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ABSTRACT

In this thesis, we consider control and dynamical behaviour of flexible beam
models which have potential applications in robotic arms, satellite panel arrays
and wind turbine blades. We study mathematical models that include flexible
beams described by Euler-Bernoulli beam equations. These models consist of
partial differential equations or combination of partial and ordinary differential
equations depending on the loads and supports in the model. Our goal is to
influence the models by control inputs such as external applied forces so that
measured deflection profiles of the beams in the models behave as desired.

We propose dynamic controllers for the output regulation, where the mea-
surements from the models track desired reference signals in the given time, of
flexible beam models. The controller designs are based on the so-called internal
model principle and they utilize difference between measurement and desired
reference trajectory. Moreover, the controllers are robust in the sense that
they can achieve output regulation despite external disturbances and model
uncertainties.

We also study the output regulation problem when there are certain limi-
tations on the control input. In particular, we generalize the theory of output
regulation for dynamical systems described by ordinary differential equations
subject to input constraints to a particular class of systems described by par-
tial differential equations. We present set of solvability conditions and a linear
output feedback controller for the output regulation.

vii



viii



CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Summary of the Main Results . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Control of Euler-Bernoulli Beam Models . . . . . . . . . . . . . . . . 10
2.1 The Cantilever Beam . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Flexible Satellite Model . . . . . . . . . . . . . . . . . . . . 13
2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Abstract Linear Systems . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Solutions of Abstract Linear Systems . . . . . . . . . . . . . . . 19
3.3 Stability and Stabilization . . . . . . . . . . . . . . . . . . . . . 21
3.4 Robust Output Regulation . . . . . . . . . . . . . . . . . . . . . 22
3.5 Output Regulation for Systems with Input Saturation . . . . . 24

4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 Controller construction for the cantilever beam . . . . . . . . . 28
4.2 Controller construction for the flexible satellite model . . . . . 29
4.3 Output regulation of infinite-dimensional linear systems subject

to input saturation . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusion and Future Perspective . . . . . . . . . . . . . . . . . . . 34

ix



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Publication I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Publication II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Publication III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Publication IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x



SYMBOLS AND ABBREVIATIONS

A system operator, generator of a strongly continuous semi-
group

B control operator

Bd disturbance operator

C observation operator

D(A) domain of a linear operator A

E operator associated with the disturbance signal

F operator associated with the reference signal

G(s) transfer function of a plant at s ∈ C

K output operator of a dynamic error feedback controller

L2(a, b; X) set of square integrable functions from an interval [a, b] to
a Hilbert space X

S system operator of an exosystem

T (t) strongly continuous semigroup generated by the linear op-
erator A

U input space

Ud disturbance input space

W state space of the exosystem

X state space

X1 space D(A) with the norm ∥x∥X1 = ∥(sI − A)x∥X for a
fixed s ∈ ρ(A)
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X−1 completion of the state space X with respect to the norm
∥(sI − A)−1(·)∥X , where s ∈ ρ(A) is fixed

Y output space

Z controller state space

L(X, Y ) space of bounded linear operators from a normed space X

to a normed space Y

R(A) range of a linear operator A

A system operator of a boundary control system

B control operator of a boundary control system

C observation operator of a boundary control system

G1 system operator of an error feedback controller

G2 input operator of a dynamic error feedback controller

N kernel of a linear operator

ϕ(·) saturation function

ρ(A) resolvent set of a linear operator A

u(t) control input

v(t) state of an exosystem

wd(t) disturbance input

x(t) system state

y(t) system output

yref (t) reference output

z(t) state of a dynamic error feedback controller

ODE ordinary differential equation

PDE partial differential equation
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1 INTRODUCTION

Flexible structures are widely used in the modern technology because of their
advantages, for example, light weight and low energy consumption when mov-
ing the structure. Different types of flexible structures can be found, for exam-
ple in satellite panels, wind turbine tower blades, robot arms and marine risers.
However, the flexibility of these structures leads to problems of structural vi-
brations and shape deformation. It is therefore natural to ask if one can control
such harmful vibrations and deformations in order to improve performances of
the structures. In this thesis, we consider mathematical models consisting of
flexible beams. Our goal is to influence these models, that is, control selected
properties of the models, so that deflection profiles of the beams in the model
behave as desired by using mathematical control theory.

Mathematical control theory studies analysis and control design of dynami-
cal systems. Dynamical systems arise from modeling physical phenomena that
change over time and they are often described by differential equations. If
the dynamical system is described by ordinary differential equations (ODEs),
then its state at any instance is a vector with finite number of elements and
the system is called a finite-dimensional system. On the other hand, if the
system is described by partial differential equations (PDEs), then the state
lies in an infinite-dimensional vector space and the system is called an infinite-
dimensional system or distributed parameter system. The dynamical systems
considered in this thesis are models consisting of flexible beams and mathe-
matical model of each of them involve at least one PDE. These systems can be
controlled, for example, by external forces or moments and we assume that we
can measure deflection profiles of the beams.

The general control scenario is depicted in Figure 1.1 where P denotes the
model we consider. The goal is to find a control input u(t), such as external
applied forces or moments in such a way that the measured output y(t), mea-
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surement from the system, behaves as desired despite external disturbances
wd(t), such as external forces.

P
u(t) y(t)

wd(t)

Figure 1.1 Control System

In this thesis, we consider two models consisting of one flexible beam and
two flexible beams connected via a center rigid body. In both models, beam is
modelled by Euler-Bernoulli beam equation of the form

ρ(ξ)∂2w

∂t2 (ξ, t) + ∂2

∂ξ2

(︃
EI(ξ)∂2w

∂ξ2

)︃
(ξ, t) = 0, ξ ∈ Ω ⊂ R, t > 0, (1.1)

where w(ξ, t) is the transverse displacement of the beam, ρ(ξ) and EI(ξ) are
linear density and flexural rigidity of the beam, respectively. In addition, the
considered models include set of initial values for the deflection profiles of the
beam at time t = 0 and set of boundary conditions depending, for example,
on the loads and supports in the models. We assume that the velocities of the
beam system can be measured inside the domain Ω or at the boundaries. The
measured outputs that we consider in this work include linear velocity ∂w

∂t (ξ, t),
angular velocity ∂2w

∂t∂ξ (ξ, t) and weighted average of velocities in the domain Ω
of the beam system in the considered model. The property which we control
depends on the considered model.

The main control problem is defined as follows. Our goal is to seek for a
control input u(t) such that the measured output y(t) tracks desired reference
signal yref (t) asymptotically.
Output Regulation Problem. “Find a control input u(t) such that ∥y(t) −
yref (t)∥ → 0 in a suitable sense as t → ∞ despite external disturbances in the
system.”

In reality, it is not always possible to have accurate knowledge of the consid-
ered model. There will be for example parameter uncertainties in the model.
Control designs that achieve the desired goal tolerating model uncertainties
are called robust. Control designs in this work are robust in the sense that
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they can achieve output tracking despite a class of parameter uncertainties,
for example a class of uncertainties of ρ(ξ) and EI(ξ) in case of (1.1), in the
system.

In the output regulation problem, we consider reference and disturbance
signals of the form

yref (t) = a0 +
q∑︂

k=1
ak cos (ωkt) + bk sin (ωkt),

wd(t) = c0 +
q∑︂

k=1
ck cos (ωkt) + dk sin (ωkt)

where (ωk)q
k=1 are known frequencies and (ak)q

k=0, (bk)q
k=1, (ck)q

k=0 and (dk)q
k=1

are possibly unknown constant coefficients.
Stability property of a model can affect its dynamical behaviour and there-

fore stability analysis is an important part of control design. Stability of a
differential equation model corresponds to the behaviour of its solutions with
respect to time. In general, a differential equation model is stable if for any
initial condition, its solutions decays to zero asymptotically and the model is
stabilizable if one can find a control input such that for any initial condition, the
corresponding solutions decay to zero asymptotically. In addition to tracking
of given signals, control designs in this work stabilize the considered models.

1.1 Research Objectives

In this thesis, we consider models which have potential applications in the
regulation of velocities of robot arms, wind turbine blades and satellites. Par-
ticularly, we consider two models, a single beam model (Figure 1.2a) and a
model of a satellite that is composed of two identical flexible solar panels and
a center rigid body (Figure 1.2b).

(a) A cantilever beam (b) A flexible satellite model

Figure 1.2 Models with flexible beam(s)
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The main research objectives are:
• Solve the output regulation problem for selected mathematical models

consisting of Euler-Bernoulli beams. Additionally, analyze stability prop-
erties of the considered models.

• Propose control designs that are preferably implementable in practice in
the sense that the control designs are finite-dimensional and robust with
respect to model uncertainties.

• Solve the output regulation problem in the presence of input constraints,
i.e., when there are limitations on the control input u(t).

1.2 Literature Review

In this section, we present existing results on control of Euler-Bernoulli beam
models and distributed parameter systems. The control goals include stabiliz-
ing the system, influencing the system so that the outputs track given reference
signals while rejecting external disturbances.

Control of Euler-Bernoulli beam models

Control problems for Euler-Bernoulli beam models have been studied widely
in the literature. Stability and stabilization problems of Euler-Bernoulli beams
have been studied for example in [1, 4, 32, 33, 66, 84] and [18, Sec. 8.4]. In
[11, 14], stabilization problems of serially connected beams have been studied.
In [8], three robust control designs have been proposed for the stabilization of
three different Euler-Bernoulli beam models. Exponential stability of coupled
beams with dissipative joints has been studied in [13] and [80]. Exponen-
tial stability of an Euler-Bernoulli beam with locally distributed damping has
been studied in [58]. Boundary stabilization of a multiple beam system has
been studied in [52]. In [22], three compensator-based robust controllers have
been proposed for the stabilization of a cantilevered Euler-Bernoulli beam. In
[3], stabilization problem of serially connected inhomogeneous Euler-Bernoulli
beams has been studied. Optimal control problem for classes of hyperbolic and
Euler-Bernoulli partial differential equations with boundary control has been
studied in [23].

Stabilization problems of flexible beams coupled with rigid structures have
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been studied for example in [15, 20, 40, 59, 74, 98]. Stabilization of an Euler-
Bernoulli beam with tip mass using velocity feedback controls has been studied
in [59]. SCOLE model is a well-known mathematical model of a system where
a flexible beam is clamped at one end and other end attached to a rigid body.
The SCOLE beam system is used to model wind turbine tower [98]. Well-
posedness, controllability and stability properties of SCOLE system have been
studied in [96, 98, 100]. Strong stabilization of a wind turbine tower model
has been studied in [99]. Vibration control of a flexible satellite model that
is composed of two flexible solar panels and a center rigid body has been
considered in [40] and vibrations are suppressed using a single-point control
input. In comparison, the satellite model in this work consider the effect of
rotation angle of the center rigid body whereas in [40] the effect of rotation
angle has been ignored. Vibration control of a rigid-flexible satellite consisting
of a flexible beam and a rigid body has been studied in [86] using H∞ control
design. Boundary stabilization of a flexible wing model has been studied in
[56]. In [31], three approximation schemes have been compared for optimal
control of a flexible beam which is attached at one end to a rotating rigid
hub and at the other end to a concentrated mass. In [53], control of multiple
component structures consisting of Euler-Bernoulli beams and rigid bodies has
been studied.

There are some studies focusing output regulation of beam models. Stabi-
lization and output regulation of flexible-link manipulators have been studied
in [74]. In [20], stabilization and set point regulation of two-link flexible arm
have been studied. Set point tracking and harmonic tracking of beam models
have been studied by numerical methods in [50]. A finite-dimensional regu-
lator has been proposed for the output tracking of an Euler-Bernoulli beam
model in [19], however robustness of the control design has not been stud-
ied. In [2], a proportional derivative controller and a non-linear controller have
been proposed for a rotating flexible satellite with tip masses in order to sup-
press vibrations and track constant signals. Output tracking of Euler-Bernoulli
beams have been studied recently in [34, 35, 38, 49] and [36] using infinite-
dimensional controllers which are not implementable in practice. Disturbance
rejection problem of two coupled Euler-Bernoulli beams using internal model
based control design has been studied in [81].
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Control designs that have been widely used in engineering for vibration con-
trol and trajectory tracking of flexible beam models include adaptive control,
sliding mode control, iterative learning control, neural network control, fuzzy
logic control and model-based control [42]. A robust adaptive boundary con-
trol has been proposed in [30] to stabilize Euler-Bernoulli beam and to reject
unknown external disturbances. In [29], a non-linear feedback controller based
on a finite element method model has been proposed to control tip payload
of a single-link flexible manipulator. In [95], a finite-dimensional model for a
rotating Euler-Bernoulli beam using finite element method has been obtained
and vibrations are suppressed using positive position feedback and momen-
tum exchange feedback control laws. A sliding mode boundary controller has
been proposed in [67] to reject unknown bounded disturbances and suppress
vibrations of Euler-Bernoulli beam. In [37], boundary stabilization and dis-
turbance rejection of an Euler-Bernoulli beam model have been studied by
active disturbance rejection control and sliding mode control methods. In [44],
a boundary control has been proposed for stabilization of a flexible marine
riser. In [60], a boundary control scheme is designed to regulate vibrations of
an Euler-Bernoulli beam with input and output constraints. In [27], a state
feedback control and an output feedback control have been proposed for vibra-
tion control of a flexible spacecraft system with input constraints. In [43], an
adaptive boundary iterative learning control has been designed for vibration
control of an Euler-Bernoulli beam with input constraints. Vibration control
of a flexible marine riser system with input constraints has been studied in
[41].

Output Regulation of Distributed Parameter Systems

Output regulation problem has a rich history in the literature since 1970s.
Internal model principle is the main key in constructing robust regulating con-
trollers. The concept of internal model principle was originally introduced in
[25] and [26] for finite-dimensional systems and since then it has been devel-
oped for infinite-dimensional systems, see [46, 77, 78]. Output regulation of
distributed parameter systems was started by [83] without robustness analysis
and then the problem has been studied actively by many authors, see for ex-
ample [6, 10, 16, 19, 39, 45, 72, 75, 77, 81] and [5]. References [6, 9, 10, 75,
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76, 89] and [70, Ch. 7] demonstrate how the control designs can be applied to
specific PDE models. Output regulation of nonlinear systems has been studied
in [47, 71, 92, 94].

Stabilization and output regulation of systems subject to input constraints
have been studied by many authors, see for example [28, 54, 62, 63, 65, 68, 79,
82, 85, 88]. In [85], non-linear output feedback control design has been proposed
for stabilization of linear finite-dimensional systems with input constraints. In
[79], stability of one dimensional wave equation with input constraints has been
studied. In [54], stability of elastic systems with input constraints has been
studied. In [68], stabilization problem of Korteweg-de Vries equation with input
constraints has been studied. In [55], output regulation of reaction-diffusion
equation with input constraints has been studied using proportional integral
control. Output tracking of constant reference signals for multi-input multi out-
put non-linear systems with input constraints using integral control has been
studied in [65]. Stabilization problem of reaction-diffusion equation with input
constraints has been studied in [69]. Output regulation of finite-dimensional
linear systems with input constraints has been studied in [82]. However, there
are only few results focusing output regulation of infinite-dimensional linear
systems subject to input constraints [24, 61, 62, 63, 64, 73] where asymptotic
tracking of constant reference signals are achieved using integral controls.

1.3 Summary of the Main Results

The main contributions of this thesis are:

1. We propose robust control designs for the output regulation of the can-
tilever beam and the flexible satellite model.

2. We prove exponential stability of the satellite model.

3. We generalize output regulation theory for finite-dimensional linear sys-
tems subject to input constraints to a particular class of infinite-dimensional
linear systems.

4. We solve the output regulation problem for the satellite model in the
presence of input constraints.

The main novelty of the Result 1 compared to the existing literature is that we
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utilize internal model based control designs from [81], [75] and [76] designed
for classes of abstract linear systems with some additional properties, such as
passivity and well-posedness, see Section 3.1. The advantage of using these
control designs is that they are robust by construction. Result 2 is a new
contribution. In comparison, the satellite model considered in this work is
different from the models in [3, 40, 96, 98, 100] where stability properties of
Euler-Bernoulli beams coupled with ODE systems have been studied, therefore
stability of the satellite model cannot be obtained from those results. The
main novelty of the Result 3 compared to the existing results is that we allow
reference signals to be linear combination of sinusoids whereas existing results
focus on tracking of only constant reference signals. To our knowledge, output
regulation of the satellite model with input constraints has not been considered
and therefore the Result 4 is a new contribution.

In what follows, we present how the above results are addressed in this
thesis. We solve the output regulation problem for the cantilever beam using
a finite-dimensional robust controller in Publication I. We consider shear force
control input and velocity output at the free end of the beam. In addition,
we also consider a case where we have distributed control input and weighted
average of velocities as the measured output.

We consider output regulation of the flexible satellite model that is com-
posed of two identical flexible solar panels and a center rigid body in Publica-
tions II and III. Three different robust controllers are proposed for the output
tracking of the satellite model. Force and moment control inputs and linear
and angular velocities as outputs are considered on the center rigid body. Ex-
ponential stability of the satellite model is proved in Publication III.

Moreover, output regulation theory for finite-dimensional linear systems
subject to input constraints is generalized to a particular class of infinite-
dimensional linear systems in Publication IV. A linear output feedback control
input is proposed for the output tracking of given reference signals. The results
are illustrated with an example of the flexible satellite model subject to input
constraints.

8



1.4 Thesis Structure

In Chapter II, we present output tracking problems for the selected two Euler-
Bernoulli beam models, the cantilever beam and the model of a flexible satellite.
Chapter III is devoted to the mathematical tools used to solve the considered
problems in Chapter II. We introduce abstract linear systems and the con-
trollers for the robust output regulation. In addition, we also discuss selected
properties, stability and stabilization, passivity and well-posedness, of abstract
linear systems. We also introduce output regulation of systems with input con-
straints. In Chapter IV, we discuss the main results of the thesis. Concluding
remarks and future perspectives are presented in Chapter V.

9



2 CONTROL OF EULER-BERNOULLI
BEAM MODELS

In this chapter, we describe the cantilever beam and the flexible satellite model
mathematically by PDEs and coupled PDEs-ODEs. We introduce control in-
puts and measured outputs for both of the models. Moreover, we formulate
the output regulation problem for the models.

In practice, physical beam models have some damping caused by internal
or external friction forces. The types of damping on beams include viscous,
structural, Kelvin-Voigt, spatial hysteresis and time hysteresis dampings [7, 57,
66]. If a beam is allowed to vibrate freely, the nature of damping will reduce
vibrations of the beam and there will be no vibrations after some time. The
decay rate of the vibrations depends on the amount of damping. Therefore,
a good mathematical model for an Euler-Bernoulli beam should include some
damping terms. However, undamped models have been studied widely [4, 11,
15, 97] to better understand certain properties, such as stabilizability, of the
models. Moreover, undamped models can be considered to represent situations
where the natural damping is very weak. In this work, our goal is to propose
control designs which can introduce damping for the stabilization when the
damping in the considered beam model is weak.

2.1 The Cantilever Beam

A cantilever beam is a beam which is clamped at one end and free at the other
end (see Figure 1.2a). Assuming that the beam is of length 1, then transverse
vibrations w(ξ, t), ξ ∈ Ω = (0, 1) of the beam are modelled by [32]

ρ(ξ)∂2w

∂t2 (ξ, t) + ∂2

∂ξ2

(︃
EI(ξ)∂2w

∂ξ2

)︃
(ξ, t) = 0, ξ ∈ (0, 1), t > 0.
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If the end ξ = 0 is clamped and the end ξ = 1 is free, then the boundary
conditions are given by

w(0, t) = 0,
∂w

∂ξ
(0, t) = 0,(︃

EI(ξ)∂2w

∂ξ2

)︃
(1, t) = 0,

∂

∂ξ

(︃
EI(ξ)∂2w

∂ξ2

)︃
(1, t) = 0.

In general, control and disturbance inputs affect the beam system via boundary
or inside the domain (0, 1). In this work, we consider the cases where the
cantilever beam has boundary control, boundary measurements (see Figure 2.1)
and distributed control and measurements inside the domain. Additionally, we
assume that there are no external disturbances. In what follows, we introduce
the two cases that we consider for the control inputs and the measured outputs.

Boundary control and observation. The beam can be controlled by an
external applied force at the free end, see Figure 2.1. In this case, the control

u(t), y(t)

ξ0 1

Figure 2.1 The Cantilever Beam with Boundary Control and Output

input u(t) is determined by

∂

∂ξ

(︃
EI(ξ)∂2w

∂ξ2

)︃
(1, t) = u(t).

We are interested in measuring velocity of the beam at the free end, i.e.,

y(t) = ∂w

∂t
(1, t).

In this case, our goal is to find a control design u(t) such that the velocity at
the free end of the beam tracks given reference signal asymptotically in the
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sense that ∫︂ t+1

t

⃦⃦⃦⃦
∂w

∂s
(1, s) − yref (s)

⃦⃦⃦⃦
ds → 0 as t → ∞

despite external disturbances and a class of parameter uncertainties in the
system. We note that we do not consider pointwise convergence of the error
since boundary velocity resulting from non-smooth initial conditions may not
be continuous.

Distributed control and observation. The beam can be controlled by an
external applied force inside the domain (0, 1), see Figure 2.2. In this case, the

u(t), y(t)

ξ0 1

Figure 2.2 The Cantilever Beam with Distributed Control and Output

distributed force control input of the cantilever beam is determined by

ρ(ξ)∂2w

∂t2 (ξ, t) + ∂2

∂ξ2

(︃
EI(ξ)∂2w

∂ξ2

)︃
(ξ, t) = b(ξ)u(t)

where b(·) ∈ L2(Ω) is a real-valued function. We are interested in measuring
weighted average of velocities in the domain (0, 1) and it is given by

y(t) =
∫︂ 1

0
b(ξ)∂w

∂t
(ξ, t)dξ.

Now, the goal is to find a control design u(t) such that the weighted average
of velocities in the domain (0, 1) tracks given reference signal asymptotically
in the sense that⃦⃦⃦⃦ ∫︂ 1

0
b(ξ)∂w

∂t
(ξ, t)dξ − yref (t)

⃦⃦⃦⃦
→ 0 as t → ∞

despite external disturbances and a class of parameter uncertainties in the
system.
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2.2 The Flexible Satellite Model

In this thesis, we consider the flexible satellite that is composed of two identical
solar panels and a center rigid body [8, 40], see Figure 2.3. The solar panels

u(t), y(t)

wl(ξ, t) wc(t) wr(ξ, t)

-1 0 1

Figure 2.3 A flexible satellite model with control and observation on the center rigid
body

can be modelled as Euler-Bernoulli beams. Mathematically, the considered
satellite model is a coupled system of PDEs and ODEs given by

ρ
∂2wl

∂t2 (ξ, t) + EI
∂4wl

∂ξ4 (ξ, t) + γ
∂wl

∂t
(ξ, t) = 0, −1 < ξ < 0,

ρ
∂2wr

∂t2 (ξ, t) + EI
∂4wr

∂ξ4 (ξ, t) + γ
∂wr

∂t
(ξ, t) = 0, 0 < ξ < 1,

m
d2wc

dt2 (t) = EI
∂3wl

∂ξ3 (0, t) − EI
∂3wr

∂ξ3 (0, t),

Im
d2θc

dt2 (t) = −EI
∂2wl

∂ξ2 (0, t) + EI
∂2wr

∂ξ2 (0, t),

∂2wl

∂ξ2 (−1, t) = 0,
∂3wl

∂ξ3 (−1, t) = 0,

∂2wr

∂ξ2 (1, t) = 0,
∂3wr

∂ξ3 (1, t) = 0,

∂wl

∂t
(0, t) = ∂wr

∂t
(0, t) = dwc

dt
(t),

∂2wl

∂t∂ξ
(0, t) = ∂2wr

∂t∂ξ
(0, t) = dθc

dt
(t).

where t > 0, wl(ξ, t) and wr(ξ, t) are the transverse displacements of the left
and the right beam, respectively, wc(t) and θc(t) are the linear and angular
displacements of the rigid body, respectively. The parameters ρ, EI and γ

are linear density, flexural rigidity and the viscous damping coefficient of the
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beams, respectively, and m and Im denote the mass and the mass moment of
inertia of the center rigid body. The parameters are assumed to be constants.

In general, control and disturbance inputs affect the satellite system via
boundary or inside the domain (−1, 1). In this work, we consider external
force control input u1(t) and moment control input u2(t) on the center rigid
body. Additionally, we consider external force disturbance wd1(t) and moment
disturbance wd2(t) on the rigid body and possible force disturbances distributed
on the solar panels. So, the control input u(t) and the disturbance input wd(t)
are of the form

ρ
∂2wl

∂t2 (ξ, t) + EI
∂4wl

∂ξ4 (ξ, t) + γ
∂wl

∂t
(ξ, t) = bd1(ξ)wd1(t),

ρ
∂2wr

∂t2 (ξ, t) + EI
∂4wr

∂ξ4 (ξ, t) + γ
∂wr

∂t
(ξ, t) = bd2(ξ)wd2(t),

m
d2wc

dt2 (t) = EI
∂3wl

∂ξ3 (0, t) − EI
∂3wr

∂ξ3 (0, t) + u1(t) + wd3(t),

Im
d2θc

dt2 (t) = −EI
∂2wl

∂ξ2 (0, t) + EI
∂2wr

∂ξ2 (0, t) + u2(t) + wd4(t)

where u(t) = [u1(t), u2(t)]T , wd(t) = [wd1(t), wd2(t), wd3(t), wd4(t)]T and bd1(·) ∈
L2(−1, 0) and bd2(·) ∈ L2(0, 1) are real-valued functions.

We are interested in the measurements of linear and angular velocities of
the center rigid body. Therefore, the measured output y(t) is of the form

y(t) =
(︃

dwc

dt
(t), dθc

dt
(t)

)︃T

.

Our goal is to find a control design u(t) such that the linear velocity and the
angular velocity of the center rigid body track given reference sinusoidal signals
asymptotically in the sense that⃦⃦⃦⃦

dwc

dt
(t) − yref1(t)

⃦⃦⃦⃦
→ 0 and

⃦⃦⃦⃦
dθc

dt
(t) − yref2(t)

⃦⃦⃦⃦
→ 0 as t → ∞

despite external disturbances and a class of parameter uncertainties in the
system.
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2.3 Notation

In Publications I, II, III and IV, we use notations wξ(ξ, t), w′(ξ, t) for partial
derivative of w(ξ, t) with respect to spatial variable ξ and wt(ξ, t), ẇ(ξ, t) for
partial derivative of w(ξ, t) with respect to time t.
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3 THEORETICAL BACKGROUND

Mathematical models described by linear ordinary or partial differential equa-
tions can be written in the form of abstract linear systems on suitable state
spaces [17, 21]. We use such a formulation since control designs we propose for
the output regulation assume that the system is in the abstract form and sat-
isfies certain required properties. In what follows, we introduce abstract linear
systems and define properties such as passivity, well-posedness and stability of
these systems. Then we introduce robust control designs for the output reg-
ulation. Finally, output regulation of systems subject to input constraints is
introduced.

3.1 Abstract Linear Systems

For the given model, we denote the state space by X, the input space by U , the
disturbance space by Ud and the output space by Y . Let A : D(A) ⊂ X → X

be a generator of a strongly continuous semigroup T (t) on X [21, Ch. I.5] with
non empty resolvent set ρ(A). We define X1 to be the space D(A) with norm
∥x∥1 = ∥(βI − A)x∥, ∀ x ∈ D(A) and X−1 as the completion of X with norm
∥x∥−1 = ∥(βI − A)−1x∥, ∀ x ∈ X where β ∈ ρ(A) is fixed. The operator A has
a unique extension A−1 ∈ L(X, X−1) [90, Sec. 2.10]. Now, the abstract linear
system corresponding to the given model is of the form

ẋ(t) = Ax(t) + Bu(t) + Bdwd(t), x(0) = x0, (3.1a)

y(t) = Cx(t), (3.1b)

where x(t) ∈ X is the state variable, u(t) ∈ U is the control input, wd(t) ∈
Ud is the external disturbance and y(t) ∈ Y is the output. If the model is
described by ordinary differential equations, then X is a finite-dimensional
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space whereas for the model described by partial differential equations X is
an infinite-dimensional space. Since we consider Euler-Bernoulli beam models
and their solutions are functions in suitable Hilbert spaces, X is an infinite-
dimensional Hilbert space. In this work, the spaces U , Ud and Y are finite-
dimensional. The operators B, Bd and C are control operator, disturbance
operator and observation operator, respectively. The operators B, Bd and C

are linear but not necessarily bounded. The operators B, Bd and C are called
bounded if B ∈ L(U, X), Bd ∈ L(Ud, X) and C ∈ L(X, Y ) otherwise they are
called unbounded [90, Ch. 4.2].

Now we restrict to the situation when the operator A generates strongly con-
tinuous semigroup of contractions, i.e., the semigroup T (t) satisfies ∥T (t)∥ ≤ 1
for every t ≥ 0 [90, Def. 3.1.12]. In this case, the semigroup generation of A

is often obtained by the Hilbert space version of Lumer-Phillips theorem [90,
Thm. 3.8.4], [48, Ch. 6].
Theorem 3.1.1 (Lumer–Phillips). Let A be a linear operator with domain
D(A) on a Hilbert space X. Then A is the infinitesimal generator of the
contraction semigroup T (t), t ≥ 0 on X if and only if A is dissipative, i.e.,
Re ⟨Ax, x⟩ ≤ 0, ∀x ∈ D(A), and R(I − A) = X.

In this work, we consider the situations where the actuators and the sensors
are implemented at the same physical location which is also called as collo-
cated actuators and sensors. This will lead to a special class of systems called
impedance passive linear systems defined as follows.
Definition 3.1.2. The system (3.1) is impedance passive if U = Y and the
solutions x(t) satisfy

1
2

d

dt
∥x(t)∥2

X ≤ Re ⟨u(t), y(t)⟩U,Y , t > 0.

The motivation to consider these class of systems is that Euler-Bernoulli
beam models that we consider in this work have collocated actuators and sen-
sors and they can be formulated as impedance passive abstract linear systems.

For models described by PDEs with non-homogeneous boundary conditions,
the corresponding abstract systems will not naturally appear in the form (3.1).
In what follows, we introduce boundary control systems.
Boundary Control Systems. For simplicity, assume that there are no exter-
nal disturbances. If we have control inputs and observations at the boundary
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of the domain, then the abstract system corresponding to the given model is
written in the form

ẋ(t) = Ax(t), x(0) = x0, (3.2a)

Bx(t) = u(t), (3.2b)

y(t) = Cx(t) (3.2c)

where A : D(A) ⊂ X → X, B : D(A) → U and C : D(A) → Y are linear
operators. However, under some extra conditions it is possible to write the
system model with boundary control and observation in the form (3.1).
Definition 3.1.3 (Boundary Control and Observation System [17, Def. 3.3.2],
[48, Ch. 11]). Let X, U and Y be Hilbert spaces. Then the system (3.2) is a
boundary control and observation system if the following hold.

1. The operator A : D(A) ⊂ X → X with D(A) = D(A) ∩ N (B) and Ax =
Ax for x ∈ D(A) is the infinitesimal generator of a strongly continuous
semigroup T (t), t ≥ 0 on X.

2. There exists an operator H ∈ L(U, X) such that for all u ∈ U we have
Hu ∈ D(A), AH ∈ L(U, X) and BHu = u.

In what follows, we introduce a result on how the equations (3.2a) and
(3.2b) can be reformulated equivalently into the form (3.1).
Remark 3.1.4 ([90, Sec. 10.1]). Let (A, B) be a boundary control system.
Then there exists a unique operator B ∈ L(U, X−1) such that A = A−1 + BB
on D(A) and therefore (3.2a) and (3.2b) can be written as

ẋ(t) = A−1x(t) + Bu(t), x(0) = x0.

Abstract formulation of Euler-Bernoulli beam models can be found in [3, 4,
32, 66, 73, 96]. Euler-Bernoulli beams as boundary control systems have been
studied in [90, Ch. 10] and [18, Ch. 10].
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3.2 Solutions of Abstract Linear Systems

In this section, we focus on state trajectories x which are the solutions of (3.1a).
The solution of (3.1a), if it exists, is given by

x(t) = T (t)x0 +
∫︂ t

0
T (t − τ)Bu(τ)dτ +

∫︂ t

0
T (t − τ)Bdwd(τ)dτ. (3.3)

If the operators B and Bd are bounded, then the above solution belongs to the
space X. If the operators B and Bd are unbounded, then the semigroup T (t)
in (3.3) is understood as the strongly continuous semigroup generated by the
operator A−1 and the solution (3.3) belongs to the extended state space X−1.
In this work, we also study those unbounded operators B, Bd for which the
above solution belongs to the space X. Such operators are called admissible
operators. In what follows, we define admissibility of the control operator B.
Admissible disturbance operator Bd is defined analogously.
Definition 3.2.1. An operator B ∈ L(U, X−1) is called admissible control
operator for the semigroup T (t) if for some t > 0,

∫︂ t

0
T (t − τ)Bu(τ)dτ ∈ X.

If the operators B and Bd are bounded, then they are admissible. Now we
turn our attention to the output y(t) of the system (3.1) when we have no
control and disturbance inputs and x0 ∈ D(A). We define the concept of an
admissible observation operator [90, Ch. 4.3].
Definition 3.2.2. An operator C ∈ L(X1, Y ) is called an admissible observa-
tion operator for the semigroup T (t) if for some τ > 0, there exists a constant
kτ > 0 such that∫︂ τ

0
∥CT (t)x0∥2

Y dt ≤ k2
τ ∥x0∥2

X , ∀ x0 ∈ D(A).

If C ∈ L(X1, Y ) is an admissible observation operator, then the output
satisfies y ∈ L2(0, τ ; Y ) [90, Prop. 4.3.2].

In general, if on any time interval [0, τ ], for any initial condition x0 ∈ X

and any input u ∈ L2(0, τ ; U) there exist continuous X-valued solutions x and
the output satisfies y ∈ L2(0, τ ; Y ), then the abstract linear system (3.1) is
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well-posed [91], [48, Ch. 13]. For an impedance passive linear system, well-
posedness of the system can often be proved by showing that transfer function
of the system is bounded on some complex right half plane [87]. In what
follows, we introduce transfer functions of the systems (3.1) and (3.2).
Transfer Function. Let us assume that Laplace transforms of the input u(t)
and the output y(t) exist and denote the Laplace transform of u(t) by û(s) and
the Laplace transform of y(t) by ŷ(s). Then û(s) and ŷ(s) have the relation
ŷ(s) = G(s)û(s) for all s ∈ C with Re(s) > β for some real β, where G(s) is
the system transfer function, see for example [12], [17].

If the operators B, Bd and C are bounded, then the transfer function of
(3.1) corresponding to the control input u(t) is given by

Gc(s) = C(sI − A)−1B, s ∈ ρ(A)

and the transfer function of (3.1) corresponding to the disturbance input wd(t)
is given by

Gd(s) = C(sI − A)−1Bd, s ∈ ρ(A).

For s ∈ ρ(A), the transfer function G(s) of the boundary control and observa-
tion system (3.2) is given by ([48, Ch. 12], [12])

G(s)u = Cx(s),

where x(s) is the unique solution of

sx = Ax,

Bx = u.

We note that for a boundary control and observation system, the transfer
function can be computed directly from the system and there is no need to find
the operator B in order to compute the system transfer function. Moreover,
since we consider impedance passive linear systems it is sufficient to study
transfer functions to verify well-posedness of the systems.
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3.3 Stability and Stabilization

Stabilization is an important part of control design for output regulation. Sta-
bility of a system corresponds to the behaviour of the solutions with respect
to time. In general, in the absence of external inputs, a system of the form
(3.1) is stable if the solutions decay to zero asymptotically, i.e., ∥x(t)∥ → 0 as
t → ∞ and a system is stabilizable if one can find a control input such that
the corresponding solutions decay to zero asymptotically. Since the solution is
written in terms of semigroup, then the stability corresponds to the behaviour
of the semigroup when the time evolves. There are different types of stability
concepts for strongly continuous semigroups, see for example [21, Ch. V.1].
In this thesis we focus on strong stability and exponential stability which are
defined as follows.
Definition 3.3.1 ([21, Ch. V.1]). A strongly continuous semigroup T (t), t ≥ 0
is called

1. uniformly exponentially stable if there exists ϵ > 0 such that

lim
t→∞

eϵt∥T (t)∥ = 0,

2. strongly stable if

lim
t→∞

∥T (t)x∥ = 0 ∀ x ∈ X.

In this work since we have impedance passive linear systems, a negative
output feedback stabilizes (strongly or exponentially) given system. Stability
analysis of a system is not trivial. In this work, the exponential stability of
the given system is proved using the following frequency domain criteria unless
stability of the system is obtained from the existing literature.
Theorem 3.3.2 ([66, Cor. 3.36]). Let T (t) be a uniformly bounded strongly
continuous semigroup, i.e., there exists M > 0 such that ∥T (t)∥ ≤ M , on a
Hilbert space X with generator A. Then T (t) is exponentially stable if and only
if iR ⊂ ρ(A) and supω∈R ∥(iω − A)−1∥ < ∞.
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3.4 Robust Output Regulation

In this section, we introduce robust control designs for the output regulation
of the system (3.1). For now, we assume that the operators B, Bd and C are
bounded. The reference signals to be tracked and the disturbance signals to
be rejected are of the form given by

yref (t) = a0 +
q∑︂

k=1
ak cos (ωkt) + bk sin (ωkt) (3.4)

wd(t) = c0 +
q∑︂

k=1
ck cos (ωkt) + dk sin (ωkt) (3.5)

where (ωk)q
k=1 are known frequencies and (ak)q

k=0, (bk)q
k=1, (ck)q

k=0 and (dk)q
k=1

are possibly unknown constant coefficients.
Our goal is to find a control input u(t) such that the output y(t) tracks

given reference signal yref (t) asymptotically despite parameter uncertainties
and external disturbances in the system. In this work, the control inputs
are produced by dynamic error feedback controllers [39], [75]. The controllers
utilize the difference between the output y(t) and the reference signal yref (t)
and they are of the form

ż(t) = G1z(t) + G2(y(t) − yref (t)),

u(t) = Kz(t) − κ(y(t) − yref (t))
(3.6)

on a Hilbert space Z, where G1 : D(G1) ⊂ Z → Z generates a strongly contin-
uous semigroup, G2 ∈ L(Y, Z), K ∈ L(Z, U) and κ ∈ L(Y, U).

Coupling of the system (3.1) with the controller (3.6) yields a closed-loop
system which is depicted in Figure 3.1. Let us denote Xe = X × Z to be
the extended state space, xe(t) = (x(t), z(t))T to be the extended state and
ue(t) = (wd(t), yref (t))T to be the extended input. Then the closed-loop system
consisting of the system (3.1) and the controller (3.6) is given by

ẋe(t) = Aexe(t) + Beue(t), xe(0) = xe0,

e(t) = Cexe(t) + Deue(t),
(3.7)
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System

Controller

u(t)

wd(t)

y(t)

e(t)

−yref (t)

Figure 3.1 The closed-loop system interconnecting the system and the controller

where Ce =
[︁
C 0

]︁
, De =

[︁
0 −IY

]︁
,

Ae =
[︄
A − BκC BK

G2C G1

]︄
, Be =

[︄
Bd Bκ

0 −G2

]︄
,

and D(Ae) = D(A) × D(G1). The operator Ae generates a strongly continuous
semigroup Te(t) on Xe.

The robust output regulation problem that we consider in this thesis is
formulated as follows [75].
Robust Output Regulation Problem. Choose the controller parameters
(G1, G2, K, κ) in such a way that the following hold.

(a) The closed-loop semigroup Te(t) generated by Ae is exponentially stable.
(b) There exist α, Me > 0 such that for all initial states xe0 ∈ Xe, for all

reference signals and disturbance signals of the form (3.4) and (3.5), the
regulation error y(t) − yref (t) satisfies

eαt∥y(t) − yref (t)∥ → 0 as t → ∞. (3.8)

(c) If the operators (A, B, Bd, C) are perturbed in such a way that the per-
turbed closed-loop system is exponentially stable, then (b) continues to
hold for some α̃, M̃ e > 0.

In Publication I, we also consider the cases where the operators B, Bd and C

are unbounded and the closed-loop semigroup Te(t) is not exponentially stable.
If the semigroup generated by Ae is not exponentially stable, then the decay

rate in (3.8) is not exponentially fast [76, Sec. 4]. Moreover, if the input and
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the observation operators of the system are unbounded then the output y(t)
resulting from non-smooth initial states x0 might not be continuous and we can
not obtain pointwise convergence of the error as in (3.8), instead the regulation
error satisfies [76, 81]

∫︂ t+1

t
∥y(s) − yref (s)∥ds → 0 as t → ∞.

The controller parameters (G1, G2, K, κ) are chosen based on the internal
model principle which states that a controller can solve the robust output
regulation problem if its dynamics include copies of the frequencies from the
reference and disturbance signals. In this work, we utilize control designs in
[81], [75] and [76]. In [81], controllers were designed for output tracking and
disturbance rejection of stable well-posed linear systems. In [75], three robust
controllers were presented for the output regulation of regular linear systems
[93], a special class of well-posed linear systems. In [76], passive controllers
were presented for output regulation of passive linear systems.

3.5 Output Regulation for Systems with Input
Saturation

In practice, it is natural to consider limitations in the actuators as amplitude
of signals is limited to certain maximum level. This is known by the name of
input saturation. Taking actuator limitations into account, the abstract linear
system (3.1) has the form

ẋ(t) = Ax(t) + Bϕ(u(t)) + Bdwd(t), x(0) = x0,

y(t) = Cx(t),
(3.9)

where the operators A, B, Bd and C are defined as in Section 3.1 and ϕ is a
saturation function where the input u(t) takes values in an interval [umin, umax].
There are only few results studying output tracking of infinite-dimensional
linear systems subject to input saturation. In [82], control designs for output
regulation of finite-dimensional linear systems subject to input saturation have
been presented. We focus on generalizing the control law presented in [82,
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Thm. 3.3.3] to a particular class of infinite-dimensional linear systems. Other
existing results [24, 62, 63, 64] cover stable single-input single-output regular
linear systems and output tracking of constant reference signals is achieved
using integral controls.

In this work, we consider reference and disturbance signals of the form (3.4)
and (3.5). These signals are assumed to be generated by an autonomous system
called the exosystem given by

v̇(t) = Sv(t), v(0) = v0,

wd(t) = Ev(t),

yref (t) = −Fv(t)

(3.10)

on a finite-dimensional space W = Rq, where S ∈ L(W ), E ∈ L(W, Ud) and
F ∈ L(W, Y ). We assume that S has purely imaginary eigenvalues. In general,
the exosystem is chosen in a way that the operator S contains frequencies from
the signals and v0, F and E are determined by amplitudes and phases of the
signals.

In general, the output regulation problem for linear systems subject to in-
put saturation is not solvable for all initial conditions of the exosystem ([82,
Rem. 3.2.2]) in the sense that there exist initial conditions v0 ∈ W such
that there is no input u(t) or initial condition x0 ∈ X for which it holds that
limt→∞(y(t) − yref (t)) = 0. In this work, we consider the semi-global output
regulation problem, where the initial conditions of the exosystem lie inside a
given compact set. Assuming that the system (3.9) can be stabilized strongly
by negative output feedback and the operators B, Bd and C are bounded,
the semi-global output regulation problem that we consider is formulated as
follows.

Semi-Global Output Regulation Problem. Consider the system (3.9),
the exosystem (3.10) and a compact set W0 ⊂ Rq. Find a linear output feed-
back control law of the form

u(t) = −κy(t) + Lv(t), (3.11)

such that κ ∈ L(Y, U), L ∈ L(W, U) and

(a) The origin of the system ẋ(t) = Ax(t)+Bϕ(−κy(t)), x(0) = x0 is globally
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asymptotically stable.

(b) For all x0 ∈ X and v0 ∈ W0, the error between the output y(t) and the
reference signal yref (t) satisfies

lim
t→∞

∥y(t) − yref (t)∥ = 0.

It is shown in [82] that solvability of a semi-global output regulation problem
for finite-dimensional systems is equivalent to solvability of a pair of linear
matrix equations with some additional assumption. Moreover, controllers that
solve semi-global output regulation in [82] are internal model based controllers.
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4 RESULTS AND DISCUSSION

The main objective of this thesis is to construct controllers for the robust
output regulation of the selected Euler-Bernoulli beam models. Earlier results
mainly focus on vibration suppression or stabilization problem. In this chapter,
we discuss the results we obtained on

• Controller construction for robust output regulation of the cantilever
beam.

• Controller construction for robust output regulation of the flexible satel-
lite model.

• Generalization of output regulation theory for finite-dimensional linear
systems subject to input saturation to infinite-dimensional linear systems.

We recall that the reference signals to be tracked and the disturbance signals
to be rejected are of the form

yref (t) = a0 +
q∑︂

k=1
ak cos (ωkt) + bk sin (ωkt),

wd(t) = c0 +
q∑︂

k=1
ck cos (ωkt) + dk sin (ωkt)

(4.1)

and the dynamic error feedback controllers for the robust output regulation
are of the form

ż(t) = G1z(t) + G2(y(t) − yref (t)),

u(t) = Kz(t) − κ(y(t) − yref (t)).
(4.2)

More details on the signals and the controller can be found in Section 3.4.
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4.1 Controller construction for the cantilever beam

Robust output regulation of the cantilever beam introduced in Section 2.1 is
considered in Publication I. We consider physical parameters ρ(ξ) and EI(ξ)
which satisfy the conditions

ρ(·), EI(·) ∈ C4([0, 1]), ρ(ξ), EI(ξ) > 0, ∀ξ ∈ [0, 1] (4.3)

As mentioned in Section 2.1, we consider two cases for the control input and
the output and we assume that there are no external disturbances. In the
first case, we consider shear force control input and velocity output at the free
end of the beam. We formulate the beam system as an impedance passive
abstract well-posed linear system, see sections 3.1 and 3.2. We show that the
beam system can be stabilized exponentially by using negative output feedback
u(t) = −κ1y(t), κ1 > 0. Having exponentially stable well-posed linear system,
we are able to construct a finite-dimensional dynamic error feedback controller
controller based on [81] for the robust output tracking of the given sinusoidal
reference signals of the form in (4.1).

In the second case, the control input is distributed inside the domain and the
output is weighted average of velocities of the beam system in the domain. The
beam system is formulated as an impedance passive abstract linear system with
bounded input and output operators. We show that the beam system can be
stabilized strongly by negative output feedback. Having passive and strongly
stabilizable system, we are able to construct a controller based on [76]. Due to
passivity of the system, the controller has similar structure as in the first case.
However, in this case we only obtain strong stability of the closed-loop system
and therefore slow decay rate of the regulation error as mentioned in Section
3.4.

The constructed controller is a dynamic error feedback controller (4.2) with
state space Z = R2q and the choice of parameters given by

G1 = diag(G1, G2, · · · , Gq), Gk =
[︄

0 ωk

−ωk 0

]︄
, k = 1, 2, · · · , q,
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G2 = −[1, 0, · · · , 1, 0]T , K = [2, 0, · · · , 2, 0], κ >
1
2 ,

where ωk, k = 1, 2, · · · , q are frequencies from the reference signal. From the
above choice of parameters, we see that the controller does not depend on
the physical parameters ρ(ξ) and EI(ξ) of the beam system. Moreover, the
beam system can be stabilized exponentially or strongly for the given class of
parameters (4.3). Therefore, the controller is robust with respect to the class
of parameters (4.3).

The existing results [49], [38], [35],[34] consider Euler-Bernoulli beams with
constant parameters and use infinite-dimensional controllers for output track-
ing. In comparison, our controller does not depend on the physical parameters
of the beam system, therefore, the output regulation problem is solved for the
cantilever beam with spatially varying parameters whereas the existing con-
trollers are based on observers of the beam system and so the output tracking
might be achieved only for a restrictive class of parameters. The reference
[49] also use state feedback controller which utilizes state variables from the
system for output tracking. However, in practice, the availability of full state
information is not always possible. Since our controller utilizes only regulation
error, there is no need find full state information.

4.2 Controller construction for the flexible satellite
model

Robust output regulation of the flexible satellite model introduced in Section
2.2 is considered in Publications II and III. We consider force control inputs
on the rigid body and the measured outputs are velocity and angular velocity
of the center rigid body. We also consider external disturbances distributed
in the solar panels and on the rigid body. As the first result, we formulate
the satellite model as an abstract impedance passive linear system (3.1) with
bounded input and output operators. The PDE and ODE systems in the model
are formulated in the abstract form separately and then they are coupled using
the coupling conditions. A detailed proof of exponential stability of the model
using the frequency domain criteria is presented in Publication III. The expo-
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nential stability proof of the satellite model is one of the main contributions of
the Publication III. As a part of the stability proof, we also show that the PDE
system in the satellite model is not well-posed. In comparison, existing results
[100] on stability of coupled PDE-ODE systems use controllability and observ-
ability results and only strong stability of the system is obtained. Moreover,
those results consider a well-posed PDE system coupled with specific ODE
structure. Due to the distributed viscous damping in the beam system, we are
able to prove exponential stability of the satellite model.

Exponential stability of the satellite model enables us to construct a simple
low-gain controller [75] for the robust output tracking of the given sinusoidal
reference signals. The low-gain controller is a dynamic error feedback controller
(4.2) with state space Z = (C2)2q+1 with the controller parameters given by

G1 = diag(−iωqIC2 , · · · , iω0IC2 , · · · , iωqIC2),

K = ϵ(G(−iωq)†, · · · , G(iω0)†, · · · , G(iωq)†), κ = 0,

G2 = (−IC2)q
−q,

where IC2 is the identity matrix in C2, G(·) is the transfer function of the
satellite system, G(·)† is the Moore-Penrose pseudoinverse of G(·) and the
parameter ϵ > 0 is a tuning parameter and it is chosen to be sufficiently small
so that the closed-loop system is exponentially stable.

Due to passivity and boundedness of control and observation operators, we
were able to construct a passive controller and an observer based controller [76],
[75] for the robust output tracking of the given reference signals, see Publication
III. In what follows, we present the observer based controller which is a PDE-
ODE controller.

Choosing the state space to be Z = (C2)2q+1 ×L2(−1, 0;R2)×L2(0, 1;R2)×
R2, then the PDE-ODE controller is given by

ż1(t) = G1z1(t) + G2(y(t) − yref (t)),

ρ
∂2ŵl

∂t2 (ξ, t) = −EI
∂4ŵl

∂ξ4 (ξ, t) − γ
∂ŵl

∂t
(ξ, t), −1 < ξ < 0, t > 0,

ρ
∂2ŵr

∂t2 (ξ, t) = −EI
∂4ŵr

∂ξ4 (ξ, t) − γ
∂ŵr

∂t
(ξ, t), 0 < ξ < 1, t > 0,
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m
d2ŵc

dt2 (t) = EI
∂3ŵl

∂ξ3 (0, t) − EI
∂3ŵr

∂ξ3 (0, t) + u1(t),

Im
d2θ̂c

dt2 (t) = −EI
∂2ŵl

∂ξ2 (0, t) + EI
∂2ŵr

∂ξ2 (0, t) + u2(t),

∂2ŵl

∂ξ2 (−1, t) = 0,
∂3ŵl

∂ξ3 (−1, t) = 0,

∂2ŵr

∂ξ2 (1, t) = 0,
∂3ŵr

∂ξ3 (1, t) = 0,

∂ŵl

∂t
(0, t) = ∂ŵr

∂t
(0, t) = dŵc

dt
(t),

∂2ŵl

∂t∂ξ
(0, t) = ∂2ŵr

∂t∂ξ
(0, t) = dθ̂c

dt
(t),

u(t) = Kz(t), z(t) = (z1(t), z2(t))T ,

where G1 = diag(−iωqIC2 , · · · iω0IC2 , · · · , iωqIC2),

G2 = (Gk
2)q

k=−q ∈ L(R2, (C2)2q+1), Gk
2 = IC2 , k = −q, · · · , q,

z2(t) =
(︃

ρ
∂ŵl

∂t
(·, t), ∂2ŵl

∂ξ2 (·, t), ρ
∂ŵr

∂t
(·, t), ∂2ŵr

∂ξ2 (·, t), dŵc

dt
(t), dθ̂c

dt
(t)

)︃T

.

We note that due to technicality, we leave the choice of the operator K ∈
L(Z,R2), the details are given in Section 4.1.2 of Publication III. The perfor-
mances of the passive and the observer-based controllers are demonstrated
by numerical simulations in Publication III. It was noted that the finite-
dimensional passive controller achieves a comparable performance to the infinite-
dimensional observer based controller.

In comparison, existing results [2, 8, 40] consider similar satellite models
with different control goals such as vibration control, stabilizability and output
tracking of constant reference signals. However, the control goal in this work
is to track reference signals of the form (3.4) and reject external disturbances
of the form (3.5). Due to the properties such as exponential stability, passivity
of the considered model and boundedness of the input, output operators, we
are able to construct robust controllers that achieve the desired goal.
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4.3 Output regulation of infinite-dimensional linear
systems subject to input saturation

Output regulation of infinite-dimensional linear systems subject to input sat-
uration is considered in Publication IV. We generalize the output regulation
theory for finite-dimensional linear systems subject to input saturation to a
particular class of infinite-dimensional linear systems. The considered class of
systems are of the form

ẋ(t) = Ax(t) + Bϕ(u(t)) + Bdwd(t), x(0) = x0,

y(t) = B∗x(t),
(4.4)

where A generates a strongly continuous semigroup of contractions on a real
Hilbert space X, B ∈ L(R, X) and Bd ∈ L(Rnd , X). We assume that the
operator A − κBB∗ generates a strongly stable contraction semigroup for any
κ > 0. The motivation to consider such class of systems is that control problems
of flexible structures with collocated actuators and sensors are often modelled
as abstract linear systems with the above mentioned properties [18, 73, 99].
We consider a real-valued, uniformly Lipschitz continuous saturation function
ϕ which has values u(t) in the interval [−1, 1] [51, Ch. 2]. We assume that the
reference and disturbance signals (4.1) are generated by the exosystem (3.10)
on a finite-dimensional space W = Rq with S ∈ Rq×q, F ∈ R1×q and E ∈ Rnd×q

where nd is the dimension of the disturbance input space. Moreover, we assume
that σ(S) ⊂ iR. The following main result provides solvability criteria for the
semi-global output regulation problem introduced in Section 3.5.
Theorem 4.3.1. Consider the systems (4.4), (3.10) and the given compact
set W0 ⊂ Rq. Under the above assumptions, the semi-global output regulation
problem is solvable if there exist Π ∈ L(Rq, X) with R(Π) ⊂ D(A) and Γ ∈
R1×q such that they solve the regulator equations

ΠS = AΠ + BΓ + BdE

0 = B∗Π + F
(4.5)

and there exists a δ > 0 such that supt≥0 ∥Γv(t)∥ ≤ 1 − δ for all v(t) = eStv0
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with v0 ∈ W0. In this case, for any κ > 0 the feedback law

u(t) = −κy(t) + (κB∗Π + Γ)v(t) (4.6)

solves the semi-global output regulation problem.
As a new result, we solve the semi-global output regulation of the flexible

satellite model subject to input saturation using the above result in Publication
IV.

In comparison, the control law in (4.6) is a generalization and a simplified
version of the one in [82, Thm. 3.3.3]. In [82, Thm. 3.3.3], solvability condi-
tions and a low-gain-high-gain state feedback control design for the semi-global
output regulation of finite-dimensional linear systems subject to input satura-
tion have been presented. The low-gain parameter is to stabilize the system
and high-gain parameter is to increase the control performance. In our work,
since the considered class of systems are strongly stabilizable using negative
output feedback, it is not necessary to find a control law for stabilization sepa-
rately. Consequently, we have only one gain parameter in the control law (4.6)
that corresponds to negative output feedback.

The existing results [62, 63, 64, 73] on the output regulation of infinite-
dimensional linear systems subject to input saturation consider output tracking
of constant reference signals using integral control input. The results [62,
63, 64] consider exponentially stable, single-input single-output exponentially
stable linear systems where the transfer function G(s) of the system satisfies
G(0) > 0 and [73] consider strongly stable systems with strictly positive real
transfer function G(s) with certain Lipschitz nonlinearities. In our work, the
considered class of systems is different from the existing ones and as the main
novelty, we allow reference and disturbance signals to be linear combination of
sinusoidal signals.
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5 CONCLUSION AND FUTURE
PERSPECTIVE

In this thesis, we have considered robust output regulation problem for the
models consisting of Euler-Bernoulli beams. We solved the control problem for
the cantilever beam and the flexible satellite model. We proposed practically
implementable finite-dimensional controller for the robust output tracking of
given sinusoidal reference signals for the cantilever beam. For the satellite
model, we proposed three robust controllers, a low-gain controller, a passive
controller and an observer based controller, for the robust output regulation.
We noted that the finite-dimensional passive controller was able to achieve a
comparable performance to the infinite-dimensional observer based controller.
Stability of the models were analyzed in addition to controller construction for
the output regulation. In particular, we proved the exponential stability of the
satellite model.

We generalized output regulation theory for finite-dimensional systems sub-
ject to input saturation to the class of strongly stabilizable linear dissipative
systems with collocated actuators and sensors. A linear output feedback law
was proposed for the semi-global output regulation. Additionally, we solved the
semi-global output regulation problem for the flexible satellite model subject
to input saturation.

The advantages of control designs proposed in this work are that they are
robust and they utilize measured output or regulation error and therefore no
need to find information of the states. The proposed controllers, except the
observer based controller, do not require any information from the system apart
from certain properties such as passivity, well-posedness. On the other hand,
the limitations of the proposed control designs include they are designed only
for linear specified classes of systems.
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Future Research Topics Related to Control of Beam Models

In this work, we considered flexible beam models with collocated inputs
and outputs. It will be an interesting research topic to solve output regula-
tion of beam models when the inputs and the outputs are non-collocated. In
the satellite model, the beams are assumed to have viscous damping due to
which we proved exponential stability of the model. Controllers designed for
an undamped model work efficiently than those designed for damped models.
So one could consider output regulation of undamped satellite model. In this
case, finding a stabilizing controller can be challenging. Moreover, the con-
trollers constructed for the satellite model are robust with respect to physical
parameter uncertainties as long as the solar panels are identical. However,
physical parameter uncertainties in the different panels can be different which
we have not considered in this work. Taking this type of parameter uncertain-
ties in to account in the robust output regulation of the satellite model can
be interesting because these types of model uncertainties can affect stability of
the system. Furthermore, considering distributed controls on the beams of the
satellite model can also be an interesting problem. In addition, in this work
we assumed that the external disturbances are known. However, in reality
all the external disturbances are not known. Finding robust controllers that
also reject the unknown disturbances will increase the implementation of the
controllers in practice.

Future Research Topics Related to Systems with Input Saturation

Output regulation theory of finite-dimensional linear systems subject to
input saturation has been generalized only for a particular class of infinite-
dimensional systems with bounded control and observation. There are many
possible research directions. Generalizing output regulation theory of finite-
dimensional linear systems subject to input saturation to infinite-dimensional
systems with unbounded control and observation operators will cover wider
classes of systems. One can aim to construct controllers that are robust which
we have not considered in this work. Solving an output regulation problem
which includes robustness properties will be an interesting and challenging
research topic.
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A Finite-Dimensional Controller for Robust Output Tracking of an
Euler–Bernoulli Beam*

Thavamani Govindaraj1, Jukka-Pekka Humaloja2 and Lassi Paunonen1

Abstract— In this paper, we consider robust output tracking
problem of an undamped Euler-Bernoulli beam with boundary
control and boundary observation. In particular, we study a
cantilever beam which has control and observation at the free
end. As our main result, we construct a finite-dimensional,
internal model based controller for the output tracking of
the beam system. In addition, we consider a case where the
controller achieves the robust output tracking for the cantilever
beam with distributed control and observation. Numerical
simulations demonstrating the effectiveness of the controller
are presented.

I. INTRODUCTION

In this paper, we consider output tracking of an Euler
Bernoulli beam with conservative clamped boundary con-
ditions at one end and control at the other end. The beam
system we study is given by

ρ(ξ)wtt(ξ, t) + (EI(ξ)wξξ)ξξ(ξ, t) = 0, 0 < ξ < 1, t > 0,

w(0, t) = 0, wξ(0, t) = 0,

(EI(ξ)wξξ)(1, t) = 0,

−(EI(ξ)wξξ)ξ(1, t) = u(t),

y(t) = wt(1, t),

w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ), 0 < ξ < 1,
(I.1)

where w(ξ, t) is the transverse displacement of the beam
at position ξ and time t, wt(ξ, t) and wξ(ξ, t) denote time
and spatial derivatives of w(ξ, t), respectively, ρ(ξ) and
EI(ξ) are linear density and flexural rigidity of the beam,
respectively, u(t) is an external boundary input and y(t)
is a boundary observation. The parameters ρ(ξ) and EI(ξ)
satisfy the conditions

ρ(·), EI(·) ∈ C4([0, 1]), ρ(ξ), EI(ξ) > 0 ∀ ξ ∈ [0, 1].
(I.2)

Our goal is to design a controller in such a way that
the output y(t) tracks a given reference signal yref (t)
asymptotically despite uncertainties and perturbations in the
system. In other words, the objective is to find a controller

1 Thavamani Govindaraj and Lassi Paunonen are with the Faculty of
Information Technology and Communication Sciences, Mathematics, Tam-
pere University, Finland. thavamani.govindaraj@tuni.fi,
lassi.paunonen@tuni.fi.
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2 Jukka-Pekka Humaloja is with the Department of
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that produces the input u(t) such that∫ t+1

t

‖y(s)− yref (s)‖ds→ 0 as t→∞.

The reference signal to be considered is of the form

yref (t) =

q∑
k=1

ak cos(ωkt) + bk sin(ωkt) (I.3)

where (ωk)
q
k=1 are known frequencies and (ak)

q
k=1 and

(bk)
q
k=1 are possibly unknown constant coefficients.

This so-called Robust Output Regulation Problem has been
studied widely in the literature for distributed parameter
systems ([1], [2], [3], [4], [5], [6]), for regular and well-posed
linear systems ([7], [8], [9]) and for boundary control systems
([10], [11]). The main key in the construction of robust
regulating controllers is the Internal model principle which
states that a controller can solve the robust output regulation
problem if the dynamics of the controller contains copies
of the frequencies from the reference signal. The internal
model principle was introduced by Francis and Wonham in
[12], [13] for finite-dimensional systems and since then it
has been developed for infinite-dimensional systems by many
authors, see for example, [5], [8], [11].

Robust output tracking of Euler-Bernoulli beam mod-
els has been studied recently in [14], [15] using infinite-
dimensional controllers. In this paper, we solve the output
tracking problem for the considered beam system (I.1) using
a finite-dimensional dynamic error feedback controller.

As the main contribution, we construct a finite-
dimensional, internal model based controller which achieves
output tracking of given combination of sinusoidal signals
as in (I.3). We formulate the beam system as an impedance
passive well-posed linear system ([16], [17], [18]) and show
that it can be stabilized exponentially using negative out-
put feedback. The controller construction is based on the
results for abstract well-posed linear systems [7]. As the
main novelty compared to the recent articles [14] and [15]
on output regulation of Euler-Bernoulli beam models, we
consider spatially varying parameters in the beam system and
solve the output tracking problem using a finite-dimensional
controller.

As the second contribution, we consider a case where the
cantilever beam (I.1) has distributed control and observation
instead of boundary control and observation. We formulate
the beam system as an impedance passive abstract linear
system which can be stabilized strongly using negative
output feedback. We show that the same finite-dimensional
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controller structure achieves robust output tracking of the
given sinusoidal reference signals.

The paper is organized as follows. In Section II, we
formulate the robust output regulation problem for the beam
system. In Section III, we construct the controller for the
robust output tracking of the reference signals. In addi-
tion, we present results related to stabilizability and well-
posedness of the beam system. In Section IV, we consider
the robust output tracking problem for the beam system with
distributed control and observation. Section V is devoted to
numerical simulations which demonstrate the performance
of the controller for the robust output tracking of the beam
system (I.1). In Section VI, we conclude our results.

A. Notation

For normed linear spaces X and Y , L(X,Y ) denotes the
set of all bounded linear operators from X to Y . For a linear
operator A, D(A),R(A) and N (A) denote the domain,
range and the kernel of A, respectively. The resolvent and the
spectrum of A are denoted by ρ(A) and σ(A), respectively.
The resolvent operator is denoted by R(λ,A) = (λ −
A)−1, λ ∈ ρ(A). We denote by X−1 the completion of X
with respect to the norm ‖x‖−1 = ‖(βI − A)−1x‖, x ∈
X,β ∈ ρ(A) and by A−1 ∈ L(X,X−1) the extension of A
to X−1. For any a ∈ R, Ca = {λ ∈ C | Reλ > a}.

II. PROBLEM FORMULATION

In this section, we formulate the robust output regulation
problem for the considered beam system (I.1). The dynamic
error feedback controller to be constructed is of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0,

u(t) = Kz(t)− k1e(t),
(II.1)

where z ∈ Z, Z = R2q , G1 ∈ R2q×2q , G2 ∈ R2q×1, K ∈
R1×2q , k1 > 0 and e(t) = y(t) − yref (t) is the regulation
error. Here q is the number of frequencies in the reference
signal.

Beam System

Controller

u(t) y(t)

e(t)

−yref (t)

Fig. 1. The closed-loop system interconnecting the beam system and the
controller

Robust Output Regulation Problem. Choose the con-
troller parameters (G1,G2,K, k1) in such a way that
(a) The closed-loop system in Figure 1 is exponentially

stable in the sense that the closed-loop semigroup
decays to zero exponentially.

(b) There exists α > 0 such that for all reference signals of
the form (I.3) and for all initial conditions w0(ξ), w1(ξ)
of the beam system and z0 ∈ Z, the regulation error
satisfies eα·e(·) ∈ L2([0,∞),C).

(c) If (a) holds despite uncertainties, perturbations and
disturbances in the system, then (b) is still satisfied for
all initial conditions and some α̃ > 0.

III. ROBUST OUTPUT REGULATION OF THE CANTILEVER
BEAM

In this section, we construct the controller for the robust
output tracking of the sinusoidal reference signal yref . We
start with presenting the controller. Based on [7], we choose
the controller parameters as

G1 = diag(G1, G2, · · · , Gq),

Gk =

[
0 ωk
−ωk 0

]
, k = 1, 2, · · · , q,

G2 = −[1, 0, · · · , 1, 0]T ,
K = [2, 0, · · · , 2, 0],

k1 >
1

2
.

(III.1)

We note that the above choice of controller parameters
does not depend on the coefficients ak and bk, k =
1, 2, · · · , q in the reference signal (I.3), ak and bk can
possibly be unknown. The controller with the above choices
of parameters solves the robust output regulation problem
if the beam system is impedance passive, exponentially
stabilizable using negative output feedback and well-posed
linear system [16, Def. 1.1]. Therefore, in order to solve the
output tracking problem, we need to verify the stabilizability
of the beam system and formulate the beam system (I.1) as
an impedance passive abstract well-posed linear system.

In the following, we present the abstract representation
and stabilizability of the beam system followed by well-
posedness results for the beam system. Afterward, we show
that the controller presented in (II.1) and (III.1) solves the
robust output tracking problem. Here we emphasize that the
construction of the controller does not require the beam
system as an abstract well-posed linear system. We will
verify the above properties to prove that the controller in
(II.1) and (III.1) solves the robust output regulation problem
for the system (I.1).

A. Abstract Formulation of the Beam System

We formulate (I.1) in the state space X = H2
E(0, 1) ×

L2(0, 1) where H2
E(0, 1) = {f ∈ H2(0, 1) | f(0) = f ′(0) =

0}. The norm on X is defined as

‖(f, g)T ‖2X =

∫ 1

0

[ρ(ξ)|g(ξ)|2 + EI(ξ)|f ′′(ξ)|2]dξ,

∀(f, g)T ∈ X.

The total energy of the beam system is given by

E(t) =
1

2

∫ 1

0

[ρ(ξ)w2
t (ξ, t) + EI(ξ)w2

ξξ(ξ, t)]dξ. (III.2)

We define

x(t) =

[
x1(·, t)
x2(·, t)

]
=

[
w(·, t)
wt(·, t)

]
.
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Now (I.1) on X has the form

d

dt
x(t) = Ax(t), x(0) = x0,

Bx(t) = u(t),

y(t) = Cx(t),

(III.3)

where A : D(A) ⊂ X → X ,

A
[
x1
x2

]
=

[
x2

−1
ρ(ξ) (EI(ξ)x

′′
1(ξ))

′′

]
,

D(A) = {(x1, x2)T ∈ [H4(0, 1) ∩H2
E(0, 1)]×H2

E(0, 1)

| x′′1(1) = 0},

the operators B : D(A) → U and C : D(A) → Y with
U = C and Y = C are given by

B
[
x1
x2

]
= −(EI(ξ)x′′1(ξ))′(1, t),

C
[
x1
x2

]
= x2(1, t).

Let us introduce the operator A = A|N (B) with

D(A) = {(f, g)T ∈ [H4(0, 1) ∩H2
E(0, 1)]×H2

E(0, 1)

| f ′′(1) = f ′′′(1) = 0}.

We have that A is a skew-adjoint operator with compact
resolvent [19, Sec. 3]. This implies that A generates a
unitary group on X . Moreover, we have that N (B) =
D(A). Therefore, N (B) is dense in X . Thus (A,B, C) is
a boundary control system in the sense of [20, Def. 10.1.1].
Next, we show that the boundary control system (A,B, C)
is impedance passive which is defined as follows.

Definition III.1. (Impedance Passive System). A boundary
control system (A,B, C) is an impedance passive system on
(X,U, Y ) if U = Y and

Re 〈Ax, x〉X ≤ Re 〈Bx, Cx〉U , x ∈ D(A).

Lemma III.2. The boundary control system (A,B, C) in
(III.3) is an impedance passive system.

Proof. We have that for x ∈ D(A),

Re 〈Ax, x〉X = Re

〈[
x2

−1
ρ(ξ) (EI(ξ)x

′′
1(ξ))

′′

]
,

[
x1
x2

]〉
X

,

= Re

∫ 1

0

ρ(ξ)
−1
ρ(ξ)

(EI(ξ)x′′1(ξ))
′′x2(ξ)dξ

+Re

∫ 1

0

EI(ξ)x′′1(ξ)x
′′
2(ξ)dξ.

Using integration by parts twice for the first term and

applying boundary conditions, we obtain

Re 〈Ax, x〉X

= Re

[
− x2(1)(EI(ξ)x′′1)′(1) + x2(0)(EI(ξ)x

′′
1)
′(0)

+ x2
′(1)(EI(ξ)x′′1)(1)− x2′(0)(EI(ξ)x′′1)(0)

−
∫ 1

0

EI(ξ)x′′1(ξ)x
′′
2(ξ)dξ +

∫ 1

0

EI(ξ)x′′2(ξ)x
′′
1(ξ)dξ

]
= Re[−x2(1)(EI(ξ)x′′1)′(1)]
= ReBxCx
= Re 〈Bx, Cx〉C

which implies that (A,B, C) in (III.3) is impedance passive.

B. Stabilization of the Beam

In [19, Thm. 2.5] it is shown that the beam (I.1) with
output feedback u(t) = −κwt(1, t), κ > 0 is exponentially
stable in the sense that the energy E(t) of the solutions
decays to zero exponentially. Here we note that E(t) =
1
2‖x(t)‖

2
X . Therefore we have the following lemma.

Lemma III.3 ([19, Thm. 2.5]). The beam (I.1) with new
input u(t) = ũ(t)− κy(t), κ > 0 is exponentially stable in
the sense that for the semigroup T (t) generated by Acl =
A|N (B+κC), there exist ω > 0 and M ≥ 1 such that

‖T (t)‖ ≤Me−ωt, t ≥ 0.

C. Well-posedness of the Beam system

In this section, we present results related to the well-
posedness ([18, Def. 3.1]) of the beam system.

Lemma III.4 ([19, Lem. 3.4]). The eigenvalues {iλn, iλn}
and the corresponding eigenfunctions ((iλn)

−1φn, φn) of A
have the following asymptotic expressions

iλn =
µ2
n

h2
, h =

∫ 1

0

(
ρ(s)

EI(s)

) 1
4

ds,

µn =
1√
2
(n+

1

2
)π(1 + i) +O( 1

n
),

(III.4)

as n→∞, n is a large positive integer and

φn(ξ) = e−
1
4

∫ z
0
a(s)ds

√
2(i− 1)[sin((n+

π

2
)z)

− cos((n+
π

2
)z) + e−(n+

1
2 )πz

+ (−1)ne−(n+ 1
2 )π(1−z) +O( 1

n
)]

(III.5)

where

z = z(ξ) =
1

h

∫ ξ

0

(
ρ(s)

EI(s)

) 1
4

ds

a(z) =
3h

2

(
ρ(ξ)

EI(ξ)

)− 5
4 d

dξ

(
ρ(ξ)

EI(ξ)

)
+ h

2 d
dξEI(ξ)

EI(ξ)

(
ρ(ξ)

EI(ξ)

)− 1
4

.
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Next, we show that the boundary control system (A,B, C)
in (III.3) defines a well-posed system node on (X,U, Y ),
where system node is defined in the sense of [17, Def. 2.1]
or [21, Def. 2.1] and well-posed system node is defined in
the sense of [17, Def. 2.6], [18].

Theorem III.5. The boundary control system (A,B, C) in
(III.3) defines a well-posed system node on (X,U, Y ).

Proof. We have shown that the system (A,B, C) is an
impedance passive boundary control system. In addition,
since A generates a unitary group, the boundary control
system (A,B, C) is internally well-posed in the sense of [21,
Def. 1.1]. Therefore, by [21, Thm. 2.3], (A,B, C) defines a

system node S =

[
A&B
C&D

]
: D(S) ⊂ X × C→ X × C and

the system node is impedance passive [17, Thm. 4.2]. The
system node S is defined by[

A&B
C&D

]
=

[
A−1 B
C 0

] ∣∣∣∣
D(S)

,

D(S) =

{[
x
u

]
∈
[
X
U

] ∣∣∣∣ A−1x+Bu ∈ X
}

where B ∈ L(U,X−1) is uniquely determined by the relation
A = A−1+BB on D(A) [20, Prop. 10.1.2]. Next, we show
that the transfer function of the system node S is bounded
on some vertical line in the complex right half plane.

Using [20, Rem. 10.1.6], we obtain B∗x = x2(1) =
Cx, x = (x1, x2)

T ∈ D(A∗), where C = C|N (B). The op-
erator B∗ ∈ L(D(A∗), U) is the adjoint of B ∈ L(U,X−1)
in the sense that

〈x,Bu〉D(A∗),X−1
= 〈B∗x, u〉C , x ∈ D(A∗), u ∈ U.

Therefore, (III.3) can be equivalently written as a second
order system

wtt(·, t) +A0w(·, t) = B0u(t)

y(t) = B∗0wt(·, t)
(III.6)

where A0f = 1
ρ(ξ) (EI(ξ)f

′′)′′ is a positive self-adjoint
operator with D(A0) = {f ∈ H4(0, 1)∩H2

E(0, 1) | f ′′(1) =
(EIf ′′)′(1) = 0} and B0 = δ(· − 1), δ(·) is the Dirac
delta distribution. Then λ2n and φn from Lemma III.4 are
the eigenvalues and the corresponding eigenfunctions of A0.

From the expression (III.4), we have that (λn)n≥1 are
increasing. In addition, |B∗0φn| = |φn(1)| which from (III.5)
is bounded for n ≥ 1. This implies that B∗ is admissible [20,
Sec. 5.3], [22, Prop. 2]. By duality ([20, Sec. 4.4]), we have
that B is admissible. Moreover, using [22, Rem. 4], we have
that the eigenvalues of A0 satisfies the spectral condition

λn+1 − λn ≥ βλγn+1, ∀ n large,

for some β, γ > 0. Therefore, using [22, Thm. 4], we
conclude that the transfer function s 7→ G(s) = sB∗0(s

2 +
A0)
−1B0 ∈ L(U) of (III.6) is bounded on some vertical line

in the complex right half plane. Since

A =

[
0 I
−A0 0

]
, B =

[
0
B0

]
and C =

[
0 B∗0

]
,

we have that the transfer function GS of the system node S
which is given by [17, Def. 2.1], [18, Sec. 6]

GS(s)u = C&D

[
R(s,A−1)Bu

u

]
= CR(s,A−1)Bu

= sB∗0(s
2 +A0)

−1B0u

= G(s)u

is bounded on C0. Therefore, by [17, Thm. 5.1], we conclude
that the system node S is well-posed.

Remark III.6. Since B is an admissible control operator,
using [23, Thm. 2.7], we can deduce that

lim
s→+∞

G(s) = 0, s ∈ R.

Since the above limit exists, we have that the beam system
is a regular linear system [24].

D. Robust Regulating Controller for the Beam System

In this section, we show that the controller (II.1), (III.1)
presented in Section II solves the robust output tracking
problem.

We note that the transfer function G(s) in Section III-C
can also be written in terms of the solution of the elliptic
problem corresponding to I.1 ([25, Sec. 12.1], [26])

1

ρ(ξ)
(EI(ξ)ŵξξ)ξξ = −s2ŵ, ξ ∈ [0, 1],

(EI(ξ)ŵξξ)ξ(1) = û,

G(s)û = ŷ = sŵ(1),

for (ŵ, sŵ) ∈ D(A), û, ŷ ∈ C and s ∈ ρ(A).

Theorem III.7. Let ωj ∈ R, j = 1, 2, · · · , q be the frequen-
cies from the reference signal. Assume that ReG(iωj)û =
Re iωjŵ(1) 6= 0 for all j. Then the controller (II.1), (III.1)
solves the robust output regulation problem for (I.1).

Proof. We consider the input u(t) = Kz(t) − k1e(t). Let
us write k1 = C0 + κ, where C0 ≥ 1

2 and κ > 0. Then we
have u(t) = Kz(t)− C0e(t)− κy(t) + κyref (t) = u1(t)−
κy(t) + κyref (t) where u1(t) = Kz(t)− C0e(t).

With this input, (III.3) can be written as

d

dt
x(t) = Ax(t), x(0) = x0,

(B + κC)x(t) = u1(t) + κyref (t),

Cx(t) = y(t).

(III.7)

From Lemma III.3, we have that the system (A,B + κC, C)
is exponentially stable and from Theorem III.5, we have
that (A,B, C) is a well-posed linear system since every
well-posed system node defines a well-posed linear system
([18]). Moreover, due to Remark III.6, we have that κ is
an admissible output feedback operator. This implies that
the system (A,B + κC, C) is a well-posed linear system
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[24, Thm. 4.7]. Therefore, by considering κyref (t) as an
external disturbance to the system (I.1), then we have that
(III.7) is an exponentially stable well-posed linear system
with input u1(t). In addition, the impedance passivity of
(A,B, C) implies that the transfer function G(s) is positive,
i.e., ReG(s) = 1

2 [G(s) + G(s∗)] ≥ 0, ∀ s ∈ C0 ([17],
[18]). This further implies that the transfer function Gκ(s)
of the system (A,B+ κC, C) is positive and the assumption
ReG(iωj) 6= 0, j = 1, 2, · · · , q implies that ReGκ(iωj) 6=
0 for all j = 1, 2, · · · , q. Therefore, using [7, Thm. 3.4], a
minimal realization of

C(s) = −C0 −
∑
j∈J

1

s− iωj
, (III.8)

where C0 ≥ 1
2 , J = {−q, · · · ,−1, 1, · · · , q} and ω−j =

−ωj , solves the robust output tracking problem and rejects
the disturbance κyref (t).

It can be verified from (III.1) that (G1,G2) is control-
lable, (G1,K) is observable and the transfer function of
(G1,G2,K,−C0) is given by (III.8). Therefore, the controller
given in (II.1) and (III.1) is a minimal realization of (III.8).
Combining the above arguments and using [7, Thm. 3.4],
we have that the controller (II.1), (III.1) solves the robust
tracking problem for (I.1).

IV. A ROBUST REGULATING CONTROLLER FOR AN
EULER-BERNOULLI BEAM WITH DISTRIBUTED CONTROL

AND OBSERVATION

In this section, we consider robust output tracking of a
cantilever beam which has distributed control and observa-
tion. The beam system that we study is described by

ρ(ξ)wtt(ξ, t) = −(EI(ξ)wξξ)ξξ(ξ, t) + b(ξ)u2(t)

w(0, t) = 0, wξ(0, t) = 0,

(EI(ξ)wξξ)(1, t) = 0, −(EI(ξ)wξξ)ξ(1, t) = 0,

w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ),

y2(t) =

∫ 1

0

b(ξ)wt(ξ, t)dξ

(IV.1)
where 0 < ξ < 1, t > 0, u2(t) and y2(t) are the
external control input and observation respectively and b(·) ∈
L2(0, 1) is a real-valued function. The parameters ρ(ξ) and
EI(ξ) satisfy (I.2). The beam system (IV.1) cannot be
stabilized exponentially [27, Cor. 3.58], [28, Sec. 8.4].

Assumption IV.1. Under negative output feedback u2(t) =
−κy2(t), κ > 0, the solutions of the beam system (IV.1)
satisfy

‖w(·, t)‖L2 + ‖wt(·, t)‖L2 → 0 as t→∞ (IV.2)

for any initial conditions.

Assumption IV.1 implies that the system (IV.1) can be
stabilized strongly by negative output feedback.

Robust Output Regulation Problem (Strongly Stable
Version). Choose (G1,G2,K, k1) in (II.1) such that

(a) The closed-loop system comprising the controller and
the beam system (IV.1) is strongly stable.

(b) The regulation error ẽ(t) = y2(t)− yref (t) satisfies∫ t+1

t

‖ẽ(s)‖ds→ 0 as t→∞

for all initial conditions w0(ξ), w1(ξ) and z0 ∈ Z.
(c) If (a) holds despite uncertainties, perturbations and

disturbances in the system, then (b) is still satisfied for
all initial conditions.

Theorem IV.2. Under the Assumption IV.1, the controller
(II.1) and (III.1) solves the robust output regulation problem
(Strongly Stable Version) for the beam system (IV.1).

Proof. The system (IV.1) can be formulated as an abstract
linear system

d

dt
x(t) = Ax(t) + B̃u2(t), x(0) = x0,

y2(t) = C̃x(t)

in the state space X = H2
E(0, 1) × L2(0, 1) with state

variable x(t) = (w(·, t), wt(·, t))T . The norm on X is
defined as in Section III-A. The operator A corresponds to
the skew-adjoint operator in Section III-A and the operators
B̃ ∈ L(C, X) and C̃ ∈ L(X,C) are given by

B̃u2 =

[
0

B̃0

]
u2, B̃0 =

b(·)
ρ(·)

, u2 ∈ C,

C̃x =

∫ 1

0

b(ξ)x2(ξ)dξ, (x1, x2)
T ∈ X.

Here B̃∗ = C̃.
By direct computation, we obtain

1

2

d

dt
‖x(t)‖2X = Re 〈u2(t), y2(t)〉C .

This implies that the system (A, B̃, B̃∗, 0) is an impedance
passive system.

Now we have that the system (IV.1) is passive and assumed
to be strongly stabilizable by negative output feedback.
Therefore, by [9, Thm. 5.2], we conclude that the controller
(II.1) and (III.1) solves the robust output tracking prob-
lem.

V. NUMERICAL SIMULATIONS

Simulations are carried out in Matlab for the beam system
(I.1) with the following choices of parameters on the time in-
terval [0,15]. We consider the case where ρ(ξ) = 1, EI(ξ) =
1. We aim to track the reference signal yref (t) = sin 2t +
cos t. So, the frequencies are {2, 1}. We choose the beam
initial state w0(ξ) = 0.1(sin(πξ)−πξ), w1(ξ) = (1+ π3

60 )ξ
2

and the controller initial state z0 = 0. The beam system is
approximated using Legendre spectral Galerkin method [29].
The number of basis functions used for the approximation is
20. The controller parameters (G1,G2,K) are chosen as in
(III.1) with k1 = 6. Figure 2 shows that the tracking of the
given reference signal is achieved asymptotically. Velocity
profile of the controlled beam is shown in Figure 3.
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Fig. 2. Output tracking

Fig. 3. Velocity profile of the controlled beam

VI. CONCLUSIONS

In this paper, we studied the robust output tracking of a
cantilever beam. As the main problem, we considered the
cantilever beam which has control and observation at the
free end. In addition, we considered the case where the
beam has distributed control and observation. We solved
the output regulation problem using a finite-dimensional,
internal model based controller. The advantage of using
this controller is that the controller is simple and able to
handle the spatially varying parameters in the beam system.
Numerical simulations demonstrating the effectiveness of the
controller were presented.
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[26] A. Cheng and K. Morris, “Well-posedness of boundary control sys-
tems,” SIAM Journal on Control and Optimization, vol. 42, no. 4,
pp. 1244–1265, 2003.

[27] Z.-H. Luo, B.-Z. Guo, and O. Morgul, Stability and stabilization of
infinite dimensional systems with applications. Communications and
Control Engineering Series, Springer-Verlag, London, 1999.

[28] R. F. Curtain and H. Zwart, Introduction to Infinite-Dimensional
Systems Theory: A State-Space Approach, vol. 71 of Texts in Applied
Mathematics. Springer, New York, 2020.

[29] K. Asti, “Numerical approximation of dynamic Euler–Bernoulli beams
and a flexible satellite,” Master’s thesis, Tampere University, Finland,
2020.

993



 

PUBLICATION 
II 

 

Robust Output Regulation of a Flexible Satellite 

T. Govindaraj, J.-P. Humaloja and L. Paunonen 

IFAC-PapersOnLine, 53-2 (2020), 7795-7800, 21st IFAC World Congress  

 https://doi.org/10.1016/j.ifacol.2020.12.1871 

 

 

Publication reprinted with the permission of the copyright holders. 
 

 

  



 

 

 

 

 

 

 

 



IFAC PapersOnLine 53-2 (2020) 7795–7800

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2020.12.1871

10.1016/j.ifacol.2020.12.1871 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Robust Output Regulation of a Flexible
Satellite �

Thavamani Govindaraj ∗ Jukka-Pekka Humaloja ∗

Lassi Paunonen ∗

∗ Faculty of Information Technology and Communication Sciences,
Tampere University, P.O.Box 692, 33101, Tampere, Finland (e-mails:

thavamani.govindaraj@tuni.fi, jukka-pekka.humaloja@ tuni.fi,
lassi.paunonen@tuni.fi).

Abstract: We consider a PDE-ODE model of a satellite and robust output regulation of the
corresponding model. The satellite is composed of two flexible solar panels and a rigid center
body. Exponential stability of the model is proved using passivity and resolvent estimates in the
port-Hamiltonian framework. In addition, we construct a simple low-gain controller for robust
output regulation of the satellite model.
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1. INTRODUCTION

Flexible structures are widely used in the modern technol-
ogy because of their advantages such as light weight, cost
effectiveness and low energy consumption. Flexibility of
these structures leads to problems of structural vibration
and shape deformation, hence control problems of flexible
systems have become a very interesting topic in research.
Moreover, flexible structures are distributed parameter
systems and they are often modeled as partial differential
equations. Applications of flexible structures can be found,
e.g., in robotics, satellites and wind turbines.

For the past few decades, satellite models have attracted
many researchers in science and engineering as they are
increasingly used, for instance, in communication systems,
remote sensors, navigation and earth sciences. There are
a number of satellites that are modeled as two flexible
solar panels connected to a center rigid body. However,
the flexibility of the panels affects the model dynamics
such as shape deformation, which leads to challenges in
controlling these type of systems. Control problems for
satellite models can be found, for example, in Bontsema
(1989), Aoues, Cardoso-Rebeiro, Matignon and Alazard
(2018), Souza (2015) and Wei and Shuzhi Sam (2015).
Robust output regulation of a coupled PDE-ODE system
is considered, e.g., in Zhao and Weiss (2018). However,
output regulation of satellite models has not been consid-
ered in the literature to our knowledge.

The goal of robust output regulation is designing a con-
troller in such a way that the output of the controlled
system converges to a given reference signal asymptotically
despite perturbations, disturbances and uncertainties in
the system.The main key in the construction of a robust
regulating controller is the internal model principle which
provides complete knowledge of the controllers and the
� The research is supported by the Academy of Finland Grant
number 310489 held by L. Paunonen.

ability to solve the robust output regulation problem.
The investigation of robust output regulation theory was
started in the 1970’s for finite dimensional systems by
Davison (1976), Francis and Wonham (1976), and Francis
and Wonham (1975), and since then it has been developed
for infinite dimensions by many authors, see for exam-
ple, Paunonen and Pohjolainen (2014) and the references
therein.

Many physical systems can be modeled as port-Hamilton-
ian systems(PHSs) (see Jacob, Zwart (2011)). The class of
port-Hamiltonian systems includes a wide range of models
including flexible structures, traveling waves in acoustics,
heat exchangers, suspension systems and bio reactors.
Moreover, several interconnected PHSs via standard feed-
back interconnection is again a PHS. Stability analysis of
port-Hamiltonian systems is considered in Augner (2019),
Augner and Jacob (2013) and Augner (2018). Robust
output regulation problem of boundary controlled port-
Hamiltonian systems can be found, e.g., in Humaloja and
Paunonen (2018).

In this paper, we consider a satellite system that is
composed of two symmetric flexible solar panels and a
center rigid body. The panels are modeled as Euler-
Bernoulli beams. In addition, it is assumed that the
beams have distributed viscous damping. Both panels
are modeled in the port-Hamiltonian framework and the
passivity of the system is proved by computing the energy
balance equation.

As the main contribution of the paper, a power-preserving
interconnection is shown between the satellite panels and
the center rigid body. This interconnection results in an
impedance passive port-Hamiltonian system. We stabilize
the rigid body by negative output feedback and we utilize
the passivity property in proving that the satellite system
generates an exponentially stable semigroup. Due to the
exponential stability of the model, using the theories from
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Hamiltonian systems can be found, e.g., in Humaloja and
Paunonen (2018).

In this paper, we consider a satellite system that is
composed of two symmetric flexible solar panels and a
center rigid body. The panels are modeled as Euler-
Bernoulli beams. In addition, it is assumed that the
beams have distributed viscous damping. Both panels
are modeled in the port-Hamiltonian framework and the
passivity of the system is proved by computing the energy
balance equation.

As the main contribution of the paper, a power-preserving
interconnection is shown between the satellite panels and
the center rigid body. This interconnection results in an
impedance passive port-Hamiltonian system. We stabilize
the rigid body by negative output feedback and we utilize
the passivity property in proving that the satellite system
generates an exponentially stable semigroup. Due to the
exponential stability of the model, using the theories from
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Pohjolainen (1985) and Paunonen (2016), we construct a
simple low-gain controller that solves the robust output
regulation problem.

The paper is organized as follows. In section 2, we formu-
late our satellite model as an abstract PDE-ODE system
and establish a power-preserving interconnection between
the satellite panels and the center rigid body in the port-
Hamiltonian framework. In section 3, we prove the expo-
nential stability of the satellite system. In section 4, we
consider robust output regulation of the satellite model
and we construct a low-gain controller that achieves robust
output regulation of the satellite model. In section 5, we
conclude our work and present topics for future research.

1.1 Notation

For normed linear spaces X and Y , L(X,Y ) denotes the
set of all bounded linear operators from X into Y . For
a linear operator A, D(A),R(A) and N (A) denote the
domain, range and the kernel of A, respectively. The
resolvent and the spectrum of A are denoted by ρ(A) and
σ(A), respectively. The resolvent operator is denoted by
R(λ,A) = (λ−A)−1 for λ ∈ ρ(A). We denote by X−1 the
completion ofX with respect to the norm ‖x‖−1 = ‖((βI−
A)−1x)‖, x ∈ X, β ∈ ρ(A) and by A−1 ∈ L(X,X−1) the
extension of A to X−1. For x(t, ξ) ∈ X, ẋ and x′ denote
time and spatial derivatives of x, respectively.

2. THE SATELLITE MODEL

We consider a dynamic model of a satellite composed of a
center rigid body and two symmetric flexible solar panels.
The panels are modeled as Euler-Bernoulli beams. Let us
assume that both beams are of length 1 with cross sectional
area a, mass density ρ, Young’s modulus of elasticity E,
second moment of area of the cross section I and the
viscous damping coefficient γ.

wl(ξ, t) wc(t) wr(ξ, t)

-1 0 1

Fig. 1. Satellite with flexible solar panels

Let m and Im denote the mass and the mass moment
of inertia of the center rigid body. If wl(ξ, t) and wr(ξ, t)
are the transverse displacements of the left and the right
beam, respectively, and wc(t) and θc(t) are the linear and
angular displacements of the rigid body respectively, then
the governing equations of motion of the satellite are given
by (similar models can be found in Bontsema (1989), Wei
and Shuzhi Sam (2015)),

ẅl(ξ, t)+
EI

ρa
w′′′′

l (ξ, t)+
γ

ρa
ẇl(ξ, t) = 0, −1 < ξ < 0, t > 0,

ẅr(ξ, t) +
EI

ρa
w′′′′

r (ξ, t) +
γ

ρa
ẇr(ξ, t) = 0, 0 < ξ < 1, t > 0,

with the boundary conditions,

mẅc(t) = EIw′′′
l (0, t)− EIw′′′

r (0, t) + u1(t),

Imθ̈c(t) = −EIw′′
l (0, t) + EIw′′

r (0, t) + u2(t),

w′′
l (−1, t) = 0, w′′

r (1, t) = 0,

w′′′
l (−1, t) = 0, w′′′

r (1, t) = 0,

ẇl(0, t) = ẇr(0, t) = ẇc(t),

ẇ′
l(0, t) = ẇ′

r(0, t) = θ̇c(t),

y1(t) = ẇc(t), y2(t) = θ̇c(t).

where u1(t) and u2(t) are external control inputs and y1(t)
and y2(t) are outputs of the satellite model. Here ẇc(t) =

ẇl(ξ, t)|ξ=0 = ẇr(ξ, t)|ξ=0 and θ̇c(t) = ẇ′
l(ξ, t)|ξ=0 =

ẇ′
r(ξ, t)|ξ=0 are the linear and the angular velocities of

the rigid body respectively. We formulate this system as
an abstract system of a PDE and an ODE in the port-
Hamiltonian framework similarly as in Augner (2019).

2.1 Abstract Formulation of the Beams

The standard boundary control and boundary observation
problem for port-Hamiltonian systems of order N = 2 on
the spatial interval [a, b] takes the form,

ẋ(t, ξ) = P2(Hx)′′(t, ξ) + P1(Hx)′(t, ξ) + P0(Hx)(t, ξ),

u(t) = Bx(t, ξ),
y(t) = Cx(t, ξ),

where, P0, P1, P2 ∈ Rn×n, and H : [a, b] → Rn×n is the
Hamiltonian density matrix function.

Now, we formulate the beam systems in the satellite model
as boundary controlled port-Hamiltonian systems of order
N = 2.

The left beam in the satellite system can be modeled as
a boundary controlled port-Hamiltonian system of order
N = 2 on the energy space Xl = L2([−1, 0];R2). The
space Xl is a Hilbert space equipped with the energy
norm ‖xl(t)‖2Xl

:= 1
2 〈xl(t),Hlxl(t)〉L2 , xl ∈ Xl, where

Hl given in (2) is the Hamiltonian density matrix function
associated with the left beam.

The left beam that we detach from the satellite system
has ul1(t) = ẇl(0, t), ul2(t) = ẇ′

l(0, t) as boundary
inputs and yl1(t) = −EIw′′′

l (0, t), yl2(t) = EIw′′
l (0, t) as

outputs. Then choosing the energy state variable xl(t) =[
ρaẇl(ξ, t)
w′′

l (ξ, t)

]
, we have

d

dt
xl(t) = Alxl(t), ul(t) = Blxl(t), yl(t) = Clxl(t), (1)

where,

Al =

[
−γ(ρa)

−1 −EI∂ξξ
(ρa)

−1
∂ξξ 0

]
,

Blxl(t) =

[
ẇl(0, t)
ẇ′

l(0, t)

]
and,

Clxl(t) =

[
−EIw′′′

l (0, t)
EIw′′

l (0, t)

]
.

Here

P2 =

[
0 −1
1 0

]
, P1 = 0, P0 =

[
−γ 0
0 0

]
,

Hl =

[
(ρa)

−1
0

0 EI

]
(2)

and

D(Al) = {xl ∈ Xl | Hlxl ∈ H2([−1, 0];R2),

xl2(−1) = x′
l2(−1) = 0}.

The Hamiltonian i.e., energy for the left beam is given by,

Hl =
1

2
‖xl‖2Xl

=
1

2

∫ 0

−1

(ρa|ẇl(t, ξ)|2 + EI|w′′
l (t, ξ)|2)dξ.

Differentiating,

Ḣl =

∫ 0

−1

(ρaẇl(t, ξ)ẅl(t, ξ) + EIw′′
l (t, ξ)ẇ

′′
l (t, ξ))dξ,

=

∫ 0

−1

∂

∂ξ
(EIw′′

l (t, ξ)ẇ
′
l(t, ξ)− ẇl(t, ξ)EIw′′′

l (t, ξ))dξ

− γ

∫ 0

−1

ẇl(t, ξ)
2dξ,

≤ EIw′′
l (t, 0)ẇ

′
l(t, 0)− ẇl(t, 0)EIw′′′

l (t, 0),

= ul(t)
T yl(t).

This implies that the energy satisfies
1

2

d

dt
‖xl(t)‖2Xl

≤ ul(t)
T yl(t).

Hence, the left beam is an impedance passive system on the
Hilbert space Xl = L2([−1, 0];R2), and thus, the operator
Al = Al|N (Bl) generates a contraction semigroup Tl(t) on
Xl. That is, ‖Tl(t)‖ ≤ 1 on Xl.

In the same way, the right beam that we detach from the
satellite system can be modeled as a boundary controlled
port-Hamiltonian system on the Hilbert space Xr =
L2([0, 1];R2) with ur1(t) = ẇr(0, t), ur2(t) = ẇ′

r(0, t)
as boundary inputs and yr1(t) = EIw′′′

r (0, t), yr2(t) =
−EIw′′

r (0, t) as outputs. Choosing the energy state vari-

able xr(t) =

[
ρaẇr(ξ, t)
w′′

r (ξ, t)

]
, we have

d

dt
xr(t) = Arxr(t), ur(t) = Brxr(t), yr(t) = Crxr(t),

(3)
where,

Ar =

[
−γ(ρa)

−1 −EI∂ξξ
(ρa)

−1
∂ξξ 0

]
,

Brxr(t) =

[
ẇr(0, t)
ẇ′

r(0, t)

]
and,

Crxr(t) =

[
EIw′′′

r (0, t)
−EIw′′

r (0, t)

]
.

Here P0, P1, P2 and Hr are defined the same as of the left
beam and

D(Ar) = {xr ∈ Xr | Hrxr ∈ H2([0, 1];R2),

xr2(1) = x′
r2(1) = 0}.

Furthermore, it can be shown analogously to the case of
the left beam that the energy satisfies

1

2

d

dt
‖xr(t)‖2Xr

≤ ur(t)
T yr(t),

which shows that the right beam is also an impedance pas-
sive system on the Hilbert space Xr = L2([0, 1];R2),thus,
the operator Ar = Ar|N (Br) generates a contraction semi-
group Tr(t) on Xr.

2.2 Combined Beam System

The two beam systems (1) and (3) can be combined into
a single open loop system as follows:

d

dt
x(t) = Ax(t), B̂x(t) = û(t), Ĉx(t) = ŷ(t),

where

x(t) =

[
xl(t)
xr(t)

]
, û(t) =

[
ul(t)
ur(t)

]
, ŷ(t) =

[
yl(t)
yr(t)

]
,

A =

[
Al 0
0 Ar

]
, B̂ =

[
Bl 0
0 Br

]
, Ĉ =

[
Cl 0
0 Cr

]
,

and D(A) = D(Al)×D(Ar).

Using the boundary conditions ul1(t) = ẇl(0, t) =
ẇr(0, t) = ur1(t) and ul2(t) = ẇ′

l(0, t) = ẇ′
r(0, t) = ur2(t),

the energy of the combined system is given by,

1

2

d

dt
‖x(t)‖2 =

1

2

d

dt
‖xl(t)‖2Xl

+
1

2

d

dt
‖xr(t)‖2Xr

≤ ul(t)
T yl(t) + ur(t)

T yr(t),

= ul(t)
T (yl(t) + yr(t)).

(4)

Let us define a new output function

y(t) = yl(t) + yr(t) = Clxl(t) + Crxr(t)

= (Cl Cr)
(
xl(t)
xr(t)

)

and an input function

u(t) =

(
1

2
Bl

1

2
Br

)(
xl(t)
xr(t)

)
.

With this input u(t) and output y(t), it follows from (4)
that the system

d

dt
x(t) = Ax(t), Bx(t) = u(t), Cx(t) = y(t) (5)

is an impedance passive port-Hamiltonian system on X =
Xl × Xr and A = A|N (B) generates a contraction semi-
group T (t) on X.

2.3 Abstract Formulation of the Rigid Body

The center rigid body that we detach from the satellite
system has uc1(t) = EIw′′′

l (0, t)−EIw′′′
r (0, t) and uc2(t) =

−EIw′′
l (0, t)+EIw′′

r (0, t) as inputs and yc1(t) = ẇc(t) and

yc2(t) = θ̇c(t) as outputs. Then, with the state variable

xc(t) =

[
mẇc(t)

Imθ̇c(t)

]
, the rigid body on the Hilbert space

Xc = R2 can be written as,

d

dt

[
mẇc(t)

Imθ̇c(t)

]
=

[
0 0
0 0

] [
mẇc(t)

Imθ̇c(t)

]
+

[
1 0
0 1

] [
uc1(t)
uc2(t)

]
,

yc(t) =

[
ẇc(t)

θ̇c(t)

]
.

Equivalently,

d

dt
xc(t) = Acxc(t) +Bcuc(t),

yc(t) = Ccxc(t),
(6)

where,

Ac = 0, Bc =

[
1 0
0 1

]
, Cc =



1

m
0

0
1

Im


 , and

uc(t) =

[
uc1(t)
uc2(t)

]
.

The Hamiltonian of the center rigid body is given by,

Hc =
1

2
mẇc(t)

2 +
1

2
Imθ̇c(t)

2
=

1

2
‖xc‖2Xc
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The Hamiltonian i.e., energy for the left beam is given by,

Hl =
1

2
‖xl‖2Xl

=
1

2

∫ 0

−1

(ρa|ẇl(t, ξ)|2 + EI|w′′
l (t, ξ)|2)dξ.

Differentiating,

Ḣl =

∫ 0

−1

(ρaẇl(t, ξ)ẅl(t, ξ) + EIw′′
l (t, ξ)ẇ

′′
l (t, ξ))dξ,

=

∫ 0

−1

∂

∂ξ
(EIw′′

l (t, ξ)ẇ
′
l(t, ξ)− ẇl(t, ξ)EIw′′′

l (t, ξ))dξ

− γ

∫ 0

−1

ẇl(t, ξ)
2dξ,

≤ EIw′′
l (t, 0)ẇ

′
l(t, 0)− ẇl(t, 0)EIw′′′

l (t, 0),

= ul(t)
T yl(t).

This implies that the energy satisfies
1

2

d

dt
‖xl(t)‖2Xl

≤ ul(t)
T yl(t).

Hence, the left beam is an impedance passive system on the
Hilbert space Xl = L2([−1, 0];R2), and thus, the operator
Al = Al|N (Bl) generates a contraction semigroup Tl(t) on
Xl. That is, ‖Tl(t)‖ ≤ 1 on Xl.

In the same way, the right beam that we detach from the
satellite system can be modeled as a boundary controlled
port-Hamiltonian system on the Hilbert space Xr =
L2([0, 1];R2) with ur1(t) = ẇr(0, t), ur2(t) = ẇ′

r(0, t)
as boundary inputs and yr1(t) = EIw′′′

r (0, t), yr2(t) =
−EIw′′

r (0, t) as outputs. Choosing the energy state vari-

able xr(t) =

[
ρaẇr(ξ, t)
w′′

r (ξ, t)

]
, we have

d

dt
xr(t) = Arxr(t), ur(t) = Brxr(t), yr(t) = Crxr(t),

(3)
where,

Ar =

[
−γ(ρa)

−1 −EI∂ξξ
(ρa)

−1
∂ξξ 0

]
,

Brxr(t) =

[
ẇr(0, t)
ẇ′

r(0, t)

]
and,

Crxr(t) =

[
EIw′′′

r (0, t)
−EIw′′

r (0, t)

]
.

Here P0, P1, P2 and Hr are defined the same as of the left
beam and

D(Ar) = {xr ∈ Xr | Hrxr ∈ H2([0, 1];R2),

xr2(1) = x′
r2(1) = 0}.

Furthermore, it can be shown analogously to the case of
the left beam that the energy satisfies

1

2

d

dt
‖xr(t)‖2Xr

≤ ur(t)
T yr(t),

which shows that the right beam is also an impedance pas-
sive system on the Hilbert space Xr = L2([0, 1];R2),thus,
the operator Ar = Ar|N (Br) generates a contraction semi-
group Tr(t) on Xr.

2.2 Combined Beam System

The two beam systems (1) and (3) can be combined into
a single open loop system as follows:

d

dt
x(t) = Ax(t), B̂x(t) = û(t), Ĉx(t) = ŷ(t),

where

x(t) =

[
xl(t)
xr(t)

]
, û(t) =

[
ul(t)
ur(t)

]
, ŷ(t) =

[
yl(t)
yr(t)

]
,

A =

[
Al 0
0 Ar

]
, B̂ =

[
Bl 0
0 Br

]
, Ĉ =

[
Cl 0
0 Cr

]
,

and D(A) = D(Al)×D(Ar).

Using the boundary conditions ul1(t) = ẇl(0, t) =
ẇr(0, t) = ur1(t) and ul2(t) = ẇ′

l(0, t) = ẇ′
r(0, t) = ur2(t),

the energy of the combined system is given by,

1

2

d

dt
‖x(t)‖2 =

1

2

d

dt
‖xl(t)‖2Xl

+
1

2

d

dt
‖xr(t)‖2Xr

≤ ul(t)
T yl(t) + ur(t)

T yr(t),

= ul(t)
T (yl(t) + yr(t)).

(4)

Let us define a new output function

y(t) = yl(t) + yr(t) = Clxl(t) + Crxr(t)

= (Cl Cr)
(
xl(t)
xr(t)

)

and an input function

u(t) =

(
1

2
Bl

1

2
Br

)(
xl(t)
xr(t)

)
.

With this input u(t) and output y(t), it follows from (4)
that the system

d

dt
x(t) = Ax(t), Bx(t) = u(t), Cx(t) = y(t) (5)

is an impedance passive port-Hamiltonian system on X =
Xl × Xr and A = A|N (B) generates a contraction semi-
group T (t) on X.

2.3 Abstract Formulation of the Rigid Body

The center rigid body that we detach from the satellite
system has uc1(t) = EIw′′′

l (0, t)−EIw′′′
r (0, t) and uc2(t) =

−EIw′′
l (0, t)+EIw′′

r (0, t) as inputs and yc1(t) = ẇc(t) and

yc2(t) = θ̇c(t) as outputs. Then, with the state variable

xc(t) =

[
mẇc(t)

Imθ̇c(t)

]
, the rigid body on the Hilbert space

Xc = R2 can be written as,

d

dt

[
mẇc(t)

Imθ̇c(t)

]
=

[
0 0
0 0

] [
mẇc(t)

Imθ̇c(t)

]
+

[
1 0
0 1

] [
uc1(t)
uc2(t)

]
,

yc(t) =

[
ẇc(t)

θ̇c(t)

]
.

Equivalently,

d

dt
xc(t) = Acxc(t) +Bcuc(t),

yc(t) = Ccxc(t),
(6)

where,

Ac = 0, Bc =

[
1 0
0 1

]
, Cc =



1

m
0

0
1

Im


 , and

uc(t) =

[
uc1(t)
uc2(t)

]
.

The Hamiltonian of the center rigid body is given by,

Hc =
1

2
mẇc(t)

2 +
1

2
Imθ̇c(t)

2
=

1

2
‖xc‖2Xc
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Differentiating,

Ḣc = ẇc(t)uc1(t) + θ̇c(t)uc2(t) = uc(t)
T yc(t).

Equivalently,
1

2

d

dt
‖xc(t)‖2Xc

= uc(t)
T yc(t).

Hence, the rigid body is an impedance passive system on
Xc.

2.4 The Satellite System as a Coupled PDE-ODE System

From the previous sections, we are able to write our
satellite system as an abstract PDE-ODE system with
the power-preserving interconnection u(t) = yc(t), uc(t) =
−y(t) as follows:

d

dt
x(t) = Ax(t),

d

dt
xc(t) = Bcuc(t) +Bcusat(t),

Bx(t) = Ccxc(t),

uc(t) = −Cx(t),

(7)

or equivalently,

d

dt

[
x(t)
xc(t)

]
=

[
A 0

−BcC 0

] [
x(t)
xc(t)

]
+

[
0
Bc

]
usat(t),

[B −Cc]

[
x(t)
xc(t)

]
= 0.

where usat(t) =

[
u1(t)
u2(t)

]
.

The operator Ãsat :=

[
A 0

−BcC 0

]
with D(Ãsat) =

{(x, xc) ∈ D(A)×Xc : Bx = Ccxc} is dissipative, since

1

2

d

dt

∥∥∥∥
[
x(t)
xc(t)

] ∥∥∥∥
2

=
1

2

d

dt
‖x(t)‖2X +

1

2

d

dt
‖xc(t)‖2Xc

≤ u(t)T y(t) + uc(t)
T yc(t),

= yc(t)
T y(t)− y(t)T yc(t),

= 0.

and thus, according to Augner (2019)(see, example 3.4),

Ãsat generates C0-semigroup of contractions on the Hilbert
space Xsat = X ×Xc.

3. STABILITY OF THE SATELLITE MODEL

An important step in constructing a robust regulating
controller is to analyze the stability of the system. In this
section, we analyze the stability of the satellite system (7).

3.1 Stabilization of the Finite Dimensional System

Since the eigenvalues of the rigid body are zeros, it is
not asymptotically stable. We stabilize the rigid body by
negative output feedback, hence the new input is given by
ũc(t) = uc(t)− yc(t). Now, from (6), we have,

d

dt
xc(t) = Bcũc(t),

= Bcuc(t)−Bcyc(t),

= Bcuc(t)−BcCcxc(t),

= −BcCcxc(t) +Bcuc(t),

= Ãcxc(t) +Bcuc(t),

where Ãc = −BcCc. The stabilized rigid body is an
impedance passive system. Hence the whole satellite sys-
tem (7) can be written as,

d

dt

[
x(t)
xc(t)

]
=

[
A 0

−BcC −BcCc

] [
x(t)
xc(t)

]
+

[
0
Bc

]
usat(t),

[B −Cc]

[
x(t)
xc(t)

]
= 0.

(8)

where Asat :=

[
A 0

−BcC −BcCc

]
with D(Asat) = {(x, xc) ∈

D(A) × Xc : Bx = Ccxc} generates a contraction
semigroup Tsat(t) on Xsat.

3.2 Stability of the Beam System

Lemma 1. The left beam system is exponentially stable.

Proof. Let xl(t) ∈ D(Al) be the classical solution of

the left beam. If A0 =

[
0 −EI∂ξξ

(ρa)
−1

∂ξξ 0

]
and C0 =

[
(γ(ρa)−1)

1
2 0

]
, then Al = A0 − C0C

∗
0 . Here A0 =

A0|N (Bl) generates a unitary group on Xl. It can be shown
that (A0, C0) is exactly observable(see Ch.6, Tucsnak and
Weiss (2009) for more details on exact observability).

Using the skew-adjoint property of the operator A0, we
have

1

2

d

dt
‖xl(t)‖2 =

〈
d

dt
xl(t), xl(t)

〉
,

= 〈Alxl(t), xl(t)〉 ,

=

〈[
0 −EI∂ξξ

(ρa)
−1

∂ξξ 0

]
xl(t), xl(t)

〉

− γ(ρa)−1

〈[
1 0
0 0

]
xl(t), xl(t)

〉
,

= −γ

∫ 0

−1

ẇ2
l (t, ξ)dξ.

Now,

‖xl(T )‖2 − ‖xl(0)‖2

=

∫ T

0

d

dt
‖xl(t)‖2dt,

= −2γ

∫ T

0

∫ 0

−1

ẇ2
l (t, ξ)dξdt,

≤ −2γC1

∫ 0

−1

(ρaẇ2
l (0, ξ) + (w′′

l (0, ξ))
2)dξ,

for some 0 < C1 < 1 where we used the exact observability
of the pair (A0, C0). This yields,

‖xl(T )‖2 − ‖xl(0)‖2 ≤ −C2‖xl(0)‖2, 0 < C2 < 1,

‖xl(T )‖2 ≤ (1− C2)‖xl(0)‖2,
‖xl(T )‖ ≤ C‖xl(0)‖, 0 < C < 1,

⇔ ‖Tl(T )xl(0)‖ ≤ C‖xl(0)‖.
That is, ‖Tl(T )‖ < 1 for some T > 0. We obtain, [Engel
and Nagel (2000), Prop.V.1.7]

‖Tl(t)‖ ≤ Me−ωt, M ≥ 1, ω > 0,

by which the left beam system (1) is exponentially stable.

Corollary 2. The beam system (5) is exponentially stable.

Proof. By symmetry, it follows from lemma 1 that the
right beam system (3) is exponentially stable. Hence the
semigroup T (t) generated by A = A|N (B) is exponentially
stable.

3.3 Stability of the satellite system

In this section, we sketch a proof for exponential stability
of the satellite model. A detailed proof will be presented
in a later paper.

Theorem 3. The satellite system (8) is exponentially sta-
ble.

Proof. By Gearheart-Greiner-Prüss theorem, the semi-
group Tsat(t) generated by Asat is exponentially stable on
a Hilbert space if and only if the spectrum of Asat lies in
the complex left half-plane and supω∈R‖(iω − Asat)

−1‖ <
∞ (see, Engel and Nagel (2000), Thm.V.1.11). Since Asat

generates a contraction semigroup, the spectrum σ(Asat)
lies in the closed complex left-half plane. It remains to
prove that the resolvent R(iω,Asat) of the system exists
and is uniformly bounded on the imaginary axis.

According to Tucsnak and Weiss (2009)(Prop.10.1.2),
there exists a unique B ∈ L(U,X−1) such that the equa-
tions (8) of the satellite system can be written as,

d

dt

[
x(t)
xc(t)

]
=

[
A−1 BCc

−BcC −BcCc

] [
x(t)
xc(t)

]
+

[
0
Bc

]
usat(t),

and the resolvent of the satellite system is given by,

R(iω,Asat) =

[
(iω −A−1) −BCc

BcC (iω +BcCc)

]−1

.

Let P (iω) and Pc(iω) be the transfer functions of (A,B, C)
and (Ãc, Bc, Cc) respectively. Then the passivity of the
systems implies that ReP (iω) ≥ 0 and RePc(iω) ≥ 0 for

all iω ∈ ρ(A) and iω ∈ ρ(Ãc). Also, it can be shown that
(I + P (iω)Pc(iω)) and (I + Pc(iω)P (iω)) are boundedly
invertible for all ω ∈ R. For more details on passive
systems, see Paunonen (2017)(Appendix).

Using the Schur complement S(iω) = [(iω + BcCc) +
BcC(iω −A−1)

−1BCc]
−1, we obtain,

R(iω,Asat) =

[
R11(iω,Asat) R12(iω,Asat)
R21(iω,Asat) R22(iω,Asat)

]
,

where,

R11(iω,Asat) = R(iω,A)

−R(iω,A−1)BCcS(iω)BcCR(iω,A),

R12(iω,Asat) = R(iω,A−1)BCcS(iω),

R21(iω,Asat) = −S(iω)BcCR(iω,A),

R22(iω,Asat) = S(iω).

Using Kato perturbation formula, we have

S(iω)

= [(iω +BcCc) +BcC(iω −A−1)
−1BCc]

−1,

= R(iω, Ãc)

−R(iω, Ãc)BcP (iω)(I + P (iω)Pc(iω))
−1CcR(iω, Ãc).

From the stability of the beam system we have that
‖R(iω,A)‖ is uniformly bounded and from the stability of

the rigid body we have that ‖R(iω, Ãc)‖, ‖CcR(iω, Ãc)‖,
‖R(iω, Ãc)Bc‖ and ‖Pc(iω)‖ are all uniformly bounded

and tend to zero as |ω| → ∞. Furthermore, ‖Pc(iω)‖
tends to zero sufficiently fast such that P (iω)Pc(iω)
and (I + P (iω)Pc(iω))

−1 are uniformly bounded. This
implies that the Schur complement S(iω) is uniformly
bounded. Moreover, ‖S(iω)‖ tends to zero sufficiently fast
as |ω| → ∞ such that R11(iω,Asat), R12(iω,Asat), and
R21(iω,Asat) are also uniformly bounded. Hence, the re-
solvent R(iω,Asat) is uniformly bounded and therefore
Asat generates an exponentially stable semigroup.

4. ROBUST OUTPUT REGULATION OF THE
SATELLITE MODEL

In this section, we present the satellite system and the
controller that solves the robust output regulation problem
for the system. Our goal is to design a controller in such
a way that the linear and angular velocities of the center
rigid body converge to given reference signals of the form
(11).

From the previous sections, the satellite system with
control and observations on the rigid body is given by,

d

dt

[
x(t)
xc(t)

]
=

[
A 0

−BcC 0

] [
x(t)
xc(t)

]
+

[
0
Bc

]
usat(t),

[B −Cc]

[
x(t)
xc(t)

]
= 0,

ysat(t) = [0 Cc]

[
x(t)
xc(t)

]
.

(9)

We construct a dynamic error feedback controller of the
form

ż(t) = G1z(t) + G2e(t), z(0) = z0,

usat(t) = Kz(t)− yc(t),
(10)

on a Banach space Z, where e(t) = ysat(t) − yref (t),
is the regulation error, yref (t), a given reference signal,
G1 ∈ L(Z), G2 ∈ L(Yc, Z) and K ∈ L(Z,Uc), such that
robust output regulation of the satellite system is achieved
with a suitable choice of the parameters (G1,G2,K). Here
Uc and Yc are the input and the output spaces of the
satellite system. The term −yc(t) appears in the controller
(10) because it is used to stabilize the rigid body of the
satellite system, see section 3.1. The reference signals to
be tracked are of the form,

yref (t) = a0 +

q∑

k=1

[ak cos(ωkt) + bk sin(ωkt)], (11)

with 0 = ω0 < ω1 < · · · < ωq as the known frequencies
and {ak}qk=0, {bk}qk=1 ⊂ Yc as the unknown coefficients.

The Robust Output Regulation Problem. Choose
the controller (G1,G2,K) in such a way that

(a) The closed loop semigroup Tcl(t) comprised of the
satellite system (9) and the controller (10) is expo-
nentially stable.

(b) For all initial states x(0) ∈ D(A) and xc(0) ∈ Xc

satisfying Bx(0) = Ccxc(0), the regulation error e(t)
satisfies eαt‖ysat(t)−yref (t)‖ → 0 as t → ∞, for some
α > 0.

(c) If the system (A,B, C, Ac, Bc, Cc) is perturbed in
such a way that the perturbed closed loop system
is still exponentially stable, the perturbed (A,B, C)
is a boundary controlled impedance passive port-
Hamiltonian system and the perturbed (Ac, Bc, Cc)
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Proof. By symmetry, it follows from lemma 1 that the
right beam system (3) is exponentially stable. Hence the
semigroup T (t) generated by A = A|N (B) is exponentially
stable.

3.3 Stability of the satellite system

In this section, we sketch a proof for exponential stability
of the satellite model. A detailed proof will be presented
in a later paper.

Theorem 3. The satellite system (8) is exponentially sta-
ble.

Proof. By Gearheart-Greiner-Prüss theorem, the semi-
group Tsat(t) generated by Asat is exponentially stable on
a Hilbert space if and only if the spectrum of Asat lies in
the complex left half-plane and supω∈R‖(iω − Asat)

−1‖ <
∞ (see, Engel and Nagel (2000), Thm.V.1.11). Since Asat

generates a contraction semigroup, the spectrum σ(Asat)
lies in the closed complex left-half plane. It remains to
prove that the resolvent R(iω,Asat) of the system exists
and is uniformly bounded on the imaginary axis.

According to Tucsnak and Weiss (2009)(Prop.10.1.2),
there exists a unique B ∈ L(U,X−1) such that the equa-
tions (8) of the satellite system can be written as,

d

dt

[
x(t)
xc(t)

]
=

[
A−1 BCc

−BcC −BcCc

] [
x(t)
xc(t)

]
+

[
0
Bc

]
usat(t),

and the resolvent of the satellite system is given by,

R(iω,Asat) =

[
(iω −A−1) −BCc

BcC (iω +BcCc)

]−1

.

Let P (iω) and Pc(iω) be the transfer functions of (A,B, C)
and (Ãc, Bc, Cc) respectively. Then the passivity of the
systems implies that ReP (iω) ≥ 0 and RePc(iω) ≥ 0 for

all iω ∈ ρ(A) and iω ∈ ρ(Ãc). Also, it can be shown that
(I + P (iω)Pc(iω)) and (I + Pc(iω)P (iω)) are boundedly
invertible for all ω ∈ R. For more details on passive
systems, see Paunonen (2017)(Appendix).

Using the Schur complement S(iω) = [(iω + BcCc) +
BcC(iω −A−1)

−1BCc]
−1, we obtain,

R(iω,Asat) =

[
R11(iω,Asat) R12(iω,Asat)
R21(iω,Asat) R22(iω,Asat)

]
,

where,

R11(iω,Asat) = R(iω,A)

−R(iω,A−1)BCcS(iω)BcCR(iω,A),

R12(iω,Asat) = R(iω,A−1)BCcS(iω),

R21(iω,Asat) = −S(iω)BcCR(iω,A),

R22(iω,Asat) = S(iω).

Using Kato perturbation formula, we have

S(iω)

= [(iω +BcCc) +BcC(iω −A−1)
−1BCc]

−1,

= R(iω, Ãc)

−R(iω, Ãc)BcP (iω)(I + P (iω)Pc(iω))
−1CcR(iω, Ãc).

From the stability of the beam system we have that
‖R(iω,A)‖ is uniformly bounded and from the stability of

the rigid body we have that ‖R(iω, Ãc)‖, ‖CcR(iω, Ãc)‖,
‖R(iω, Ãc)Bc‖ and ‖Pc(iω)‖ are all uniformly bounded

and tend to zero as |ω| → ∞. Furthermore, ‖Pc(iω)‖
tends to zero sufficiently fast such that P (iω)Pc(iω)
and (I + P (iω)Pc(iω))

−1 are uniformly bounded. This
implies that the Schur complement S(iω) is uniformly
bounded. Moreover, ‖S(iω)‖ tends to zero sufficiently fast
as |ω| → ∞ such that R11(iω,Asat), R12(iω,Asat), and
R21(iω,Asat) are also uniformly bounded. Hence, the re-
solvent R(iω,Asat) is uniformly bounded and therefore
Asat generates an exponentially stable semigroup.

4. ROBUST OUTPUT REGULATION OF THE
SATELLITE MODEL

In this section, we present the satellite system and the
controller that solves the robust output regulation problem
for the system. Our goal is to design a controller in such
a way that the linear and angular velocities of the center
rigid body converge to given reference signals of the form
(11).

From the previous sections, the satellite system with
control and observations on the rigid body is given by,

d

dt

[
x(t)
xc(t)

]
=

[
A 0

−BcC 0

] [
x(t)
xc(t)

]
+

[
0
Bc

]
usat(t),

[B −Cc]

[
x(t)
xc(t)

]
= 0,

ysat(t) = [0 Cc]

[
x(t)
xc(t)

]
.

(9)

We construct a dynamic error feedback controller of the
form

ż(t) = G1z(t) + G2e(t), z(0) = z0,

usat(t) = Kz(t)− yc(t),
(10)

on a Banach space Z, where e(t) = ysat(t) − yref (t),
is the regulation error, yref (t), a given reference signal,
G1 ∈ L(Z), G2 ∈ L(Yc, Z) and K ∈ L(Z,Uc), such that
robust output regulation of the satellite system is achieved
with a suitable choice of the parameters (G1,G2,K). Here
Uc and Yc are the input and the output spaces of the
satellite system. The term −yc(t) appears in the controller
(10) because it is used to stabilize the rigid body of the
satellite system, see section 3.1. The reference signals to
be tracked are of the form,

yref (t) = a0 +

q∑

k=1

[ak cos(ωkt) + bk sin(ωkt)], (11)

with 0 = ω0 < ω1 < · · · < ωq as the known frequencies
and {ak}qk=0, {bk}qk=1 ⊂ Yc as the unknown coefficients.

The Robust Output Regulation Problem. Choose
the controller (G1,G2,K) in such a way that

(a) The closed loop semigroup Tcl(t) comprised of the
satellite system (9) and the controller (10) is expo-
nentially stable.

(b) For all initial states x(0) ∈ D(A) and xc(0) ∈ Xc

satisfying Bx(0) = Ccxc(0), the regulation error e(t)
satisfies eαt‖ysat(t)−yref (t)‖ → 0 as t → ∞, for some
α > 0.

(c) If the system (A,B, C, Ac, Bc, Cc) is perturbed in
such a way that the perturbed closed loop system
is still exponentially stable, the perturbed (A,B, C)
is a boundary controlled impedance passive port-
Hamiltonian system and the perturbed (Ac, Bc, Cc)
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is an impedance passive system, then (b) continues
to hold for some α̃ > 0.

4.1 Controller for the Satellite Model

Since the system is exponentially stable, using the theories
in Rebarber and Weiss (2003), Paunonen (2016) and
Pohjolainen (1985), a simple low-gain controller can be
constructed for obtaining robust output regulation of the
model with the following choices of parameters. Defining
Z = Y 2q+1

c , and ω−k = −ωk, k = 1, 2, · · · , q,
G1 = diag(iω−qIYc

, · · · iω0IYc
, · · · , iωqIYc

),

K = ε(K−q
0 , · · · ,K0

0 , · · · ,Kq
0), where, Kk

0 = Psat(iωk)
†,

G2 = (−(Psat(iωk)K
k
0 )

∗)qk=−q.

Here Psat(iωk) = CcS(iωk)Bc, S(iωk) is the Schur com-
plement, is the transfer function of the satellite system (9)
which can be obtained by frequency response measurement
from the system, Psat(iωk)

† is the Moore-Penrose pseu-
doinverse of Psat(iωk) and the tuning parameter ε > 0 is
to be chosen sufficiently small such that the closed loop
system is exponentially stable.

5. CONCLUSION

We considered a PDE-ODE model of a flexible satellite.
The model was formulated as an abstract system in
the port-Hamiltonian framework and it was shown that
there is a power-preserving interconnection between the
satellite panels and the center rigid body of the model.
The exponential stability of the model was proved using
passivity and the resolvent estimate where we used Schur
complement and Kato perturbation formula. Exponential
stability of the satellite model enabled us to construct a
simple low-gain controller for robust output regulation of
the model.

Future works are possible for the same model. Numerical
simulations testing the effectiveness of the controller and
technical details in the proofs of exponential stability will
be presented in a later paper. Since the model is an
exponentially stable impedance passive system, a passive
controller can be constructed for this model. In this paper,
the beams are assumed to have damping, one could also
consider an undamped model.
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Abstract. We consider a PDE-ODE model of a flexible satellite that is com-

posed of two identical flexible solar panels and a center rigid body. We prove
that the satellite model is exponentially stable in the sense that the energy

of the solutions decays to zero exponentially. In addition, we construct two

internal model based controllers, a passive controller and an observer based
controller, such that the linear and angular velocities of the center rigid body

converge to the given sinusoidal signals asymptotically. A numerical simulation

is presented to compare the performances of the two controllers.

1. Introduction. In this paper, we consider output tracking and disturbance re-
jection problem for a flexible satellite that is composed of two identical flexible solar
panels and a center rigid body (Figure 1). Modeling the satellite panels as viscously
damped Euler-Bernoulli beams of length 1, the satellite system we study is given
by (similar models can be found in [6], [13])

wl(ξ, t) wc(t) wr(ξ, t)

-1 0 1

Figure 1. Satellite with flexible solar panels
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2 THAVAMANI GOVINDARAJ, JUKKA-PEKKA HUMALOJA AND LASSI PAUNONEN

ρaẅl(ξ, t) + EIw′′′′l (ξ, t) + γẇl(ξ, t) = bd1(ξ)wd1(t), −1 < ξ < 0, t > 0,

ρaẅr(ξ, t) + EIw′′′′r (ξ, t) + γẇr(ξ, t) = bd2(ξ)wd2(t), 0 < ξ < 1, t > 0,

mẅc(t) = EIw′′′l (0, t)− EIw′′′r (0, t) + u1(t) + wd3(t),

Imθ̈c(t) = −EIw′′l (0, t) + EIw′′r (0, t) + u2(t) + wd4(t),

w′′l (−1, t) = 0, w′′′l (−1, t) = 0,

w′′r (1, t) = 0, w′′′r (1, t) = 0,

ẇl(0, t) = ẇr(0, t) = ẇc(t),

ẇ′l(0, t) = ẇ′r(0, t) = θ̇c(t),

(1)

where wl(ξ, t) and wr(ξ, t) are the transverse displacements of the left and the
right beam, respectively, ẇl(ξ, t) and w′l(ξ, t) denote time and spatial derivatives
of wl(ξ, t), respectively, wc(t) and θc(t) are the linear and angular displacements
of the rigid body, respectively, u1(t) and u2(t) are external control inputs of the
satellite model, wd1(t), wd2(t), wd3(t) and wd4(t) are external disturbances in the
satellite model, bd1(·) ∈ L2(−1, 0) and bd2(·) ∈ L2(0, 1) are real-valued functions.

Here ẇc(t) = ẇl(ξ, t)|ξ=0 = ẇr(ξ, t)|ξ=0 and θ̇c(t) = ẇ′l(ξ, t)|ξ=0 = ẇ′r(ξ, t)|ξ=0 are
linear and angular velocities of the rigid body, respectively. The parameters a, ρ,
E, I and γ are cross sectional area, linear density, Young’s modulus of elasticity,
second moment of area of the cross section and the viscous damping coefficient of
the beams, respectively, and m and Im denote the mass and the mass moment of
inertia of the center rigid body. Measurements that are the outputs of the model
are taken on the center rigid body and are given by,

y1(t) = ẇc(t), y2(t) = θ̇c(t). (2)

The main control objective is to construct a dynamic error feedback controller
such that the outputs, the linear and the angular velocities of the center rigid body,
track given reference signals yref (t) asymptotically. i.e.,

‖y(t)− yref (t)‖ → 0 as t→∞,
where y(t) = (y1(t), y2(t))T is the output of the satellite model. In addition, the
proposed controller is required to be robust in the sense that it achieves output
tracking despite perturbations, disturbances and uncertainties in the satellite sys-
tem.

As the first main contribution of this paper, we present a detailed proof of uni-
form exponential stability of the satellite model in the sense that the energy of the
solutions decay exponentially to zero. The stability proof is based on the results
from C0-semigroup theory. We write the satellite system as a coupled system of a
PDE (two beams are combined into a single system) and an ODE (rigid body) via
a power preserving interconnection. The main proof is divided naturally into two
steps. In the first step, we show that the imaginary axis is included in the resol-
vent set of the satellite system operator. In the second step, we derive an explicit
expression for the resolvent operator and show that it is uniformly bounded on the
imaginary axis. The stability proof is challenging because the input and the output
operators of the PDE are not admissible and its transfer function is not well-posed
(in the sense that the input-output map of the PDE is unbounded).

As the second main contribution of this paper, we construct two robust con-
trollers, a passive controller [20], [18] and an observer based controller [12], [17], for
the robust output tracking of the satellite model. The proposed controller designs
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are based on the internal model principle [9], [10], [12], [17], [19]. Finally, simulation
results testing the effectiveness of the controllers are presented.

There are several studies in the literature investigating control problems of satel-
lite models. In [6], the stabilization problem of a flexible spacecraft has been inves-
tigated using frequency domain approach. In [13], dynamic modeling and vibration
control of a flexible satellite has been considered and vibrations of the solar panels
have been suppressed using the single-point control input on the center body. In
[1], modeling and control of a rotating flexible spacecraft has been considered, a
Proportional Derivative controller and a nonlinear controller have been presented
to suppress elastic vibrations of the satellite model. References [13] and [1] use Lya-
punov methods to prove the stability of the models. To the best of our knowledge,
robust output tracking problem for flexible satellites has not been considered in the
literature.

Stability of coupled PDE-ODE systems can often be obtained using controllabil-
ity and observability results. In [24], controllability and observability results of a
well-posed and strictly proper linear system coupled with a finite-dimensional linear
system with an invertible first component in its feedthrough matrix were presented.
In [25], using results from [24], strong stability of coupled impedance passive sys-
tems was shown and the results were applied to the SCOLE model to show that the
SCOLE model coupled with tuned mass damper system is strongly stable. More-
over, the SCOLE model is not exactly controllable in the natural energy state space
([22, Sec. 1]) but it was shown in [22] that the SCOLE model is exactly controllable
in a smoother state space. In [23], it was shown that a coupled system consisting
of a well-posed and impedance passive linear system and an internal model based
controller in a feedback connection is strongly stable. In our case, since the beam
system in the satellite model is not well-posed on the natural energy state space
and the rigid center body has no feedthrough term, the results of [24], [25] cannot
be utilized in showing the exponential stability of the satellite system. Moreover,
since our aim is to achieve exponential stability of the closed-loop system and one
of the proposed controllers is infinite-dimensional, the results in [22], [24], [25] and
[23] are not applicable in showing the exponential stability of the closed-loop system
consisting of the satellite system and the controller. The results in the above men-
tioned references have unstable infinite-dimensional part and therefore only strong
stability of the coupled system was obtained. In this work, since the beam system
is exponentially stable due to the distributed damping, we are able to prove the
exponential stability of the satellite system.

A preliminary version of these results has been presented in IFAC World Congress
2020 [11]. As the main novelty of this version with respect to [11], we present a
detailed proof of the exponential stability of the satellite system. We present a
passive controller and an observer based controller which also achieve the robust
output tracking of the satellite model and reject external disturbances. In addition,
simulation results showing the performances of the controllers are presented.

The paper is organized as follows. In Section 2, we present the abstract formu-
lation of the satellite model. In Section 3, we present some technical lemmas and
prove the exponential stability of the satellite model. In Section 4, we present the
tracking problem, the reference signal to be tracked by the satellite model and the
disturbance signals to be rejected. We present two internal model based controllers
for the robust output tracking of the satellite model. In addition, simulation results
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are presented for particular choices of reference and disturbance signals. In Section
5, we conclude our results.

1.1. Notation. For normed linear spaces X and Y , L(X,Y ) denotes the set of
bounded linear operators from X to Y . For a linear operator A, D(A),R(A) and
N (A) denote domain, range and kernel of A, respectively. The resolvent and the
spectrum of A are denoted by ρ(A) and σ(A), respectively. The resolvent operator
is denoted by R(λ,A) = (λ − A)−1, λ ∈ ρ(A). We denote by X−1 the completion
of X with respect to the norm ‖x‖−1 = ‖(βI − A)−1x‖, x ∈ X, β ∈ ρ(A) and by
A−1 ∈ L(X,X−1), the extension of A to X−1. For functions f, g : I ⊂ R→ R+ and
fk, gk ≥ 0, we denote f(x) . g(x) and fk . gk if there exist M1,M2 > 0 such that
f(x) ≤M1g(x) and fk ≤M2gk for all values of x ∈ I and k ∈ J ⊂ N.

2. Abstract formulation of the satellite model. In this section, we write our
satellite model (1)-(2) in the state space form

ẋ(t) = Ax(t) +Bu(t) +Bdwd(t), x(0) = x0,

y(t) = Cx(t)
(3)

where x(t) ∈ X is the state variable and X is a Hilbert space, u(t) ∈ U = R2 is
the control input, wd(t) ∈ Ud = R4 is the external disturbance and y(t) ∈ Y = R2

is the output. The operator A : D(A) ⊂ X → X generates a strongly continuous
semigroup on X and the operators B ∈ L(U,X), Bd ∈ L(Ud, X) and C ∈ L(X,Y )
are bounded. The formulation (3) will be used in Section 4 in the construction of
controllers for robust output regulation.

In order to write the satellite model (1)-(2) in the state space form, we decompose
the satellite system into a PDE system (the two beams combined into a single sys-
tem) coupled with an ODE system (center rigid body) where PDE interacts with
ODE via boundary controls and boundary observations called “virtual boundary
inputs” and “virtual boundary outputs”, respectively. Figure 2 shows the bound-
ary interconnections between the beams and the center rigid body. This type of
decomposition has been considered, for example, in [22] for SCOLE model. As

Left Beam Rigid Body Right Beam

[
−EIw′′′

l (0, t)
EIw′′

l (0, t)

]

[
ẇc(t)

θ̇c(t)

]

[
EIw′′′

r (0, t)
−EIw′′

r (0, t)

]

[
ẇc(t)

θ̇c(t)

]

Figure 2. Coupling of the beams with the rigid body

the first step towards state space formulation, we write the PDE as an impedance
passive abstract boundary control and observation system given by the following
definitions.

Definition 2.1 (Boundary Control and Observation System [8, Def. 3.3.2], [14,

Ch. 11]). Let X̂, Û and Ŷ be Hilbert spaces. Consider the system

˙̂x(t) = Âx̂(t), x̂(0) = x̂0, (4a)

B̂x̂(t) = û(t), (4b)

ŷ(t) = Ĉx̂(t) (4c)
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where Â : D(Â) ⊂ X̂ → X̂, B̂ : D(B̂) ⊂ X̂ → Û and Ĉ : D(Â) → Ŷ are linear

operators and D(Â) ⊂ D(B̂). Then (4) is a boundary control and observation
system if the following hold.

1. The operator Â : D(Â) → X̂ with D(Â) = D(Â) ∩ N (B̂) and Âx̂ = Âx̂ for

x̂ ∈ D(Â) is the infinitesimal generator of a C0-semigroup (T̂ (t))t≥0 on X̂.

2. There exists an operator Ĥ ∈ L(Û , X̂) such that for all û ∈ Û we have

Ĥû ∈ D(Â), ÂĤ ∈ L(Û , X̂) and B̂Ĥû = û, û ∈ Û .

Remark 1. Let (Â, B̂) be a boundary control system. Then according to [21, Ch.

10], there exists a unique B̂ ∈ L(Û , X̂−1) such that Â = Â−1 + B̂B̂ on D(Â) and
therefore (4a) and (4b) can be written as

˙̂x(t) = Â−1x̂(t) + B̂û(t), x̂(0) = x̂0.

Definition 2.2 (Impedance Passive System). The system (Â, B̂, Ĉ) is called imped-
ance passive if the solutions of (4) satisfy

1

2

d

dt
‖x̂(t)‖2

X̂
≤ Re 〈û(t), ŷ(t)〉Û,Ŷ , t > 0.

We note that the above definition holds also for the systems in the state space
form. Since we are interested in controlling velocities of the center rigid body, we
use energy state space [14] instead of natural state space in order to write the PDE
as an abstract system.

2.1. Abstract formulation of the beams. The left beam system that we extract
from the the satellite system is described by,

ẅl(ξ, t) +
EI

ρa
w′′′′l (ξ, t) +

γ

ρa
ẇl(ξ, t) = 0, (5a)

ẇl(0, t) = ul1(t), ẇ′l(0, t) = ul2(t), (5b)

w′′l (−1, t) = 0, w′′′l (−1, t) = 0, (5c)

yl1(t) = −EIw′′′l (0, t), yl2(t) = EIw′′l (0, t). (5d)

where −1 < ξ < 0, t > 0 and ul1(t), ul2(t) are the virtual boundary inputs and
yl1(t), yl2(t) are the virtual boundary outputs of the left beam (see Figure 2),
respectively.

By choosing the state variable

xl(t) =

[
ρaẇl(·, t)
w′′l (·, t)

]
,

where ẇl(·, t) and w′′l (·, t) are the velocity and the bending moment of the left beam,
respectively, (5) can be written in boundary control and observation form on the
state space Xl = L2([−1, 0];R2) as

ẋl(t) = Alxl(t), (6a)

Blxl(t) = ul(t), (6b)

yl(t) = Clxl(t), (6c)

where

Alxl(t) =

[
−γ(ρa)

−1 −EI∂ξξ
(ρa)

−1
∂ξξ 0

] [
ρaẇl(·, t)
w′′l (·, t)

]
,
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with

D(Al) = {xl ∈ Xl | Hlxl ∈ H2([−1, 0];R2), xl2(−1) = x′l2(−1) = 0},

Hl =

[
(ρa)

−1
0

0 EI

]
, Blxl(t) =

[
ẇl(0, t)
ẇ′l(0, t)

]
and Clxl(t) =

[
−EIw′′′l (0, t)
EIw′′l (0, t)

]
.

The operators Bl : D(Al) → Ul and Cl : D(Al) → Yl are the virtual control and
observation operators with Ul = R2 and Yl = R2. Here, it is noted that the equations
(6a), (6b), (6c) and D(Al) corresponds to (5a), (5b), (5d) and (5c), respectively.
The space Xl is a Hilbert space equipped with the energy norm

‖xl‖2Xl
:= 〈xl,Hlxl〉L2 , xl ∈ Xl.

Here 1
2‖xl‖2Xl

is the sum of the kinetic and potential energies of the left beam. The
above choice of the state variable corresponds to the port-Hamiltonian formulation
of the Euler Bernoulli beam. More details can be found, for example, in [5], [3], and
[4].

In the same way, the right beam can be written in boundary control and observa-
tion form on the Hilbert space Xr = L2([0, 1];R2) with ur1(t) = ẇr(0, t), ur2(t) =
ẇ′r(0, t) as virtual boundary inputs and yr1(t) = EIw′′′r (0, t), yr2(t) = −EIw′′r (0, t)
as virtual outputs. We denote the input and output spaces of the right beam by Ur =

R2 and Yr = R2, respectively. Choosing the state variable xr(t) =

[
ρaẇr(·, t)
w′′r (·, t)

]
, we

have
ẋr(t) = Arxr(t),

Brxr(t) = ur(t),

yr(t) = Crxr(t),
(7)

where

Ar =

[
−γ(ρa)

−1 −EI∂ξξ
(ρa)

−1
∂ξξ 0

]
,Brxr(t) =

[
ẇr(0, t)
ẇ′r(0, t)

]
, Crxr(t) =

[
EIw′′′r (0, t)
−EIw′′r (0, t)

]

and D(Ar) = {xr ∈ Xr | Hrxr ∈ H2([0, 1];R2), xr2(1) = x′r2(1) = 0},

Hr =

[
(ρa)

−1
0

0 EI

]
. The space Xr is equipped with the energy norm ‖xr‖2Xr

:=

〈xr,Hrxr〉L2 , xr ∈ Xr.
Next, we combine the two beam systems (6) and (7) into a single open loop

system on the Hilbert space Xb = Xl ×Xr as follows. From the above formulation
and from the boundary conditions in (1), it is clear that ul(t) = ur(t). Now, in order
to have the coupling between the beam system and the rigid body as in Figure 2,
the input and the output of the combined beam system are chosen such that the
output of the combined beam system is equal to the addition of the outputs of the
left and the right beam systems and the input of the combined beam system is equal
to the inputs of the left and the right beam systems. Therefore, denoting the input
and output spaces of the combined system by Ub and Yb, respectively, let us define
a new virtual output function

yb(t) =
[
Cl Cr

] [xl(t)
xr(t)

]
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and a virtual input function

ub(t) =
[

1
2Bl 1

2Br
] [xl(t)
xr(t)

]
.

Then the combined system can be written as

ẋb(t) = Abxb(t), Bbxb(t) = ub(t), Cbxb(t) = yb(t) (8)

where

xb(t) =

[
xl(t)
xr(t)

]
, Ab =

[
Al 0
0 Ar

]
, Bb =

[
1
2Bl 1

2Br
]
, Cb =

[
Cl Cr

]
,

and D(Ab) = {(xl, xr) ∈ D(Al)×D(Ar) : Blxl = Brxr}.
Lemma 2.3. The beam system (Ab,Bb, Cb) in (8) is an impedance passive system
on (Xb, Ub, Yb).

Proof. From [11, Sec. 2.1], we have that the left beam (Al,Bl, Cl) and the right beam
(Ar,Br, Cr) are impedance passive systems. Now, using the boundary condition
ul(t) = ur(t), we obtain

1

2

d

dt
‖xb(t)‖2Xb

=
1

2

d

dt
‖xl(t)‖2Xl

+
1

2

d

dt
‖xr(t)‖2Xr

,

≤ 〈ul(t), yl(t)〉Ul,Yl
+ 〈ur(t), yr(t)〉Ur,Yr

= 〈ub(t), yb(t)〉Ub,Yb
,

where xb(t), t > 0 are solutions of (8). Therefore, (8) is an impedance passive
system.

Remark 2. The impedance passivity of the systems (Al,Bl, Cl), (Ar,Br, Cr) and
(Ab,Bb, Cb) imply that Al = Al|N (Bl), Ar = Ar|N (Br) and Ab = Ab|N (Bb) generate
C0-semigroups of contractions Tl(t), Tr(t) and Tb(t) on Xl, Xr and Xb, respectively.
Therefore, (Al,Bl, Cl), (Ar,Br, Cr) and (Ab,Bb, Cb) are boundary control and obser-
vation systems [15, Sec. 4.2]. This implies from Remark 1 that there exist unique
operators Bl ∈ L(Ul, Xl−1), Br ∈ L(Ur, Xr−1) and Bb ∈ L(Ub, Xb−1) such that
Al = Al−1

+ BlBl on D(Al), Ar = Ar−1
+ BrBr on D(Ar) and Ab = Ab−1

+ BbBb
on D(Ab), respectively.

2.2. The rigid body. Without external inputs, the center rigid body that we
extract from the satellite system is given by

mẅc(t) = uc1(t),

Imθ̈c(t) = uc2(t),

yc1(t) = ẇc(t),

yc2(t) = θ̇c(t),

(9)

where uc1(t), uc2(t) are the virtual inputs and yc1(t), yc2(t) are the outputs of the
rigid body (see Figure 2), respectively. The state, input and output spaces of the
rigid body are given by Xc = R2, Uc = R2 and Yc = R2, respectively. Then, with

the state variable xc(t) =

[
ẇc(t)

θ̇c(t)

]
, the rigid body (9) on the Hilbert space Xc can

be written as,
ẋc(t) = Acxc(t) +Bcuc(t),

yc(t) = Ccxc(t),
(10)
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where,

Ac = 0, Bc =

[
1
m 0
0 1

Im

]
, Cc =

[
1 0
0 1

]
, and uc(t) =

[
uc1(t)
uc2(t)

]
.

The space Xc is equipped with the energy norm

‖xc‖2Xc
= x∗cHcxc, where Hc =

[
m 0
0 Im

]
.

It is straightforward to see that the rigid body is an impedance passive system on
Xc (see [11, Sec. 2.3]). More details on the energy state space formulation of finite-
dimensional systems can be found in [14, Ch. 2.3].

2.3. The satellite system as a coupled PDE-ODE system. From the equa-
tions (8) and (10), we are now ready to write our satellite system (1)-(2) as an ab-
stract PDE-ODE system with the power-preserving interconnection ub(t) = yc(t),
uc(t) = −yb(t) (see Figure 3) on the state space X = Xb ×Xc as

[
ẋb(t)
ẋc(t)

]
=

[
Ab 0
−BcCb 0

] [
xb(t)
xc(t)

]
+

[
0
Bc

]
u(t) +

[
Bd0 0

0 Bc

]
wd(t),

y(t) =
[
0 Cc

] [xb(t)
xc(t)

]
,

(11)

where u(t) =

[
u1(t)
u2(t)

]
, y(t) =

[
y1(t)
y2(t)

]
, wd(t) =

[
wd1(t) wd2(t) wd3(t) wd4(t)

]T

and Bd0 =




bd1(·) 0
0 0
0 bd2(·)
0 0


.

Beam System

Rigid Body

ub(t) −yb(t)

yc(t) uc(t)

Figure 3. The interconnection between the beams and the rigid body

Equation (11) is in the form (3) with A =

[
Ab 0
−BcCb 0

]
, B =

[
0
Bc

]
, C =

[
0 Cc

]
,

Bd =

[
Bd0 0

0 Bc

]
and x(t) =

[
xb(t)
xc(t)

]
. The domain of A is given by

D(A) = {(xb, xc) ∈ D(Ab)×Xc : Bbxb = Ccxc}.
The norm on X is defined as

∥∥∥∥
[
xb
xc

]∥∥∥∥
2

X

= ‖xb‖2Xb
+ ‖xc‖2Xc

, xb ∈ Xb, xc ∈ Xc.
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Remark 3. The operator A is dissipative, since using the power preserving inter-
connection, we obtain

1

2

d

dt

∥∥∥∥
[
xb(t)
xc(t)

] ∥∥∥∥
2

X

≤ 0.

Therefore, by [4, Theorem 3.5], A generates a C0-semigroup of contractions on X.

3. Stability of the satellite model. In this section, we will show the exponential
stability of the satellite system in the sense that the operator A defined in Section
2.3 generates an exponentially stable semigroup T (t). Let us recall the operator A

A =

[
Ab 0
−BcCb 0

]
,

D(A) = {(xb, xc) ∈ D(Ab)×Xc : Bbxb = Ccxc}.
(12)

Theorem 3.1. The semigroup T (t) generated by A in (12) is exponentially stable.

We prove the theorem by using frequency domain criteria [16, Cor. 3.36] which
states that the semigroup T (t) generated by A is exponentially stable if and only
if iR ⊂ ρ(A) and supω∈R ‖R(iω,A)‖ < ∞. We complete the proof in the following
steps. Since the satellite system is a coupled system of the beam system and the
center rigid body, we will first show that iR ⊂ ρ(Ab) and supω∈R ‖R(iω,Ab)‖ <∞
where Ab = Ab|N (Bb). As the second step, we will show that iR ⊂ ρ(A). In this
step, we will obtain an expression for the resolvent operator R(iω,A). Next, we will
estimate upper bounds of the operators which appear in the resolvent expression.
Finally, we will show that R(iω,A) is uniformly bounded.

Lemma 3.2. The operator Ab defined in Remark 2 satisfies iR ⊂ ρ(Ab) and
supω∈R ‖R(iω,Ab)‖ <∞.

Proof. We show that the semigroup Tb(t) generated by Ab is exponentially stable
which guarantees iR ⊂ ρ(Ab) and uniform boundedness of the resolvent R(iω,Ab).
First we claim that the operator Ar = Ar|N (Br) corresponding to the right beam
system (7) generates an exponentially stable semigroup Tr(t), t ≥ 0. We use [7,
Main Theorem 1]. We write Ar as Ar = A0 +B0 where

A0 =

[
0 −EI∂ξξ

(ρa)
−1
∂ξξ 0

]
, B0 =

[
−γ(ρa)−1 0

0 0

]

and D(A0) = D(Ar). We will show that the operators A0 and B0 satisfy the
following conditions.

(c1) The operator A0 is skew-adjoint and it has compact resolvent.
(c2) The spectrum of A0 satisfies the gap property

inf {|λj − λk| |j, k = 1, 2, 3, · · · , j 6= k} > 0.

(c3) The operator B0 is dissipative.
(c4) If any sequence {(xrn) ∈ Xr, n = 1, 2, · · · } satisfies

lim
n→∞

Re 〈B0xrn , xrn〉Xr
= 0,

then limn→∞‖B0xrn‖Xr = 0.
(c5) There exists δ > 0 such that ‖B0φk‖Xr ≥ δ, where φk, k ∈ Z is an orthonor-

mal eigenvector of A0.
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We have Re 〈A0xr, xr〉 = 0, xr ∈ D(A0). Therefore, by [5, Thm. 2.3], A0 has
compact resolvent. This implies that the operator A0 is skew-adjoint.

By a direct computation, we can obtain eigenvalues iλk of A0 and orthonormal
basis φk = (fk, gk)T , k ∈ Z consisting of eigenvectors of A0. The eigenvalues and
the eigenvectors are given by

iλk = i

√
EI

ρa
[π(k − 1

2
) +O(e−π(k− 1

2 ))]2,

fk(ξ) = βk[(cosh (µk) + cos (µk))(cosh (µkξ)− cos (µkξ))

− (sinh (µk)− sin (µk))(sinh (µkξ)− sin (µkξ))],

gk(ξ) =
βk

i
√
ρaEI

[(cosh (µk) + cos (µk))(cosh (µkξ) + cos (µkξ))

− (sinh (µk)− sin (µk))(sinh (µkξ) + sin (µkξ))],

(13)

where µk = ( ρaEI )
1
4

√
λk are the solutions of cosh (µk) cos (µk) + 1 = 0 and βk > 0

are chosen such that ‖φk‖Xr = 1. It is clear that the condition (c2) is satisfied since
the gap between two successive eigenvalues satisfies |λk − λk+1| → ∞ as k → ∞.
The operator B0 is dissipative since

Re 〈B0xr, xr〉Xr
= −γ(ρa)−2‖xr1‖2L2 ≤ 0.

Also, −Re 〈B0xr, xr〉Xr
= γ−1ρa‖B0xr‖2Xr

holds. This implies that the conditions
(c3) and (c4) are satisfied.

Next, we show that the condition (c5) is satisfied. The formulas for fk and gk in
(13) can be used to show that

lim
|k|→∞

‖gk‖L2

‖fk‖L2

=
1√
ρaEI

. (14)

Here we note that fk 6= 0, ∀k ∈ Z, since (fk, gk)T are eigenvectors and fk = 0

would imply gk = (ρa)−1

iλk
f ′′k = 0. The equation (14) implies that for all ε > 0, there

exists N ∈ N such that for all k ∈ Z with |k| ≥ N , we have
∣∣∣∣
‖gk‖L2

‖fk‖L2

∣∣∣∣ ≤ ε+
1√
ρaEI

.

Thus

‖gk‖L2

‖fk‖L2

≤ C ′√
ρaEI

, ∀ k ∈ Z,

where C ′ = max{1 + ε
√
ρaEI,

√
ρaEI max|k|<N

‖gk‖L2

‖fk‖L2
}. Now we obtain

‖B0φk‖2Xr
= γ2(ρa)−3‖fk‖2L2 ,

≥ 1

2
γ2(ρa)−3(‖fk‖2L2 +

ρaEI

C ′2
‖gk‖2L2),

≥ 1

2C ′2
γ2(ρa)−2‖φk‖2Xr

,

=
1

2C ′2
γ2(ρa)−2 ≥ δ2 > 0, ∀k ∈ Z.

Now all the conditions (c1)-(c5) are satisfied. Hence by [7, Main Theorem 1], we
have that Ar generates an exponentially stable semigroup Tr(t).
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Analogously, we have that Al = Al|N (Bl) generates an exponentially stable semi-
group Tl(t), t > 0. Thus Ab generates an exponentially stable semigroup Tb(t)
which completes the proof.

Lemma 3.3. Let Pb(·) = CbR(·, Ab−1)Bb and Pc(·) = CcR(·, Ac)Bc be the transfer
functions of the beam system (Ab,Bb, Cb) and the center rigid body (Ac, Bc, Cc),
respectively. Assume that Pb(0) and I + Pb(iω)Pc(iω), ω ∈ R\{0} are nonsingular.
Then the operator A in (12) satisfies iR ⊂ ρ(A).

Proof. We will show that the operator iω − A is bijective. Let ω ∈ R be arbitrary.
We start by proving iω − A is injective. Let (xb, xc)

T ∈ D(A) = {(xb, xc) ∈
D(Ab) ×Xc : Bbxb = Ccxc} be such that (iω − A)(xb, xc)

T = 0. Then by using
the structure of A, we obtain

[
(iω −Ab)xb
BcCbxb + iωxc

]
= 0.

We have from Lemma 3.2 that iR ⊂ ρ(Ab). By using Remark 2, solving the above
equation, we obtain

xb = R(iω,Ab−1
)BbCcxc,

[iωIXc
+BcPb(iω)Cc]xc = 0.

(15)

We have that Bc, Cc are nonsingular and Pb(0) and I + Pb(iω)Pc(iω) are assumed
to be nonsingular. Therefore, the function

S(iω) =

{
1
iω + 1

ω2BcPb(iω)(I + Pb(iω)Pc(iω))−1Cc, ω ∈ R\{0},
(BcPb(0)Cc)

−1, ω = 0
(16)

is well-defined for all ω ∈ R. A direct computation shows that S(iω) = [iωIXc
+

BcPb(iω)Cc]
−1 for all ω ∈ R. This implies by (15) that (xb, xc) = 0. Thus, the

operator iω −A is injective.
Now it remains to prove that iω − A is surjective. For all fb ∈ Xb and fc ∈ Xc,

our aim is to find (xb, xc)
T ∈ D(A) such that

[
fb
fc

]
= (iω −A)

[
xb
xc

]
=

[
(iω −Ab)xb
BcCbxb + iωxc

]
. (17)

Since iR ⊂ ρ(Ab), using Remark 2, the solution of (17) is given by

xb = [R(iω,Ab)−R(iω,Ab−1)BbCcS(iω)BcCbR(iω,Ab)]fb

+R(iω,Ab−1
)BbCcS(iω)fc

xc = −S(iω)BcCbR(iω,Ab)fb + S(iω)fc

(18)

where Cb = Cb|N (Bb). Moreover, for (xb, xc) ∈ D(Ab)×Xc, we have

[
Bb −Cc

] [xb
xc

]

= BbR(iω,Ab)fb − BbR(iω,Ab−1)BbCcS(iω)BcCbR(iω,Ab)fb

+ BbR(iω,Ab−1
)BbCcS(iω)fc + CcS(iω)BcCbR(iω,Ab)fb − CcS(iω)fc

= 0

since BbR(iω,Ab−1)Bb = I [14, Prop. 10.1.2] and R(R(iω,Ab)) ⊂ D(Ab). Thus

(xb, xc)
T ∈ D(A). This implies that the operator iω − A is surjective. Thus iω −

A, ω ∈ R has a bounded inverse, which completes the proof.
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Remark 4. From the equation (18) in Lemma 3.3, the resolvent operator R(iω,A)
has the form

R(iω,A) =

[
R11(iω) R12(iω)
R21(iω) R22(iω)

]
(19)

where
R11(iω) = R(iω,Ab)−R(iω,Ab−1

)BbCcS(iω)BcCbR(iω,Ab),

R12(iω) = R(iω,Ab−1
)BbCcS(iω),

R21(iω) = −S(iω)BcCbR(iω,Ab),

R22(iω) = S(iω).

(20)

In the following we derive an upper bound for the transfer function Pb(iω) and up-
per bounds for the operators R(iω,Ab−1

)Bb, CbR(iω,Ab) and (I+Pb(iω)Pc(iω))−1.

Lemma 3.4. Let Pb(·) be the transfer function of the beam system (Ab,Bb, Cb).
Then there exists M > 0 such that ‖Pb(iω)‖ ≤M(|ω|+ 1) for all ω ∈ R. Moreover,
Pb(0) is nonsingular.

Proof. For ub ∈ Ub, the transfer function of the beam system (Ab,Bb, Cb) is given
by

Pb(iω)ub = Pl(iω)ul + Pr(iω)ur, ω ∈ R,

where Pl(iω) and Pr(iω) are the transfer functions of the left and the right beam
systems, respectively, and we will now derive an explicit expression for them. For
ur ∈ Ur, the transfer function Pr(iω) of the right beam system (Ar,Br, Cr) can be
obtained as the unique solution of

(iω −Ar)xr = 0,

Brxr = ur

Pr(iω)ur = Crxr
with xr ∈ D(Ar) = {xr = (fr, gr)

T ∈ Xr | Hrxr ∈ H2([0, 1];R2), gr(1) = g′r(1) =
0} ([14, Thm. 12.1.3]). Replacing the operators with the corresponding expressions,
the above equations can be written as

(iω + γ(ρa)−1)fr + EIg′′r = 0,

−(ρa)−1f ′′r + iωgr = 0,

fr(0) = ρa ur1, f
′
r(0) = ρa ur2,

EIgr(1) = 0, EIg′r(1) = 0,

Pr(iω)ur = EI

[
g′r(0)
−gr(0)

]
.

(21)

We consider the case ω = 0 separately. Solving (21) for ω = 0, we obtain

fr(ξ) = ρa(ur1 + ξur2),

gr(ξ) =
γ

EI

[(−ξ2

2
+ ξ − 1

2

)
ur1 +

(−ξ3

6
+
ξ

2
− 1

3

)
ur2

]

and therefore Pr(0) is given by

Pr(0)ur = EI

[
g′r(0)
−gr(0)

]
= γ

[
1 1

2
1
2

1
3

] [
ur1
ur2

]
.
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Similarly, we obtain that Pl(0) is given by

Pl(0)ul = EI

[
−g′l(0)
gl(0)

]
= γ

[
1 −1

2−1
2

1
3

] [
ul1
ul2

]
.

Now using the boundary conditions ul1 = ur1, ul2 = ur2, the transfer function of
the combined beam system is given by,

Pb(0)ub = EI

[
g′r(0)− g′l(0)
−gr(0) + gl(0)

]
= γ

[
2 0
0 2

3

]
ub. (22)

Thus Pb(0) is indeed nonsingular. For ω ∈ R\{0}, solving (21), we obtain

fr(ξ) = ρa

[
(C1,ωur1 −

C3,ω

α(ω)
ur2)f1(ξ) + (C2,ωur1 +

C4,ω

α(ω)
ur2)f2(ξ)

+ cos (α(ω)ξ)ur1 +
sin (α(ω)ξ)

α(ω)
ur2

]
,

gr(ξ) =
α(ω)2

iω

[
(C1,ωur1 −

C3,ω

α(ω)
ur2)g1(ξ) + (C2,ωur1 +

C4,ω

α(ω)
ur2)g2(ξ)

− cos (α(ω)ξ)ur1 −
sin (α(ω)ξ)

α(ω)
ur2

]
,

where

C1,ω =
C1(ω)

C2(ω)
, C2,ω =

C2(ω) cos (α(ω))− C1(ω)C5(ω)

C2(ω)C3(ω)
,

C3,ω =
C4(ω)

C2(ω)
, C4,ω =

C2(ω) sin (α(ω)) + C4(ω)C5(ω)

C2(ω)C3(ω)
,

(23)

f1(ξ) = cosh (α(ω)ξ)− cos (α(ω)ξ), f2(ξ) = sinh (α(ω)ξ)− sin (α(ω)ξ),

g1(ξ) = cosh (α(ω)ξ) + cos (α(ω)ξ), g2(ξ) = sinh (α(ω)ξ) + sin (α(ω)ξ)

and

C1(ω) = 1 + cos (α(ω)) cosh (α(ω)) + sin (α(ω)) sinh (α(ω)),

C2(ω) = 2 + 2 cosh (α(ω)) cos (α(ω)),

C3(ω) = sinh (α(ω)) + sin (α(ω)),

C4(ω) = cos (α(ω)) sinh (α(ω))− sin (α(ω)) cosh (α(ω)),

C5(ω) = cosh (α(ω)) + cos (α(ω)),

α(ω) =

(
ρa

EI

) 1
4

(ω2 − iγ(ρa)−1ω)
1
4 .

Therefore, the transfer function of the right beam can be written as,

Pr(iω)ur = EI

[
g′r(0)
−gr(0)

]
, ω ∈ R\{0}

where

g′r(0) = 2
α(ω)

3

iω
C2,ωur1 +

α(ω)
2

iω
(2C4,ω − 1)ur2,

gr(0) =
α(ω)

2

iω
(2C1,ω − 1)ur1 − 2

α(ω)

iω
C3,ωur2.
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In the same way, we can obtain the transfer function of the left beam which is given
by,

Pl(iω)ul = EI

[
−g′l(0)
gl(0)

]
, ω ∈ R\{0}

where

g′l(0) = −2
α(ω)

3

iω
C2,ωul1 +

α(ω)
2

iω
(2C4,ω − 1)ul2,

gl(0) =
α(ω)

2

iω
(2C1,ω − 1)ul1 + 2

α(ω)

iω
C3,ωul2.

Thus, the transfer function of the combined beam system is given by,

Pb(iω)ub = 4EI
α(ω)

iω

[
α(ω)2C2,ω 0

0 C3,ω

]
ub, ω ∈ R\{0}. (24)

Now, let us estimate the absolute values of C2,ω and C3,ω which contain trigono-
metric and hyperbolic terms. Writing α(ω) in terms of its real and imaginary parts,
we obtain

α(ω) =

(
ρa

EI

) 1
4

(ω2 − iγ(ρa)−1ω)
1
4 ,

= |α(ω)|
(

cos

(
θ(ω) + 2πk

4

)
+ i sin

(
θ(ω) + 2πk

4

))
, k = 0, 1, 2, 3,

(25)

where

|α(ω)| =
(
ρa

EI
|ω|
√
ω2 + γ2(ρa)−2

) 1
4

,

θ(ω) = tan−1

(−γ(ρa)−1

ω

)
.

We have

Re(α(ω)) = ±|α(ω)| cos

(
θ(ω)

4

)
or Re(α(ω)) = ∓|α(ω)| sin

(
θ(ω)

4

)
,

Im(α(ω)) = ±|α(ω)| sin
(
θ(ω)

4

)
or Im(α(ω)) = ±|α(ω)| cos

(
θ(ω)

4

)
.

In addition, there exists ω1 ≥ γ(ρa)−1 > 0 such that tan−1(γ(ρa)−1

|ω| ) ≤ γ(ρa)−1

|ω| for

all |ω| > ω1. Therefore, there exist M1,M2,M3,M4 > 0 and ω2 > ω1 such that

M1

√
|ω| ≤ |α(ω)|

∣∣∣∣ cos

(
θ(ω)

4

)∣∣∣∣ ≤M2

√
|ω|

M3
1√
|ω|
≤ |α(ω)|

∣∣∣∣ sin
(
θ(ω)

4

)∣∣∣∣ ≤M4
1√
|ω|

for all |ω| ≥ ω2. Denoting xω = Re(α(ω)) and yω = Im(α(ω)), the above estimates

imply that when |xω| grows at a rate of
√
|ω|, |yω| decays at a rate of 1√

|ω|
or the

other way around. Since |C2,ω| and |C3,ω| have similar terms for all the four roots
of α(ω), we restrict our analysis to the principal branch of the fourth root of α(ω)
and note that the other branches can be treated similarly.
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The definition of α(ω) and straightforward estimates can be used to verify that
|cosh(α(ω)) cos(α(ω))| → ∞ as |ω| → ∞. Therefore, there exists ω0 > ω2 such that

| coshα(ω) cosα(ω)| ≥ 2 (26)

for all |ω| ≥ ω0 and this further implies that

∣∣∣∣
sin (α(ω)) sinh (α(ω))

1 + cos (α(ω)) cosh (α(ω))

∣∣∣∣ ≤
|sin (α(ω)) sinh (α(ω))|
|cos (α(ω)) cosh (α(ω))| − 1

≤ 2|tan (α(ω))||tanh (α(ω))|
≤ 2(|coth (yω)|+ |tanh (yω)|)

(|tanh (xω)|+ |coth (xω)|)

(27)

where the last inequality is obtained by separating real and imaginary parts of
the second inequality and using straightforward estimates. Here we note that
|tanh (xω)|, |coth (xω)| and |tanh (yω)| are all uniformly bounded for |ω| ≥ ω0 and
since |yω| decays at a rate of 1√

|ω|
, using Taylor series, we can estimate, there exists

M ′0 > 0 such that

| coth (yω)| =
∣∣∣∣y−1
ω +

yω
3
− y3

ω

45
+ · · ·

∣∣∣∣ ≤M ′0
√
|ω|

for |ω| ≥ ω0. Therefore, from (27), we obtain

∣∣∣∣
sinh (α(ω)) sin (α(ω))

1 + cosh (α(ω)) cos (α(ω))

∣∣∣∣ .
√
|ω| (28)

for |ω| ≥ ω0. Moreover, | sin (xω) cosh (yω)
sinh (xω) cos (yω) | → 0 as |ω| → ∞. This implies that there

exists M ′′0 > 0 such that

|sinh (α(ω)) + sin (α(ω))| ≥ |Re(sinh (α(ω)) + sin (α(ω)))|
= |sinh (xω) cos (yω) + sin (xω) cosh (yω)|

= |sinh (xω) cos (yω)|
∣∣∣∣1 +

sin (xω) cosh (yω)

sinh (xω) cos (yω)

∣∣∣∣
≥M ′′0 |sinh (xω) cos (yω)|

for |ω| ≥ ω0. Since | cos (α(ω))| and | tan (yω)| are uniformly bounded for |ω| ≥ ω0,
the above estimate implies that there exist M ′1 > 0 and M ′′1 > 0 such that

∣∣∣∣
cos (α(ω))

sinh (α(ω)) + sin (α(ω))

∣∣∣∣ ≤M ′1 and (29)

∣∣∣∣
cosh (α(ω))

sinh (α(ω)) + sin (α(ω))

∣∣∣∣ ≤
1

M ′′0

∣∣∣∣
cosh (xω) cos (yω) + i sinh (xω) sin (yω)

sinh (xω) cos (yω)

∣∣∣∣

≤ 1

M ′′0
[| coth (xω)|+ | tan (yω)|] ≤M ′′1

(30)
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for |ω| ≥ ω0. We note that |coth (xω)| is uniformly bounded for |ω| ≥ ω0. Using
the estimates (28), (29) and (30), from (23), we obtain

|C2,ω| ≤
∣∣∣∣

cos (α(ω))

sinh (α(ω)) + sin (α(ω))

∣∣∣∣

+

∣∣∣∣
1

2
+

sin (α(ω)) sinh (α(ω))

2 + 2 cosh (α(ω)) cos (α(ω))

∣∣∣∣
∣∣∣∣
cosh (α(ω)) + cos (α(ω))

sinh (α(ω)) + sin (α(ω))

∣∣∣∣

.
√
|ω|

(31)

for |ω| ≥ ω0. Again using (26), from (23), we can estimate

|C3,ω| =
∣∣∣∣
cos (α(ω)) sinh (α(ω))− sin (α(ω)) cosh (α(ω))

2 + 2 cosh (α(ω)) cos (α(ω))

∣∣∣∣

≤
∣∣∣∣
cos (α(ω)) sinh (α(ω))− sin (α(ω)) cosh (α(ω))

cosh (α(ω)) cos (α(ω))

∣∣∣∣
≤ | tanh (α(ω))|+ | tan (α(ω))|
≤ |tanh (xω)|+ |coth (xω)|+ |coth (yω)|+ |tanh (yω)|.

Since |tanh (xω)|, |coth (xω)| and |tanh (yω)| are uniformly bounded and |coth (yω)| ≤
M ′0
√
|ω| for |ω| ≥ ω0, we have

|C3,ω| .
√
|ω| (32)

for |ω| ≥ ω0. Finally, from the estimates (31), (32) and from equation (24) we
obtain

‖Pb(iω)ub‖2 . 16(EI)2

[ |α(ω)|6
|ω|2 |ω||ub1|

2 +
|α(ω)|2
|ω|2 |ω||ub2|

2

]
,

. (|ω|+ 1)2|ub|2

for |ω| ≥ ω0. Hence ‖Pb(iω)‖ . |ω| + 1 for all |ω| ≥ ω0. Finally, by the continuity
of the transfer function Pb(·) on iR, we conclude that ‖Pb(iω)‖ . |ω| + 1 for all
ω ∈ R.

Lemma 3.5. There exists C ′ > 0 such that ‖R(iω,Ab−1
)Bb‖ ≤ C ′

√
|ω|+ 1 for all

ω ∈ R. Moreover, I + Pb(iω)Pc(iω) is nonsingular for all ω ∈ R\{0}.
Proof. By using [21, Rem. 10.1.5], we have that for every ub ∈ Ub, iω ∈ ρ(Ab−1

),

xb = R(iω,Ab−1
)Bbub =

[
R(iω,Al−1)Bl
R(iω,Ar−1

)Br

]
ub ∈ D(Ab)

where Bl, Br and Bb are defined in Remark 2, is the unique solution of the abstract
elliptic problem

(iω −Ab)xb = 0,

Bbxb = ub.

Assume that |ω| ≥ 1. Let us start by estimating the norm of xr = R(iω,Ar−1)Brub
which is the unique solution of (iω −Ar)xr = 0, Brxr = ub. If xr = (fr, gr)

T , then
using the expression for Ar, we have

(iω + γ(ρa)−1)fr + EIg′′r = 0, (33)

−(ρa)−1f ′′r + iωgr = 0, (34)

fr(0) = ρa ub1, f
′
r(0) = ρa ub2, (35)
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EIgr(1) = 0, EIg′r(1) = 0. (36)

Taking L2 inner product of (33) with (ρa)−1fr and L2 inner product of (34) with
EIgr, respectively, we obtain

(ρa)−1(iω + γ(ρa)−1)‖fr‖2L2 − EI(ρa)−1(ρa)g′r(0)ub1

−EI(ρa)−1

∫ 1

0

g′rf̄r
′
dξ = 0.

(37)

EIḡr(0)ub2 + EI(ρa)−1

∫ 1

0

f ′r ḡr
′dξ + iEIω‖gr‖2L2 = 0. (38)

Adding complex conjugate of (38) to (37), we obtain

(ρa)−1(iω + γ(ρa)−1)‖fr‖2L2 − iEIω‖gr‖2L2 = 〈yr, ub〉 . (39)

Equating real and imaginary parts and using the Cauchy-Schwartz inequality, we
obtain

γ(ρa)−2‖fr‖2L2 ≤ ‖Pr(iω)ub‖‖ub‖

EI‖gr‖2L2 ≤
(
ρa

γ
+

1

|ω|

)
‖Pr(iω)ub‖‖ub‖,

where Pr(·) is the transfer function of the right beam system. Therefore,

‖xr‖2Xr
= (ρa)−1‖fr‖2L2 + EI‖gr‖2L2 ,

≤ ρa

γ
‖Pr(iω)ub‖‖ub‖+

(
ρa

γ
+

1

|ω|

)
‖Pr(iω)ub‖‖ub‖,

≤
(

2ρa

γ
+ 1

)
‖Pr(iω)ub‖‖ub‖.

Since we have from Lemma 3.4 that ‖Pr(iω)‖ can grow at most linearly, the above
estimate implies that there exists C1 > 0 such that ‖xr‖ = ‖R(iω,Ar−1

)Brub‖ ≤
C1

√
|ω|+ 1‖ub‖, |ω| ≥ 1. We can analogously show that there exists C2 > 0 such

that ‖R(iω,Al−1
)Blub‖ ≤ C2

√
|ω|+ 1‖ub‖, |ω| ≥ 1. Combining these estimates, we

can see that ‖R(iω,Ab−1
)Bb‖ .

√
|ω|+ 1 for all |ω| ≥ 1. Finally, by continuity of

R(iω,Ab−1)Bb with respect to iω on iR, we have that ‖R(iω,Ab−1)Bb‖ .
√
|ω|+ 1

for all ω ∈ R.
From equation (39), we observe that RePr(iω) > 0, ω ∈ R. Indeed, from (39)

we have

Re 〈yr, ub〉 = Re 〈Pr(iω)ub, ub〉 = γ(ρa)−2‖fr‖2L2 .

Analogously, we have that RePl(iω) > 0, ω ∈ R. This implies that RePb(iω) >
0, ω ∈ R. In addition, from the transfer function

Pc(iω) =
1

iω

[
1
m 0
0 1

Im

]
, ω ∈ R\{0} (40)

of the rigid body, we see that RePc(iω) = 0, ω ∈ R\{0}. Consequently, we have
that I + Pb(iω)Pc(iω) is nonsingular for all ω ∈ R\{0}.

Lemma 3.6. There exists C ′′ > 0 such that ‖CbR(iω,Ab)‖ ≤ C ′′
√
|ω|+ 1 for all

ω ∈ R.
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Proof. First let us prove that ‖CrR(iω,Ar)‖, where Ar = Ar|N (Br), Cr = Cr|N (Br),

grows at most at a rate of
√
|ω|, ω ∈ R. Let us write Ar as bounded perturbation

of a skew-adjoint operator. i.e., Ar = A0 + B0 where A0 and B0 are given as in
Lemma 3.2 and A∗0 = −A0, D(A∗0) = D(A0) and B∗0 = B0. Now, for the system
(A0, Br, Cr), using duality between D(A∗0) and Xr−1 (see [21, Sec. 2.10]), we have
B∗r ∈ L(D(A∗0), Ur) is the adjoint of Br ∈ L(Ur, Xr−1

) in the sense that

〈xr, Brur〉D(A∗
0),Xr−1

= 〈B∗rxr, ur〉Ur
, xr ∈ D(A∗0), ur ∈ Ur

and A0−1 is the adjoint of A∗0 in the sense that
〈
ψr, A0−1xr

〉
D(A∗

0),Xr−1

= 〈A∗0ψr, xr〉Xr
, ψr ∈ D(A∗0), xr ∈ Xr.

Moreover, using [21, Rem.10.1.6], we have

〈Brxr, B∗rψr〉Ur
= 〈A0xr, ψr〉Xr

− 〈xr, A∗0ψr〉Xr
, ψr ∈ D(A∗0), xr ∈ D(A0)

and by direct computation using integration by parts we obtain B∗rxr = Crxr for
xr ∈ D(A0). Therefore, for all xr ∈ D(A0), ur ∈ Ur and iω ∈ ρ(A0) ∩ iR, we have

〈
xr, R(iω,A0−1)Brur

〉
Xr

=
〈
R(iω,A∗0)xr, Brur

〉
D(A∗

0),Xr−1

=
〈
B∗rR(iω,A∗0)xr, ur

〉
Ur
,

= −〈CrR(iω,A0)xr, ur〉Ur
.

Since Ar = A0 +B0 and iR ⊂ ρ(Ar), for iω ∈ ρ(A0) ∩ iR, we obtain
〈
xr, R(iω,Ar−1

)Brur
〉
Xr

=
〈
xr, (I −R(iω,A0−1)B0)−1R(iω,A0−1)Brur

〉
Xr
,

=
〈
(I +B0R(iω,A0))−1xr, R(iω,A0−1)Brur

〉
Xr
,

= −
〈
CrR(iω,A0)(I +B0R(iω,A0))−1xr, ur

〉
Ur
,

= −
〈
CrR(iω,Ar)(I + 2B0R(iω,Ar))

−1xr, ur
〉
Ur
.

Since xr ∈ Xr and ur ∈ Ur are arbitrary, we have

CrR(iω,Ar) = −(R(iω,Ar−1
)Br)

∗(I + 2B0R(iω,Ar)), iω ∈ ρ(A0) ∩ iR (41)

where using Lemma 3.2, we have that supω∈R‖I+2B0R(iω,Ar)‖ <∞. Since A0 has
discrete spectrum, the continuity of R(iω,Ar), CrR(iω,Ar) and R(iω,Ar−1)Br with
respect to iω on iR imply that (41) holds for all iω ∈ iR. Now, using Lemma 3.5,

we have that there exists C0 > 0 such that ‖CrR(iω,Ar)‖ ≤ C0

√
|ω|+ 1, ω ∈ R.

We can analogously show that there exists C ′0 > 0 such that ‖ClR(iω,Al)‖ ≤
C ′0
√
|ω|+ 1, ω ∈ R. Thus ‖CbR(iω,Ab)‖ .

√
|ω|+ 1, ω ∈ R.

Lemma 3.7. Let Pb(·) and Pc(·) be the transfer functions of the beam system

(Ab,Bb, Cb) and the rigid body (Ac, Bc, Cc), respectively. Then there exist ω0, M̃ > 0

such that ‖(I + Pb(iω)Pc(iω))−1‖ ≤ M̃ for all |ω| ≥ ω0.

Proof. From equation (24) in the proof of Lemma 3.4 and from equation (40) in the
proof of Lemma 3.5, we have

I + Pb(iω)Pc(iω) =

[
Q1(ω) 0

0 Q2(ω)

]
, ω ∈ R\{0},
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where

Q1(ω) = 1− 4EI

m

α(ω)
3

ω2
C2,ω, Q2(ω) = 1− 4EI

Im

α(ω)

ω2
C3,ω,

α(ω) = |α(ω)|
(

cos

(
θ(ω) + 2πk

4

)
+ i sin

(
θ(ω) + 2πk

4

))
, k = 0, 1, 2, 3,

|α(ω)| =
(
ρa

EI
|ω|
√
ω2 + γ2(ρa)−2

) 1
4

, θ(ω) = tan−1(
−γ(ρa)−1

ω
),

and C2,ω and C3,ω are defined in (23). We will show that there exist ω0 > 0 and
c1, c2 > 0 such that |Q1(ω)| > c2 and |Q2(ω)| > c1 for all |ω| ≥ ω0. Since |C2,ω|
and |C3,ω| have similar terms for all the four roots of α(ω), we restrict our analysis
to the principal branch of the fourth root of α(ω) and analogous arguments can be
used to show that the statement is also valid for the other roots of α(ω).

We have from equation (32) that there exists M1, ω0 > 0 such that |C3,ω| ≤
M1

√
|ω| for all |ω| ≥ ω0. Therefore, for |ω| ≥ ω0, we have that

|Q2(ω)− 1| =
∣∣∣∣
4EI

Im

α(ω)

ω2
C3,ω

∣∣∣∣ . 4
EI

Im
(
ρa

EI
)

1
4

1

|ω| → 0

as |ω| → ∞. This implies that there exists c1 > 0 such that |Q2(ω)| > c1 for all
|ω| ≥ ω0.

Now it remains to show that there exists c2 > 0 such that |Q1(ω)| ≥ c2 for all

|ω| ≥ ω0. We begin by showing that if we define f(ω) = 2EIα(ω)3

mω2 and Q̃1(ω) =
1 + f(ω) tan(α(ω)), then

lim
|ω|→∞

|Q1(ω)− Q̃1(ω)| = 0. (42)

This will imply that |Q1(ω)| is uniformly bounded from below for |ω| ≥ ω0 if and

only if the same is true for |Q̃1(ω)|. We have from equation (23) in Lemma 3.4 that

C2,ω =
cos (α(ω))

sinh (α(ω)) + sin (α(ω))
− 1

2
(1 + C5,ω)C6,ω

C5,ω :=
sinh (α(ω)) sin (α(ω))

1 + cosh (α(ω)) cos (α(ω))
, C6,ω :=

cosh (α(ω)) + cos (α(ω))

sinh (α(ω)) + sin (α(ω))
.

We have from equations (29) and (30) that | cos (α(ω))/(sinh (α(ω)) + sin (α(ω)))|
and |C6,ω| are uniformly bounded for |ω| ≥ ω0. Thus for all |ω| ≥ ω0, we have

|Q1(ω)− Q̃1(ω)| = |2f(ω)C2,ω + f(ω) tan(α(ω))|
. |f(ω)|+ |f(ω)(C5,ωC6,ω − tan(α(ω)))|
. |f(ω)|+ |f(ω)C5,ω(C6,ω − 1)|

+ |f(ω) tan(α(ω))(tanh(α(ω))− 1)|
+ |f(ω)(C5,ω − tanh(α(ω)) tan(α(ω)))|.

Using the definition of α(ω), it is straightforward to show that C6,ω → 1 and
tanh(α(ω)) → 1 as |ω| → ∞. Moreover, as shown in (27) and (28), we have

|C5,ω| .
√
|ω| and |tan(α(ω))| ≤ |coth (yω)| + |tanh (yω)| .

√
|ω| for |ω| ≥ ω0.

Because of this, |f(ω)C5,ω| and |f(ω) tan(α(ω))| are uniformly bounded for |ω| ≥ ω0,
and therefore |f(ω)C5,ω(C6,ω − 1)| → 0 and |f(ω) tan(α(ω))(tanh(α(ω)) − 1)| → 0

as |ω| → ∞. Finally, the last term in the estimate for |Q1(ω)− Q̃1(ω)| satisfies

|f(ω)(C5,ω − tanh(α(ω)) tan(α(ω)))|
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= |f(ω)|
∣∣∣∣

sinh (α(ω)) sin (α(ω))

1 + cosh (α(ω)) cos (α(ω))
− sinh (α(ω)) sin (α(ω))

cosh (α(ω)) cos (α(ω))

∣∣∣∣

= |f(ω) tanh(α(ω)) tan(α(ω))|
∣∣∣∣

1

1 + cosh (α(ω)) cos (α(ω))

∣∣∣∣→ 0

as |ω| → ∞, since |f(ω) tanh(α(ω)) tan(α(ω))| is uniformly bounded for |ω| ≥ ω0,
and |cosh(α(ω)) cos(α(ω))| → ∞ as |ω| → ∞. This finally shows that (42) holds.

We claim that there exists c′ > 0 such that |Q̃1(ω)| ≥ c′ for all ω ≥ ω0. The
case where ω is negative can be proved analogously. We will use proof by contra-
diction. To this end we assume that no such c′ > 0 exists. This implies that there
exists a sequence (ωk)k ⊂ R+ such that ωk → ∞ as k → ∞ and |Q̃1(ωk)| → 0

as k → ∞. Separating real and imaginary parts of Q̃1(ωk) and denoting xk =
Reα(ωk), yk = Imα(ωk), R1,k = Re(f(ωk)) sinxk, R2,k = Re(f(ωk)) cosh yk,
I1,k = Im(f(ωk)) cosh yk, I2,k = Im(f(ωk)) sinxk, we obtain

Q̃1(ωk) = 1 +
R1,k cosxk − I1,k sinh yk

cos2 xk + sinh2 yk
+ i

R2,k sinh yk + I2,k coshxk

cos2 xk + sinh2 yk
.

Since we consider the principal branch of the fourth root of α(ωk), we have that
there exist m1,m2,m3,m4 > 0 and N1 ∈ N such that

m1
√
ωk ≤ |xk| ≤ m2

√
ωk

m3√
ωk
≤ |yk| ≤

m4√
ωk

for all k ≥ N1. This implies that there exist m5,m6 > 0 and N2 ≥ N1 such that

m5ω
−1/2
k ≤ | sinh yk| ≤ m6ω

−1/2
k for all k ≥ N2. Since yk → 0, we have cosh yk → 1

as k → ∞, and thus there exist m7,m8,m9,m10 > 0 and N3 ≥ N2 such that

m7ω
−1/2
k ≤ |R2,k| ≤ m8ω

−1/2
k and m9ω

−3/2
k ≤ |I1,k| ≤ m10ω

−3/2
k for all k ≥ N3.

We will first show that |cosxk| → 0 as k →∞. Indeed, we have

|R1,k cosxk − I1,k sinh yk| ≤ |Re(f(ωk))|+ |Im(f(ωk))||sinh yk||cosh yk|

. 1√
ωk

for all k ≥ N3 and since the assumption |Q̃1(ωk)| → 0 implies Re Q̃1(ωk) → 0, we
must have cos2 xk + sinh2 yk → 0 as k → ∞. Thus |cosxk| → 0 as k → ∞, and
consequently also |sinxk| → 1 as k → ∞. This further implies that there exist

m11,m12,m13,m14 > 0 and N4 ≥ N3 such that m11ω
−1/2
k ≤ |R1,k| ≤ m12ω

−1/2
k

and m13ω
−3/2
k ≤ |I2,k| ≤ m14ω

−3/2
k for all k ≥ N4. We consider the following cases.

Case 1 (fast decay of |cosxk|): Consider the subsequence of (ωk) consisting of
those elements ωk which satisfy |cosxk| ≤ 1/ωk. Then we have

∣∣∣∣
R1,k cosxk − I1,k sinh yk

cos2 xk + sinh2 yk

∣∣∣∣ ≤
|R1,k cosxk − I1,k sinh yk|

sinh2 yk

. | cosxk|/
√
ωk + 1/ω2

k

1/ωk
. 1√

ωk
+

1

ωk

for all k ≥ N4. However, this implies Q̃1(ωk) 6→ 0 as k → ∞, since Re Q̃1(ωk) →
1. This implies that the subsequence of (ωk)k consisting of elements such that
|cosxk| ≤ 1/ωk must have at most finite number of elements.
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Case 2 (slow decay of |cosxk|): As shown above, we necessarily have there exist
N5 ≥ N4 such that |cosxk| > 1/ωk for all k ≥ N5, and we will now restrict our
attention to this range of the indices k. Then

∣∣∣∣
R1,k cosxk − I1,k sinh yk

R1,k cosxk

∣∣∣∣→ 1 and

∣∣∣∣
R2,k sinh yk + I2,k cosxk

R2,k sinh yk

∣∣∣∣→ 1

as k →∞. In addition, for k ≥ N5, we have

|Im(Q̃1(wk))| = |R2,k sinh yk + I2,k cosxk|
cos2 xk + sinh2 yk

=

∣∣∣∣
R2,k sinh yk + I2,k cosxk

R2,k sinh yk

∣∣∣∣ ·
|R2,k sinh yk|

cos2 xk + sinh2 yk

& 1/ωk

cos2 xk + sinh2 yk

and

|Re(Q̃1(wk))− 1| = |R1,k cosxk − I1,k sinh yk|
cos2 xk + sinh2 yk

=

∣∣∣∣
R1,k cosxk − I1,k sinh yk

R1,k cosxk

∣∣∣∣ ·
|R1,k cosxk|

cos2 xk + sinh2 yk

& |cosxk|/
√
ωk

cos2 xk + sinh2 yk
.

Using these estimates, we have that

1

|cosxk|
√
ωk

=
1/ωk

cos2 xk + sinh2 yk
· cos2 xk + sinh2 yk
|cosxk|/

√
ωk

→ 0

as k → ∞ since |Re Q̃1(ωk) − 1| → 1 and |Im Q̃1(ωk)| → 0 as k → ∞ . Because
of this we also have∣∣∣∣

cos2 xk + sinh2 yk
cos2 xk

− 1

∣∣∣∣ =
sinh2 yk
cos2 xk

. 1

(
√
ωk cosxk)2

→ 0

as k →∞. Finally, using this property we have that for all k ≥ N5∣∣∣∣
R1,k cosxk − I1,k sinh yk

cos2 xk + sinh2 yk

∣∣∣∣ =

∣∣∣∣
cos2 xk

cos2 xk + sinh2 yk

∣∣∣∣ ·
∣∣∣∣
R1,k cosxk − I1,k sinh yk

cos2 xk

∣∣∣∣

. 1

|cosxk|
√
ωk

+
1/ωk

(cosxk
√
ωk)2

decays to zero as k →∞. However, this implies that Re Q̃1(ωk)→ 1 6= 0 as k →∞
which contradicts the assumption that |Q̃1(ωk)| → 0 as k →∞. Hence there exists

c′ > 0 such that |Q̃1(ω)| ≥ c′ for all ω ≥ ω0.
Finally, we have that there exist ω0, c1, c2 > 0 such that |Q1(ω)| > c2 and

|Q2(ω)| > c1 for all |ω| ≥ ω0. This implies that ‖(I + Pb(iω)Pc(iω))−1‖2 ≤ 1
c22

+ 1
c21

for all |ω| ≥ ω0, which completes the proof.

Having the above results, now we are ready to prove the main theorem.

Proof of Theorem 3.1. From Lemmas 3.4 and 3.5, we have that Pb(0) and I +
Pb(iω)Pc(iω), ω ∈ R\{0} are nonsingular. These properties in Lemma 3.3 im-
ply that the resolvent R(iω,A) exists for all ω ∈ R and is given by the equations
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(19), (20) and (16). Therefore

‖R(iω,A)‖2 ≤ ‖R(iω,Ab)−R(iω,Ab−1)BbCcS(iω)BcCbR(iω,Ab)‖2

+ ‖R(iω,Ab−1
)BbCcS(iω)‖2 + ‖S(iω)BcCbR(iω,Ab)‖2 + ‖S(iω)‖2

(43)
where S(iω) = 1

iω + 1
ω2BcPb(iω)(I + Pb(iω)Pc(iω))−1Cc for ω ∈ R\{0} and S(0) =

(BcPb(0)Cc)
−1.

From Lemma 3.4, we have that there exists M > 0 such that ‖Pb(iω)‖ ≤M(|ω|+
1) for all ω ∈ R. From Lemma 3.7, we have that there exist ω0, M̃ > 0 such that

‖(I + Pb(iω)Pc(iω))−1‖ ≤ M̃ for all |ω| ≥ ω0. Moreover, from Lemma 3.2, we
have that ‖R(iω,Ab)‖ is uniformly bounded and from Lemmas 3.5 and 3.6, we

have that there exist C ′, C ′′ > 0 such that ‖R(iω,Ab−1
)Bb‖ ≤ C ′

√
|ω|+ 1 and

‖CbR(iω,Ab)‖ ≤ C ′′
√
|ω|+ 1 for all ω ∈ R. These estimates imply that there

exists M1 > 0 such that ‖S(iω)‖ ≤ M1 for all |ω| ≥ ω0 and this further from
equation (43) implies that there exists M0 > 0 such that ‖R(iω,A)‖ ≤ M0 for all
|ω| ≥ ω0. Since from Lemma 3.3 we have iR ⊂ ρ(A), we conclude that R(iω,A) is
uniformly bounded, which completes the proof.

4. Robust output regulation of the satellite model. In this section, we
present two controllers that solve the robust output regulation problem for the satel-
lite system. We start by formulating the robust output regulation problem followed
by the controllers that achieve the robust output tracking of the given reference
signals. In addition, we present simulation results demonstrating the effectiveness
of the controllers.

From the previous sections, the satellite system with control and observations on
the rigid body is given by,

ẋ(t) = Ax(t) +Bu(t) +Bdwd(t),

y(t) = Cx(t).
(44)

with A =

[
Ab 0
−BcCb 0

]
, D(A) = {(xb, xc) ∈ D(Ab) × Xc : Bbxb = Ccxc}, B =

[
0
Bc

]
, Bd =

[
Bd0 0

0 Bc

]
, C =

[
0 Cc

]
, x(t) =

[
xb(t)
xc(t)

]
. Here the operator A

generates an exponentially stable semigroup.
The reference signals to be tracked and the disturbance signals to be rejected are

of the form

yref (t) = a0 +

q∑

k=1

[ak cos(ωkt) + bk sin(ωkt)], (45)

wd(t) = c0 +

q∑

k=1

[ck cos(ωkt) + dk sin(ωkt)], (46)

where 0 < ω1 < ω2 < · · · < ωq are known frequencies and {ak}qk=0, {bk}
q
k=1,

{ck}qk=0, {dk}
q
k=1 are possibly unknown constant coefficients.

We construct a dynamic error feedback controller of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0,

u(t) = Kz(t)− κe(t), (47)

on a Hilbert space Z, where e(t) = y(t) − yref (t) is the regulation error, yref (t)
a given reference signal, G1 : D(G1) ⊂ Z → Z generates a strongly continuous
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semigroup on Z, G2 ∈ L(R2, Z), K ∈ L(Z,R2) and κ ∈ R2×2, such that robust
output regulation of the satellite system is achieved with a suitable choice of the
parameters (G1,G2,K, κ).

Let us denote Xe = X×Z to be the extended state space and xe(t) = (x(t), z(t))T

be the extended state. Then the closed-loop system containing the satellite system
(44) and the controller (47) is given by

ẋe(t) = Aexe(t) +Beue(t), xe(0) = xe0,

e(t) = Cexe(t) +Deue(t),
(48)

where Ae =

[
A−BκC BK
G2C G1

]
, Be =

[
Bd Bκ
0 −G2

]
, Ce =

[
C 0

]
, De =

[
0 −IY

]

and ue(t) =

[
wd(t)
yref (t)

]
. The operator Ae generates a strongly continuous semigroup

Te(t) on Xe.
The Robust Output Regulation Problem. Choose the controller parameters

(G1,G2,K, κ) in such a way that

(a) The closed-loop semigroup Te(t) generated by Ae is exponentially stable.
(b) There exists α1 > 0 such that for all initial states xe0 ∈ Xe, for the reference

signal of the form (45) and for the disturbance signal of the form (46), the
regulation error e(t) satisfies

eα1t‖y(t)− yref (t)‖ → 0 as t→∞.
(c) If the operators (Ab,Bb, Cb, Ac, Bc, Cc) are perturbed in such a way that the

perturbed closed-loop system is exponentially stable, the perturbed (Ab,Bb,
Cb) is an impedance passive boundary control system and the perturbed
(Ac, Bc, Cc) is an impedance passive systems, then (b) continues to hold for
some α̃1 > 0.

Remark 5. In the above, α1 and α̃1 are determined by the stability margins of the
closed-loop system and the perturbed closed-loop system, respectively.

Next, we show that the transfer function P (iω) of the satellite system is nonsin-
gular for all ω ∈ R. Because of this, we can track signals containing components at
all frequencies ω.

Lemma 4.1. On the imaginary axis, the transfer function of the satellite system
(44) has the form P (iω) = CcS(iω)Bc and it is nonsingular for all ω ∈ R.

Proof. The transfer function of (44) on the imaginary axis is given by P (iω) =
CR(iω,A)B, where R(iω,A) is the resolvent in (19) of A. Replacing the operators
by their expressions, we obtain

P (iω) =
[
0 Cc

] [R11(iω) R12(iω)
R21(iω) R22(iω)

] [
0
Bc

]

= CcR22(iω)Bc

= CcS(iω)Bc.

Since Bc, Cc and S(iω), ω ∈ R are nonsingular, we have that P (iω) is nonsingular
for all ω ∈ R.

4.1. Robust controllers for the satellite system. In this section, we present
two internal model based controllers for the robust output regulation of the satellite
system.
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4.1.1. A passive controller for the satellite model. We have that the satellite system
is (44) an impedance passive system and exponentially stable. Therefore, based on
[20, Thm. 1.2] and [18, Def. 5.1], we can construct a passive controller for the robust
output tracking of the given sinusoidal reference signals. We choose Z = (R2)2q+1,

G1 = diag(G0, G1, G2, · · · , Gq),

G0 = 0Y , Gk =

[
0 ωkIY

−ωkIY 0

]
, k = 1, 2, · · · , q,

G2 = (Gk2 )qk=0, G0
2 = −IY , Gk2 = −c1

[
IY
0

]
, k = 1, 2, · · · , q,

K = −G∗2 , and κ = c2IY ,

(49)

where c1, c2 > 0 affect the stability properties of the closed-loop system.

Theorem 4.2. The controller (47) with the choices of parameters in (49) solves
the robust output regulation problem for the satellite model.

Proof. We have that the satellite system (44) is impedance passive and exponen-
tially stable and the choices of parameters in (49) are adopted from [18, Def. 5.1].
Therefore, by [18, Thm. 5.2], the controller (47), (49) solves the robust output
regulation problem.

We note that the controller (47), (49) is the one given in [20, Thm. 1.2] when c1
and c2 are chosen such that (47), (49) is a minimal realization of

C(s) = −C0 −
q∑

k=−q

IY
s− iωk

, (50)

where C0 ≥ 1
2IY and ω−k = −ωk. The assumption ReP (iωk) is nonsingular for all

k = 0, 1, 2, · · · q in [20, Thm. 1.2] can be relaxed due to the fact that the feedthrough
operator κ of the controller satisfies κ > 0 (see [18, sec. 5] for more details).

4.1.2. An observer based controller for the satellite model. Since the input operator
B and the output operator C are bounded, we can construct an observer based
controller based on [12] and [17, Sec. VI] for robust output tracking of the satellite
system as follows.

We choose the state space of the controller as Z = Z0×X, where Z0 = (R2)2q+1.
The controller parameters (G1,G2,K, κ) of the dynamic error feedback controller
(47) are given by,

G1 =

[
G1 0
BK1 A+BK2

]
, G2 =

[
G2

0

]
, K =

[
K1 K2

]
, κ = 0,

where K1 ∈ L(Z0,R2),K2 ∈ L(X,R2). The operators (G1, G2) are defined as

G1 = diag(iω−qIY , · · · iω0IY , · · · , iωqIY ) ∈ L(Z0),

G2 = (Gk2)qk=−q ∈ L(R2, Z0), Gk2 = IY , k = −q, · · · , q.

We define an operator H ∈ L(X,Z0) by H = (Hk)qk=−q which is the solution of
the Sylvester equation G1H = HA + G2C and Hk can be obtained by solving the
system

Hk = Gk2CR(iωk, A). (51)
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Then we define B1 = HB = (Gk2P (iωk))qk=−q ∈ L(R2, Z0). Finally, we choose

K1 ∈ L(Z0,R2) in such a way that G1 + B1K1 ∈ L(Z0) is Hurwitz and we define
K2 = K1H.

With the above parameters, the controller (47) can be written as,

ż1(t) = G1z1(t) +G2e(t), (52)

ż2(t) = BK1z1(t) + (A+BK2)z2(t), (53)

u(t) = Kz(t). (54)

Here z1(t) ∈ Z0, z2(t) ∈ X(= Xb × Xc). Equation (52) is the servocompensator
on the state space Z0 which contains internal model and it is an ODE system by
construction. Equation (53) is an observer for the satellite system on the state space
X and is given by,

˙̂xl1(ξ, t) = −γ(ρa)−1x̂l1(ξ, t)− EIx̂′′l2(ξ, t), −1 < ξ < 0,

˙̂xl2(ξ, t) = (ρa)−1x̂′′l1(ξ, t), −1 < ξ < 0,

˙̂xr1(ξ, t) = −γ(ρa)−1x̂r1(ξ, t)− EIx̂′′r2(ξ, t), 0 < ξ < 1,

˙̂xr2(ξ, t) = (ρa)−1x̂′′r1(ξ, t), 0 < ξ < 1,

˙̂xc1(t, 0) = EIx̂′l2(ξ, t)|ξ=0 − EIx̂′r2(ξ, t)|ξ=0 + u1(t),

˙̂xc2(t, 0) = −EIx̂l2(ξ, t)|ξ=0 + EIx̂r2(ξ, t)|ξ=0 + u2(t),

x̂r2(1, t) = x̂′r2(1, t) = 0, x̂l2(−1, t) = x̂′l2(−1, t) = 0,

x̂l1(0, t) = x̂r1(0, t) = x̂c1(t), x̂′l1(0, t) = x̂′r1(0, t) = x̂c2(t),

where x̂l1(ξ, t), x̂l2(ξ, t), x̂r1(ξ, t), x̂r2(ξ, t), x̂c1(ξ, t) and x̂c2(ξ, t) are the estimates of
xl1(ξ, t), xl2(t), xr1(ξ, t), xr2(ξ, t), xc1(ξ, t) and xc2(ξ, t), respectively, and z2(t) is
given by z2(t) = (x̂l1(·, t), x̂l2(·, t), x̂r1(·, t), x̂r2(·, t), x̂c1(·, t), x̂c2(·, t))T . This shows
that the controller (47) is a PDE-ODE system.

Theorem 4.3. The controller (47) with the above choices of parameters solves the
robust output regulation problem for the satellite system (44).

Proof. Since the construction of the controller (47) with the above choices of pa-
rameters is adopted from [12, Sec. 7] and [17, Sec. VI], based on [17, Thm. 15],
the controller solves the robust output regulation problem for the satellite system
(44).

4.2. Robustness of closed-loop stability. In the case of the passive controller,
the controller parameters G2, K and κ depend on the parameters c1, c2 and therefore
the closed-loop stability margin α1 depends on the choice of the parameters c1 and
c2. On the other hand, for the observer based controller the closed-loop stability
margin is determined by the minimum of stability margins of A and G1 + B1K1,
respectively, see the proof of [17, Thm. 15] for more details. The stability margin
of G1 + B1K1 can be affected by adjusting the gain parameter K1. This can be
done for example by linear quadratic regulator design or pole placement.

From Section 4.1 we have that both controllers with suitable choices of param-
eters solve the robust output regulation problem. Therefore, Ae generates an ex-
ponentially stable semigroup Te(t) and there exist α1 > 0 and Me ≥ 1 depending
on the controller and the chosen parameters such that ‖Te(t)‖ ≤ Mee

−α1t. If
∆ ∈ L(Xe) is a perturbation of Ae, where the perturbation is generated by the per-
turbations in (Ab,Bb, Cb, Ac, Bc, Cc), such that ‖∆‖ < α1/Me, then Ae+∆ generates
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Figure 4. The closed-loop stability margin and
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0
‖e(t)‖2dt for

the passive controller with c2 = 4
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Figure 5. The closed-loop stability margin and
∫ 15

0
‖e(t)‖2dt for

the passive controller with c1 = 2.5

an exponentially stable semigroup T̃e(t) on Xe and ‖T̃e(t)‖ ≤Mee
(−α1+Me‖∆‖)t for

all t ≥ 0. Therefore the stability margin α̃1 of the perturbed semigroup T̃e(t) satis-
fies α̃1 ≥ α1 −Me‖∆‖. In addition, the semigroup Te(t) may remain exponentially
stable under perturbations with large norms in which cases the decay rates cannot
be estimated explicitly by using the perturbation formula.

4.3. Simulations. Simulations are carried out in Matlab using passive and ob-
server based controllers on the time interval t = [0, 15]. We choose m = 1, Im =
1, E = 1, I = 1, ρ = 1, a = 1 and γ = 5. We track the reference signal yref (t) =[
1 + 3 cos(t) 2− sin(5t) + 1.5 cos(2t)

]T
and reject the disturbance signal wd(t) =[

0 0 10 15
]T

. Thus, the frequencies {ωk}qk=0 with q = 3 are {0, 1, 2, 5}. We
choose the controller initial state as z0 = 0 and the initial state for the satellite

system as x0 =
[
0 4(1 + ξ)2 0 4(1− ξ)2 0 0

]T
. The solutions of the satellite

system are approximated using Legendre spectral Galerkin method [2]. The number
of basis functions used for the approximation is N = 10.

The controller parameters of the passive controller are chosen as in Section 4.1.1.
To maximize the stability margin, ranges of values of the parameters c1 and c2
were tested. The closed-loop stability margin α1 and

∫ 15

0
‖e(t)‖2dt for different

parameter values are plotted in Figures 4 and 5, respectively. The figures indicate
that smaller values of c1 and c2 result in larger closed-loop stability margin and
larger transient errors. By choosing c1 = 2.5 and c2 = 4, the output tracking and
the tracking errors are depicted in Figures 8 and 10, respectively.
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Figure 6. The closed-loop stability margin and
∫ 15

0
‖e(t)‖2dt for

the observer based controller with R = 0.1I2
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Figure 7. The closed-loop stability margin and
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Figure 8. Output tracking using a passive controller

The components of the observer based controller are chosen as in Section 4.1.2.
The matrix H is obtained by solving the system (51), where we use the approxima-
tions AN and CN in place of A and C, respectively. The gain matrix K1 is obtained
using Matlab lqr function with Q = q0IZ0 , q0 > 0 and R = r0I2, r0 > 0. To maxi-
mize the stability margin, ranges of values of the parameters q0 and r0 were tested.
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Figure 9. Output tracking using an observer based controller
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Figure 10. Tracking errors for passive(above) and observer
based(below) controllers

The closed-loop stability margin α1 and
∫ 15

0
‖e(t)‖2dt for different parameter values

are plotted in Figures 6 and 7, respectively. It is observed that smaller control gains
r0 and larger q0 result in larger closed-loop stability margin and smaller transient
errors. By choosing q0 = 10 and r0 = 0.1, the output tracking and the tracking
errors are depicted in Figures 9 and 10, respectively.

It can be seen from the figures that both controllers achieve tracking of the given
reference signals asymptotically and the tracking error decays to zero at an expo-
nential rate. Moreover, we can see that the observer based controller can achieve
larger closed-loop stability margin and therefore the asymptotic error convergence
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for the observer based controller is faster than that for the passive controller. On
the other hand, it is noted that even though the passive controller is a finite-
dimensional controller and also the controller requires no information about the
satellite system apart from passivity, it still achieves comparable performance to
the infinite-dimensional observer based controller.

5. Conclusion. We investigated robust output tracking problem of a flexible satel-
lite composed of two identical flexible solar panels and a center rigid body. A de-
tailed proof of exponential stability of the model was presented. We constructed two
robust controllers for the robust output tracking of the satellite model. Moreover,
simulation results showing the performances of the controllers were presented.
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Abstract: This paper addresses the problem of output regulation of infinite-dimensional linear
systems subject to input saturation. We focus on strongly stabilizable linear dissipative systems
with collocated actuators and sensors. We generalize the output regulation theory for finite-
dimensional linear systems subject to input saturation to the class of considered infinite-
dimensional linear systems. The theoretic results are illustrated with an example where we
consider the output regulation of a flexible satellite model that is composed of two identical
flexible solar panels and a center rigid body.

Keywords: Distributed parameter systems, output regulation, input saturation, strongly
stabilizable systems, collocated input and output.

1. INTRODUCTION

For the past few decades, there has been interest in
studying linear systems subject to input saturation due to
limitations on the control input. Stabilization and output
regulation of such systems have been studied, for example,
in Fuller (1969), Sontag and Sussmann (1990), Teel (1992),
Saberi et al. (2003), Logemann et al. (1998), Slemrod
(1989), Oostveen (2000), Lasiecka and Seidman (2003),
Prieur et al. (2015), Marx et al. (2015), Mironchenko
et al. (2021) and the references therein. However, there
are only few results in the literature dealing with output
regulation of infinite-dimensional linear systems subject to
input saturation Logemann et al. (1998), Oostveen (2000),
Fliegner et al. (2001).

In this paper, we study output regulation of infinite-
dimensional abstract linear systems subject to input sat-
uration. We focus on the class of abstract systems given
by

ẋ(t) = Ax(t) +Bϕ(u(t)) +Bdwd(t), x(0) = x0,

y(t) = B∗x(t)
(1)

on a real Hilbert space X. Here x(t) ∈ X is the state
variable, u(t) ∈ R is the input, y(t) ∈ R is the output,
wd(t) ∈ Rnd is an external disturbance and ϕ is a
saturation function. The saturation function ϕ is defined
as

⋆ The research is partially supported by the Academy of Finland
Grant numbers 310489 and 349002 held by L. Paunonen. J.-P.
Humaloja is funded by a grant from the Vilho, Yrjö and Kalle Väisälä
Foundation.

ϕ(u) =





u, |u| ≤ 1

1, u > 1

−1, u < −1.

(2)

Our goal is to find a linear feedback control law such that
the output y(t) of the system (1) tracks the given reference
signal yref (t) asymptotically despite disturbances wd(t) in
the system. The reference yref (·) and the disturbance wd(·)
signals are assumed to be generated by an exosystem

v̇(t) = Sv(t), v(0) = v0,

wd(t) = Ev(t),

yref (t) = −Fv(t)

(3)

on a finite-dimensional space W = Rq. Here S ∈ Rq×q,
F ∈ R1×q and E ∈ Rnd×q. Furthermore, we make the
following assumptions on the system (1) and the exosystem
(3).

Assumption 1.1. (1) The operator A generates a C0-
semigroup T (t) of contractions on X, B ∈ L(R, X)
and the operator A − κBB∗ generates a strongly
stable contraction semigroup T−κBB∗(t) for any κ >
0.

(2) The spectrum σ(S) of S lies on the imaginary axis.

As the main contribution, we extend the output regulation
theory in (Saberi et al., 2003, Ch. 3) for finite-dimensional
linear systems subject to input saturation to the class of
systems in (1)-(2) under Assumption 1.1. The considered
class of systems (1) arise in the study of systems with
collocated actuators and sensors Oostveen (2000). We
present a linear output feedback control law that solves the
output regulation problem. In addition, we demonstrate
the results on a flexible satellite model subject to input
saturation.



Stabilization is an important part of control design for
the output regulation. Stabilization problem for infinite-
dimensional linear systems subject to input saturation has
been studied, for example in Slemrod (1989), Lasiecka and
Seidman (2003), Prieur et al. (2015), Curtain and Zwart
(2016), Marx et al. (2015) and Mironchenko et al. (2021).
The output regulation of infinite-dimensional linear sys-
tems subject to input saturation has been studied, for ex-
ample in Logemann et al. (1998), Logemann et al. (1999),
Logemann and Adam (2001) and Fliegner et al. (2003)
for exponentially stable single-input single-output regular
linear systems and in Oostveen (2000) for strongly stable
single-input single-output linear systems. The results in
these references use integral control to achieve output
tracking of constant reference signals. The key novelty in
our work is that we allow the reference and disturbance
signals to be combination of sinusoids. The output tracking
is achieved by using a linear output feedback control law
which is a generalization of the control law presented in
(Saberi et al., 2003, Thm. 3.3.3).

The paper is organized as follows. In Section 2, we present
preliminaries on semilinear systems and the output regu-
lation problem. Section 3 is devoted to our main results
where we present a linear feedback control law and the
solvability conditions for the output regulation of the sys-
tem (1). In Section 4, we present a numerical example
where we consider output regulation of a flexible satellite
model subject to input saturation. Concluding remarks
and further research directions are presented in Section
5.

1.1 Notation

For normed linear spaces X and Y , L(X,Y ) denotes the
set of bounded linear operators from X to Y . For a linear
operator A, D(A), R(A) and σ(A) denote the domain, the
range and the spectrum of A, respectively.

2. PRELIMINARIES

In this section, we present definitions and lemmas that are
used in proving the main results. Consider the system (1)
on a real Hilbert space X with A : D(A) ⊂ X → X,
B ∈ L(R, X) and Bd ∈ L(Rnd , X).

Definition 2.1. Let G(·) = B∗(·I −A)−1B be the transfer
function of the system (A,B,B∗). Then s ∈ C is called a
transmission zero if G(s) = 0.

Lemma 2.2. (Curtain and Zwart, 2020, Thm. 11.1.5).
Consider the semilinear differential equation

ẋ(t) = Ax(t) + f(x(t)), t ≥ 0, x(0) = x0, (4)

where A is the infinitesimal generator of the C0-semigroup
on the Hilbert space X. If f : X → X is uniformly
Lipschitz continuous, then the system (4) has a unique
mild solution on [0,∞) with the following properties:

(i) For 0 ≤ t < ∞ the solution depends continuously
on the initial condition, uniformly on any bounded
interval [0, τ ] ⊂ [0,∞).

(ii) If x0 ∈ D(A), then the mild solution is a classical
solution on [0,∞).

Definition 2.3. (Curtain and Zwart, 2020, Def. 11.2.2).
Consider the semilinear differential equation (4) on the

Hilbert space X. Assume that f : X → X is locally
Lipschitz continuous.

Then the origin of (4) is stable if for every ϵ > 0 there
exists a δ > 0 such that whenever ∥x0∥ < δ there exists
a solution x(t) of (4) on [0,∞) satisfying ∥x(t)∥ < ϵ for
all t ≥ 0. If, in addition, there exists γ > 0 such that
∥x0∥ < γ implies that ∥x(t)∥ → 0 as t → ∞, then the
origin is said to be asymptotically stable. The origin is said
to be globally asymptotically stable if for every x0 ∈ X we
have ∥x(t)∥ → 0 as t → ∞.

From the theory of output regulation of finite-dimensional
linear systems subject to input saturation we know that
the output regulation problem, in general, is not solvable
for all initial conditions v0 ∈ Rq of the exosystem (Saberi
et al., 2003, Rem. 3.2.2). However, if we restrict to the
initial conditions v0 of the exosystem lying inside a given
compact set, then the output regulation problem is solv-
able. In this work, we focus on this semi-global output
regulation problem of (1).

Semi-Global Output Regulation Problem. Consider
the systems (1)-(3) and a compact set W0 ⊂ Rq. Find a
linear output feedback control law in the form

u(t) = −κy(t) + Lv(t) (5)

such that κ > 0, L ∈ R1×q and

(1) The origin of the system ẋ(t) = Ax(t) +Bϕ(−κy(t)),
x(0) = x0 is globally asymptotically stable.

(2) For all x0 ∈ X and v0 ∈ W0, the error between the
output y(t) and the reference signal yref (t) satisfies

lim
t→∞

y(t)− yref (t) = 0.

3. MAIN RESULTS

In this section, we present our main theorem which pro-
vides the solvability conditions and the control law for the
semi-global output regulation of the system (1). The the-
orem is an infinite-dimensional generalization of (Saberi
et al., 2003, Thm. 3.3.3) where a low-and-high-gain state
feedback control design is used to achieve semi-global out-
put regulation of finite-dimensional linear systems subject
to input saturation. In our case, since the considered class
of systems can be stabilized strongly using negative output
feedback, it is not necessary to find a stabilizing state
feedback law separately. Consequently, there is no low-
gain requirement on the stabilizing feedback law and there
is only one gain parameter that corresponds to negative
output feedback. So, the strong stabilizability property
of the system (1) by output feedback enables simplifying
the control design compared to the original one in (Saberi
et al., 2003, Thm. 3.3.3). Our approach for showing the
asymptotic convergence of the regulation error is moti-
vated by the techniques in (Curtain and Zwart, 2020, Thm.
11.2.11).

Theorem 3.1. Consider the systems (1), (3) and the given
compact set W0 ⊂ Rq. Under the Assumption 1.1, the
semi-global output regulation problem is solvable if there
exist Π ∈ L(Rq, X) with R(Π) ⊂ D(A) and Γ ∈ R1×q such
that they solve the regulator equations

ΠS = AΠ+BΓ +BdE

0 = B∗Π+ F
(6)



and there exists a δ > 0 such that supt≥0∥Γv(t)∥ ≤ 1 − δ

for all v(t) = eStv0 with v0 ∈ W0. In this case, for any
κ > 0 the feedback law

u(t) = −κy(t) + (κB∗Π+ Γ)v(t) (7)

solves the semi-global output regulation problem.

Proof. By Assumption 1.1, we have that A − κBB∗

generates a strongly stable contraction semigroup for any
κ > 0. In addition, the saturation function ϕ is uniformly
Lipschitz continuous on R, ϕ(0) = 0 and

⟨u, ϕ(u)⟩R = u2, if |u| ≤ 1,

⟨u, ϕ(u)⟩R > 1, if u > 1,

⟨u, ϕ(u)⟩R > 1, if u < −1.

Therefore, by (Curtain and Zwart, 2020, Thm. 11.2.11),
we have that the origin of

ẋ(t) = Ax(t) +Bϕ(−κy(t)),

x(0) = x0

is globally asymptotically stable.

Next, using the feedback law (7), we will show that y(t)−
yref (t) → 0 as t → ∞. Assume that supt≥0∥Γv(t)∥ ≤ 1−δ.
Let us introduce a new variable ξ(t) = x(t)−Πv(t) which
is the mild solution of

ξ̇(t) = Aξ(t) +B[ϕ(−κB∗ξ(t) + Γv(t))− Γv(t)]

ξ(0) = ξ0.
(8)

on X, where we have used u(t) = −κy(t) + (κB∗Π +
Γ)v(t) = −κB∗ξ(t)+Γv(t). We will begin by showing that
the mild solution ξ(t) of (8) exists for t ∈ [0,∞). Let us
consider the composite system

ξ̇e(t) = Aeξe(t) + fe(ξe(t))

ξe(0) = ξe0
(9)

on X × Rq where

ξe(t) =

[
ξ(t)
v(t)

]
, ξe0 =

[
ξ0
v0

]
, Ae =

[
A 0
0 S

]
,

fe(ξe(t)) =

[
B[ϕ(−κB∗ξ(t) + Γv(t))− Γv(t)]

0

]
.

Here the operator Ae generates a C0-semigroup (since it
is block-diagonal and A generates a C0-semigroup) and
since ϕ is uniformly Lipschitz continuous and B and Γ
are bounded linear operators, we have that fe is uniformly
Lispschitz continuous. In fact, using ∥ϕ(u1) − ϕ(u2)∥ ≤
∥u1 − u2∥ for u1, u2 ∈ R, for ξe1 = (ξ1, v1)

T , ξe2 =
(ξ2, v2)

T ∈ X × Rq, we have

∥fe(ξe1)− fe(ξe2)∥
≤ ∥B∥∥ϕ(−κB∗ξ1 + Γv1)− ϕ(−κB∗ξ2 + Γv2)∥

+ ∥B∥∥Γ∥∥v1 − v2∥
≤ ∥B∥κ∥B∗∥∥ξ1 − ξ2∥+ 2∥B∥∥Γ∥∥v1 − v2∥
≤ C∥ξe1 − ξe2∥,

where C = max {κ∥B∥2, 2∥B∥∥Γ∥}. Thus by Lemma 2.2,
the system (9) has a unique mild solution ξe(t) for t ∈
[0,∞). The mild solution ξe(t) satisfies

ξe(t) =

[
T (t) 0
0 eSt

]
ξe0 +

∫ t

0

[
T (t− s) 0

0 eS(t−s)

]
fe(ξe(s))ds.

Furthermore, if ξe0 ∈ D(Ae), then ξe(t) is a classical
solution for t ∈ [0,∞). In particular, we have

ξ(t) = T (t)ξ0

+

∫ t

0

T (t− s)B[ϕ(−κB∗ξ(s) + Γv(s))− Γv(s)]ds

which is the mild solution for the system (8) and if ξ0 ∈
D(A), then ξ(t) is a classical solution for t ∈ [0,∞).

Next, we show that the solution ξ(t) is uniformly bounded.
For ξ0 ∈ D(A), we have

d

dt
∥ξ(t)∥2 = 2

〈
ξ̇(t), ξ(t)

〉

= 2 ⟨Aξ(t) +B[ϕ(−κB∗ξ(t) + Γv(t))− Γv(t)], ξ(t)⟩X
≤ 2 ⟨B[ϕ(−κB∗ξ(t) + Γv(t))− Γv(t)], ξ(t)⟩X
= 2 ⟨ϕ(−κB∗ξ(t) + Γv(t))− Γv(t), B∗ξ(t)⟩R

(10)
where we have used the contractivity of A. Now by using
the definition (2) of the saturation function ϕ and the
assumption supt≥0∥Γv(t)∥ ≤ 1− δ, we show that the right
hand side of (10) is always non-positive. If we consider
those t ≥ 0 such that | − κB∗ξ(t) + Γv(t)| ≤ 1, then

⟨ϕ(−κB∗ξ(t) + Γv(t))− Γv(t), B∗ξ(t)⟩R
= ⟨−κB∗ξ(t) + Γv(t)− Γv(t), B∗ξ(t)⟩R
= −κ∥B∗ξ(t)∥2 ≤ 0.

If we consider those t ≥ 0 such that −κB∗ξ(t)+Γv(t) > 1,
then −κB∗ξ(t) > 1 − Γv(t) > 0. This implies that
B∗ξ(t) < 0. Therefore

⟨ϕ(−κB∗ξ(t) + Γv(t))− Γv(t), B∗ξ(t)⟩R
= ⟨1− Γv(t), B∗ξ(t)⟩R ≤ 0.

Finally, if we consider those t ≥ 0 such that −κB∗ξ(t) +
Γv(t) < −1, then −κB∗ξ(t) < −1−Γv(t) < 0. This implies
that B∗ξ(t) > 0. Therefore

⟨ϕ(−κB∗ξ(t) + Γv(t))− Γv(t), B∗ξ(t)⟩R
= ⟨−1− Γv(t), B∗ξ(t)⟩R ≤ 0.

Therefore d
dt∥ξ(t)∥2 ≤ 0. Integrating (10), we obtain for

all t ≥ 0

∥ξ(t)∥2 ≤ ∥ξ0∥2

+ 2

∫ t

0

⟨ϕ(−κB∗ξ(s) + Γv(s))− Γv(s), B∗ξ(s)⟩R ds

≤ ∥ξ0∥2.
(11)

By the continuity of ξ(t) with respect to the initial
conditions, the above inequality holds for all ξ0 ∈ X. This
implies that for all ξ0 ∈ X, ξ(t) is bounded uniformly
in t on [0,∞). Next, we show that the mild solution ξ(t)
converges to zero as t → ∞. Let us reformulate the system
(8) as

ξ̇(t) = (A− κBB∗)ξ(t)
−B[−κB∗ξ(t) + Γv(t)− ϕ(−κB∗ξ(t) + Γv(t))]

ξ(0) = ξ0.

Denote û(t) := −κB∗ξ(t) + Γv(t)− ϕ(−κB∗ξ(t) + Γv(t)).
Since Bû ∈ L1

loc(0,∞;X), the solution of the above system
is given by

ξ(t) = T−κBB∗(t)ξ0 −
∫ t

0

T−κBB∗(t− s)Bû(s)ds. (12)

We will first show that û ∈ L2(0,∞;R). We will begin
by splitting the interval [0,∞) into three parts. Let Ω1 :=
{t ∈ [0,∞) | −κB∗ξ(t)+Γv(t) > 1}, Ω2 := {t ∈ [0,∞) | −



κB∗ξ(t) + Γv(t) < −1} and Ω3 := {t ∈ [0,∞) | | −
κB∗ξ(t) + Γv(t)| ≤ 1}. Then using the definition of ϕ, the
assumption supt≥0∥Γv(t)∥ ≤ 1−δ and κB∗ξ(t) < Γv(t)−1
on Ω1, we obtain∫

Ω1

⟨ϕ(−κB∗ξ(s) + Γv(s))− Γv(s), B∗ξ(s)⟩R ds

=

∫

Ω1

⟨1− Γv(s), B∗ξ(s)⟩R ds

≤
∫

Ω1

〈
1− Γv(s),

Γv(s)− 1

κ

〉

R
ds

= − 1

κ

∫

Ω1

∥1− Γv(s)∥2ds

≤ −δ2

κ
ν(Ω1),

where ν is a Lebesgue measure. Moreover, from (11), we
have∫ ∞

0

⟨ϕ(−κB∗ξ(s) + Γv(s))− Γv(s), B∗ξ(s)⟩R ds < ∞
(13)

which implies that Ω1 has finite measure. Similarly, using
the definition of ϕ and −κB∗ξ(t) < −1− Γv(t) on Ω2, we
obtain∫

Ω2

⟨ϕ(−κB∗ξ(s) + Γv(s))− Γv(s), B∗ξ(s)⟩R ds

=

∫

Ω2

⟨−1− Γv(s), B∗ξ(s)⟩R ds

≤
∫

Ω2

〈
1 + Γv(s),

−Γv(s)− 1

κ

〉

R
ds

= − 1

κ

∫

Ω2

∥1 + Γv(s)∥2ds

≤ −δ2

κ
ν(Ω2)

which from (13) implies that Ω2 has finite measure. Fur-
thermore, by using the definition of ϕ, we obtain∫

Ω3

|û(s)|2ds

=

∫

Ω3

| − κB∗ξ(s) + Γv(s)− ϕ(−κB∗ξ(s) + Γv(s))|2ds

= 0.

Since B∗ ∈ L(X,R), supt≥0∥Γv(t)∥ ≤ 1 − δ and ξ(t)
is uniformly bounded, we have that û(t) is uniformly
bounded and therefore by using the above arguments, we
obtain∫ ∞

0

|û(s)|2ds =
∫

Ω1

|û(s)|2ds+
∫

Ω2

|û(s)|2ds < ∞.

Thus û ∈ L2(0,∞;R). By Assumption 1.1, A generates a
contraction semigroup T (t) and B ∈ L(R, X). Therefore,
by (Curtain and Zwart, 2020, Thm. 6.4.4), we have that
the system (A−κBB∗, B,B∗, 0) is input stable, i.e., there
exists a constant β > 0 such that for all t > 0 and
ũ ∈ L2(0,∞;R), we have

∥
∫ t

0

T−κBB∗(t− s)Bũ(s)ds∥2 ≤ β2

∫ t

0

∥ũ(s)∥2ds.

Moreover, by Assumption 1.1, T−κBB∗(t) is strongly sta-
ble. Since û ∈ L2(0,∞;R), (Curtain and Zwart, 2020,
Thm. 5.2.3) implies that ξ(t) → 0 as t → ∞.

Finally, using ξ(t) = x(t)− Πv(t) and B∗Π + F = 0 from
(6), we obtain

y(t)− yref (t) = B∗x(t)− yref (t)

= B∗(ξ(t) + Πv(t)) + Fv(t)

= B∗ξ(t) + (B∗Π+ F )v(t)

= B∗ξ(t) → 0

as t → ∞ which completes the proof.

Remark 3.2. From the proof of Theorem 3.1, we note that
the control law (7) can be written as u(t) = −κB∗ξ(t) +
Γv(t). Now we can see that the system (1) asymptotically
operates in the linear region of saturation since ξ(t) → 0
as t → ∞ and supt≥0∥Γv(t)∥ ≤ 1− δ.

Based on (Byrnes et al., 2000, Sec. V), the solvability
conditions for the regulator equations are given in the
following lemma.

Lemma 3.3. (Byrnes et al., 2000, Sec. V). Let A− κBB∗

generate a strongly stable contraction semigroup for any
κ > 0. Assume that σ(S) ⊂ iR and S has no nontriv-
ial Jordan blocks. Then the regulator equations (6) are
solvable if and only if no eigenvalue of S coincides with a
transmission zero of the system (1). In this case, Π and Γ
are given by

ΠΦk = (iωk −A)−1(BΓ +BdE)Φk

ΓΦk = −G(iωk)
−1(B∗(iωk −A)−1BdE + F )Φk,

k = 1, 2, · · · , q, where iωk and Φk are the eigenvalues
and the corresponding orthonormal eigenvectors of S,
respectively and G(·) = B∗(·I − A)−1B is the transfer
function of the system (1).

Corollary 3.4. Let the assumptions of Lemma 3.3 hold and
no eigenvalue of S coincides with a transmission zero of
the system (1). Let iωk, k = 1, 2, · · · q be the eigenvalues
and {Φk}qk=1 be the corresponding orthonormal basis of
S. Then for any v0 ∈ W0, the control input (7) has the
representation

u(t) = −κy(t)−
q∑

k=1

eiωkt ⟨v0,Φk⟩ (κ+G(iωk)
−1)FΦk

−
q∑

k=1

eiωkt ⟨v0,Φk⟩G(iωk)
−1B∗(iωk −A)−1BdEΦk.

Remark 3.5. Since the expressions for Γ and Π use in-
formation from the exosystem and the exosystem is de-
termined by the reference and disturbance signals, we
can derive expressions for Γv(t) and B∗Πv(t) in terms
of frequency, phase and amplitude of the reference and
disturbance signals. This is illustrated in the following.

For simplicity, we assume that yref (t) = a cos(ωt+φ) and
wd(t) ≡ 0. Then the exosystem can be chosen as

v̇(t) = Sv(t), v(0) = v0 =

[
1
0

]
, S =

[
0 ω
−ω 0

]
,

F = −a [cos(φ) sin(φ)] , E = 0.

Moreover, the eigenvalues of S are ±iω and the cor-
responding orthonormal eigenvectors of S are given by

1√
2

{[
1
i

]
,

[
1
−i

]}
.

Now, substituting the above information and the expres-
sion for ΓΦk from Lemma 3.3 in



Γv(t) =
2∑

k=1

eiωkt ⟨v0,Φk⟩ΓΦk

we obtain Γv(t) = a|G(iω)−1| cos (ωt+ φ+ θ), where θ =
tan−1(β/α), α = Re(G(iω)), β = −Im(G(iω)). Similarly,
we obtain B∗Πv(t) = a cos (ωt+ φ).

Furthermore, the condition supt≥0∥Γv(t)∥ ≤ 1 − δ in

Theorem 3.1 can be reformulated as |aG(iω)−1| ≤ 1 − δ
and the control input (7) can be written as

u(t) = −κy(t) + κa cos (ωt+ φ)

+ a|G(iω)−1| cos (ωt+ φ+ θ).
(14)

This implies that the above feedback law (14) solves the
semi-global output regulation problem provided that the
frequency ω from the reference signal satisfies G(iω) ̸= 0
and |aG(iω)−1| ≤ 1−δ. This shows that it is not necessary
to formulate the exosystem in order to solve the semi-
global output regulation problem.

4. NUMERICAL EXAMPLE

In this section, we illustrate our main results in Section
3 on a flexible satellite model that is composed of two
symmetrical flexible solar panels and a center rigid body
(Bontsema et al. (1988), He and Ge (2015)). Modeling
the satellite panels as viscously damped Euler-Bernoulli
beams of length 1, the satellite model that we consider is
described by (Govindaraj et al. (2020))

ẅl(ξ, t) + w′′′′
l (ξ, t) + 5ẇl(ξ, t) = 0, −1 < ξ < 0, t > 0,

ẅr(ξ, t) + w′′′′
r (ξ, t) + 5ẇr(ξ, t) = 0, 0 < ξ < 1, t > 0,

ẅc(t) = w′′′
l (0, t)− w′′′

r (0, t) + ϕ(u(t)) + wd(t),

θ̈c(t) = −w′′
l (0, t) + w′′

r (0, t),

w′′
l (−1, t) = 0, w′′′

l (−1, t) = 0,

w′′
r (1, t) = 0, w′′′

r (1, t) = 0,

ẇl(0, t) = ẇr(0, t) = ẇc(t),

ẇ′
l(0, t) = ẇ′

r(0, t) = θ̇c(t),

y(t) = ẇc(t),
(15)

where wl(ξ, t) and wr(ξ, t) are the transverse displace-
ments of the left and the right beam, respectively, ẇl(ξ, t)
and w′

l(ξ, t) denote time and spatial derivatives of wl(ξ, t),
respectively, wc(t) and θc(t) are the linear and angular
displacements of the rigid body, respectively, the function
ϕ(u(t)) is the saturated external control input defined in
(2) and wd(t) is an external disturbance. Here ẇc(t) =

ẇl(ξ, t)|ξ=0 = ẇr(ξ, t)|ξ=0 and θ̇c(t) = ẇ′
l(ξ, t)|ξ=0 =

ẇ′
r(ξ, t)|ξ=0 are linear and angular velocities of the rigid

body, respectively.

As shown in Govindaraj et al. (2023), the satellite model
(15) can be written in the form (1) and the operator A
generates an exponentially stable contraction semigroup
on the state space X = L2(−1, 0;R2) × L2(0, 1;R2) ×
R2. It can be also verified that A − κBB∗ generates an
exponentially stable contraction semigroup on X for any
κ > 0 (Govindaraj et al., 2020, Sec. 3). This implies that
Assumption 1.1(1) is satisfied.

Our goal is to track the reference signal yref (t) =
0.09 sin (1.5t) and reject the disturbance wd(t) ≡ 0.08.
Motivated by this, we choose the exosystem

v̇(t) = Sv(t), v(0) =

[
0

0.09
0.08

]
, S =

[
0 1.5 0

−1.5 0 0
0 0 0

]

with F = [1 0 0], E = [0 0 1]. The eigenvalues of S
are given by {0,±1.5i} and therefore, Assumption 1.1(2)
is satisfied. Moreover, it can be verified that the system
(1) does not have any transmission zeros at 0, 1.5i and
−1.5i (Govindaraj et al., 2023, Lem. 4.1) implying that
the regulator equations are solvable.

The control input from Section 3 is given by u(t) =
−κy(t)+(κB∗Π+Γ)v(t). The control parameters Γ and Π
can be obtained by using Lemma 3.3 as in Remark 3.5 and
they are given by Γv(t) = 0.09|G(1.5i)−1| sin (1.5t+ θ) +
0.08, θ = tan−1(β/α), α = Re(G(iω)), β = −Im(G(iω))
and B∗Πv(t) = 0.09 sin (1.5t) where G(·) is the transfer
function of the satellite system (A,B,B∗). Simulations
are carried out in Matlab with κ = 100 on the time
interval [0, 15]. The solutions of the satellite system (15)
are approximated by using Legendre Spectral Galerkin
method with number of basis functions N = 10 Asti
(2020). Figure 1 shows that after the transient period the
controller operates in the linear region of the saturation
function and supt≥0∥Γv(t)∥ ≤ 1− δ. The output tracking
and the tracking error are depicted in Figures 2 and 3
respectively and the velocity profile of the right solar panel
is depicted in Figure 4.
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Fig. 1. Behaviour of saturated control input ϕ(u) (above)
and Γv(t) (below) over the time interval [0,15]
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Fig. 2. Output tracking

5. CONCLUSION

We considered output regulation problem for the class
of strongly stabilizable infinite-dimensional linear systems
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Fig. 3. Tracking error

Fig. 4. Velocity profile of the right solar panel

with collocated actuators and sensors subject to input
saturation. Strong stabilization of the system enabled us
to construct a linear feedback control law that solves the
semi-global output regulation problem. The results were
illustrated on a flexible satellite model subject to input
saturation where output tracking of a given sinusoidal
reference signal and rejection of a constant disturbance
signal were achieved by using the proposed control law.

Many future research directions are possible. In this work,
we considered a particular class of infinite-dimensional
systems with bounded input and output operators. So,
the theory can be developed for wider class of systems,
for example, for the systems with unbounded input and
output operators and multi-input multi-output systems.
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