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ABSTRACT

Veera Kallio: Sky Segmentation of Fisheye Images for Identifying Non-Line-of-Sight Satellites
Master of Science Thesis
Tampere University
Master’s Degree Programme in Electrical Engineering
June 2023

GNSS (global navigation satellite system) receivers are often deployed in environments where
some satellite signals are blocked by buildings and other obstructions. This non-line-of-sight sit-
uation is challenging for GNSS positioning because the signals can still be received via indirect
paths, which causes errors to the calculated position. Knowledge of the blocked satellites would
help in mitigating these errors.

A sky-pointing fisheye camera can be used to gather information of the surroundings of the
receiver in order to detect non-line-of-sight situations. Using semantic segmentation of the sky,
the image can be segmented into line-of-sight and non-line-of-sight regions. By projecting the
satellite locations onto the image, each satellite can be classified according to the segmentation.

The objective of this thesis is to study the use of neural networks in segmenting the sky from
fisheye images and to classify the possibly visible satellites as line-of-sight and non-line-of-sight
based on the segmentation. Several popular segmentation networks were trained and evaluated
to compare their performance on the task. A manually labeled, small dataset was prepared,
containing images with different weather conditions and environments, including tunnels. The
results were validated on a larger test set using GNSS data.

The study shows that neural networks can segment the sky from fisheye images very precisely,
reaching almost 99% intersection over union and over 99% F1-score. The best-performing model
was a U-Net with EfficientNetB6 encoder, but there was little difference between the tested models.
The satellite classification performed after the segmentation was also accurate and in line with the
signal strengths. It can be concluded on the basis of the study that fisheye sky segmentation with
neural networks is an effective and useful method for line-of-sight detection.

Keywords: semantic segmentation, convolutional neural network, GNSS, sky detection, line-of-
sight classification, fisheye camera, deep learning

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Veera Kallio: Taivaan segmentointi kalansilmäkuvista epäsuoran näköyhteyden satelliittien tunnis-
tamiseen
Diplomityö
Tampereen yliopisto
Sähkötekniikan DI-ohjelma
Kesäkuu 2023

GNSS-vastaanottimia (engl. global navigation satellite system) käytetään usein ympäristöis-
sä, joissa joidenkin satelliittisignaalien reitti estyy rakennusten tai muiden esteiden takia. Tällainen
epäsuoran näköyhteyden tilanne on haastava GNSS-paikannuksessa, koska signaali saatetaan
silti vastaanottaa epäsuoraa reittiä pitkin, mikä aiheuttaa virheitä laskettuun sijaintiin. Tieto este-
tyistä satelliiteista auttaisi vähentämään näitä virheitä.

Taivaalle suunnattua kalansilmäkameraa voidaan käyttää keräämään tietoa vastaanottimen
ympäristöstä, jotta epäsuoran näköyhteyden tilanteet voitaisiin havaita. Taivaan semanttisen seg-
mentoinnin avulla kuva voidaan jakaa suoran ja epäsuoran näköyhteyden alueisiin. Projisoimalla
satelliittien sijainnit kuvaan kukin satelliitti voidaan luokitella segmentoinnin mukaisesti.

Tämän työn tarkoituksena on tutkia neuroverkkojen käyttöä taivaan segmentointiin kalansilmä-
kuvista ja luokitella mahdollisesti nähtävissä olevat satelliitit suoran ja epäsuoran näköyhteyden
kategorioihin segmentoinnin perusteella. Useita suosittuja segmentointineuroverkkoja opetettiin ja
testattiin, jotta niiden suoriutumista tehtävässä voitiin verrata. Pieni joukko kuvia luokiteltiin manu-
aalisesti niin, että mukaan otettiin erilaisia sääolosuhteita ja ympäristöjä, mukaan lukien tunneleita.
Tulokset vahvistettiin suuremmalla määrällä testikuvia käyttäen GNSS-dataa.

Tutkimus osoittaa, että neuroverkot pystyvät segmentoimaan taivaan kalansilmäkuvista erittäin
tarkasti, saavuttaen lähes 99% IoU- (engl. intersection over union) ja yli 99% F1-tuloksen. Parhai-
ten suoriutuva malli oli U-Net EfficientNetB6 enkooderilla, mutta tutkittujen mallien välillä oli vain
vähän eroa. Segmentoinnin jälkeen suoritettu satelliittien luokittelu oli myös täsmällinen ja linjas-
sa signaalien voimakkuuden kanssa. Työn perusteella voidaan päätellä, että taivaan segmentointi
kalansilmäkuvista neuroverkoilla on tehokas ja hyödyllinen menetelmä suoran näköyhteyden tun-
nistamiseen.

Avainsanat: semanttinen segmentointi, konvoluutioneuroverkko, GNSS, taivaan tunnistaminen,
suoran näköyhteyden luokittelu, kalansilmäkamera, syväoppiminen

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

GNSS (global navigation satellite system) receivers are currently a core technology, en-

abling many applications by providing accurate and reliable position, velocity and time

information, all around the world. As an example, every smartphone and most cars have

GNSS positioning service available. Modern GNSS receivers are able to provide even

centimeter-level 3D positioning accuracy in real time [1]. With applications such as au-

tonomous driving, the accuracy and reliability of the positioning has become more and

more important.

The core of GNSS positioning is to calculate the receiver position, velocity, and time

(PVT) based on the propagation time of the received GNSS signals. Knowing the satellite

positions, the propagation time can be converted into distance, assuming a direct path.

Using at least four such measurements enables determining the receiver position and

time. However, GNSS receivers are increasingly deployed in urban environments and

other challenging conditions, where many satellites are behind buildings or other objects.

In that case, the direct line-of-sight (LOS) signal cannot always reach the receiver but the

signal can still be received via reflections. This poses a problem to GNSS positioning,

because the propagation path, and thus propagation time, is longer than for a direct

signal. [2]

To avoid errors due to using non-line-of-sight (NLOS) signals when computing the po-

sition of the receiver, it would be beneficial to know when the satellites are blocked by

objects. This would allow to either ignore, downweight, or even try to correct the NLOS

measurements. Multipath related problems, such as NLOS signals, are one of the biggest

remaining problems in GNSS-based positioning [2].

In this thesis, we study the use of a sky-pointing fisheye camera to continuously analyze

the receiver’s environment. With the setup, we can record the surroundings while driving a

car, and map the visible satellites into the image, as illustrated in Figure 1.1. The research

question that the thesis aims to answer is the following:

• Can NLOS satellites be reliably identified from fisheye videos with image process-

ing techniques?

Thus, the objective of the work is to find an accurate method for classifying the satellites

as LOS or NLOS using the visual information of the images. Semantic segmentation
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Figure 1.1. Example 3D scene and the resulting fisheye image when the camera is on
top of the car. The camera captures the whole field of view, and by projecting the satellites
onto the image, the NLOS signals (1 and 3) can be identified.

of the sky is a way to achieve this. While adding a camera to a GNSS setup to classify

satellites at runtime might not be unfeasible, this algorithm is intended to serve testing and

analyzing purposes. This is why we desire not to use additional data for the classification,

and therefore we also do not have restrictions on the inference time or the capacity of the

network.

We segment the fisheye images into LOS and NLOS areas using neural networks and

make the classification of each satellite based on the segmentation in the location of the

satellite. Neural networks are suitable for the task since they can utilize color, texture,

and semantic information to find representative features for accurate classification. In the

recent years, deep learning has become very powerful in segmentation, and convolutional

neural networks can segment images highly accurately, often outperforming traditional

image processing techniques, e.g. [3]. We train several popular semantic segmentation

networks on a hand-crafted dataset and compare their performance in order to find the

best one for this problem.

The thesis is structured as follows. Chapter 2 explains the background to better under-

stand the problem of NLOS in GNSS and how semantic segmentation works. Related

work on NLOS detection from fisheye sky images is presented as well. The segmentation

models and performance metrics used in this study are introduced in Chapter 3 and the

used dataset in Chapter 4. Chapter 5 covers the training and evaluation while Chapter 6

presents and discusses the obtained results. Finally, Chapter 7 summarizes the study

and discusses the meaning of the results as well as possible future work.
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2. BACKGROUND

NLOS and multipath propagation are fundamental problems in GNSS positioning, which

is why techniques to mitigate their effects are of high interest [1]. The use of a fisheye

camera for detecting the NLOS satellites is a know approach [1], and since fisheye cam-

eras are affordable and easily available nowadays, it is a sensible method to consider for

e.g., driving applications where the camera can be placed on top of the vehicle. While

driving, the surroundings can change rapidly so the line-of-sight status of the different

satellites constantly changes.

To detect the NLOS satellites from fisheye images, we need to know if the satellite position

within the image belongs to the sky area (LOS) or not (NLOS). Semantic segmentation

is a method to classify the image pixels into determined class labels such as sky. The

segmentation can be done in various ways, but the most popular and effective method

is to use convolutional neural networks, which can process challenging data with highly

accurate results [4] [5].

2.1 Line-of-sight propagation and multipath

In conventional open sky conditions, the GNSS receiver is able to receive the signals of

all satellites in its horizon on a direct path, which is called the LOS propagation path. As

GNSS-based positioning and timing solutions have become more robust, reliable and pre-

cise, GNSS has been increasingly deployed in more challenging situations, such as urban

environments, where the signals are often received via multiple paths due to reflection,

diffraction, and scattering from objects between the transmitter and receiver. Multipath

components always arrive later than the direct signal, which distorts the correlation func-

tion in the GNSS receiver, which causes errors to the PVT solution. While many error

sources have been reduced by GNSS augmentations and modernization, multipath re-

mains as one of the most significant sources of error in positioning. [2]

Even when the direct signal path is completely obstructed, a significant fraction of the

signal power can still reach the receiver via multipaths, which is called the NLOS recep-

tion. Figure 2.1 illustrates a situation where some satellites are blocked by buildings but

the signal is received through reflection or diffraction. While the LOS satellites can also

produce reflections, if the delay in arrival compared to the direct path is large, receivers
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Figure 2.1. LOS and NLOS propagation paths in urban environment

can typically reject the multipath [2]. In NLOS reception, where the LOS signal is not

received, the measurement errors in pseudorange, i.e., the approximated distance be-

tween the satellite and receiver, can be hundreds of meters [1]. The longer propagation

path of a reflected or diffracted signal makes the satellite appear to be further away than

it is in reality. Without the LOS signal it is difficult to know the true pseudorange, which is

why signals from NLOS satellites should be downweighted or rejected if there are enough

other measurements available [1].

The signal power of received NLOS signals is typically weak, but with receivers becom-

ing more sensitive, NLOS signals are also received more often. However, the amount of

attenuation depends on the reflecting surface. Water, glass, and metal are particularly

reflective, and the signal can be attenuated by as little as 2-3 dB. In diffraction, the atten-

uation increases in proportion to the diffraction angle, and typically diffracted signals can

be received at up to 5◦ deflection angle. [1] Signals from low-elevation satellites are more

likely to produce multipath components, and they are also more often obstructed than

higher-elevation satellites. However, using lower-elevation signals improves positioning

precision, which is why it is desired to use them even with the increased risk of multipath

and NLOS. [2]

Because of the large measurement errors caused by NLOS reception, many techniques
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for mitigating these errors have been developed. With careful antenna design, some of

the reflected signals can be sufficiently attenuated. There are also a number of ways to

minimize the impact of NLOS to the navigation solution, most of which try to detect the

signals affected by multipath or NLOS so that they can be downweighted or excluded.

Some indicators are e.g., reduced or fluctuating signal power or low elevation angle, or

inconsistencies in comparison with signals from different satellites. Additional data of the

environment can also be used, such as images of a sky-pointing camera from which the

NLOS satellites can be identified, as studied in this thesis. [1]

2.2 Fresnel zones

When a satellite is behind a building, it is clear that the direct path is blocked and the

satellite can be considered non-line-of-sight. However, depending on the size and mate-

rial of the obstacle, the LOS signal may also be received through obstructions, although

attenuated. Streetlights and thin treetops are examples of such situations. On the other

hand, even if the LOS path would be free of obstacles, the signal might be significantly

weakened by nearby obstacles. The signal path is not a simple ray between the satellite

and receiver, but instead defined by Fresnel zones.

Fresnel zone is an ellipsoid-shaped volume between a radio transmitter and receiver,

which defines the propagation path of the LOS signal. There are multiple nested Fresnel

zones, of which the first, or primary, zone indicates the region where the signal is the

strongest, and it should be kept mostly clear of obstacles. The radius of the Fresnel zone

n at a certain distance is defined as [6]

Rn =

√︃
nd1d2λ

d1 + d2
, (2.1)

where d1 is the distance from the receiver, d2 is the distance from the transmitter, and

λ = c
f

is the wavelength defined by the speed of light c and the frequency of the signal, f .

Figure 2.2 depicts the ellipsoidal Fresnel zone regions. In GNSS, the distance of the

satellites from the Earth is about 20 000 km, and the region of interest is usually only

a few hundred meters from the receiver, since further away the Fresnel zone is always

mostly free of obstacles. Thus, we can say that d2 ≈ d1 + d2, and the equation for the

primary Fresnel zone (n = 1) simplifies to [1]

R1 =
√︁

d1λ. (2.2)

In order for the signal to not be significantly impacted by obstacles, the primary Fres-

nel zone should ideally be about 80% clear of obstruction, and it must be at least 60%

clear [7]. In a typical city scenario, the rooftops of nearby apartment buildings might be
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Figure 2.2. Fresnel zones 1 and 2 between the receiver and transmitter

at about 30 meter distance from a street. GNSS signals operate at 1-2 GHz frequencies,

and the most used signal, GPS L1 C/A, operates at frequency 1575.42 MHz. If we insert

these numbers to equation 2.2, the Fresnel zone radius is 2.4 meters. Thus, if the direct

signal path is in the sky 2.4 m away from the edge of the roof and there are no other

obstacles, the whole Fresnel zone is clear and we can be sure that the satellite is LOS.

However, if we are closer to the edge, it is not certain if the LOS signal can be acquired,

since part of the Fresnel zone is blocked. In this transition region the status of the satel-

lite changes from LOS to NLOS when enough of the Fresnel zone becomes obstructed,

already before reaching the building edge.

2.3 Semantic segmentation

Semantic segmentation is a computer vision task where each pixel of an image is as-

signed a class label. The label might be an object, such as a car, human or tree, or a

background instance, such as sky or road. The number of classes can be chosen freely.

Whereas in image classification, the whole image is given one class label, segmentation

extends the classification to pixel-level. The purpose is to recognize distinct items in the

image. An example can be seen in Figure 2.3, where an image has been segmented into

several class categories. A similar method is object detection, but it requires the object

to fit inside a bounding box. Semantic segmentation can be used for more irregularly

shaped objects, such as the sky. [8]

There are many different applications where semantic segmentation is used. Some of

the main industries are autonomous driving and robotics, which highly benefit from the

precise image maps semantic segmentation can produce. For instance, for self-driving

vehicles it is crucial to identify the road and obstacles. For these purposes the speed of

the segmentation model is important as well. [9] Semantic segmentation is also used in

healthcare to detect abnormalities in medical images. It helps radiologists and doctors to
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Figure 2.3. Semantic segmentation of an image into different class labels

spot and diagnose diseases, such as cancer, thus possibly saving lives of the patients. [5]

Similarly, in industrial inspection semantic segmentation can be used to detect defects in

materials [10]. Other applications are aerial and satellite imagery, where the terrain must

be segmented. That can help, for instance, to track deforestation [11] or to examine areas

of natural disasters like a flood [12].

The current state-of-the-art technique for semantic segmentation is deep learning [4] [5].

Convolutional neural networks (CNN) are able to combine color, texture, and semantic

information, which enables highly accurate segmentation results. However, there are

also more traditional image segmentation techniques developed before the rise of deep

learning, and they utilize colors and low-level texture information. The advantage of those

is that they are often much more lightweight than a CNN, and do not require a training

set.

One of the simplest methods of semantic segmentation is thresholding, which divides

the image pixels into two classes based on if the pixel value is larger or smaller than

a threshold value. This is called image binarization. It is useful if the pixel values of

two classes differ a lot. Thresholding can also be used as a part of other segmentation

algorithms [13]. Adaptive and automatic thresholding methods exist as well [14]. Another

approach is to utilize edge detection, which can be done using image gradients [15]. The

edges help to find the different segments of the image. In region-based methods, such as

watershed algorithms, the segmentation starts with seed pixels and looks for similarities

between neighboring pixels, growing the regions until the whole image is segmented [16].

A similar method, but without the need of seed points, is clustering algorithms, which is

nowadays the most popular image processing based segmentation approach [17] [18].
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Figure 2.4. An encoder-decoder architecture. The encoder downsamples the image
while extracting features and the decoder upsamples the image back to the original reso-
lution.

These algorithms cluster together pixels with common attributes, forming the different

segments.

2.4 Segmentation with neural networks

Convolutional neural networks are known for their capability to extract representative fea-

tures from images, which is why they are very suitable for semantic segmentation. In

the traditional CNNs that are used for classification, the input is downsampled more and

more as we go deeper in the network and concentrate on increasingly more high-level fea-

tures, and finally, a fully connected layer at the end yields the class label prediction [19].

In segmentation, however, fully connected layers are not needed, making the network

fully convolutional, but instead upsampling is required in order to produce a segmentation

mask with the same resolution as the input image [3].

The most common architecture for segmentation networks is an encoder-decoder struc-

ture, which is illustrated in Figure 2.4. The encoder part is used for the feature extrac-

tion, while also downsampling the image with pooling operations. The upsampling part

is called a decoder, and it mirrors the encoder, upsampling the image back to the orig-

inal size. Since information is lost when reducing the resolution, the upsampling layers

typically use information from the previous pooling layers in order to produce finer seg-

mentation results [3] [9]. The final activation layer produces the output segmentation map

where each pixel is assigned a class label.
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The convolutional layers are the core of the CNN and they perform the convolution op-

eration to the input by sliding a small kernel across the image and computing the dot

product between the kernel and a local image region. The kernel, or filter in multidimen-

sional case, operates as the feature detector and contains the weights that are tuned in

the training process. After each convolutional layer, there is a non-linearity layer, such

as a rectified linear unit (ReLU) [20], which introduces non-linearity to the network. The

pooling layers reduce the spatial size so that computational load is decreased, and there

are different types of pooling operations. For example, max pooling takes the maximum

value from a small neighborhood. As the resolution decreases with the pooling layers, the

convolutional layers also look for more high-level features. The upsampling layers can per-

form either simple interpolation or upsampling with an unpooling operation or transpose

convolution. [21] Finally, the output activation layer can use e.g., the softmax activation

function to classify each pixel [4].

Segmentation models often use well-performing classification networks as a backbone.

The hypothesis is that if a model works well for a classification task, it will extend well for

a similar segmentation task also. The backbone CNN can be used as the encoder of the

segmentation network by just removing the fully connected layers, and the decoder can

then be build based on the encoder. For efficient training of the network, the encoder can

even be initialized with weights pretrained on a classification task. [22] [9]

2.5 Related work on non-line-of-sight detection from fisheye sky

images

Sky detection from fisheye images is a known approach for NLOS GNSS signal identi-

fication and it has been studied previously using various methods. The earlier studies

are often based on region extraction or edge detection, whereas the more current ap-

proaches utilize neural networks. Each of those methods can produce highly accurate

results even though it is difficult to compare the studies since they use different datasets

and performance metrics.

Already in 2009 and 2010, Cohen et al. [16][23] studied sky segmentation with fish-

eye images. They utilized the color and texture information of the image by calculating

the morphological texture and color gradient and combining them with a fixed, adaptive

or supremum methods. After that they segmented the image into regions with a color

watershed algorithm and finally classified the regions to sky or not-sky classes with the

K-means clustering algorithm. Their methods achieved around 95% classification rates.

In their article from 2015, Kato et al. [24] exploited the movement of obstacles in the fish-

eye video to segment the sky. They first divided the image into regions with K-means and

then performed feature point matching with the SIFT (scale-invariant feature transform)
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algorithm as well as template matching. Based on that, they were able to calculate the

traveled distance of the regions and classify them as obstacles if the distance is large and

sky if it is small. They manually evaluated that in 84% of about 3000 images the whole sky

area was correctly detected. Also the GNSS positioning accuracy was improved when re-

jecting the satellites classified as NLOS. Of course, their method only works if the camera

is moving.

El Merabet et al. [17][25][26] have also studied the use of color information in sky detec-

tion in 2016 and 2017. They again first segmented the image into smaller regions, with

a statistical region merging (SRM) algorithm. For them they calculated several different

local color histogram descriptors, and compared the similarity between the characterized

regions and learning databases of sky and non-sky regions to classify them. They were

able to segment the sky almost perfectly, with around 99% classification accuracies.

Using edge detection for sky segmentation was studied by Sánchez et al. [27] in 2016 as

well as Gakne and O’Keefe [15] in 2017. They both used a Canny edge detector, which

finds edges in high-gradient regions of the image. The sky area was then determined

by using the floodfill operation. Gakne and O’Keefe assumed that the centre pixel of

the image belongs to sky and then filled the following pixels as sky until an edge was

reached. Sánchez et al. had a similar approach, but they utilized the information of the

satellite C/N0s, or carrier-to-noise density ratios, in addition to just the image. They used

the projected locations of the satellites with C/N0 higher than 45 dBHz as the starting

points of the floodfill operation to define the sky. Both studies showed good results by

following these approaches, although their methods have some limitations because of

the assumptions that they made about the floodfill start.

In 2015, Gakne and Petovello [14] compared several image segmentation algorithms for

identifying the sky from upwards-facing regular camera. The algorithms were Otsu, mean

shift, HMRF-EM (hidden Markov random field expectation maximization), and graph cut.

The Otsu’s method, which is the simplest of them, performed clearly the best with 95%

segmentation accuracy for cloudy images and 81% for sunny. The method is an automatic

image thresholding algorithm which finds the separating threshold value by minimizing

intra-class intensity variance.

Horide et al. [28] used a simple fully convolutional neural network for fisheye sky seg-

mentation in their article from 2019. Their architecture was based on the classification

network VGG16. Even though they had a very limited amount of training images, they

were able to significantly reduce the GNSS positioning errors after excluding the satel-

lites classified as NLOS. A similar approach was chosen by Lee et al. [29] in 2020. They

used the Resnet50 backbone, and in most of their experiments were able to improve the

positioning accuracy compared to other methods, when they compared their generated

sky mask to a 3D city model to find the position.
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Neural networks were also used for regular and fisheye, although not sky-pointing, image

segmentation by Romera et al. [30][31] in 2017 and 2019. With their encoder-decoder

architecture called the ERFNet (efficient residual factorized network), their segmentation

performance for the sky class reached an IoU (intersection over union) score of 94% for

regular and 90% for fisheye images.

The use of infrared [32][33] or ultraviolet [34] cameras has also been shown to be suc-

cessful for the sky detection task. The benefit over a regular RGB camera is that there is

no need for complex segmentation algorithms, but simple thresholding is enough to sep-

arate the sky. Furthermore, IR cameras work well even at night where RGB cameras are

unusable, whereas UV cameras are robust to different weather conditions. IR cameras,

however, are not, and IR sky images have even been used for cloud segmentation [35].
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3. RESEARCH METHODOLOGY

There exists various popular neural network architectures for semantic segmentation.

One of the earliest very successful models that is still used today is the U-Net [36], while

DeepLab is one of the current state-of-the-art networks [4]. In this thesis, we studied both

of those, as well as a few other models. They are all introduced in the following sections.

For evaluating the performance of the models, we use several metrics which are also

explained in this chapter.

3.1 Segmentation models

The segmentation models introduced here are U-Net, LinkNet, FPN (feature pyramid net-

work), PSPNet (pyramid scene parsing network) and DeepLab. Each of them can use

as a backbone different classification networks, and the backbones presented here are

ResNet (residual neural network), MobileNet, Inception and EfficientNet.

3.1.1 U-Net

The U-Net model was developed by Ronneberger et al. [3] in 2015 at the University

of Freiburg. It has been popular especially in biomedical image segmentation, but can

be used for any semantic segmentation problems. The U-Net architecture follows the

encoder-decoder design shown in Figure 2.4, but it has skip connections from each pool-

ing layer to the corresponding upsampling layer, as illustrated in Figure 3.1.

Each of the encoder blocks in the original U-Net, which was not based on any classifi-

cation backbone, consists of two stacked convolutions, each followed by a rectified linear

unit (ReLU). Then the image is downsampled with a max pooling operation to reduce

the computational cost when the number of feature channels increases. However, in the

pooling process information is lost, which is why the skip connections are used. In the

decoder blocks, after upsampling with up-convolution, the features are concatenated with

the output of the ReLU from the corresponding encoder block. Then there are again

two convolutions followed by ReLU activation so that the decoder is symmetric with the

encoder. The concatenation of high-level and low-level features helps to get finer infor-

mation, producing more accurate results also with little training data. The original U-Net
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Figure 3.1. U-Net architecture. To avoid information loss coming from downsampling,
the encoder (lavender) features are concatenated with the corresponding decoder blocks
(blue) using skip connections.

Figure 3.2. LinkNet architecture. The architecture is similar to U-Net, but the skip con-
nections add the encoder (lavender) and decoder (blue) features together instead of con-
catenating them.

architecture has 23 convolutional layers in total. [3]

3.1.2 LinkNet

LinkNet is a very similar network to U-Net and it was designed in 2017 by Chaurasia and

Culurciello [9] at Purdue University. The only difference between them is that LinkNet

uses addition instead of concatenation in the skip connections, which is visualized in

Figure 3.2. The LinkNet model is light and can perform real-time, making it useful for

tasks such as autonomous driving.
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Figure 3.3. FPN architecture. The bottom-up pathway (lavender) is the encoder, while
the top-down pathway (gray) upsamples the image. The feature pyramid (blue) consists
of upsampled features of each top-down block, which are then concatenated to produce
the final segmentation map.

Just like U-Net, LinkNet has an encoder-decoder architecture that addresses the prob-

lem of information loss in the downsampling operations by adding skip connections from

each encoder block to the corresponding decoder block. However, when the features

are added instead of concatenated, the number of parameters is reduced while still pre-

serving some information from the previous layers. LinkNet usually performs similarly as

U-Net or sometimes even better. Because LinkNet was designed for real-time applica-

tions, the original architecture uses as a backbone the light ResNet18 network, but any

other model can be used as well. [9]

3.1.3 Feature pyramid network (FPN)

Feature pyramid network (FPN) is similar to LinkNet but it is slightly different from the

simple encoder-decoder architecture. The model was developed in 2017 by Lin et al. [37]

from Facebook and Cornell University. FPN is used especially for object detection and

segmentation, since the feature pyramid structure helps in recognizing objects at different

scales. Figure 3.3 shows the FPN architecture for segmentation as proposed in [38].

The FPN model has a bottom-up and top-down pathway, and it produces a feature pyra-

mid. The bottom-up pathway is the encoder and it can be ResNet or any other network. In

each block of the top-down pathway, there is a convolution with the same number of chan-

nels in each block, and also a convolution for the output of the corresponding bottom-up

block to reduce the number of channels to that same number. Then they are combined

using addition-based skip connections like in LinkNet. The image is upsampled until the

second block of the encoder. A separate feature map is created from each of the top-down

blocks with one more convolution, and for the segmentation they are then upsampled to

the same size and concatenated together, to do the final prediction [38]. [37]
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Figure 3.4. PSPNet architecture. After the encoder (lavender), there is a pyramid pooling
module (gray), which produces multiple feature maps (blue) that are concatenated to
produce the segmentation map.

3.1.4 Pyramid scene parsing network (PSPNet)

Pyramid scene parsing network (PSPNet) also exploits the idea of different sized feature

maps. The model was proposed by Zhao et al. [22] from Chinese University of Hong

Kong, again in 2017. PSPNet is designed especially for segmenting all the objects in a

scene and it has a pyramid pooling module which helps to use global context information.

The architecture is illustrated in Figure 3.4

PSPNet again starts with the backbone encoder, which was originally ResNet. The fea-

ture map of the last convolutional layer then goes to the pyramid pooling module, which

has different sized pooling blocks. They separate the feature map to subregions and with

pooling each block yields a different sized feature map. Each of them is then upsampled

to the same size as the original feature map, so that they can be concatenated together,

and with the original feature map. With a convolution the final prediction is done directly

from that. [22]

3.1.5 DeepLab

DeepLab is one of the most successful semantic segmentation networks and it uses

atrous convolution to achieve denser prediction without increasing computational cost. It

was originally developed in 2016 by Chen et al. [39] from Google, while the latest version,

DeepLabV3+, which has an encoder-decoder structure was published in 2018 [4]. The

DeepLabV3+ architecture, which is fairly similar to PSPNet, is shown in Figure 3.5.
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Figure 3.5. DeepLabV3+ architecture. After the encoder (lavender), there is an atrous
spatial pyramid pooling module (gray), which produces multiple feature maps. In the de-
coder (blue), they are concatenated and upsampled, and there is also one skip connection
which concatenates low-level encoder features.

As usual, the model first has the encoder to extract features. However, in the last few

layers the downsampling with pooling is replaced with atrous, or dilated, convolution. It

means that the convolution filter has a dilation rate, which determines gaps of one or more

pixels in the convolution kernel, so that the field of view increases while keeping the num-

ber of parameters. In addition, there is an atrous spatial pyramid pooling module, where

the atrous convolution is applied to the last feature map with different dilation rates to

again study the features at different scales. The outputs are then concatenated together,

and in the decoder, upsampled once and concatenated with the corresponding sized en-

coder features with reduced number of channels. Finally, a few more convolutions are

applied before upsampling to the original resolution and doing the final prediction. [4]

3.1.6 Backbone networks

Many of the introduced segmentation networks were originally build based on the ResNet

backbone, which is a classification CNN. As explained in Section 2.4, segmentation mod-

els can use as an encoder any classification network. This can be done because the

purpose of the encoder is the same as of a classification model, to extract features. If the

segmentation model backbone is changed, the network architecture naturally changes,

but the key characteristics like the shortcuts and pyramid modules are kept. The same

segmentation model with a different backbone can have a slightly different performance,

similarly as the same backbone on a different segmentation model can as well.



17

The highly popular residual networks (ResNets) were developed in 2015 by He et al. [19]

from Microsoft. The idea of ResNet are the residual connections that enable deeper net-

works without performance degradation or added complexity. The residual connections

are shortcuts that skip one or more convolutional layers, and the input is added to the

output of the skipped layers before activation. The ResNet architecture simply has con-

volutional layers stacked and every other layer there is a shortcut connection skipping

two layers. The layers consist of a convolution, usually with a 3x3 filter, followed by batch

normalization and ReLU activation. In the end there is a global average pooling and fully

connected layer. The different ResNet versions have e.g., 18, 34, 50, 101, or 152 layers

in total.

MobileNet is a light CNN designed for mobile vision applications, and it was published

in 2017 by Howard et al. [40] from Google. The model utilizes depthwise separable

convolution to reduce computational cost. It means that regular N KxKxM convolution

filters, where N is the number of output channels, M is the number of input channels,

and K is the kernel size, are replaced with a single KxKx1 convolution for each input

channel, called depthwise convolution, followed by N 1x1xM convolutions, called point-

wise convolution. After both convolutions, there is batch normalization and ReLU. The

improved MobileNetV2 has these convolutions in reversed order, and after them another

1x1 convolution without nonlinearity, as well as residual connections skipping these three

layers [41].

The Inception model was introduced already in 2014 by Szegedy et al. [42] from Google,

and later on improved versions of it have been published. The network is quite compli-

cated, including many tricks to improve the accuracy and speed. The main idea is to

use convolutions with different filter sizes in the same layer, as well as max pooling. The

outputs of them are then concatenated to form the input for the next layer. This helps to

better extract features in different scales. The later versions of the Inception perform also

factorization of the convolutions into a combination of smaller convolutions, reducing the

computational cost [43]. Another idea of Inception was calculating the loss at different

stages of the network and combining them with the final loss.

One of the most efficient CNN models in terms of accuracy and speed, the EfficientNet,

was developed in 2019 by Tan and Le [44] from Google. The architecture is quite simple

and similar to MobileNetV2, but instead the key is their approach to the scaling of the

model. While e.g., ResNet is scaled larger by just adding more layers, the compound

scaling method of EfficientNet performs balanced scaling in width, depth, and resolution.

Width scaling means adding more filters in the convolutional layers, depth scaling adding

more layers, and resolution scaling increasing the image spatial resolution. Following the

compound scaling, EfficientNet has many different versions, B0 being the smallest and

B7 the largest.
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3.2 Performance metrics

Intersection over union (IoU) and F-score are popular metrics to evaluate the performance

of semantic segmentation models [45]. To train the models, cross-entropy loss or Dice

loss can be used [5]. The metrics are explained in the following sections.

The evaluation metrics are defined by true and false positives and negatives. A true pos-

itive means a sample that is correctly classified as belonging to a certain class, whereas

a true negative is correctly classified as not belonging to it. A false positive is a sample

that is classified as a given class when it should not, and a false negative is when it is

classified as not belonging to a given class, when it actually should. [45]

3.2.1 Intersection over union (IoU)

The intersection over union score, or Jaccard index [46], measures the similarity of sam-

ple sets, and in semantic segmentation, it indicates how much the prediction and ground

truth overlap with each other. The Jaccard index is noted as [45]

J(A,B) =
|A ∩B|
|A ∪B|

=
tp

tp+ fp+ fn
, (3.1)

where A and B are the sample sets to compare and tp is true positives, fp is false

positives and fn is false negatives. The IoU score value is always between 0 and 1, so

that 0 means no overlap and 1 is a perfect overlap.

IoU is a standard metric in segmentation because it gives a more fitting result than pixel

accuracy, especially when the segmented object covers only a small part of the image.

In that case, even if the object was not detected at all, pixel accuracy would be high, but

IoU would give a lower score. In object detection IoU score is also useful to measure the

overlap of the bounding boxes [47].

3.2.2 F-score and Dice loss

F-score, or Dice coefficient [48], is another common segmentation metric and it is similar

to the IoU. The general F-score is the weighted average of precision and recall and it is

defined as

Fβ =
(1 + β2) · tp

(1 + β2) · tp+ β2 · fn+ fp
, (3.2)

where β = 1, 2, 3... and tp is true positives, fn is false negatives, and fp is false posi-

tives. The F1-score, which is the most common, is then [45]



19

F1 =
2tp

2tp+ fp+ fn
. (3.3)

The IoU and F1-score are positively correlated and F1 is always higher or equal to IoU.

The difference is that IoU penalizes single mistakes more than F1, making IoU closer

to the worst case performance and F1 to the average performance. If the F-score is

subtracted from 1, we get the Dice loss.

3.2.3 Cross-entropy loss

Cross-entropy loss, or log loss, measures the accuracy of the predicted probabilities. In

segmentation, if a pixel should be classified as 1, the cross-entropy loss is higher the

smaller the predicted probability is, but especially when the probability is very close to 0,

the loss increases rapidly. That means that especially confident wrong predictions are

penalized. [49]

The cross-entropy loss is calculated as [49]

L = −
N∑︂
c=1

y log(p), (3.4)

where N is the number of classes, y is the ground truth, i.e., 0 or 1 depending on if class c

is the correct label for that sample, and p is the predicted probability for the sample to be

of class c. The total loss is the sum of the loss for each class label. Unlike IoU and

F-score, cross-entropy is not confined between 0 and 1.
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4. DATASET

The used fisheye video dataset was collected by u-blox in 2019. It contains 36 videos that

are up to 3 hours long, totalling 55 hours of video. The videos were recorded in Zurich

and the surrounding areas in Switzerland between May and October, in varying weather

conditions and environments. The settings range from rural to urban with high buildings,

and from sunny and clear to cloudy or even rainy. There are also tunnels, where the sky

is not visible. All the videos were recorded during the day, so there are no very low light

images. In addition to the videos, the dataset contains log files of the GNSS data at the

time of each recording, providing information about the visible satellites. The recording

setup is explained in detail in the next section.

4.1 Recording setup

The videos were recorded while driving a u-blox test vehicle and simultaneously collecting

GNSS data. To achieve full coverage of the signal path from satellites to the receiver,

the camera has a fisheye lens that can cover 360◦ horizontally and 90◦ vertically. The

camera that was used to record the videos is an ELP camera [50] that has been available

at Amazon for an affordable price. The setup records videos at resolution 1944x1944

pixels and frame rate of 10 frames per second.

The camera was mounted on the roof of the test vehicle, facing towards the zenith (directly

upwards) so that it covers the whole horizon. Close to the camera there is a GNSS patch

antenna, which is connected to a u-blox M8U evaluation kit [51] that contains the GNSS

receiver and an inertial measurement unit (IMU). The camera and evaluation kit in their

protective housing can be seen in Figure 4.1, as well as the installation on top of the van.

While recording the video, a log file of the GNSS receiver is also recorded. It contains e.g.,

the PVT-solution and the C/N0 of each signal. This information updates every second.

The recording software synchronizes with the video all the necessary data, such as the

satellite locations and attitude information, which is needed for projecting the satellite

positions onto the video frames. This operation is explained in the next section.



21

Figure 4.1. Recording setup. The fisheye camera and GNSS evaluation kit are installed
on top of a van in a protective housing.

4.2 Satellite mapping

A GNSS receiver continually calculates the satellite positions with respect to the receiver

position. The position is expressed in azimuth and elevation angles. The azimuth tells the

horizontal direction of the satellite with respect to north, clockwise. A satellite directly in

the east would have an azimuth angle of 90◦. The elevation angle tells how high up in the

sky the satellite is, so that a satellite on the horizon has a 0◦ elevation, and a satellite at

the zenith has a 90◦ elevation. [1]

Using a calibrated camera and the GNSS evaluation kit, the azimuth and elevation of

the satellites can be converted to image plane coordinates. First, the mapping from the

spherical coordinates to north, east, and down coordinates of a local navigation frame

can be done with the following equations: [1]

x = cos(a) cos(e)

y = sin(a) cos(e)

z = − sin(e),

(4.1)

where a is the azimuth and e is the elevation. The projection onto the image plane is then

defined as


u

v

1

 = K3x3

R3x3


x

y

z

+T3x1

 , (4.2)

where (u, v) is a point on the image plane, K is a camera matrix, R is a rotation ma-

trix and T is a translation vector. In addition, the fisheye lens distortion has to be cor-
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Figure 4.2. Fisheye lens distortion. The green dot is projected onto the image plane at
distance r′, while the image plane point without the lens distortion would be r.

rected. [52]

The rotation Rworld→camera consists of four steps. First, the rotation from world frame,

meaning the north, east, down frame, to vehicle frame is defined by the attitude informa-

tion provided by the receiver. Roll, pitch, and heading define the rotation in x, y, and z

directions, respectively. Next is the rotation from vehicle frame to installation frame, which

is constant. Then follows the rotation from installation frame to IMU frame, where we can

use the attitude information from the IMU. Again, roll, pitch, and yaw define the rotation in

x, y, and z directions. [1] Finally, the rotation from IMU frame to camera frame is constant

that can be found with an extrinsic camera calibration [53]. The setup that was used to

record the videos has been calibrated so the IMU to camera rotation matrix is known. The

translation T is assumed to be zero.

The camera matrix K and the fisheye lens distortion coefficients can be found with an

intrinsic camera calibration, so they are also known constants [53]. The fisheye lens

distortion can be corrected with [52]

a =
x

z
, b =

y

z

r =
√
a2 + b2

θ = arctan(r)

r′ = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8),

(4.3)

where k1, k2, k3, k4 are the distortion coefficients, r is the radius of a point (a, b) on the

image plane without the distortion and r′ is the radius of a fisheye lens distortion cor-

rected image plane point. Figure 4.2 illustrates the situation in one dimension. Finally, the

distortion corrected image plane point will be
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x′ =
r′

r
a

y′ =
r′

r
b.

(4.4)

The fisheye lens distortion correction is done after the rotation but before the camera

matrix correction. [52]

Since the fisheye camera has 180◦ field of view, every possible visible satellite position

can be mapped into the image pixels. In the fisheye image, while the close objects are

distorted, the sky that is curved around the camera is projected so that each image pixel

corresponds to approximately the same amount of sky. We can assume that the satellites

are uniformly distributed on the image, although to be exact, on the northern hemisphere

there are less satellites in the north and less with high elevation [1].

4.3 Annotation

We prepared an annotated dataset for the sky segmentation task. We first extracted

frames from each of the 36 videos, taking a frame every 10 minutes to avoid having the

same information in multiple frames. From those over 300 images, 224 images were

manually annotated using the Image Labeler app in MATLAB [54]. Rainy images were

excluded but several tunnels included. Since the segmentation will be applied to testing

purposes, we can choose to not do a test drive in a rainy weather, but we always want to

be able to detect tunnels in the test routes. Figure 4.3 shows an example of an annotated

binary LOS/NLOS segmentation mask.

As can be seen in the example mask, the images were annotated so that small objects

such as streetlamps and poles are marked as sky. As explained in Section 2.2, they do

not significantly disturb the signal propagation since most of the Fresnel zone is clear, so

a satellite behind them can still be considered line-of-sight. The same applies to mostly

transparent objects such as very thin trees, transmission towers, and other lattices. Most

trees were annotated as NLOS, however, since usually we cannot know how thick the

tree layer is, and it might well be enough to block the signal.

From the annotated images, 40 were chosen to form the test set, and the remaining 184

were left as the training and validation set. The images in the test set are from three

different videos that are not present in the training and validation set. We chose the test

images to be diverse and include different environments and weather conditions:

• Video 1: sunny, few clouds, rural and urban, tunnels, reflections

• Video 2: cloudy, rural and urban, tunnels

• Video 3: overcast, rural and urban
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Figure 4.3. Original image and the annotated sky mask, where the line-of-sight area is
colored yellow. Small lamps are considered part of the sky.

The images in the training set have similar conditions but were recorded at a different

time.
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5. IMPLEMENTATION

We trained the U-Net, LinkNet, FPN, PSPNet and DeepLab with the annotated fisheye

dataset. The training process and chosen hyperparameters are explained in the next

section. We evaluated both the segmentation results and the satellite classification, and

the evaluation methods are discussed in this chapter as well.

5.1 Training

The annotated dataset explained in Section 4.3 was used for the training. The images

were downsampled from 1944x1944 to 512x512 using bilinear interpolation. This makes

the training faster but also acts as a preprocessing step to filter the image, since not so

much detail is needed for this task. We tried several image sizes and found that 512 works

well and very little information is lost. In fact, training with this size seemed to result in

better performance than higher resolution images. The 184 training images were further

split into 148 training and 36 validation images, so that the split is random each time we

train. After that, each training and validation image was augmented 6 times resulting in

1036 training and 252 validation images.

We deployed several different augmentation methods included in the Albumentations

Python library [55]. We stayed with realistic augmentations that resulted in images that

could be produced by the fisheye camera. For every augmentation, the image was flipped

horizontally with 50% probability and always rotated either 0, 90, 180, or 270 degrees.

This results in 8 different possible orientations of the image. With 20% probability, we

added rain spatter to simulate the occluded lens during or after rain. Finally, we always

applied random color jitter which changes the brightness, contrast, saturation, and hue.

An example augmentation is shown in Figure 5.1.

The models were trained for 50 epoch using the Adam optimizer [56] and batch size 8.

We also tried the stochastic gradient descent (SGD) optimizer and other batch sizes, but

these yielded the best results. Depending on what works best for the specific model,

the learning rate was 0.0001 or 0.00005 at first and decayed to 0.00001 if there was no

improvement in the validation loss for 10 epochs. As the loss function we used a sum of

the cross entropy loss and Dice loss. We considered both the sky and background classes

to calculate the loss. Both the Jaccard loss and the focal loss [37] were considered as
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Figure 5.1. Original and augmented image. The image has been rotated 90◦ and flipped,
color jitter has been applied affecting especially brightness, and raindrops have been
added.

well, but led to worse results.

The training was done using the Tensorflow [57] and Keras [58] frameworks and the

CNN and metrics implementations from the Segmentation Models library [59], except

the DeepLab. All the backbone networks were initialized with weights pretrained on the

ImageNet dataset [60] for faster convergence. After the training was completed, we saved

the weights of the epoch with the best validation loss. Each model was trained 3-5 times

to perform cross-validation since the dataset is so small.

5.2 Evaluation

For each training epoch, we calculated the mean IoU and F1-score for the training and

validation set to see how the model is performing. To compare the different models, we

calculated the mean of the best validation scores of each run. For our test set of 40

images that was described in Section 4.3, we calculated a few more performance scores

as well. We computed the IoU score separately for the sky and background to see if there

are differences. Since we downsampled the images for training, the predicted masks are

also the same size as the training images. Therefore, we upsampled the predictions back

to the original size with bilinear interpolation and calculated the IoU score also for the full

resolution mask. Naturally, we also looked at all the test set prediction masks and many

other, not annotated, images to see if the segmentation looks accurate also visually.

As a reference method we used the Otsu’s thresholding method [61]. As explained in

Section 2.5, the algorithm finds a threshold value which separates the image into two

classes by minimizing intra-class intensity variance. Although the method is not as accu-
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rate as some of the other previously used methods for sky segmentation, it is probably

the simplest of them, with still rather high accuracy and beating some more complex

segmentation algorithms [14]. We compared its performance on the test set against the

neural networks to see if there is much benefit in using these highly complex models over

the very simple one. We found that using the blue color channel works better than the

grayscale image, so we applied the Otsu’s thresholding only for the blue channel.

After the model has been trained, we can classify the in-horizon satellites as LOS or NLOS

from a segmented image. We mapped the satellites into the image pixels as explained in

Section 4.2, and classified each satellite based on the segmentation around the satellite

location. We took a 100x100 pixels window around the satellite and if more than 60%

of the pixels inside that window were segmented as sky, we classified the satellite as

LOS, otherwise NLOS. This window approximates, with not perfect but sufficient accuracy,

the Fresnel zone that was explained in Section 2.2. At the same time, it increases the

robustness to small segmentation errors, when we do not classify the satellite only based

on the pixel classification value at the exact location. As an example, small objects such

as lamps can be segmented as NLOS even though we annotated them as LOS, because

they differ from the sky region. With this approach we can avoid false classifications when

satellites are behind these objects.

The classification process is illustrated in Figure 5.2. The segmentation mask is drawn

on top of the image and each satellite is plotted and colored based on the classification.

Both the window-based classification and the pixel classification of the direct signal path

are visualized. We can see that in this example, the only satellite where these two differ is

the one named S136 on the center right, and since the satellite is right on the edge of the

building, according to the Fresnel zone theory the correct classification would be NLOS

like it is when we use the classification window.

Since our test set is very small, we also used an additional method to evaluate the satel-

lite classification, and thus also the segmentation accuracy. Signal-to-noise density ratio

(C/N0) is a measure of the strength of the signal. Therefore, the C/N0 of LOS signals

should be higher than NLOS, although there is not any exact threshold value. We ex-

tracted from the recorded log file the C/N0 measurements of each signal and compared

them with the classification of the corresponding satellite at the corresponding time. We

plotted a C/N0 histogram for the LOS and NLOS satellites, as well as the C/N0s of

individual satellites in time.

We looked at the C/N0s of all satellites in the three videos from which the test images

are, to see if there is a difference between the satellites classified as LOS and NLOS,

and to detect possible errors not present in the test set of 40 frames. Although the signal

strength can be affected by many other factors than just the LOS status, detecting an

unusually low C/N0 for a LOS classification or vice versa can help to discover problems
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Figure 5.2. Satellite classification based on the segmentation. The small circle marks
the exact satellite location and it is colored according to the pixel classification value there
(green=LOS, red=NLOS). The rectangle around it is the classification window colored
according to the window-based classification. The NLOS segmentation mask is drawn on
top of the image in red.

with the segmentation. This evaluation method can be applied to all the video frames that

have the C/N0 measurement available, which in our dataset is every second.
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6. EXPERIMENTS

The segmentation models were trained and evaluated as explained in Chapter 5. We

were able to reach state-of-the-art segmentation results and also classify the satellites

accurately. We found that the choice of the network does not make a big difference, and

our relatively small training dataset is sufficient for the task. In this chapter, we present

the obtained results in detail and analyze the reasons behind them.

6.1 Comparison of the models

The performance of each of the tested models are presented in Table 6.1. We can see

that there is not much difference neither with the IoU scores of the different CNN models,

nor the validation and test sets. The IoU scores range from 97-99%, which is an excellent

score. The reference Otsu’s method, however, performs significantly worse with an 83.7%

test set score. Thus, we can say that using neural networks is indeed a useful approach,

providing much higher accuracy than simpler methods.

The validation and test scores do not differ much from each other and sometimes the

test score is even higher. This is not surprising because even though the test set images

are from different videos than the training and validation, they are very similar. Since

the test set is only 40 images, it is also possible that some model happens to work very

well on that set, which might be the case with the EfficientNet backbone, which usually

gives a higher testing than validation score. It is also important to note that the validation

scores are calculated with different validation sets for each model, so they are not fully

comparable. However, the validation scores in the table are an average of 5 runs with

different splits for most of the models and 3 runs for some of the worse ones, so they are

quite reliable. As we can see, both the validation scores with more images and the test

scores with consistent images give similar ranking to the different models. However, the

dataset is not large and diverse enough to have full confidence in the ranking especially

for performance scores very close to each other.

While the differences are small, the U-Net with EfficientNetB6 encoder has the highest

validation and testing IoU score. It is not surprising that the EfficientNet is the best back-

bone, since it has been shown to outperform the other classification networks [44]. For

most models only the lightest B0 version was tested, but the deeper versions should give
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Table 6.1. Comparison of the models performance on the validation and test set

Model Validation mean IoU (%) Testing mean IoU (%)

Otsu’s method - 83.69

U-Net - ResNet34 98.14 97.73

U-Net - ResNet50 98.18 97.95

U-Net - MobileNetV2 98.34 97.73

U-Net - InceptionV3 98.43 98.06

U-Net - EfficientNetB0 98.54 98.61

U-Net - EfficientNetB3 98.58 98.63

U-Net - EfficientNetB6 98.60 98.71

LinkNet - InceptionV3 98.54 98.41

LinkNet - EfficientNetB0 98.28 98.52

FPN - InceptionV3 97.92 98.25

FPN - EfficientNetB0 98.09 98.58

PSPNet - InceptionV3 97.86 97.95

PSPNet - EfficientNetB0 97.85 97.84

PSPNet - EfficientNetB6 98.09 98.42

DeepLabV3+ - ResNet50 98.44 98.37

DeepLabV3+ - EfficientNetB0 98.20 98.41

a little higher scores since they can produce more detailed prediction masks. That is why

the U-Net, which performed the best on the EfficientNetB0, was also trained with the B6

version, and the fastest segmentation model PSPNet as well to verify that it cannot beat

the U-Net with the bigger encoder either.

Why the U-Net is the best of the tested segmentation models can be due to several

reasons. One is that the FPN, PSPNet, and DeepLab all have some kind of pyramid

structure, which is designed to help in recognizing objects at different scales. Since our

images are all in the same scale, this does not bring much improvement to our task.

The LinkNet, which has a very similar architecture as the U-Net also has quite similar

performance. Since U-Net concatenates the features of all the encoder blocks with the

decoder blocks, it might help to produce a more detailed output than the other networks

that only add the features or concatenate only from some encoder blocks. One possible

reason is also that U-Net, being such a simple architecture, can also generalize better

than some of the other models.

Figure 6.1 shows the performance of the different segmentation networks with the Effi-

cientNetB0 encoder on one test set image. We can see that as the numbers suggest,

also visually the performance is excellent and there is very little difference between the

models. Only with the Otsu’s method there is a clear mistake in the bottom left corner
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Figure 6.1. Visual comparison of the models with EfficientNetB0 backbone on a test
image

where the darkest part of the sky is incorrectly segmented. The overall performance is

still reasonably good but it is inevitable that with just thresholding, there will be errors

when the color difference between the sky and background is not so clear.

Between the CNNs, the worst performing seems to be the PSPNet that has a little smoother

result than the others, which is probably because of shallower depth and simpler decoder

architecture. This explains the PSPNet having the lowest IoU scores. Otherwise, it is

difficult to say which of the other 4 models is performing the best on this example. Recog-

nizing the lamp in the middle is not considered a mistake, and all of the models sometimes

detect them although usually not. The results look similar on other images as well, and

with different backbones the difference also comes from the amount of detail. For the

satellite classification, the precision of any of the CNNs would be good enough because

not so much detail is necessary there. Of course, all the models sometimes have signif-

icant segmentation errors as well but visually it is not obvious which of them have them

more often.

High performance is often a trade-off with the speed of the model. This we can also see

from Figure 6.2, where we have plotted the IoU of each model as a function of the training

time of one epoch in our training environment. The inference time will correlate with the

training time. We can see that while the models with EfficientNet backbones clearly have

the best performance, they are also the slowest. On the other hand, PSPNet is clearly

the lightest but always has lower performance. U-Net seems to generally be the second

fastest, though, while also having high accuracy. However, if the speed of the model would

be important for our application, we might want to consider e.g., LinkNet with InceptionV3

or U-Net with EfficientNetB0 instead of the U-Net with EfficientNetB6.
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Figure 6.2. Models performance compared to the training time

6.2 Chosen model performance

Based on the model comparison, U-Net with EfficientNetB6 encoder was our model of

choice. Some performance metrics for it are presented in Table 6.2. The IoU scores

differ from Table 6.1 because those were an average of 5 runs but here we only show the

best run. We can see that the test set mean IoU is 98.8% and the F1-score even higher,

99.4%. The scores are calculated for the downsampled mask which was used for training,

but if we upsample the predicted mask and compare to the original one, we can see that

the IoU score stays basically the same. That means that we do not lose much information

in the downsampling so it is reasonable to use the smaller training size. Furthermore, we

can see that the IoU for the sky is a little higher than for the background, but the difference

is very small. That means that both are segmented accurately, and the difference is only

because there is more sky than background area in the images.

The training curves of the chosen model are shown in Figure 6.3. We can see that the

validation loss reaches the minimum really quickly and then, except for some fluctuations,

it converges and starts to slightly increase. The training loss keeps still decreasing mean-

ing the model starts overfitting, which is why we save the weights on the best validation

loss and not in the end. The best epoch was number 19. The low loss already on the first

epoch is because of the pretrained weights. The IoU curves look similar to the loss and

the validation score is staying just below 99%.
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Table 6.2. Chosen U-Net-EfficientNetB6 model performance

Metric Value (%)

Validation mIoU 98.89

Testing mIoU 98.79

Testing mIoU, full resolution 98.77

Testing IoU, sky 98.87

Testing IoU, background 98.71

Validation F1-score 99.44

Testing F1-score 99.39

Figure 6.3. Chosen U-Net-EfficientNetB6 model training curves for IoU and loss

Figure 6.4 shows three example predictions on the chosen model. We can see that the

results are very accurate and detailed. The first image is very bright and has quite heavy

reflections, but our model handles it very well. In addition, there is a truck having white

and blue colors that could be mistaken for sky, but it is not the case with this model. Also

the small poles are correctly segmented as LOS, although segmenting them as NLOS

would not be a big mistake.

On the second example, the sky is very different with dark overcast, which is not a prob-

lem for the model either. We can also see how the trees are handled. As mentioned

before, the images were annotated so that the very thin trees that clearly do not bother

the satellite signal were segmented as sky. We can see that the model has learned this

distinction as well, but since it is not obvious where to draw the line, the prediction and
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Figure 6.4. Example predictions on a sunny, cloudy, and tunnel image

truth differ slightly. It is possible that the CNN model does a better job in this than a human

annotator, though. Because of manual annotation, it is impossible that the performance

scores would be at 100%.

The third image is taken inside a tunnel, which is not an easy case either as we can see

from the lamp on the ceiling and white walls. However, the model is able to perfectly

segment the image as all NLOS. The Otsu’s method would not segment tunnel images

correctly because it always divides the image into two classes, and the same applies

to many other possible methods. In fact, it is likely that no traditional image processing

based methods could handle tunnels without separate tunnel detection. Apparently none

of the previous studies on the sky segmentation topic considered situations where there

is no sky visible. With our approach, adding just a few tunnel images, which do not even

need annotation, to the training set seems to produce very accurate tunnel detection.

Of course, sometimes our model also makes mistakes. Figure 6.5 shows three examples

of small segmentation errors. On the first image, the problem is with the white truck on the
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Figure 6.5. Examples of segmentation errors. All the errors are caused by similar-colored
sky and background.

right, which is partly segmented as sky. It is easy to see why that is a difficult case since

it does look a lot like sky, and even though the model usually handles well sky-like colors,

sometimes they do cause errors. On the second example the issue is the opposite, the

darkest part of the sky being incorrectly segmented. Again, the mistake makes a lot of

sense, and while the model overall works well with very dark skies, sometimes it causes

small errors.

The last example is a rainy image, which were not included in the training set, so it is

natural that they are not perfectly segmented. Even though in the augmentation we added

raindrops, the real rainy images look a little different with bigger and more irregular drops.

The result is still reasonably good, though, and again it is very easy to see the cause of

the errors. In fact, also the truth mask seems to have errors due to the raindrops, and that

is why we decided not to annotate the rainy images, since it is so difficult or sometimes

impossible to see where the skyline goes. If we would have rainy images with accurate
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Figure 6.6. C/N0 histograms for the LOS and NLOS satellites in each test video during
an hour

masks in the training set, it is possible that the model would learn to handle them better.

Unlike the previous examples, this image was not part of our test set but we still looked at

the performance on the rainy images visually, and it usually looks similar to this one.

6.3 Satellite classification results

For each of the three test set videos (see Section 4.3), we segmented the frames every

second for a clip of an hour, and classified the satellites as explained in Section 5.2. Thus,

we processed 3600 images in each video. The C/N0 histograms of those satellites can

be seen in Figure 6.6. We can see that there is little difference between the 3 videos,

meaning that the classification is not affected by different weather conditions, and as

expected, the LOS C/N0s are clearly higher than NLOS. Roughly speaking, the LOS

signals are usually above 30 dBHz while the NLOS signals are below that. It should be

noted that the 0 dBHz satellites are not plotted, because it means that the signal is not

tracked (the receiver was not able to extract a message from the given satellite) which

can also be due to other reasons than NLOS. Because of that, e.g., tunnels where none

of the satellites are tracked do not show in this figure.

We could say that, with such setup as the one used in the test vehicle, signals below

20 dBHz are very unlikely to be LOS and signals above 40 dBHz very unlikely to be

NLOS, and such cases are likely misclassifications. From the histograms we see that that

happens very rarely, except for the video 1 where quite many above 40 dBHz signals are

classified as NLOS. The explanation for this is a long static scene where a few satellites

are partly behind leaves and classified as NLOS. Based on the signal strength we can

consider them misclassifications, but the segmentation is still correct because we wanted
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Figure 6.7. Satellite C/N0s and classification in time. In the first plot, the satellite is just
rising above the horizon, the second one has a higher elevation, and the third one is a
closeup of the second one, where the big drop is a tunnel.

to segment trees as NLOS mostly. Looking at the videos, it looks like also the majority of

other high C/N0 (>35 dBHz) satellites are behind trees, or sometimes right on the edge of

an obstacle, instead of wrong segmentation. However, usually in these cases the C/N0

has still clearly dropped compared to a full LOS situation, so our choice to treat trees as

NLOS seems reasonable.

If we plot the C/N0s of individual satellites in time, we get more insights about the model

performance in practice. This has been done in Figure 6.7 for two GPS satellites. The first

two plots are an hour clip from the test video 1, so they correspond to the first histograms

in Figure 6.6. The background color shows the classification at each point in time and we

can see that there is a clear correlation with the C/N0. The C/N0 fluctuates a little all the

time, though, which is why it is alone not the best measure of NLOS.
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The plotted G02 is a low elevation satellite that is just rising above the horizon. At first, it is

blocked so the C/N0 is low and often dropping to zero, and our model correctly classifies

it as NLOS. A little before 30 minutes, the satellite has risen above the trees and we see

an increase in the signal strength and the classification changes to LOS. Because the

elevation is still low, the signal frequently gets blocked behind obstacles which we see as

drops in the C/N0 that the classifier also detects. The model seems to work very reliably,

although if we look closely we can see at least one misclassification at about 7 minutes.

This is due to a limitation in our method: when coming out of a tunnel, the camera is

blind for a few seconds because of the sudden change in brightness, meaning that the

image is completely white and all satellites are classified as LOS. The classification will

naturally be impossible there, but it would be easy to detect these cases and not do any

classification.

The second satellite, G24, is higher up in the sky so it is mostly line-of-sight although it

still sometimes gets blocked. The three times when the C/N0 drops to zero are tunnels

and they are detected well. The longer NLOS section around 20 minutes is the static

scene where the satellite is behind a tree. The C/N0 there is quite high but since it does

clearly drop when the scene starts, the classification seems correct in this case also. The

last plot is a closeup of the second one, and we see there the first tunnel. We can confirm

that the classification is indeed correct for the whole length of the tunnel, and also the

smaller drops are detected well.
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7. CONCLUSION

Classifying the satellite signals as LOS and NLOS is beneficial in GNSS, and it can be

done in various ways. This thesis studied the use of a fisheye camera with the satellites

projected onto the image to perform the classification with the help of semantic segmen-

tation of the image. The segmentation can also be done with different methods, and

in this thesis we studied segmentation with deep learning and convolutional neural net-

works. We compared several popular CNN models that were expected to be suitable for

the task.

Based on the study, we could confirm that NLOS satellites can be reliably identified from

fisheye videos with image processing techniques. Using deep learning, the sky area can

be segmented from the images accurately, which enables accurate satellite classification.

Our best performing model, U-Net with EfficientNetB6 backbone, achieved state-of-the

art sky segmentation performance, reaching 98.8% IoU and 99.4% F1-score on our test

set. Our model works equally well in very sunny and cloudy conditions, and in particular it

is also reliable in tunnels where no sky is visible. The most difficult cases are when the sky

and obstacles have very similar colors. Our study of signal strengths further confirmed

that our LOS/NLOS classification based on the segmentation is correct most of the time.

We found that there was little difference between any of the tested CNN models, and

for the satellite classification task any of them would be sufficient. We also saw that

not so much training data is needed, but performing light augmentations to increase the

dataset size is beneficial. Furthermore, not so much detail is needed for the task so the

images can be downsampled quite a lot, and it can be even advantageous. However,

well representative and carefully annotated training data is important since the inferred

segmentation results reflect the training data.

It is likely that with different CNN models that we did not try here, different versions of

the tested models, or different architectural or training hyperparameters, we could reach

slightly better segmentation performance than what we reported here. However, it would

probably increase the computational cost as well as not improve the satellite classification

much or at all. The model performance on rainy and low light conditions also remains to

be studied, but it is possible that the accuracy there would be very good as well, if training

data of such situations would be provided. Even without, the performance with raindrops
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seems reasonably good. In addition, using the information of the previous video frames

could be beneficial.

Our C/N0 analysis indicated that trees are likely the most significant source of classifi-

cation errors. The C/N0 of satellites behind trees is often so high that it is possible that

the correct classification would be LOS, which is often not the case. As the correct clas-

sification of the satellites behind trees is not clear, it might be a good idea to treat trees

as a separate class instead of doing binary LOS/NLOS classification. The segmentation

networks would probably learn to detect the trees very well. However, behind trees there

can be other obstacles that are not visible but block the signals completely, which is why

our approach might still be better.

The study showed that neural networks can segment the sky from fisheye images very

accurately, and they bring a clear improvement compared to simpler methods. The ap-

proach is attractive not only because of the excellent performance, but also because of

the easiness. Letting the CNN do the work of finding representative features and patterns

reduces the need of manual work of developing highly complex image processing algo-

rithms including e.g., preprocessing and considering different kinds of situations. With

modern tools, training and deploying CNN models is easy and fast.
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