

Charles Nebo

REQUIREMENT ELICITATION TECHNIQUES IN
STUDENT PROJECTS

Faculty of Information Technology and Communication Sciences

M. Sc. Thesis
June 2023

ABSTRACT

Charles Nebo: Requirement Elicitation Techniques in Student Projects
M. Sc. Thesis
Tampere University
Master’s Degree Programme in Software Development
June 2023

The growing importance of software and modern technologies, along with the increasing

emphasis on software quality, has led to the widespread use of software products world-

wide. In response, the software engineering curriculum has been evolving to prepare stu-

dents for future careers in the software industry. This study aims to provide valuable

insights into requirement elicitation techniques in student projects and discuss the best

practices for selecting suitable techniques, specifically focusing on the challenges of elic-

iting requirements and the techniques most appropriate for student projects.

To achieve these goals, this research thoroughly examines the challenges associated with

requirements elicitation techniques in student projects through a comprehensive literature

review and case studies. Additionally, it identifies and analyses requirements elicitation

techniques that are well-suited for student projects. The data for this study is collected

from the documentation of previous student projects conducted as part of the software

project management course at Tampere University in Finland.

The findings of this research reveal four categories of challenges related to requirements

elicitation in student projects: communication-related challenges, stakeholder-related

challenges, challenges associated with developers, and factors related to the personalities

of the participants involved in the elicitation process. The study emphasises the crucial

role of effective communication among project teams in ensuring successful require-

ments elicitation. It also highlights how project teams select elicitation techniques based

on their compatibility with the employed development process, and they may even com-

bine multiple techniques depending on the nature and complexity of the project.

The contribution of this research lies in providing a comprehensive overview of the cur-

rent state of requirements elicitation techniques, including their applicability, strengths,

weaknesses, and the current state of practice. The implications of this study extend to

students and the development community, as it enhances understanding of the challenges

faced in gathering and managing requirements.

Key words and terms: requirements elicitation, techniques, student projects, case study.

The originality of this thesis has been checked using the Turnitin Originality Check service.

Contents

1 INTRODUCTION ... 1

2 SOFTWARE ENGINEERING PROJECT COURSES 4

2.1 Active Classroom Learning Method 4

2.2 Project-Based Learning 4

2.3 Challenges in Implementing the Engineering Project Courses 6

3 REQUIREMENTS ELICITATION TECHNIQUES .. 8

3.1 Conversational Methods 9

3.1.1 Interview 9

3.1.2 Questionnaires or Surveys 9

3.1.3 Brainstorming 10

3.1.4 Focus Group or Workshop 10

3.2 Observational Methods 11

3.2.1 Social Analysis or Ethnography 12

3.3 Analytic Methods 12

3.3.1 Requirements Reuse 13

3.3.2 Documentation Studies 13

3.3.3 Laddering Method 14

3.3.4 Repertory Grid 14

3.4 Synthetic Methods 16

3.4.1 Scenarios 16

3.4.2 Use Cases 17

3.4.3 Prototypes 18

3.4.4 Joint Application Development (JAD) 18

3.4.5 Contextual Inquiry 19

4 CHALLENGES IN STUDENT PROJECTS .. 24

5 CHALLENGES OF ELICITING REQUIREMENTS IN STUDENT

PROJECTS ... 26

6 CASE STUDY: ELICITING REQUIREMENTS FOR THE eTANDEM WEB

APP ... 29

6.1 Context 29

6.2 Data Collection and Analysis 29

6.3 Method and Process 30

6.4 Project Management 31

6.5 Managing and Leading Project Teams 33

6.6 Requirements Elicitation in Student Projects 34

7 RESULT ... 37

7.1 Challenges Students Faced in Eliciting Requirements. 38

7.2 Correlation with Project Reports 39

8 CONCLUSION .. 42

REFERENCES ... 44

1

1 INTRODUCTION

The introduction provides a comprehensive overview of three main themes: software en-

gineering education, student projects, and requirements engineering. Software engineer-

ing education is vital in preparing students to become successful software engineers. It

aims to equip students, typically studying computer science or information technology,

with the necessary principles, skills, and expertise (Ouhbi & Pombo, 2020). The educa-

tional background in software engineering significantly influences the success of software

engineers (Cico et al., 2021; Sivaloganathan, 2004). Modern software engineering curric-

ula have evolved to meet industry demand, incorporating various topics such as program-

ming, modelling, and requirements engineering (Cico et al., 2021; Marques et al., 2014).

Software engineering education encompasses hard and soft skills essential for a success-

ful career. Hard skills refer to the technical abilities acquired through formal education,

while soft skills encompass communication and project management abilities crucial for

the workplace (Morais et al., 2021). Recognising soft skills in software development, the

Association for Computing Machinery (ACM) and the Institute of Electrical and Elec-

tronics Engineers (IEEE) strongly recommend their integration into software engineering

education (ACM, 2013).

However, software engineering education presents challenges for both educators and stu-

dents. The abstraction involved in modelling and requirements engineering and the tech-

nical nature of requirements elicitation demands guidance and support for students

(Knobloch et al., 2018; Morais et al., 2021). Furthermore, the software industry's dynamic

nature necessitates continuous curriculum updates to align with emerging trends and tech-

nologies (Cico et al., 2021).

Student projects are vital to software engineering education, allowing students to apply

their theoretical knowledge in real-world scenarios. These projects aim to cultivate the

technical and soft skills necessary for future software engineers to thrive in industrial

settings. In recent years, there has been a shift in instructional approaches, moving away

from traditional classroom models towards project-based and problem-based learning

(Yu, 2014).

Initiatives led by associations such as the Association for Computing Machinery (ACM)

and the Institute of Electrical and Electronics Engineers (IEEE) have transformed the ed-

ucational landscape, emphasising technology, teamwork, and interactive learning experi-

ences (Yu, 2014). These initiatives promote self-paced, place-based, or remote learning

2

environments where students develop critical thinking and cognitive skills (Ouhbi &

Pombo, 2020). Through collaborative projects, students learn to work effectively in

teams, enhance their problem-solving abilities, and develop communication and project

management skills (Morais et al., 2021).

While student projects offer valuable experiential learning opportunities, they challenge

instructors and students. Instructors must invest significant time and effort in setting up

and facilitating these projects, assuming multiple roles such as mentors, evaluators, and

occasional project sponsors (Yu, 2014). On the other hand, students face challenges in

delivering functional software within specified timeframes and managing the complexi-

ties of software project management (Yu, 2014). The requirements engineering process,

in particular, has been identified as problematic in software projects, with issues such as

incomplete specifications and requirement changes posing significant hurdles (Mäkiaho

et al., 2017).

Requirements engineering is a critical process in software development projects, ensuring

that the project's objectives and stakeholder needs are effectively captured and translated

into software requirements. It involves eliciting, analysing, documenting, and managing

requirements throughout the software development lifecycle (Coughlan & Macredie,

2002; Zhang, 2007). However, the intangible nature of models, the emphasis on program-

ming skills in job interviews, and the wide range of stakeholder requirements present

challenges for the widespread adoption of requirements engineering (Jiang et al., 2008).

Scholars and practitioners recognise the importance of applying appropriate requirements

engineering practices to enhance the success of software (Glass et al., 1995; Hickey et al.,

2003). Various techniques and models have been developed to address diverse problem

domains, software project types, and stakeholder needs (Jiang et al., 2004). However, the

effective selection and application of these techniques remain a challenge.

In software engineering education, students often encounter difficulties with requirements

and programming tasks due to the abstraction involved (Knobloch et al., 2018; Quinta-

nilla Portugal et al., 2016). Requirements elicitation modelling, in particular, presents its

challenges, requiring iterations and effective communication to achieve satisfactory so-

lutions (Berre et al., 2018). Programming also poses challenges due to the complex ab-

straction required for problem interpretation and the systematic application of problem-

solving methods (Babb et al., 2014; Canedo et al., 2018).

Consequently, software engineering education prepares students for successful careers as

software engineers, encompassing hard and soft skills. Student projects offer valuable

3

experiential learning opportunities, promoting teamwork, problem-solving, and commu-

nication skills. However, these projects pose challenges for instructors and students, par-

ticularly in engineering. The effective application of requirements engineering techniques

and models remains a critical aspect of software development projects, requiring iterative

processes, effective communication, and problem-solving skills.

Software projects employ various requirements elicitation techniques, such as conversa-

tional, observational, analytic, and synthetic approaches (Zhang, 2007). Students com-

monly use methods and communication systems to gather requirements, incorporating

conversational, observational, analytical, and synthetic methods. Each technique serves

specific situations and environments, ensuring a comprehensive understanding of project

needs. Analysts must thoroughly comprehend the various tactics involved in the elicita-

tion process (Carrizo et al., 2014; Davis et al., 2006; Zhang, 2007).

This thesis aims to study requirements elicitation techniques in students’ projects and

discuss the best practice of requirements elicitation technique selection. To achieve this

goal, the thesis will tackle the following research questions:

RQ1. What are the challenges of eliciting requirements in student projects?

RQ2. What requirement elicitation method is suitable for student projects?

Research question 1 is addressed by examining various elicitation approaches and re-

quirements activities currently utilised in the requirements elicitation process. This thesis

analyses the different elicitation approaches and activities commonly employed in the

software industry, as well as opinions from researchers. Research question two aims to

identify suitable requirement techniques for student projects.

The remainder of the paper is structured as follows: Chapter 2 describes software engi-

neering project courses, while Chapter 3 describes requirements elicitation techniques.

Chapter 4 describes the challenges in student projects. Chapter 5 describes the challenges

of eliciting requirements in student projects, while Chapter 6 describes the case study

eliciting requirements for the eTandem web app. Chapter 7 presents the case study result.

Chapter 8 presents the Conclusion.

4

2 SOFTWARE ENGINEERING PROJECT COURSES

Learning to design, build, test, and manage software projects is critical to software engi-

neering courses. According to (Valencia et al., 2016), these courses often include software

requirements, design, testing, quality assurance, project management, tools, and pro-

cesses. The traditional teaching model in software engineering education emphasises pas-

sive student participation and a lecture-centred approach. Research findings indicate that

this conventional method no longer effectively supports student learning, as it relies heav-

ily on transcription, memorisation, and repetition while neglecting the development of

critical thinking and active engagement (Major et al., 2001; Morais et al., 2021). Conse-

quently, many students experience academic difficulties, leading to high failure rates. To

address these challenges, educators have embraced alternative learning approaches in-

volving students actively in the educational process (Babb et al., 2014). Common obsta-

cles faced by students in software engineering education include challenges in abstract

thinking, programming, logical reasoning, and modelling. Students desire to participate

in discussions and engage meaningfully with their peers actively.

This chapter discusses the integration of innovative engineering project courses within

software engineering education, aiming to shift the pedagogical paradigm from teacher-

centred instruction to student-centred learning. By providing an overview of different

project types in software engineering education, this chapter highlights the potential ben-

efits of this approach in fostering student engagement and facilitating meaningful learning

experiences.

2.1 Active Classroom Learning Method

Active learning strategies play a pivotal role in the proposed engineering project course.

This student-centred approach emphasises collaborative learning, critical thinking, and

problem-solving as essential components of the educational experience (Babb et al.,

2014). Through active participation in hands-on activities and teamwork, students are

empowered to develop crucial competencies required in software engineering.

2.2 Project-Based Learning

The engineering project courses adopt project-based learning as their core instructional

strategy. Project-based learning (PjBL) encourages students to use their knowledge and

abilities in real-world situations. Students gain a more robust comprehension of software

5

engineering topics through practical application of theoretical knowledge and participa-

tion in real-world problem-solving activities (Morais et al., 2021).

The PjBL strongly emphasises practical, real-world problem-solving (Valencia et al.,

2016). In PjBL, students take on various roles necessary for completing a project, working

collaboratively in teams to solve the problem from inception to conclusion. Project-based

learning aims to empower students with a sense of control over their education and equip

them with the skills required for success in the contemporary workplace. Students may

collaborate or work individually depending on the nature of the assignment. According

to Morais et al. (2021), the primary aims of project-based learning are to support students

in developing flexible knowledge, practical problem-solving skills, educational and col-

laborative talents, and intrinsic motivation.

Other studies by Marques (2015), Marques et al. (2018), and Marques et al. (2014) char-

acterise project-based learning as a systematic instructional strategy involving students

acquiring knowledge and skills through an extended inquiry process rooted in challenging

real-world situations. The process is thoughtfully designed around creating meaningful

products and engaging activities (Kokotsaki et al., 2016).

Project-based learning aligns with the established curriculum, incorporating the recom-

mended practices for software engineering projects by ACM/IEEE. The following aspects

must be considered and integrated into the project:

• Project cycle time provides a year-long timeframe for students to reflect on their

prior learning and explore potential solutions.

• Team orientation involves assigning small software teams, typically 5-7 individ-

uals, to specific roles during the project's development.

• Client involvement, ensuring the active participation of a company representative

alongside the team leader.

• The project should incorporate a software development methodology that pro-

duces observable project deliverables. This allows students to gain valuable expe-

rience through the instructional activity. Therefore, projects that rely solely on

theoretical aspects, such as developing formal specifications, are unsuitable.

• Evaluation involves assessing project outputs through walkthroughs, interviews,

and short experiments to determine the effectiveness and limitations of the deliv-

erables (Dyba et al., 2014).

6

• Assessment encompasses evaluating the project's effectiveness in terms of the

software engineering methodologies and procedures employed, with student re-

flection playing a crucial role, even without a functioning system.

The engineering project course offers several distinct advantages over traditional teaching

methods. Firstly, it promotes active student engagement and ownership of the learning

process. Through hands-on project work, students comprehensively understand software

engineering principles and their practical implications. Additionally, the course fosters

teamwork, communication skills, critical thinking, and problem-solving abilities, which

are highly sought-after skills in the software engineering profession (Major et al., 2001).

2.3 Challenges in Implementing the Engineering Project Courses

Although project-based learning offers numerous benefits in engineering education, its

implementation is challenging. These challenges may arise from various factors, includ-

ing sufficient resources to support the project-based approach (Aldabbus, 2018).

One primary challenge is the allocation of appropriate resources. Project-based learning

often requires additional materials, equipment, and technologies to support students’

practical engagement with real-world problems. Institutions must ensure they have the

resources to facilitate project work, including access to laboratories, software tools, and

appropriate industry-standard equipment. Limited availability or inadequate allocation of

resources can hinder the effective implementation of project-based learning, limiting stu-

dents’ opportunities for hands-on experience and skill development (Clear et al., 2001;

García-López et al., 2020; Mann et al., 2004).

Another challenge involves managing time and coordinating schedules. Project-based

learning typically involves complex and multifaceted tasks that require substantial time

commitments. Students may need to balance their project work with other academic re-

sponsibilities and extracurricular activities, which can lead to time management difficul-

ties. Coordinating team meetings, arranging consultations with instructors, and aligning

project schedules with external stakeholders, such as industry partners or clients, can also

present logistical challenges (Herbert, 2018; Mann et al., 2011; Zhang et al., 2010). Ad-

ditionally, assessing and evaluating student performance in project-based learning can be

challenging. Traditional assessment methods may not align with the dynamic nature of

the project work, which often involves iterative processes and evolving solutions. De-

signing appropriate assessment criteria and evaluating student outcomes fairly and con-

sistently can be complex. It requires careful consideration of individual and team

7

contributions’ ability to assess the development of critical thinking, problem-solving, and

collaboration skills (Kaul et al., 2015; Majanoja et al., 2018).

Moreover, supporting and guiding students throughout the project process can be de-

manding for instructors. The role of the instructor in project-based learning shifts from

being a primary source of information to that of a facilitator and mentor. Instructors must

provide guidance, feedback, and scaffolding to ensure students stay on track, meet project

objectives, and develop the necessary skills. This requires significant effort from instruc-

tors and expertise in project management and effective facilitation techniques.

Finally, fostering effective teamwork and collaboration among students can be a chal-

lenge. Project-based learning often involves group work, requiring students to collabo-

rate, communicate, and resolve conflicts effectively. Building cohesive and productive

teams can be challenging, especially when students come from diverse backgrounds with

varying experience levels and expertise. Instructors must provide support and establish

clear expectations for teamwork while assessing any issues arising during the project

(Behdinan et al., 2015).

It is necessary to take a complete approach to address these issues, which includes careful

planning, adequate resource allocation, ongoing support for students and instructors, and

constant review and enhancements of the project-based learning implementation. By pro-

actively addressing these challenges, institutions can maximise the benefits of project-

based learning and provide students with valuable experiences that prepare them for real-

world engineering practices.

8

3 REQUIREMENTS ELICITATION TECHNIQUES

The concept of requirement elicitation techniques pertains to the methods employed by

analysts to ascertain the needs of customers and users, thus enabling the development of

software systems that effectively fulfil those requirements. The primary goal of require-

ment elicitation is to comprehensively understand the problem domain, which is the foun-

dation for constructing a requirement model. By engaging in this process, analysts aim to

resolve conflicting requirements and enhance the utility and stability of software systems.

It is important to note that requirement elicitation is an iterative process that necessitates

recognising and involving stakeholders, the critical actors in the software development

process (Zhang, 2007).

Requirement elicitation plays a crucial role in the software development lifecycle, as it

sets the stage for the subsequent phases of system design, implementation, and testing.

Effective elicitation techniques enable analysts to gather accurate and relevant infor-

mation about the desired functionality and constraints of the software system. The use of

this data during the development process allows for informed decisions and guarantees

that the finished product meets the needs and expectations of all parties involved (Bahur-

muz et al., 2021; Carrizo et al., 2014; Pacheco et al., 2018; Sabariah et al., 2018).

The iterative nature of requirement elicitation implies that the process involves continu-

ous refinement and adjustment. As the analysts gain a deeper understanding of the prob-

lem domain and interact with stakeholders, they can identify and resolve any conflicts or

inconsistencies in the requirements. This iterative method enables the discovery of new

requirements that could have gone unnoticed at first and changing current requirements

in the light of changing stakeholder demands and priorities (Davis et al., 2006; Zhang,

2007).

Analysts employ various techniques to facilitate the process, recognising the importance

of effective requirement elicitation. These techniques range from conversational and ob-

servational approaches to analytical and synthetic methods. Each technique offers unique

advantages and is suitable for specific situations and contexts. The selection of the appro-

priate elicitation technique depends on factors such as the nature of the project, the re-

quirements complexity, and the stakeholders' availability and expertise. (Carrizo et al.,

2014).

9

3.1 Conversational Methods

A conversational method is a form of verbal communication between stakeholders and

the development team. It provides a natural and direct means of expressing needs and

ideas through face-to-face interactions. This method encompasses various activities, in-

cluding interviews, workshops, brainstorming sessions, and focused groups, all aimed at

extracting relevant information related to the problem domain. The primary objective is

to facilitate effective communication and exchange of information regarding the project’s

requirements (Yousuf et al., 2015; Zhang, 2007).

Conversational methods effectively elicit requirements, mainly when direct interaction

and personal engagement are crucial. However, it is essential to note that this approach

can be labour-intensive due to the extensive documentation required. It involves setting

up meetings, analysing documents, and performing ad hoc tasks to ensure effective com-

munication and understanding between stakeholders and the development team. Overall,

the conversational method serves as a valuable approach for requirement elicitation, al-

lowing for direct engagement and real-time collaboration between stakeholders and the

development team. While it may require significant effort in documentation and coordi-

nation, its effectiveness in capturing and exchanging relevant information makes it a pre-

ferred choice in many projects (Coughlan et al., 2002; Mushtaq, 2016). This conversa-

tional method includes interviews, questionnaires or surveys, brainstorming, focus groups

or workshops.

3.1.1 Interview

Interviews are widely used in requirement elicitation and involve direct face-to-face in-

teraction to collect user data. Analysts conduct interviews with customers to gather qual-

itative information that influences user requirements. Open-ended interviews, without

predefined questions, or structured interviews, with predetermined questions, are utilised.

Interviews are highly effective in traditional settings or global software development, en-

abling analysts to obtain precise information about requirements within the defined scope

(Maiden et al., 1996).

3.1.2 Questionnaires or Surveys

Questionnaires involve written questions presented to a target group of respondents to

collect data. They are suitable when time is a constraint, allowing the collecting a large

10

amount of data from multiple respondents with less effort and expense. However, before

distributing questionnaires, analysts must clearly understand the target audience and do-

main concepts. Questionnaires work well for research topics in system development but

require a more comprehensive understanding of the current scope. Misinterpreting ques-

tionnaire results are a concern, emphasising the need for straightforward, concise ques-

tions that provide adequate information within the defined scope (Yousuf et al., 2015;

Zowghi et al., 2005). Recent research suggests combining questionnaires with other meth-

ods to enhance their effectiveness in the IT sector (Pacheco et al., 2018) and (Arif et al.,

2009).

3.1.3 Brainstorming

Brainstorming is a creative technique to generate ideas and potential solutions to a prob-

lem. Participants voluntarily contribute ideas in a group setting to overcome inhibitions

and foster innovation (Paetsch et al., 2003; Yousuf et al., 2015). The brainstorming pro-

cess involves a generation phase where ideas are collected and discussed. The emphasis

is on expanding and exploring viewpoints rather than critiquing or evaluating them. Par-

ticipants are encouraged to freely express as many novel and unplanned ideas as possible,

fostering a mindset of open thinking. User data can be collected through mind mapping,

which involves visually organising thoughts on paper, or through group brainstorming

sessions facilitated by a moderator. Brainstorming has gained popularity in the IT indus-

try for requirements elicitation, with studies suggesting its effectiveness in enhancing

workplace ideas and improving the quality of group-generated plans (Mushtaq, 2016).

3.1.4 Focus Group or Workshop

Focus groups are qualitative research methods that involve gathering a small group of

individuals with common characteristics or interests related to the software system under

consideration. A moderator leads the group in open-ended discussions and exchanges,

exploring participants' opinions, attitudes, preferences, and experiences regarding the

software system and its features (Kasirun et al., 2008). Extended focus groups have ad-

dressed communication challenges between stakeholders and analysts in field studies,

enhancing the requirements elicitation process (Pacheco et al., 2018) and (Fernandes,

2014; Pitula, 2011; Amin et al., 2021). Empirical results from these studies contribute

valuable insights and lessons learned that consolidate knowledge and guide practitioners.

Here are data collection methods in the conversation category and how they are currently

used in Table 1.

11

3.2 Observational Methods

The observation method involves the development team's self-study of the domain envi-

ronment to understand the work context and human activities comprehensively. Some-

times, it can be challenging for the development team to articulate the intricacies of work

processes within a given environment. Thus, the observation method is a valuable tool

for immersing the development team in the situational context and obtaining evidence

that aids in comprehending the work patterns (Zowghi et al., 2005).

The observation method is beneficial when stakeholders require assistance articulating

their needs, especially when the development team strives to understand the work context

better. It proves to be a practical approach for comprehending the work environment and

the tasks performed by the users. Furthermore, this method enhances the analysts' famil-

iarity with the organisational culture and the preferred work style of individuals within

the organisation. Applying the observation method allows analysts to directly assess the

work domain and gain firsthand insights into how work is executed (Paetsch et al., 2003).

However, it is essential to acknowledge a potential disadvantage associated with the ob-

servation method. Stakeholders may quickly feel offended or change their behaviour

based on the attention they receive from the development team. This sensitivity to

Table 1. Summary of Conversational Methods.

Method Name Data Collection Methods State of Practice

Interview

(Pacheco et al., 2018; Palomares

et al., 2021).

Face-to-face interaction, Open-

ended interview.

The interview is widely used in

the industry; it is popular and

most effective and can be used

with other methods.

Questionnaires or Surveys

(Ang et al., 2011)

(Zowghi et al., 2005).

List of questions to respondents.

They were frequently used. Re-

searchers advised using ques-

tionnaires with other methods.

Brainstorming

(Paetsch et al., 2003).

The facilitator leads mind map-

ping and group brainstorming

sessions.

Popular, effective, and widely

used.

Focus group or Workshop.

(Pacheco et al., 2018).

Meetings. Popular, effective, and widely

used.

12

observation can impact the authenticity and accuracy of the observed work activities

(Babb et al., 2014; Yousuf et al., 2015).

3.2.1 Social Analysis or Ethnography

The social analysis requirement method incorporates social and human factors into the

software development process. It aims to understand the broader social context and the

interaction between individuals or groups, which can significantly impact the success of

software projects (Maiden et al., 1996; Zhang, 2007). The context of the social field en-

compasses the real world where the application will be used, such as the homes, public

spaces and end-user environments (Zhang, 2017).

The data collection process involves researchers immersing themselves in the social con-

text, spending time with participants, and engaging in meaningful interactions. Research-

ers observe users' routines, work processes, and challenges to contextualise their require-

ments and preferences. The researcher can collect data through various techniques, such

as interviews, focus groups, observations, surveys, and cultural probes. Researchers use

open-ended questions during interviews and focus groups to encourage participants to

share their thoughts freely. Additionally, researchers carefully analyse the data collected

from cultural probes, gaining insights into users' perceptions of the software in their own

words and expressions (Fuentes-Fernández et al., 2010).

Social analysis states of practice are gaining recognition and importance in software de-

velopment. However, it is not yet universally adopted in the industry. Many organisations

still primarily focus on traditional requirement engineering techniques and may overlook

the significance of the human element. However, academic research and industry case

studies continually demonstrate the benefits of incorporating social analysis into software

development (Fuentes-Fernández et al., 2010). Here are data collection methods in the

observation category and how they are currently used in Table 2.

Method Name Data Collection Methods State of Practice

Social Analysis or Ethnography

(Fuentes-Fernández et al., 2010).

Being in the workplace and ob-

serving users' routines, work

processes

Social analysis has not yet been

adopted in the software industry.

Professionals continue to use the

traditional methods.

3.3 Analytic Methods

Table 2. Summary of Observation Methods.

13

The analytical method serves as an approach for extracting requirements from pre-exist-

ing documentation, drawing upon two primary sources: requirement reuse and documen-

tation studies. This method proves valuable in capturing knowledge that domain experts

may need to express explicitly. By thoroughly examining and analysing existing docu-

mentation, developers can gain insight into the required tasks embedded within work-

flows and product features (Zhang, 2007).

It is important to note that one area for improvement of the analytical method is its ina-

bility to capture requirements from users and customers directly. Instead, it examines

documentation to uncover essential information about the application domain. This ap-

proach effectively elicits knowledge from domain requirements, including legacy systems

and specifications. The workflows and product features documented within the existing

materials often contain the necessary information to be leveraged to extract relevant do-

main knowledge.

In addition to the analytical method, several related techniques fall under its umbrella.

These include requirements reuse, documentation studies, content analysis, card sorting,

and repertory grids. Each of these techniques contributes to the overall analytical process,

facilitating the extraction of valuable insights from existing documentation (Yousuf et

al., 2015; Zhang, 2007).

3.3.1 Requirements Reuse

Requirement reuse involves creating software systems by leveraging existing artefacts

rather than starting from scratch (Yousuf et al., 2015; Zhang, 2017). This can range from

reusing requirements documented in previous specifications to utilising templates in cat-

alogues adapted for each new project. Requirement reuse can be achieved through various

methods such as structuring, matching, test-based, and scenario-oriented reuse—the

structuring approach stores requirements in a well-organized structure for easy retrieval.

Grouping and categorisation facilitate searching and identifying specific needs. However,

most software requirement reuse approaches are validated primarily in the industry for

text-based methods, with a low percentage of academic publications on this topic (Irshad

et al., 2018).

3.3.2 Documentation Studies

Documentation studies systematically analyse existing printed and electronic documents

to elicit requirements (Bowen, 2009). This method gathers requirements during the elici-

tation process to extract critical requirements relevant to the current project. Quantitative

14

and qualitative strategies can be employed to collect user data through document analysis.

Quantitative research relies on content analysis and statistical interpretation of data, while

qualitative methods are favoured by researchers who actively participate in field studies.

Triangulation, involving the verification of data accuracy from multiple sources, is an-

other technique used. In industrial practice, project managers commonly employ docu-

ment analysis to plan project strategies and gain a comprehensive understanding of pro-

ject procedures. By analysing different documents, project managers can identify essen-

tial project requirements (Project Management Institute, 2013).

3.3.3 Laddering Method

The laddering technique, introduced by psychologists in the 1960s, is a valuable method

for comprehending individuals' core values and beliefs (Corbridge et al., 1994). This tech-

nique is extensively employed in market research and knowledge acquisition, enabling

the establishment of an individual's core set of constructs that shape their worldview (Cor-

bridge et al., 1994). Derived from the repertory grids method, the laddering technique

utilises structured interviews to establish attribute, consequence, and core value hierarchy

based on the means-end theory that identifies product attributes and their associated ef-

fects (Stewart et al., 1998).

One of the primary advantages of the laddering technique is its ability to provide insights

into stakeholders' core values and beliefs, facilitating a comprehensive understanding of

their perspectives. It is instrumental in market research, allowing researchers to under-

stand consumer preferences and decision-making processes deeply. Additionally, the lad-

dering technique establishes a hierarchical structure by identifying attributes, conse-

quences, and core values, aiding in requirements prioritisation. However, the laddering

approach faces certain limitations. When dealing with many requirements, the method

may become more complex, potentially resulting in difficulties in managing and priori-

tising multiple needs. Furthermore, like any other requirement elicitation method, the lad-

dering technique is not immune to challenges related to requirements, communication,

stakeholders, and developers, which may impact the quality and success of software pro-

jects.

3.3.4 Repertory Grid

The repertory grid method involves constructing an attribute matrix for each entity and

soliciting attributes from stakeholders that apply to each entity, along with values for the

cells inside each entity (Nuseibeh et al., 2000). Domain experts predominantly employ

15

this method, and it proves helpful in identifying agreements and resolving conflicts be-

tween stakeholder groups. The grid approach aims to maintain consistency in analysing

all aspects and qualities while facilitating the resolution of disagreements among stake-

holders. The use of nominal values, such as "yes" or "no," contributes to the numerical

values, as suggested by (Grunert et al., 2005). However, representing domains consisting

of nominal categories can challenge the matrix representation within the operating sys-

tem. The data collection process in the repertory grid method entails building a matrix

with rows and columns. Each row represents system entities and desired qualities, while

the columns represent rankings based on stakeholder input. This approach is particularly

valuable for identifying consensus and disagreement among stakeholder groups (Ylönen,

2021). According to Laplante (2017) and Nuseibeh et al. (2000), a notable strength of the

repertory grid method lies in its ability to subject numerical values to various statistical

techniques, including correlation and principal component analysis. Additionally, soft-

ware for statistical analysis and repertory grid approaches is readily available. The reper-

tory grid method is valuable in resolving conflicts and identifying agreements or disa-

greements between stakeholder groups in the early phases of software development.

However, the author of this study did not find any source material where repertory grid

methods were explicitly used for requirements elicitation for system development.

Regarding industrial application, Pacheco et al. (2018) state that the repertory grid method

is one of the most widely used techniques in the cognitive category. However, their report

does not explicitly mention its application in the context of requirement elicitation. Alt-

hough no sources were found where the repertory grid method was used for requirements

elicitation, Laplante (2017) suggests its usefulness in identifying different viewpoints

from diverse stakeholder groups. Furthermore, it can assist in weighing various solution

options during system upgrades and reconciling opposing views on specific functionality.

Here are data collection methods in the analytic category and how they are currently used

in Table 3.

16

3.4 Synthetic Methods

Different situations may require various elicitation techniques to capture requirements, as

Maiden et al. (1996) and Yousuf et al. (2015) suggested. Each method possesses its

strengths in capturing specific types of requirements. Consequently, analysts may need to

employ multiple methods in different sessions to explore essential aspects and develop a

comprehensive understanding of the application domain. Synthetic methods offer an al-

ternative by integrating conversation, observation, and analysis into a unified process,

facilitating the achievement of a shared product vision by analysts and stakeholders. Ex-

amples of synthetic methods include Scenarios, Passive Storyboards, prototyping, inter-

active Storyboards, Joint Application Development (JAD) or Rapid Application Devel-

opment (RAD), and Contextual Inquiry (Maiden et al., 1996; Yousuf et al., 2015).

3.4.1 Scenarios

Scenarios depict user interactions with the system, illustrating how they collaborate to

achieve system-level functionality (Jaramillo, 2015). They are particularly valuable when

describing the system from a user perspective and can be applied once initial requirements

have been elicited. Writing scenarios in plain language requires a basic understanding of

the system's operations and user interactions. Methods can also generate test cases and

validate the requirements (Davis et al., 1992).

The studies by Davis (1992) highlight the effectiveness of scenarios in traditional, global,

and agile software development. They propose methods as a primary technique for re-

quirement construction and suggest combining them with prototyping to reduce errors

Table 3. Summary of Analytic Methods.

Method Name Data Collection Methods State of Practice

Requirements reuse

 (Irshad et al., 2018).

Structuring, Matching, Test-based,

Scenario-oriented reuse

All the software reuse approaches

are not validated in the industry ex-

cept the test-based method.

Document studies

(Bowen, 2009).

(Project Management Institute,

2013).

Reading and reviewing documenta-

tion.

Document analysis is popular

among project managers to plan

current project strategies or to re-

view and extract requirement infor-

mation from previous projects.

Laddering

(Corbridge et al., 1994).

(Maiden et al., 1996; Stewart et al.,

1998).

Structured Interviews.

This method is widely used in mar-

ket research as a viewpoint on con-

sumer choices.

Repertory Grid

(Laplante, 2017).

Matrix data collection Researchers believe the repertory

grid is a valuable technique, but the

author of this study did not find

where or how it was used in RE.

17

during requirement collection. While prototyping is a practical approach, reports that de-

velopment costs often pose a significant obstacle, leading industry practitioners to opt for

prototypes over scenarios to mitigate expenses.

By providing action-oriented representations of real-world situations, scenarios have been

consistently recognised as a valuable source of requirements and a commonly used form

of knowledge representation in industrial applications. The studies propose a scenario-

based approach for learning future production in tangible industry 4.0. They argue that

scenarios facilitating active learning through real-world problem-solving can serve as a

starting point for students to immerse themselves in authentic problem-solving processes,

applying their social skills in a safe environment.

3.4.2 Use Cases

Use cases illustrate user interactions and the system, focusing primarily on what the sys-

tem does for the user. They enable analysts to elicit and document customer requirements

by identifying and describing different use cases for each actor involved with the system

(Regnell et al., 1995). Use cases have traditionally been part of the Unified Modelling

Language (UML), supporting an iterative software development process that allows for

early user feedback. A use case specifies how the system assists a user in achieving a

specific goal and outlines all the outcomes required to reach that goal. By focusing on the

system’s functional behaviour and its users, use cases are created from the user's perspec-

tive, avoiding discussions about the system's internal workings (Project Management In-

stitute, 2013).

Understanding the system's functional behaviour aids in comprehending its connections

to different use cases (Leffingwell et al., 2000). Use case diagrams, a popular technique

for collecting user data during software development, serve as a means of communication

between all parties involved by simulating user interactions with the system through ac-

tors. They effectively present stakeholders' viewpoints on the system being developed for

the client. According to a study, case diagrams are easier to understand than class dia-

grams and effectively communicate the purpose of the system to stakeholders (Laporti et

al., 2009).

A recent study emphasises the maturity and widespread use of use cases in industrial

practice contexts. Use cases are considered a primary tool for precisely defining the con-

text and requirements of the client, and they serve as a primary technique for collecting

user data. They also prove valuable in eliciting security requirements, enhancing the

18

effectiveness of these requirements when combined with other methods (Laporte et al.,

2009; Pacheco et al., 2018).

3.4.3 Prototypes

Prototypes are early samples of a concept, serving as iterative versions of the product that

gather customer requirements and continually improve based on user feedback. They are

particularly useful when users have limited knowledge about their needs and stakeholders

require early responses (Davis, 1992).

Recent research demonstrates the importance of prototypes for the success of many soft-

ware projects despite potential deviations from traditional project life cycle plans. Proto-

typing addresses a common problem during software development, especially in the re-

quirements elicitation phase.

Prototyping explores, experiments, and evolves the system through user data collection

(Jensen et al., 2018). The exploration strategy aims to elicit or clarify user requirements,

enabling developers to determine users' work tasks and identify potential problems with

the new system. This approach provides engineers with a comprehensive understanding

of users' work tasks. The exploratory approach can be successful through two critical

processes: rapid throwaway prototyping and the spiral model (Boehm, 1991). The fast

throwaway prototyping model involves generating prototypes, obtaining customer feed-

back, and validating system requirements and functionalities. In contrast, rapid prototyp-

ing consists in discarding the prototype as it does not yield the desired result. Experi-

mental prototypes are used to assess the feasibility of proposed solutions, creating partial

or complete functional simulations demonstrating different system aspects. Mock-ups

serve as examples of experimental prototypes.

Recent research confirms the frequent usage of prototypes in organisations. However,

stakeholders with different needs may prefer distinct approaches or tools. For example,

engineers may create prototypes to assess project feasibility, while designers may employ

prototypes to engage with users and determine their needs.

3.4.4 Joint Application Development (JAD)

Joint Application Development (JAD) is an interactive systems design concept that in-

volves eliciting requirements through discussion groups in a workshop setting. It empha-

sises user involvement through facilitated group discussions led by a neutral moderator.

JAD represents an organised and structured approach to requirements elicitation, com-

bining brainstorming with user and stakeholder participation in design discussions.

19

Typically, JAD sessions involve 20 to 30 participants (Maiden et al., 1996). This tech-

nique allows engineers to initiate group sessions by providing a system overview, fol-

lowed by discussions with stakeholders and users until the final requirements are estab-

lished (Maiden et al., 1996).

According to recent studies, businesses frequently use JAD or RAD best practices. JAD

performs less well in large, complex projects but produces more significant outcomes in

focused, small-scale initiatives (Pacheco et al., 2018b).

3.4.5 Contextual Inquiry

Contextual Inquiry involves examining and understanding users’ workplace tasks, issues,

and preferences (Diefenbach et al., 2019). Researchers immerse themselves in the user's

context or environment to observe their work activities. Contextual inquiry is similar to

user interviews, as researchers often ask questions while watching task performance to

understand observed behaviours better. This approach produces task analyses and user

requirements, utilising an ethnographic user-centred design technique. (Darin et al., 2020;

Kulkarni et al., 2012).

The contextual inquiry process relies on the analyst's close observation of task proce-

dures. When observing and discussing work practices at the user's workplace, the analyst

assumes a background role, collaborating with the user as an apprentice while the user

serves as the expert. Contextual Inquiry is based on four fundamental principles: context,

partnership, interpretation of data, and reasoning from facts to hypotheses and implica-

tions to design (Darin et al., 2020; Kulkarni et al., 2012).

Despite its numerous advantages, the Contextual Inquiry method is rarely employed in

industrial contexts. According to Holtzblatt et al. (1993), researchers require assistance

describing user requirements since contextual information always needs to be included.

Moreover, the method can be cost-intensive and often requires stakeholder involvement.

Here are data collection methods in the Synthetic category and how they are currently

used in Table 4.

20

Challenges in requirements gathering for software development have been the subject of

intense debate among researchers and IT professionals. Tables 4, Table 5, and Table 6

present expert recommendations from the literature review. The tables provide approxi-

mate descriptions of each technique, including its contribution to a specific project,

strengths and weaknesses, and the current state of practice. According to these experts,

these techniques have the potential to overcome challenges in software development and

can be effectively utilised in student software projects (Zhang, 2017; Dar et al., 2018;

Bahurmuz et al., 2021; Sajjad et al., 2010; Sharma et al., 2013; Kaleel et al., 2013) and

(Paetsch, 2003).

Method Name Data Collection Methods State of Practice

Scenarios

(Jaramillo , 2015).

Data analysis. Scenarios are used in vari-

ous domains, such as mar-

ket research, user experi-

ence and strategic plan-

ning.

Use Cases

(Regnell et al., 1995).

Stakeholder interviews or

Workshops.

Use cases are widely used

in software development

to capture functional re-

quirements and define sys-

tem behaviour.

Prototypes

(Jensen et al., 2018).

Simulation or creating

representative models.

They are widely used in

designing and developing

software, websites, mobile

applications and physical

products.

JAD

(Maiden et al., 1996).

Collaborative Workshop,

Brainstorming.

In use in many organisa-

tions. Effective in issues

with varied stakeholders

Contextual Inquiry

(Darin et al., 2020; Kul-

karni et al., 2012).

Observation and Interac-

tion with Users.

They are widely used in

various industries and do-

mains, including software

development, user experi-

ence design, and product

development.

Table 4. Summary of Synthetic Methods.

21

Techniques Description Strength Weakness

Interviews The most popular

method is used both

in industry and aca-

demia.

Allows face-to-face

communication be-

tween the develop-

ment team and

stakeholders.

It saves time be-

cause it helps the or-

ganisation quickly

get the requirements

of the software or

system.

It is suitable for

eliciting stakehold-

ers’ agenda of what

is relevant. Differ-

ent variations are

available.

Structured Inter-

view:

 It is systematic and

constant across

stakeholders. Differ-

ent variations are

available (Maiden et

al.,1996).

Unstructured Inter-

views: Takes too

much time and side

issues. The captured

information may

take much work to

analyse.

Workshop A workshop is a

method used to

gather information

and requirements

from stakeholders in

a collaborative and

interactive setting.

(Maiden et al.,

2004).

It can integrate

other elicitation

techniques into

them and incorpo-

rate their combined

usage into a defined

requirements pro-

cess (Maiden et al.,

2004).

It may consist of

dominant and biased

participants (Fer-

nandes et al., 2012).

It may include dom-

inant and biased

participants (Fer-

nandes et al., 2014).

Prototypes It is designed at the

early phase of the

project’s implemen-

tation to visualise

the system's func-

tion.

It helps potential us-

ers and developers

gather valuable

feedback and in-

sights, which can be

used to improve the

design and function-

ality of the product

before investing in

full-scale develop-

ment (Maiden et al.,

1996).

If misused, proto-

typing can have in-

herent dangers for

system design

(Maiden et al.,

1996).

Laddering The laddering tech-

nique utilises struc-

tured interviews to

establish attribute,

consequence, and

core value hierarchy

based on the means-

end theory that

identifies product

attributes and their

associated effects

(Stewart et al.,

1998).

The laddering pro-

cess can be viewed

in hierarchical struc-

tures based on the

means-end chain.

This graphical rep-

resentation helps re-

searchers and mar-

keters grasp the

connections be-

tween product at-

tributes.

It is time-consuming

due to extensive

participant inter-

views to explore

their thought pro-

cesses. Not suitable

for large-scale pro-

jects.

Joint Application

Development (JAD)

JAD is a collabora-

tive technique that

brings together key

stakeholders, end-

users, and develop-

ment teams in a col-

laborative workshop

setting (Andrew,

1992; ACRE,1996).

It brings together all

relevant stakehold-

ers and promotes a

shared understand-

ing of requirements

(ACRE, 1996).

Strong personalities

within the JAD ses-

sions may over-

shadow others, lead-

ing to limited con-

tributions from spe-

cific stakeholders or

overlooking valua-

ble insights.

Table 5. Requirements Elicitation Methods.

22

Table 6. Requirements Elicitation Methods.

Techniques Description Strength Weakness

Questionnaires or

Surveys

Reach multiple

people in a short

time. A comprehen-

sively designed

questionnaire re-

flects the actual

stakeholder’s re-

quirements.

It is simple and

does not require

much training and

preparation

(Maiden et al.,

1996).

It can capture large

amounts of irrele-

vant data (ACRE,

1996).

It does not give

more room to in-

vestigate the topic

further or expand

on new ideas (Ari

et al., 2009).

Social analysis or

Ethnography

An observer spends

a period in a society

or culture. Usually,

they are interested

in organisational

culture and design

solutions.

(Zhang, 2007).

It can integrate

other elicitation

techniques into

them and incorpo-

rate their combined

usage into a defined

requirements pro-

cess (Maiden et al.,

2004).

It may consist of

dominant and bi-

ased participants

(Fernandes et al.,

2012).

Contextual Inquiry Contextual Inquiry

involves examining

and understanding

users’ workplace

tasks, issues, and

preferences (Die-

fenbach et al., 2019

By observing users

in the real world,

analysts can better

grasp the context,

constraints, and

challenges users

face during interac-

tions.

Analysing and syn-

thesising data from

contextual inquiry

can be complex, es-

pecially when deal-

ing with a large

amount of qualita-

tive data.

Brainstorming Requirements engi-

neer asks a group of

stakeholders to gen-

erate as many ideas

as possible, empha-

sising generation

instead of evolution

(ACRE, 1996).

Suitable for elicit-

ing high-level do-

main entities and

questioning as-

sumptions which

might otherwise

have constrained

approaches consid-

ered (ACRE, 1996).

Susceptible to

group process; un-

systematic in clas-

sic form, though

some varieties

overcome this

(ACRE, 1996).

Focus Group It is a technique

containing four to

nine different users

with various skills

and focuses on the

system’s features

(Naela, 2021).

Stakeholder repre-

sentatives gather

for a short but in-

tensely focused pe-

riod to create or re-

view high-level fea-

tures of the desired

products (Zhang,

2007).

Participants may

feel uncomfortable,

as stated by the

group (Pitula et al.,

2011). There may

be dominant partic-

ipants (Fernandes et

al., 2012).

23

Techniques Description Strength Weakness

Requirements Re-

use

Requirement of

the existing sys-

tem. Software re-

use is creating

software systems

from existing soft-

ware rather than

building one from

scratch (Krueger,

1992).

There is con-

sistency across the

ecosystem- with

reusable compo-

nents, user - expe-

rience will be the

same across all

products. Easy to

maintain the ef-

fects (ACRE,

1996).

This may increase

maintenance

costs. Mainte-

nance costs may

increase if the

source code of a

reused software

system or compo-

nent is unavaila-

ble (Ari et al.,

2009).

Documentation

studies

A method that

gathers and anal-

yses information

from existing sys-

tems and other re-

lated information

to understand how

the current system

works. (Bowen,

2009).

(Zhang, 2007).

When Stakehold-

ers are unavaila-

ble to provide in-

sight into the cur-

rent business pro-

cesses, it becomes

vital to use docu-

ment analysis

(Bowen, 2009).

Contrarily, it

might give a par-

tial grasp of the

topic being stud-

ied.

Repertory Grid The method in-

volves asking par-

ticipants to com-

pare and contrast

elements of a par-

ticular domain,

such as products,

people, or experi-

ences, based on

their constructs or

criteria(Grunert et

al., 2005)

Repertory Grid

can be adapted to

various domains

and research ques-

tions, making it a

versatile method

for studying di-

verse topics.

Constructing and

analysing reper-

tory grids can be

time-consuming,

mainly when deal-

ing with many

participants and

elements.

Scenarios A scenario de-

scribes a sequence

of actions and

events for a spe-

cific case of some

generic task the

system intends to

accomplish.

Methods include

use cases (Jara-

millo, 2015).

Scenarios priori-

tise the user’s per-

spective, enabling

designers and de-

velopers to see the

product through

the eyes of the us-

ers and better un-

derstand their

needs and expec-

tations (Davis et

al., 1992).

Scenarios rely on

assumptions and

interpretations,

which can intro-

duce biases. Dif-

ferent team mem-

bers may develop

different scenarios

based on their un-

derstanding of the

users.

Use cases It describes how a

system, product,

or service is used

by its actors (users

or external sys-

tems) to achieve a

specific goal

(Regnell et al.,

1995).

Use cases provide

a clear and struc-

tured way to com-

municate system

requirements and

functionalities to

stakeholders, in-

cluding develop-

ers, testers, and

end-users (Leff-

ingwell et al.,

2000).

Use cases may not

capture all possi-

ble scenarios and

interactions, lead-

ing to potential

omissions or

missed require-

ments. (Fernandes

et al., 2012).

Table 7. Requirements Elicitation Methods.

24

4 CHALLENGES IN STUDENT PROJECTS

Student software projects play a vital role in software engineering education, allowing

students to apply their knowledge and skills to real-world problems. However, these pro-

jects are challenging, and students must overcome these challenges to achieve successful

project outcomes. This chapter explores and discusses the challenges students encounter

in student software projects. The content of this chapter is based on a systematic literature

review study conducted by Tenhunen et al. (2023). The study showed a comprehensive

review of students’ challenges in student projects, analysing various aspects of project-

based software engineering capstone courses and examining the advantages and disad-

vantages of different approaches employed in these projects. Through the analysis of 127

articles, several challenges emerged, including project implementation, maintenance of

existing software, team size, technologies, teaching approaches, requirements engineer-

ing process, requirement modelling, and programming.

One of the challenges in student projects is project implementation and the maintenance

of existing software. Agile methodologies are commonly adopted in student projects, pri-

oritising functional software development over extensive documentation. Striking the

right balance between documentation and deliverables can be a challenging task. Accord-

ing to Tenhunen et al. (2023), detailed software requirement specifications are essential

while implementing agile practices such as user stories and backlog updates in student

projects. However, it is necessary to note that software maintenance should receive more

attention in student projects despite its significance in the software life cycle. Incorporat-

ing software maintenance activities and exposing students to existing software systems

can significantly enhance their understanding of the maintenance phase. In a study that

examines software integration, Weissberger (2015) explores the integration of software

maintenance in a senior capstone project by combining agile and waterfall models. This

approach aimed to equip students with the necessary skills and knowledge to effectively

address the challenges of maintaining existing software systems. By integrating mainte-

nance activities into the project, students were able to gain practical experience in han-

dling software issues and enhancing the long-term viability of their projects.

Another challenge in student projects is team size. Determining the optimal team size is

crucial for successful project execution. Large teams may encounter communication and

coordination issues, while smaller groups may require assistance completing large-scale

25

projects. According to Mundra and others (2013), teams in student projects using the Ag-

ile methodology often have 2 to 6 members.

Technologies present another challenge for student projects. The choice of technologies

employed in student projects can significantly impact team performance. Students may

require assistance dealing with unfamiliar technologies, limited resources, or conflicting

technology preferences within the team. Providing students with access to necessary hard-

ware, software, and technical support is essential. A recent study by Tenhunen et al.

(2023) highlights the importance of shared infrastructure tools and the evaluation of tech-

nological implementation in student projects.

Teaching approaches also pose a challenge in student projects. Project-based approaches

are increasingly utilised in software engineering education to enhance student learning

outcomes. Instructors take on multiple roles as mentors, evaluators, and occasionally pro-

ject sponsors. Striking a balance between content coverage and process-oriented learning

experiences is crucial. The particular pressures project-based teaching methodologies

place on teachers and students are discussed (Yu, 2014).

Furthermore, the requirements engineering process presents challenges for students. Stu-

dents often require assistance in managing the requirements engineering process, which

involves handling incomplete specifications, lack of documented requirements, and re-

quirement changes. A study on requirements management strategies for student projects

highlighted common issues and difficulties (Mäkiaho, 2017).

Requirement modelling is another challenge faced by students in student projects. Re-

quirement engineering modelling poses difficulties, including understanding the value of

modelling, grappling with the intangibility compared to coding, and addressing the em-

phasis on programming skills in job interviews. In discussing the difficulties, students

face when modelling requirements, Berre et al. (2018) intensely focus on the value of

interaction and debate in finding satisfying answers.

Finally, programming poses a significant challenge in student projects. Teaching pro-

gramming is complex, as students often require assistance interpreting abstract problems

and developing systematic problem-solving methods. The difficulties students encounter

when learning to program, and the high failure rate in programming courses are high-

lighted (Babb et al., 2014; Canedo et al., 2018).

26

5 CHALLENGES OF ELICITING REQUIREMENTS IN STU-

DENT PROJECTS

 A crucial step in the software development process for student projects is requirements

gathering. However, this process often presents challenges that impede the successful

identification and translation of stakeholder needs into actionable project specifications.

This chapter examines the challenges faced during requirements elicitation in students'

projects and explores strategies for overcoming each limitation. By understanding and

addressing these challenges, students can enhance their ability to gather comprehensive

requirements and effectively meet project objectives (Sharma et al., 2014; Tenhunen et

al., 2023).

One primary challenge encountered in requirements elicitation is the presence of ambig-

uous or vague requirements. Students may need help deciphering the exact expectations

and objectives of the project due to unclear or imprecise language used by stakeholders.

Overcoming this limitation involves employing requirement clarification sessions, ac-

tively engaging stakeholders in discussions, and utilising visualisation tools to ensure a

shared understanding of requirements (Dar et al., 2018; Pacheco et al., 2018).

Another significant challenge is students’ lack of domain knowledge in their specific stu-

dent project domain. This lack of expertise can hinder their comprehension of industry-

specific requirements, potentially leading to incomplete or inaccurate specifications. Stu-

dents can overcome this limitation by conducting thorough research, consulting domain

experts, and engaging in knowledge-sharing sessions to understand better the project do-

main (Bahurmuz et al., 2021; Liu et al., 2010) and (Bjarnason et al., 2011; Sajjad et al.,

2010).

Engaging and involving stakeholders in the requirements elicitation process is crucial for

obtaining comprehensive and accurate project requirements. However, stakeholders may

have busy schedules or conflicting priorities, making their active participation challeng-

ing to secure. To overcome this challenge, students should establish clear lines of com-

munication, schedule regular meetings, and employ various techniques such as inter-

views, surveys, and workshops to elicit and validate requirements effectively (Eveleens

et al., 2010; Fricker et al., 2015; Sharma et al., 2014).

Furthermore, student projects often span an extended period during which requirements

may change or evolve. External factors such as market trends or emerging technologies

can influence project objectives, necessitating flexibility in adapting to the evolving

27

requirements. Students can address this challenge by establishing a robust change control

process, maintaining open lines of communication with stakeholders, and regularly re-

viewing and updating project requirements to accommodate evolving needs (Bahurmuz

et al., 2021; Dar et al., 2018; Fan, 2018).

Scope creep, the tendency for project requirements to expand beyond the initial agree-

ment, is a common challenge in student projects. It can result from poor requirement

management, unclear project boundaries, or stakeholder requests for additional features.

Students can mitigate scope creep by clearly defining project scope, employing change

management processes, and regularly revisiting project objectives to ensure alignment

with stakeholders' expectations (Bahurmuz et al., 2021; Svensson et al., 2010) and

(Berntsson et al., 2012).

Communication and language barriers are also challenges in student projects. They often

involve diverse stakeholders with different communication styles, cultural backgrounds,

and levels of technical expertise. Communication and language barriers can hinder effec-

tive requirements elicitation and lead to misunderstanding. To overcome this limitation,

students should strive for clarity in their communication, avoid technical jargon, actively

listen to stakeholders, and employ visual aids or diagrams to enhance understanding (Dar

et al., 2018; Dehlinger et al., 2011).

Limited resources pose another problem for students. They may need help accessing re-

sources such as industry experts, specialised tools, or real-world datasets. These limita-

tions can hinder their ability to gather comprehensive requirements or perform detailed

analyses. Overcoming this challenge involves seeking alternative resources, leveraging

online platforms and communities, and collaborating with academic institutions or indus-

try partners to access necessary resources (Cheng et al., 2010; Sommerville, 2007).

Furthermore, student projects typically have strict timelines, limiting the time for require-

ments elicitation. To effectively manage time constraints, students should prioritise re-

quirements, employ efficient requirement-gathering techniques such as interviews or sur-

veys, and adopt agile project management methodologies that facilitate iterative feedback

and adjustment of requirements within the given timeframe (Alam et al., 2017).

Balancing multiple perspectives is another challenge in student projects. Capstone pro-

jects often involve collaboration among students from different disciplines, each with

their views and priorities. Balancing and integrating these diverse requirements can be

challenging. Students can address this limitation by fostering effective collaboration, en-

couraging open dialogue, facilitating compromise and negotiation, and employing

28

techniques such as requirements prioritisation to ensure a harmonious set of project spec-

ifications (Vanhanen et al., 2018).

Finally, a lack of experience in requirements elicitation is a challenge for students. They

may need more experience in effective techniques and best practices. To overcome this

limitation, students should seek mentorship from faculty advisors or industry experts, un-

dergo training in requirements engineering, and actively engage in knowledge-sharing

platforms and communities to enhance their skills in gathering and managing project re-

quirements (Al-Zawahreh et al., 2015; Carrizo et al., 2014; Vanhanen et al., 2018).

29

6 CASE STUDY: ELICITING REQUIREMENTS FOR THE eTAN-

DEM WEB APP

This case study was conducted to identify challenges students face in eliciting require-

ments and techniques most appropriate for student projects. By analysing the experiences

and outcomes of the eTandem web application project, this case study aims to shed light

on the challenges encountered and techniques during requirements elicitation in student

projects.

6.1 Context

Software engineering projects give the student experience developing a software product

throughout the software life cycle. Projects such as this give students practical experi-

ences applying concepts they have learned in their software engineering and computer

science classes. Students engage in various activities within these projects, such as project

management, requirements elicitation, software design, implementation, testing, and re-

quirement management. This case study focuses on the experience of the developed eTan-

dem web application for a client seeking language teaching tools to facilitate language

learning and teaching among students. The primary objective of this case study is to ex-

plore how this project addressed the challenges of eliciting requirements in student pro-

jects and to identify suitable elicitation techniques.

6.2 Data Collection and Analysis

This case study collected data from previous student projects at Tampere University, Fin-

land. The student project courses offered twice a year during the autumn and spring se-

mesters allow students to implement their theoretical understanding in real-world soft-

ware engineering situations. The course aims to develop soft and hard skills essential to

software engineering education.

This case study focuses on the 2019 implementation of the course, in which a six-member

team, including the author of this thesis, was assigned to execute a project. The partici-

pating students in the project assumed the project manager and developer roles to con-

tribute to the project effectively.

The developer role required participants to have completed core computer science

courses, which involved working on projects, documenting software projects, presenting

findings, understanding ethical norms, and being familiar with software toolkits.

30

Developer participants primarily consisted of students participating in the project work

for the first time and often seeking assistance from the project manager when needed. On

the other hand, students who had completed additional "project work" courses and studied

software project management theory were qualified to become project managers. These

project managers had more experience and had taken prerequisite courses to enhance their

project management skills.

Throughout the project implementation, the course staff employed four primary ap-

proaches to data collection in student projects. The first approach involved collecting

minutes from weekly meetings, which provided information about task descriptions,

hours spent, encountered risks, risk mitigation measures, work metrics, and project prob-

lems. Personal reports were also collected, offering individual perspectives on the project,

including task descriptions and personal and collective approaches to task execution.

These reports also provided insights into working hours, technical proficiency, tool utili-

sation, teamwork, and the project managers' management capabilities. Additionally, the

final reports served as a crucial data source, as they included a project plan document

outlining the project's conclusion, steps taken, and other essential elements typically dis-

cussed in project reports.

6.3 Method and Process

During the fall of 2019, the project course was implemented with 12 teams, each consist-

ing of 5-7 members. Each team was allocated 1000 hours to work on their projects, with

60 participating students. In this study, the author was part of a group of four students

who assumed the role of project manager. Although requirements engineering was not

explicitly included in the course, it had been covered as a mandatory component in pre-

vious studies for students enrolled in the software project management course. Each pro-

ject team had its client and was encouraged to self-organize based on the guidelines pro-

vided by the course staff. The teams could select the tools that best suited their project

requirements. The university provided essential software development and design tools,

such as Balsamiq, Redmine, and various programming development tools. However, uti-

lising these tools was optional, allowing teams to decide whether or not to use them based

on their specific needs.

A course supervisor was assigned to each project team to offer assistance and guidance

throughout the development process based on the team's requirements. However, the su-

pervisor's role was limited to providing support and was not directly involved in the

31

project. The supervisor's responsibilities included selecting appropriate tools, addressing

project-related issues, and occasionally mediating conflicts within the team.

Agile is the preferred development process for project teams; it promotes intensive com-

munication and collaboration with stakeholders throughout the development process. Ag-

ile methodology allows the project team to accommodate and embrace changes, offering

flexibility not commonly found in other software development approaches. Project teams

can easily incorporate changes and prioritise tasks by implementing a product through a

series of iterations and maintaining a dynamic backlog. The backlog, part of the Trello

platform, is crucial in managing project requirements. It facilitates effective communica-

tion by bridging the gap between verbal descriptions and visual representations of backlog

items. This enables the project team to track the state changes of each requirement, in-

cluding stages such as “new”, “in progress”, “done”, and “rejected” requirements. Provid-

ing clients and supervisors with online visibility of the backlog list items is a welcoming

gesture that promotes transparency and encourages client involvement as an integral part

of the team.

The project team had five mandatory meetings with the supervisor and clients: a project

plan inspection, three review meetings and a final meeting. These meetings served various

purposes, including project planning, product validation, and gathering stakeholder feed-

back to inform the next iteration. To provide students with flexibility, most project teams

opted for regular meetings instead of daily meetings, allowing them to attend to other

obligations unrelated to project work. Additionally, ad-hoc meetings were scheduled to

support team members who required assistance meeting deadlines or faced task chal-

lenges.

In our team, we primarily conducted online meetings and regular meetings most of the

time. We utilised the meeting to integrate tasks in GitHub and plan for the next iteration.

Weekly meetings were held to ensure smooth coordination and collaboration among team

members.

6.4 Project Management

As with any software development effort, there is a need for project teams to define the

project management activities to track and correct issues to minimise their impact on the

project. This is especially true since the students have a fixed schedule that does not slack

in the project if the deadline is delayed.

32

There are steps to follow for developing software in student projects through the project

guidelines, which mirror the project plan. These are the project initiation, project plan-

ning, execution, monitoring, communication, risk management, and stakeholder manage-

ment, as discussed below.

Project teams often define project goals, objectives, scope, and stakeholders in software

development at the beginning of the project. The project initiation involves identifying

the feasibility, constraints, and risks. This is followed by defining the project planning,

enabling teams to develop a comprehensive project plan for project deliverables, creating

a work breakdown structure (WBS), determining project schedules, estimating resources

and costs, and creating a risk management plan.

Project teams also carry out the project through implementing the project plan, task del-

egation to team members, resource management, and monitoring schedule compliance.

Project communication is the strategy for managing projects by project teams. The aim is

to communicate and coordinate project activities. Coordinating project activities takes

various communication tools, and teams can choose them based on the project need or

the team members' experience. Effective communication, collaboration, and coordination

among team members are necessary for project success.

On the other hand, project monitoring and control are used to track progress, compare it

against the project plan, and make necessary adjustments. It involves monitoring project

milestones, managing changes, resolving issues, and assessing risks to keep the project

on track. One such tool is the metric monitoring tool developed at the Department of

Computer Science at Tampere University Finland specifically for student projects.

Project communication can take various forms to establish effective channels within the

project team and stakeholders. It encompasses regular reporting and progress updates and

facilitates collaboration and information sharing. Project teams have access to various

communication tools, and the choice of tool depends on the project's specific needs and

the team's experience. Popular communication tools include Slack, Microsoft Teams,

Discord, Telegram, Zoom, WhatsApp, and Google Meet. These platforms are utilised to

organise various types of project meetings. Furthermore, Task boards and Trello are com-

monly employed within the project management category. Trello software serves multi-

ple purposes, including selecting and moving cards from the product backlog to the sprint

backlog during sprint planning, enabling the creation of a focused and manageable set of

tasks for the upcoming sprint. It also facilitates collaboration and communication among

team members and stakeholders. Email is predominantly used for communication with

33

clients and sometimes within project teams. Regarding file sharing, Google Drive,

OneDrive, and Word documents are frequently utilised.

Furthermore, during the project implementation, project teams define risk management

to identify potential risks that may impact the project's success and develop strategies to

mitigate or respond to them. It often includes risk identification, assessment, prioritisa-

tion, and implementation of risk mitigation plans. Risk management is defined at the be-

ginning of the project while thinking about different scenarios which would happen

throughout the project that would impede project success. Risks identified by team mem-

bers are sometimes identified individually and combined in a brainstorming session.

Risks are associated with project estimation based on the probability of the risk occurring

and how much impact the risk would make on the project.

6.5 Managing and Leading Project Teams

Managing and leading project teams involves various responsibilities, such as assigning

roles and responsibilities, resolving conflicts, motivating team members, and fostering a

positive team culture. The agile software development process is widely adopted by teams

in student projects due to its inherent flexibility, especially when combined with the

Scrum variant. In my experience as the author of this thesis, I participated in student pro-

jects with a team consisting of two project managers, two developers, one tester, and one

UX designer. Despite being project managers, we assumed roles as the Scrum master and

the product owner, respectively. As the Scrum master, I was responsible for project ac-

tivities, including adherence to the Scrum process, removing obstacles, facilitating events,

and ensuring effective communication. While serving as a project manager, I actively

participated in other project tasks, as the workload was distributed equally among team

members with firm deadlines.

The second project manager took on the product owner role and was responsible for re-

quirement elicitation and prioritisation. In Scrum, requirements elicitation is accom-

plished through the product backlog, which contains a comprehensive list of work items

for the project. The product owner and the development team collaborated in analysing,

specifying, and validating the requirements. At the beginning of each development itera-

tion, the team and product owner jointly decided on the backlog items to be implemented

based on the team's performance. After the iteration, the product owner conducted prod-

uct validation, including assessing the product's behaviour.

34

Quality Management ensures that project deliverables meet the required standards and

specifications. It involves defining quality objectives, implementing quality assurance

processes, and conducting quality control activities.

Stakeholder Management ensures that industry clients, who are the source of the require-

ments in student projects, are identified, and their requirements are elicited. Project teams

must proactively identify and engage with stakeholders, understanding their needs and

expectations and managing their involvement throughout the project lifecycle. Finally,

project closure formalises project completion, conducting project reviews, documenting

lessons learned, and celebrating project achievements. It involves ensuring that all project

deliverables are completed and handed over appropriately.

6.6 Requirements Elicitation in Student Projects

The project team meets with the client at a visiting meeting to build a relationship and

acquire information. During this meeting, the team familiarises themselves with the client

involved in the product development process. Additionally, the team makes necessary

arrangements to elicit requirements from the client and discuss his availability in meetings

and throughout the development process.

This was followed by a project plan inspection meeting, a collaborative session in which

the project team, supervisor, clients, and relevant parties come together to review and

assess the project plan. The objective of the meeting is to ensure that the project plan is

comprehensive, realistic, and aligned with the project goals and objectives. The primary

purpose of the project plan inspection meeting is to identify potential issues, gaps, or areas

for improvement within the project plan before the execution phase. The topics discussed

during the meeting include plan review, stakeholder input, risk assessment, alignment of

objectives, quality assurance, documentation, and updates that must be addressed before

the project's execution phase. Identifying and interacting with industry clients is common

among project teams when eliciting requirements. The involvement of clients plays a vital

role in the success of a project. Also, during the eTandem project, our team used inter-

views to elicit requirements. The selection of elicitation techniques often depends on the

project's unique characteristics. Each project team chooses techniques that align with their

specific project requirements. While interviews are popular among many teams, it is es-

sential to note that other project teams may opt for techniques other than interviews. The

guidelines explicitly state that project teams can choose any tool suitable for their pro-

jects, including requirement elicitation techniques. Additionally, research suggests that

35

interviews are particularly effective in agile development, as direct communication with

customers helps prevent misunderstandings.

Furthermore, our team prioritised requirements in order to meet client needs. The reasons

for prioritising requirements may be based on their value, aiming to deliver maximum

business value and the highest-value features early in development. Project teams often

use Trello software to manage the product backlog. The backlog items of interest are

selected based on their value, priority, and necessity.

These items are then converted into tasks and estimated, resulting in the creation of the

sprint backlog. The sprint backlog comprises the set of backlog items that will be com-

pleted during the upcoming sprint.

A sprint represents an actual iteration in the scrum process, typically lasting 2 to 4 weeks.

While daily scrum meetings are critical to the scrum, many project teams skip them due

to conflicts with students’ class schedules. Instead, these teams often schedule flexible

weekly meetings to discuss project progress. However, project teams that conduct daily

scrum meetings typically allocate around fifty minutes for the team to synchronise. Pro-

ject accomplishments since the last meeting are discussed and shared among team mem-

bers during these meetings. A to-do list is created for the upcoming meetings, which in-

cludes discussing obstacles analysis and providing solutions.

Another vital meeting, the client review meeting, is conducted after each iteration. This

meeting involves the project team, industry client, and project supervisor. The purpose of

the meeting is to showcase the new software and gather feedback that can inform the next

sprint. This feedback loop continues throughout the project’s lifecycle.

At the end of each 2- to 4-week cycle, a final review meeting and retrospective take place.

The sprint review is typically a two-hour session packed with various activities. During

this meeting, the product owner evaluates the achievements of the specific sprint, and the

team engages in discussions regarding any issues encountered and resolved. Furthermore,

a demonstration of the deliverable is typically provided.

Immediately following the sprint review, the retrospective meeting takes place. In this

session, the project team deliberately reflects on their performance and seeks ways to

improve their agile practices in subsequent sprints. Each team member is encouraged to

identify specific actions that the team should continue, stop, and start doing, fostering a

culture of continuous improvement. As the project progresses and understanding deepens,

new requirements may emerge. Regular prioritisation throughout the development lifecy-

cle ensures that priorities remain current and aligned with the project objectives.

36

Models capture essential elements such as user interfaces, data flows, system compo-

nents, and process workflows of a system. The project team employs modelling tech-

niques to transform requirements into visual representations that reflect the desired prod-

uct. This step is vital because it determines whether the system will succeed or fail in

meeting the client's needs. Various tools are used by the project team during the design

process, facilitating constant interaction, particularly between the UX designer and the

client. The client’s validation of the design in progress is essential, and any clarification

required by the designer is addressed through direct contact.

Throughout the implementation of the eTandem design, the designer maintained commu-

nication with the clients through various channels, including emails, telephone calls, Mi-

crosoft Teams, and Slack. The choice of communication tool depended on the type of

information needed by the design team and the client’s preferences.

Our project team utilised different tools to facilitate the design process, starting with cre-

ating quick sketch models of the eTandem app using wireframes and prototypes.

Wireframes and prototypes allowed the team to represent the eTandem user interface and

functionality visually. This enabled the project team and clients to validate requirements

early in development and ensure alignment between expectations and system design.

37

7 RESULT

This chapter summarises the results obtained and addresses the research questions. The

challenges faced in eliciting requirements in student projects are presented in Table 8,

categorised into four main categories: requirements, communication, stakeholders and

developers. The challenges are further classified under the respective criteria. It was

found that requirements-related issues play a significant role in the elicitation process for

student projects. These challenges have been identified through previous studies and are

crucial to address to overcome problems during requirements elicitation in student pro-

jects.

Research Question 1: What are the challenges of eliciting requirements in student pro-

jects?

The challenges in eliciting requirements in student projects often arise due to the com-

plexity and precision required in information needs, as well as the skill set of the devel-

opers, which may be lower than expected. Effective communication among the develop-

ment team is crucial for successful requirements elicitation. However, challenges may

arise regarding presenting information, language barriers, and cultural variations due to

the diverse composition of students involved in the projects (Dar et al., 2018b; Sajjad &

Hanif, 2010).

Research Question 2: What elicitation techniques are suitable for student projects?

To address the second research question, this study investigated the 17 most common

elicitation techniques used in student projects, as presented in Table 5, Table 6, and Table

7. These tables comprehensively describe each technique, including its contribution to

the project, strengths and weaknesses, and the current state of practice. Additionally, a

case study was conducted to explore the application of these techniques in the context of

student projects.

The data used in this study was collected during the software engineering project in the

fall of 2019. Project teams demonstrate diversity in their elicitation techniques, influenced

by their experience and specific project requirements. The selection of an elicitation tech-

nique is often guided by its compatibility with the employed development process. For

example, project teams prefer the interview technique in agile development processes due

to its interactive and collaborative nature, facilitating effective client interaction. Further-

more, in some instances, project teams may opt to combine multiple techniques based on

the nature and complexity of the project.

38

7.1 Challenges Students Faced in Eliciting Requirements.

The primary source of requirements for student projects is the client. Project teams em-

ploy different approaches to elicit requirements. Some teams receive features directly

from the client, which means that requirements have already been elicited upfront, and

there is no need for further requirement elicitation. However, these teams may seek clar-

ification from the client if any features are unclear. On the other hand, some teams ac-

tively engage in requirement elicitation by collecting requirements directly from the cli-

ent.

In the personal report, each student was asked whether they had participated in require-

ment elicitation and if they encountered any challenges during the process. Project team

members provided individual responses in text format, which were then collated and

mapped into categories. The results are presented in Figure 1. Based on the chart, the

challenges were categorised into criteria, with the most significant challenges being re-

lated to requirements, followed by communication, stakeholder, and developer. These

four challenges form the main criteria that must be addressed: requirements, communica-

tion, stakeholder involvement, and developer and personalities involved.

 Figure 1. Challenges in Eliciting Requirements in Student Projects

5

9

5

COMMUNICATION REQUIREMENTS STAKEHOLDER AND DEVELOPER

ch
al

le
n

ge
s

Criteria

Challenges Students Faced in Eliciting
Requirements

39

The requirements quality attributes include prioritising, scheduling, traceability, ambigu-

ity, unclear information, unstable requirements, and scope change. These challenges are

specifically related to managing and addressing requirements throughout the project

lifecycle. The communication quality attributes encompass presentation skills, medium

of communication, a tool of communication, cultural and language barriers, and lack of

communication skills. These challenges pertain to effective communication and collabo-

ration among team members and stakeholders. The stakeholder and developer quality at-

tributes involve stakeholder identification, student dropout, ambiguous conflicts among

stakeholders, and sharing users in the requirements elicitation process. Finally, the per-

sonality quality attributes involve challenges related to a lack of cooperation and partici-

pation, a loss of control over work burden, and an inability to deal with conflicts.

7.2 Correlation with Project Reports

The challenges reported by project teams in their project reports align with the main chal-

lenges identified in the literature review in Chapter 5. The project teams' experiences

confirm the prevalence of challenges related to requirements, communication, stake-

holder involvement, and developers and personalities in the context of requirement elici-

tation.

The challenges of prioritising requirements arise when the client desires to implement all

requirements, but the project team must decide which to prioritise. This challenge often

stems from limited resources and time constraints. It requires careful consideration of the

project objectives, stakeholder needs, and available resources to address the most critical

requirements.

Problems in planning and estimating the project scope can lead to challenges in schedul-

ing. In student projects, where team members may need more experience and unfamiliar-

ity with the content and resources, accurately estimating project timelines becomes chal-

lenging. Lack of proper scheduling can result in delays, poor resource allocation, and

difficulties meeting project milestones.

When requirements are written at a general level or need more detail, it can lead to in-

complete specifications. This challenge hinders the developer’s understanding of what is

required and can result in misinterpretations and errors during implementation. It is es-

sential to ensure that requirements are clearly and precisely defined to avoid ambiguity

and confusion.

40

Student projects often involve intricate functionality, integration with existing systems,

or advanced technical constraints. Dealing with such complexities presents challenges in

understanding the domain, effective collaboration among team members, and breaking

down complex tasks into manageable components. When there is a lack of clarity in var-

ious interpretations of requirements, ambiguity results. Communication challenges and

clear information contribute to clarity in requirements elicitation. Resolving ambiguity is

crucial to ensure all stakeholders understand the requirements, minimising misunder-

standings, and preventing rework during development.

Unclear information adds to the challenge of requirements elicitation by creating confu-

sion and hindering effective communication. When the project team needs more clarity

in the information provided by clients or stakeholders, it becomes easier to understand

their needs and expectations fully. Clear and precise information guides the requirements

elicitation process and ensures successful project delivery.

Unstable requirements and scope changes can be disruptive, leading to rework, delays,

and challenges in managing project resources. Effective change management practices,

such as regular communication, documentation, and stakeholder involvement, are crucial

to address these challenges and maintain project stability.

To mitigate these challenges, project teams must adopt practical requirements engineer-

ing practices. This includes establishing clear communication channels, conducting thor-

ough analysis and documentation of requirements, involving stakeholders throughout the

process, managing change effectively, and promoting collaboration and cooperation

among team members. By addressing these challenges proactively, student projects can

enhance the requirements elicitation process, ensure a shared understanding among stake-

holders, and improve project outcomes.

In the middle of each project, the students were asked to identify the requirements elici-

tation methods used in their respective projects. With numerous project teams participat-

ing, each team listed their specific elicitation techniques, and these answers were recorded

in text format. This research investigates the 17 most common elicitation techniques em-

ployed in student projects, as presented in Table 5, Table 6 and Table 7. These tables

comprehensively describe each technique, including its contribution to the project,

strengths and weaknesses, and the current state of practice.

Project teams exhibit diversity in their elicitation techniques, influenced by their experi-

ence and project requirements. Additionally, selecting an elicitation technique may be

guided by its compatibility with the development process employed. For instance, in agile

41

development processes, project teams often favour the interview technique due to its in-

teractive and collaborative nature, facilitating effective client interaction. Additionally, in

some instances, project teams may choose to combine multiple techniques, depending on

the nature and complexity of the project.

42

8 CONCLUSION

Software development projects in industry or student settings are complex endeavours.

Among the challenges experienced in software projects, requirement engineering stands

out as a crucial issue that can significantly affect a project's success or failure. The re-

quirement engineering process involves complex and error-prone activities that must be

undertaken at the project's outset. One of these critical activities is the identification of

stakeholders and their requirements before commencing software development. How-

ever, identifying the stakeholders and their requirements poses a daunting task to project

teams. The challenges in eliciting requirements in student projects often arise due to the

complexity and precision required in information needs, as well as the skill set of the

developers, which may be lower than expected. Effective communication among the de-

velopment team is crucial for successful requirements elicitation. However, challenges

may arise in presenting information, language barriers, and cultural variations due to the

diverse composition of students involved in the projects.

Despite these challenges, it is noteworthy that students in their projects navigate and over-

come the difficulties associated with requirement elicitation. This observation under-

scores the students' ability to understand and effectively address challenges, leading to

remarkable project success. Requirements elicitation and mobile app development have

received considerable attention in literature and industry, equipping students with valua-

ble knowledge and skills that can benefit them both during their academic studies and in

their professional work.

This study aimed to investigate requirements elicitation techniques in student projects.

The study sought to identify suitable methods for requirements elicitation, explore the

challenges encountered in the process, investigate the 17 most common elicitation tech-

niques employed in student projects, and provide a comprehensive description of each

technique, including its contribution to the software projects, strengths and weaknesses,

and the current state of practice. Additionally, a case study was conducted to explore the

application of these techniques in the context of student projects. The data was collected

during the software engineering project in the fall of 2019.

The findings of this study reveal that challenges in student projects primarily revolve

around requirements, communication, stakeholders, and team dynamics. The most com-

monly used requirement elicitation techniques in student projects are interviews. Others

include workshops, prototypes and questionnaires, brainstorming, focus groups, use

43

cases, Joint Application Development (JAD), requirements reuse, document analysis, and

card sorting.

Project teams exhibit diversity in their elicitation techniques, influenced by their experi-

ence and project requirements. Additionally, selecting an elicitation technique may be

guided by its compatibility with the development process employed. For instance, in Ag-

ile development processes, project teams often favour the interview technique due to its

interactive and collaborative nature, facilitating effectiveness.

This study has contributed to identifying numerous requirements elicitation techniques

suitable for student projects, shedding light on the associated challenges. This knowledge

will have long-term benefits for students as they can apply these techniques in various

capacities throughout their careers. Furthermore, by gaining insights into the challenges

of eliciting requirements in student projects, students can avoid potential pitfalls and mit-

igate costs that may arise during project execution.

Further research should be conducted to explore the impact of students’ autonomy in se-

lecting elicitation techniques in software projects. This would provide valuable insights

into the effectiveness of different approaches and inform decision-making processes for

instructors and staff.

44

REFERENCES

ACM Computing Curricula Task Force (Ed.). (2013). Computer Science Curricula 2013:

Curriculum Guidelines for Undergraduate Degree Programs in Computer Sci-

ence. ACM, Inc. https://doi.org/10.1145/2534860

Alam, S., Nazir, S., Asim, S., & Amr, Dr. (2017). Impact and Challenges of Requirement

Engineering in Agile Methodologies: A Systematic Review. International Jour-

nal of Advanced Computer Science and Applications, 8(4).

https://doi.org/10.14569/IJACSA.2017.080455

Aldabbus, D. S. (2018). PROJECT-BASED LEARNING: IMPLEMENTATION &

CHALLENGES. International Journal of Education.

Al-Zawahreh, H., & Almakadmeh, K. (2015). Procedural Model of Requirements Elici-

tation Techniques. Proceedings of the International Conference on Intelligent In-

formation Processing, Security and Advanced Communication, 1–6.

https://doi.org/10.1145/2816839.2816902

Ang, J. K., Leong, S. B., Lee, C. F., & Yusof, U. K. (2011). Requirement engineering

techniques in developing expert systems. 2011 IEEE Symposium on Computers &

Informatics, 640–645. https://doi.org/10.1109/ISCI.2011.5958991

Babb, J., Longenecker, H. E., Baugh, J., & Feinstein, D. (2014). Confronting the Issues

of Programming In Information Systems Curricula: The Goal is Success.

Systematic Literature Review. International Journal of Information Technology Project

Management, 12(3), 1–18. https://doi.org/10.4018/IJITPM.2021070101

Bahurmuz, N., Alnajim, R., Al-Mutairi, R., Al-Shingiti, Z., Saleem, F., & Fakieh, B.

(2021b). Requirements Elicitation Techniques in Mobile Applications: A

45

Systematic Literature Review. International Journal of Information Technology

Project Management, 12(3), 1–18. https://doi.org/10.4018/IJITPM.2021070101

Behdinan, K., Pop-Iliev, R., & Foster, J. (2015). WHAT CONSTITUTES A MULTIDIS-

CIPLINARY CAPSTONE DESIGN COURSE? BEST PRACTICES, SUC-

CESSES AND CHALLENGES. Proceedings of the Canadian Engineering Edu-

cation Association (CEEA). https://doi.org/10.24908/pceea.v0i0.5940

Berntsson Svensson, R., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., & Feldt,

R. (2012). Quality Requirements in Industrial Practice—An Extended Interview

Study at Eleven Companies. IEEE Transactions on Software Engineering, 38(4),

923–935. https://doi.org/10.1109/TSE.2011.47

Berre, A. J., Huang, S., Murad, H., & Alibakhsh, H. (2018). Teaching modelling for re-

quirements engineering and model-driven software development courses. Com-

puter Science Education, 28(1), 42–64.

https://doi.org/10.1080/08993408.2018.1479090

Bjarnason, E., Wnuk, K., & Regnell, B. (2011). Requirements are slipping through the

gaps — A case study on causes & effects of communication gaps in large-

scale software development. 2011 IEEE 19th International Requirements Engi-

neering Conference, 37–46. https://doi.org/10.1109/RE.2011.6051639

Boehm, B. W. (1991). Software risk management: Principles and practices. IEEE Soft-

ware, 8(1), 32–41. https://doi.org/10.1109/52.62930

Bowen, G. A. (2009). Document Analysis as a Qualitative Research Method. Qualitative

Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027

Canedo, E. D., Santos, G. A., & Leite, L. L. (2018). An Assessment of the Teaching-

Learning Methodologies Used in the Introductory Programming Courses at a

46

Brazilian University. Informatics in Education, 17(1), 45–59.

https://doi.org/10.15388/infedu.2018.03

Carrizo, D., Dieste, O., & Juristo, N. (2014a). Systematizing requirements elicitation

technique selection. Information and Software Technology, 56(6), 644–669.

https://doi.org/10.1016/j.infsof.2014.01.009

Cheng, Y.-P., & Lin, J. M.-C. (2010). A Constrained and Guided Approach for Managing

Software Engineering Course Projects. IEEE Transactions on Education, 53(3),

430–436. https://doi.org/10.1109/TE.2009.2026738

Cico, O., Jaccheri, L., Nguyen-Duc, A., & Zhang, H. (2021). Exploring the intersection

between software industry and Software Engineering education—A systematic

mapping of Software Engineering Trends. Journal of Systems and Software, 172,

110736. https://doi.org/10.1016/j.jss.2020.110736

Clear, T., Co-Chair, W., Goldweber, M., Leidig, P. M., & Scott, K. (2001). Resources for

Instructors of Capstone Courses in Computing. 93–113.

Corbridge, C., Rugg, G., Major, N. P., Shadbolt, N. R., & Burton, A. M. (1994). Ladder-

ing: Technique and tool use in knowledge acquisition. Knowledge Acquisition,

6(3), 315–341. https://doi.org/10.1006/knac.1994.1016

Coughlan, J., & Macredie, R. D. (2002a). Effective Communication in Requirements

Elicitation: A Comparison of Methodologies. Requirements Engineering, 7(2),

47–60. https://doi.org/10.1007/s007660200004

Dar, H., Lali, M. I., Ashraf, H., Ramzan, M., Amjad, T., & Shahzad, B. (2018). A Sys-

tematic Study on Software Requirements Elicitation Techniques and its Chal-

lenges in Mobile Application Development. IEEE Access, 6, 63859–63867.

https://doi.org/10.1109/ACCESS.2018.2874981

47

Darin, T. G. R., Carneiro, N., Paiva, J. O. V., Santos, I. S., & Andrade, R. M. C. (2020).

Contextual Requirements Elicitation through the Combination of Interviews, Sce-

narios and Visual Artifacts. 19th Brazilian Symposium on Software Quality, 1–

10. https://doi.org/10.1145/3439961.3439990

Davis, A., Dieste, O., Hickey, A., Juristo, N., & Moreno, A. M. (2006). Effectiveness of

Requirements Elicitation Techniques: Empirical Results Derived from a System-

atic Review. 14th IEEE International Requirements Engineering Conference

(RE’06), pp. 179–188. https://doi.org/10.1109/RE.2006.17

Davis, A. M. (1992). Operational prototyping: A new development approach. IEEE Soft-

ware, 9(5), 70–78. https://doi.org/10.1109/52.156899

Dehlinger, J., & Dixon, J. (2011). Mobile Application Software Engineering: Challenges

and Research Directions. 5.

Diefenbach, S., Christoforakos, L., Maisch, B., & Kohler, K. (2019). The State of Proto-

typing Practice in the Industrial Setting: Potential, Challenges and Implications.

Proceedings of the Design Society: International Conference on Engineering De-

sign, 1(1), 1703–1712. https://doi.org/10.1017/dsi.2019.176

Dyba, T., Maiden, N., & Glass, R. (2014). The Reflective Software Engineer: Reflective

Practice. IEEE Software, 31(4), 32–36. https://doi.org/10.1109/MS.2014.97

Eveleens, J. L., & Verhoef, C. (2010). The rise and fall of the Chaos report figures. IEEE

Software, 27(1), 30–36. https://doi.org/10.1109/MS.2009.154

Fan, X. (2018). Orchestrating Agile Sprint Reviews in Undergraduate Capstone Projects.

2018 IEEE Frontiers in Education Conference (FIE), 1–8.

https://doi.org/10.1109/FIE.2018.8658435

48

Fernandes, S. R. G. (2014). Preparing Graduates for Professional Practice: Findings from

a Case Study of Project-based Learning (PBL). Procedia - Social and Behavioral

Sciences, 139, 219–226. https://doi.org/10.1016/j.sbspro.2014.08.064

Fricker, S. A., & Schneider, K. (Eds.). (2015). Requirements Engineering: Foundation

for Software Quality: 21st International Working Conference, REFSQ 2015, Es-

sen, Germany, March 23-26, 2015. Proceedings (Vol. 9013). Springer Interna-

tional Publishing. https://doi.org/10.1007/978-3-319-16101-3

Fuentes-Fernández, R., Gómez-Sanz, J. J., & Pavón, J. (2010). Understanding the human

context in requirements elicitation. Requirements Engineering, 15(3), 267–283.

https://doi.org/10.1007/s00766-009-0087-7

García-López, D., Segura-Morales, M., & Loza-Aguirre, E. (2020). Improving the quality

and quantity of functional and non‐functional requirements obtained during re-

quirements elicitation stage for the development of e‐commerce mobile applica-

tions: An alternative reference process model. IET Software, 14(2), 148–158.

https://doi.org/10.1049/iet-sen.2018.5443

Glass, R. L., & Vessey, I. (1995). Contemporary application-domain taxonomies. IEEE

Software, 12(4), 63–76. https://doi.org/10.1109/52.391837

Grunert, K. G., & Bech-Larsen, T. (2005). Explaining choice option attractiveness by

beliefs elicited by the laddering method. Journal of Economic Psychology, 26(2),

223–241. https://doi.org/10.1016/j.joep.2004.04.002

Herbert, N. (2018). Reflections on 17 years of ICT Capstone Project Coordination: Ef-

fective Strategies for Managing Clients, Teams and Assessment. Proceedings of

the 49th ACM Technical Symposium on Computer Science Education, 215–220.

https://doi.org/10.1145/3159450.3159584

49

Hickey, A. M., & Davis, A. M. (2003). Elicitation technique selection: How do experts

do it? Journal of Lightwave Technology, 169–178.

https://doi.org/10.1109/ICRE.2003.1232748

Holtzblatt, K., & Beyer, H. (1993). Making customer-centered design work for teams.

Communications of the ACM, 36(10), 92–103.

https://doi.org/10.1145/163430.164050

Irshad, M., Petersen, K., & Poulding, S. (2018). A systematic literature review of software

requirements reuse approaches. Information and Software Technology, pp. 93,

223–245. https://doi.org/10.1016/j.infsof.2017.09.009

Jaramillo Franco, A. (2015). Requirements elicitation approaches: A systematic review.

2015 IEEE 9th International Conference on Research Challenges in Information

Science (RCIS), 520–521. https://doi.org/10.1109/RCIS.2015.7128917

Jensen, L. S., Özkil, A. G., & Mortensen, N. H. (n.d.). PROTOTYPES IN ENGINEERING

DESIGN: DEFINITIONS AND STRATEGIES.

Jiang, L., Eberlein, A., Far, B. H., & Mousavi, M. (2008). A methodology for the selection

of requirements engineering techniques. Software & Systems Modeling, 7(3),

303–328. https://doi.org/10.1007/s10270-007-0055-y

Kaleel, S. B., & Harishankar, S. (n.d.). Applying Agile Methodology in Mobile Software

Engineering: Android Application Development and its Challenges.

Kasirun, Z. M., & Salim, S. S. (2008). Focus Group Discussion Model for Requirements

Elicitation Activity. 2008 International Conference on Computer and Electrical

Engineering, 101–105. https://doi.org/10.1109/ICCEE.2008.65

Kaul, S., & Stone, W. (2015). Learning Outcomes of a Junior-Level Project-Based Learn-

ing (PBL) Course: Preparation for Capstone. 2015 ASEE Annual Conference and

Exposition Proceedings, 26.1074.1-26.1074.14. https://doi.org/10.18260/p.24411

50

Knobloch, J., Kaltenbach, J., & Bruegge, B. (2018). Increasing student engagement in

higher education using a context-aware Q&A teaching framework. Proceedings

of the 40th International Conference on Software Engineering: Software Engi-

neering Education and Training, 136–145.

https://doi.org/10.1145/3183377.3183389

Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of

the literature. Improving Schools, 19(3), 267–277.

https://doi.org/10.1177/1365480216659733

Kulkarni, R., & Padmanabham, D. P. (2012a). Using Contextual Inquiry as a subset of

Requirement Gathering Process. 3.

Laplante, P. A. (2017). Requirements engineering for software and systems. Auerbach

Publications.

Laporti, V., Borges, M. R. S., & Braganholo, V. (2009). Athena: A collaborative approach

to requirements elicitation. Computers in Industry, 60(6), 367–380.

https://doi.org/10.1016/j.compind.2009.02.011

Leffingwell, D., & Widrig, D. (2000). Managing software requirements: A unified ap-

proach. Addison-Wesley.

Li Jiang, Eberlein, A., & Far, B. H. (2004). A methodology for requirements engineering

process development. Proceedings. 11th IEEE International Conference and

Workshop on the Engineering of Computer-Based Systems, 2004., 263–272.

https://doi.org/10.1109/ECBS.2004.1316708

Liu, L., Li, T., & Peng, F. (2010). Why Requirements Engineering Fails: A Survey Report

from China. 2010 18th IEEE International Requirements Engineering Confer-

ence, 317–322. https://doi.org/10.1109/RE.2010.45

51

Maiden, N. A. M., & Rugg, G. (1996). ACRE: Selecting methods for requirements ac-

quisition. Software Engineering Journal, 11(3), 183.

https://doi.org/10.1049/sej.1996.0024

Majanoja, A.-M., & Vasankari, T. (2018). Reflections on Teaching Software Engineering

Capstone Course: Proceedings of the 10th International Conference on Computer

Supported Education, 68–77. https://doi.org/10.5220/0006665600680077

Major, C. H., & Palmer, B. (n.d.). Academic Exchange Quarterly Spring 2001: Volume

5, Issue.

Mäkiaho, P., Poranen, T., & Zhang, Z. (2017). Requirements Management in Students’

Software Development Projects. Proceedings of the 18th International Confer-

ence on Computer Systems and Technologies, 203–210.

https://doi.org/10.1145/3134302.3134340

Mann, S., & Smith, L. (n.d.). Role of the development methodology and prototyping

within capstone projects. 2004, pp. 119–128.

Marques, M. (2015). A Prescriptive Software Process for Academic Scenarios. Proceed-

ings of the Eleventh Annual International Conference on International Computing

Education Research, pp. 265–266. https://doi.org/10.1145/2787622.2787743

Marques, M., Ochoa, S. F., Bastarrica, M. C., & Gutierrez, F. J. (2018). Enhancing the

Student Learning Experience in Software Engineering Project Courses. IEEE

Transactions on Education, 61(1), 63–73.

https://doi.org/10.1109/TE.2017.2742989

Marques, M. R., Quispe, A., & Ochoa, S. F. (2014a). A systematic mapping study on

practical approaches to teaching software engineering. 2014 IEEE Frontiers in

Education Conference (FIE) Proceedings, 1–8.

https://doi.org/10.1109/FIE.2014.7044277

52

Morais, P., Ferreira, M. J., & Veloso, B. (2021a). Improving Student Engagement With

Project-Based Learning: A Case Study in Software Engineering. IEEE Revista

Iberoamericana de Tecnologias Del Aprendizaje, 16(1), 21–28.

https://doi.org/10.1109/RITA.2021.3052677

Mushtaq, J. (2016). Different Requirements Gathering Techniques and Issues. 7(9).

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: A roadmap. Proceed-

ings of the Conference on the Future of Software Engineering, 35–46.

Ouhbi, S., & Pombo, N. (2020). Software Engineering Education: Challenges and Per-

spectives. 2020 IEEE Global Engineering Education Conference (EDUCON),

202–209. https://doi.org/10.1109/EDUCON45650.2020.9125353

Pacheco, C., García, I., & Reyes, M. (2018a). Requirements elicitation techniques: A sys-

tematic literature review based on the maturity of the techniques. IET Software,

12(4), 365–378. https://doi.org/10.1049/iet-sen.2017.0144

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements engineering and agile soft-

ware development. WET ICE 2003. Proceedings. Twelfth IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-

prises, 2003., 308–313. https://doi.org/10.1109/ENABL.2003.1231428

Palomares, C., Franch, X., Quer, C., Chatzipetrou, P., López, L., & Gorschek, T. (2021).

The state-of-practice in requirements elicitation: An extended interview study at

12 companies. Requirements Engineering, 26(2), 273–299.

https://doi.org/10.1007/s00766-020-00345-x

Pitula, K. (2011). On requirements elicitation for software projects in ICT for develop-

ment. Library and Archives Canada = Bibliothèque et Archives Canada.

Project Management Institute (Ed.). (2013). A guide to the project management body of

knowledge (PMBOK guide) (Fifth edition). Project Management Institute, Inc.

53

Quintanilla Portugal, R. L., Engiel, P., Pivatelli, J., & do Prado Leite, J. C. S. (2016).

Facing the challenges of teaching requirements engineering. Proceedings of the

38th International Conference on Software Engineering Companion, 461–470.

https://doi.org/10.1145/2889160.2889200

Regnell, B., Kimbler, K., & Wesslen, A. (1995). Improving the use case driven approach

to requirements engineering. Proceedings of 1995 IEEE International Symposium

on Requirements Engineering (RE’95), 40–47.

https://doi.org/10.1109/ISRE.1995.512544

Sabariah, M. K., Santosa, P. I., & Ferdiana, R. (2018). Selecting elicitation technique on

requirements elicitation process: A case study on education application for chil-

dren. IOP Conference Series: Materials Science and Engineering, 434, 012056.

https://doi.org/10.1088/1757-899X/434/1/012056

Sajjad, U., & Hanif, M. Q. (n.d.). Issues and Challenges of Requirement Elicitation in

Large Web Projects. 60.

Shams-Ul-Arif, M., Khan, M. Q., & Gahyyur, S. A. K. (n.d.). REQUIREMENTS ENGI-

NEERING PROCESSES, TOOLS/TECHNOLOGIES, & METHODOLOGIES.

Sharma, S., & Pandey, S. K. (2014). Requirements elicitation: Issues and challenges.

2014 International Conference on Computing for Sustainable Global Develop-

ment (INDIACom), pp. 151–155. https://doi.org/10.1109/India-

Com.2014.6828119

Sivaloganathan, S. (2004). Influencing factors from the literature for engineering educa-

tion.

Sommerville, I. (2007). Software engineering (8th ed). Addison-Wesley.

54

Stewart, D. W., & Myers, J. H. (1998). Segmentation and Positioning for Strategic Mar-

keting Decisions. Journal of Marketing Research, 35(1), 128.

https://doi.org/10.2307/3151936

Svensson, R. B., Host, M., & Regnell, B. (2010). Managing Quality Requirements: A

Systematic Review. 2010 36th EUROMICRO Conference on Software Engineer-

ing and Advanced Applications, 261–268. https://doi.org/10.1109/SEAA.2010.55

Tenhunen, S., Männistö, T., Luukkainen, M., & Ihantola, P. (2023). A systematic litera-

ture review of capstone courses in software engineering (arXiv:2301.03554).

arXiv. http://arxiv.org/abs/2301.03554

Ylönen, I. (2021). User requirements elicitation method comparison for a system up-

grade.

Ul Amin, T., Shahzad, B., Fazal-e-Amin, & Shoaib, M. (2021). Economical Require-

ments Elicitation Techniques During COVID-19: A Systematic Literature Re-

view. Computers, Materials & Continua, 67(2), 2665–2680.

https://doi.org/10.32604/cmc.2021.013263

Valencia, D., Vizcaino, A., Soto, J. P., & Piattini, M. (2016). A Serious Game to Improve

Students’ Skills in Global Software Development: Proceedings of the 8th Inter-

national Conference on Computer Supported Education, 470–475.

https://doi.org/10.5220/0005895904700475

Vanhanen, J., Lehtinen, T. O. A., & Lassenius, C. (2018a). Software engineering prob-

lems and their relationship to perceived learning and customer satisfaction on a

software capstone project. Journal of Systems and Software, 137, 50–66.

https://doi.org/10.1016/j.jss.2017.11.021

55

Weissberger, I. (2015). INCORPORATING SOFTWARE MAINTENANCE IN A SEN-

IOR CAPSTONE PROJECT. International Journal of Cyber Society and Educa-

tion, 8(1), 31–38. https://doi.org/10.7903/ijcse.1238

Yousuf, M., & M.Asger, M. A. (2015). Comparison of Various Requirements Elicitation

Techniques. International Journal of Computer Applications, 116(4), 8–15.

https://doi.org/10.5120/20322-2408

Yu, L. (Ed.). (2014). Overcoming Challenges in Software Engineering Education: Deliv-

ering Non-Technical Knowledge and Skills. IGI Global.

https://doi.org/10.4018/978-1-4666-5800-4

Zhang, X., Dai, H., Hu, T., & Li, X. (2010). SOFTWARE DEVELOPMENT METHOD-

OLOGIES, TRENDS, AND IMPLICATIONS. 7.

Zhang, Z. (2007b). Effective requirements development-A- A comparison of require-

ments elicitation techniques. Software Quality Management XV: Software Quality

in the Knowledge Society, E. Berki, J. Nummenmaa, I. Sunley, M. Ross and G.

Staples (Ed.) British Computer Society, pp. 225–240.

Zowghi, D., & Coulin, C. (2005). Requirements Elicitation: A Survey of Techniques,

Approaches, and Tools. In A. Aurum & C. Wohlin (Eds.), Engineering and Man-

aging Software Requirements (pp. 19–46). Springer-Verlag.

https://doi.org/10.1007/3-540-28244-0_2

