work. The design
wasn’t designed to be FPGA friendly, which led to having to re-design some parts for
those to work on the FPGA itself. Prototyping was started by having standalone subsys-
tems on the FPGA. The first ones were Sysctrl and MPC. In later phases multiple sub-
systems were implemented on the FPGA at the same time, making cross-communication
possible.

In total three different FPGA boards were used for the prototyping. The first one was
PYNQ-Z1 the smallest of the three. The work was started on it due to the availability. The
limitation of the PYNQ board was that it had area limitations and a limited amount of 10,
thus it could only fit one subsystem at once. Later the project acquired two other boards,
ZCU104 and VCU118 from Xilinx. ZCU104 makes it possible to fit larger standalone
designs and VCU118 potentially fits the entire system.

33

8. BALLAST VERIFICATION RESULTS

This chapter presents the results of the Ballast verification process.

8.1 Coverage results

Coverage results collected during the project are test plan coverage and code coverage
summaries. The test plan is coverage collected from verification plans of each subsys-
tem and top level, presenting how many total test cases were planned and how many are
passing, failing, or not implemented. Code coverage is automatically collected by simu-
lation tools and can be extracted into HTML report format. Snippets from those HTML
reports containing coverage summaries are presented in upcoming sections.

As explained in the verification strategy section, only code coverage is collected because
functional coverage groups were not used during the verification process. Thus the sum-
maries only include code coverage. Coverage summaries presented below have the
following code coverage types enabled:

+ Statements: statements covered
» Branches: branch options covered. For example if-else structure
» FEC: focused expression coverage

» Toggles: signal transition coverage from 0->1 and 1->0

FSM: state machine coverage. Includes states executed and state transitions

In a typical industrial project, the code coverage can be used as a direct measure of the
current verification status. It is common to aim for 100% code coverage, especially on
IP level. Designs are very large and at the start, the coverage data includes areas that
might not be interesting from the coverage perspective. Those can be for example blocks
that cannot be exercised during simulation. Coverage exclusion is used to get rid of such
areas to make coverage statistics more accurate. As mentioned in the strategy section,
coverage was not used as a measurement of the verification process in this project. Thus
coverage exclusion was not done either which makes the coverage scores less accurate.

34

8.1.1 Subsystem code coverage

Coverage results for each subsystem are extracted from the simulation tools. Coverage
report summaries are presented in figures and A coverage
summary includes different coverage types as rows. The bins column indicates the num-
ber of targets for each coverage type. Hits and misses columns indicate how many of
those targets were hit and missed. The weight column decides how much each coverage
type affects the total coverage. Finally, the hit and coverage columns show the percent-
ages of how large a portion of the coverage targets were hit.

Coverage reports for different subsystems are not directly comparable. The reason is
that the results are unique for each subsystem. However, one indication of the design
size can be seen in the number of bins in the bins column of the coverage summaries.
Bigger design results in more bins. Bins directly affect the coverage percentage.

As an example, we can try to compare Ethernet and C2C coverage-wise. The total cover-
age percentage for Ethernet is 79,66% and for C2C it is 42.79%. Both subsystems were
thoroughly tested. The main reason for ethernet having a much higher coverage score is
that the design is relatively simple and small. As mentioned above, the size can be seen
in the number of bins. The main reasons why the coverage percentage is relatively low
or high compared to other subsystems are lack of coverage exclusion, size of the design,
and thoroughness of the verification for a specific subsystem. All these factors affect the
final percentage.

Total Coverage: 24 98%| 53.32%
Coverage Type <« Bins « Hits < Mlisses = Weight « % Hit « Coverage =«
Statements 20277 22444 6833 1| 76.66% 76.66%
Branches 15479 10579 4900 1] 6834% | 68.34%
FEC Conditions 3081 742 2339 1| 24.08% 24.08%
Toggles 485131| 99247 385884 1| 2043% 20.45%
FSMs T84 305 479 1)) 3890% | 44.71%
States 249 151 08 1] 60.64% 60.64%
Transitions 333 154 381 1| 28.78%| 28.78%
Assertions 63 34 9 1| 85.71% | 85.71%

Figure 8.1. Sysctrl coverage report summary

Total Coverage:

Coverage Type <« Bins <« Hits <« Misses <« Weight « % Hit «

Statements
Branches
FEC Conditions
Toggles
FSMs
States
Transitions

Aszsertions

Total Coverage:

Coverage Type « Bins «

Statements
Branches
FEC Conditions
Toggles
FSMs

States

Transitions

Total Coverage:

61653| 48809
47022 33386

4639 923
735202(145103
1173 324
389 171
T84 153
253 126

12844
13636
3716
590099
849
218
631
127

Figure 8.2. MPC coverage report summary

435932 216601
235046 101599

3603 1180
1870349 408123
8413 735
339 155
8074 580

219331
133447
2423
1462226
7678
184
7494

Figure 8.3. HPC coverage report summary

Hits « Misses « Weight « % Hit « Coverage «

Coverage Type « Bins « Hits « Misses « Weight « % Hit « Coverage «

Statements

Branches

FEC Expressions
FEC Conditions

Toggles
FSMs
States

Transitions

2083 1871
1455 1217
594 568
573 359
12992 10239
296 182
96 81
200 101

212
238
26
214
2753
114
15
99

26.90%| 45.22%
Coverage

1) 79.16%| 79.16%
1) 71.00% 71.00%
1/ 19.89%| 19.89%
1] 19.73%| 19.73%
1) 27.62%| 31.73%
1] 43.93%| 43.95%
1] 1951%| 19.51%
1] 49.80%| 49.80%
28.52% 34.78%

1 49.68% 49.68%
1 43.22% 43.22%
1 32.75% 32.75%
1 21.82% 21.82%
1 8.73% 26.43%
1 45.72% 45.72%
1 7.18% 7.18%
80.23% 79.66%

1 89.82% 89.82%
1 83.64% 83.64%
1 95.62% 95.62%
1 62.65% 62.65%
1 78.81% 78.81%
1 61.48% 67.43%
1 84.37% 84.37%
1 50.50% 50.530%

Figure 8.4. Ethernet coverage report summary

Total Coverage:

Coverage Type < Bins <« Hits <« Misses < Weight < % Hit «

Directives
Statements
Branches
FEC Expressions
FEC Conditions
Toggles
FSMs

States

Transitions

Total Coverage:

16 6
9805 7332
4920 2828

210 63
1402 153
69864 25462
716 342
260 178
456 164

10

292

[S S T S S ==

Figure 8.5. C2C coverage report summary

36

Coverage Type « Bins « Hits « Misses « Weight « % Hit « Coverage «

Statements
Branches
FEC Conditions
Toggles
FSMs

States

Transitions

100110 50399
40219 21114

1442 039
552496/ 371054
458 61
142 41
316 20

49711
19105
903
181442
397
101
296

1

1
1
1
1
1
1

4164% 42.79%
Coverage <«

37.50% 37.50%
T498% 74.98%
5747% 57.47%
30.00% 30.00%
1091% 10.91%
36.44% 36.44%
4776% 52.21%
68.46% 68.46%
3596% 35.96%
63.79%| 44.99%
50.34% | 50.34%
52.49% | 52.49%
37.37% | 37.37%
67.15% 67.13%
13.31%| 17.60%
28.87%| 28.87%

6.32% | 6.32%

Figure 8.6. ICN coverage report summary

8.1.2 Top level code coverage

37

Coverage results of the top level include all Ballast top level test cases. Figure has

hierarchical coverage results for the Ballast top wrapper. Figure has hierarchical

coverage results and figure coverage summary for Ballast top level.

Hierarchical coverage shows the coverage score for each block under the current level. It

can be useful to easily spot areas that are lacking compared to others. If a low score area

is seen, it should be investigated if there is a gap in verification or if that area should be

excluded from the results using the coverage exclusion mentioned earlier.

Design Scope «
ballast top wrapper
sdModelTB0O
mdioModelTBO
i ballast top
ic2c test rx
i fs handler

i fs handler mpc

Hits % « Coverage % «
29.39% 38.49%
14.60% 18.02%
65.01% 82.26%
29.59% 38.18%
33.60% 41.04%
13.77% 33.55%
13.85% 33.57%

Figure 8.7. Ballast top wrapper hierarchical coverage

Scope « TOTAL « Statement « Branch « FEC Condition « Toggle « FSM State « FSM Trans «
TOTAL 38.18 54.49 47.70 29.87 23.09 48.43 23.05
i ballast top 39.89 - 39.89 |- -
i pulpissimo_ss_wrapper 42.96 78.76 68.77 15.34 19.06 43.56 22.20
i hpc_ss wrapper 29.35 49.08 40.82 16.88 12,16 39.82 15.80
itta coprocessor ss wrapper 66.69 81.25 75.50 33.28 33.90 100.00 75.00
ieth AXI top wrapper 39.02 48.60 43.08 20.20 23.02 73.92 44.44
invdla ss wrapper 65.65 89.07 79.83 47.94 38.19 95.23 51.21
i_cZc_ss_wrapper 48.29 73.36 57.80 16.32 37.94 67.69 40.35
i top peripheral ss wrapper 32.81 46.79 41.40 43.29 20.09 25.00 0.00
i_sysctrlcpuss_wrapper 39.13 61.19 52.65 17.78 22.97 53.78 28.34
i ballast top interconnect wrapper| 36.48 51.99 14.92 36.18 34.02 26.76 3.79

Figure 8.8. Ballast top level hierarchical coverage

Total Coverage:

Coverage Type « Bins «

Statements
Branches
FEC Conditions
Toggles
FSMs

States

Transitions

29.59%

819648 446694 372954 1 54.49%
461647 220219 241428 1 47.70%
24187 7225 16962 1 29.87%
4432519 1023707 3408812 1 23.09%
4412 1373 3039 1 31.11%
1402 679 723 1 48.43%
3010 694 2316 1 23.05%

Figure 8.9. Ballast top level coverage summary

8.1.3 Test plan coverage

38.18%

34.49%
47.70%
29.87%
23.09%
35.74%
48.43%
23.03%

38

Hits « Misses « Weight « % Hit « Coverage «

Verification plan coverage is collected from subsystem verification plans. Data contains

the number of total test cases and how many of those are passing. From these values,

the pass rate can be calculated. The total number of tests minus passing test cases

leaves us with the number of test cases that are not passing. These tests are either

failing or planned but not implemented due to various reasons. Subsystem standalone
test statistics can be seen in table Top level statistics are shown in table

Subsystem Total planned Passing Pass rate

Sysctrl 31 30 96,8 %
MPC 38 36 94,7 %
HPC 98 81 82,7 %
C2C 7 7 100,0 %
ETH 14 12 85,7 %
DSP 12 12 100,0 %
TLP 7 7 100,0 %
ICN 3 3 100,0 %
Al N/A

Total: 210 188 89,5 %

Table 8.1. Subsystem verification plan coverage

Total planned Passing Pass rate
Top level 47 31 66,6 %

Table 8.2. Top level verification plan coverage

39

8.2 Recap of different methods

A short recap of what was gained from different verification methods.

8.2.1 RTL simulation

RTL verification was the main tool for verification and debugging. Most of the verification
work was done in RTL simulation. That is because verification with RTL simulation was
possible to start right at the beginning of the design process, enabling us to catch bugs
from the beginning. RTL simulation remained invaluable all the way to the tapeout.

8.2.2 FPGA

FPGA prototyping was invaluable for boot verification. It enabled verifying features that
were not possible within the used simulation environment. One of the most notable ones
is the SPI boot that was lacking a simulation model. In addition to that FPGA prototyping
also revealed faults in the RTL interfacing an SD-card in SDIO boot mode. Without notic-
ing this, the SDIO boot might not be functional. This issue was not found in the simulation
because the used simulation model was faulty as well.

8.2.3 GLS

As planned, GLS was used as the last verification step before tapeout. It provided invalu-
able information about the timing and with GLS we are able to simulate the design using
the actual synthesized blocks. No major issues were found in the areas that were verified
with GLS but still increased confidence in the design.

8.3 Bugs

As expected a lot of bugs were found during Ballast verification. That is because the
verification was already ongoing in parallel with design and the lack of maturity in the
design caused more bugs to be found.

Some bugs were tracked and some were fixed instantly. To get a clear picture of the found
bugs, tracking is very important. At the beginning of the project, an open-source project
management system Redmine[25] was used for bug tracking. It was not seen as valuable
and the use of it was later dropped. One reason is that detailed bug tracking is not as
important in an academic project as it is for an industrial project. As the organization is
much larger scale, bug tracking is more important at a higher level. The reason is that bug
tracking can be used as an important measurement at the higher level of the organization
structure.

40

Bugs fixed close to tapeout can be observed from Git commit history, for example analyz-
ing the final weeks before tapeout. Some examples of the findings are listed in the table
8.3 The commit message column has the actual commit message used to commit the
change to git. The bug column gives a short description of the bug. The method column
shows what method what used to discover the bug.

Table 8.3. Bugs found during verification

Commit message Bug Method

Fixed for higher number of | Missing pad configuration | RTL simulation
pads for added pads

Fixed x assign reachable Value X is assigned in Backend tools
issue in dbg lint module Sysctrl RTL

Fixed reg-IF and SD card | SD-card was accessed FPGA
model to use block using byte addresses
addressing like a real SD instead of block addresses

card

8.4 Sample testing

When the physical chips arrive from fabrication, the sample testing is started. Before that,
a wake-up plan is created to make the chip bring-up as smooth as possible. The basic
idea is to replicate the behavior observed during verification. Re-use is important here as
most of the verification test cases can be directly re-used in sample testing. Before the
actual wake-up the SoC and board it is mounted to are tested for electrical issues. The
first steps of Ballast wake-up are:

1. Testing for electrical faults
2. Connecting an external debugger to sanity check Syscirl

3. Running integration tests such as register and memory access on Sysctrl to check
accessibility to the rest of the chip

4. Checking the rest of the subsystems that can be communicated with by the external
debugger and running more integration tests

5. Running use cases

During sample testing, possible bugs are documented for further analysis. Sometimes a
documented bug can be later declared as for example electrical fault, fabrication fault, or
a bug missed by verification. Of course, in these cases, it is important to find the root
cause as soon as possible. During Ballast wake-up, it is important because many were

41

to be re-used in the second SoC-Hub chip, Tackle. Notable issues found during sample
testing, their cause, and the solution are listed in the following table [8.4]

Table 8.4. Bugs found in sample testing

Bug Cause Impact Reason

DSP memory in- | Wrong file in | High. Subsystem | GLS was not run
tegration GDS-Il tapeout not usable

Direct SDIO boot | Unknown Low. Boot mode | Unknown
executing directly
from SD-card not
functional

42

9. CONCLUSION

This thesis focused on documenting the entire verification process of the Ballast SoC.
The goal was to introduce the relevant background and present all steps of the verifica-
tion process that were completed during Ballast SoC verification. The thesis introduces
background information about SoCs in general and relevant topics about pre-silicon verifi-
cation, including the verification flow and multiple methods that can be used in verification,
and what kind of results can be extracted from the verification process. The next chap-
ter gives insight into related work and how verification is completed in similar projects.
Ballast architecture is presented in the next chapter including information about all sub-
systems. Finally, the last chapters presented Ballast verification strategy, implementation,
and results.

Ballast verification activities were ongoing for the entire design cycle. The chip itself
was considered huge relative to other previous academic projects which naturally results
in a lot of verification work. Overall the schedule to complete the verification was tight
and required careful planning. Many of the used components were re-used from open-
source projects and were considered to be verified to some degree without having a full
guarantee of the functionality. Careful planning was done to identify critical areas and
those became points of focus for the verification.

Samples arrived for sample testing during the writing of this thesis. Sample testing was
conducted and the results were good. Only one critical bug was found and it affected only
one of the 9 subsystems. After sample testing, the work kept going in terms of software
development and further testing of the chip.

43

REFERENCES

[1] Wayne Wolf Ahmed Jerraya. Multiprocessor Systems-on-Chips. The Morgan Kauf-
mann series in systems on silicon. Saint Louis: Elsevier Science, 2004. ISBN: 978-
0-08-051227-3.

[2] Janick Bergeron. Writing Testbenches using System Verilog. Boston, MA: Springer
US, 2006. I1SBN: 978-0-387-29221-2 978-0-387-31275-0. DOI: 10.1007/0- 387 -
31275-7. URL: http://link. springer.com/10.1007/0-387-31275-7 (visited on
11/30/2022).

[8] Wen Chen, Sandip Ray, Jayanta Bhadra, Magdy Abadir, and Li-C Wang. “Chal-
lenges and Trends in Modern SoC Design Verification”. In: IEEE Design & Test
34.5 (Oct. 2017). Conference Name: |IEEE Design & Test, pp. 7—22. ISSN: 2168-
2364. DOI:110.1109/MDAT.2017.2735383.

[4] NVDLA doc. NVDLA. URL: http://nvdla.org/primer.html (visited on 10/11/2022).

[5] Aleksei Gimbitskii. “Interconnect design for the edge computing system-on-chip”.
MA thesis. Tampere university, 2022. URL: https://urn.fi/URN :NBN:fi: tuni -
202206035477.

[6] Git. What is CI/CD? 2023. URL: https://about.gitlab.com/topics/ci-cd/ (visited on
01/21/2023).

[7] OpenHW Group. CORE-V cores. 2023. URL: https://github.com/openhwgroup/
core-v-cores (visited on 02/24/2023).

[8] OpenHW Group. CORE-V Verification strategy. 2023. URL: https://docs.openhwgroup.
org/projects/core-v-verif/en/latest/ (visited on 02/10/2023).

[9] OpenHW Group. OpenHW verification planning. 2023. URL: https://github.com/
openhwgroup/core-v-verif/blob/master/docs/VerifPlans/VerificationPlanning101 .
md (visited on 02/24/2023).

[10] Taichi Ishitani. TVIP-AXI. 2022. URL: https://github.com/taichi- ishitani/tvip- axi
(visited on 12/14/2022).

[11] Multanen J. Jaaskeldinen P Hepola K. AamuDSP Ballast TTA. 2021. URL: https:
//qgitlab.tuni.fi/soc-hub/ballast/ballast_ tta/-/blob/master/doc/manual/manual. pdf
(visited on 10/11/2022).

[12] A. Jerraya, H. Tenhunen, and W. Wolf. “Guest Editors’ Introduction: Multiprocessor
Systems-on-Chips”. In: Computer 38.7 (July 2005). Conference Name: Computer,
pp. 36—40. ISSN: 1558-0814. D0OI1:{10.1109/MC.2005.231.

[138] Youn-Long Steve Lin, ed. Essential Issues in SOC Design: Designing Complex
Systems-on-Chip. Dordrecht: Springer Netherlands, 2006. ISBN: 978-1-4020-5351-

https://doi.org/10.1007/0-387-31275-7
https://doi.org/10.1007/0-387-31275-7
http://link.springer.com/10.1007/0-387-31275-7
https://doi.org/10.1109/MDAT.2017.2735383
http://nvdla.org/primer.html
https://urn.fi/URN:NBN:fi:tuni-202206035477
https://urn.fi/URN:NBN:fi:tuni-202206035477
https://about.gitlab.com/topics/ci-cd/
https://github.com/openhwgroup/core-v-cores
https://github.com/openhwgroup/core-v-cores
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/
https://github.com/openhwgroup/core-v-verif/blob/master/docs/VerifPlans/VerificationPlanning101.md
https://github.com/openhwgroup/core-v-verif/blob/master/docs/VerifPlans/VerificationPlanning101.md
https://github.com/openhwgroup/core-v-verif/blob/master/docs/VerifPlans/VerificationPlanning101.md
https://github.com/taichi-ishitani/tvip-axi
https://gitlab.tuni.fi/soc-hub/ballast/ballast_tta/-/blob/master/doc/manual/manual.pdf
https://gitlab.tuni.fi/soc-hub/ballast/ballast_tta/-/blob/master/doc/manual/manual.pdf
https://doi.org/10.1109/MC.2005.231

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

44

1 978-1-4020-5352-8. DOI: |[10.1007/1-4020-5352-5. URL: http://link.springer.com/
10.1007/1-4020-5352-5 (visited on 11/30/2022).

lowRISC. Ariane RISC-V CPU. 2019. URL: https://github.com/lowRISC/ariane
(visited on 08/08/2023).

lowRISC. Ibex: An embedded 32 bit RISC-V CPU core. 2020. URL: https://ibex-
core.readthedocs.io/en/latest/ (visited on 08/08/2023).

Ashok B. Mehta. ASIC/SoC Functional Design Verification A Comprehensive Guide
to Technologies and Methodologies. 1st ed. 2018. Cham: Springer International
Publishing, 2018. xxxi+328. ISBN: 978-3-319-59418-7. D0OI: [10.1007/978-3-319-
59418-7.

Metric Driven Design Verification. URL: https://link-springer-com.libproxy.tuni.fi/
book/10.1007/978-0-387-38152-7 (visited on 11/30/2022).

Antti Nurmi, Antti Rautakoura, Henri Lunnikivi, and Timo Hamalainen. “A Resilient
System Design to Boot a RISC-V MPSoC”. In: 25th Euromicro conference on Digital
System Design. In press. 2022.

Arto Oinonen. COMP.CE.420 System-on-Chip Verification. Course material. June
2028.

OpenTitan. OpenTitan introduction. 2023. URL: https://opentitan.org/documentation/
index.html (visited on 06/09/2023).

OpenTitan. OpenTitan verification methodology. 2023. URL: https://opentitan.org/
book /doc/contributing / dv/ methodology / index . html # documentation (visited on
06/09/2023).

PULP platform. Pulpissimo GitHub. 2022. URL: https://github.com/pulp- platform/
pulpissimo (visited on 11/18/2022).

Antti Rautakoura. Lecture slides from System Design COMP.CE.400. Feb. 2022.
Antti Rautakoura, Timo Hamalainen, Ari Kulmala, Mehdi Duman, and Mohamed
Ibrahim. “Ballast: Implementation of a Large MP-SoC on 22nm ASIC Technology”.
In: 25th Euromicro conference on Digital System Design. In press. 2022.
Redmine. Redmine wiki. 2023. URL: https://www.redmine.org/projects/redmine/wiki
(visited on 08/11/2023).

Andrea Guerrieri René Beuchat Florian Depraz. Fundamentals of System-on-Chip
Design on Arm Cortex-M Microcontrollers. Arm Education Media, 2021. ISBN: 978-
1-911531-35-7.

SoC-Hub. SoC-Hub internal documents.

System-on-a-Chip Verification. Boston: Kluwer Academic Publishers, 2002. ISBN:
978-0-7923-7279-0. bOI: 1 10.1007/b116428.. URL: |http:/link.springer.com/10.1007/
b116428| (visited on 11/30/2022).

Krishnan K Yadu and Ramesh Bhakthavatchalu. “Block Level SoC Verification Us-
ing Systemverilog”. In: 2019 3rd International conference on Electronics, Commu-
nication and Aerospace Technology (ICECA). 2019 3rd International conference

https://doi.org/10.1007/1-4020-5352-5
http://link.springer.com/10.1007/1-4020-5352-5
http://link.springer.com/10.1007/1-4020-5352-5
https://github.com/lowRISC/ariane
https://ibex-core.readthedocs.io/en/latest/
https://ibex-core.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-319-59418-7
https://doi.org/10.1007/978-3-319-59418-7
https://link-springer-com.libproxy.tuni.fi/book/10.1007/978-0-387-38152-7
https://link-springer-com.libproxy.tuni.fi/book/10.1007/978-0-387-38152-7
https://opentitan.org/documentation/index.html
https://opentitan.org/documentation/index.html
https://opentitan.org/book/doc/contributing/dv/methodology/index.html#documentation
https://opentitan.org/book/doc/contributing/dv/methodology/index.html#documentation
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpissimo
https://www.redmine.org/projects/redmine/wiki
https://doi.org/10.1007/b116428
http://link.springer.com/10.1007/b116428
http://link.springer.com/10.1007/b116428

45

on Electronics, Communication and Aerospace Technology (ICECA). June 2019,
pp. 878-887. DOI:110.1109/ICECA.2019.8821909.

https://doi.org/10.1109/ICECA.2019.8821909

	Introduction
	System-on-a-chip
	SoC overview
	Heterogeneous multi-processor SoCs

	Verification
	Verification overview
	Verifying a system-on-a-chip
	Functional verification
	Methodologies
	UVM
	FPGA prototyping
	HW-SW co-simulation
	Assertions

	Verification flow
	Bugs and debugging
	Coverage
	Git CI

	Related work
	Ballast SoC
	Overview
	Top level structure
	Subsystems

	Ballast verification strategy
	Verification overview
	Subsystems
	Top level
	Boot
	Verification plans
	Verification re-use
	Methods used
	RTL simulation
	Gate level simulation
	FPGA prototyping

	Ballast verification implementation
	Subsystem level
	Processor subsystems
	Communication subsystems
	Processing subsystems

	Top level
	FPGA implementation

	Ballast verification results
	Coverage results
	Subsystem code coverage
	Top level code coverage
	Test plan coverage

	Recap of different methods
	RTL simulation
	FPGA
	GLS

	Bugs
	Sample testing

	Conclusion
	References

