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Abstract
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Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic interstitial lung
disease (ILD) that currently has few treatment options with limited efficacy and high
cost. This study aims to shed light on the underlying mechanisms of IPF, identify
potential biomarkers, and explore novel treatments using a data-driven approach.
Additionally, the study evaluates the FAIRness of publicly available transcriptomics
data repositories and integrates meta-analytical and network-based methods.

Microarray and RNA-seq datasets of both biopsies and different cell types of
IPF patients and healthy controls were collected from GEO and ENA databases.
The data were then curated and preprocessed using state-of-the-art methods.
Gene co-expression networks were generated for each cell type (epithelial,
macrophage, fibroblast, BAL). and biopsy. Subsequently, gene expression
meta-analysis was conducted. The results indicate that potential treatments for IPF
can be classified into five groups: collagenase enzymes, tyrosine kinase inhibitors,
matrix metalloproteinase inhibitors, ion channel modulators and inhibitors, and
proteins like monoclonal antibodies. Due to the complex pathogenesis of IPF,
combination therapies may be more effective than monotherapies, and these five
classes of drugs could be potential candidates. However, further research is
necessary to determine the optimal dosages, administration routes, side effects and
possible effects upon combination of these drugs.

In conclusion, the systems pharmacological approach used in this study is
effective for the identification of new drug candidates for complex and poorly
understood diseases like IPF. Combining network-based methods and
meta-analytical approaches is an effective strategy, as they provide complementary
perspectives. However, a challenge in using public repositories is ensuring the
FAIRness of the data, which poses significant challenges despite the well-known
principles of FAIR data.

Keywords: Bioinformatics, Gene co-expression networks, Collagenase enzymes,
Data driven drug repositioning, Drug repurposing, ENA, FAIR data, GEO, Idiopathic
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Idiopaattinen keuhkofibroosi (IPF) on etenevä ja krooninen interstitiaalinen
keuhkosairaus (ILD), jolla on tällä hetkellä vain muutama hoitovaihtoehto, joiden
teho on rajallinen ja hinta korkea. Tämä tutkimus pyrkii valaisemaan IPF:n taustalla
olevia mekanismeja, tunnistamaan mahdollisia biomarkkereita ja tutkimaan uusia
hoitovaihtoehtoja datavetoisella lähestymistavalla. Lisäksi tutkimus arvioi julkisten
tietorekisterien FAIR-periaatteiden noudattamista ja vertailee verkkopohjaisia ja
differentiaalisen geeniekspression menetelmiä.

Mikrosiru- (microarray) ja RNAseq-aineistot kerättiin GEO- ja
ENA-tietokannoista, ja ne käsiteltiin uusimmilla menetelmillä. Kullekin solutyypille
(epiteelisolu, makrofagi, fibroblasti, BAL- ja biopsianäytteet) generoitiin
yhteisesiintyvyysverkot, sekä suoritettiin differentiaalisen geeniekspression
perusteella tehty meta-analyysi. Tulokset osoittavat, että mahdolliset IPF:n
lääkehoidot voidaan luokitella viiteen ryhmään: kollagenaasientsyymit,
tyrosiinikinaasin estäjät, matriksin metalloproteinaasin estäjät, ionikanavan
säätelijät ja estäjät ja proteiinit, kuten monoklonaaliset vasta-aineet. IPF:n
monimutkaisen patogeneesin vuoksi yhdistelmähoidot saattavat olla tehokkaampia
kuin yksittäiset hoidot, ja nämä viisi lääkeryhmää voisivat olla potentiaalisia
hoitovaihtoehtoja. On kuitenkin tarpeen tehdä lisätutkimuksia, jotta voidaan
määrittää näiden lääkkeiden optimaaliset annokset, antotavat ja yhdistelmät.

Johtopäätöksenä tämän tutkimuksen käyttämä systeemifarmakologinen
lähestymistapa on tehokas tapa löytää uusia lääkehoitoja monimutkaisiin ja
huonosti tunnettuihin sairauksiin, kuten IPF:ään. Yhteisesiintyvyysverkkopohjaisten
menetelmien ja differentiaalisen geeniekspression perusteella tehdyt menetelmät
ovat tehokas tapa, koska ne tarjoavat toisiaan täydentäviä näkökulmia. Julkisten
tietokantojen käytön haasteena on kuitenkin aineistojen FAIR-periaatteiden
varmistaminen, mikä aiheuttaa merkittäviä haasteita siitä huolimatta, FAIR
periaatteet ovat hyvin tunnettuja tiedeyhteisössä.

Avainsanat: Bioinformatiikka, Kollageenaasi-entsyymit, Dataohjautuva
lääkeuudelleensijoitus, ENA, FAIR-data, GEO, Idiopaattinen keuhkofibroosi, IPF,
Ionikanavasäätäjät, Lääkeuudelleenkäyttö, Okriplasmiini, Koekspressioverkostot,
Monoklonaaliset vasta-aineet, Meta-analyysi, Matriksin metalloproteaasi-
inhibiittorit, Julkiset tietokannat, Systeemibiologia, Systeemifarmakologia,
Tyrosiinikinaasin estäjät
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Introduction

Lung functions and restrictive lung diseases

The primary function of the lung is to facilitate respiration, while also serving as a
protective barrier between the body and the external environment. This barrier is
essential in shielding the body from various harmful agents, including allergens,
pollutants, chemicals, and pathogens that may threaten our health. Lungs have a
vast surface area which means that they are potentially exposed to a plethora of
toxins. In order to preserve homeostasis and protect itself from injury, lungs have
evolved defense systems that guard it from these harmful entities (Suzuki et al.
2008).

Structural lung parenchyma cells are composed of various cell types such as
epithelial cells, endothelial cells and fibroblasts. These cells are particularly
susceptible to the damaging effects of harmful agents, with epithelial cells being the
most affected. Epithelial cells are the structural barrier, and "muco-ciliary escalator"
is a mechanical clearance system of the inhaled particles and microbes (Suzuki
et al. 2008). There are numerous types of immune system cells in the distal parts of
the lung that react against the unwanted agents. These cells contain for example
macrophages, leukocytes, neutrophils, mast cells, dendritic cells and eosinophils.
These cells are attracted by the cytokines and chemokines that modulate the
inflammatory reaction and are extracted by a variety of cells when unwanted
materials penetrate the lung (Suzuki et al. 2008).

Disruption of the homeostasis and the functional mechanisms of lungs can lead to
variety of restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF) which
is a devastating lung disease that restricts lung function and reduces the ability to
breathe. Studies have shown that chronic exposure to environmental pollutants,
infections, and cigarette smoke can cause homeostasis disruption, which can
contribute to the development of IPF (Krishna et al. 2022). Understanding the
molecular and systemic mechanisms behind homeostasis disruption can help in the
development of new therapeutic approaches for the treatment of IPF and other
restrictive pulmonary diseases. In Figure 1 is illustrated a simplified disease
progression mechanism of IPF.

Idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic interstitial lung
disease (ILD). It is a devastating, age-related lung disease that has unknown origin
and only a few, and not very effective, treatment options (King et al. 2011). In IPF,
progressive lung scarring occurs in the supporting interstitium of the lungs
(Martinez et al. 2011). These events cause breathing to become increasingly
difficult. IPF is irreversible, and usually leads to death (King et al. 2011). The main
histopathological features of IPF are heterogeneous appearance of areas of
subpleural and paraseptal fibrosis and honeycombing (fibrotic spaces lined by
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Figure 1: Lung functions and disease progression in IPF.

bronchiolar epithelium and often filled by mucin and variable amounts of
inflammatory cells) with areas of less affected or normal parenchyma (King et al.
2011).

One proposed pathogenesis of IPF is the connection to ageing-related susceptible
lung which is targeted by repetitive alveolar injuries that are caused by, for example,
inhaled cigarette smoke, microaspiration, nanomaterials, gastroesophageal reflux
or viruses (King et al. 2011; Wuyts et al. 2013). These injuries can provoke type I
and type II epithelial cell death. After microinjuries and epithelial cell apoptosis,
increased vascular permeability to proteins like fibrinogen and fibronectin causes
the formation of a wound clot. This process is followed by bronchiolar and alveolar
epithelial cell migration and proliferation which is a frustrated effort of the lung to try
to repair itself (King et al. 2011). Abnormally activated epithelial cells start to
excrete different chemokines, cytokines and epidermal growth factors which attract
fibroblasts and immune system cells like alveolar macrophages and monocytes that
will differentiate into macrophages.

The cells also excrete TGF-β1 that promotes epithelial mesenchymal transition,
extracellular matrix remodeling and the differentiation of fibroblasts to
myofibroblasts. The heterogenous macrophage population also secrete
chemokines and growth factors like TGF-β that induce the fibrotic tissue growth in
the extracellular matrix. There are positive feedback loops that lead to progressive
expansion of the fibrotic tissue (Misharin et al. 2017; Saarimäki et al. 2020; Sugeir
et al. 2019).
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Pathogenesis of IPF and the biological conditions used in this study

The pulmonary alveolar epithelium is essential for lung gas-exchange function and
also represents an important barrier to protect our body from hazards. In response
to acute injuries, pulmonary alveoli are usually able to quickly repair and regenerate
new alveolar epithelial cells for restoring an intact epithelial layer. The alveolar
epithelium is mainly composed of two types of epithelial cells: alveolar type I (AT1)
and type II (AT2) cells. AT2 cells are smaller compared to AT1 cells. AT2 cells are
cuboidal and they are best known for their functions in synthesizing and secreting
pulmonary surfactant. In addition, AT2 cells function as alveolar stem cells and are
able to differentiate into AT1 cells during alveolar homeostasis and post injury repair
(Desai et al. 2014; Wang et al. 2018). AT1 cells are large squamous cells that cover
95 % of the alveolar surface area. They form the epithelial component of the
air–blood barrier in alveoli. Both AT1 and AT2 cells differentiate at the late
embryonic stage from alveolar progenitor cells and form distal epithelial saccules
(Wang et al. 2018; Nikolić et al. 2017).

Following birth, the epithelial saccules undergo continuous subdivision, resulting in
the formation of multiple smaller gas exchange units known as alveoli. This
postnatal developmental process is called alveologenesis, which occurs with 90%
of human alveoli. During alveologenesis, AT1 cells expand their surface area and
flatten their cell body to accommodate postnatal lung growth. AT1 cells have been
traditionally considered to be terminally differentiated cells. Although ATI cells were
previously believed to be fully differentiated, recent studies have demonstrated that
they possess cellular plasticity and can proliferate to generate AT2 cells during
alveolar regeneration following post-pneumonectomy. However, the molecular
genetics and fate specification of AT1 cells remain largely unknown due to limited
knowledge about the development and heterogeneity of the adult AT1 cell
population. Consequently, it is unclear whether all AT1 cells or only a subset can
transdifferentiate into AT2 cells during alveolar regeneration. Furthermore, AT1 cell
development during alveologenesis has not been thoroughly characterized at the
transcriptome level due to the challenges associated with isolating these delicate
cells (Wang et al. 2018).

AT2s are thought to play a critical role in the development of IPF. The pathogenesis
of IPF is commonly believed to be initiated by damage to type AT2 cells, which
leads to an epithelial-driven process that activates pro-fibrotic signaling mediated
by TGF-β1. The activation of TGF-β1 causes a disruption in communication
between fibroblasts and other cells, leading to the activation of myofibroblasts and
an excessive buildup of extracellular matrix (ECM). TGF-β has three isoforms,
which are TGF-β1, TGF-β2, and TGF-β3. In the pathogenesis of IPF, TGF-β leads to
alveolar epithelial injury, fibroblast activation, myofibroblast transdifferentiation,
excessive production of ECM, and inhibition of ECM degradation. The specific
mediators that regulate this process are not entirely clear (Bueno et al. 2023).
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Figure 2: TGF-β1 structure.

Macrophages have a significant role in the pathogenesis of lung fibrosis,
particularly in IPF (Novak et al. 2023; Misharin et al. 2017; Geng et al. 2021).
Macrophages have the ability to release and respond to cytokines, which impacts
their activation state and affects the functional behavior of surrounding cells. They
play a vital role in coordinating the inflammatory response by releasing both
pro-inflammatory cytokines (such as Il-1β, TNF-α, Il-6, and Il-8) and
anti-inflammatory cytokines (such as Il-4, Il-10, Il-13, IFN-α, and TGF-β). During a
typical wound healing response, macrophages are crucial in resolving fibrosis by
taking up dead cells and excessive ECM, thereby degrading scar tissue and
facilitating the resolution of the injury (Novak et al. 2023). Monocyte-derived
alveolar macrophages (Mo-AMs) express higher levels of proinflammatory and
profibrotic genes (ie. ADAM8, ARG1, APOE, ITGA6, MFGE8, MMP12, MMP13,
MMP14, and PDGFA ) than tissue-resident alveolar macrophages (TR-AMs). It has
been revealed that the deletion of Mo-AMs after their recruitment to the lung
markedly reduced the severity of fibrosis in common mouse models of lung fibrosis.
Macrophage polarization, which refers to distinct sets of inflammatory or fibrotic
genes that are expressed by macrophages in cell culture that are first induced
toward differentiation and then treated with lipopolysaccharides and IFN-γ or Il-4,
respectively (Misharin et al. 2017).

The majority of resident macrophages originate from progenitors in the bone
marrow and relocate to various tissues where they acquire specific phenotypes
through local environmental and signaling cues. Macrophage polarization leads to
the formation of two distinctive phenotypes: the pro-inflammatory M1 subtype,
which is induced by the Th1 cytokine interferon-γ, and the M2 phenotype, which is
induced by the Th2 cytokines interleukin (Il)-4 or Il-13. The M2 phenotype plays a
critical role in tissue remodeling and repair and is a crucial regulator of fibrogenesis
in IPF. Following activation, M2 macrophages generate profibrotic mediators, such
as TGF-β1, which activates fibroblasts and ECM deposition. The polarization of
alveolar macrophages toward a profibrotic M2 phenotype is a contributing factor in
the development of fibrosis (Geng et al. 2021). However, in a study by Misharin et
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al. 2017 the transcriptional data allowed to directly test this hypothesis by
examining the expression of inflammatory and fibrotic genes during
bleomycin-induced lung fibrosis. Interestingly, they found that both Mo-AMs and
TR-AMs up-regulated inflammatory and fibrotic genes in response to bleomycin
without a discernible shift in gene expression toward an inflammatory M1 or fibrotic
M2 phenotype in either cell population (Misharin et al. 2017).

Fibroblasts comprise the predominant cell type in the connective tissues of the
body and serve as the primary origin of the abundant ECM that characterizes these
tissues (Kendall and Feghali-Bostwick 2014). Large amounts of profibrotic
cytokines are produced by dysfunctional epithelial cells and polarized
macrophages, which stimulate fibroblast differentiation into myofibroblasts.
Depending on their activation state, macrophages can affect fibroblast gene
expression by enhancing the expression of collagens, α-SMA, TGF-β, ECM
synthesis, and fibroblast proliferation. Conversely, fibroblasts control the capacity of
macrophages to produce pro-inflammatory cytokines like Il-6 and chemokines such
as macrophage inflammatory protein 1α (MIP-1α) leading to a vicious loop (Novak
et al. 2023). In IPF lungs, myofibroblasts display a pathological phenotype
characterized by the excessive secretion of matrix within the lung parenchyma,
leading to basement membrane disruption. Resident interstitial lung fibroblasts are
the primary source of myofibroblasts in the lungs (Geng et al. 2021).

Additionally, fibroblasts/myofibroblasts exhibit distinct characteristics that contribute
to lung fibrosis, such as increased proliferation, resistance to apoptosis, and
invasive activity. While fibroblasts normally proliferate in response to tissue injury,
they undergo apoptosis as the tissue returns to homeostasis. However, IPF
fibroblasts resist apoptosis and show enhanced proliferation, possibly due to the
abundance of PGF2α in IPF lungs that stimulates their proliferation and reduced
PGE2 levels that contribute to their apoptotic resistance. Prostaglandins, such as
PGE2, regulate many pathological features of lung fibroblasts and myofibroblasts,
including proliferation, migration, collagen secretion, and TGF-β1-induced
differentiation. IPF fibroblasts also invade the surrounding ECM similar to
metastatic cancer cells, possibly due to de novo fatty acid synthesis or the
upregulation of α-SMA-containing stress fibers through the C/EBP-β binding
element in the α-SMA promoter (Geng et al. 2021).

In addition to alveolar epithelial cells, alveolar macrophages and fibroblasts, also
broncoalveolar lavage (BAL) and biopsy samples were included in this study. BAL
is a diagnostic method of the lower respiratory system in which a bronchoscope is
passed through the mouth or nose into the airways in the lungs. A measured
amount of fluid is introduced and then collected for examination. The BAL fluid of
healthy individuals consists of macrophages (>80%). Normal in BAL may be 80–90
% alveolar macrophages, 5–15 % lymphocytes, 1–3 % polymorphonuclear
neutrophils, 1% eosinophils, and <1 % mast cells (Stanzel 2012). BAL is known to
contain an accumulation of extravasated inflammatory cells and cytokines that
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reflect the microenvironment around the alveoli. Several studies have confirmed
that alterations in the alveolar microenvironment are associated with the
advancement of idiopathic pulmonary fibrosis (Prasse et al. 2019b; He et al. 2022).

Lung biopsies are typically obtained from routine surgical resections, biopsy
extractions during routine clinical care, or in a research setting involving healthy
volunteers or lung transplantation programs. However, it can be difficult to obtain
normal lung parenchyma. The most common sources for lung parenchyma are
either uninvolved edges of lung resections (mostly for cancer) or tissue obtained
from deceased donors through organ procurement organizations, which can be
archived or processed fresh. Archived lung tissue is often obtained from large
tissue banks and repositories established in many centers, often associated with
academic, medical, or governmental organizations. To minimize tissue collection
variability between different centers, standard principles for tissue processing and
collection are being developed. Live tissue from bronchoscopic biopsies, organ
procurement organizations, or surgical resections requires special attention after
collection. Lung tissue biopsies can exhibit high cell-type heterogeneity depending
on the precise location of surgery (Schiller et al. 2019).

Medication of IPF

Over the years, numerous medical therapies have been tested for treating patients
with IPF, although they have mostly failed to demonstrate any benefits and have
even caused harm (Dempsey et al. 2021; Raghu et al. 2015; Farrand et al. 2020;
Biondini et al. 2020). Patients with IPF have a very poor response to
anti-inflammatory medication such as corticosteroids (Jang et al. 2021; Farrand
et al. 2020). Two antifibrotic drugs, pirfenidone and nintedanib have been approved
for IPF treatment. Although these drugs can slow the progression of the disease in
some patients, there is currently no cure for the disease (Cameli et al. 2022;
Dempsey et al. 2021; Raghu et al. 2015; Sakamoto et al. 2013).

Studies have shown that patients treated with either pirfenidone or nintedanib have
a lower risk of all-cause mortality and acute hospitalizations compared to untreated
patients in a matched cohort. However, due to the rarity of the disease and its fatal
nature, conducting a trial and ensuring appropriate follow-up to demonstrate a
mortality effect is extemely challenging. Currently, pirfenidone and nintedanib
treatments are the primary recommendations for IPF, as they have been shown to
reduce the risk of all-cause mortality and acute hospitalizations when compared to
untreated individuals (Dempsey et al. 2021; Raghu et al. 2015). Molecular
structures of pirfenidone and nintedanib are illustrated in Figure 3.

Especially in the acute exacerbation of IPF (AE-IPF) the treatment remains
undetermined. Studies have shown that the use of corticosteroids in these cases
may lead to an increasing trend in in-hospital mortality, and the overall survival rate
of patients receiving corticosteroid treatment may be significantly lower. There is no
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Figure 3: Pirfenidone (left) and nintedanib (right) molecular structures.

evidence that corticosteroid use improves outcomes in IPF patients admitted to the
hospital with acute exacerbation (Farrand et al. 2020). Sometimes the
corticosteroids are combined with immunosuppressants like cyclophosphamide.
Efficacy of cyclophosphamide in AE-IPF is only suggested by small, retrospective
non-randomized studies (Biondini et al. 2020).

Macrolides have been used to treat AE-IPF due to their anti-inflammatory and
immunomodulatory properties, which may be beneficial beyond their antimicrobial
effect. Additionally, macrolides have been suggested to facilitate alveolar epithelium
regeneration following damage (Biondini et al. 2020; Guillot et al. 2011). In cases of
AE-IPF, autoantibody production secondary to immune dysregulation has been
suggested to contribute to the disease progression. To address this, critically ill
patients with AE-IPF have been treated with therapeutic plasma exchange and
rituximab, which has been supplemented in later cases with intravenous
immunoglobulin. Also N-acetylcysteine (NAC) has been studied as a treatment in
IPF. NAC is an antioxidant and mucolytic agent that has been investigated as a
potential therapy for IPF. It has been suggested that combined therapy including
NAC by oral administration may be more effective than monotherapy (Feng et al.
2019). Other treatments for AE-IPF are human recombinant thrombomodulin,
hemoperfusion with polymyxin B-immobilized fibers and supportive treatments
include substances like oxygen and opioids (Biondini et al. 2020).

Despite the benefits of pirfenidone and nintedanib treatments and the lack of
alternative treatments, concerns remain regarding their cost-effectiveness. In the
United States, these medications can cost over $100,000 per year per patient,
which can add to the financial burden on IPF patients or society given the relatively
poor effectiveness of these treatments (Dempsey et al. 2022). In Finland, the
monthly cost of the original pirfenidone (Esbriet®) is 2272.25 €, while the cost of the
generic product (Pirfenidone Ratiopharm®) 1175.78 € (801 mg twice a day)
(Kansaneläkelaitos 2023). The monthly cost of nintedanib (Ofev®) ranges from
1380.56 to 2423.60 € depending on the dosage (Kansaneläkelaitos 2023). The
price information provided by Kela was last updated on March 1st, 2023.

The cost-effectiveness of antifibrotic drugs in the USA has been shown to be
suboptimal, with both pirfenidone and nintedanib having incremental
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cost-effectiveness ratios (ICERs) that are unreasonably high. In fact, nintedanib
costs a staggering $1.6 million to gain just one additional quality-adjusted life year
(QALY), a value 16 times higher than the commonly accepted willingness-to-pay
threshold of $100,000. (Dempsey et al. 2022). On the other hand, a UK study found
that nintedanib treatment resulted in fewer acute exacerbations and therefore fewer
costs and more QALYs than pirfenidone. Based on the efficacy outcomes, over a
patient’s lifetime, nintedanib and pirfenidone gained 0.5 QALYs more than placebo.
Given the high incremental cost difference between nintedanib, pirfenidone and
placebo (NAC), the ICER was over £100,000 per QALY gained (Rinciog et al.
2017). These findings emphasize the need for more cost-effective treatments for
IPF, and data-driven drug repositioning may be a promising approach for identifying
such treatments.

Transcriptome investigation through omics techniques

RNA sequencing

Over the last decade, RNA sequencing (RNA-seq) has become a widely used tool
in molecular biology, revolutionizing the understanding of genomic function. One of
the most common applications of RNA-seq is differential gene expression (DGE)
analysis, which follows a standard workflow. Starting with RNA extraction in the
laboratory, the process involves mRNA enrichment or ribosomal RNA depletion,
cDNA synthesis, and preparation of a sequencing library with adaptors. This library
is then sequenced at a high read depth of 10-30 million reads per sample using a
high-throughput platform, typically Illumina (Stark et al. 2019).

The final steps are computational, involving the alignment or assembly of
sequencing reads to a transcriptome, quantification of reads that overlap with
transcripts, filtering and normalization of data between samples, and statistical
modeling of significant changes in gene and/or transcript expression levels between
different sample groups. Despite advances in technology, the essential stages of
the DGE assay have remained largely unchanged since its inception (Stark et al.
2019).

The Illumina short-read sequencing technology has been widely used to produce
over 95 % of the published RNA-seq data found on the Short Read Archive (SRA).
Since almost all of the available mRNA-seq data is obtained through short-read
sequencing of cDNA, it is regarded as the standard RNA-seq technology, and its
primary workflow and limitations are well known (Stark et al. 2019). The Ion Torrent
protocol offers an alternative to Illumina technologies as it relies on pH
measurements to read nucleotide sequences. Along with differences in sequencing
technologies between these two platforms, there are also subtle variations in the
data they generate. While Illumina data has uniformly-sized sequence reads in a
single experiment, Ion Torrent reads have variable lengths (Lahens et al. 2017).
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However, the emergence of long-read cDNA sequencing and dRNA-seq methods
may soon replace short-read sequencing methods, as users look for methods that
can provide better data on isoform levels. A DGE assay using the Illumina
short-read sequencing platform involves several steps, including RNA extraction,
cDNA synthesis, adaptor ligation, PCR amplification, sequencing, and analysis.
The resulting cDNA fragments are typically less than 200 bp due to mRNA
fragmentation and size selection during library purification. While RNA-seq is a
robust technique, there are potential sources of imperfections and biases that can
arise during both sample preparation and computational analysis. These limitations
may impact the ability of the experiment to address specific biological questions,
such as accurately identifying and quantifying which isoforms of a gene are
expressed (Stark et al. 2019).

DNA Microarray

While hybridization-based approaches, including microarray technologies, have
traditionally been used for expression profiling in toxicogenomics, they have
gradually been replaced by RNA-seq and other next-generation sequencing
methods (Nuwaysir et al. 1999; Rao et al. 2019; Zhao et al. 2014). Public
repositories offer an abundance of microarray gene expression datasets that are
readily accessible for research purposes (Taminau et al. 2012).

The genetic information encoded in DNA is expressed as proteins through the
intermediate step of mRNA synthesis and subsequent translation. Gene expression
can be indirectly assessed by analyzing the various mRNAs present in a sample.
However, mRNA is relatively unstable and needs to be converted into a more stable
form, such as cDNA, before further analysis. To label cDNA, fluorescent dyes such
as Cy3 (green) and Cy5 (red) are used. Microarrays work based on the principle
that complementary sequences will bind to each other. In this technique, unknown
DNA molecules are fragmented using restriction endonucleases, and fluorescent
markers are attached to these DNA fragments. The labeled fragments are then
allowed to bind to probes on a DNA chip, and unbound fragments are washed away.
The bound DNA fragments can be identified by their fluorescence emission upon
excitation with a laser beam, and a computer records the pattern of fluorescence
emission and DNA identification (Govindarajan et al. 2012).

RNA-Seq and microarrays differ primarily in that RNA-Seq enables complete
sequencing of the entire transcriptome, whereas microarrays only allow for the
profiling of predetermined transcripts/genes via hybridization (Rao et al. 2019).
There are two primary microarray platforms commonly used: Affymetrix and
Agilent. While there are similarities between the two, there are also several
differences. One significant distinction is that Agilent may use a two-color detection
method, whereas Affymetrix uses a single-color detection scheme. Another
difference is that Agilent typically requires only one 60-mer per gene or transcript,
while Affymetrix employs multiple 25-mers per transcript. Additionally, Agilent is
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considered to be highly reproducible and the most sensitive of the available array
platforms, while Affymetrix is a well-established platform with an extensive array
catalog, but requires a costly scanner upgrade for the higher density arrays.
(Hardiman 2004).

FAIR data and batch effect

Effective data management should not be viewed as an end goal. Rather, it serves
as a crucial pathway to uncovering new knowledge and fostering innovation.
Moreover, it facilitates the integration and reuse of data and knowledge by the wider
community, following the data publication process. Unfortunately, the current digital
ecosystem that surrounds the publication of scholarly data hinders the ability to fully
capitalize the research investments. As a partial response to this challenge, entities
such as science funders, publishers, and government agencies are now demanding
that researchers who receive public funding for their research projects must have a
plan for managing and stewarding the data generated during their research.
Effective data stewardship goes beyond mere collection, annotation, and archival,
encompassing the idea of providing long-term care for valuable digital assets to
ensure their discovery and reuse in future investigations, either on their own or in
conjunction with newly generated data. There are four fundamental principles,
Findability, Accessibility, Interoperability, and Reusability (FAIR), that guide the data
producers and publishers to navigate these challenges. By following these
principles, it is possible to optimize the benefits of modern, formal scholarly digital
publishing (Wilkinson et al. 2016).

Public repositories contain growing amounts of omics data, which provides a
diverse and valuable source of prior knowledge. This data can be particularly useful
in fields such as chemical risk assessment and pharmacological research.
Although standards for representing omics data have been clearly established, a
significant portion of this data is not fully compliant with the FAIR principles. As a
result, the integration and utilization of this data is limited (Wilkinson et al. 2016).
Rigorous data curation is needed to meet this challenge (Odell et al. 2021).
Although text mining and AI techniques have been suggested as potential solutions
to automate the process, an experienced curator is still irreplaceable, despite the
high accuracy of these methods. One aspect of this study was to test and evaluate
a software named ESPERANTO, a R/Shiny (Chang et al. 2022) application, which
aims to facilitate a simplified, semi-supervised curation process for omics metadata.
This approach involves active user participation in harmonizing data within a
standardized framework and improving data FAIRness, combining the benefits of
both automated and manual curation methods. Regardless of the user’s expertise,
the interactive graphical interface guides the user through the whole data curation
and integration pipeline. The purpose of ESPERANTO is to produce reproducible,
and high-quality curated metadata (Di Lieto et al. 2023).
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Non-biological variables can affect the data obtained from microarray or RNA-seq
experiments. Batch effects may arise from several sources, including variations in
ambient conditions during sample preparation, handling, amplification, labelling,
hybridization protocol, use of different sites or laboratories, various chip or platform
types, and varying scanners. These batch effects can negatively impact data quality
and lead to inaccurate or erroneous conclusions (Federico et al. 2020b; Kupfer
et al. 2012). Saarimäki and colleagues found that 35 datasets had to be excluded
from data quality assessment due to problems with their overall usability, primarily
stemming from experimental design issues. This suggests that many published
toxicogenomics datasets may have significant design flaws that could compromise
the validity of any findings derived from them. This highlights the importance of
critically evaluating even FAIRified data. Proper study design and randomization
are crucial in dealing with batch effects, as the most effective batch correction
methods like ComBat may not be able to correct data with improper study design
(Buhule et al. 2014; Federico et al. 2020b; Saarimäki et al. 2022).

For moderate batch effect there are correction methods. The SVA package includes
the R ComBat function, which can be utilized to mitigate the effects of known batch
variables and surrogate variables that are not associated with the variables of
interest. ComBat implements an empirical Bayes approach to estimate systemic
batch biases that affect large sets of genes. To perform batch correction using
ComBat, the variable of interest, any biological covariates, and a set of known
batches or surrogate variables are specified. However, it is important to note that
each run of the ComBat function can only address the effect of one batch variable,
and any additional variables that cause known batch effects can be directly added
to the linear model used for differential expression analysis. It is essential to keep in
mind that SVA can remove the effect of any biological information not addressed by
known phenotype-related variables, such as phenotypic subgroups of interest.
Therefore, an alternative linear modeling approach, such as the limma R package,
can be used to investigate the effect of covariates included in the model. Principal
Component Analysis (PCA) is a valuable tool that can help identify features that are
affected by batch surrogates. PCA can capture both biological and technical
variability and can quantify the effects of artifacts in the data, especially when
estimated after accounting for the biological variables (Federico et al. 2020b).
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Real-world networks and community detection

The world around us is filled with incredibly complicated systems. Take for instance,
society, which necessitates collaboration among billions of individuals, or
communication networks that integrate billions of cell phones with computers and
satellites. Our ability to comprehend and make sense of the world requires the
coherent activity of billions of neurons in our brains. Similarly, our biological
existence relies on the smooth interactions between thousands of genes and
metabolites within our cells. Collectively, these systems are referred to as complex
systems, highlighting the challenge of predicting their collective behavior from a
knowledge of their individual components. Given the crucial role these complex
systems play in our daily lives, as well as in science and economy, comprehending,
mathematically describing, predicting, and ultimately controlling them represents
one of the major intellectual and scientific challenges of the 21st century (Barabási
2016).

To comprehend the intricate mechanisms of a system that involves hundreds to
billions of interconnected elements, we require a comprehensive blueprint of the
system’s wiring diagram. In a social network, this would entail having an exact
record of your friends, the friends of your friends, and so on. In the internet, this
map shows us the interlinking of web pages. In a cell, the map corresponds to a
detailed list of chemical reactions and binding interactions that involve genes,
metabolites, and proteins (Barabási 2016). The basic parameters for mapping
these complex networks are nodes (vertices) and edges (links). Nodes represent
the components in the system and edges represent the interactions between the
nodes. The degree of a node, which represents the number of connections it has to
other nodes, is a fundamental characteristic of the node. The degree represents
how many contacts a certain node has to other nodes. In undirected networks the
total number of edges can be represented as the sum of node degrees where ki is
the degree of an individual node. In an undirected network the total number of links
can be expressed as, L:

L =
1
2

N∑
i=1

ki

A network can be directed or undirected. An example of an undirected network
would be a social network, where friendships are established bidirectionally. If
person A is friends with person B, then person B is also friends with person A. An
example of a directed network would be a transportation network, where the flow of
traffic moves in a specific direction, such as a highway or one-way street. Cars can
only travel in one direction on these roads, creating a directed network. Network
edges may also have a weight that are used to measure the strength of
relationships between nodes. For example in social networks the weight of each
edge may represent the strength or frequency of the relationship between two
individuals (Barabási 2016).
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Real-world networks are characterized by several properties that set them apart
from random or regular networks. Scale-free topology is a feature of many
real-world networks, such as the internet, social networks, and biological networks.
In these networks, there are a few highly connected nodes (hubs) and many poorly
connected nodes, resulting in a degree distribution that follows a power-law
distribution. Another property is the small-world phenomenon, where most nodes
can be reached from any other node by a relatively small number of steps, leading
to a short average path length and a high clustering coefficient. Additionally, many
real-world networks exhibit a community structure, where nodes form tightly
connected groups or communities. Real-world networks are often robust to random
failures but vulnerable to targeted attacks on highly connected nodes. Furthermore,
many real-world networks evolve over time and undergo changes such as growth,
rewiring, and deletion of nodes and edges. These properties have been observed
in various real-world networks, including social networks and biological networks
(Barabási 2016; Newman 2010).

Community detection in networks can be achieved by using various algorithms, two
of which are the walktrap algorithm and the Louvain algorithm. The walktrap
algorithm, a hierarchical clustering algorithm based on random walks, identifies
communities in the network by clustering together vertices that are more likely to be
visited by a random walk of a given length. The algorithm simulates random walks
on the graph and creates a dendrogram based on the results, where initially each
node is considered as a separate community. The algorithm then merges
communities based on the similarity of their random walk trajectories, with the
merging process repeated until a stopping criterion is reached. This can be a
minimum number of communities or a maximum depth of the dendrogram. By
cutting the dendrogram at a chosen level, a partition of the graph into communities
can be obtained. The algorithm is efficient, handles large-scale networks, and
works well with both directed and undirected sparse networks. Research has
shown that the walktrap algorithm performs well in identifying communities in
real-world networks and outperforms other community detection methods in terms
of accuracy (Pons and Latapy 2005; Lancichinetti et al. 2009).

The Louvain algorithm is a widely used community detection algorithm for
large-scale networks (Blondel et al. 2008). It is a bottom-up approach that aims to
optimize a modularity score to identify communities in the network. Modularity is a
measure of the density of edges within communities compared to the density of
edges between communities. Initially, the algorithm assigns each node to a
separate community and then iteratively merges communities to maximize the
modularity score. At each iteration, the algorithm evaluates the modularity gain that
would result from merging each pair of communities connected by at least one
edge. The algorithm selects the pair that would result in the largest modularity gain
and merges them into a new community. The process continues until no further
modularity gain can be achieved. The Louvain algorithm has several advantages. It
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is fast, scalable, and can handle large networks with millions of nodes and edges. It
is also relatively easy to implement and does not require extensive parameter
tuning. Additionally, the algorithm can identify communities at multiple scales,
revealing both smaller and larger communities within a network. The Louvain
algorithm has been applied to a wide range of networks, including social networks,
biological networks, and transportation networks, and has been shown to perform
well compared to other community detection algorithms in terms of both speed and
accuracy (Blondel et al. 2008; Held et al. 2016; Rahiminejad et al. 2018).

Systems pharmacology

Graph theory can be a useful tool for revealing significant gene-gene expression
associations, both in normal physiological states and under pathological conditions.
Currently, gene co-expression network analysis is used to explore the relationship
between pairs of genes and to identify gene networks or modules that serve as a
marker of dysfunctional biological processes in a disease (Federico et al. 2022).
Graph theory tools such as clustering algorithms, centrality measures, and
community detection algorithms can be used to identify functional modules within
these networks, predict new interactions, and understand the overall topology and
dynamics of the network. Systems biology, on the other hand, provides the
biological context for understanding the function and behavior of these networks, by
integrating experimental data from multiple sources and applying computational
methods to model and simulate biological processes. Together, graph theory and
systems biology provide a powerful framework for understanding the complex and
dynamic behavior of biological systems at the molecular level (Federico et al. 2022;
Gomez-Cabrero et al. 2014).

Systems pharmacology is an interdisciplinary field that combines the principles of
systems biology, drug pharmacology, physiology, mathematics, and biochemistry to
understand the mechanisms of drug action in a holistic and quantitative manner.
The goal of systems pharmacology is to identify drug targets, optimize drug
efficacy, and minimize drug toxicity by considering the complex interactions
between drugs, targets, and biological networks. This involves integrating
high-throughput experimental data, such as genomics, proteomics, and
metabolomics, with computational and mathematical models to predict the effects
of drugs on biological systems. Systems pharmacology has various applications in
drug discovery, drug repurposing, and personalized medicine (Leil and Ermakov
2015).

Quantitative Systems Pharmacology (QSP) has the potential to revolutionize drug
discovery and development for complex multi-factorial diseases, such as
Alzheimer’s, multiple sclerosis, and IPF, which can have devastating impacts on
patients and their loved ones. These diseases involve multiple physiological
processes, can affect multiple organs, and often have limited treatment options.
QSP can provide an integrated understanding of the pathology and the possible
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complex results of therapeutic interventions, offering an innovative approach for
pharmaceutical research and development, particularly in diseases that are poorly
translated from animal models (Leil and Bertz 2014).

Aims of the project

The primary objective of this project is to enhance the understanding of the
molecular mechanisms underlying idiopathic pulmonary fibrosis (IPF) by identifying
genes that could serve as potential biomarkers, and to investigate new medication
possibilities for treating IPF. Specifically, data will be analyzed from multiple cell
types to identify targets in pro-inflammatory and pro-fibrotic pathways, with the aim
of finding effective combination therapies. Additionally, the current state of
FAIRness (findable, accessible, interoperable, and reusable) of toxicogenomics
data in public repositories will be evaluated. Another goal is to integrate
network-based methods with meta-analytical approaches in the context of systems
pharmacology and drug repositioning. Through these efforts, the aim is to advance
our understanding of idiopathic pulmonary fibrosis and improve current therapeutic
approaches.
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Materials and methods

Tool versions

For downloading the metadata R version 4.2.1 was used on a local laptop with
GEOquery_2.66.0 (Davis and Meltzer 2007). For metadata curation ESPERANTO
(sEmi SuPERvised meta-dAta curatioN TOol) alpha testing versions were used
(Di Lieto et al. 2023). For downloading the FASTQ- files of the RNA-seq data from
European Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/) the tool used
was axel-2.15. FastQC v0.11.7 was used for the quality control of the FASTQ-files
(Andrews 2010). For trimming and filtering the adapters of the reads cutadapt
version 3.7. was used (Martin 2011b). For aligning the reads Hisat2-2.2.1 version
was used with grch38 as an index (Kim et al. 2019; Kim et al. 2015; Pertea et al.
2016; Zhang et al. 2021). For filtering and sorting the uniquely mapped reads from
the BAM -files samtools version 1.8-27-g0896262 was used (Danecek et al. 2021).
Axel, FastQC, cutadapt, samtools and Hisat2 were used in Unix Bash.

For constructing the count matrices the featureCounts from Rsubread_1.34.4
package was used in R version 3.6.0 (2019-04-26) (RStudio in server). For
differential expression analysis of the Microarray datasets eUTOPIA tool was used
(Marwah et al. 2019). Inside eUTOPIA arrayQualityMetrics_3.54.0, sva_3.46.0,
minfi_1.44.0 and limma_3.54.0 were used (Fortin et al. 2017; Kauffmann et al.
2009a; Leek et al. 2023; Ritchie et al. 2015a). For normalization of differential gene
expression analysis for RNA-seq data DESeq2_1.24.0 was used (Love et al. 2014).
In gene annotations gene symbols will be used. The annotation was performed with
org.Hs.eg.db_3.8.2 and biomaRt_2.40.1 (Carlson 2019; Durinck et al. 2009;
Durinck et al. 2005). biomaRt was used especially with microarray data where the
genes were annotated as probe names.

The adjustment of the expressiondata from different sources was performed with
pamr.batchadjust function from pamr_1.56.1 package in R (Trevor et al. 2022). The
adjusted expressiondata was used for the network inference. In meta-analysis for
calculating the effect-size gene rank e esc_0.5.1 package was used (Alessio et al.
2021). For p-value based rank metap_1.8 package was used (Mavridis and Higgins
2021). For computing the Borda count TopKLists_1.0.8 package was used
(Schimek et al. 2015). The GSEA analysis was performed with fgsea_1.24.0
package (Korotkevich et al. 2019).

The networks were built with INfORM functions offered by FHAIVE in R (Marwah et
al. 2018). The functions used for generating the ranked consensus matrix in order to
build the networks is get_ranked_consensus_matrix, parse_edge_rank_matrix and
get_iGraph. igraph_1.3.1 was used for making the graph objects (Csardi and Nepusz
2006). ComplexHeatmap_2.14.0 package was used for plotting the heatmaps (Gu
et al. 2016). For the enrichment analysis of the networks clusterProfiler_3.12.0 and
ReactomePA_1.28.0 packages were used (Wu et al. 2021; Yu et al. 2012).
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Datasets

The microarray data provided in this study were collected from the NCBI Gene
Expression Omnibus (GEO) public repository, while the RNA-Seq datasets were
retrieved from the European Nucleotide Archive (ENA). In total, 1062 samples were
collected, consisting of 634 disease samples and 428 healthy samples, across 25
datasets. The original datasets are represented in tables 1 and 2. In table 1 are
represented the datasets that are derived from some specific cell type. In table 2
are represented the datasets that are from biopsy samples. In table 3 are
represented the number of datasets RNA-seq and Microarray datasets and the
number of disease and healthy samples in each cell type and protocol. In both
tables 1 and 2, a number of datasets have a higher number of samples than
biological replicates, causing a discrepancy between the total number of samples
and the "disease/treatment + healthy" columns. It is worth noting that, for the
disease group, only the IPF samples were included.

In the analysis of dataset GSE70866 (Prasse et al. 2019b), only the samples from
Freiburgh were included (62 IPF and 20 healthy samples) due to a significant batch
effect observed between samples collected from different cities (Supplementary
Figure 57). In dataset GSE49072 (Yuanuan et al. 2013) There are familial IPF,
spontaneous IPF (15), familial IPF (8), healthy volunteer (45) and healthy relative
(16) samples. Only the spontaneous IPF and healthy relative samples were used in
the analyses. The healthy relative samples are from the relatives of the familial IPF
patients. The experimental design in the dataset GSE90010 (Marwick et al. 2018)
is slightly different from the other datasets. There are two experimental sets. In the
first experimental set there is 4 samples per group and 4 match paired groups:
human monocyte-derived macrophages (MDM) co-cultured with or without
apoptotic neutrophils and with or without lipopolysaccharides (1 ng/ml) for 9 hours.
In the second experimental set (n=4 per group, 2 groups) alveolar macrophages
from IPF and RB-ILD are patients isolated from bronchoalveolar lavage by cell
sorting, RNA isolated using Qiagen RNeasy Kit.The decision to include this dataset
is due to the lack of suitable datasets containing alveolar macrophages. Only the
alveolar macrophage samples from IPF were used, using the monocyte derived
macrophage control group as a control.

In dataset GSE185492 (the dataset does not provide a reference) the fibroblast
samples have been collected from apical and basal regions of the lung. Both
regions are in the healthy and in the disease samples and they all were used in this
study. Each sample in dataset GSE185492 consisted of two single-end FASTQ
read files, which were merged for downstream analyses. In dataset GSE40839
(Lindahl 2013) in the disease samples there are samples from systemic
sclerosis-associated interstitial lung disease (SSc-ILD) patients (8) and IPF patients
(3). Only the samples from IPF patients were used in the disease group. In
GSE11196 (Larsson et al. 2008) from each biological replicate the total RNA and
heavy ribosomial RNA have been sequenced. Only the total RNA samples were
used in this study. In GSE11196 they also used contractile and non-contractile gel
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matrices as a growth medium and the samples in both of the growth mediums were
used in this study. In the dataset GSE44723 (Peng et al. 2013) they compared
bleomycin induced fibrosis in mice to the samples from fibrotic IPF samples from
humans. In the study by Peng et al. 2013, they have samples from rapid (4) and
slow (6) progressing IPF and 4 healthy samples. Both samples from rapid and slow
patients were used in this study. The dataset GSE45686 (Parker et al. 2014) was
decided to discard since the sequencing process was done with Illumina
HumanHT-12 V4.0 microarray technique and eUTOPIA can only process
Affymetrix, Agilent and Illumina methylation data in terms of microarray data
(Marwah et al. 2019). The decision was based on two additional reasons: first, the
time used for MSc thesis is based on 40 credits, and there was already a sufficient
amount of data for MSc thesis work, and the workload is quite extensive in relation
to the project. Second, there were already several datasets from fibroblasts.

The dataset GSE150910 (Furusawa et al. 2020) includes samples from patients
with IPF (103) and hypersensitivity pneumonitis (HP) (82). Only the IPF (103) and
healthy (103) samples were used. Dataset GSE213001 (the dataset does not
provide a reference) contains samples from patients with IPF and healthy controls,
and only these samples were included in the study. The ILD and CLAD (chronic
lung allograft dysfunction) were excluded from this study. There are several
samples from each replicate from different lung locations (apical & basal) and left
and right lungs and the number of samples from each biological replicate differs
within each biological replicate. In GSE124685 (McDonough et al. 2019) several
samples were collected from each biological replicate. The number of samples from
each biological replicate varied. In dataset GSE199949 (the dataset does not
provide a reference) from each biological replicate a biopsy from central and
peripheral lung regions from each IPF and healthy lungs were obtained. In dataset
GSE199152 (the dataset does not provide a reference) there are 23 disease
samples (20 UIP) and 3 (RA-ILD) and 4 healthy samples. The samples from
patients with usual interstitial pneumonia (UIP) were included in the IPF group, as
these two diseases are often used synonymously (Bois and K. 2007). This quote is
from the GSE199152 page on the GEO website: "The goal of this study is to
compare transcriptome profiling (RNA-seq) of lung tissue biopsies derived from
patients with idiopathic pulmonary fibrosis (IPF or IPF-UIP).". The RA-ILD samples
from GSE199152 dataset were excluded from this study.

In dataset GSE166036 (DePianto et al. 2021), there are 28 samples from patients
with IPF and 8 samples from patients with SSc-ILD. However, only the IPF samples
were used in this study. The dataset includes both BAL and biopsy samples. For
network inference, the IPF BAL samples (8) and healthy BAL samples (4) were
used separately. For the biopsy samples, there were 10 IPF samples and 3 healthy
samples. The remaining samples in this dataset, which were from patients with
SSc-ILD and cell digest samples, were excluded from the analysis. In dataset
GSE1834316 (the dataset does not provide a reference), both IPF (10) and fibrotic
hypersensitivity pneumonitis (fHP) samples are available, but only the IPF samples
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were included in this study. The fHP samples were excluded. In dataset GSE21369
(Cho et al. 2011), there were multiple diseases represented: 11 UIP, 5 non-specific
interstitial pneumonia (NSIP), 2 cryptogenic organizing pneumonia (COP), 2
respiratory bronchiolitis-interstitial lung disease (RB-ILD), 2 HP, and 1
uncharacterized fibrosis (UF). However, only the UIP samples were used, along
with 6 healthy samples, in this study.

For GSE173355 (Konigsberg et al. 2021) the raw sequencing data was not available,
but the DESeq2 normalized data was usable since the same normalization method
was used in this study as in GSE173355. In dataset GSE24206 (Meltzer et al. 2011),
there are 1-2 samples from each biological replicate, with samples from upper and
lower lobes of the lung and from advanced and early stage IPF. All the IPF samples
were analyzed together with the healthy samples, but disease stage was used as
a covariate in the analysis. Since dataset GSE76808 (Christmann et al. 2014) only
contains samples from patients with SSc-ILD and no IPF samples, the whole dataset
was excluded from this study. In dataset GSE72073 (Geng et al. 2015), the control
samples were from normal tissue of primary spontaneous pneumothorax patients.
In dataset GSE169500 (Brereton et al. 2022), the samples are grouped by disease
and tissue source, and are bulk fixed paraffin embedded (FFPE) samples. There
were healthy non-fibrotic lung tissue samples from alveolar septae (n=10), as well
as UIP/IPF FFPE lung tissue myofibroblast foci (n=10) and adjacent non-affected
alveolar septae (n=10). The comparison in this study was between the disease and
healthy samples. The dataset GSE94060 (Megan et al. 2020) was excluded from
the analysis because all the genes had an adjusted p-value of 1 in the differential
gene expression analysis. The number of replicates in the data was low, and it
was clear from the PCA plot (supplementary figures) that the IPF samples were
clustered between the healthy samples, indicating that there was no statistical power
in the analyses. In dataset GSE99621 (Luzina et al. 2018), there are three biological
replicates in both disease and healthy groups. There are two to three samples from
each replicate in the healthy group so that there are eight samples in the healthy
group altogether. In the disease group, there are altogether 18 samples and 4-7
replicates per each biological replicate. The samples have been taken from scarred
and normal tissue, and the scarring was used as a covariate in the analyses in this
study.
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Table 1: Datasets used for the study that contain other than biopsy as a cell type. Note that the contents of "GEO-dataset" and "Citation" columns are hyperlinks. The

disease/treatment column numbers refer to biological replicates (if known) and number of samples are the samples in GEO.

GEO-dataset Platform Citation Disease/treatment Healthy Number of samples Cell type

1. GSE70866 Agilent-028004 SurePrint G3 8x60K 30141961 176 (IPF) 20 196 BAL
2. GSE151673 Illumina NextSeq 500 32605572 (IPF) 5 5 10 Epithelial

from mesenchymal
stem cells

3. GSE49072 Affymetrix U133A 23924348 15 (IPF) + 8 (FPF) = 23 61 84 Alveolar macrophage
4. GSE90010 Affymetrix 2.1 ST Array 29867198 4 (IPF) + 4 (RBILD) = 8 4 12 Alveolar macrophage
5. GSE185492 Illumina NovaSeq 6000 NA 12 (IPF) 12 24 Fibroblast
6. GSE40839 Affymetrix U133A 23915349 (SSc-ILD)8 + (IPF) 3 = 11 10 21 Fibroblasts
7. GSE11196 Affymetrix U133 Plus 2.0 187951029 (IPF) 6 6 24 Fibroblasts
8. GSE44723 Affymetrix U133 Plus 2.0 23565148 (IPF) 10 4 14 Fibroblasts
9. GSE45686 Illumina HumanHT-12 V4.0 24590289 (IPF) 5 5 40 Fibroblast
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Table 2: Datasets used for the study that contain biopsy tissue as a cell type. Note that the contents of "GEO-dataset" and "Citation" columns are hyperlinks. The

disease/treatment column numbers refer to biological replicates (if known) and number of samples are the samples in GEO.

GEO-dataset Platform Citation Disease/treatment Healthy Number of samples Cell type

10. GSE150910 Illumina NovaSeq 6000 32602730 (IPF) 103 + (HP) 82 = 185 103 288 Biopsy
11. GSE213001 Illumina HiSeq 3000 NA (IPF) 20 + (ILD) 9 + (CLAD) 3 = 32 14 139 Biopsy
12. GSE124685 Ion Torrent Proton (Homo sapiens) 31600171 (IPF) 10 6 84 Biopsy
13. GSE199949 Illumina HiSeq 4000 NA (IPF) 13 8 42 Biopsy
14. GSE92592 Illumina HiSeq 2000 28230051 (IPF) 20 19 39 Biopsy
15. GSE199152 Illumina HiSeq 2500 NA (UIP) 20 + (RA-ILD) 3 = 23 4 27 Biopsy
16. GSE53845 Agilent-014850 4x44K G4112F 25217476 (IPF) 40 8 48 Biopsy
17. GSE166036 Illumina HiSeq 4000 33705361 (IPF) 28 + (Sc-ILD) 8 = 36 13 49 Biopsy, BAL
18. GSE184316 Ion Torrent Proton NA (fHP) 9 + (IPF) 10 = 19 6 100 Biopsy
19. GSE110147 Affymetrix 1.0 ST Array 30111332 (IPF) 37 11 48 Biopsy
20. GSE21369 Affymetrix U133 Plus 2.0 21241464 (UIP) 11 + 5 (NSIP) + 2 (COP) 6 29 Biopsy

+ 2 (RB-ILD) + 2 (HP) + 1 (UF)=23
21. GSE173355 Illumina NovaSeq 6000 34038697 (IPF) 24 14 37 Biopsy
22. GSE24206 Affymetrix U133 Plus 2.0 Array 21974901 (IPF) 11 6 23 Biopsy
23. GSE76808 Affymetrix U133A 2.0 Array 24574232 (SSc-ILD) 7 4 18 Biopsy
24. GSE72073 Affymetrix Transcriptome Array 2.0 26453058 (IPF) 5 3 8 Biopsy
25. GSE169500 Ion Torrent PGM 35188460 (IPF) 10 20 30 Biopsy
26. GSE94060 Affymetrix 1.0 ST Array 32533805 (IPF) 5 4 9 Biopsy
27. GSE99621 Illumina HiSeq 2500 29329637 (IPF) 3 3 26 Biopsy

21

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150910
https://www.ncbi.nlm.nih.gov/pubmed/32602730
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213001
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124685
https://www.ncbi.nlm.nih.gov/pubmed/31600171
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199949
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92592
https://www.ncbi.nlm.nih.gov/pubmed/28230051
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199152
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53845
https://pubmed.ncbi.nlm.nih.gov/25217476/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166036
https://pubmed.ncbi.nlm.nih.gov/33705361/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184316
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110147
https://pubmed.ncbi.nlm.nih.gov/30111332/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21369
https://pubmed.ncbi.nlm.nih.gov/21241464/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE173355
https://pubmed.ncbi.nlm.nih.gov/34038697/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24206
https://pubmed.ncbi.nlm.nih.gov/21974901/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76808
https://pubmed.ncbi.nlm.nih.gov/24574232/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72073
https://pubmed.ncbi.nlm.nih.gov/26453058/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169500
https://pubmed.ncbi.nlm.nih.gov/35188460/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94060
https://pubmed.ncbi.nlm.nih.gov/32533805/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99621
https://pubmed.ncbi.nlm.nih.gov/29329637/


Table 3: Datasets from different cell types. The number below RNA-seq represents the number of RNA-seq datasets and the number below Microarray represents the
number of Microarray datasets. The number below D represents the number disease samples and number below H represents the healthy samples.

Biopsy Macrophage Fibroblast Epithelial BAL
RNA-seq Microarray RNA-seq Microarray RNA-seq Microarray RNA-seq Microarray RNA-seq Microarray

11 5 0 2 1 3 1 0 1 1
D H D H D H D H D H D H D H D H D H D H

391 278 112 34 0 0 19 49 12 12 25 26 5 5 0 0 8 4 62 20
Disease Healthy Disease Healthy Disease Healthy Disease Healthy Disease Healthy

503 312 19 49 37 38 5 5 70 24
Overall

Disease Healthy
634 428
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Metadata curation

The metadata curation was executed with the ESPERANTO software.
ESPERANTO is a R/Shiny (Chang et al. 2022) application performing a streamlined
semi-supervised curation of transcriptomics metadata in compliance with GLP
standards if needed. The user is actively involved in data harmonisation in a
consistent framework. This approach enhances the data FAIRness, merging the
advantages of both automated and manual curation approaches. The interactive
graphical interface guides the user through the whole data curation and integration
pipeline. ESPERANTO ensures a streamlined and standardized transcriptomics
metadata harmonisation and the construction of a custom vocabulary. Both the
metadata and vocabulary are essential inputs, or optionally, a previously saved
curation session can be restored. During the curation process, the software assists
the decision-making of the user on each modification before implementing it on the
data and records the operation automatically (Di Lieto et al. 2023).

ESPERANTO performs the harmonisation of the uncurated transcriptomics
metadata through the cross-comparison with a precompiled reference vocabulary.
Essentially, the curation process takes place in three stages: 1) consistent
renaming of table columns 2) deletion of column duplicates 3) potential editing of
any remaining content. Any cross-comparison result is shown to be validated, or
alternatively the user can edit all unique instances, storing the processed terms in a
temporary-vocabulary. Once multiple datasets have been curated, the tool allows to
evaluate their integration, highlighting potential inconsistencies among them and/or
the vocabulary through a semaphore color system. The vocabulary is distinguished
by 2 linked pairs of key:synonym(s) dictionary type objects (Lai 2022). Each feature
in the metadata ties to all potential instances of the feature; both feature and
instances are associated to their synonyms (i.e. "sex", "gender", "Male, Female",
"M,F", "1,0"). Each round of curation offers the possibility to customise the
vocabulary with new features and instances. Evaluation follows the color-coded
mechanism established in the integration of multiple datasets (Di Lieto et al. 2023).

All the datasets underwent metadata curation and harmonisation. The curation
process of the metadata consisted in the definition and usage of a common data
model for all of the collected datasets. The dictionary, made with ESPERANTO
curation process, to which the raw meta-data were mapped to, is reported in
suppelmentary data. The data dictionary describes all the variables reported in the
final metadata tables. For each variable, the description, type and allowed values
are reported. This procedure significantly increases the FAIRness of publicly
available IPF transcriptomics data and represents a valuable "ready-to-use"
resource available to the scientific community (Di Lieto et al. 2023; Federico et al.
2020a; Wilkinson et al. 2016).
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Preprocessing the RNA-seq data and differential gene expression
analysis

The state of the art of a typical RNA-Seq preprocessing pipeline is shown in Figure
4. The process comprises the following steps: quality check, reads alignment, raw
counts extraction, counts normalization and filtering and batch effect estimation and
correction (Conesa et al. 2016; Federico et al. 2020b).

Figure 4: RNA-seq preprocessing pipeline.

Deep sequencing procedures may suffer from biases, which should be detected and
corrected through an accurate quality check prior to upstream analyses. A pre-
analytical check of the quality of the extracted RNA is necessary. There is not a
current consensus to confirm whether a sample is unusable based on the levels
of RNA degradation. The first step for an accurate analysis of sequencing-based
transcriptomics data is the quality check of the raw reads. This step is essential in
order to highlight biases and library contamination that might have occurred during
the library preparation or sequencing procedure. One of the most used software to
perform a quality check of the raw reads is FastQC and it was also used in this study.
FastQC enables the analysis of multiple samples and offers a graphical interface.
The Phred score, which quantifies quality, is determined using the following formula:

p = −10 ∗ log10(p)

where "p" represents the probability of an error in base-calling (Ewing and P. 1998;
Federico et al. 2020b). In general, when the Phred score of the 3’ bases of reads
exceeds a certain threshold, it is advisable to "trim" the reads to achieve acceptable
quality throughout the entire sequence. Cutadapt (Martin 2011a), TrimGalore and
the FASTX are the most commonly used read trimmers. These software tools can
remove residual adapters used in library construction as well as trim low-quality
bases (Federico et al. 2020b). In this study Cutadapt was used for low quality read
trimming. The settings for Cutadapt were a Phred quality score of 20 was selected,
indicating a 1% chance of finding an incorrect base call among 100 bases.
Additionally, a minimum read length of 60 bases was utilized.

The next step involves aligning the RNA-Seq reads to a reference genome to
assign each sequenced read to a specific location on the genome or transcriptome.
It is important to note that transcripts in eukaryotic genomes consist of
non-contiguous regions (e.g., introns), and as a result, alignment tools for RNA-Seq
reads should be able to handle spliced alignment with exceedingly large gaps. In
this study, the HISAT2 algorithm was employed for read alignment. HISAT2 utilizes
an innovative and efficient genome indexing method called Graph-based FM index
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(GFM), which is an extension of the Burrow-Wheeler Transform (BWT). This
method allows for the alignment of sequencing reads against both a genome
representative of the general human population and a single reference genome.
Additionally, HISAT2 utilizes a vast collection of local indexes covering genomic
regions of 56 kilobases (Kim et al. 2019).

Assigning the mapped reads to specific genomic features such as genes or exons
is critical after completing read mapping. This step is essential for quantifying
gene/transcript expression and selecting the appropriate annotation is crucial.
There are currently numerous annotations available, produced by different
consortia. Quantifying gene expression accurately is crucial for transcriptome
analysis in a toxico/pharmacogenomics setting as it aims to study the possible
deregulation of gene expression upon exposure to a particular compound in a
biological system. The aligned raw reads are summarized into a count matrix in this
step, which can be utilized for differential expression analysis (Liao et al. 2019;
Federico et al. 2020b). The count matrix in this study reports the genes in rows and
samples in columns. The Bioconductor Rsubread package was utilized to construct
the count matrices. This package contains functions for various steps of
preprocessing NGS reads, as well as alignment and read summarization.
Specifically, the featureCounts function was utilized for generating the matrices
(Liao et al. 2019).

Preprocessing the microarray data and differential gene expression
analysis

The preprocessing and differential expression analyses of the microarray datasets
were performed with eUTOPIA software. eUTOPIA has been developed with R
programming language, and it includes a graphical interface layer created with the
R Shiny web development framework (Chang et al. 2022). eUTOPIA has the
capability of processing data from four different microarray platforms: Agilent gene
expression two-color microarray data (Samples specific to different colors
channels), Agilent gene expression one-color microarray data, Affymetrix gene
expression microarray data, and Illumina methylation microarray data (Marwah
et al. 2019). In this particular study, data from all platforms, with the exception of
methylation data, were analyzed. The microarray preprocessing pipeline is
illustrated in the Figure 5.

Figure 5: Microarray preprocessing pipeline.

There are seven main steps in the workflow: 1. data input, 2. quality control &
filtering, normalization, batch correction & annotation and differential analysis
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eUTOPIA requires that the user provides a phenotype information file (metadata)
with all biological and technical variables of the samples in the experiment.
Depending on the microarray platform being used arrayQualityMetrics R package
was utilized to generate a quality control report from the raw microarray data
(Kauffmann et al. 2009b). Before normalizing the data, it is crucial to exclude any
low-quality probes from the experimental dataset. To evaluate the quality of probes
in gene expression platforms, their robustness against the background signal
(measured by negative control probes) is analyzed. The probes are evaluated
based on an expression value or p-value threshold (methylation data) obtained from
the background signal, for a specified percentage of samples selected by the user.
Probes that do not pass this evaluation are considered unreliable and are filtered
out. Quantile normalization was used for normalizing the expression values.
eUTOPIA uses methods from the limma package (Marwah et al. 2019; Ritchie et al.
2015b).

The sva function from the sva R package was applied in eUTOPIA for the batch
correction. Batch effects in microarray data may arise from various known variables
such as RNA quality, experiment date, dye, and other hidden sources of variation
that cannot be explained by these known variables (Jeffrey et al. 2022). The
metadata contains information on known biological variables like treatment, disease
status, age, tissue, and technical variables such as dye and array. By utilizing the
sva function, unknown sources of variation can be detected in the data. The
differential analysis in eUTOPIA is performed with linear model application in the R
package limma. Specifically, the lmFit function is utilized to fit gene-wise linear
models to the microarray data, with the design of the model including the
comparison between IPF and healthy samples as the biological variable of interest
including the covariates (biological and technical batch variables from sva) in the
model. The contrasts of interest are then specified to obtain contrast specific
coefficients from the original coefficients of the linear model. The eBayes function is
applied to assess differential expression by using the fitted model with the contrast
coefficients. Final reporting of the differentially expressed genes is performed by
using the toptable function where adjusted p-value for the multiple comparisons
was obtained with Benjamini & Hochberg -method (Marwah et al. 2019).

Dataset integration

To address batch effects in the dataset, integration was performed separately for
each cell type and for both disease and healthy samples. The integration was also
done separately for microarray and RNA-seq datasets. Given that the gene
expression datasets were obtained from various sources, it is essential to perform
batch adjustment in order to accurately infer network relationships. Batch effects
can result in inaccurate correlations between genes and interfere with the
identification of biologically meaningful relationships (Federico et al. 2020b).
Therefore, batch adjustment is necessary to remove systematic variation due to
technical factors, enabling a more accurate identification of true biological

26



relationships. The process of batch adjustment was carried out using the
"multi_studies_adjust" function, which is a part of a meta-analysis pipeline that
underwent validation as a part of this study. In this function the dataset integration
is performed with "pamr.batchadjust" function from "pamr" (Trevor et al. 2022)
package. pamr.batchadjust performs a genewise one-way ANOVA adjustment for
expression values. Assuming that sample j is part of batch b and B represents the
entire set of samples in that batch, x(i, j) represents the expression level of gene i
in sample j. The pamr.batchadjust -function adjusts the expression level x(i, j) by
subtracting the mean expression level of gene i across all samples in batch b,
denoted by mean[x(i, j)] (Trevor et al. 2022; Tibshirani et al. 2011)

When the distribution of samples across batches and groups is balanced, removing
the average batch effect (zero-centering) will remove most of the variation due to
batch differences, while preserving the variation due to differences between the
groups. This can increase statistical power in downstream analyses. However, in
unbalanced designs where batch differences are partially influenced by group
differences, batch correction may also reduce genuine group differences, leading to
reduced statistical power. In cases where there are multiple groups and the
distribution of samples across batches is very uneven, batch correction may even
induce spurious group differences (Nygaard et al. 2016). The benefits of this
method is that it is easy to compute and not requiring essentially additional
computation after the initial cross-validation. Studies indicate that it is reasonably
accurate in general (Tibshirani et al. 2011; Nygaard et al. 2016). The PCA-plots of
the dataset integration are illustrated in Figures 6-9.

Meta-analysis

The meta-analysis was performed individually for each cell type, as well as for all
datasets combined and for all the datasets except the biopsy datasets. The first
input used to perform the meta-analysis was a "metadata-frame" consisting of the
adjusted p-values for each gene in each dataset (gene intersection between the
datasets). The second input of the function is a vector called "class" that includes
the class labels for each sample. In the case of a two-class unpaired design, the
class label can be either 0 (representing the control group) or 1 (representing the
case group). For one-class data, the label for each sample should be 1. In this
study, "one-class data" was utilized for the meta-analysis since the group difference
is already reflected in the adjusted p-values. The third input is a vector called
"origin" that contained the origin labels for each sample.

The meta-analysis gene ranking function "run_ensembl_metanalysis" utilizes three
methods to rank genes. Firstly, it employs the esc::effect_sizes() function (Alessio
et al. 2021) to calculate the effect sizes for each gene. This method takes into
account the mean adjusted p-value, sample sizes (as a vector representing the
number of genes in each sample), and gene names. The fun argument is set to
"chisq" to compute effect sizes using the chi-squared method. Secondly, a p-value
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Figure 6: PCA plots of disease and healthy samples of RNA-seq biopsy samples
before and after the batch adjustment (need to make again). Upper figure is the
disease samples and lower figure the healthy samples.
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Figure 7: PCA plots of disease and healthy samples of fibroblast microarray samples
before and after the batch adjustment. Upper figure is the disease samples and lower
figure the healthy samples.

Figure 8: PCA plots of disease and healthy samples of macrophage microarray
samples before and after the batch adjustment. Upper figure is the disease samples
and lower figure the healthy samples.
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Figure 9: PCA plots of disease and healthy samples of biopsy microarray samples
before and after the batch adjustment. Upper figure is the disease samples and
lower figure the healthy samples.
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based rank is calculated by aggregating the adjusted p-values for each gene using
the sum of logs method. The metap::sumlog() function is used to aggregate the
p-values for each gene (Mavridis and Higgins 2021). Thirdly, the function computes
a rank product-based rank for the adjusted p-values. The RP.advance function
(O’Quigley et al. 2020) is used to compute the rank product statistic and p-values
for each gene across all samples, taking in the adjusted p-value data, class, and
origin. In this study, class is set to 1 for all samples and origin is also set to 1 since
the data is the adjusted p-values, not the gene expression matrix. Finally, the output
of RP.advance is used to compute the Borda count ranks (De Borda 1781; Sokolova
et al. 2017).

Figure 10: Schematic illustration of the gene ranking pipeline. Figure created with
BioRender.com

The meta-analysis gene ranking function utlilizes the TopKLists::Borda function to
integrate the rankings and generates a final ranking. If the metric parameter is set
to "median", the final ranking is computed based on the median Borda score. If it is
set to "mean", the final ranking is computed based on the mean Borda score.
Finally, the function returns the final ranked genes in a data frame format, either
with the median or mean metric depending on the choice made. The meta-analysis
gene ranking pipeline is illustrated in Figure 10.

Effect size measures the magnitude of differences, providing an estimate of the
practical significance of the difference. Effect size is a standardized measure,
making it easier to compare across different studies and data sets. (Sullivan and
Feinn 2012; Cohen 1988). However, effect size can be influenced by sample size,
so it can be sensitive to outliers or small number of replicates. Besides, effect size
does not provide information about the statistical significance of the difference
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(Cumming 2012; Lipsey and Wilson 1993). On the contrary, p-value provides a
measure of statistical significance, indicating the probability of obtaining the
observed results by chance alone. Sample size affects severely to the p-value, so it
can be sensitive to outliers or small number of replicates. Furthermore, it is worth
noting that the concept of p-value is becoming increasingly frustrating in the
scientific community. Apart from being open to ambiguous interpretation, the
p-value can be artificially reduced to any desired level by simply increasing the
sample size (Demidenko 2016).

Rank product is a robust non-parametric method that can handle violations of
assumptions about normality or equal variance. Moreover, rank product does not
require a pre-determined threshold for statistical significance, making it appropriate
for meta-analyses with diverse datasets. This method is based on biological
reasoning related to the fold-change (FC) criterion. It identifies genes that
consistently exhibit the strongest upregulation or downregulation across several
replicate experiments. Additionally, it provides a solution to overcome the
differences among multiple datasets, making it applicable for meta-analysis.
Disadvantage of rank product ranking is that it assumes that the effects being
measured are additive, so it may not be appropriate for data with interactions or
non-linear relationships. Despite this limitation, the rank product method
consistently displays high levels of reproducibility and specificity in both simulated
and actual data applications, regardless of the degree of heterogeneity among
datasets. This indicates that gene rankings generated through the rank product
method are more resilient to noise and other underlying variables present in
different datasets, in comparison to the effect size and p-value ranking methods
(Breitling et al. 2004; Hong and Breitling 2008).

To integrate the different ranking methods, the Borda count method was utilized.
The Borda count method is a non-parametric method, which means that it does not
make assumptions about the underlying distribution of the data. This makes it a
useful tool when working with data that does not conform to normal distribution. In
addition, the Borda count method is considered robust as it is not significantly
affected by outliers. This is particularly useful when working with large datasets
where the presence of outliers can have a significant impact on the analysis.
Overall, the Borda count method is a useful tool for ranking genes from multiple
studies, particularly when working with large and complex datasets. It is a simple,
non-parametric, and robust method that can be used with any type of data, making
it a versatile tool (De Borda 1781; Qiu et al. 2016; Saari 1995; Sokolova et al.
2017).

Integrating rank information from the three methods mentioned offers several
benefits. Using multiple methods can increase the statistical power of the analysis.
By utilizing this approach, it is possible to discover additional genes that are
genuinely associated to the phenotype of concern. Using multiple methods can
help to ensure that the results are reproducible. If same genes are consistently
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highly ranked across all three methods, this increases confidence in their biological
relevance. Overall, using multiple methods to rank genes can increase the
robustness, comprehensiveness, statistical power, and reproducibility of the
analysis (Perscheid et al. 2019; Richardson et al. 2016).

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed for the gene list that was
obtained from the meta-analysis against a gene set provided through a GMT file.
GSEA analysis was performed with the "fgsea" package in R, utilizing the
"c2.cp.reactome.v2023.1.Hs.symbols.gmt" GMT file, which is part of the Molecular
Signatures Database (MSigDB) (Liberzon et al. 2011). This particular GMT file
contains 1654 gene sets, representing canonical pathways gene sets derived from
the Reactome pathway database(Liberzon et al. 2011).

The function "compute_gsea" uses the gmtPathways function from the fgsea
package to read the GMT file specified in the input argument and create a list of
gene sets. The fgsea function is then used to perform the GSEA analysis by
comparing the gene list from the meta-analysis against each gene set in the GMT
file.The fgsea function takes several parameters including: pathways – a list of gene
sets in GMT-file, stats – the ranked gene-list from the meta-analysis, minSize – the
minimum size of a gene set to be considered in the analysis, and nperm – the
number of permutations used in the calculation of the p-value. Additionally, the
plotGseaTable function from the fgsea package is employed to visualize the GSEA
results, where the topPathways argument specifies the number of top-scoring
pathways to display in the plot. Finally, the function returns the fgsea results as a
data-frame containing the enrichment p-value, Benjamini & Hochberg -adjusted
p-value, enrichment score, normalized enrichment score, and the size of the
pathway after removing genes that are not present in the gene list.

The function "compute_gsea_thresh" computes the GSEA threshold of the gene
rank based on the enrichment score. It takes in three input parameters: geneList,
which is a ranked gene list from the meta-analysis; fgsea_res, the GSEA result
obtained from the "compute_gsea" function; and background, a whole gene set
object derived from the fgsea::gmtPathways(gmt_file) function. First, the function
sorts the fgsea_res object by p-value in ascending order and identifies the
significant pathways using a p-value cutoff of 0.05. For each significant pathway,
the function calculates the GSEA enrichment score using the calcGseaStat function
from the fgsea package. Next, the function identifies the maximum enrichment
score and corresponding genes in the geneList and stores the index of the
corresponding genes in the max_vec vector. Finally, the function calculates the
median of the maximum enrichment score indices from all the significant pathways.

33



Network inference

The network inference was performed on the batch-adjusted integrated expression
matrices separately for both the disease and healthy samples, as well as for the
microarray and RNA-seq samples. INfORM functions, offered by the research
group FHAIVE, were used for the network inference (Marwah et al. 2018).The first
step was to call the "get_ranked_consensus_matrix" function. This function
computes a consensus matrix of gene expression data using the Context Likelihood
of Relatedness method, with Pearson correlation as the estimator. The resulting
consensus matrix represents the co-expression relationships between genes. The
next step is to get a list of ranked edges for each method based on the calculated
correlation matrix. Borda voting is then performed on the list of ranked edges for
each method to create a consensus ranking. Finally, a consensus binary matrix is
created by selecting the most significant ranked edges from the median rank of the
Borda result (De Borda 1781).

The next step was to utilize the "parse_edge_rank_matrix" function, which takes the
output of the "get_ranked_consensus_matrix" function as input and returns a list
containing a binary inference matrix and a ranked edge list. The "default" edge
selection strategy was employed, meaning that the function selects edges until it
reaches a threshold of input genes. In other words, the function adds edges in
descending order of rank until it has connected all the input genes with enough
edges. After obtaining the parsed edge rank matrix, the "get_iGraph" function
creates an igraph object from the input matrix. The function checks if the matrix is
symmetric. If it is not, the function generates a symmetric matrix by taking the
element-wise maximum of the original matrix and its transpose. Then, the function
generates an undirected igraph object from the adjacency matrix, setting the weight
to NULL. Following this, the function calculates several vertex-level attributes,
including betweenness centrality, closeness centrality, degree, eigenvector
centrality, and clustering coefficient, and assigns them to the vertices of the graph.
Finally, the function assigns default visual attributes (color and highlight color) to the
vertices and edges of the graph, and returns the resulting igraph object.

After obtaining the graphs, the "get_modules" function from the INfORM functions
was utilized to determine the communities in the graph. This function takes an
igraph object as input and a method argument specifying which community
detection algorithm to use. The "walktrap" method was used (Pons and Latapy
2005). Firstly, the optimal number of steps for the walktrap algorithm was
calculated. To achieve this, the modularity of the clustering was evaluated at
different step sizes (ranging from 2 to 10) using the "cluster_walktrap" function from
the igraph package. Then, the number of steps that resulted in the highest
modularity value was selected. Finally, the walktrap algorithm was applied using the
optimal step size, and the resulting community membership vector was returned.

The next step involved integrating the RNA-seq and microarray networks of disease
and healthy networks for each cell type and biopsy. However, as the macrophage
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networks had only microarray datasets and the epithelial networks only one
RNA-seq dataset, this step was not relevant for those networks. The Jaccard
similarity index was then calculated for all the modules between the RNA-seq and
microarray modules, and the 75th empirical quartile of the most similar modules
were included in the upstream analysis. The genes from the original graphs were
extracted, and it was most reasonable to take a union between the subgraphs since
the intersection resulted in an extremely disconnected graph. This indicates large
differences between the microarray and RNA-seq methods. Heatmaps illustrating
the Jaccard similarity indexes of the microarray and RNA-seq modules are shown in
Figures 11-16. The numbers of vetrices and edges for each network are
represented in Tables 4-8.

Jaccard =
length(intersect(A,B))

length(union(A,B))

Figure 11: Heatmap of Jaccard similarity indexes in biopsy disease networks, with
a 75 % quantile of 0.027 and a maximum value of 0.35. There are 9050 genes
included.

Figure 12: Heatmap of Jaccard similarity indexes in biopsy healthy networks with 75
% quantile of 0.055 and maximum value of 0.37. There are 6758 genes included.
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Figure 13: Heatmap of Jaccard similarity indexes in BAL disease networks with 75
% quantile of 0.0056 and maximum value of 0.22,. There are 12464 genes included.

Figure 14: Heatmap of Jaccard similarity indexes in BAL healthy networks with 75 %
quantile of 0.0026 and maximum value of 0.09. There are 10059 genes included.
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Figure 15: Heatmap of Jaccard similarity indexes in fibroblast disease networks with
75 % quantile of 0.014 and maximum value of 0.32. There are 7237 genes included.

Figure 16: Heatmap of Jaccard similarity indexes in fibroblast healthy networks with
75 % quantile of 0.034 and maximum value of 0.34. There are 5647 genes included.
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Table 4: Numbers of vertices and edges in biopsy networks. D represents the disease
network H represents the healthy network. micro means microarray.

Biopsy D RNA-seq Biopsy D micro Biopsy H RNA-seq Biopsy H micro
Vertices Edges Vertices Edges Vertices Edges Vertices Edges
10469 859270 15237 1281291 10469 1263699 15237 492850

Biopsy D union network Biopsy H union network
Vertices Edges Vertices Edges

9050 1188046 6758 747684

Table 5: Numbers of vertices and edges in BAL networks. D represents the disease
network H represents the healthy network. micro means microarray. The inconsistency
between the number of vertices in BAL RNA-seq vertices between healthy and disease
samples is because there were some vertices which Pearson correlation was zero in the
adjusted expression matrix in BAL healthy RNA-seq samples.

BAL D RNA-seq BAL D micro BAL H RNA-seq BAL H micro
Vertices Edges Vertices Edges Vertices Edges Vertices Edges
15236 195379 17322 622991 15106 133663 17322 453847

BAL D union network BAL H union network
Vertices Edges Vertices Edges
12464 503480 10059 249450

Table 6: Numbers of vertices and edges in fibroblast networks. D represents the disease
network H represents the healthy network. micro means microarray.

Fibroblast D RNA-seq Fibroblast D micro Fibroblast H RNA-seq Fibroblast H micro
Vertices Edges Vertices Edges Vertices Edges Vertices Edges
12929 397608 11398 412629 12929 387267 11398 139737

BAL D union network BAL H union network
Vertices Edges Vertices Edges

7237 324355 5647 137128

Table 7: Numbers of vertices and edges in macrophage networks. D represents the
disease network H represents the healthy network. micro means microarray.

Macrophage D micro Macrophage H micro
Vertices Edges Vertices Edges
11871 366291 11871 437531

Table 8: Numbers of vertices and edges in epithelial networks. D represents the disease
network H represents the healthy network. micro means microarray.

Epithelial D RNA-seq Epithelial H RNA-seq
Vertices Edges Vertices Edges
13527 121742 13527 194758
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Network enrichment analysis, drug detection, and visualization
methods

The Reactome pathway enrichment analysis was conducted on all modules of the
union networks in biopsy, BAL, and fibroblast, as well as on the microarray
macrophage and RNA-seq epithelial networks. To perform the network enrichment,
the "get_reactome_from_modules" function was utilized. This function iterates over
each module in the igraph object, extracts the gene names associated with that
module, and converts them to Entrez IDs using the "bitr()" function from the
clusterProfiler package. The ReactomePA::enrichPathway() function was then
employed to perform a pathway enrichment analysis, which calculates the statistical
significance of over-representation of each Reactome pathway among the set of
genes in that module. A p-value cutoff of 0.05 was used to specify the threshold for
statistical significance. If the pathway enrichment analysis identified any
significantly enriched pathways (i.e., those with a p-value below the cutoff), the
information was appended to a tab-separated text file that included the module
name from which the enriched module came. The function "dotplot" function from
the clusterProfiler package was used to generate a bubble plot visualization of the
pathway enrichment results.

Next, the modules and their sizes from healthy and disease samples were retrieved.
Modules containing less than ten genes were filtered out using the which() function.
To determine the similarity between gene modules of healthy individuals and those
with disease, a similarity matrix was constructed using the intersect() and union()
functions to calculate the Jaccard similarity coefficient. The most dissimilar module
between the two groups was then identified, and its genes were extracted. Next, the
most significant pathway from the enrichment analysis of the most dissimilar
module was retrieved, and the corresponding genes were extracted. The modules
were sorted based on centrality, and a table was created with the sorted genes and
their ranks.

Finally, the table containing the most enriched pathway genes from the most
dissimilar module between healthy and disease samples was merged with the
drug-target interaction data frame originating from open targets (Koscielny et al.
2017) parsed and offered by FHAIVE. The open targets data frame contains 2397
unique drugs but the dataframe has potential for further development. For example
pirfenidone couldn’t be found from the data frame. The reason for the absence of
pirfenidone in the OpenTargets might be that the mechanism of action of
pirfenidone has not been fully established (Grimminger et al. 2015). The drugs in
the final output were sorted by the gene rank.

After extracting the top 50 ranked genes from the meta-analysis, the corresponding
genes were retrieved from the open targets table that contained information on
drugs, and sorted based on their gene rank. Also, the genes belonging to the most
significant Reactome pathway, as indicated by the highest normalized enrichment
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score, were extracted, and the drugs targeting those genes were identified.

The visualization of the networks was carried out using the Gephi software version
0.10.1, where the Force Atlas algorithm was used for the layout. Only the
modularity algorithm available in Gephi, i.e. Louvain, was used. For visualization
purposes, a subset of the modules was selected, and the top 100 central genes
from each module were used. In the epithelial networks, there were approximately
200 modules, and hence, only the top 50 genes from each module were used.
Molecular structure visualizations were made with jmol-16.1.7 using data from
RCBS database and PubChem. Illustrations were created with BioRender.com and
Inkscape 1.1.
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Results

Networks

Network inference of biopsy samples: disease modules, pathway enrichment,
drugs and their targets

Figure 17: A heatmap indicating the Jaccard similarity indexes between the healthy
and disease modules in biopsy samples. The disease modules are arranged in order
from the least similar to the most similar, with the order being 7, 6, 3, 4, 2, 1, and 5.

Figure 17 shows the similarities between the healthy and disease modules in
biopsy samples. The disease modules are ordered from the most dissimilar to the
most similar, with the order being 7, 6, 3, 4, 2, 1, and 5. The Jaccard indexes for
modules 1 through 7 are 0.25, 0.23, 0.19, 0.19, 0.46, 0.18, and 0.16, respectively.
The sizes of the modules from 1 to 7 are 870, 1484, 3218, 778, 1212, 880, and 608
genes. The hub genes for modules 1 to 7 are EHF, EFR3A, GNAI2, COTL1,
FKBP8, FERMT2, and FOXC1, respectively.

Figures 18 and 19 display the Reactome pathways enriched in each module. Figure
18 shows the pathways enriched in the disease network, while Figure 19 shows
those enriched in the healthy network. In the disease network, the extracellular
matrix organization is the most enriched pathway in module 7, which is also the
most distinct module. This pathway was targeted for drugs, and Table 9 lists the
drugs that were targeted for the genes involved. In Figure 20 are represented the
visualizations of the biopsy disease network and the biopsy healthy network.
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Figure 18: Enriched Reactome pathways in disease biopsy modules. The X-axis
displays the module number, and the number in parentheses below indicates the
number of genes that have been mapped to at least one Reactome pathway within
that module.

Figure 19: Enriched Reactome pathways in healthy biopsy modules. The X-axis
displays the module number, and the number in parentheses below indicates the
number of genes that have been mapped to at least one Reactome pathway within
that module.
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Table 9: Drugs targeting the genes in the biopsy disease network in the most dissimilar module between the biopsy disease network and the biopsy healthy network. The
most enriched Reactome pathway in the disease module is the Extracellular Matrix Organization. Columns represent genes, drugs, the ranking of the gene in the
module, target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
DDR2 REGORAFENIB 3 discoidin domain receptor tyrosine kinase 2 neoplasm Small molecule Phase IV
COL6A2 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM 6 collagen type VI alpha 2 chain Dupuytren Contracture Enzyme Phase IV
COL6A2 OCRIPLASMIN 6 collagen type VI alpha 2 chain macular holes Enzyme Phase IV
MMP2 MARIMASTAT 29 matrix metallopeptidase 2 lung carcinoma Small molecule Phase III
LOXL2 SIMTUZUMAB 43 lysyl oxidase like 2 primary myelofibrosis Antibody Phase II
ELN VONAPANITASE 54 elastin chronic kidney disease Enzyme Phase III
ITGB5 CILENGITIDE 216 integrin subunit beta 5 glioblastoma multiforme Protein Phase III
ITGB5 INTETUMUMAB 216 integrin subunit beta 5 metastatic colorectal cancer Antibody Phase II
ITGB5 ABITUZUMAB 216 integrin subunit beta 5 prostate adenocarcinoma Antibody Phase II
COL6A3 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM 234 collagen type VI alpha 3 chain Dupuytren Contracture Enzyme Phase IV
COL6A3 OCRIPLASMIN 234 collagen type VI alpha 3 chain macular holes Enzyme Phase IV
TGFB3 FRESOLIMUMAB 285 transforming growth factor beta 3 malignant pleural mesothelioma Antibody Phase II
TNC F16IL2 400 tenascin C Merkel cell skin cancer Antibody Phase II
TNC 81C6 131I 400 tenascin C neuroblastoma Antibody Phase II
TNC F16SIP 131I 400 tenascin C cancer Antibody Phase II
VWF CAPLACIZUMAB 482 von Willebrand factor autoimmune thrombocytopenic purpura Antibody Phase III
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Figure 20: Graphs representing the biopsy samples’ disease and healthy networks.
The upper graph depicts the disease network, while the lower graph shows the
healthy network. The blue labels in the disease network indicate the drug targets.
Meanwhile, the black labels represent the central genes in the modules in both
networks. The red label corresponds to the most central gene in the disease module,
while the purple labels represent the most central genes in the modules that are most
similar between the healthy and disease networks.
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Network inference of BAL samples: disease modules, pathway enrichment,
drugs and their targets

Figure 21: A heatmap indicating the Jaccard similarity indexes between the healthy
and disease modules in BAL samples. The disease modules are arranged in order
from the least similar to the most similar, with the order being 3, 2, 1, 6, 5, 9, 4, 7,
and 8

Figure 21 shows the similarities between the healthy and disease modules in BAL
samples. The disease modules are ordered from the most dissimilar to the most
similar, with the order being 3, 2, 1, 6, 5, 9, 4, 7, and 8. The Jaccard indexes for
modules 1 through 7 are 0.14, 0.11, 0.07, 0.23, 0.18, 0.18, 0.26, 0.44, and 0.22 ,
respectively. The sizes of the disease modules from 1 to 9 are 656 1815, 1117,
3995, 3110, 271, 1090, 240, and 170 genes. The hub genes for modules 1 to 9 are
EMP1, DLG1, CDCP1, DNAJC19, MSRA, C2CD4C, KXD1, ZAP70, and PRR15L,
respectively.

Figures 22 and 23 display the Reactome pathways enriched in each module. Figure
22 shows the pathways enriched in the BAL disease network, while Figure 23
shows those enriched in the healthy network. In the disease network, the neutrophil
degranulation is the most enriched pathway in module 3, which is also the most
distinct module. This pathway was targeted for drugs, and Table 10 lists the drugs
that were targeted for the genes involved. In Figure 24 are represented the
visualizations of the BAL disease network and the BAL healthy network.
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Figure 22: Enriched Reactome pathways in disease BAL modules. The X-axis
displays the module number, and the number in parentheses below it indicates the
number of genes that have been mapped to at least one Reactome pathway within
that module.

Figure 23: Enriched Reactome pathways in healthy BAL modules. The X-axis
displays the module number, and the number in parentheses below it indicates the
number of genes that have been mapped to at least one Reactome pathway within
that module.
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Table 10: Drugs targeting genes in the BAL disease network in the most dissimilar module between the BAL disease network and the BAL healthy network. The most
enriched Reactome pathway in the disease module is the Neutrophil degranulation Pathway. Columns represent genes, drugs, the ranking of the gene in the module,
target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
MGAM ACARBOSE 165 maltase-glucoamylase type II diabetes mellitus Small molecule Phase IV
MGAM VOGLIBOSE 165 maltase-glucoamylase type II diabetes mellitus Small molecule Phase III
MGAM MIGLITOL 165 maltase-glucoamylase diabetes mellitus Small molecule Phase IV
CXCR1 REPARIXIN 169 C-X-C motif chemokine receptor 1 type I diabetes mellitus Small molecule Phase III
MMP9 MARIMASTAT 181 matrix metallopeptidase 9 lung carcinoma Small molecule Phase III
MMP9 ANDECALIXIMAB 181 matrix metallopeptidase 9 gastric adenocarcinoma Antibody Phase III
CD14 IC14 279 CD14 molecule amyotrophic lateral sclerosis Antibody Phase II
CXCR2 DANIRIXIN 293 C-X-C motif chemokine receptor 2 chronic obstructive pulmonary disease Small molecule Phase II
CXCR2 ELUBRIXIN 293 C-X-C motif chemokine receptor 2 ulcerative colitis Small molecule Phase II
CXCR2 NAVARIXIN 293 C-X-C motif chemokine receptor 2 asthma Small molecule Phase II
CXCR2 REPARIXIN 293 C-X-C motif chemokine receptor 3 breast carcinoma Small molecule Phase III
CXCR2 LADARIXIN 293 C-X-C motif chemokine receptor 2 bullous pemphigoid Small molecule Phase II
SELL RIVIPANSEL 303 selectin L Sickle cell anemia Small molecule Phase III
SELL BIMOSIAMOSE 303 selectin L chronic obstructive pulmonary disease Small molecule Phase II
MME SACUBITRIL 486 membrane metalloendopeptidase heart failure Small molecule Phase IV
HPSE MUPARFOSTAT 637 heparanase hepatocellular carcinoma Oligosaccharide Phase III
HBB EFAPROXIRAL 985 hemoglobin subunit beta cancer Small molecule Phase III
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Figure 24: Graphs representing the BAL samples’ disease and healthy networks.
The upper graph depicts the disease network, while the lower graph shows the
healthy network. There was no drug targets in the disease module ranked so high
that they are visible in this illustration. The black labels represent the central genes
in the modules in both networks. The red label corresponds to the most central gene
in the disease module, while the purple labels represent the most central genes in
the modules that are most similar between the healthy and disease networks.
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Network inference of fibroblast samples: disease modules, pathway
enrichment, drugs and their targets

Figure 25: A heatmap indicating the Jaccard similarity indexes between the healthy
and disease modules in fibroblast samples. The disease modules are arranged in
order from the least similar to the most similar, with the order being 1, 3, 5, 4, 2, and
6.

Figure 25 shows the similarities between the healthy and disease modules in
fibroblast samples. The disease modules are ordered from the most dissimilar to
the most similar, with the order being 1, 3, 5, 4, 2, and 6. The Jaccard indexes for
modules 1 through 6 are 0.08, 0.20, 0.12, 0.20, 0.13, and 0.68, respectively. The
sizes of the disease modules from 1 to 6 are 876, 2800, 838, 2416, 152, and 155
genes. The hub genes for modules 1 to 6 are EDNAJB9, KCNK1, FYN, FLOT1,
ZW10, and NCAPH, respectively.

Figures 26 and 27 display the Reactome pathways enriched in each module. Figure
26 shows the pathways enriched in the fibroblast disease network, while Figure 27
shows those enriched in the healthy network. In the disease network, the
processing of capped intron-containing pre-mRNA is the most enriched pathway in
module 1, which is also the one showing the highest modularity. Table 11 lists the
drugs that target genes involved in this pathway. In addition, for fibroblasts, the
drugs were targeted for module 3 pathways: extracellular matrix organization and
signaling by tyrosine kinases. This decision was based on the fact that module 1
and module 3 are closely related, as can be seen from the dendrogram in Figure 25
and the network representations in Figure 28. The drugs that target the extracellular
matrix organization are listed in Table 12, while those targeting signaling by tyrosine
kinases are listed in Tables 13-15. In Figure 28 are represented the visualizations
of the fibroblast disease network and the fibroblast healthy network.
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Figure 26: Enriched Reactome pathways in disease fibroblast modules. The X-axis
displays the module number, and the number in parentheses below it indicates the
number of genes that have been mapped to at least one Reactome pathway within
that module.

Figure 27: Enriched Reactome pathways in healthy fibroblast modules. The X-axis
displays the module number, and the number in parentheses below it indicates the
number of genes that have been mapped to at least one Reactome pathway within
that module.
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Table 11: Drugs targeting genes in the fibroblast disease network in the most dissimilar module between the fibroblast disease network and the fibroblast healthy
network. The most enriched Reactome pathway in the disease module is the Processing of Capped Intron-Containing Pre-mRNA. Columns represent genes, drugs, the
ranking of the gene in the module, target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
HSPA8 FORIGERIMOD 648 heat shock protein family A (Hsp70) member 8 systemic lupus erythematosus Protein Phase III

Table 12: Drugs targeting genes in the fibroblast disease network in the second most dissimilar module between the fibroblast disease network and the fibroblast healthy
network. The most enriched Reactome pathway in the disease module is the Extracellular matrix organization. Columns represent genes, drugs, the ranking of the gene
in the module, target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
COL4A4 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM 190 collagen type IV alpha 4 chain diabetic foot Enzyme Phase IV
COL4A4 OCRIPLASMIN 190 collagen type IV alpha 4 chain macular holes Enzyme Phase IV
ITGAV ABCIXIMAB 195 integrin subunit alpha V acute coronary syndrome Antibody Phase IV
ITGAV INTETUMUMAB 195 integrin subunit alpha V prostate adenocarcinoma Antibody Phase II
ITGAV ABITUZUMAB 195 integrin subunit alpha V metastatic colorectal cancer Antibody Phase II
ITGAV CILENGITIDE 195 integrin subunit alpha V glioblastoma multiforme Protein Phase III
ITGAV STX-100 195 integrin subunit alpha V idiopathic pulmonary fibrosis Antibody Phase II
ITGAV ETARACIZUMAB 195 integrin subunit alpha V rheumatoid arthritis Antibody Phase II
COL15A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM 259 collagen type XV alpha 1 chain diabetic foot Enzyme Phase IV
COL15A1 OCRIPLASMIN 259 collagen type XV alpha 1 chain macular holes Enzyme Phase IV
APP BAPINEUZUMAB 663 amyloid beta precursor protein Alzheimer’s disease Antibody Phase III
APP CRENEZUMAB 663 amyloid beta precursor protein Alzheimer’s disease Antibody Phase III
APP SOLANEZUMAB 663 amyloid beta precursor protein Alzheimer’s disease Antibody Phase III
APP GANTENERUMAB 663 amyloid beta precursor protein Alzheimer’s disease Antibody Phase III
APP GSK933776 663 amyloid beta precursor protein atrophic macular degeneration Antibody Phase II
APP ADUCANUMAB 663 amyloid beta precursor protein Alzheimer’s disease Antibody Phase III
APP PONEZUMAB 663 amyloid beta precursor protein cerebral amyloid angiopathy Antibody Phase II
APP BAN2401 663 amyloid beta precursor protein Alzheimer’s disease Antibody Phase II
TGFB3 FRESOLIMUMAB 794 transforming growth factor beta 3 malignant pleural mesothelioma Antibody Phase II
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Table 13: Drugs targeting genes in the fibroblast disease network in the second most dissimilar module between the fibroblast disease network and the fibroblast healthy
network. The second most enriched Reactome pathway in the disease module is the Signaling by receptor tyrosine kinases. Columns represent genes, drugs, the
ranking of the gene in the module, target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
FYN JNJ-26483327 1 FYN proto-oncogene, Src family tyrosine kinase cancer Small molecule Phase I
FYN XL-228 1 FYN proto-oncogene, Src family tyrosine kinase acute lymphoblastic leukemia Small molecule Phase I
FYN DASATINIB 1 FYN proto-oncogene, Src family tyrosine kinase chronic myelogenous leukemia Small molecule Phase IV
COL3A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM 9 collagen type III alpha 1 chain diabetic foot Enzyme Phase IV
COL3A1 OCRIPLASMIN 9 collagen type III alpha 1 chain macular holes Enzyme Phase IV
HGF RILOTUMUMAB 10 hepatocyte growth factor gastric carcinoma Antibody Phase III
HGF FICLATUZUMAB 10 hepatocyte growth factor non-small cell lung carcinoma Antibody Phase II
FGFR1 ARQ-087 65 fibroblast growth factor receptor 1 intrahepatic cholangiocarcinoma Small molecule Phase II
FGFR1 SULFATINIB 65 fibroblast growth factor receptor 1 neoplasm Small molecule Phase III
FGFR1 RG-1530 65 fibroblast growth factor receptor 1 neoplasm Small molecule Phase I
FGFR1 AZD-4547 65 fibroblast growth factor receptor 1 squamous cell carcinoma Small molecule Phase II
FGFR1 ORANTINIB 65 fibroblast growth factor receptor 1 hepatocellular carcinoma Small molecule Phase III
FGFR1 NINTEDANIB 65 fibroblast growth factor receptor 1 idiopathic pulmonary fibrosis Small molecule Phase IV
FGFR1 LUCITANIB 65 fibroblast growth factor receptor 1 cancer Small molecule Phase II
COL4A4 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM 190 collagen type IV alpha 4 chain diabetic foot Enzyme Phase IV
COL4A4 OCRIPLASMIN 190 collagen type IV alpha 4 chain macular holes Enzyme Phase IV
ITGAV ABITUZUMAB 195 integrin subunit alpha V metastatic colorectal cancer Antibody Phase II
ITGAV CILENGITIDE 195 integrin subunit alpha V glioblastoma multiforme Protein Phase III
ITGAV INTETUMUMAB 195 integrin subunit alpha V prostate adenocarcinoma Antibody Phase II
ITGAV ETARACIZUMAB 195 integrin subunit alpha V rheumatoid arthritis Antibody Phase II
ITGAV STX-100 195 integrin subunit alpha V idiopathic pulmonary fibrosis Antibody Phase II
ITGAV ABCIXIMAB 195 integrin subunit alpha V acute coronary syndrome Antibody Phase IV
PGF AFLIBERCEPT 201 placental growth factor diabetic macular edema Protein Phase IV
PGF TB-403 201 placental growth factor neoplasm Antibody Phase I
PGF CONBERCEPT 201 placental growth factor vitreous hemorrhage Protein Phase III
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Table 14: Previous table continues. Drugs targeting genes in the fibroblast disease network in the second most dissimilar module between the fibroblast disease network
and the fibroblast healthy network. The second most enriched Reactome pathway in the disease module is the Signaling by receptor tyrosine kinases. Columns
represent genes, drugs, the ranking of the gene in the module, target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
FGFR4 FGF401 223 fibroblast growth factor receptor 4 hepatocellular carcinoma Small molecule Phase II
FGFR4 LY-2874455 223 fibroblast growth factor receptor 4 adult acute myeloid leukemia Small molecule Phase I
FGFR4 BAY-1163877 223 fibroblast growth factor receptor 4 bladder transitional cell carcinoma Small molecule Phase II
FGFR4 BRIVANIB ALANINATE 223 fibroblast growth factor receptor 4 colorectal carcinoma Small molecule Phase III
FGFR4 BRIVANIB 223 fibroblast growth factor receptor 4 carcinoma Small molecule Phase III
FGFR4 ENMD-981693 223 fibroblast growth factor receptor 4 colorectal carcinoma Small molecule Phase II
IGF1 DUSIGITUMAB 300 insulin like growth factor 1 breast carcinoma Antibody Phase II
PDGFRA TOVETUMAB 356 platelet derived growth factor receptor alpha glioblastoma multiforme Antibody Phase II
PDGFRA CEDIRANIB 356 platelet derived growth factor receptor alpha neoplasm Small molecule Phase III
PDGFRA MASITINIB 356 platelet derived growth factor receptor alpha neoplasm Small molecule Phase III
PDGFRA REGORAFENIB 356 platelet derived growth factor receptor alpha neoplasm Small molecule Phase IV
PDGFRA ILORASERTIB 356 platelet derived growth factor receptor alpha cancer Small molecule Phase II
PDGFRA PAZOPANIB 356 platelet derived growth factor receptor alpha renal cell carcinoma Small molecule Phase IV
PDGFRA CRENOLANIB 356 platelet derived growth factor receptor alpha acute myeloid leukemia Small molecule Phase III
PDGFRA MOTESANIB 356 platelet derived growth factor receptor alpha non-small cell lung carcinoma Small molecule Phase III
PDGFRA DOVITINIB 356 platelet derived growth factor receptor alpha renal cell carcinoma Small molecule Phase III
PDGFRA OLARATUMAB 356 platelet derived growth factor receptor alpha neoplasm Antibody Phase IV
PDGFRA MIDOSTAURIN 356 platelet derived growth factor receptor alpha neoplasm Small molecule Phase IV
PDGFRA XL-820 356 platelet derived growth factor receptor alpha Gastrointestinal stromal tumor Small molecule Phase II
PDGFRA FORETINIB 356 platelet derived growth factor receptor alpha breast carcinoma Small molecule Phase II
PDGFRA BECAPLERMIN 356 platelet derived growth factor receptor alpha skin wound Protein Phase IV
PDGFRA AMUVATINIB 356 platelet derived growth factor receptor alpha small cell lung carcinoma Small molecule Phase II
PDGFRA SUNITINIB 356 platelet derived growth factor receptor alpha renal cell carcinoma Small molecule Phase IV
PDGFRA VATALANIB 356 platelet derived growth factor receptor alpha neoplasm Small molecule Phase III
PDGFRA QUIZARTINIB 356 platelet derived growth factor receptor alpha acute myeloid leukemia Small molecule Phase III
PDGFRA SU-014813 356 platelet derived growth factor receptor alpha breast neoplasm Small molecule Phase II
PDGFRA XL-999 356 platelet derived growth factor receptor alpha non-small cell lung carcinoma Small molecule Phase II
PDGFRA TAK-593 356 platelet derived growth factor receptor alpha neoplasm Small molecule Phase I
PDGFRA LINIFANIB 356 platelet derived growth factor receptor alpha non-small cell lung carcinoma Small molecule Phase III
PDGFRA FAMITINIB 356 platelet derived growth factor receptor alpha metastatic colorectal cancer Small molecule Phase III
PDGFRA X-82 356 platelet derived growth factor receptor alpha retinopathy Small molecule Phase II
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Table 15: Previous table continues. Drugs targeting genes in the fibroblast disease network in the second most dissimilar module between the fibroblast disease network
and the fibroblast healthy network. The second most enriched Reactome pathway in the disease module is the Signaling by receptor tyrosine kinases. Columns
represent genes, drugs, the ranking of the gene in the module, target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
MAPKAPK2 AT-13148 485 mitogen-activated protein kinase-activated protein kinase 2 neoplasm Small molecule Phase I
PTK2B DEFACTINIB 546 protein tyrosine kinase 2 beta non-small cell lung carcinoma Small molecule Phase II
INSR INSULIN DETEMIR 558 insulin receptor type I diabetes mellitus Protein Phase IV
INSR INSULIN HUMAN 558 insulin receptor type II diabetes mellitus Protein Phase IV
INSR INSULIN PORK 558 insulin receptor type II diabetes mellitus Protein Phase IV
INSR INSULIN GLARGINE 558 insulin receptor Hyperglycemia Protein Phase IV
INSR INSULIN SUSP ISOPHANE BEEF 558 insulin receptor type II diabetes mellitus Protein Phase IV
INSR INSULIN SUSP ISOPHANE

RECOMBINANT HUMAN 558 insulin receptor type II diabetes mellitus Protein Phase IV
INSR INSULIN GLULISINE 558 insulin receptor type I diabetes mellitus Protein Phase IV
INSR INSULIN ASPART 558 insulin receptor type II diabetes mellitus Protein Phase IV
INSR LINSITINIB 558 insulin receptor adrenal cortex carcinoma Small molecule Phase III
INSR INSULIN DEGLUDEC 558 insulin receptor diabetes mellitus Protein Phase IV
INSR INSULIN PURIFIED PORK 558 insulin receptor diabetes mellitus Protein Phase IV
INSR INSULIN SUSP ISOPHANE

SEMISYNTHETIC PURIFIED HUMAN 558 insulin receptor diabetes mellitus Protein Phase IV
INSR INSULIN LISPRO 558 insulin receptor type II diabetes mellitus Protein Phase IV
INSR BMS-754807 558 insulin receptor breast carcinoma Small molecule Phase II
INSR INSULIN PURIFIED BEEF 558 insulin receptor diabetes mellitus Protein Phase IV
INSR INSULIN ASPART PROTAMINE RECOMBINANT 558 insulin receptor type II diabetes mellitus Protein Phase IV
INSR INSULIN ZINC SUSP RECOMBINANT HUMAN 558 insulin receptor diabetes mellitus Protein Phase IV
INSR INSULIN PEGLISPRO 558 insulin receptor type II diabetes mellitus Protein Phase III
INSR INSULIN LISPRO PROTAMINE RECOMBINANT 558 insulin receptor type II diabetes mellitus Protein Phase IV
INSR KW-2450 558 insulin receptor breast carcinoma Small molecule Phase II
PDE3B PENTOXIFYLLINE 750 phosphodiesterase 3B obesity Small molecule Phase IV
PDE3B ANAGRELIDE 750 phosphodiesterase 3B essential thrombocythemia Small molecule Phase IV
PDE3B DIPYRIDAMOLE 750 phosphodiesterase 3B Recurrent thrombophlebitis Small molecule Phase IV
PDE3B THEOPHYLLINE 750 phosphodiesterase 3B kidney failure Small molecule Phase IV
PDE3B LEVOSIMENDAN 750 phosphodiesterase 3B heart failure Small molecule Phase III
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Figure 28: Graphs representing IPF fibroblasts disease network and the healthy
counterpart. The upper graph depicts the disease network, while the lower graph
shows the healthy network. The turqoise labels in the disease network indicate the
drug targets (no drug targets visible in the most dissimilar module). Meanwhile, the
black labels represent the central genes in the modules in both networks. The red
label corresponds to the most central gene in the disease module, while the purple
labels represent the most central genes in the modules that are most similar between
the healthy and disease networks. The orange label is the target of nintedanib.
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Network inference of macrophage samples: disease modules, pathway
enrichment, drugs and their targets

Figure 29: A heatmap indicating the Jaccard similarity indexes between the healthy
and disease modules in macrophage datasets. Module size threshold is 10 genes.
The disease modules are arranged in order from the least similar to the most similar,
with the order being 9, 8, 5, 6, 7, 1, 4, 2, and 3.

Figure 29 depicts the degree of similarity between the healthy and disease modules
in macrophage networks. The disease modules are arranged in descending order
of dissimilarity: 12, 11, 10, 9, 8, 5, 6, 7, 1, 4, 2, and 3. Modules 12, 11, and 10 had
only one gene, resulting in no enriched pathways and thus excluded from the
analysis. Although module 9 did not contain any enriched Reactome pathways,
module 8 showed significant similarity to module 9 (as shown in Figure 29) and had
a Reactome pathway enriched in muscle contraction. The Jaccard indexes for
modules 1 through 9 were 0.34, 0.51, 0.51, 0.36, 0.087, 0.16, 0.18, 0.083, and
0.070, respectively. The sizes of the disease modules from 1 to 12 are 1316, 2225,
1195, 1289, 756, 1425, 2495, 592, 575, 1, 1, and 1 genes, respectively. The hub
genes for modules 1 to 12 are RRP9 HLA-J, MTREX, PLGLA, PCDHB8, GPR31
PYHIN1, TCAP, PCDH17, BRAP, GABRA3, and LAMP1, respectively.

Figures 30 and 31 display the Reactome pathways enriched in each module. Figure
30 shows the pathways enriched in the macrophage disease network, while Figure
31 shows those enriched in the healthy network. In the disease network, the
Muscle contraction is the most enriched pathway in module 8, which is also the
second most distinct module (no enriched Reactome pathways in module 9). This
pathway was targeted for drugs, and Table 16 lists the drugs that were targeted for
the genes involved. In Figure 32 are represented the visualizations of the
macrophage disease network and the macrophage healthy network.

57



Figure 30: Enriched Reactome pathways in disease macrophage modules. The X-
axis displays the module number, and the number in parentheses below it indicates
the number of genes that have been mapped to at least one Reactome pathway
within that module.

Figure 31: Enriched Reactome pathways in healthy macrophage modules. The X-
axis displays the module number, and the number in parentheses below it indicates
the number of genes that have been mapped to at least one Reactome pathway
within that module.

58



Table 16: Drugs targeting genes in the macrophage disease network in the second most dissimilar module between the macrophage disease network and the
macrophage healthy network. The most enriched Reactome pathway in the disease module is the Muscle contraction. Columns represent genes, drugs, the ranking of
the gene in the module, target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
GUCY1A2 ISOSORBIDE MONONITRATE 18 guanylate cyclase 1 soluble subunit alpha 2 coronary artery disease Small molecule Phase IV
GUCY1A2 SODIUM NITROPRUSSIDE 18 guanylate cyclase 1 soluble subunit alpha 2 myocardial infarction Small molecule Phase IV
GUCY1A2 NITROGLYCERIN 18 guanylate cyclase 1 soluble subunit alpha 2 coronary artery disease Small molecule Phase IV
GUCY1A2 RIOCIGUAT 18 guanylate cyclase 1 soluble subunit alpha 2 Idiopathic and/or familial pulmonary arterial hypertension Small molecule Phase IV
GUCY1A2 ISOSORBIDE DINITRATE 18 guanylate cyclase 1 soluble subunit alpha 2 cardiovascular disease Small molecule Phase IV
GUCY1A2 NITRIC OXIDE 18 guanylate cyclase 1 soluble subunit alpha 2 asthma Small molecule Phase IV
CACNG3 GABAPENTIN ENACARBIL 51 calcium voltage-gated channel auxiliary subunit gamma 3 Reunion Island’s Larsen syndrome Small molecule Phase IV
CACNG3 ATAGABALIN 51 calcium voltage-gated channel auxiliary subunit gamma 3 insomnia Small molecule Phase II
TNNC2 TIRASEMTIV 139 troponin C2, fast skeletal type amyotrophic lateral sclerosis Small molecule Phase III
CACNG4 SULOCTIDIL 262 calcium voltage-gated channel auxiliary subunit gamma 4 cardiovascular disease Small molecule Phase IV
CACNG4 BEPRIDIL 262 calcium voltage-gated channel auxiliary subunit gamma 4 cardiovascular disease Small molecule Phase IV
CACNG4 IMAGABALIN 262 calcium voltage-gated channel auxiliary subunit gamma 4 generalized anxiety disorder Small molecule Phase III
CACNA2D1 PREGABALIN 264 calcium voltage-gated channel auxiliary subunit alpha2delta 1 Seizures Small molecule Phase IV
CACNA2D1 GABAPENTIN 264 calcium voltage-gated channel auxiliary subunit alpha2delta 1 epilepsy Small molecule Phase IV
CACNA2D1 MIROGABALIN 264 calcium voltage-gated channel auxiliary subunit alpha2delta 1 fibromyalgia Small molecule Phase III
ATP1B2 DESLANOSIDE 377 ATPase Na+/K+ transporting subunit beta 2 cardiovascular disease Small molecule Phase IV
ATP1B2 DIGITOXIN 377 ATPase Na+/K+ transporting subunit beta 2 cardiovascular disease Small molecule Phase IV
ATP1B2 ACETYLDIGITOXIN 377 ATPase Na+/K+ transporting subunit beta 2 cardiovascular disease Small molecule Phase IV
ATP1B2 DIGOXIN 377 ATPase Na+/K+ transporting subunit beta 2 atrial fibrillation Small molecule Phase IV
MYL2 OMECAMTIV MECARBIL 495 myosin light chain 2 heart failure Small molecule Phase III
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Figure 32: Graphs representing the macrophage disease and healthy networks.
The upper graph depicts the disease network, while the lower graph shows the
healthy network. The blue labels in the disease network indicate the drug targets.
Meanwhile, the black labels represent the central genes in the modules in both
networks. The red label corresponds to the most central gene in the disease module,
while the purple labels represent the most central genes in the modules that are
most similar between the healthy and disease networks. The white label is the most
central gene in disease network in the most dissimilar module between the disease
network and healthy network.
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Network inference of epithelial samples: disease modules, pathway
enrichment, drugs and their targets

Figure 33: A heatmap indicating the Jaccard similarity indexes between the healthy
and disease modules in the epithelial dataset. Module size threshold is 10 genes.

Figure 33 displays the degree of similarity between healthy and disease modules in
epithelial networks. The figure indicates that there are significantly more modules in
the epithelial networks in this study compared to other cell types. The epithelial
disease network consists of 183 modules, while the healthy epithelial network
comprises 104 modules. Among these, 155 disease epithelial modules and 98
healthy epithelial modules have more than 10 genes. The module that stands out
as the most dissimilar in the disease network compared to the healthy modules is
module 160, which contains 19 genes. The genes sorted by centrality in this
pathway are KRT222, ZNF121, CTDSP2, SYNJ2BP, ABHD3, RIOK2, STAT1,
TM4SF1, CTSC, ENPP4, ZNF320, PQLC2L, OAS2, ZNF790, FRK, HIST1H2BC,
HIST2H2BE, TLCD2, and ZNF235. Figure 35 shows that the enriched reactome
pathways in this module are related to neutrophil degranulation and cellular
senescence. Although the network is scattered, the neutrophil degranulation
pathway in module 160 has one gene (FRK ) that has drugs targeting it, which can
be seen in Table 17. The gene is Fyn Related Src Family Tyrosine Kinase.
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The disease module pathways in epithelial networks are presented in Figures 35
and 36, while the healthy module pathways are displayed in figures 37 and 38.
Additionally, the epithelial pathway graphs are visible in Figure 42. The top 10 most
dissimilar modules in the disease network compared to the healthy network are
160, 84, 121, 16, 105, 123, 126, 77, 130, and 127.
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Figure 34: Enriched Reactome pathways in disease epithelial modules (1). The X-
axis displays the module number, and the number in parentheses below it indicates
the number of genes that have been mapped to at least one Reactome pathway
within that module.

Figure 35: Enriched Reactome pathways in disease epithelial modules (2). The X-
axis displays the module number, and the number in parentheses below it indicates
the number of genes that have been mapped to at least one Reactome pathway
within that module.
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Figure 36: Enriched Reactome pathways in healthy epithelial modules (1). The X-
axis displays the module number, and the number in parentheses below it indicates
the number of genes that have been mapped to at least one Reactome pathway
within that module.

Figure 37: Enriched Reactome pathways in healthy epithelial modules (2). The X-
axis displays the module number, and the number in parentheses below it indicates
the number of genes that have been mapped to at least one Reactome pathway
within that module.
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Table 17: Drugs targeting genes in the epithelial disease network in the most dissimilar module between the epithelial disease network and the epithelial healthy network.
The most enriched Reactome pathway in the disease module is the Neutrophil degranulation pathway. Columns represent genes, drugs, the ranking of the gene in the
module, target info, disease info, type of the molecule and the phase of the drug.

gene drug gene_module_rank target_info disease_info molecule_type drug_phase
FRK REGORAFENIB 15 fyn related Src family tyrosine kinase neoplasm Small molecule Phase IV
FRK DASATINIB 15 fyn related Src family tyrosine kinase acute lymphoblastic leukemia Small molecule Phase IV
FRK ENMD-981693 15 fyn related Src family tyrosine kinase pancreatic carcinoma Small molecule Phase II
FRK ILORASERTIB 15 fyn related Src family tyrosine kinase cancer Small molecule Phase II
FRK XL-228 15 fyn related Src family tyrosine kinase chronic myelogenous leukemia Small molecule Phase I
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Figure 38: Graphs representing the epithelial IPF and healthy networks. The upper
graph depicts the disease network, while the lower graph shows the healthy network.
The blue label in the disease network indicates the drug target. . The red label
corresponds to the most central gene in the disease module, while the purple labels
represent the most central genes in the modules that are most similar between the
healthy and disease networks.
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Meta-analysis results: pathway enrichment, drugs and their targets

Table 18 displays the Reactome pathways with the highest enrichment scores in the
GSEA analysis, covering all the datasets. The table also includes the top 15 genes
ranked in the meta-analysis. There are in total 6187 genes included in the analysis.
The Collagen degradation pathway has the highest normalized enrichment score
among the most enriched pathways. In Table 19 is illustrated a compilation of drugs
that target genes within the Collagen degradation pathway.

Within the top 50 ranked genes in the meta-analysis, COL1A1 ranked 2nd.
COL1A1 is targeted by collagenase clostridium histolyticum and ocriplasmin.
KCNN4 (potassium calcium-activated channel subfamily N member 4), ranking 7th,
is targeted by chlorzoxazone and senicapoc. Odanacatib targets CTSK (cathepsin
K), which holds the 8th rank in the meta-analysis. ADRB2 (adenoreceptor beta 2),
positioned at 12th, is the target of various drugs including corticosteroids
(salmeterol, formoterol), beta-blockers (propranolol, carvedilol), and epinephrine
(adrenaline). TNC (tenacin C), ranking 28th, is targeted by several phase II cancer
drugs such as F16IL2, 81C6 131I, and F16SIP 131I. COL15A1, ranked 29th, is
targeted by collagenase clostridium histolyticum and ocriplasmin. RAMP1 (receptor
activity modifying protein 1), positioned at 45th, is targeted by Pramlintide and
Davalintide, both employed in the treatment of diabetes and obesity. Finally, EPHB2
(EPH receptor B2), holding the 49th rank, is targeted by Vandetanib, a drug used in
the treatment of thyroid carcinoma (Koscielny et al. 2017).

Table 20 shows the Reactome pathways that are most enriched in the GSEA
analysis, which includes all datasets except for the biopsy samples. This table is
formatted similarly to Table 17. There are in total 7522 genes included in the
analysis. The pathway with the highest normalized enrichment score among the
most enriched pathways is interferon alpha beta signaling degradation, and Table
21 lists drugs that target genes in this pathway. Chlorzoxazone and senicapoc are
found to target the KCNN4 gene, which ranks 7th in the analysis among the top 50
ranked genes. Ribonucleotide Reductase Regulatory Subunit M2 (RRM2), which
ranks 22nd, is targeted by various drugs, including cancer medicines such as
gemcitabine that are used in a variety of cancers (Koscielny et al. 2017). CDK1
(cyclin dependent kinase 1) is ranked 46th in the meta-analysis of all datasets
except for the biopsy samples, and it is also targeted by a variety of drugs used for
treating various cancers, including acute non-small cell lung carcinoma. One
example of a drug in this group is seliciclib, which is also used for the treatment of
cystic fibrosis (Koscielny et al. 2017).
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Table 18: 15 pathways that are most significantly enriched in a meta-analysis that included all datasets. The rightmost column of the table shows the top 15 ranked genes
in the meta-analysis.

pathway pval padj ES NES Size top 15 genes
HEMOSTASIS 9.999E-05 0.009333333 0.375022826 1.39405301 235 FHL2
COLLAGEN_DEGRADATION 0.00010102 0.009333333 0.76818329 2.295157776 21 COL1A1
DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 9.999E-05 0.009333333 0.538333492 1.798165148 51 IGFBP7
EXTRACELLULAR_MATRIX_ORGANIZATION 9.999E-05 0.009333333 0.486527213 1.734781966 113 ADAM12
COLLAGEN_FORMATION 0.00010007 0.009333333 0.560476391 1.821378442 39 GOLM1
COLLAGEN_BIOSYNTHESIS_AND_MODIFYING_ENZYMES 0.000100371 0.009333333 0.619738966 1.922810356 27 KCNN4
ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_MULTIMERIC_STRUCTURES 0.000100553 0.009333333 0.642644961 1.972091265 25 CTSK
INTEGRIN_CELL_SURFACE_INTERACTIONS 0.000100371 0.009333333 0.611372614 1.896852801 27 CRABP2
ECM_PROTEOGLYCANS 0.00010019 0.009333333 0.585795549 1.850325838 31 STX3
COLLAGEN_CHAIN_TRIMERIZATION 0.000104987 0.009333333 0.836761134 2.252644313 12 CLDN1
ELASTIC_FIBRE_FORMATION 0.000203604 0.01292884 0.661542827 1.927578259 18 DNAJC22
CELL_SURFACE_INTERACTIONS_AT_THE_VASCULAR_WALL 0.00019998 0.01292884 0.504527131 1.687490502 52 TMEM45A
REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_TRANSPORT
_AND_UPTAKE_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS 0.00020008 0.01292884 0.521418615 1.702522378 41 ADRB2
INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 0.00019998 0.01292884 0.517824039 1.703818947 44 EPB41L5
CELL_JUNCTION_ORGANIZATION 0.00030024 0.017228682 0.532790607 1.715640948 36 UNC13B
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Table 19: The drugs that target genes in the Reactome collagen degradation pathway in a meta-analysis that included all datasets.

gene drug gene_meta_analysis_rank target_info disease_info molecule_type drug_phase
COL1A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM,

OCRIPLASMIN 2 collagen type I alpha 1 chain Abnormality of connective tissue Enzyme Phase IV
CTSK ODANACATIB 8 cathepsin K prostate carcinoma Small molecule Phase III
COL15A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM,

OCRIPLASMIN 29 collagen type XV alpha 1 chain diabetic foot Enzyme Phase IV
MMP2 MARIMASTAT 65 matrix metallopeptidase 2 lung carcinoma Small molecule Phase III
COL5A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM,

OCRIPLASMIN 222 collagen type V alpha 1 chain Skin ulcer Enzyme Phase IV
COL6A2 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM,

OCRIPLASMIN 233 collagen type VI alpha 2 chain Dupuytren Contracture Enzyme Phase IV
COL6A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM,

OCRIPLASMIN 265 collagen type VI alpha 1 chain Dupuytren Contracture Enzyme Phase IV
COL4A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM,

OCRIPLASMIN 360 collagen type IV alpha 1 chain diabetic foot Enzyme Phase IV
COL18A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM,

OCRIPLASMIN 720 collagen type XVIII alpha 1 chain diabetic foot Enzyme Phase IV
COL4A2 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM,

OCRIPLASMIN 1020 collagen type IV alpha 2 chain diabetic foot Enzyme Phase IV
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Table 20: 15 pathways that are most significantly enriched in a meta-analysis that included all except biopsy datasets. The rightmost column of the table shows the top
15 ranked genes in the meta-analysis.

pathway pval padj ES NES Size top 15 genes
HEMOSTASIS 9.999E-05 0.019523905 0.388563424 1.456221185 295 AMIGO2
CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 9.999E-05 0.019523905 0.352617582 1.336593 409 EMP1
CELL_SURFACE_INTERACTIONS_AT_THE_VASCULAR_WALL 9.999E-05 0.019523905 0.505146544 1.715448256 61 TFPI
REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_TRANSPORT
_AND_UPTAKE_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS 9.999E-05 0.019523905 0.536664507 1.794704389 52 TNFRSF12A
INTERFERON_ALPHA_BETA_SIGNALING 0.00010002 0.019523905 0.583965128 1.915467935 43 CSF1
NON_INTEGRIN_MEMBRANE_ECM_INTERACTIONS 0.0002002 0.032565899 0.551476011 1.764861906 35 CCNA2
CHOLESTEROL_BIOSYNTHESIS 0.000303613 0.037446286 0.605112483 1.788128805 20 KCNN4
MET_ACTIVATES_PTK2_SIGNALING 0.000306937 0.037446286 0.665877754 1.891589226 16 MMP10
GPCR_LIGAND_BINDING 0.00049995 0.0443592 0.474584335 1.603071444 58 CLDN1
METABOLISM_OF_LIPIDS 0.00049995 0.0443592 0.330529971 1.253384246 415 CEP55
INTERLEUKIN_10_SIGNALING 0.000415973 0.0443592 0.731655674 1.991657029 13 KIF20A
DEPOLYMERISATION_OF_THE_NUCLEAR_LAMINA 0.000748023 0.051419841 0.729924763 1.871225724 10 SERPING1
CELL_JUNCTION_ORGANIZATION 0.000900901 0.051419841 0.50109129 1.614093541 37 NT5DC2
CYCLIN_A_B1_B2_ASSOCIATED_EVENTS_DURING_G2_M_TRANSITION 0.000706001 0.051419841 0.571662731 1.725782575 23 SLC1A4
INTERFERON_GAMMA_SIGNALING 0.0008 0.051419841 0.482430908 1.605128383 49 CHST15

Table 21: The drugs that target genes in the Reactome interferon alpha beta signaling pathway in a meta-analysis that included all except biopsy datasets.

gene drug gene_meta_analysis_rank target_info disease_info molecule_type drug_phase
PSMB8 CARFILZOMIB, BORTEZOMIB,

IXAZOMIB CITRATE, MARIZOMIB, OPROZOMIB 1639 proteasome subunit beta 8 neoplasm Protein Phase IV
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Table 22 displays the most enriched Reactome pathways in the GSEA analysis of
the biopsy datasets. There are in total 9645 genes included in the analysis. These
enriched pathways have many similarities with the pathways in the analysis that
includes all samples, most likely because the biopsy datasets are the most
abundant. The Syndecan interactions pathway has the highest normalized
enrichment score of the most enriched pathways in the biopsy datasets, and the
drugs targeting genes on this pathway are listed in Table 23.

Among the highest-ranked genes in the meta-analysis of the biopsy datasets,
CDH3 (cadherin 3) is targeted by PF-03732010, which is currently in clinical trials
for neoplasm. CDH3 ranked 2nd in the biopsy meta-analysis. MMP7, ranked 6th in
the meta-analysis, is targeted by marimastat and doxycycline. COL1A1, ranked 7th,
is targeted by collagenase clostridium histolyticum and ocriplasmin. IL13RA2,
ranked 8th, is the target of Cintredekin besudotox (phase I), which is used in central
nervous system cancer. Insulin-like growth factor 1 (IGF1), ranked 30th, is targeted
by dusigitumab, used in various cancers. FAP (fibroblast activation protein alpha),
ranked 36th, is targeted by sibrotuzumab, currently undergoing clinical trials for
non-small cell lung carcinoma. CD27 (CD27 molecule), ranked 40th, is targeted by
varlilumab, used for melanomas and lymphomas (Koscielny et al. 2017).

SMO (smoothened, frizzled class receptor), ranked 44th in the meta-analysis of
biopsy samples, is the target of several drugs primarily used in various cancers.
Vismodegib is one of these drugs, currently being studied for IPF treatment
alongside pirfenidone. CHRM3 (cholinergic receptor muscarinic 3), ranked 45th, is
the target of several cholinergic and anticholinergic medicines, including
acetylcholine and ipratropium (Koscielny et al. 2017).

Table 24 displays the most enriched Reactome pathways in the GSEA analysis of
the BAL datasets. A total of 13301 genes were included in the analysis, but none of
the Reactome pathways were found to be significantly enriched. However, the ECM
organization pathway was the closest. The drugs targeting genes on this pathway
are listed in Table 25. In the meta-analysis of the BAL samples, there are 5 genes
among the top 50 ranked that have drug targets. CFTR (cystic fibrosis
transmembrane conductance regulator) is ranked 4th and is targeted by ivacaftor,
tezacaftor, and lumacaftor, which are used to treat cystic fibrosis. SNCA
(synuclein-α) is ranked 13th and is targeted by Parkinson’s drug BIIB054, which is
in phase II trials. SCNN1A (sodium channel epithelial 1 α subunit) is ranked 20th
and is targeted by two hypertension medicines, amiloride and triamterene. IL1B
(interleukin 1-β) is ranked 39th and is targeted by rilonacept, canakinumab, and
gevokizumab, which are proteins used for several autoimmune diseases like
arthritis and gout, but also for non-small cell lung carcinoma (canakinumab).
MST1R (macrophage stimulating 1 receptor) is ranked 39th and is targeted by
several cancer medicines, such as narnatumab. All of these drugs are currently in
phase I or phase II of clinical trials (Koscielny et al. 2017).
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Table 22: 15 pathways that are most significantly enriched in a meta-analysis that included biopsy datasets. The rightmost column of the table shows the top 15 ranked
genes in the meta-analysis.

pathway pval padj ES NES Size top 15 genes
COLLAGEN_DEGRADATION 0.00010005 0.0104154 0.591191464 1.926519078 41 FNDC1
DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 9.999E-05 0.0104154 0.479355881 1.674025144 84 CDH3
EXTRACELLULAR_MATRIX_ORGANIZATION 9.999E-05 0.0104154 0.450714954 1.656661892 193 ASPN
ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_MULTIMERIC_STRUCTURES 0.00010002 0.0104154 0.544372362 1.801952712 47 PTGFRN
MOLECULES_ASSOCIATED_WITH_ELASTIC_FIBRES 0.000100563 0.0104154 0.619653983 1.897442187 25 CTHRC1
INTEGRIN_CELL_SURFACE_INTERACTIONS 9.999E-05 0.0104154 0.567079882 1.918363833 58 MMP7
SYNDECAN_INTERACTIONS 0.000101317 0.0104154 0.70721551 2.095441706 20 COL1A1
ECM_PROTEOGLYCANS 0.0001 0.0104154 0.542409552 1.820781215 54 IL13RA2
REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_TRANSPORT
_AND_UPTAKE_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS 9.999E-05 0.0104154 0.50089747 1.712147352 65 COL14A1
COLLAGEN_CHAIN_TRIMERIZATION 0.000100321 0.0104154 0.626909569 1.967049241 30 CXCL14
COLLAGEN_FORMATION 0.00019998 0.015543728 0.464534249 1.592513021 67 DIO2
ACTIVATION_OF_MATRIX_METALLOPROTEINASES 0.000211685 0.015543728 0.73632275 1.943679247 11 COL15A1
COLLAGEN_BIOSYNTHESIS_AND_MODIFYING_ENZYMES 0.00020004 0.015543728 0.512546093 1.699595024 48 FHL2
BINDING_AND_UPTAKE_OF_LIGANDS_BY_SCAVENGER_RECEPTORS 0.000200965 0.015543728 0.580325952 1.803891181 28 FAM167A
HEMOSTASIS 0.00029997 0.01819029 0.337519893 1.27351481 361 COL10A1
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Table 23: The drugs that target genes in the Reactome syndecan interactions pathway in a meta-analysis that included biopsy datasets.

gene drug gene_meta_analysis_rank target_info disease_info molecule_type drug_phase
COL1A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM

OCRIPLASMIN 7 collagen type I alpha 1 chain Abnormality of connective tissue Enzyme Phase IV
COL3A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM

OCRIPLASMIN 24 collagen type III alpha 1 chain diabetic foot Enzyme Phase IV
COL1A2 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM

OCRIPLASMIN 35 collagen type I alpha 2 chain Skin ulcer Enzyme Phase IV
COL5A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM

OCRIPLASMIN 74 collagen type V alpha 1 chain Skin ulcer Enzyme Phase IV
TNC F16IL2, 81C6 131I, F16SIP 131I 106 tenascin C Merkel cell skin cancer Antibody Phase II
COL5A2 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM

OCRIPLASMIN 194 collagen type V alpha 2 chain diabetic foot Enzyme Phase IV
FN1 OCRIPLASMIN, L19IL2, L19TNFA, L19SIP 131I 497 fibronectin 1 macular holes Enzyme Phase IV
ITGAV ABCIXIMAB, CILENGITID, ETARACIZUMAB

STX-100, INTETUMUMAB, ABITUZUMAB 621 integrin subunit alpha V acute coronary syndrome Antibody Phase IV
ITGB5 CILENGITIDE, INTETUMUMAB, ABITUZUMAB 849 integrin subunit beta 5 glioblastoma multiforme Protein Phase III
ITGB1 NATALIZUMAB, VOLOCIXIMAB, INTETUMUMAB

FIRATEGRAST, ABITUZUMAB 1291 integrin subunit beta 1 multiple sclerosis Antibody Phase IV
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Table 24: 15 pathways that are most significantly enriched in a meta-analysis that included BAL datasets. The rightmost column of the table shows the top 15 ranked
genes in the meta-analysis.

pathway pval padj ES NES Size top 15 genes
EXTRACELLULAR_MATRIX_ORGANIZATION 9.999E-05 0.115988401 0.363094305 1.340513702 207 FAH
METABOLISM_OF_NUCLEOTIDES 0.00049995 0.144985501 0.427786309 1.495323353 84 PERP
REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_TRANSPORT
_AND_UPTAKE_BY_INSULIN_LIKE_GROWTH_FACTOR_BINDING_PROTEINS_IGFBPS 0.00049995 0.144985501 0.431792407 1.495863822 75 CFTR
MUSCLE_CONTRACTION 0.00039996 0.144985501 0.397728393 1.423035117 118 CD207
GASTRULATION 0.001001402 0.232325255 0.522498067 1.663697515 33 ENPP3
PHASE_0_RAPID_DEPOLARISATION 0.001343114 0.251132985 0.632768344 1.758809173 14 LY75
SURFACTANT_METABOLISM 0.001515458 0.251132985 0.565874301 1.689738885 21 PABPC4
DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 0.0029997 0.267826221 0.395310546 1.390381828 91 CREB3L1
SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT 0.00249975 0.267826221 0.364999519 1.323552191 146 FAM83E
ACTIVATION_OF_ANTERIOR_HOX_GENES_IN_HINDBRAIN_DEVELOPMENT_DURING_EARLY_EMBRYOGENESIS 0.0030003 0.267826221 0.4429041 1.481842447 51 FCGBP
O_LINKED_GLYCOSYLATION_OF_MUCINS 0.003001501 0.267826221 0.478272406 1.543546213 37 ARHGAP44
ALK_MUTANTS_BIND_TKIS 0.002325581 0.267826221 -0.499510874 -1.841084506 12 SNCA
KINESINS 0.00190076 0.267826221 0.471991108 1.541752665 41 MYO1A
INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 0.00379962 0.31482566 0.392871632 1.380460173 90 TCEA3
DEFECTIVE_C1GALT1C1_CAUSES_TNPS 0.004599422 0.355688665 0.658968611 1.701547237 10 KRT19
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Table 25: The drugs that target genes in the Reactome extracellular matrix organization pathway in a meta-analysis that included BAL datasets.
gene drug gene_meta_analysis_rank target_info disease_info molecule_type drug_phase
ITGAL EFALIZUMAB, LIFITEGRAST 94 integrin subunit alpha L psoriasis Antibody Phase IV
CD44 BIVATUZUMAB 140 CD44 molecule (Indian blood group) breast neoplasm Antibody Phase I
COL4A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 268 collagen type IV alpha 1 chain diabetic foot Enzyme Phase IV
P4HB LOMITAPIDE 439 prolyl 4-hydroxylase subunit beta cardiovascular disease Small molecule Phase IV
COL28A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 693 collagen type XXVIII alpha 1 chain Dupuytren Contracture, macular holes Enzyme Phase IV
PRKCA MIDOSTAURIN, UCN-01, SOTRASTAURIN, GSK-690693 993 protein kinase C alpha neoplasm Small molecule Phase IV
ICAM1 BI-505 1021 intercellular adhesion molecule 1 multiple myeloma Antibody Phase II
COL18A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 1122 collagen type XVIII alpha 1 chain diabetic foot, macular holes Enzyme Phase IV
MMP9 MARIMASTAT, ANDECALIXIMAB 1206 matrix metallopeptidase 9 lung carcinoma Small molecule Phase III
ITGA5 VOLOCIXIMAB, PF-04605412 1258 integrin subunit alpha 5 lung carcinoma Antibody Phase III
CASP3 EMRICASAN 1377 caspase 3 non-alcoholic steatohepatitis Small molecule Phase II
LAMA5 OCRIPLASMIN 1893 laminin subunit alpha 5 macular holes Enzyme Phase IV
CTSK ODANACATIB 1961 cathepsin K prostate carcinoma Small molecule Phase III
COL27A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 2050 collagen type XXVII alpha 1 chain Dupuytren Contracture, macular holes Enzyme Phase IV
TNC F16IL2, 81C6 131I, F16SIP 131I 2094 tenascin C Merkel cell skin cancer Antibody Phase II
MMP12 MARIMASTAT 2213 matrix metallopeptidase 12 lung carcinoma Small molecule Phase III
FGG FIBRINOLYSIN, HUMAN 2234 fibrinogen gamma chain Recurrent thrombophlebitis Unknown Phase IV
ITGB7 VEDOLIZUMAB, NATALIZUMAB, ETROLIZUMAB, FIRATEGRAST, ABRILUMAB 2335 integrin subunit beta 7 Crohn’s disease Antibody Phase IV
COL6A2 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 2920 collagen type VI alpha 2 chain Dupuytren Contracture Enzyme Phase IV
LAMC2 OCRIPLASMIN 2994 laminin subunit gamma 2 macular holes Enzyme Phase IV
ITGB3 TIROFIBAN, ABCIXIMAB, EPTIFIBATIDE, CILENGITIDE, INTETUMUMAB,

ETARACIZUMAB, ABITUZUMAB 3098 integrin subunit beta 3 Non-ST Elevation Myocardial Infarction Small molecule Phase IV
MMP7 DOXYCYCLINE, MARIMASTAT 3463 matrix metallopeptidase 7 periodontitis Small molecule Phase IV
LAMB1 OCRIPLASMIN 3469 laminin subunit beta 1 macular holes Enzyme Phase IV
COL1A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 3609 collagen type I alpha 1 chain Abnormality of connective tissue, macular holes Enzyme Phase IV
VWF CAPLACIZUMAB 3691 von Willebrand factor autoimmune thrombocytopenic purpura Antibody Phase III
LAMB3 OCRIPLASMIN 3692 laminin subunit beta 3 macular holes Enzyme Phase IV
LAMB2 OCRIPLASMIN 3852 laminin subunit beta 2 macular holes Enzyme Phase IV
SDC1 INDATUXIMAB RAVTANSINE 4054 syndecan 1 multiple myeloma Antibody Phase I
ITGB5 CILENGITIDE, INTETUMUMAB, ABITUZUMAB 4082 integrin subunit beta 5 glioblastoma multiforme Protein Phase III
SERPINE1 ALEPLASININ 4855 serpin family E member 1 Alzheimer’s disease Small molecule Phase I
MMP1 DOXYCYCLINE, MARIMASTAT 4998 matrix metallopeptidase 1 acne Small molecule Phase IV
APP BAPINEUZUMAB, SOLANEZUMAB, GANTENERUMAB,

CRENEZUMAB, ADUCANUMAB, PONEZUMAB, GSK933776, BAN2401 5098 amyloid beta precursor protein Alzheimer’s disease Antibody Phase III
NCSTN TARENFLURBIL, SEMAGACESTAT, AVAGACESTAT, BEGACESTAT 5150 nicastrin Alzheimer’s disease Small molecule Phase III
LAMA3 OCRIPLASMIN 5194 laminin subunit alpha 3 macular holes Enzyme Phase IV
LAMC1 OCRIPLASMIN 5449 laminin subunit gamma 1 macular holes Enzyme Phase IV
COL4A4 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 5617 collagen type IV alpha 4 chain Dupuytren Contracture, macular holes Enzyme Phase IV
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Table 26: 15 pathways that are most significantly enriched in a meta-analysis that included fibroblast datasets. The rightmost column of the table shows the top 15
ranked genes in the meta-analysis.

pathway pval padj ES NES Size top 15 genes
EXTRACELLULAR_MATRIX_ORGANIZATION 9.999E-05 0.015605493 0.404771006 1.487902326 192 CADM1
CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 0.000104037 0.015605493 0.743172913 2.033178799 13 IFI44L
COOPERATION_OF_PREFOLDIN_AND_TRIC_CCT_IN_ACTIN_AND_TUBULIN_FOLDING 0.00010098 0.015605493 0.613012416 1.839443808 22 SGCE
INTERLEUKIN_10_SIGNALING 0.000102522 0.015605493 0.727547578 2.069384909 16 RTP4
INTERFERON_GAMMA_SIGNALING 9.999E-05 0.015605493 0.553842696 1.863684641 55 DDX60
INTERFERON_ALPHA_BETA_SIGNALING 0.0001 0.015605493 0.680334439 2.237663703 44 EIF2AK2
INTERFERON_SIGNALING 9.999E-05 0.015605493 0.451991269 1.629284676 134 PKIG
POST_CHAPERONIN_TUBULIN_FOLDING_PATHWAY 0.00021015 0.027582221 0.712801018 1.912908074 12 ASB1
HEMOSTASIS 0.00039996 0.046662 0.339404304 1.279213132 351 TNFRSF10D
CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 0.00049995 0.048716212 0.332807437 1.263831656 443 IFI35
FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC 0.00051036 0.048716212 0.633127765 1.820484539 17 PSMB9
ELASTIC_FIBRE_FORMATION 0.001001201 0.075090108 0.496885233 1.589798456 35 SLC19A2
CLASS_A_1_RHODOPSIN_LIKE_RECEPTORS 0.0009999 0.075090108 0.427891237 1.479876632 75 ARHGEF6
GPCR_LIGAND_BINDING 0.00089991 0.075090108 0.405125352 1.440441806 108 GAL
NEUTROPHIL_DEGRANULATION 0.00189981 0.132986701 0.339262847 1.268544654 282 PPL

Table 27: The drugs that target genes in the Reactome interferon alpha beta signaling pathway in a meta-analysis that included fibroblast datasets.

gene drug gene_meta_analysis_rank target_info disease_info molecule_type drug_phase
PSMB8 CARFILZOMIB, BORTEZOMIB,

IXAZOMIB CITRATE, MARIZOMIB, OPROZOMIB 1055 proteasome subunit beta 8 neoplasm Protein Phase IV
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Table 26 displays the most enriched Reactome pathways in the GSEA analysis of
the fibroblast datasets. There are in total 8512 genes included in the analysis.
These enriched pathways have many similarities with the pathways in the analysis
that includes all except the biopsy samples, most likely because the fibroblast
datasets are the most abundant in the all except the biopsy analysis. The interferon
alpha beta signaling pathway has the highest normalized enrichment score of the
most enriched pathways in the biopsy datasets, and the drugs targeting genes on
this pathway are listed in Table 27. In table 27 the target gene is PSMB8
(proteasome subunit-β 8) which is ranked 1055th in the meta-analysis. PSMB9
rank in the meta-analysis is 9 and is targeted by the same drugs which are used for
treatment of several cancers. In addition to this INHBA (inhibin subunit-β A) was
targeted by sotatercept which is in clinical trials for the treatment of pulmonary
hypertension (Koscielny et al. 2017).

Table 28 shows enriched Reactome pathways in macrophage datasets with the
highest normalized enrichment score. TNFs bind their receptor pathway is the
second most enriched pathway and drugs targeting it are listed in Table 29. Only
tarexutumab targets NOTCH3, ranked 23rd among top 50 genes in analysis, used
in various cancers (Koscielny et al. 2017). There are 11871 genes in the analysis,
and the SEMA4D induced cell migration and growth-cone collapse pathway lacks
drug targets.

Table 30 shows the Reactome pathways that have the highest level of enrichment in
the epithelial datasets. There are in total 13527 genes included in the analysis. The
keratinization pathway has the highest normalized enrichment score among the
most enriched pathways in the epithelial datasets, but unfortunately, it doesn’t have
any known drug targets. On the other hand, the DNA strand elongation pathway
has the highest normalized enrichment score and has drugs targeting it listed in
Table 31. Additionally, Table 32 lists the drugs targeting the genes in the
extracellular matrix organization Reactome pathway in the epithelial meta-analysis
GSEA, which was also significantly enriched.

In the epithelial dataset, CHRNA1 (cholinergic receptor nicotinic alpha 1 subunit) is
ranked sixth in the meta-analysis and is the target of various muscle relaxants, such
as rocuronium and suxamethonium. CACNA1H (calcium voltage-gated channel
subunit alpha1 H) is ranked seventh in the meta-analysis and is a target of calcium
channel modulators, such as pregabalin and gabapentin, which are used to treat
fibromyalgia, epilepsy, and pain. SCNN1A (sodium channel epithelial 1 alpha
subunit) is ranked twelfth in the meta-analysis and is the target of amiloride and
triamterene, which have been used to treat hypertension. The same gene ranked
twentieth in the BAL meta-analysis. CSF2 (colony-stimulating factor 2) ranked
thirtieth in the epithelial meta-analysis and is the target of drugs in phase I or phase
II clinical trials for the treatment of psoriasis, rheumatoid arthritis, and multiple
sclerosis, such as namilumab, lenzilumab, MOR-103, and gimsilumab. (Koscielny
et al. 2017)
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Table 28: 15 pathways that are most significantly enriched in a meta-analysis that included macrophage datasets. The rightmost column of the table shows the top 15
ranked genes in the meta-analysis.

pathway pval padj ES NES Size top 15 genes
CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 0.00149985 0.141698362 0.308687978 1.18347844 625 TRHDE
ADAPTIVE_IMMUNE_SYSTEM 0.00039996 0.141698362 0.315646531 1.208798144 596 GPC4
INNATE_IMMUNE_SYSTEM 0.00069993 0.141698362 0.305464338 1.180198172 855 PROS1
IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYMPHOID_CELL 0.00049995 0.141698362 0.417975334 1.475503524 97 GPR85
GLUTAMATE_NEUROTRANSMITTER_RELEASE_CYCLE 0.001513623 0.141698362 0.561487703 1.68927985 22 TBKBP1
SEMA4D_INDUCED_CELL_MIGRATION_AND_GROWTH_CONE_COLLAPSE 0.000203128 0.141698362 0.63768204 1.885856568 20 RAI14
TNFS_BIND_THEIR_PHYSIOLOGICAL_RECEPTORS 0.00050317 0.141698362 0.580610406 1.770097275 24 F3
RESPIRATORY_ELECTRON_TRANSPORT 0.00109989 0.141698362 0.431274309 1.479187454 67 DSP
NEUTROPHIL_DEGRANULATION 0.00149985 0.141698362 0.322838614 1.222210328 399 SMAD7
RHO_GTPASE_CYCLE 0.00139986 0.141698362 0.329709808 1.24259779 352 ACSM3
RAC1_GTPASE_CYCLE 0.00069993 0.141698362 0.388783498 1.401212302 136 ASAP2
TRANSCRIPTIONAL_REGULATION_BY_NPAS4 0.001106417 0.141698362 0.556642933 1.707443655 25 GASK1B
SIGNALING_BY_RHO_GTPASES_MIRO_GTPASES_AND_RHOBTB3 0.0009999 0.141698362 0.316299366 1.207953964 534 TSC22D3
SEMA4D_IN_SEMAPHORIN_SIGNALING 0.001811412 0.157463448 0.547604097 1.669471493 24 SLC7A5
PLASMA_LIPOPROTEIN_CLEARANCE 0.002305302 0.187036851 0.500721831 1.586519989 32 RMDN3

Table 29: The drugs that target genes in the Reactome TNFs bind their physiological receptor pathway in a meta-analysis that included macrophage datasets. SEMA4D
pathways did not include drug targets.

gene drug gene_meta_analysis_rank target_info disease_info molecule_type drug_phase
TNFRSF9 UTOMILUMAB, URELUMAB 227 TNF receptor superfamily member 9 diffuse large B-cell lymphoma Antibody Phase III
TNFRSF1A GSK-1995057 822 TNF receptor superfamily member 1A respiratory system disease Antibody Phase I
TNFSF4 OXELUMAB 1405 TNF superfamily member 4 asthma Antibody Phase II
LTA BAMINERCEPT, PATECLIZUMAB 1565 lymphotoxin alpha rheumatoid arthritis Protein Phase II
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Table 30: 15 pathways that are most significantly enriched in a meta-analysis that included epithelial datasets. The rightmost column of the table shows the top 15 ranked
genes in the meta-analysis.

pathway pval padj ES NES Size top 15 genes
EXTRACELLULAR_MATRIX_ORGANIZATION 9.999E-05 0.010574004 0.369169412 1.360040134 205 CHST6
CELL_CYCLE 9.999E-05 0.010574004 0.334399625 1.281847676 599 C2CD4A
RHO_GTPASE_EFFECTORS 9.999E-05 0.010574004 0.372478012 1.381903063 240 PLPPR1
SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT 9.999E-05 0.010574004 0.413252641 1.495729275 151 CHRNA1
KERATINIZATION 9.999E-05 0.010574004 0.533606135 1.855052851 83 CACNA1H
FORMATION_OF_THE_CORNIFIED_ENVELOPE 9.999E-05 0.010574004 0.528244332 1.834863926 82 TMPRSS11D
MITOTIC_PROMETAPHASE 9.999E-05 0.010574004 0.39324437 1.443427064 191 C15orf48
DNA_STRAND_ELONGATION 0.000100271 0.010574004 0.593148499 1.875074984 32 KRT7
CELL_CYCLE_MITOTIC 9.999E-05 0.010574004 0.357247772 1.361380781 483 SCNN1A
CELL_CYCLE_CHECKPOINTS 9.999E-05 0.010574004 0.382033157 1.420366866 252 AMY1A
O_LINKED_GLYCOSYLATION_OF_MUCINS 0.00010006 0.010574004 0.529460056 1.73342222 43 BPGM
ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 0.0002003 0.014549468 0.533628936 1.710225842 36 MMP10
RESOLUTION_OF_SISTER_CHROMATID_COHESION 0.00019998 0.014549468 0.412009928 1.467175773 116 ASB2
INTRA_GOLGI_AND_RETROGRADE_GOLGI_TO_ER_TRAFFIC 0.00019998 0.014549468 0.369007893 1.350720666 182 TMPRSS11B
SIGNALING_BY_RHO_GTPASES_MIRO_GTPASES_AND_RHOBTB3 0.00019998 0.014549468 0.323037155 1.238516909 604 KRT75
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Table 31: The drugs that target genes in the Reactome DNA strand elongation pathway in a meta-analysis that included epithelial datasets. Keratinization pathway did
not include drug targets.

gene drug gene_meta_analysis_rank target_info disease_info molecule_type drug_phase
POLD1 CYTARABINE, GEMCITABINE, FLUDARABINE PHOSPHATE,

CLOFARABINE, TROXACITABINE 613 DNA polymerase delta 1, catalytic subunit acute lymphoblastic leukemia Small molecule Phase IV
PRIM1 GEMCITABINE, FLUDARABINE PHOSPHATE,

CYTARABINE, CLOFARABINE, TROXACITABINE 749 DNA primase subunit 1 pancreatic adenocarcinoma Small molecule Phase IV
POLD3 FLUDARABINE PHOSPHATE, CYTARABINE,

GEMCITABINE, CLOFARABINE, TROXACITABINE 930 DNA polymerase delta 3, accessory subunit chronic lymphocytic leukemia Small molecule Phase IV
POLA2 CYTARABINE, GEMCITABINE, FLUDARABINE PHOSPHATE,

CLOFARABINE, TROXACITABINE 2629 DNA polymerase alpha 2, accessory subunit acute lymphoblastic leukemia Small molecule Phase IV
POLD2 CYTARABINE, GEMCITABINE, FLUDARABINE PHOSPHATE,

CLOFARABINE, TROXACITABINE 2810 DNA polymerase delta 2, accessory subunit acute lymphoblastic leukemia Small molecule Phase IV
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Table 32: The drugs that target genes in the extracellular matrix organization pathway in a meta-analysis that included epithelial datasets.
gene drug gene_meta_analysis_rank target_info disease_info molecule_type drug_phase
ITGB7 VEDOLIZUMAB, NATALIZUMAB, ETROLIZUMAB, FIRATEGRAST, ABRILUMAB 125 integrin subunit beta 7 Crohn’s disease Antibody Phase IV
ICAM1 BI-505 161 intercellular adhesion molecule 1 multiple myeloma Antibody Phase II
APP BAPINEUZUMAB, SOLANEZUMAB, GANTENERUMAB, CRENEZUMAB,

ADUCANUMAB, PONEZUMAB, GSK933776, BAN2401 267 amyloid beta precursor protein Alzheimer’s disease Antibody Phase III
VWF CAPLACIZUMAB 508 von Willebrand factor autoimmune thrombocytopenic purpura Antibody Phase III
MMP3 MARIMASTAT 1077 matrix metallopeptidase 3 lung carcinoma Small molecule Phase III
ITGB2 EFALIZUMAB, LIFITEGRAST, AME-133V 1131 integrin subunit beta 2 psoriasis Antibody Phase IV
PSEN1 SEMAGACESTAT, TARENFLURBIL, AVAGACESTAT, BEGACESTAT 1155 presenilin 1 Alzheimer’s disease Small molecule Phase III
PDGFB PEGPLERANIB SODIUM, RINUCUMAB 1331 platelet derived growth factor subunit B age-related macular degeneration Unknown Phase III
FN1 OCRIPLASMIN, L19IL2, L19TNFA, L19SIP 131I 1452 fibronectin 1 macular holes Enzyme Phase IV
ITGA5 VOLOCIXIMAB, PF-04605412 1602 integrin subunit alpha 5 lung carcinoma Antibody Phase III
ITGB1 NATALIZUMAB, VOLOCIXIMAB, INTETUMUMAB, FIRATEGRAST, ABITUZUMAB 1671 integrin subunit beta 1 multiple sclerosis Antibody Phase IV
NCSTN TARENFLURBIL, SEMAGACESTAT, AVAGACESTAT, BEGACESTAT 1706 nicastrin Alzheimer’s disease Small molecule Phase III
ITGA4 VEDOLIZUMAB, NATALIZUMAB, ABRILUMAB, FIRATEGRAST 1772 integrin subunit alpha 4 Crohn’s disease Antibody Phase IV
CD44 BIVATUZUMAB 1803 CD44 molecule (Indian blood group) breast neoplasm Antibody Phase I
LAMC1 OCRIPLASMIN 1857 laminin subunit gamma 1 macular holes Enzyme Phase IV
SERPINE1 ALEPLASININ 1931 serpin family E member 1 Alzheimer’s disease Small molecule Phase I
LAMB1 OCRIPLASMIN 2133 laminin subunit beta 1 macular holes Enzyme Phase IV
COL4A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 2273 collagen type IV alpha 1 chain diabetic foot Enzyme Phase IV
ITGAV ABCIXIMAB, CILENGITIDE, ETARACIZUMAB, STX-100, INTETUMUMAB, ABITUZUMAB 2769 integrin subunit alpha V acute coronary syndrome Antibody Phase IV
ITGA2 VATELIZUMAB 2925 integrin subunit alpha 2 ulcerative colitis Antibody Phase II
LAMA3 OCRIPLASMIN 3470 laminin subunit alpha 3 macular holes Enzyme Phase IV
COL5A2 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 3531 collagen type V alpha 2 chain diabetic foot Enzyme Phase IV
LAMC2 OCRIPLASMIN 3547 laminin subunit gamma 2 macular holes Enzyme Phase IV
COL1A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 3660 collagen type I alpha 1 chain Abnormality of connective tissue Enzyme Phase IV
LAMB3 OCRIPLASMIN 3704 laminin subunit beta 3 macular holes Enzyme Phase IV
COL5A1 COLLAGENASE CLOSTRIDIUM HISTOLYTICUM, OCRIPLASMIN 3754 collagen type V alpha 1 chain Skin ulcer Enzyme Phase IV
ITGB6 STX-100, INTETUMUMAB, ABITUZUMAB 3764 integrin subunit beta 6 idiopathic pulmonary fibrosis Antibody Phase II
KLKB1 ECALLANTIDE, APROTININ, LANADELUMAB 3954 kallikrein B1 Hereditary angioedema Protein Phase IV
BSG GAVILIMOMAB 3965 basigin (Ok blood group) acute graft vs. host disease Antibody Phase III
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Discussion

IPF druggability based on the network inference and meta-analysis
results

Table 32: The noteworthy drug categories determined from the analysis of networks and
meta-analysis outcomes.

Enzymes Tyrosine Matrix Ion channel Monoclonal
kinase inhibitors metalloproteinase modulators antibodies

inhibitors /inbibitors
Ocriplasmin Regorafenib Marimastat Isosorbide mononitrate Simtuzumab

Collagenase clostridium Dasatinib Doxycycline Gabapentin Canakinumab
histolyticum

Ilorasertib Andecaliximab Pregabalin Andecaliximab
Seliciclib Amiloride Narnatumab

Nintedanib Nitroglycerin Sibrotuzumab
Isosorbide dinitrate Fresolimumab

Senicapoc STX-100

Several promising drugs for treating IPF were identified through network and
meta-analysis. Table 32 summarizes the drug categories that emerged from the
analysis, along with specific drugs within each category. Notable categories include
enzymes, tyrosine kinase inhibitors, matrix metalloproteinase inhibitors, ion channel
modulators and inhibitors, and biological drugs. These drug classes will be further
discussed in the following sections.

The drugs that had been associated to IPF in the OpenTargets (Koscielny et al.
2017) table were nintedanib, prednisolone phosphoric acid, doxycycline,
ambrisentan, bosentan, interferon gamma-1b, fentanyl, sildenafil, thalidomide,
prednisolone, warfarin, macitentan, azathioprine, gefapixant, rituximab, tanzisertib,
tralokinumab, imatinib, simtuzumab, stx-100, vismodegib, pamrevlumab,
omeprazole, qax-576, lebrikizumab, losartan, beclomethasone dipropionate,
zileuton, prednisone, octreotide, dasatinib, omipalisib, fresolimumab and
albuterol. The bolded drugs are the ones that were found in this study.

All the drugs associated to IPF in the OpenTargets (Koscielny et al. 2017) which
were found in the analyses of this study are listed in the Table 31 except
vismodegib. In the analysis vismodegib was found in the biopsy meta-analysis
where it’s target gene SMO (smoothened, frizzled class receptor) was ranked 44th.
Vismodegib was the first pharmacologic agent approved by the FDA in 2012 to
target the Hedgehog signaling pathway, particularly Sonic Hedgehog (SHH), which
is associated with many basal cell carcinomas. Basal cell carcinoma (BCC) is a
prevalent form of nonmelanoma skin cancer (NMSC) and accounts for more than
50 % of all NMSC cases (Zito et al. 2023). Vismodegib has been in clinical trials for
IPF used with pirfenidone (Prasse et al. 2019a).
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Enzymes

According to the analysis, Ocriplasmin and Collagenase clostridium histolyticum
were the most frequently identified drugs. In the biopsy network analysis, they
targeted the 6th highest central gene (COL6A2) in the disease module in the
extracellular matrix organization pathway (Table 9, Figure 20). In the fibroblast
network analysis, they were also found to target genes involved in extracellular
matrix organization and signaling by tyrosine kinases, including COL4A4,
COL15A1, and COL3A1 (Table 12, Table 13). Additionally, the meta-analysis
revealed that both ocriplasmin and collagenase clostridium histolyticum were
present in all datasets - meta-analysis, biopsies, BAL, and epithelial datasets
(Tables 19, 22, 25, and 32). Ocriplasmin targets a variety of genes, COL4A4,
COL11A2, LAMA1, COL2A1, COL6A3, COL4A6, LAMB2, COL6A1, COL27A1,
COL4A3, LAMB4, COL24A1, COL1A1, COL6A2, COL3A1, LAMC3, LAMB1,
COL4A2, COL1A2, COL4A1, COL5A2, FN1, LAMC1, COL11A1, COL5A1,
COL6A6, COL4A5, LAMC2, COL18A1, LAMA4, COL15A1, LAMB3, LAMA3,
LAMA2, COL6A5, LAMA5, COL28A1, and COL5A3 (Koscielny et al. 2017).
Enrichment analysis of these genes with in R indicates that the Extracellular matrix
organization Reactome pathway is significantly enriched (adjusted p-value of
3.682671e-57). Other related pathways, such as Non-integrin membrane-ECM
interactions, Assembly of collagen fibrils and other multimeric structures, and
Collagen chain trimerization, are also highly enriched (adjusted p-values less than
1e-50).

Collagenase clostridium histolyticum targets genes COL11A2, COL6A2, COL15A1,
COL2A1, COL6A1, COL4A5, COL1A2, COL6A5, COL4A1, COL24A1, COL5A3,
COL3A1, COL27A1, COL11A1, COL4A3, COL18A1, COL4A6, COL1A1, COL4A4,
COL6A6, COL5A1, COL6A3, COL28A1, COL4A2, and COL5A2 (Koscielny et al.
2017). The genes targeted by collagenase clostridium histolyticum are very similar
to the genes targeted by ocriplasmin, except that collagenase clostridium
histolyticum only targets collagen genes, while ocriplasmin also targets laminin and
fibronectin genes such as LAMB2, LAMA1A and fibronectin genes (FN1).
Enrichment analysis of the collagenase clostridium histolyticum genes revealed that
the most enriched Reactome pathway is collagen chain trimerization (adjusted
p-value of 1.903166e-62), while the Extracellular matrix organization pathway is
also enriched (adjusted p-value of 4.796064e-39). The enrichment analysis of the
ocriplasmin and collagenase clostridium histolyticum genes reveals similar
Reactome pathways, albeit with a different order. It can be inferred that both
enzymes affect collagen assembly and extracellular matrix organization, with
ocriplasmin having a broader-spectrum effect compared to collagenase clostridium
histolyticum. The molecular structure of collagenase clostridium histolyticum is
represented in Figure 39. Structure of ocriplasmin is not available.
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Figure 39: Molecular structure of collagenase clostridium histolyticum. Structure of
ocriplasmin is not available.

Ocriplasmin is administered through intravitreal injection and is indicated for the
treatment of vitreomacular traction and closed macular holes. It has been
demonstrated that ocriplasmin effectively resolves vitreomacular traction, and is
more effective than placebo (Stalmans et al. 2012). Vitreomacular traction
syndrome is a relatively rare condition that occurs when there is incomplete
separation of the posterior vitreous from the macula, leading to persistent
attachment. This condition has been found to be associated with several other
macular disorders (Shao and Wei 2014). Ocriplasmin has proteolytic activity
against the vitreous body and the vitreoretinal interface (VRI), such as laminin,
fibronectin, and collagen. This proteolytic activity leads to the dissolution of the
protein matrix that causes vitreomacular adhesion (VMA). The adverse effects of
ocriplasmin may include decreased Vision, intravitreal Injection Procedure
Associated Effects, potential for lens subluxation, retinal breaks, and
dyschromatopsia (Novartis Pharmaceuticals Corporation 2016).

Collagenases are enzymes that can break down collagen molecules in their natural
triple helical structure under normal physiological conditions. Common adverse
effects of collagenase clostridium histolyticum include peripheral edema (swelling at
the injection site), contusion, injection site hemorrhage, injection site reaction, and
pain in the injected area (BioSpecifics Technologies Corporation 2022).
Collagenase clostridium histolyticum has been used for Dupuytren’s disease.
Dupuytren’s disease is a prevalent hand disorder that primarily affects the palmar
fascia. The condition initially presents as either skin thickening or pitting on the
palm (Karbowiak et al. 2016). Other diseases that collagenase clostridium
histolyticum has been used are diabetic foot, decubitus ulcer, skin ulcer, skin
wound, abnormality of connective tissue, frozen shoulder, contracture, lipoma, and
tendinopathy (Koscielny et al. 2017). Collagenase clostridium histolyticum is
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administrated as an injection (Hurst et al. 2009; BioSpecifics Technologies
Corporation 2022).

Some preclinical studies have investigated the use of collagenase nanocapsules as
a potential approach for treating fibrosis (Villegas et al. 2018). The preclinical
results appear to be encouraging, suggesting that this approach could be a viable
option for fibrosis treatment in the future. However, there is no literature indicating
that ocriplasmin has been studied as a treatment for pulmonary fibrosis. Comparing
the gene targets of ocriplasmin and collagenase clostridium histolyticum, it seems
that ocriplasmin might be even better option for the IPF treatment when looking just
at the target genes. Remodeling of the extracellular matrix is a common feature in
lung diseases such as IPF (Åhrman et al. 2018; Qian et al. 2019). In ocriplasmin
genes the extracellular matrix organization reactome pathway was more significant
compared to collagenase clostridium histolyticum genes since ocriplasmin genes
contain also laminin and fibronectin genes in addition to collagen genes (Koscielny
et al. 2017).

Administering enzymes into the lung can be challenging, and it is important to limit
their administration to the fibrotic foci to prevent any unnecessary adverse effects
on healthy tissue. One potential approach for treating fibrosis is the use of
collagenase nanocapsules, as discussed earlier (Villegas et al. 2018). Ocriplasmin
may also be able to be delivered in these nanocapsules, but further studies are
necessary. Another option, or option combined with the nanocapsule formulation, is
intrapulmonary injection aided by imaging techniques. CT-guided (computed
tomography) intrapulmonary injection has been studied extensively, and it has been
used to safely and effectively dye pulmonary nodules (Ko et al. 2019; Wicky et al.
1994). In a study of fifteen patients with active inoperable pulmonary aspergilloma,
a therapeutic paste of glycerin and amphotericin B was percutaneously injected
under CT guidance (Giron et al. 1993). Another study involving CT-guided
cyanoacrylate injections for 113 patients with pulmonary lesions reported a success
rate of 100 % with no severe complications (Huang et al. 2019). However,
intrapulmonary injection carries the risk of adverse effects such as pneumothorax,
bloody sputum, intravascular air, pneumonia, and cerebral infarction (Ito et al.
2020). Both ocriplasmin and collagenase clostridium histolyticum show promising
potential for treating IPF. The potential drug administration techniques, as well as
the safety and efficacy of the treatments, require further investigation.
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Tyrosine kinase inhibitors

Tyrosine kinase signaling is essential in various cellular processes, and extensive
evidence from both in vitro studies and animal models suggests that certain
tyrosine kinases play a crucial role in the development of pulmonary fibrosis.
Tyrosine kinases can be classified into two categories: receptor tyrosine kinases
(RTKs) and non-receptor cytoplasmic tyrosine kinases (non-RTKs). RTKs are cell
membrane receptors that initiate intracellular signaling pathways by binding to
growth factors on their extracellular domains. In contrast, non-RTKs do not have
extracellular or transmembrane domains and instead regulate signaling pathways
within the cytoplasm. Several RTKs such as PDGF, FGF, VEGF, and EGF are
believed to contribute to the development of pulmonary fibrosis. In addition, the
SRC family of non-RTKs, which includes FYN, YES, FGR, LYN, HCK, LCK, and
BLK, have been found to be necessary for the epithelial-mesenchymal transition
following TGF-β1 signaling in alveolar epithelial cells (Grimminger et al. 2015).

The process of protein phosphorylation, which involves the addition of phosphate
groups by kinase enzymes, is a critical mechanism of signal transduction in
eukaryotic cells. Protein kinases regulate various cellular processes, such as cell
proliferation, cell cycle progression, metabolic homeostasis, transcriptional
activation, differentiation and development, and apoptosis. The human kinome,
which refers to the entire set of protein kinases encoded by the genome, comprises
90 protein tyrosine kinases. Certain RTKs have the ability to transactivate one
another, such as the PDGF receptor (PDGFR) being able to transactivate the
epidermal growth factor receptor (EGFR). Transactivation of RTKs has been
strongly associated with inflammation and the process of tissue healing. Similar to
RTKs, the activation of non-RTKs also involves phosphorylation and
autophosphorylation. The effects of tyrosine kinase activation on cells are complex
and are dependent on various factors such as the cell type and the specific signal
transduction pathway that is triggered (Grimminger et al. 2015).

In this study, various drugs targeted several tyrosine kinases. Among them, DDR2
(Discoidin Domain Receptor Tyrosine Kinase 2) was identified as the third most
central gene in the biopsy disease module (Table 9, Figure 20). Regorafenib, a
tyrosine kinase inhibitor, targets DDR2 and was also found to target FRK (fyn
related Src family tyrosine kinase) in epithelial network analysis (Table 16, Figure
38). In turn, dasatinib targets FYN (FYN proto-oncogene, Src family tyrosine
kinase), which was the most central gene in module 3 (second most dissimilar
module to healthy network) in fibroblast network analysis (Table 13, Figure 28).
Other tyrosine kinase inhibitors were also identified in the study, such as ilorasertib,
seliciclib, and nintedanib (Table 14, Table 16, Table 32). According to DisGeNET,
the disease specificity index for FYN is 0.556, while that for DDR2 is 0.541. The
disease specificity index is a metric that ranges between 0 and 1 and measures the
degree to which a gene is associated with a specific disease (Janet et al. 2019).
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Previous studies have reported on the interaction between FYN-kinase and
caveolin-1 in the alveolar epithelium of various bleomycin (BLM)/TGF-β damage
models. In wild type mouse lung tissues, strong signals for FYN-kinase were found
in alveolar epithelial type I cells, whereas in caveolin-1 knock out animals,
expression was observed to shift to alveolar epithelial type II cells. FYN-kinase has
been identified to play a profibrotic role by phosphorylating the TβRII, thereby
activating the TGF-β signaling pathway and initiating profibrotic processes such as
the epithelial-to-mesenchymal transition. (Menzel et al. 2022).

Fibrillar collagen I is a critical component of the lung extracellular matrix (ECM) that
exists in both normal and fibrotic lungs. Besides providing structural support,
collagen I facilitates cellular signaling by interacting with ECM receptors. Integrins
like integrin α2β1, and discoidin domain receptors (DDRs) 1 and 2 are among the
collagen I signaling receptors in the lung. DDR1 and DDR2 proteins are receptor
tyrosine kinases that bind and get activated by collagens. DDRs are widely
expressed, but their expression is cell-type specific; DDR1 is mainly expressed on
epithelial cells, whereas DDR2 is present on fibroblasts and cells of mesenchymal
origin. The evidence indicates that disease progression may be influenced by the
upregulation and activation of these receptors, which occurs in response to tissue
damage or as the disease advances. Studies on DDR1 knockout mice propose that
this receptor promotes fibrosis and inflammation in kidneys and lungs by
modulating inflammatory responses and ECM synthesis/deposition. The role of
DDR2 in organ fibrosis is still uncertain and controversial (Borza et al. 2018).

While DDR2-null mice showed increased liver fibrosis following chronic liver injury,
DDR2 deficiency or downregulation reduced bleomycin-induced lung fibrosis, and
deleting DDR2 in cardiac fibroblasts decreased angiotensin-induced collagen I
expression (George et al. 2016; Zhao et al. 2016). These studies indicate that
DDR2-mediated functions are cell-type dependent. In this context, Zhao et al.
(Zhao et al. 2016) demonstrated that blocking DDR2 kinase activity or reducing
DDR2 expression protected against bleomycin-induced lung fibrosis. Although the
authors used dasatinib, which is not a selective DDR2 inhibitor, more selective
DDR2 inhibitors have been reported. Nevertheless, these inhibitors still affect
DDR1 due to the high homology in the kinase domain between the two receptor
tyrosine kinases (Borza et al. 2018; Grither and Longmore 2018).

Regorafenib is an orally active, multi-kinase inhibitor used to treat colorectal cancer
and gastrointestinal stromal tumors. Its molecular structure and targets has
significant similarities to nintedanib. The molecular structures of regorafenib and
nintedanib are illustrated in Figure 40. In vivo experiments have shown that
regorafenib can suppress collagen accumulation and myofibroblast activation by
inhibiting the TGF-β1/Smad and non-Smad signaling pathways, thereby reducing
extracellular matrix production and myofibroblast migration. Additionally,
regorafenib has been suggested to promote apoptosis in myofibroblasts and
augment autophagy by suppressing TGF-β1/mTOR signaling (mechanistic target of
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Figure 40: Regorafenib (left) and nintedanib (right) molecular structures.

rapamycin) (Li et al. 2021). A three-month supply of regorafenib (Stivarga®), which
includes 3x28 tablets, is priced at 2782.84 € in Finland, as of April 15th, 2023
(Kansaneläkelaitos 2023).

Matrix metalloproteinase inhibitors

Matrix metalloproteinases (MMPs), also known as matrixins, are a family of 23
known zinc-dependent proteases that function in the extracellular environment of
cells to degrade both matrix and non-matrix proteins. They play important roles in
morphogenesis, wound healing, tissue repair, and remodeling in response to injury,
such as after myocardial infarction, and in the progression of diseases such as
atheroma, arthritis, cancer, and chronic tissue ulcers. Their activities are regulated
by tissue inhibitors of metalloproteinases (TIMPs) (Nagase et al. 2006). In the
pathogenesis of fibrosis, MMPs play a crucial role in regulating ECM turnover,
chemokine metabolism, cell migration, and mediator activation (Mahalanobish et al.
2020).

In patients with IPF, the expression of MMPs is disrupted, leading to significant
architectural remodeling in the lung microenvironment. MMP1, which breaks down
fibrillar collagens, is found to be highly expressed in IPF lung tissue and BAL fluid,
despite being expressed at low levels in healthy tissue (Mahalanobish et al. 2020).
Various MMPs were observed to be highly expressed or central in the analysis of
this study as seen in the results (Table 9, Table 10, Table 19, Table 20, Table 22,
Table 30). MMPs not only play a role in ECM turnover, but also have multiple
components that affect abnormal tissue repair and the behavior of epithelial and
mesenchymal cells. The uncoordinated regulation and expression of multiple
MMPs can contribute to severe architectural remodeling in the lungs of IPF patients
(Hambly et al. 2015).

In the biopsy disease module, MMP2 was ranked as the 29th most central gene,
whereas in the meta-analysis that considered all datasets, it was ranked 69th (as
shown in Table 9, Figure 20, and Table 19). MMP9 was found to be present in both
the BAL network analysis and the meta-analysis (Table 10 and Table 25). MMP2
and MMP9, which are classified as gelatinases, possess three fibronectin type II
domain repeats in the catalytic domain that enables their interaction with gelatin
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substrates. These domains are also crucial for MMP9 to degrade types V and XI
collagens. Moreover, these MMPs have the ability to activate several other MMPs.
(Mahalanobish et al. 2020).

The drugs that inhibit matrix metalloproteinases that were found in this analysis are
marimastat, doxycycline and andecaliximab (Table 32). The genes that marimastat
targets are: MMP7, MMP2, MMP3, MMP1, MMP12, and MMP9. The doxycyxline
target genes are MMP8, MMP1, MMP13, and MMP7. Andecaliximab is a specific
MMP9 inhibitor (Koscielny et al. 2017). The highest DisGenNET disease specificity
index score for these MMPs is for MMP12 being 0.484 (Janet et al. 2019).
Marimastat was the first actual MMP inhibitor to be tested in clinical trials and was
found to be effective in inhibiting tumor progression in mice with cancer. Following
this, it was tested in humans with various types of cancer, including pancreatic,
lung, breast, colorectal, and gastric adenocarcinoma, and was found to have a
favorable pharmacokinetic profile when administered orally (Evans et al. 2001; Pijet
et al. 2020). Short-term treatment with marimastat was generally well-tolerated by
patients. However, long-term or chronic use of the drug was associated with side
effects related to musculoskeletal toxicity that ultimately made it unsuitable for use
in cancer treatment (Pijet et al. 2020; Sparano et al. 2004). Molecular structure of
marimastat is illustrated in Figure 41.

However, a study in mice investigated the role of MMPs in the serum-borne
bioactivity and endothelial cell dysfunction induced by multiwalled carbon
nanotubes (MWCNT), using marimastat. The study found that MMP inhibition did
not reduce the severity of pulmonary inflammation, indicating that the systemic
circulatory and vascular effects of MWCNT may be secondary due to macrophage
activation and pulmonary influx of polymorphonuclear neutrophils (Young et al.
2021). On the other hand another study suggests that MMP7 knockout mice resist
bleomycin-induced fibrosis due at least in part to the decrease in sFasL levels in
their blood (Nareznoi et al. 2020). Also Todd et al. suggest that certain MMPs or
TIMPs could serve as biomarkers for IPF in patients. However, further research is
needed to confirm these results, as well as to investigate the relationship between
MMP/TIMP expression and clinical outcomes (Todd et al. 2020).

Figure 41: Marimastat (left) and doxycycline (right) molecular structures.

Doxycycline is a tetracycline antibiotic which possesses potent antimicrobial activity,
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has excellent tissue penetration, and exhibits high oral bioavailability. By binding to
the decoding center of the small ribosomal subunit of the bacteria, it obstructs
protein synthesis (Zhang et al. 2019). Pfizer Inc. of New York, NY developed and
clinically tested Doxycycline in the early 1960s, and it was subsequently marketed
under the brand name Vibramycin®. In 1967, the FDA approved Vibramycin®,
making it Pfizer’s first broad-spectrum antibiotic to be taken once a day (Tan et al.
2011). Molecular structure of doxycycline is illustrated in Figure 41.

Doxycycline has been shown to attenuate bleomycin-induced pulmonary fibrosis, as
well as the production of TGF-β1-induced mediators that contribute to its
progression in alveolar epithelial cells in vitro. According to Fujita H.’s study,
doxycycline inhibited the TGF-β1-induced mRNA expression of PDGFA, CTGF,
MMP2, and MMP9, as well as the protein production of PGDF-AA and MMP2 in
alveolar epithelial cells in vitro. Doxycycline affected the production of MMP2 and
MMP9, which are involved in cell proliferation, adhesion, migration, and
differentiation through proteolytic effects on ECM components and basement
membranes that contribute to fibrosis progression. MMP2 and MMP9 gene and
protein expression have been reported to be elevated in tissues and
bronchoalveolar lavage fluid from patients with IPF. Therefore, doxycycline appears
to attenuate pulmonary fibrosis by inhibiting growth factors and MMP production in
alveolar epithelial cells, as demonstrated by Fujita H. et al. (Fujita et al. 2011).
Similar results were also found in a study by Amartya, M. et al. (Amartya et al.
2011). As of April 15th, 2023, 100 tablets of doxycycline cost 46.32 € in Finland
(Kansaneläkelaitos 2023).

Andecaliximab is a monoclonal antibody that inhibits MMP9, a protein involved in
matrix remodeling, tumor growth, and metastasis. A phase I and Ib study of
modified oxaliplatin, leucovorin, and fluorouracil with andecaliximab showed
promising antitumor activity in patients with gastric or gastroesophageal junction
adenocarcinoma (Shah et al. 2021). In a study by Espindola et al., it was
demonstrated that MMP9 expression was increased in airway basal cell-like cells
from lungs of patients with IPF compared to those from normal lungs. Blocking
MMP9 activity with an anti-MMP9 antibody, such as andecaliximab, inhibited
TGF-β1-induced Smad2 phosphorylation. However, in a subset of cells from
patients with IPF, TGF-β1 activation in their airway basal cell-like cells was
unaffected or even enhanced by MMP9 blockade, indicating a lack of response to
the treatment (i.e., non-responders) (Espindola et al. 2021).

Ion channel modulators and inhibitors

Ion channel modulators and inhibitors were identified through network analysis of
macrophage datasets (Table 16 and Figure 32). In the macrophage network
analysis (Table 16 and Figure 32), GUCY1A2, which was the 18th central gene in
the disease module, is targeted by various nitrates, such as isosorbide mononitrate
and nitroglycerin. Also, a meta-analysis of all datasets showed that KCNN4
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(calcium-activated channel subfamily N member 4 gene) was ranked 8th in this
analysis. Additionally, the SCNN1A gene, which encodes the alpha subunit of the
sodium channel epithelial 1, was ranked 20th in the BAL meta-analysis and is the
target of two hypertension medications, namely amiloride and triamterene, both of
which act as sodium channel blockers (Koscielny et al. 2017; Nesterov et al. 2012).

Nitrates exert their pharmacological effects by releasing nitric oxide (NO), which is
an endothelium-derived relaxing factor (EDRF). Endogenous NO is produced in the
endothelium to facilitate blood vessel dilation. Nitrates activate the enzyme soluble
guanylate cyclase in vascular smooth muscles, leading to increased levels of
intracellular cGMP and associated protein kinases, such as cGMP-dependent
protein kinases (cGK-I). The cGMP then activates the myosin light chain
phosphatase (MLCP), which causes dephosphorylation of the myosin light chain.
Moreover, cGMP-cGK-I inhibits the inositol-1,4,5-trisphosphate (IP3)-dependent
calcium release, leading to decreased intracellular calcium levels. Ultimately, the
decrease in intracellular calcium levels results in smooth muscle relaxation, leading
to vasodilation (Balasubramanian and Chowdhury 2022).

Relatively recent studies have demonstrated that in animal models of various
fibrotic diseases, the use of soluble guanylate cyclase (sGC) stimulators has
resulted in a reduction of fibrotic events (Beyer et al. 2012; Lambers et al. 2019).
Also, many preclinical studies have demonstrated anti-fibrotic efficacy of
sGC-cGMP activation in various experimental fibrosis models but the molecular
basis of the efficacy in these models are not well understood (Kim et al. 2020). One
possible mechanism is due to the inhibition of TGF-β1 induced ERK1/2 signalling in
human lung fibroblasts, leading to reduced de novo synthesis of collagen type I.
The findings of Lambers et al. suggest that the sGC activator BAY 41-2272
represents a promising therapeutic option for treating IPF. In addition, combining an
sGC activator with a cAMP activator such as forskolin may enhance the antifibrotic
potential (Lambers et al. 2019).

A study by Blanco et al., which was conducted on a selected group of patients with
IPF, suggests that signaling molecules produced by the endothelium may play a
role in regulating pulmonary vascular tone during exercise. The study also found
that inhaled nitric oxide (NO) can reduce pulmonary vascular resistance both at rest
and during exercise, without affecting gas exchange. In IPF patients, during
exercise, the limitation of alveolar-to-capillary oxygen diffusion becomes a
significant factor contributing to the decrease in oxygen partial pressure (Blanco
et al. 2011). For over a century, nitrates have been used as a vasodilator to treat
pulmonary hypertension. However, exogenous NO donors have limitations due to
increased oxidative stress and tolerance. As a result, current treatment strategies
aim to inhibit the degradation of cyclic guanosine monophosphate (cGMP) by
targeting phosphodiesterases, specifically PDE5 using medications such as
sildenafil. Another approach is to increase the enzymatic activity of soluble
guanylate cyclase, which mainly involves the use of sGC activators and stimulators.
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These drugs enhance the activity of both oxidized and reduced forms of the sGC
enzyme, respectively (Kim et al. 2020).

In a network analysis of macrophages, CACNG3, CACNG4, and CACNA2D1 were
identified as potential drug targets (Table 16 and Figure 32). Additionally, a
meta-analysis of all datasets showed KCNN4 (calcium-activated channel subfamily
N member 4 gene) was ranked 8th in this analysis. Mitochondrial oxidative stress
and turnover in alveolar macrophages are directly linked to pulmonary fibrosis, but
the exact molecular mechanisms regulating mitochondrial dynamics remain
unknown. The mitochondrial calcium uniporter (MCU) is a selective ion channel
that transports Ca2+ into the mitochondrial matrix, affecting cellular metabolism.
After exposure to asbestos, the MCU has been shown to polarize macrophages
towards a profibrotic phenotype by regulating ATP production (Zhang et al. 2018).

It has also been suggested that there is a central role for Ca2+ in pro-fibrotic
fibroblast function and fibrosis-related diseases. Growth factors evoke rhythmic
Ca2+ oscillations through a complex interplay between Ca2+ release and entry
mechanisms in fibroblasts resulting in pro-fibrotic activities. Therefore, therapeutic
strategies that target Ca2+ homeostatic mechanisms or Ca2+-mediated signalling
events could prove successful. There is evidence, consistent across many organ
systems, demonstrates a fundamental role for KCNN4 activation in the generation
of pathological fibrosis due to its ability to regulate Ca2+ influx. This is not
surprising as ion channels regulate all cellular processes and many effective
pharmacological agents in use today work through the modulation of ion channels
(Roach and Bradding 2019).

Figure 42: Senicapoc (top left), isosorbide mononitrate (top right), sildenafil (bottom
left) and gabapentin (bottom right) molecular structures.
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In a study by Roach and Bradding, the KCNN4 selective blocker senicapoc was
found to be well-tolerated in humans for up to 12 months. Additionally, KCNN4
inhibition in human airway epithelial cells appeared to attenuate the development of
TGF-β1-dependent epithelial-mesenchymal transition, suggesting that KCNN4 may
play a role in promoting fibrosis. Furthermore, in the same study, senicapoc
treatment in sheep reduced non-specific airway hyperresponsiveness to carbachol
following allergen challenge and also reduced eosinophil numbers in BAL samples
collected 48 hours post-allergen challenge.

Network analysis of macrophages showed that gabapentin, a neuromodulator used
for chronic pain and as an antispasmodic agent among other indications, targeted
the gene CACNG3 and was ranked 51st most central in the disease module.
Similarly, pregabalin, with indications quite similar to gabapentin, targets the
calcium channel CACNA2D1, which was ranked 264th most central in the disease
module. Notably, gabapentin has been found to be particularly effective in treating
cough in patients with IPF, and there are several randomized controlled trials that
support the use of neuromodulator drugs, such as gabapentin and pregabalin, for
unexplained chronic cough (Birring et al. 2018; Ryan et al. 2012; Vertiganm et al.
2016). Moreover, it is believed that gabapentin and pregabalin possess
anti-inflammatory properties by altering the response of the neurokinin-1 receptor,
which is a substance P receptor. It has been showed that gabapentin and
pregabalin were able to reduce the production of Il-6 and Il-8 in glioblastoma cells
when induced by substance P (Yamaguchi et al. 2017).

According to the latest available information, senicapoc is currently in a trial phase
and not yet widely used (Ali et al. 2020). On the other hand, drugs like sildenafil,
nitrates, pregabalin, and gabapentin, which have also been discussed as ion
channel modulators, are already widely used and are relatively inexpensive
(Kansaneläkelaitos 2023). Molecular stuctures of senicapoc, isosorbide
mononitrate, sildenafil and gabapentin are illustrated in Figure 42.

Connection between IPF, cancer and autoimmune diseases and monoclonal
antibody therapies

The altered process of "wound healing" in IPF is driven by various pathogenic
events that are commonly observed in other degenerative/fibrotic diseases and
even in cancer. Cancer has been described by some authors as a "wound that does
not heal" (Dvorak 1986; Vancheri 2015). With an often unknown etiology, cancer
shares some of the risk factors that are associated with IPF, and the presence of a
specific genetic background is considered important for the occurrence of both
diseases. Like cancer, IPF affects susceptible individuals and shares common risk
factors, such as smoking, environmental or professional exposure, viral infections,
and chronic tissue injury (Vancheri 2015). Based on these similarities, poor
response to medical treatment, and prognosis, which is often worse than many
cancers, IPF has frequently, although vaguely, been compared to a type of
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malignant disease (Vancheri et al. 2010; Vancheri 2015).

Tissue homeostasis is maintained through cell-to-cell communication facilitated by
connexins, junctional channels that coordinate cell functions. In contrast, cancer
cells often exhibit impaired intercellular communication, indicating the need for
isolation from surrounding normal cells to proliferate. The decreased expression of
connexin 43, a connexin found in many cancers including lung and gastric cancer,
has been associated with cancer cell proliferation. Similarly, IPF myofibroblasts
have also been shown to have a reduced ability to express connexin 43, suggesting
that the loss of proliferative control in IPF cells may be due to altered
fibroblast-to-fibroblast communication caused by decreased connexin 43
expression (Mori et al. 2006; Vancheri 2015). The origin of myofibroblasts is similar
in both IPF and cancer. Various signal transduction pathways are involved in the
pathogenesis of cancer and IPF, including the Wnt/β-catenin signaling pathway.
This pathway regulates the expression of molecules involved in cancer progression
and tissue infiltration and is strongly activated in IPF lung tissue, as evidenced by
extensive nuclear accumulation of β-catenin in various involved sites, such as
bronchiolar lesions, damaged alveolar structures, and fibroblast foci (Mazières et al.
2005; Vancheri 2015). The PI3K/AKT signaling pathway, which regulates cell
growth, proliferation, and cell protection from apoptosis, is also strongly involved in
the pathogenesis of cancer and IPF (Vancheri 2015).

In addtion to cancer, IPF and autoimmune diseases share some common
pathogenic mechanisms at the biochemical level, such as the activation of
inflammatory cells, immune dysregulation, oxidative stress, and abnormal wound
healing leading to excessive extracellular matrix deposition, particularly collagen.
However, there are also notable differences, such as the specific immune cells
involved in the disease process, the type of inflammation, and the distribution of
fibrosis within the lung tissue. For instance, in autoimmune diseases, immune cells
such as T cells and B cells play a key role in the initiation and progression of the
disease. On the other hand, in IPF, immune cells such as macrophages and
fibroblasts play a more prominent role in the disease process. Another difference is
that in autoimmune diseases, the inflammation is often organized into granulomas
or lymphoid aggregates, whereas in IPF, the inflammation is more diffuse and can
be found throughout the lung tissue. Biochemical markers such as cytokines,
chemokines, and growth factors have also been implicated in both IPF and
autoimmune diseases. For example, TGF-β has been found to be elevated in both
IPF and systemic sclerosis, while Il-6 has been associated with IPF and rheumatoid
arthritis (Popper et al. 2022).

Monoclonal antibodies (mAbs) have become an essential component of
pharmacotherapy for a wide range of medical conditions over the past two decades,
particularly for autoimmune disorders and cancers in addition to other indications.
As of 2017, more than 40 mAbs have been authorized by the US Food and Drug
Administration, with several dozen more in clinical development. Structurally, mAbs
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are similar to IgG, as they are large heterodimeric protein molecules with a
molecular weight of approximately 150 kDa. Due to their production process in
living cells, mAbs are defined by their production process rather than their chemical
structure, and the batch-to-batch variability in the resulting product needs to be
tightly controlled through carefully established and controlled conditions during the
cell culturing, product processing, and purification steps. Monoclonal antibodies are
a unique class of therapeutics with pharmacokinetics determined and controlled by
the specific mechanisms and processes involved in their disposition. Although there
are substantial differences in the pharmacokinetics of individual mAbs, their general
behavior can be considered a class property as it is driven by and similar to their
endogenous counterpart IgG (Ryman and Meibohm 2017). A molecular structure of
a monoclonal antibody infliximab is illustrated in Figure 43.

Figure 43: An example of a structure of a monoclonal antibody infliximab.

Monoclonal antibody -based orphan drugs have gained popularity over the past
decade for treating especially cancers and autoimmune diseases due to their ability
to selectively target specific molecules and regulate signaling pathways, leading to
improved therapeutic outcomes. However, the expensive production and acquisition
costs of these drugs impose a significant financial burden on both patients and
society. Therefore, evaluating their cost-effectiveness is crucial to determine if their
clinical benefits justify their high costs. According to Park et al., a study of nine
mAbs revealed that four orphan drugs (cetuximab, ipilimumab, rituximab, and
trastuzumab) were cost-effective, while one drug (bevacizumab) was not
cost-effective in cost-utility analysis studies. The cost-effectiveness results of
infliximab were inconsistent across the studies (Park et al. 2015). One potential
solution to the high cost of mAbs is the use of biosimilars, which could provide
some relief for the societal burden of the expensive medicines (Kvien et al. 2022).
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Monoclonal antibodies and other biologics were found accross the analysis in
different cell types and in both network- and meta-analysis. Fresolimumab (Table 9
and Table 12) was found in the network based analysis in biopsy and fibroblast
samples. In the biopsy analysis fresolimumab is targeting TGFβ3 which is the 285th
central gene in the disease module. In fibroblasts fresolimumab appeared in the
secondmost dissimilar module between disease and healthy samples when
extracting the extracellular matrix organization related genes. It targeted the same
gene TGFβ3 which was 794th central gene in that particular module.

Fresolimumab (GC1008) is a recombinant human monoclonal antibody that inhibits
all three isoforms of transforming growth factor-beta (TGFβ), which plays a central
role in the pathogenesis of IPF. TGFβ1 is the most implicated isoform in
perpetuating the fibrotic process in IPF. TGF-β is produced by various cell types in
the lungs and secreted in an inactive form. Its further activation is mediated by
factors such as matrix metalloproteinases, integrins, and reactive oxygen species,
which cleave the latent TGFβ1–binding protein complex. Downregulating the TGF-β
pathway is believed to be crucial for halting the fibrosing process. In 2005, a phase
I open-label, non-randomized, multicenter, single-dose, dose-escalating study was
conducted to investigate the safety, tolerability, and pharmacokinetics of
fresolimumab in five dose groups of patients with IPF. However, this study was
completed without any reported results, and fresolimumab has not been
investigated for IPF since then (Sgalla et al. 2020).

Simtuzumab was found in network analysis of biopsies where it targets LOXL2
gene, which is ranked 43rd most central gene in the particular analysis.
Simtuzumab is a type of human monoclonal antibody that targets LOXL2, a group
of enzymes that help stabilize the ECM by facilitating the cross-linking of collagen
molecules. In fibrotic diseases, the increased cross-linking of matrix proteins can
lead to pathologically increased matrix stiffness. Elevated levels of LOXL2
contribute to myofibroblast differentiation and matrix production, further driving
fibrosis progression. LOXL2 is highly expressed in fibrotic regions of IPF lung, and
serum levels are increased in patients with progressive IPF. Inhibiting LOXL2 can
interrupt the vicious loop in which a stiff matrix delivers signals to fibroblasts, which
further stiffen the matrix via producing more collagen. By inhibiting LOXL2, there is
a reduction in activated fibroblasts, decreased production of growth factors,
downregulation of TGF-β, and its pathway signaling in human fibroblasts. A clinical
trial (NCT01769196) investigating the use of simtuzumab in patients with IPF failed
to show any benefit over placebo for the primary and secondary endpoints (Sgalla
et al. 2020).

STX-100 was observed in various parts of the study analysis (Tables 12, 13, and
32). It targets the ITGAV gene in the fibroblasts network analysis in the extracellular
matrix and tyrosine kinase signaling pathways. The gene was ranked 195th in the
module. Additionally, STX-100 was found in the meta-analysis of epithelial cells
where it targeted ITGB6, which was ranked 3954th in that particular analysis.
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STX-100 is a first-of-its-kind humanized anti-αvβ6 IgG1 monoclonal antibody that
hinders the binding of αvβ6 to the latent form of TGFβ, thus restraining TGF-β
activation. This small phase-IIa study found that once-weekly subcutaneous
administration of STX-100 at doses lower than 1.0 mg/kg was generally
well-tolerated by IPF patients. However, acute IPF exacerbation was observed
among patients receiving higher doses of STX-100. Furthermore, the study met the
predefined stopping criteria at the 3.0 mg/kg dose, indicating a potential risk of
respiratory status decline with higher doses of STX-100. As the study had a small
number of patients and an exploratory nature, the results should be interpreted with
caution. Larger studies are necessary to verify the potential dose-response effect of
STX-100 on TGF-β suppression and to define clinical effectiveness (Raghu et al.
2022).

Over the past decade, numerous monoclonal antibodies targeting different
molecular targets have been investigated in the treatment of IPF, often concurrently
with the approval of nintedanib and pirfenidone. However, many randomized
controlled trials with robust rationales for targeting key fibrotic pathways, such as
the αvβ6 integrin and LOXL2, have yielded disappointing results. Although the Il-13
and Il-4 blockade pathway has been extensively investigated, consistently negative
results suggest this therapeutic strategy may not be effective for IPF. Recent phase
2 study of the anti-CTGF antibody pamrevlumab showed promising results,
sparking hope for new effective therapies. However, due to the complex and
multifactorial pathogenesis of IPF, targeting a single pathway may not be the ideal
approach, and combination therapy may prove to be more efficient (Sgalla et al.
2020; Wells 2015) Additionally, the lack of a priori cohort enrichment with patients
likely to respond to experimental therapies, along with the exclusion of patients
receiving background therapy with nintedanib or pirfenidone, have limited the
success of many randomized controlled trials. Therefore, more robust mechanistic
evidence and reliable predictive biomarkers are needed for the development of
personalized therapeutic options for IPF (Sgalla et al. 2020).

Combination therapies and personalized medicine for the treatment of IPF

Due to the involvement of multiple coactivated pathways in the pathogenesis of IPF,
it is unlikely that targeted therapies will be effective in isolation. Instead, the
evolution towards combination therapy has become the norm in other respiratory
diseases such as lung cancer, COPD, and asthma. In interstitial lung diseases
other than IPF, combination therapy is attractive in principle, as it can address
diagnostic uncertainty and target both pro-inflammatory and profibrotic pathways
(Wuyts et al. 2014). One of the major challenges ahead is the question of which
compounds to combine and how to evaluate combination therapies in clinical trials.
The drugs most likely to provide additive efficacy when used in combination with
one of the approved therapies are those with alternative, complementary, or
synergistic mechanisms of action. Drugs with overlapping adverse event profiles
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are less likely to make good combination partners (Kolb et al. 2017).

Possible combination regimens for definite or probable IPF could involve
pirfenidone in combination with nintedanib, which has been suggested to have a
manageable safety profile and potentially higher efficacy than monotherapy (Huh
et al. 2021; Wuyts et al. 2014). Other suggested combinations include pirfenidone
or nintedanib with a novel antifibrotic therapy, antifibrotic therapy combined with
regular antireflux treatment, antifibrotic therapy in combination with microbiome
treatment (such as co-trimoxazole or another antibiotic like doxycycline which was
found in this study), antifibrotic therapy with targeted therapy for pulmonary
hypertension, and immunomodulation with antifibrotic therapy for possible or
probable IPF cases (Wuyts et al. 2014).

Based on this data-driven drug repositioning study, potential combination therapies
for the treatment of IPF could involve drug classes such as collagenase enzymes
like ocriplasmin or collagenase clostridium histolyticum, tyrosine kinase inhibitors
like regorafenib or dasatinib, matrix metalloproteinase inhibitors like doxycycline,
marimastat or andecaliximab, ion channel modulators like nitrates, PDE5 inhibitors
and/or gabapentin or pregabalin, and possibly some monoclonal antibodies.
However, it is not advisable to combine drugs with similar mechanisms of action as
it may lead to adverse effects (Cascorbi 2012; Kolb et al. 2017). Therefore, it is
crucial to ensure that the drugs used in combination therapies work well together.
For instance, in vitro studies suggest that tetracycline antibiotics like doxycycline
interfere with the degradation of collagen by metalloproteinases (collagenases) by
inhibiting their activity. However, this evidence is limited to in vitro studies, and its
relevance to humans is unknown. It is important to note that a reduction in
collagenase activity may potentially decrease the therapeutic efficacy of
collagenase histolyticum (Watt and Hentz 2011).

Combination therapies can effectively use different drug administration routes.
Inhalation is an efficient administration route for drugs targeted at the apical side of
the lung, such as epithelial cells and bronchoalveolar lavage. An example of an
inhaled dry powder galectin-3 inhibitor is TD139 (Galecto Biotech/Bristol-Myers
Squibb), which regulates the expression of TGF-β receptors on the surface of
alveolar epithelial cells and is a mediator of TGFβ-induced lung fibrosis. Studies on
bleomycin-treated galectin-3 knockout mice have shown reduced lung fibrosis and
collagen levels. Additionally, epithelial cells and fibroblasts from galectin-3 knockout
mice have reduced (myo)fibroblast activation, epithelial mesenchymal transition,
and collagen I production in response to TGF-β (Kolb et al. 2017; MacKinnon et al.
2012). Single doses of TD139 in healthy subjects were found to be well-tolerated,
with mild adverse events, including headache, cough, and dose-related paraguesia
(Kolb et al. 2017). For the basal side of the lung, which includes extracellular matrix,
macrophages, and fibroblasts, systematic administration through oral form or
injections (such as ocriplasmin and collagenase clostridium histolyticum) can be
considered, as discussed earlier.
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The use of personalized medicine holds promise for the treatment of many
malignant diseases (Hoeben et al. 2021). Personalized medicine is based on the
concept that, even in seemingly uniform diseases, differences in treatment
response can be predicted from specific biomarkers, which indicate a predominant
pathogenic pathway in individual patients. While the idea of selecting
monotherapies based on personalized biomarker signals is attractive, it is
challenging to implement in the routine management of IPF due to the complex
nature of its pathogenesis (Thannickal and Antony 2018; Wuyts et al. 2014). IPF
involves the co-activation of multiple pathways, and selective inhibition of a key
mediator may lead to the rapid enhancement of alternative pathways (Wuyts et al.
2014). Nonetheless, the identification of biomarkers linked to specific disease
endotypes, including epithelial cell dysfunction, impaired host defense, T-cell
exhaustion, fibroblast activation, oxidative stress, and senescence/aging, may aid in
the development of targeted therapies with greater efficacy and tolerability for IPF
patients in the future (Thannickal and Antony 2018).

Personalized medication, combined with the principles of combination therapy, is an
intriguing concept for treating IPF, a disease characterized by clinical variability that
can be attributed to distinct and overlapping pathobiological mechanisms.
Molecular imaging, system pharmacological, and pharmacogenomic approaches
could aid in this endeavor. As newer drug targets are identified and biomarkers
discovered, personalized medicine could become a reality for IPF patients, resulting
in more effective and tolerable targeted therapies. However, the complex nature of
IPF’s pathogenesis makes personalized medicine challenging in routine
management in the short-term future (Thannickal and Antony 2018).

Comparison of meta-analysis and gene co-expression network analysis

Differential gene expression (DGE) analysis is a frequently used method to unveil
the altered molecular mechanisms of complex diseases. However, conventional
DGE analysis, such as the t-test or rank sum test, tests individual genes
independently and overlooks the interactions between them. As a result, the
top-ranked differentially regulated genes prioritized by the analysis may not
necessarily correspond to the coherent molecular changes that underlie complex
diseases. Joint analyses of gene co-expression and DGE have been utilized to
identify the disrupted molecular modules that underlie complex diseases (Wu et al.
2013). The analysis of gene co-expression networks is a crucial method in
deciphering gene function and association based on genome-wide expression data.
This approach enables the detection of co-expression modules comprising highly
related genes, as well as modules associated with clinical features, providing
valuable insights into the function of co-expressed genes and identifying key genes
involved in human diseases (Bai et al. 2020).
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The emerging field of network medicine has revolutionized the way human diseases
are defined and analyzed. Rather than considering a disease or particular genes as
an isolated entity, network medicine recognizes the interplay of multiple molecular
processes in causing disease. It proposes a holistic approach, emphasizing the
importance of understanding disease complexity at the cellular and molecular levels
and studying the relationships between different pathophenotypes. Network
medicine aims to identify and characterize potential network modules that can be
targeted for clinical intervention to gain a better understanding of how perturbations
propagate through the system. Despite being a relatively new field, network
medicine has seen rapid growth in scientific research, with numerous methods
being developed to investigate disease etiology, model genetic and molecular
interactions, identify potential biomarkers, and design therapeutic interventions,
including drug discovery and drug repurposing (Barabási et al. 2011; Goh et al.
2007; Paci et al. 2021).

Both the meta-analysis and the network-based approach yielded both similarities
and differences in their results. For instance, upon comparing the biopsy dataset
network-based analysis and meta-analysis (Tables 9 and 22), it is evident that
collagenase clostridium histolyticum, ocriplasmin, and marimastat were present in
both analyses. It is worth noting that the reactome pathway from which the genes
were extracted differed. The meta-analysis did not identify tyrosine kinase inhibitors
in the biopsy analysis (Table 22). Based on speculation without any statistical
inference, network-based methods appear to provide more coherent results
concerning data-driven drug repositioning. This is is logical since the network
approach focuses on genes belonging to the disease module instead of
differentially expressed genes from the whole gene pool. On the other hand, the
network-based approach identified e.g. vismodegib, which was not present in the
meta-analysis. Combining both approaches would be beneficial since they provide
different perspectives, and the information can be integrated to see which results
support each other.

FAIR data

In order to optimize the benefits of formal digital publishing, data producers and
publishers can be guided by the four fundamental principles of FAIR - Findability,
Accessibility, Interoperability, and Reusability. Following these principles would be
ideal for navigating the challenges of modern scholarly digital publishing (Wilkinson
et al. 2016). Saarimäki et al. recently published a paper in which they assessed the
quality of datasets used in their study. They found that out of the datasets published
in peer-reviewed articles, 35 were excluded due to problems in overall usability,
rather than reusability. The issues were related to experimental design, indicating
that some toxicogenomics datasets published in peer-reviewed articles had
substantial design flaws that could compromise the validity of any results obtained
from them. The study emphasizes the importance of critically evaluating data, even
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when they have been FAIRified. The authors suggest that although rigorous
reporting of data is important, it does not automatically ensure quality. Instead,
efforts to ensure quality should be addressed in the early phases of experimental
design (Saarimäki et al. 2022).

The encountered lack of data quality during the curation process was notable. For
instance, considering dataset GSE70866 "BAL cell gene expression is indicative of
outcome and airway basal cell involvement in idiopathic pulmonary fibrosis," which
has received 80 citations on Scopus as of May 1st, 2023 (Prasse et al. 2019b). The
MDS plot of the normalized data for this study is included in supplementary Figure
57, left figure. The data was collected from three different cities, and the only
control samples available are from Freiburgh. Unfortunately, there is no batch
correction method that could account for such an artificial batch effect, which led
me to exclude the Sienna and Leuven samples from the analysis. If these samples
had been included, the enormous batch effect would have made nearly all genes
differentially expressed. The lack of randomization in this dataset is quite
problematic, and unfortunately, it is not the only example. Figure 61 also exhibits a
similar lack of randomization. In their recent paper, Saarimäki et al. have also
highlighted this issue, indicating that the minimum standards for toxicogenomics
data often result in poor usability due to incomplete characterization of the
experimental design and execution, as well as the lack of description regarding
potential systematic effects caused by reagents, microarrays, and other factors
(Saarimäki et al. 2022).

During the data preprocessing phase, another issue was encountered where the
metadata files did not contain the sample names for the corresponding data, and
the order of the metadata samples was completely unrelated to that of the actual
data. This presented a significant challenge, as even with sophisticated data
curation processes, it is difficult to reconcile the metadata with the actual data. It
can be a very time-consuming and error-prone task to try to determine which
sample name corresponds to each sample in the metadata. This issue was
prevalent e.g. in dataset GSE199152. Despite efforts to address this issue, it
remains a persistent problem when the metadata and actual data are not properly
aligned.

In conclusion, the challenges of modern scholarly digital publishing can be
addressed by adhering to the four fundamental principles of FAIR, which guide data
producers and publishers to optimize the benefits of formal digital publishing.
However, even when data are FAIRified, there can be issues related to
experimental design and execution that compromise the validity of any results
obtained from them. This highlights the importance of critically evaluating data
quality and addressing issues in the early phases of experimental design.
Furthermore, issues related to metadata alignment and lack of randomization can
present significant challenges during data preprocessing, and efforts should be
made to mitigate these issues.
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Conclusions

In this study, potential biomarkers were identified as novel drug targets, and the
drugs discovered were classified into five categories: enzymes, matrix
metalloproteinase inhibitors, tyrosine kinase inhibitors, ion channel inhibitors and
modulators, and biologics, such as monoclonal antibodies. Of particular interest
was the enzyme ocriplasmin, which has the potential to treat IPF by breaking down
the extracellular matrix. However, the administration of ocriplasmin in the lungs
remains challenging, and further research is needed to determine its safety and
efficacy. One possibility for administration is through the use of nanocapsules via
oral or parenteral routes. Studies in mice have shown that nanocapsules can
deliver collagenase clostridium histolyticum (which targets similar areas as
ocriplasmin) in a sustained and controlled manner, protecting the enzyme’s activity
for up to 10 days (Villegas et al. 2018).

Due to the complex nature of IPF pathogenesis, multiple pathways are coactivated
in the disease, making monotherapies less effective in treating IPF. One potential
approach for IPF treatment is to target both pro-inflammatory and pro-fibrotic
pathways. To achieve this, multiple cell types, including epithelial cells,
macrophages, fibroblasts, BAL, and biopsies, have been analyzed. Tyrosine kinase
inhibitors (such as regorafenib, dasatinib, and nintedanib) and matrix
metalloproteinase inhibitors (such as doxycycline and marimastat) have been found
to affect several cellular processes that are crucial for IPF pathogenesis. Many of
these compounds have been used in a variety of cancers, but further research is
needed to determine their effectiveness in IPF treatment. The goal is to find
medications with specific targets that can inhibit IPF-related pathways with an
effective dose and as few adverse effects as possible.

In the analysis of macrophages, it was discovered that nitrates and
neuromodulators like gabapentin could assist in managing pulmonary hypertension
and cough. Additionally, gabapentin and pregabalin have been demonstrated to
possess anti-inflammatory qualities (Yamaguchi et al. 2017). While nitrates might
have some potential downsides, such as oxidative stress and tolerance, PDE5
inhibitors may provide a better alternative. Nevertheless, these inexpensive and
widely used neuromodulators, nitrates, and PDE5 inhibitors are intriguing treatment
options that could reduce the cost of IPF treatment for both patients and society.
Analyses also revealed many monoclonal antibodies, but clinical studies of
numerous promising biologics for IPF treatment have been disappointing.
Nonetheless, recent clinical studies have indicated some promise for effective
monoclonal antibody treatment in IPF, such as the recent anti-CTGF antibody
pamrevlumab.
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Recently, methods that combines co-expression and differential gene expression
analyses has been utilized to identify functional characteristics that underlie
complex diseases. This approach enables the detection of gene co-expression
networks and disease modules consisting of highly related genes that are
associated with clinical features. This provides valuable insights into gene functions
and helps to identify crucial genes involved in human diseases. Network medicine
aims to identify and characterize potential network modules that can be targeted for
clinical intervention, to gain a better understanding of how perturbations propagate
through the holistic system. On the other hand, differential gene expression
analyses provide information about individual genes that behave differently in
diseased and healthy individuals. Although there are similarities and differences in
the results obtained from the meta-analysis and the network-based approach,
combining both methods would be advantageous since they offer different
perspectives, and the information can be integrated to determine which results
support each other.

Ensuring high-quality datasets is crucial for maximizing the benefits of formal digital
publishing. Following the FAIR principles (Findability, Accessibility, Interoperability,
and Reusability) can assist data producers and publishers in navigating the
challenges of contemporary scholarly digital publishing. However, it’s important to
note that thorough reporting of data doesn’t automatically guarantee quality, and
measures to ensure quality should be taken during the early phases of
experimental design. Even though the FAIR principles are employed,
toxicogenomic datasets frequently encounter usability issues due to inadequate
documentation of experimental design and execution. Additionally, poor quality and
systematic effects caused by the absence of randomization in the study design also
contribute to these issues.
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Appendix

Supplementary figures

PCA and MDS plots of the raw data for each non-integrated dataset

The PCA plots of RNA-seq datasets presented here were generated using raw data
without normalization using DESeq2. Similarly, the MDS plots for the microarray
data were created before batch correction, as an unknown error occurred when
attempting to create MDS plots after batch correction using the eUTOPIA-app.

Figure 44: Biopsy dataset GSE99621 PCA plot before normalization.

Figure 45: Biopsy dataset GSE124685 PCA plot before normalization.
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Figure 46: Biopsy dataset GSE150910 PCA plot before normalization.

Figure 47: Epithelial dataset GSE151673 PCA plot before normalization.

Figure 48: Biopsy and BAL dataset GSE166036 PCA plot before normalization.
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Figure 49: Biopsy dataset GSE169500 PCA plots before normalization. Upper
figure is grouped by disease condition and lower figure is grouped bu tissue source:
alveolar septae and myofibroblast foci.

Figure 50: Biopsy dataset GSE184316 PCA plot before normalization.

Figure 51: Biopsy dataset GSE199152 PCA plot before normalization.
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Figure 52: Biopsy dataset GSE199949 PCA plot before normalization.

Figure 53: Biopsy dataset GSE213001 PCA plot before normalization.

Figure 54: Fibroblast dataset GSE185492 PCA plot before normalization. Left figure
is grouped by disease and right figure is grouped by tissue source: apical and basal
regions of the lung.

Figure 55: Alveolar macrophage dataset GSE49072 MDS plot before normalization.
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Figure 56: Alverolar macrophage dataset GSE490010 MDS plot before
normalization. Experimental set 1: (n=4 per group, 4 match paired groups):
Human monocyte-derived macrophages (MDM) co-colture with or without apoptotic
neutrophils and with or without LPS (1ng/ml) for 9 hours. Experimental set 2: (n=4
per group, 2 groups):AM from IPF and RB-ILD patients isolated from bronchoalveolar
lavage by cell sorting.

Figure 57: BAL dataset GSE70866 MDS plots before batch correction.The dataset
comprises samples from three distinct cities: Freiburg, Sienna, and Leuven, with
only the control samples sourced from Freiburg. The left MDS plot represents all
the samples, while the right one illustrates only the samples from Freiburg. Despite
applying batch correction utilizing city as a covariate, 25000 genes were found to be
differentially expressed out of 29000, and hence, only samples from Freiburg were
employed due to the batch effect.

Figure 58: Fibroblast dataset GSE40839 MDS plot before batch correction.
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Figure 59: Fibroblast dataset GSE11196 MDS plot before batch correction.

Figure 60: Fibroblast dataset GSE44723 MDS plot before batch correction. Out of
the total genes examined, none were found to have an adjusted p-value less than
0.05 across the rapid, slow, and normal groups. However, when comparing the slow
and normal groups, only two genes were discovered to have an adjusted p-value
less than 0.05.
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Figure 61: Biopsy dataset GSE110147 MDS plot before batch correction. Three
diseases: IPF, NSIP, and Mixed IPF NSIP. For each of these diseases, approximately
20,000 differentially expressed genes were identified out of a total of 30,000 genes.

Figure 62: Biopsy dataset GSE21369 MDS plot before batch correction. Differential
gene expression analysis was performed by comparing UIP samples to healthy
controls.

126



Figure 63: Biopsy dataset GSE24206 MDS plot before batch correction.

Figure 64: Biopsy dataset GSE76808 MDS plot before batch correction.

Figure 65: Biopsy dataset GSE72073 MDS plot before batch correction. Primary
spontaneous pneumothorax samples as control.
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Figure 66: Biopsy dataset GSE94060 MDS plot before batch correction. None of the
genes examined in this study exhibited an adjusted p-value less than 0.05.

Code

####Here is just part of the code I used because

##Some of the parts had to be performed

##For each dataset separately and there

###was also some work done in the console

####I can see looking some parts that I would

##Have bit more sophisticated solutions for some parts now

##Since I gained some experience during this work

#Download the fastq-files from a text file European nucleotide

archive

while read -r line; do echo "$line"; axel -n 10 "$line"; done <

PRJNA513068_tsv.txt

#make the fastqc report

fastqc *.fastq.gz -t 10 -o /home/sinkala/

expressiondata/rnaseq/folder

#Trimming the paired end fastq-files with cutadapt

FASTQ_FILES_R1=$(ls *_1.fastq.gz |cut -d "_" -f1)

FASTQ_FILES_R2=$(ls *_2.fastq.gz |cut -d "_" -f1)

for i in $FASTQ_FILES_R1; do ~/.local/bin/cutadapt -a
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AGATCGGAAGAG -A AGATCGGAAGAG

-q 20 -m 60 -j 2 -o TRIMMED_${i}

_1.fastq.gz -p TRIMMED_${i}_2.fastq.gz ${i}_1.fastq.gz ${i}

_2.fastq.gz; done

#Trimming the single end fastq-files and Ion-Torrent fastq-

files with cutadapt

FASTQ_FILES=$(ls *.fastq.gz |cut -d "." -f1)

for i in $FASTQ_FILES; do ~/.local/bin/cutadapt -q 20 -m 35 -j

2 -o TRIMMED_${i}.fastq.gz ${i}.fastq.gz; done

#Aligning paired end fastq-files with Hisat2

HISAT2_INDEXES=/nasdata/RNA_Seq/RNA_Seq_tools/toninos_pipeline/

indexes/grch38

FASTQ_FILES_R1=$(ls 1.fastq.gz |cut -d "" -f1)

FASTQ_FILES_R2=$(ls2.fastq.gz |cut -d "" -f1)

for i in $FASTQ_FILES_R1; do /nasdata/RNA_Seq/RNA_Seq_tools/

toninos_pipeline/hisat2 -2.2.1/hisat2 -q -p 10 -x

$HISAT2_INDEXES/genome -1 ${i}_1.fastq.gz -2 ${i}_2.fastq.gz |

samtools view -Sbh > ${i}.bam; done

#Aligning single end fastq-files and Ion-Torrent with Hisat2

HISAT2_INDEXES=/nasdata/RNA_Seq/RNA_Seq_tools/toninos_pipeline/

indexes/grch38

FASTQ_FILES_R1=$(ls *.fastq.gz |cut -d "." -f1)

for i in $FASTQ_FILES_R1; do /nasdata/RNA_Seq/RNA_Seq_tools/

toninos_pipeline/hisat2 -2.2.1/hisat2 -q -p 10 -x

$HISAT2_INDEXES/genome -U ${i}.fastq.gz | samtools view -Sbh >

${i}.bam; done

#Filtering and sorting the uniquely mapped reads

BAM_FILES=$(ls *.bam |cut -d "." -f1)

for i in $BAM_FILES; do samtools view -H ${i}.bam > ${i}

_header.sam; samtools view ${i}.bam |grep -w "NH:i:1" | cat $

{i}_header.sam - |samtools view -@ 40 -Sb - > ${i}_unique.bam;

samtools sort -@ 40 ${i}_unique.bam > ${i}_unique_sorted.bam;
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rm ${i}.sam; rm ${i}_header.sam; rm ${i}.bam; rm ${i}

_unique.bam; done

#Building the count matrix in RStudio.

#Example dataset here GSE166036

#These steps might have been bit different between datasets

#Because sample names differ and the order in metadata

#samples and the actual data samples do not always correspond

setwd("path")

files <- list.files(pattern = "\\.bam")

counts<-Rsubread::featureCounts(files,

isGTFAnnotationFile = TRUE,

annot.ext="/nasdata/RNA_Seq/references/Ensembl_v108_hsapiens/

gtf/Homo_sapiens.GRCh38.108.gtf", GTF.attrType="gene_id",

isPairedEnd=TRUE)

write.table(counts$counts, file="filename.csv", sep="\t")

setwd("/nasdata/sinkala/expressiondata/rnaseq/GSE166036")

raw_matrix <- read.csv("rawcounts_GSE166036.csv", sep="\t")

#change the colnames to SRRxxxxxxxx

column_names<-c()

for (i in 1:length(colnames(raw_matrix))) {

new_name<-substring(colnames(raw_matrix)[i], 9, 18)

column_names<-c(column_names, new_name)

}

colnames(raw_matrix)<-column_names

###Read in the metadata to check the conditions

library(xlsx)

metadata <- read.xlsx("/nasdata/sinkala/phenodata/IPF/

updated_datasets/GSE166036_updated_ok.xlsx", sheetIndex = 1)

conditions<-(metadata$disease)

#######ets change the column names of the raw data i
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into sample title########

colnames(raw_matrix) <- metadata$title

#######Filter the low counts########

filter_low_counts <- function(counts.matrix, conditions , method

= "cpm", normalized=FALSE, depth=NULL, cpm=1, p.adj = "fdr"){

if(is.null(counts.matrix)){stop("Error: please provide a

numeric count matrix!")}

if(is.null(conditions)){stop("Error: please provide a factor

or a vector indicating the conditions!")}

if(!method %in% c("cpm", "wilcoxon", "proportion"))

{stop("Error: Please type in one of valid methods!")}

if (method=="cpm"){

filtered.counts = NOISeq::filtered.data(counts.matrix,

factor = conditions , norm = normalized , method = 1,

cv.cutoff = 100, cpm = cpm, p.adj = p.adj)

}else if(method=="wilcoxon"){

filtered.counts = NOISeq::filtered.data(counts.matrix,

factor = conditions , norm = normalized , method = 2,

cv.cutoff = 100, p.adj = p.adj)

}else if(method=="proportion"){

if(is.null(depth)){stop("Error: indicate a numeric vector

indicating per sample library depths")}

if(!class(depth)=="numeric"){stop("Error: please provide

the depth argument with a numeric vector!")}

### Compute librarary depth

filtered.counts = NOISeq::filtered.data(counts.matrix,

factor = conditions , norm = normalized , depth = depth,

method = 3, cv.cutoff = 100, cpm = cpm, p.adj = p.adj)

}

return(filtered.counts)

}

filtered_data <- filter_low_counts(counts.matrix =raw_matrix,

conditions = conditions , method = "proportion", normalized =
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FALSE, p.adj = "fdr", depth = as.numeric(apply(raw_matrix, 2,

sum)))

write.table(filtered_data, file =

"filtered_data_GSE166036_ensembl.csv", sep = "\t", col.names

=TRUE)

##########Change the ensembl_ids to symbol############

library(org.Hs.eg.db)

ensembl_ids = rownames(filtered_data)

# You can see that the subset data is listed as a integer, we

now need to convert

# this to a vector to pass it into the annotation mapping

ensembl_ids = as.vector(ensembl_ids)

# Using the org.Hs.eg.db we set up mapping info - if you look

at the documentation you

# can also obtain other keytypes

gene_ids <- select(org.Hs.eg.db, keys=ensembl_ids,

columns="SYMBOL", keytype="ENSEMBL")

filtered_data$ENSEMBL<-rownames(filtered_data)

matrix_with_gene_id <- merge(filtered_data, gene_ids,

by.x="ENSEMBL", by.y="ENSEMBL")

##Remove rows with NA######

matrix_with_gene_id <- na.omit(matrix_with_gene_id)

matrix_with_gene_id_1<-matrix_with_gene_id[,

2:length(colnames(matrix_with_gene_id))] # REMOVE THE ENSEMBL

COLUMN

aggr_exprmat <- matrix_with_gene_id_1 %>% group_by(SYMBOL) %>%

dplyr::summarise_all(.funs = c(median = "median"))

aggr_exprmat <- as.data.frame(aggr_exprmat)

aggr_exprmat <- na.omit(aggr_exprmat)
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rownames(aggr_exprmat)<-aggr_exprmat$SYMBOL

aggr_exprmat<-aggr_exprmat[,2:length(colnames(aggr_exprmat))]

colnames(aggr_exprmat) <- metadata$title

write.table(aggr_exprmat, file =

"filtered_data_GSE166036_symbol.csv", sep = "\t", col.names

=TRUE)

###PCA before normalisation###

df_pca <- prcomp(aggr_exprmat, center = TRUE, scale. = TRUE)

df_out <- as.data.frame(df_pca$rotation)

df_out$group <- conditions

p<-ggplot(df_out, aes(x=PC1, y=PC2, color=group,

label=rownames(df_out)))

p <- p+geom_point()+geom_text(size=3)

p

### Differential expression analysis ###

setwd("/path")

table<-read.table("normalized_count_matrix.csv", sep = "\t")

metadata <- read.xlsx("/path_to_metadata", sheetIndex = 1)

#######extract ipf and healthy samples###########

####and covariates####

table<-table[,metadata$disease%in%c("IPF","healthy")]

metadata<-metadata[metadata$disease%in%c("IPF","healthy"),]

table<-table[,metadata$disease%in%c("healthy")[metadata

$tissue_source%in%c("alveolar_septae")]+metadata$tissue_source

%in%c("fibroblast_foci")==1]

metadata<-metadata[metadata$disease%in%c("healthy")[metadata

$tissue_source%in%c("alveolar_septae")]+metadata$tissue_source

%in%c("fibroblast_foci")==1,]

conditions<-metadata$disease

tissue<-metadata$tissue_source
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muc5b_genotype<-metadata$muc5b_genotype[metadata$disease%in

%c("IPF","healthy")]

smoking_status<-metadata$smoking_status[metadata$disease%in

%c("IPF","healthy")]

plate<-metadata$plate[metadata$disease%in%c("IPF","healthy")]

sex<-metadata$sex[metadata$disease%in%c("IPF","healthy")]

batch<-metadata$batch[metadata$disease%in%c("IPF","healthy")]

batch<-gsub("-", "_", batch)

race<-metadata$race[metadata$disease%in%c("IPF","healthy")]

immunosuppressant<-metadata$immunosupressant[metadata$disease

%in%c("IPF","healthy")]

###############################################################

table_1<-sapply(table,as.integer)

rownames(table_1)<-rownames(table)

conditions<-(metadata$disease)

colData <- data.frame(treatment=as.vector(conditions),

tissue=as.vector(tissue), sex=as.vector(sex))

rownames(colData) <- colnames(table_1)

table_1<-sapply(table,as.integer)

rownames(table_1)<-rownames(table)

ddsMat <- DESeq2::DESeqDataSetFromMatrix(countData = table_1,

colData = colData,

design = ~sex

+treatment)

dds <- DESeq2::DESeq(ddsMat)
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total_norm_counts <- DESeq2::counts(dds, normalized=TRUE)

write.table(total_norm_counts, file =

"GSE173355_normalized_counts_matrix_symbol_deseq.txt", quote =

FALSE, sep = "\t", row.names = TRUE, col=NA)

res1 <- DESeq2::results(dds, contrast = c("treatment", "IPF",

"healthy"), pAdjustMethod = "fdr", independentFiltering =

FALSE)

write.table(res1, file =

"DEG_results_DESeq2_IPF_vs_healthy_unfiltered_symbol_GSE173355.txt",

row.names = TRUE, sep = "\t", quote = FALSE)

res1_adj <- res1[which(res1$padj <=0.01 &

abs(res1$log2FoldChange)>=0.58),]

print(dim(res1_adj))

write.table(res1_adj, file =

"DEG_results_DESeq2_IPF_vs_healthy_filtered_symbol_GSE173355.txt",

row.names = TRUE, sep = "\t", quote = FALSE)

###########Microarraydatasets_probes_to_geneid################

setwd("/path")

library(xlsx)

dif_table_ipf <-

read.xlsx("ALL_Differential_Expression_Tables_2023-01-24.xlsx",

sheetIndex = 2)

expression_matrix<-

read.table("Expression_Matrix_Normalized_2023-01-24.txt",

sep="\t", header=T, row.names = NULL)

require("biomaRt")

mart <- useMart("ENSEMBL_MART_ENSEMBL")

mart <- useDataset("hsapiens_gene_ensembl", mart)

annotLookup_ipf <- getBM(

mart=mart,

attributes=c(

"affy_hg_u133a",
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"ensembl_gene_id",

"gene_biotype",

"external_gene_name"),

filter = "affy_hg_u133a",

values = dif_table_ipf$ID,

uniqueRows = TRUE)

#annotation table

table_annot_ipf <- merge(dif_table_ipf, annotLookup_ipf,

by.x="ID", by.y="affy_hg_u133a")

#Making the annotation table in ensembl id:s

table_annot_ipf_ensembl<-table_annot_ipf[,c(2:9)]

aggr_dif_table_ipf <- table_annot_ipf_ensembl %>%

group_by(ensembl_gene_id) %>% dplyr::summarise_all(.funs =

c(median = "median"))

aggr_dif_table_ipf <- as.data.frame(aggr_dif_table_ipf)

aggr_dif_table_ipf <- na.omit(aggr_dif_table_ipf )

rownames(aggr_dif_table_ipf)<-aggr_dif_table_ipf

$ensembl_gene_id

aggr_dif_table_ipf<-aggr_dif_table_ipf[,

2:length(colnames(aggr_dif_table_ipf))]

write.table(aggr_dif_table_ipf, file =

"dif_table_ensembl_ipf_GSE11196.csv", sep = "\t", col.names

=TRUE)

#Make the annotation table with gene symbols

table_annot_ipf_symbol<-table_annot_ipf[,c(2:8, 11)]

aggr_dif_table_ipf <- table_annot_ipf_symbol %>%

group_by(external_gene_name) %>% dplyr::summarise_all(.funs =

c(median = "median"))

aggr_dif_table_ipf <- as.data.frame(aggr_dif_table_ipf)

aggr_dif_table_ipf <- na.omit(aggr_dif_table_ipf)

rownames(aggr_dif_table_ipf)<-aggr_dif_table_ipf

$external_gene_name

aggr_dif_table_ipf<-aggr_dif_table_ipf[,

2:length(colnames(aggr_dif_table_ipf))]

write.table(aggr_dif_table_ipf, file =

"dif_table_symbol_ipf_GSE11196.csv", sep = "\t", col.names

=TRUE)
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##################Expression matrix with

ensembl##################

expression_matrix<-expression_matrix[grep("ENSG",

expression_matrix$row.names),]

rownames_ipf<-c()

for (i in 1:(length(expression_matrix$row.names))) {

rowname<-strsplit(as.character(expression_matrix

$row.names[i]), "_")[[1]][1]

rownames_ipf<-c(rownames_ipf, rowname)

}

rownames(expression_matrix)<-rownames_ipf

expression_matrix<-expression_matrix[,

2:length(colnames(expression_matrix))]

write.table(expression_matrix, file =

"expression_matrix_final_ensembl_GSE11196.csv", sep = "\t",

col.names =TRUE)

########### Expression matrix with GENE-IDS#############

library(org.Hs.eg.db)

ensembl_ids = rownames(expression_matrix)

# You can see that the subset data is listed as a integer, we

now need to convert

# this to a vector to pass it into the annotation mapping

ensembl_ids = as.vector(ensembl_ids)

# Using the org.Hs.eg.db we set up mapping info - if you look

at the documentation you

# can also obtain other keytypes

gene_ids <- select(org.Hs.eg.db, keys=ensembl_ids,
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columns="SYMBOL", keytype="ENSEMBL")

expression_matrix$ENSEMBL<-rownames(expression_matrix)

table_with_gene_id <- merge(expression_matrix, gene_ids,

by.x="ENSEMBL", by.y="ENSEMBL")

table_with_gene_id <- na.omit(table_with_gene_id)

table_with_gene_id_1<-table_with_gene_id[,

2:length(colnames(table_with_gene_id))] # REMOVE THE ENTREZ

COLUMN

aggr_table<- table_with_gene_id_1 %>% group_by(SYMBOL) %>%

dplyr::summarise_all(.funs = c(median = "median"))

aggr_table <- as.data.frame(aggr_table)

aggr_table <- na.omit(aggr_table)

rownames(aggr_table)<-aggr_table$SYMBOL

aggr_table<-aggr_table[,2:length(colnames(aggr_table))]

colnames(aggr_table)<-colnames(expression_matrix)[1:

(length(colnames(expression_matrix))-1)]

write.table(aggr_table, file =

"expression_matrix_final_symbol_GSE11196.csv", sep = "\t",

col.names =TRUE)

#########make the consensus count matrices############

########This was done for RNA-seq and microarray

###Samples separately and for each cell type

###separately

setwd("/path")

GSE185492 <-

read.table("GSE185492_ALL_normalized_counts_matrix_symbol_deseq.txt",

sep="\t", header = T)

rownames(GSE185492)<-GSE185492$X

GSE185492<-GSE185492[,2:length(colnames(GSE185492))]
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GSE44723<-

read.table("expression_matrix_final_symbol_GSE44723.csv",

sep="\t")

GSE40839 <-

read.table("expression_matrix_final_symbol_GSE40839.csv",

sep="\t")

library(purrr)

common_row_names <- Reduce(intersect ,

list(rownames(GSE40839),rownames(GSE11196),

rownames(GSE44723)))

GSE11196_subset <- GSE11196[rownames(GSE11196) %in%

common_row_names, ]

GSE44723_subset <- GSE44723[rownames(GSE44723) %in%

common_row_names, ]

GSE40839_subset <- GSE40839[rownames(GSE40839) %in%

common_row_names, ]

write.table(GSE11196_subset,

file="GSE11196_symbol_expression_matrix_subset.txt", sep="\t")

write.table(GSE44723_subset,

file="GSE44723_symbol_expression_matrix_subset.txt", sep="\t")

write.table(GSE40839_subset,

file="GSE40839_symbol_expression_matrix_subset.txt", sep="\t")

####Disease and healthy

disease_GSE185492_subset<-GSE185492[,c(grep(pattern = "IPF",

colnames(GSE185492)))]

healthy_GSE185492_subset<-GSE185492[,c(grep(pattern = "CTR",

colnames(GSE185492)))]

disease_GSE44723_subset<- GSE44723_subset[,c(3,4,5,7)]

disease_GSE44723_subset<-

GSE44723_subset[,c(1,2,6,8,9,10,11,12,13,14)]

healthy_GSE40839_subset<-GSE40839_subset[,c(1:10)]
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disease_GSE40839_subset<-GSE40839_subset[c(19:21)]

write.table(disease_GSE185492_subset,

file="GSE185492_symbol_expression_matrix_disease_subset.txt",

sep="\t")

write.table(healthy_GSE185492_subset,

file="GSE185492_symbol_expression_matrix_healthy_subset.txt",

sep="\t")

######################################################################

#Integrating the differential expression tables for the meta-analysis#

######################################################################

setwd("path")

GSE185492 <-

read.table

("DEG_results_DESeq2_IPF_vs_healthy_unfiltered_symbol_GSE185492_ALL.txt",

header = T)

GSE185492_adj_p<-GSE185492$padj

names(GSE185492_adj_p)<-rownames(GSE185492)

GSE44723<- read.table("dif_table_final_symbol_GSE44723.csv", sep="\t",

header = T)

GSE44723_adj_p<-GSE44723$adj.P.Val

names(GSE44723_adj_p)<-rownames(GSE44723)

GSE11196<- read.table("dif_table_ipf_final_symbol_GSE11196.csv", sep="\t",

header = T)

GSE11196_adj_p<-GSE11196$adj.P.Val

names(GSE11196_adj_p)<-rownames(GSE11196)

GSE40839<- read.table("dif_table_ipf_final_symbol_GSE40839.csv", sep="\t",

header = T)

GSE40839_adj_p<-GSE40839$adj.P.Val

names(GSE40839_adj_p)<-rownames(GSE40839)
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library(purrr)

common_names <- Reduce(intersect ,

list(names(GSE185492_adj_p),names(GSE44723_adj_p), names(GSE11196_adj_p),

names(GSE40839_adj_p)))

GSE185492_adj_p_subset <- GSE185492_adj_p[names(GSE185492_adj_p) %in%

common_names]

GSE185492_adj_p_subset<-

GSE185492_adj_p_subset[order(names(GSE185492_adj_p_subset))]

GSE44723_adj_p_subset <-GSE44723_adj_p[names(GSE44723_adj_p) %in%

common_names]

GSE44723_adj_p_subset<-

GSE44723_adj_p_subset[order(names(GSE44723_adj_p_subset))]

GSE11196_adj_p_subset <-GSE11196_adj_p[names(GSE11196_adj_p) %in%

common_names]

GSE11196_adj_p_subset<-

GSE11196_adj_p_subset[order(names(GSE11196_adj_p_subset))]

GSE40839_adj_p_subset <-GSE40839_adj_p[names(GSE40839_adj_p) %in%

common_names]

GSE40839_adj_p_subset<-

GSE40839_adj_p_subset[order(names(GSE40839_adj_p_subset))]

combined_table<-

as.data.frame(cbind(GSE185492_adj_p_subset,GSE44723_adj_p_subset,

GSE11196_adj_p_subset, GSE40839_adj_p_subset))

combined_table<-na.omit(combined_table)

write.table(combined_table, file="combined_adj_p_val_fibro.txt", sep="\t")

#Integrating the differential expression tables for the meta-

analysis#

###ALL###

setwd("C:/Users/OWNER/OneDrive - TUNI.fi/Bioteknologia/gradu/data/

meta_analysis/ALL")
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#list_files<-list.files()

#list_files<-list_files[1:(length(list_files)-1)] #CHECK THE LIST_FILES

FIRST

##list_files for all but biopsy

list_files<-c("adj_pval_GSE151673_epithelial.txt",

"adj_pval_integrated_BAL.txt", "adj_pval_integrated_macrophage.txt",

"combined_adj_p_val_fibro.txt")

tables<-list()

for (name in 1:length(list_files)) {

tables[[name]]<-read.table(list_files[name], sep="\t", header = T)

}

list_names<-list()

for(i in 1:length(tables)){

list_names[[i]]<-rownames(tables[[i]])

}

common_names <- Reduce(intersect , list_names)

common_p_values<-list()

for(i in 1:length(tables)){

common_p_values[[i]]<-tables[[i]][rownames(tables[[i]])%in

%common_names,,drop=FALSE]

common_p_values[[i]]<-common_p_values[[i]]

[order(rownames(common_p_values[[i]])),,drop=FALSE]

}

names(common_p_values)<-list_files

combined_table<-as.data.frame(do.call(cbind, common_p_values))
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names_1<-substring(colnames(combined_table), regexpr("GSE",

colnames(combined_table)) -0)

names_1[1]<-"GSE151673_adj_pval"

names_1[2]<-"GSE166036_adj_pval"

names_1[3]<-"GSE70866_adj_pval"

names_1[4]<-"GSE90010_adj_pval"

names_1[5]<-"GSE49072_adj_pval"

colnames(combined_table)<-names_1

setwd("C:/Users/OWNER/OneDrive - TUNI.fi/Bioteknologia/gradu/data/

meta_analysis/ALL_BUT_BIOPSY")

write.table(combined_table,

file="adj_pval_integrated_ALL_BUT_BIOPSY_FINAL.txt", sep="\t")

#########Meta-analysis###############

rm(list=ls())

#### Required libraries ####

suppressMessages(library(esc))

suppressMessages(library(metafor))

suppressMessages(library(metap))

suppressMessages(library(TopKLists))

suppressMessages(library(RankProd))

suppressMessages(library(matrixStats))

suppressMessages(library(igraph))

suppressMessages(library(TopKLists))

suppressMessages(library(minet))

suppressMessages(library(foreach))

suppressMessages(library(parallel))

suppressMessages(library(doParallel))

suppressMessages(library(ggplot2))

suppressMessages(library(plyr))

######## Module 1 - Meta-analysis section ########

##################################################

#This section was mostly offered by Antonio

#Federico, Thank you!
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#’ Mean-adjustes transcriptomics data by batch (wrapper of

pamr.batchadjust from the pamr CRAN package)

#’

#’ @importFrom pamr pamr.batchadjust

#’

#’ @param expr_mat A dataframe with genes on the rows and

samples in the columns.

#’ @param samples_label A factor of samples labels in the same

order as the samples in expr_mat columns

#’ @param batch_labels A factor of labels indicating the

batches (the studies where the samples are coming from)

#’ @return A batch-adjusted expression matrix of the same

dimension of expr_mat

#’ @examples

#’ \dontrun {

#’ calc_effect_size_rank(meta_dataframe)

#’ }

#’ @export

multi_studies_adjust <-

function(expr_mat, samples_label, batch_labels){

mylist <- list(x=as.matrix(expr_mat),

y=as.factor(samples_label),

batchlabels=as.factor(batch_labels))

adjusted_mat <- pamr::pamr.batchadjust(data = mylist)

table_transpose<-as.data.frame(t(expr_mat))

df_pca <- prcomp(table_transpose , center = TRUE,

scale. = TRUE)

p<-ggplot(as.data.frame(df_pca$x),

aes(x=PC1, y=PC2, color=batch_labels))

p <- p+geom_point()+ggtitle("Before batch correction")

table_transpose2<-as.data.frame(t(adjusted_mat$x))

df_pca2 <- prcomp(table_transpose2 , center = TRUE,

scale. = TRUE)

p2<-ggplot(as.data.frame(df_pca2$x), aes(x=PC1, y=PC2,

color=batch_labels))
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p2 <- p2+geom_point()+ggtitle("After batch correction")

require(gridExtra)

grid.arrange(p, p2, ncol=2)

return(adjusted_mat)

}

#’ Computes effect sizes for meta-analysis

#’

#’ @importFrom esc effect_sizes

#’

#’ @param meta_dataframe A dataframe with genes on the rows (as

rownames) and samples in the columns. The columns should

contain p-values deriving from gene-based statistical testing.

#’ @return A gene list ranked on the base of the effect size.

#’ @examples

#’ \dontrun {

#’ calc_effect_size_rank(meta_dataframe)

#’ }

#’ @export

calc_effect_size_rank<- function(meta_dataframe) {

#index_pval<-which(grepl(’pval’,colnames(meta_dataframe)))

#meta_data_pval<-meta_dataframe[,index_pval]

#colnames(meta_data_pval)<-colnames(meta_dataframe)

[index_pval]

#heatmap(as.matrix(meta_data_pval))

tmp_data<-meta_dataframe

row.names(tmp_data)<-NULL

pval<-as.vector(rowMeans(tmp_data))

tmp <- data.frame(

pval = pval,

n =rep(ncol(meta_dataframe),length(pval)),

studyname = rownames(meta_dataframe)

)

effect_sizes_values<-esc::effect_sizes(tmp, p = pval, totaln

= n, study = studyname , fun = "chisq")

#check is study label is kept, in case add

colnames(meta_data_log)

effect_size_rank<-effect_sizes_values[,c(’study’,’es’)]

rownames(effect_size_rank)<-effect_size_rank$study

effect_size_rank$study<-NULL

#ranked final list

effect_size_rank<-effect_size_rank[order(-effect_size_rank

$es), , drop = FALSE]
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return(effect_size_rank)

}

#’ Computes pvalue-based rank for meta-analysis

#’

#’ @importFrom metap sumlog

#’

#’ @param meta_dataframe A dataframe with genes on the rows (as

rownames) and samples in the columns. The columns should

contain p-values deriving from gene-based statistical testing.

#’ @return A gene list ranked on the base of p-values.

#’ @examples

#’ \dontrun{

#’ calc_pvalue_based_rank(meta_dataframe)

#’ }

#’ @export

calc_pvalue_based_rank<-function(meta_dataframe){

#retrieve data

#index_pval<-which(grepl(’pval’,colnames(meta_dataframe)))

#meta_data_pval<-as.data.frame(meta_dataframe[,index_pval])

#colnames(meta_data_pval)<-colnames(meta_dataframe)

[index_pval]

#for each gene combine the p-values by the sum of logs method

fisher_based_res<-list()

for(i in 1:length(rownames(meta_dataframe))){

metap<-metap::sumlog(meta_dataframe[i,])

fisher_based_res[[i]]<-metap$p

}

fisher_based_pvalues<-as.data.frame(fisher_based_res)

colnames(fisher_based_pvalues)<-rownames(meta_dataframe)

fisher_based_pvalues<-t(fisher_based_pvalues)

fisher_based_pvalues<-as.data.frame(fisher_based_pvalues)

colnames(fisher_based_pvalues)<-"pValue"

#ranked final list

fisher_based_pvalues<-

fisher_based_pvalues[order(fisher_based_pvalues$pValue), ,

drop = FALSE]

return(fisher_based_pvalues)

}

#’ Computes Rank Product-based rank for meta-analysis

#’

#’ @importFrom RankProd RP.advance

#’

#’ @param meta_dataframe A dataframe with genes on the rows (as
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rownames) and samples in the columns. The columns should

contain adjusted p-values deriving from gene-based statistical

testing.

#’ @param class a vector containing the class labels of the

samples. In the two class unpaired case, the label of a sample

is either 0 (e.g., control group) or 1 (e.g., case group). For

one class data, the label for each sample should be 1.

#’ @param origin a vector containing the origin labels of the

samples.

#’ @return A gene list ranked on the base of adjusted p-values.

#’ @examples

#’ \dontrun{

#’ calc_rank_base_rank(meta_dataframe , class = o, origin = o)

#’ }

#’ @export

calc_rank_base_rank <- function(meta_dataframe , class, origin){

index_pval_adj <-

which(grepl(’_adj_pval’,colnames(meta_dataframe)))

meta_data_adpval <-

as.data.frame(meta_dataframe[,index_pval_adj])

colnames(meta_data_adpval) <- colnames(meta_dataframe)

[index_pval_adj]

cl <- rep.int(1,times = length(colnames(meta_data_adpval)))

rp.advance.input <- meta_data_adpval

colnames(rp.advance.input) <- NULL

rownames(rp.advance.input) <- NULL

rp.advance.input <- as.matrix(rp.advance.input)

#origin contains the labels for different studies

#origin <- gsub(pattern =

"_adj_pval",colnames(meta_data_adpval),replacement = "")

#origin <- gsub("\\_.*","",origin)

o<- rep(1,dim(meta_data_adpval)[2])

RP_advance_out <- RankProd::RP.advance(data =

meta_data_adpval, cl = class, origin = o, calculateProduct

=T)

#ranked final list

ranks_based_pvalues<-as.data.frame(RP_advance_out$pval)

rownames(ranks_based_pvalues)<-rownames(meta_data_adpval)

rank_1<-

rownames(ranks_based_pvalues[order(abs(ranks_based_pvalues

$‘class1 < class2 ‘)), , drop = FALSE])

rank_2<-

rownames(ranks_based_pvalues[order(abs(ranks_based_pvalues

$‘class1 > class2 ‘)), , drop = FALSE])

borda_list<-list()
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borda_list[[1]]<-rank_1

borda_list[[2]]<-rank_2

outputBorda<-Borda(borda_list)

output_borda<-outputBorda$TopK$mean

output_borda<-as.data.frame(output_borda)

rownames(output_borda)<-output_borda$output_borda

return(output_borda)

}

#’ To be compiled

#’

#’ @importFrom RankProd RP.advance

#’

#’ @param meta_dataframe A dataframe with genes on the rows (as

rownames) and samples in the columns. The columns should

contain adjusted p-values deriving from gene-based statistical

testing.

#’ @param class a vector containing the class labels of the

samples. In the two class unpaired case, the label of a sample

is either 0 (e.g., control group) or 1 (e.g., case group). For

one class data, the label for each sample should be 1.

#’ @param origin a vector containing the origin labels of the

samples.

#’ @return A gene list ranked on the base of

#’ @examples

#’ \dontrun {

#’ calc_rank_base_rank_subsets(meta_dataframe)

#’ }

#’ @export

calc_rank_base_rank_subsets<-function(meta_dataframe , class,

origin){

index_pval_adj<-

which(grepl(’_adj_pval’,colnames(meta_dataframe)))

meta_data_adpval<-

as.data.frame(meta_dataframe[,index_pval_adj])

colnames(meta_data_adpval)<-colnames(meta_dataframe)

[index_pval_adj]

ranks<-list()

for(i in 1:10){

data<-meta_data_adpval

index_col<-sample(colnames(data),size = 5)

data_partition<-data[,index_col]

ranks_product<-calc_rank_base_rank(data_partition , class =

class, origin = origin)

ranks[[i]]<-ranks_product
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}

class1<-data.frame()

class2<-data.frame()

for(j in 1:length(ranks)){

if(plyr::empty(class1)){

class1<-as.data.frame(ranks[[j]][,1])

} else{

class1<-qpcR:::cbind.na(class1,ranks[[j]][,1])

}

if(plyr::empty(class2)){

class2<-as.data.frame(ranks[[j]][,2])

}

else{

class2<-qpcR:::cbind.na(class2,ranks[[j]][,2])

}

}

ranks_based_pvalues<-data.frame("class1 < class2"=

rowMeans(class1),

"class1 > class2" =

rowMeans(class2))

rownames(ranks_based_pvalues)<-rownames(meta_data_adpval)

ranks_based_pvalues<-

ranks_based_pvalues[order(abs(ranks_based_pvalues

$class1...class2),abs(ranks_based_pvalues

$class1...class2.1)), , drop = FALSE]

return(ranks_based_pvalues)

}

#’ Computes a gene rank based on an ensembl of metanalysis methods,

including effect size, p-value and rank product.

#’

#’ @importFrom RankProd RP.advance

#’ @importFrom metap sumlog

#’ @importFrom esc effect_sizes

#’

#’ @param meta_dataframe A dataframe with genes on the rows (as rownames)

and samples in the columns. The columns should contain adjusted p-values

deriving from gene-based statistical testing.

#’ @param method Statistical method(s) to be included in the ensembl

metanalysis.

#’ @param class a vector containing the class labels of the samples. In

the two class unpaired case, the label of a sample is either 0 (e.g.,

control group) or 1 (e.g., case group). For one class data, the label for

each sample should be 1.
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#’ @param origin a vector containing the origin labels of the samples.

#’ @param metric One statistical metric between "median" and "mean".

#’ @return A gene list ranked on the base of the methods chosen for the

metanalysis.

#’ @examples

#’ \dontrun {

#’ run_ensembl_metanalysis(meta_dataframe)

#’ }

#’ @export

run_ensembl_metanalysis <- function(meta_dataframe ,

method=c("effect_size", "pvalue", "rank_product"), class, origin,

metric="median"){

if (length(method)<2){stop("Error: choose at least two methods among

effect size, pvalue and rank product!")}

if (method==c("effect_size", "pvalue", "rank_product")){

es <- calc_effect_size_rank(meta_dataframe = meta_dataframe)

pval <- calc_pvalue_based_rank(meta_dataframe = meta_dataframe)

rankprod <- calc_rank_base_rank_subsets(meta_dataframe = metadf, class

= class, origin = origin)

data<-list()

data[[1]]<-rownames(es)

data[[2]]<-rownames(pval)

data[[3]]<-rownames(rankprod)

names(data)<-c(’Effect_size’,’Fisher_test’,’Rank_Prod’)

outputBorda<-TopKLists::Borda(data)

if(metric=="median"){

final_ranked_genes_median<-as.data.frame(outputBorda$TopK$median)

}else if(metric=="mean"){

final_ranked_genes_mean<-as.data.frame(outputBorda$TopK$mean)

}

return(final_ranked_genes_median)

}else if(method==c("effect_size", "pvalue")){

es <- calc_effect_size_rank(meta_dataframe = meta_dataframe)

pval <- calc_pvalue_based_rank(meta_dataframe = meta_dataframe)

data<-list()

data[[1]]<-rownames(es)

data[[2]]<-rownames(pval)

names(data)<-c(’Effect_size’,’Fisher_test’)

outputBorda<-TopKLists::Borda(data)

}else if(method==c("effect_size","rank_product")){

es <- calc_effect_size_rank(meta_dataframe = meta_dataframe)

rankprod <- calc_rank_base_rank_subsets(meta_dataframe = metadf, class

= class, origin = origin)

data<-list()

data[[1]]<-rownames(es)
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data[[2]]<-rownames(rankprod)

names(data)<-c(’Effect_size’,’Rank_Prod’)

outputBorda<-TopKLists::Borda(data)

}else if(method==c("pval","rank_product")){

pval <- calc_pvalue_based_rank(meta_dataframe = meta_dataframe)

rankprod <- calc_rank_base_rank_subsets(meta_dataframe = metadf, class

= class, origin = origin)

data<-list()

data[[1]]<-rownames(pval)

data[[2]]<-rownames(rankprod)

names(data)<-c(’Fisher_test’,’Rank_Prod’)

outputBorda<-TopKLists::Borda(data)

}

if(metric=="median"){

final_ranked_genes_median<-as.data.frame(outputBorda$TopK$median)

}else if(metric=="mean"){

final_ranked_genes_mean<-as.data.frame(outputBorda$TopK$mean)

}

return(final_ranked_genes_median)

}

######## Module 2 - Feature selection section ########

######################################################

# GO <- "c5.go.v7.2.symbols.gmt"

# REACTOME <- "c2.cp.reactome.v7.2.symbols.gmt"

# KEGG <- "c2.cp.kegg.v7.2.symbols.gmt"

# WIKI <- "c2.cp.wikipathways.v7.2.symbols.gmt"

# MSIGDB <- "msigdb.v7.2.symbols.gmt"

# TRANSCRIPTION_FACTORS<-"c3.tft.v7.2.symbols.gmt"

# myGO <- fgsea::gmtPathways(GO)

# myREACTOME <- fgsea::gmtPathways(REACTOME)

# myKEGG <- fgsea::gmtPathways(KEGG)

# myWIKI <- fgsea::gmtPathways(WIKI)

# myMSIGDB <- fgsea::gmtPathways(MSIGDB)

# myTS <- fgsea::gmtPathways(TRANSCRIPTION_FACTORS)

#’ Computes a GSEA of a gene rank against a gene set (provided

through a GMT file).

#’

151



#’ @importFrom fgsea gmtPathways

#’ @importFrom fgsea fgsea

#’ @importFrom fgsea plotGseaTable

#’

#’ @param gene_list A ranked gene list.

#’ @param gmt_file a vector containing the class labels of the

samples. In the two class unpaired case, the label of a sample

is either 0 (e.g., control group) or 1 (e.g., case group). For

one class data, the label for each sample should be 1.

#’ @examples

#’ \dontrun {

#’ compute_gsea(gene_list, gmt_file =

"c2.cp.reactome.v7.2.symbols.gmt")

#’ }

#’ @export

compute_gsea <- function(gene_list, gmt_file){

mypath <- fgsea::gmtPathways(gmt_file)

fgRes <- fgsea::fgsea(pathways = mypath,

stats = gene_list,

minSize=10,

#maxSize=600,

nperm=10000)

print(fgsea::plotGseaTable(mypath[topPathways], gene_list,

fgRes, gseaParam=0.05))

return(fgRes)

}

#’ Computes the threshold of the gene rank based on the

enrichment score of the GSEA.

#’

#’ @importFrom fgsea calcGseaStat

#’

#’ @param gene_list A ranked gene list.

#’ @param fgsea_res fgsea object deriving from fgsea results or

the compute_gsea function.

#’ @param background Whole gene set object deriving from the

fgsea::gmtPathways(gmt_file) function.

#’ @examples

#’ \dontrun {

#’ compute_gsea_thresh(gene_list, fgsea_res, background)

#’ }

#’ @export
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compute_gsea_thresh <- function(geneList, fgsea_res,

background){

gseaParam=1

stats <- geneList

fgsea_res <- fgsea_res[order(fgsea_res$pval, decreasing =

FALSE),]

max_vec <- c()

sigpath <- which(fgsea_res$pval <0.05)

for(i in 1:length(sigpath)){

pathway <- background[[fgsea_res$pathway[i]]]

rnk <- rank(-stats)

ord <- order(rnk)

statsAdj <- stats[ord]

statsAdj <- sign(statsAdj) * (abs(statsAdj)^gseaParam)

statsAdj <- statsAdj/max(abs(statsAdj))

pathway <- unname(as.vector(na.omit(match(pathway,

names(statsAdj)))))

pathway <- sort(pathway)

gseaRes <- fgsea::calcGseaStat(statsAdj, selectedStats =

pathway, returnAllExtremes = TRUE)

bottoms <- gseaRes$bottoms

tops <- gseaRes$tops

n <- length(statsAdj)

xs <- as.vector(rbind(pathway - 1, pathway))

ys <- as.vector(rbind(bottoms, tops))

toPlot <- data.frame(x = c(0, xs, n + 1), y = c(0, ys, 0))

#diff <- (max(tops) - min(bottoms))/8

max_vec <- c(max_vec, which(names(geneList) %in%

names(gseaRes$tops)[which(gseaRes$tops==max(gseaRes

$tops))]))

}

return(max_vec)

}

#######Build the networks########

rm(list=ls())

setwd("/nasdata/sinkala/expressiondata/countdata/

adjusted_matrices")
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source("/nasdata/afederico/INfORM_functions.R")

args = commandArgs(trailingOnly=TRUE)

file_path=args[1]

generatematrices=get_ranked_consensus_matrix(gx_table =

read.table(file_path, sep="\t"), iMethods = c("clr"),

iEst = c("pearson"),

iDisc=c("none"),

ncores = 30,

debug_output = TRUE,

updateProgress =

TRUE)

#Jaccard_similarity_index_based_

#intersect_network_between_microarray_and_rnaseq###

########I had the original modules stored in RData object############

load("list_of_modules_no_intersect_1.RData")

modules_bal_microarray_disease<-list_of_modules[[1]]

modules_bal_rna_seq_disease<-list_of_modules[[3]]

####List of modules 1###############

members=igraph::membership(modules_bal_microarray_disease)

members_list <- list()

for(i in 1:length(modules_bal_microarray_disease)){

members_list[[i]] <- names(which(members==i))

}

names(members_list) <- paste0("mod",

1:length(modules_bal_microarray_disease))

###########List of modules2###########

members=igraph::membership(modules_bal_rna_seq_disease)

members_list_rnaseq <- list()

for(i in 1:length(modules_bal_rna_seq_disease)){

members_list_rnaseq[[i]] <- names(which(members==i))
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}

names(members_list_rnaseq) <- paste0("mod",

1:length(modules_bal_rna_seq_disease))

###Similarity index matrix between the module lists##

similarity_matrix<-matrix(0,nrow = length(members_list),

ncol=length(members_list_rnaseq),dimnames =

list(names(members_list), names(members_list_rnaseq)))

for(i in 1:length(members_list)){

for (z in 1:length(members_list_rnaseq)) {

similarity_matrix[i,z]<-length(intersect(members_list[[i]],

members_list_rnaseq[[z]]))/length(union(members_list[[i]],

members_list_rnaseq[[z]]))

}

}

#####Heatmap and summary of the similarity matrix####

###Just a visualization during the analysis

##Final heatmaps done with ComplexHeatmap

heatmap.2(similarity_matrix, trace = "none")

apply(similarity_matrix, 1, summary)

######Which modules above the threshold#####

which(similarity_matrix >0.1, arr.ind = TRUE)

############################################################

##Intersect between the most similar modules#########

intersect_vector<-c(intersect(members_list[[10]],

members_list_rnaseq[[34]]),intersect(members_list[[5]],

members_list_rnaseq[[25]]), intersect(members_list[[12]],

members_list_rnaseq[[17]]),intersect(members_list[[3]],

members_list_rnaseq[[14]]), intersect(members_list[[2]],

members_list_rnaseq[[14]]))

#####Load the original networks#####

network_microarray_disease<-readRDS("network_bal_microarray_disease.rds")

network_rnaseq_bal_disease<-readRDS("network_bal_rnaseq_disease.rds")
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##Subgraphs based on the Intersect between the most similar modules##

subgraph_microarray_disease_bal<-

induced.subgraph(network_microarray_disease, vids= intersect_vector)

subgraph_rnaseq_disease_bal<-

induced.subgraph(network_rnaseq_bal_disease, vids= intersect_vector)

#########Intersect between the subgraphs#####

#intersect_bal_dis_jaccard<-

igraph::intersection(subgraph_microarray_disease_bal,

subgraph_rnaseq_disease_bal, keep.all.vertices = FALSE)

########################################################

##subgraph union#########

subgraph_union<-

igraph::union(subgraph_microarray_disease_bal,

subgraph_rnaseq_disease_bal)

#####################

########Making the annotations and the

#ranked gene lists of the subgraph union############

edge_list<-as_edgelist(subgraph_union)

new_graph<-graph_from_edgelist(edge_list)

igraph::vertex_attr(new_graph, name="color") <- "lightgray"

igraph::vertex_attr(new_graph, name="highlightcolor") <- "darkgray"

igraph::edge_attr(new_graph, name="color") <- "lightgray"

igraph::edge_attr(new_graph, name="highlightcolor") <- "darkgray"

annotated_intersect_bal_disease_union<-annotate_iGraph(new_graph)

rank_list_attr=c("betweenness","cc","degree","closeness","eigenvector")

gene_list_union_intersect_bal_disease<-

get_ranked_gene_list(annotated_intersect_bal_disease_union,

rank_list_attr = rank_list_attr)

saveRDS(annotated_intersect_bal_disease_union,

file="annotated_union_network_intersect_bal_disease.rds")
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write.table(gene_list_union_intersect_bal_disease,

file="ranked_union_gene_list_intersect_bal_disease.txt", sep="\t")

#Parse ranked matrix and get bin_mat and edge_rank

# Get edge rank list and binary inference matrix from edge rank

matrix computed by get_ranked_consensus_matrix().

# parse_edge_rank_matrix parses the edge rank matrix created by

using the internal function get_ranked_consensus_matrix_matrix()

to get a ranked edge list and a binary matrix.

rankMat.parsed=parse_edge_rank_matrix(edge_rank_matrix =

generatematrices , edge_selection_strategy = "default",

mat_weights = "rank", topN =

10, debug_output = TRUE,

updateProgress = TRUE)

conGraph <- get_iGraph(rankMat.parsed$bin_mat)

saveRDS(conGraph , file="network_biopsy_rnaseq_healthy.rds")

get_reactome_from_modules <- function(igraph_modules, geneID="SYMBOL",

pval_cutoff=0.05, outPath, layout="overall") {

if (file.exists(outPath)){

setwd(file.path(outPath))

} else {

dir.create(file.path(outPath))

setwd(file.path(outPath))

}

cat("The files will be exported in ", getwd())

members=igraph::membership(igraph_modules)

if(layout=="overall"){

sigpath.overall <- data.frame()

sigpath <- c()

#pdf(file = paste0(subDir1, "report_annotazione_funzionale.pdf"),

paper = "a4" , height = 1600, width = 900)

for(mod in 1:length(igraph_modules)){

x <- NA

x <- names(members[members==mod])

if(length(x)>10) {

eg = clusterProfiler::bitr(x, fromType=geneID,

toType="ENTREZID", OrgDb="org.Hs.eg.db")

print(head(eg))

sigpath <- ReactomePA::enrichPathway(gene=eg$ENTREZID ,
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pvalueCutoff=pval_cutoff, readable=T)

sigpath <- as.data.frame(sigpath)

print(head(sigpath))

if (length(sigpath$ID)>0){

sigpath$Module <- mod

sigpath.overall <- rbind(sigpath.overall, sigpath)

#write.csv(as.data.frame(sigpath),

file = paste0("Significant_enriched_pathways_module_",

mod, ".csv"),

quote = FALSE, row.names = FALSE)

}

}

}

write.table(sigpath.overall,

file = "Pathway_results_overall_disease_macro.txt", sep="\t")

} else if (layout=="single") {

sigpath.overall <- data.frame()

sigpath <- c()

#pdf(file = paste0(subDir1, "report_annotazione_funzionale.pdf"),

paper = "a4" , height = 1600, width = 900)

for(mod in 1:length(igraph_modules)){

x <- NA

x <- names(members[members==mod])

if(length(x)>10) {

eg = clusterProfiler::bitr(x, fromType=geneID,

toType="ENTREZID", OrgDb="org.Hs.eg.db")

print(head(eg))

sigpath <- ReactomePA::enrichPathway(gene=eg$ENTREZID ,

pvalueCutoff=pval_cutoff, readable=T)

sigpath <- as.data.frame(sigpath)

print(head(sigpath))

if (length(sigpath$ID)>0){

sigpath$Module <- mod

#sigpath.overall <- rbind(sigpath.overall, sigpath)

write.csv(as.data.frame(sigpath),

file = paste0("Significant_enriched_pathways_module_", mod,

".csv"),

quote = FALSE, row.names = FALSE)

}

}
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}

}

require(ReactomePA)

return(cat("Analysis completed!!!"))

}

get_bubbleplot_from_pathways <-

function(igraph_modules, geneID="SYMBOL") {

lst <- list()

members=igraph::membership(igraph_modules)

for(mod in 51:length(igraph_modules)){

x <- NA

x <- names(members[members==mod])

if(length(x)>10) {

convgenes = clusterProfiler::

bitr(x, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")

print(head(convgenes))

lst[[mod]] <- convgenes$ENTREZID

}

}

names(lst) <- seq_along(lst)

lst[sapply(lst, is.null)] <- NULL

res <- clusterProfiler::compareCluster(lst, fun="enrichPathway")

print(clusterProfiler::dotplot(res))

return(res)

}

rm(list=ls())

setwd("/nasdata/sinkala/expressiondata/countdata/

adjusted_matrices/final_networks")

###########################Read in data###############################

list.files()
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load("list_of_modules_no_intersect_1.RData")

names(list_of_modules)

open_targets<-readRDS("/home/antonio/final_opentargets_parsed.rds")

opecentrality_gene_list<-

read.table("ranked_genelist_macro_micro_disease.txt")

centrality_gene_list<-

centrality_gene_list$ranked_genelist_macro_micro_disease.txt

biopsy_disease<-list_of_modules_biopsy[[1]]

biopsy_healthy<-list_of_modules_biopsy[[2]]

######Get module sizes######################

module_sizes_disease<-c()

for (i in 1:length(macro_disease)) {

module_sizes_disease<-c(module_sizes_disease,

length(macro_disease[[i]]))

}

module_sizes_healthy<-c()

for (i in 1:length(macro_healthy)) {

module_sizes_healthy<-c(module_sizes_healthy,

length(macro_healthy[[i]]))

}

####List of modules disease###############

members=igraph::membership(macro_disease)

members_list_disease <- list()

for(i in 1:length(macro_disease)){

members_list_disease[[i]] <-

names(which(members==i))

}

names(members_list_disease) <-

paste0("mod", 1:length(macro_disease))

###########List of modules2###########

#members=igraph::

membership(bal_healthy_modules)

members=igraph::membership(macro_healthy)

members_list_healthy<-list()
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#members_list_healthy<- _healthy_modules_filtered

for(i in 1:length(macro_healthy)){

members_list_healthy[[i]] <- names(which(members==i))

}

names(members_list_healthy) <-

paste0("mod", 1:length(macro_healthy))

#####remove the modules that are <10 genes########

module_indexes_disease<-which(module_sizes_disease >10)

module_indexes_healthy<-which(module_sizes_healthy >10)

members_list_disease<-members_list_disease[module_indexes_disease]

members_list_healthy<-members_list_healthy[module_indexes_healthy]

#####################################

similarity_matrix<-matrix(0,nrow =

length(members_list_disease), ncol=length(members_list_healthy),

dimnames = list(names(members_list_disease), names(members_list_healthy)))

for(i in 1:length(members_list_disease)){

for (z in 1:length(members_list_healthy)) {

similarity_matrix[i,z]<-

length(intersect(members_list_disease[[i]],

members_list_healthy[[z]]))/

length(union(members_list_disease[[i]], members_list_healthy[[z]]))

}

}

gplots::heatmap.2(similarity_matrix, trace = "none")

write.table(similarity_matrix, "similarity_matrix_modules_epi.txt",

sep="\t")

jaccard_max<-apply(similarity_matrix ,1,FUN =max)

dissimilar_modules <- order(jaccard_max)

########################################

##Download the enrichment analysis table and spearate the pathway genes
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pathways<-read.table("Pathway_results_overall_disease_macro.txt",sep="\t")

head(pathways)

pathways_most_dissimilar_module<-pathways[pathways$Module==8,]

most_dissimilar_pathway<-

pathways_most_dissimilar_module[which.min

((as.numeric(as.character(pathways_most_dissimilar_module$p.adjust)))),]

pathway_genes<-most_dissimilar_pathway$geneID

pathway_genes<-

unlist(strsplit(as.character(pathway_genes), "/"))

######################################################################

#SORT THE DRUGS BY MODULE CENTRALITY AND PUT THE

#CENTRALITY RANK IN THE TABLE####

drugs<-open_targets[open_targets$dat.target.gene_info.symbol%in%

pathway_genes,]

drugs<- drugs[complete.cases(drugs$dat.drug.molecule_name),]

drugs_compressed <- distinct(drugs, drugs$dat.drug.molecule_name,

.keep_all = TRUE)

#######Sort the modules based on centrality###############

sorted_modules<-list()

for (i in 1:length(macro_disease)) {

# Get the module’s gene list

module_genes <- macro_disease[[i]]

centrality_gene_list<-as.vector(centrality_gene_list)

# Boolean vector of the genes which module

# genes are on the gene list and max of those

module_centrality <- centrality_gene_list[centrality_gene_list

%in% module_genes]

sorted_modules[[i]]<-module_centrality

}
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#####Make table with sorted genes of the module and the gene rank#####

most_dissimilar_module<-sorted_modules[[8]]

rank<-as.numeric(seq(1:length(most_dissimilar_module)))

module_rank<-cbind(most_dissimilar_module, rank)

module_rank<-as.data.frame(module_rank)

colnames(module_rank)<-c("gene_name", "rank")

# Extract gene names from most_dissimilar_module column

colnames(drugs_compressed)[1]<-"gene_name"

drugs_compressed_1<-merge(drugs_compressed , module_rank)

###Sort the drugs by the rank########################

gene_names <- module_rank$gene_name

# Find indices of matching genes in dat.target.gene_info.symbol column

gene_indices <- match(drugs_compressed_1$gene_name, gene_names)

# Reorder rows of drugs_compressed based on gene_indices

drugs_compressed_ordered <-

drugs_compressed_1[order(as.numeric(as.vector(drugs_compressed_1$rank))),]

# Filter rows to keep only those that match the gene_names

#ranks<-module_rank[module_rank$gene_name%in%

drugs_compressed_ordered$gene_name,]

drugs_compressed_ordered<-drugs_compressed_ordered[,c(1,2,4,8,9,11,12)]

colnames(drugs_compressed_ordered)<-c("gene", "target_info",

"disease_info", "molecule_type", "drug_phase",

"drug", "gene_module_rank")

drugs_compressed_ordered<-drugs_compressed_ordered[,c(1,6,7,2,3,4,5)]

#######################################################

####Make the networks for plotting###############
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########Parse the networks#################

rm(list=ls())

list.files()

centrality_gene_list<-

read.table("ranked_genelist_epithelial_rnaseq_disease.txt")

centrality_gene_list<-centrality_gene_list$x

network<-readRDS("annotated_network_epithelial_rnaseq_disease.rds")

network<-network[[1]]

list.files()

load("list_of_modules_epithelium_datasets.RData")

names(list_of_modules_epithelial)

modules<-list_of_modules_epithelial[[1]]

########Sort the modules

sorted_modules<-list()

for (i in 1:length(modules)) {

# Get the module’s gene list

module_genes <- modules[[i]]

centrality_gene_list<-as.vector(centrality_gene_list)

# Boolean vector of the genes which module genes

are on the gene list and max of those

module_centrality <-

centrality_gene_list[centrality_gene_list %in% module_genes]

sorted_modules[[i]]<-module_centrality

}

ranked_genes_modules<-c()

for (i in 1:length(sorted_modules)) {

if (length(sorted_modules[[i]])>50) {

ranked_genes_modules<-c(ranked_genes_modules,

sorted_modules[[i]][1:50])

}

else{

ranked_genes_modules<-c(ranked_genes_modules,sorted_modules[[i]])

}

}
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# Extract the subgraph containing only the

#top 100 vertices of the current module

subgraph <- induced_subgraph(network, ranked_genes_modules)

plot(subgraph)

################################

netwok_parsed<-subgraph

dirpath<-"subgraph_epi_healthy.gml"

############################Plot the graphs##############################

write.graph(netwok_parsed, file=dirpath, format = "gml")

###########################################

###########Heatmaps_from_similarity_matrices##############

rm(list=ls())

#################

BiocManager::install("ComplexHeatmap")

install.packages("circlize")

install.packages("gridtext")

install.packages("viridis")

###################################3

library(ComplexHeatmap)

library(circlize)

library(gridtext)

library("viridis")

setwd("path")

similarity_matrix_bal<-read.table

("similarity_matrix_modules_epi.txt", sep="\t")

#Extract the modules with more than 10 genes

#similarity_matrix<-similarity_matrix_bal[1:9,]

column_title_map = gt_render(

paste0("<span style=’font-size:25pt;

color:black’>Jaccard similarity index of disease and

healthy modules in epithelial samples</span><br>",

"<br>",

"<span style=’font-size:20pt; color:black’> Healthy modules"))

row_title_map <-gt_render

(paste0("<span style=’font-size:20pt; color:black’> Disease modules"))
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ComplexHeatmap::

Heatmap(similarity_matrix_bal,column_title =

column_title_map, row_title = row_title_map,

show_row_names = T,

show_column_names = T,

heatmap_legend_param = list(title =

"Jaccard similarity index", labels_gp =

gpar(fontsize = 11)),

, col = rev(inferno(10)))
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ESPERANTO vocabulary

The ESPERANTO vocabulary was compiled using various test versions of the application, resulting in a less refined vocabulary compared to the final
version of the app. As an example, there is significant repetition in the vocabulary. Esperanto vocabulary represented in Table 32.

Table 32: Esperanto vocabulary

label lab_syn allowed_features syn_features
age age (years) #PUUTTUU! #PUUTTUU!
age birthdate #PUUTTUU! #PUUTTUU!
age birth #PUUTTUU! #PUUTTUU!
age age.ch1 #PUUTTUU! #PUUTTUU!
antigen_identified #PUUTTUU! NO #PUUTTUU!
antigen_identified #PUUTTUU! YES #PUUTTUU!
batch batch.ch1 #PUUTTUU! #PUUTTUU!
cell_jamming jammed_unjammed.ch1 jammed jammed
cell_jamming jammed_unjammed.ch1 unjammed unjammed
cell_line_treatment cell_line_treatment AM_from_IPF AM from IPF
cell_line_treatment cell.line.ch1 AM_from_IPF AM from IPF
cell_line_treatment source_name_ch1 AM_from_IPF AM from IPF
cell_line_treatment cell.line.ch1 AM_from_RB_ILD AM from RB-ILD
cell_line_treatment cell_line_treatment AM_from_RB_ILD AM from RB-ILD
cell_line_treatment source_name_ch1 AM_from_RB_ILD AM from RB-ILD
cell_line_treatment cell.line.ch1 control_1 #PUUTTUU!
cell_line_treatment source_name_ch1 control_1 #PUUTTUU!
cell_line_treatment cell_line_treatment control_1 #PUUTTUU!
cell_line_treatment cell_line_treatment control_lung_fibroblast_control_ECM #PUUTTUU!
cell_line_treatment cell.line.ch1 control_lung_fibroblast_control_ECM #PUUTTUU!
cell_line_treatment source_name_ch1 control_lung_fibroblast_control_ECM #PUUTTUU!
cell_line_treatment source_name_ch1 control_lung_fibroblast_IPF_ECM #PUUTTUU!
cell_line_treatment cell.line.ch1 control_lung_fibroblast_IPF_ECM #PUUTTUU!
cell_line_treatment cell_line_treatment control_lung_fibroblast_IPF_ECM #PUUTTUU!
cell_line_treatment cell_line_treatment IPF_lung fibroblast_control_ECM #PUUTTUU!
cell_line_treatment cell.line.ch1 IPF_lung fibroblast_control_ECM #PUUTTUU!
cell_line_treatment source_name_ch1 IPF_lung fibroblast_control_ECM #PUUTTUU!
cell_line_treatment cell_line_treatment IPF_lung_fibroblast_IPF_ECM #PUUTTUU!
cell_line_treatment source_name_ch1 IPF_lung_fibroblast_IPF_ECM #PUUTTUU!
cell_line_treatment cell.line.ch1 IPF_lung_fibroblast_IPF_ECM #PUUTTUU!
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cell_line_treatment source_name_ch1 MDM_co_cultured_with_apoptotic_neutrophils_9h MDM co-cultured with apoptotic neutrophils (9h)
cell_line_treatment cell_line_treatment MDM_co_cultured_with_apoptotic_neutrophils_9h MDM co-cultured with apoptotic neutrophils (9h)
cell_line_treatment cell.line.ch1 MDM_co_cultured_with_apoptotic_neutrophils_9h MDM co-cultured with apoptotic neutrophils (9h)
cell_line_treatment cell_line_treatment MDM_co_cultured_with_apoptotic_neutrophils_and_stimulated_with_LPS_1ng_per_ml_for_9h MDM co-cultured with apoptotic neutrophils and stimulated with LPS (1ng/ml) for 9h
cell_line_treatment cell.line.ch1 MDM_co_cultured_with_apoptotic_neutrophils_and_stimulated_with_LPS_1ng_per_ml_for_9h MDM co-cultured with apoptotic neutrophils and stimulated with LPS (1ng/ml) for 9h
cell_line_treatment source_name_ch1 MDM_co_cultured_with_apoptotic_neutrophils_and_stimulated_with_LPS_1ng_per_ml_for_9h MDM co-cultured with apoptotic neutrophils and stimulated with LPS (1ng/ml) for 9h
cell_line_treatment cell.line.ch1 MDM_no_treatment MDM no treatment
cell_line_treatment source_name_ch1 MDM_no_treatment MDM no treatment
cell_line_treatment cell_line_treatment MDM_no_treatment MDM no treatment
cell_line_treatment cell_line_treatment MDM_stimulated_with_LPS_1ng_per_ml_9h MDM stimulated with LPS (1ng/ml
cell_line_treatment cell_line_treatment MDM_stimulated_with_LPS_1ng_per_ml_9h 9h)
cell_line_treatment cell.line.ch1 MDM_stimulated_with_LPS_1ng_per_ml_9h MDM stimulated with LPS (1ng/ml
cell_line_treatment cell.line.ch1 MDM_stimulated_with_LPS_1ng_per_ml_9h 9h)
cell_line_treatment source_name_ch1 MDM_stimulated_with_LPS_1ng_per_ml_9h MDM stimulated with LPS (1ng/ml
cell_line_treatment source_name_ch1 MDM_stimulated_with_LPS_1ng_per_ml_9h 9h)
cell_type cell type.ch1 alveolar_macrophage Alveolar Macrophage
cell_type cell type.ch1 alveolar_macrophage Alveolar macrophage
cell_type cell type.ch1 AT_II_cells AT-II cells
cell_type cell type.ch1 bronchoalveolar_lavage_cells bronchoalveolar lavage (BAL) cells
cell_type cell type.ch1 bulk #PUUTTUU!
cell_type cell type.ch1 epithelial_culture epithelial-culture
cell_type cell type.ch1 epithelial_culture cultured epithelial cells
cell_type cell type.ch1 mesenchymal_progenitor_cell mesenchymal progenitor cell (MPC)
cell_type cell type.ch1 monocyte_derived_macrophage monocyte-derived macrophage
cell_type cell type.ch1 pulmonary_fibroblasts fibroblast
cell_type cell type.ch1 pulmonary_myofibroblasts Lung myofibroblasts
cell_type cell type.ch1 single_cell #PUUTTUU!
cluster #PUUTTUU! #PUUTTUU! #PUUTTUU!
cohort cohort.ch1 #PUUTTUU! #PUUTTUU!
collagen_gel_contraction #PUUTTUU! contractile #PUUTTUU!
collagen_gel_contraction #PUUTTUU! non_contractile #PUUTTUU!
contact_fax #PUUTTUU! #PUUTTUU! #PUUTTUU!
contact_zip_postal_code contact_zip.postal_code #PUUTTUU! #PUUTTUU!
data_processing data_processing #PUUTTUU! #PUUTTUU!
disease diagnosis.ch1 cell_line_NA #PUUTTUU!
disease diagnosis.ch1 cryptogenic_organizing_pneumonia COP
disease diagnosis.ch1 familial_IPF Familial Idiopathic Pulmonary Fibrosis (IPF)
disease diagnosis.ch1 healthy control donor
disease diagnosis.ch1 hypersensitivity_pneumonitis HP
disease diagnosis.ch1 IPF idiopathic pulmonary fibrosis (IPF)
disease diagnosis.ch1 mixed_IPF_NSIP Mixed IPF-NSIP
disease diagnosis.ch1 NA_cell_culture #PUUTTUU!

Continued on next page



Continued from previous page
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disease diagnosis.ch1 non_specific_interstitial_pneumonia Non-specific interstitial pneumonia
disease diagnosis.ch1 primary_spontaneous_pneumothorax primary spontaneous pneumothorax)
disease diagnosis.ch1 RB_ILD RB-ILD
disease diagnosis.ch1 Rheumatoid_Arthritis_Associated_UIP RA-UIP
disease diagnosis.ch1 Sc_ILD Scleroderma associated interstitial lung disease
disease diagnosis.ch1 spontaneous_IPF Spontaneous Idiopathic Pulmonary Fibrosis (IPF)
disease diagnosis.ch1 UIP Usual Interstitial Pneumonia
disease diagnosis.ch1 UIP UIP/IPF
disease diagnosis.ch1 uncharacterized_fibrosis FU
disease diagnosis.ch1 NDC NDC
disease diagnosis.ch1 ILD ILD
disease diagnosis.ch1 CLAD CLAD
disease_state #PUUTTUU! early #PUUTTUU!
disease_state #PUUTTUU! familial #PUUTTUU!
disease_state #PUUTTUU! rapid Rapid progressing fibrosis
disease_state #PUUTTUU! slow Slow progressing fibrosis
disease_state #PUUTTUU! spontaneous #PUUTTUU!
disease_state_discard_maybe status.ch1 rapid Rapid
disease_state_discard_maybe status.ch1 slow Slow
ethnicity ethnic group Hispanic or Latino Hispanic
ethnicity ethnic group Hispanic or Latino Latino
ethnicity ethnicity.ch1 Hispanic or Latino Hispanic
ethnicity ethnicity.ch1 Hispanic or Latino Latino
ethnicity ethnicity.ch1 non_hispanic non-hispanic
ethnicity ethnic group non_hispanic non-hispanic
ethnicity ethnic group Not Hispanic or Latino not-hispanic
ethnicity ethnic group Not Hispanic or Latino not-latino
ethnicity ethnic group Not Hispanic or Latino other
ethnicity ethnicity.ch1 Not Hispanic or Latino not-hispanic
ethnicity ethnicity.ch1 Not Hispanic or Latino not-latino
ethnicity ethnicity.ch1 Not Hispanic or Latino other
extract_protocol extract_protocol_ch1 #PUUTTUU! #PUUTTUU!
extract_protocol_channel2 exctract_protocol_ch2 #PUUTTUU! #PUUTTUU!
forced_vital_capacity fvc.group.ch1 #PUUTTUU! #PUUTTUU!
gender_age_physiology_index gap.ch1 #PUUTTUU! #PUUTTUU!
growth_protocol growth_protocol_ch1 #PUUTTUU! #PUUTTUU!
hyb_protocol hyb_protocol #PUUTTUU! #PUUTTUU!
immunosupressant is.ch1 YES #PUUTTUU!
immunosupressant is.ch1 NO #PUUTTUU!
immunosupressant is.ch1 UNKNOWN #PUUTTUU!
institution institution.ch1 #PUUTTUU! #PUUTTUU!
label label_ch1 biotin biotin
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label label_ch2 biotin biotin
label label_ch2 Cy3 Cy3
label label_ch1 Cy3 Cy3
label label_ch1 Cy5 Cy5
label label_ch2 Cy5 Cy5
label label_ch2 Cy5_Cy3 #PUUTTUU!
label label_ch1 Cy5_Cy3 #PUUTTUU!
label_protocol label_protocol_ch1 #PUUTTUU! #PUUTTUU!
label_protocol_channel2 label_protocol_ch2 #PUUTTUU! #PUUTTUU!
lane #PUUTTUU! #PUUTTUU! #PUUTTUU!
library_preparation extract_protocol_ch1.1 #PUUTTUU! #PUUTTUU!
microscopic_appearance macroscopic.appearance.ch1 normal #PUUTTUU!
microscopic_appearance macroscopic.appearance.ch1 scarred scarred
molecule #PUUTTUU! Heavy_polyribosomal_RNA Contractile Heavy polyribosomal RNA
molecule #PUUTTUU! Heavy_polyribosomal_RNA Non-contractile Heavy polyribosomal RNA
molecule #PUUTTUU! PolyA_RNA #PUUTTUU!
molecule #PUUTTUU! polysome_associated_RNA #PUUTTUU!
molecule #PUUTTUU! total_RNA total RNA
molecule #PUUTTUU! total_RNA;polyA_RNA #PUUTTUU!
molecule_ch2 #PUUTTUU! polyA RNA polyA RNA
molecule_channel2 source_name_ch2 polyA_RNA polyA RNA
molecule_extract_protocol extract_protocol_ch1.1 #PUUTTUU! #PUUTTUU!
molecule_source #PUUTTUU! #PUUTTUU! #PUUTTUU!
muc5b_genotype #PUUTTUU! #PUUTTUU! #PUUTTUU!
organism organism_ch1 Homo_sapiens Homo sapiens
organism_channel2 organism_ch2 Homo_sapiens Homo sapiens
patient_id subject id #PUUTTUU! #PUUTTUU!
patient_id patient #PUUTTUU! #PUUTTUU!
patient_id patient id #PUUTTUU! #PUUTTUU!
patient_id patient number #PUUTTUU! #PUUTTUU!
patient_id patient_number #PUUTTUU! #PUUTTUU!
patient_id subject_id #PUUTTUU! #PUUTTUU!
plate #PUUTTUU! #PUUTTUU! #PUUTTUU!
race #PUUTTUU! American Indian/Alaska Native American Indian or Alaska Native
race #PUUTTUU! asian 4
race #PUUTTUU! Asian A
race #PUUTTUU! Asian oriental
race #PUUTTUU! black 3
race #PUUTTUU! Black/African American black/aa
race #PUUTTUU! Black/African American black/african american
race #PUUTTUU! Black/African American B
race #PUUTTUU! Black/African American AA
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race #PUUTTUU! Black/African American Black/AA
race #PUUTTUU! caucasian White
race #PUUTTUU! hispanic 1
race #PUUTTUU! Native Hawaiian/Pacific Islander Native Hawaiian or Pacific Islander
race #PUUTTUU! other 6
race #PUUTTUU! Other #PUUTTUU!
sample_description description IPF_apex IPF.Apex
sample_description group.ch1 IPF_apex IPF.Apex
sample_description description NDC_base NDC.Base
sample_description group.ch1 NDC_base NDC.Base
sample_description group.ch1 ILD_apex ILD.Apex
sample_description description ILD_apex ILD.Apex
sample_description group.ch1 NDC_apex NDC.Apex
sample_description description NDC_apex NDC.Apex
sample_description description IPF_base IPF.Base
sample_description group.ch1 IPF_base IPF.Base
sample_description group.ch1 ILD_base ILD.Base
sample_description description ILD_base ILD.Base
sample_description description CLAD_apex CLAD.Apex
sample_description group.ch1 CLAD_apex CLAD.Apex
sample_description description CLAD_base CLAD.Base
sample_description group.ch1 CLAD_base CLAD.Base
sample_description description IPF_NA IPF.NA
sample_description group.ch1 IPF_NA IPF.NA
sample_description #PUUTTUU! healthy_apex #PUUTTUU!
sample_description #PUUTTUU! healthy_base #PUUTTUU!
sample_description description NDC_NA NDC.NA
sample_description group.ch1 NDC_NA NDC.NA
sample_id sample_id #PUUTTUU! #PUUTTUU!
sample_source sample_description healthy control 1 area 1 #PUUTTUU!
sample_source sample_source healthy control 1 area 1 #PUUTTUU!
sample_type #PUUTTUU! #PUUTTUU! #PUUTTUU!
scan_protocol scan_protocol #PUUTTUU! #PUUTTUU!
sequence_read_archive relation.1 #PUUTTUU! #PUUTTUU!
sex gender F female
sex gender F Female
sex Sex.ch1 F female
sex Sex.ch1 F Female
sex Sex.ch1 M male
sex Sex.ch1 M Male
sex gender M male
sex #PUUTTUU! unknown #PUUTTUU!
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sex gender M Male
smoking_status smoking_ever_never.ch1 N N
smoking_status smoking_ever_never.ch1 Y Y
smoking_status smoking_ever_never.ch1 ex-smoker Ex-Smoker
source_name_channel2 #PUUTTUU! Stratagene_Universal_Human_Reference_RNA_(catalog number 740000) #PUUTTUU!
supplementary_file supplementary_file #PUUTTUU! #PUUTTUU!
surface_density #PUUTTUU! #PUUTTUU! #PUUTTUU!
survival_status survival.status..0...censored..1...death.ch1 censored 0
survival_status survival.status..0...censored..1...death.ch1 death 1
taxid_channel2 taxid_ch2 9606 9606
time time point #PUUTTUU! #PUUTTUU!
time_to_death_days time.to.death..days..ch1 #PUUTTUU! #PUUTTUU!
timepoint_days timepoint.ch1 #PUUTTUU! #PUUTTUU!
tissue #PUUTTUU! BAL_cells BAL cells
tissue #PUUTTUU! blood #PUUTTUU!
tissue #PUUTTUU! lung donor lungs
tissue #PUUTTUU! lung fibrotic (IPF) lungs
tissue #PUUTTUU! lung Alveolar Macrophage
tissue #PUUTTUU! lung_cultured_fibroblasts cultured human fibroblasts
tissue #PUUTTUU! lung_cultured_myofibroblasts #PUUTTUU!
tissue #PUUTTUU! lung_epithelial_cell_culture epithelial-culture
tissue #PUUTTUU! lung_epithelial_cells_differentiated_from_mesenchymal_stem_cell_like_cells Epithelial cells differentiated from mesenchymal stems cell-like cells
tissue #PUUTTUU! lung_lower_lobe lung
tissue #PUUTTUU! lung_lower_lobe lower lobe
tissue #PUUTTUU! lung_upper_lobe lung
tissue #PUUTTUU! lung_upper_lobe upper lobe
tissue_source tissue_source alveolar_septae control alveolar septae
tissue_source tissue_source alveolar_septae IPF alveolar septae
tissue_source site.ch1 alveolar_septae control alveolar septae
tissue_source site.ch1 alveolar_septae IPF alveolar septae
tissue_source site.ch1 apical_region_of_lung apical region of lung
tissue_source tissue_source apical_region_of_lung apical region of lung
tissue_source site.ch1 basal_region_of_lung basal region of lung
tissue_source tissue_source basal_region_of_lung basal region of lung
tissue_source tissue_source biopsy #PUUTTUU!
tissue_source site.ch1 biopsy #PUUTTUU!
tissue_source tissue_source central central
tissue_source site.ch1 central central
tissue_source tissue_source control_lung_necropsy control lung necropsy
tissue_source site.ch1 control_lung_necropsy control lung necropsy
tissue_source tissue_source digest #PUUTTUU!
tissue_source site.ch1 digest #PUUTTUU!
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tissue_source site.ch1 explant #PUUTTUU!
tissue_source tissue_source explant #PUUTTUU!
tissue_source tissue_source FFPE_tissue FFPE tissues
tissue_source site.ch1 FFPE_tissue FFPE tissues
tissue_source site.ch1 fibroblast_foci IPF fibrobalst foci
tissue_source tissue_source fibroblast_foci IPF fibrobalst foci
tissue_source tissue_source healthy_donor #PUUTTUU!
tissue_source site.ch1 healthy_donor #PUUTTUU!
tissue_source site.ch1 healthy_lung_BAL Bronchoalveolar lavage
tissue_source tissue_source healthy_lung_BAL Bronchoalveolar lavage
tissue_source tissue_source healthy_lung_biopsy Biopsy
tissue_source site.ch1 healthy_lung_biopsy Biopsy
tissue_source tissue_source healthy_lung_digest Digest
tissue_source site.ch1 healthy_lung_digest Digest
tissue_source tissue_source IPF_lung_BAL Bronchoalveolar lavage
tissue_source site.ch1 IPF_lung_BAL Bronchoalveolar lavage
tissue_source tissue_source IPF_lung_biopsy IPF lung biopsy
tissue_source tissue_source IPF_lung_biopsy Biopsy
tissue_source site.ch1 IPF_lung_biopsy IPF lung biopsy
tissue_source site.ch1 IPF_lung_biopsy Biopsy
tissue_source site.ch1 IPF_lung_digest Digest
tissue_source tissue_source IPF_lung_digest Digest
tissue_source tissue_source IPF_lung_transplant IPF lung transplant
tissue_source site.ch1 IPF_lung_transplant IPF lung transplant
tissue_source site.ch1 Lung_tissue_sample_from_lung_transplant_patient #PUUTTUU!
tissue_source tissue_source Lung_tissue_sample_from_lung_transplant_patient #PUUTTUU!
tissue_source site.ch1 Lung_tissue_sample_from_the_patient_with_ILD Lung tissue sample from the patient with ILD
tissue_source tissue_source Lung_tissue_sample_from_the_patient_with_ILD Lung tissue sample from the patient with ILD
tissue_source tissue_source necropsy #PUUTTUU!
tissue_source site.ch1 necropsy #PUUTTUU!
tissue_source site.ch1 peripheral peripheral
tissue_source tissue_source peripheral peripheral
tissue_source site.ch1 routine_lung_volume_reduction routine lung volume reduction
tissue_source tissue_source routine_lung_volume_reduction routine lung volume reduction
tissue_source tissue_source Sc_ILD_lung_BAL Bronchoalveolar lavage
tissue_source site.ch1 Sc_ILD_lung_BAL Bronchoalveolar lavage
tissue_source site.ch1 Sc_ILD_lung_biopsy Biopsy
tissue_source tissue_source Sc_ILD_lung_biopsy Biopsy
tissue_source tissue_source Sc_ILD_lung_digest Digest
tissue_source site.ch1 Sc_ILD_lung_digest Digest
tissue_source tissue_source transplant #PUUTTUU!
tissue_source site.ch1 transplant #PUUTTUU!

Continued on next page



Continued from previous page
label lab_syn allowed_features syn_features

tissue_source site.ch1 Uninvolved_lung_tissue_sample_from_lung_cancer_patient Uninvolved lung tissue sample from lung cancer patient
tissue_source tissue_source Uninvolved_lung_tissue_sample_from_lung_cancer_patient Uninvolved lung tissue sample from lung cancer patient
tissue_source tissue_source Apex apex
tissue_source site.ch1 Apex apex
tissue_source site.ch1 Base Base
tissue_source tissue_source Base Base
treatment #PUUTTUU! co_cultured_with_apoptotic_neutrophils co-cultured with apoptotic neutrophils
treatment #PUUTTUU! co_cultured_with_apoptotic_neutrophils_and_stimulated_with_LPS co-cultured with apoptotic neutrophils and stimulated with LPS
treatment #PUUTTUU! control #PUUTTUU!
treatment #PUUTTUU! NA_patient_cells #PUUTTUU!
treatment #PUUTTUU! no_treatment #PUUTTUU!
treatment #PUUTTUU! stimulated_with_LPS stimulated with LPS
treatment_protocol treatment_protocol_ch1 #PUUTTUU! #PUUTTUU!
treatment_protocol_channel2 treatment_protocol_ch2 #PUUTTUU! #PUUTTUU!
age_group age group.ch1 60_ Senior Adult (>=60)
age_group age group.ch1 19_59 Adult [19-59]
disease_subtype diseasesubtype.ch1 hypersensitivity_pneumonitis HP
disease_subtype diseasesubtype.ch1 NSIP #PUUTTUU!
diseasenormal #PUUTTUU! #PUUTTUU! #PUUTTUU!
dlco_perc #PUUTTUU! #PUUTTUU! #PUUTTUU!
dlco_perc_corrected #PUUTTUU! #PUUTTUU! #PUUTTUU!
fvcprebd_perc #PUUTTUU! #PUUTTUU! #PUUTTUU!
leftright leftright.ch1 right Right
leftright leftright.ch1 unclassified Unclassified
leftright leftright.ch1 left Left
library_size lib.size.ch1 #PUUTTUU! #PUUTTUU!
lungweight_mg lungweight mg.ch1 #PUUTTUU! #PUUTTUU!
norm_factors #PUUTTUU! #PUUTTUU! #PUUTTUU!
processing_date #PUUTTUU! 5/1/2018 5/1/2018
rin #PUUTTUU! #PUUTTUU! #PUUTTUU!
rnaconcentration_ngul #PUUTTUU! #PUUTTUU! #PUUTTUU!
severity severity.ch1 advanced Advanced
severity severity.ch1 unknown Unknown
severity severity.ch1 severe Severe
severity severity.ch1 moderate Moderate
volum_ul #PUUTTUU! 14 14
#PUUTTUU! #PUUTTUU! culture #PUUTTUU!
psl #PUUTTUU! YES #PUUTTUU!
psl #PUUTTUU! NO #PUUTTUU!
psl #PUUTTUU! UNKNOWN #PUUTTUU!
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