
Topi Nieminen

GAMIFICATION OF A
TRAINING SIMULATOR

Faculty of Information Technology and Communication Sciences
 M. Sc. Thesis

June 2023

-i-

ABSTRACT
Topi Nieminen: Gamification of a training simulator
M. Sc. Thesis
Tampere University
Master’s Programme in Software Development
June 2023

Gamification has increased in popularity from 2010s onward, and can be defined as the addi-

tion of game design patterns, elements from games such as from video games, to non-game re -

lated contexts. Examples of such contexts include education and training. This thesis is a case-

study that aims to offer improvement suggestions to a training simulator's educational capabili -

ties with the use of game design patterns defined in literature. This is done by identifying game

design patterns in existing simulation adjacent video games, and assess their usefulness in im-

proving the training simulator from an educational point of view.

The training simulator in question is the tram simulator created by Creanex Oy for the Tam-

pere Tramway Ltd.. The simulation takes place in Tampere and allows tram drivers to practice

driving the tram in a virtual environment depicting the tramway routes in the city of Tampere.

The virtual environment is made to be a realistic replica of the tram network, including the view

of the city alongside the lines. The simulator includes traffic simulation with cars and pedestri -

ans, as well as weather conditions that affect the driver's perception.

The thesis shows that the games analyzed do contain useful patterns, some of which are al-

ready implemented in the training simulator, but which can be improved with the ideas from the

games. Patterns have been sorted into three categories: essential, recommended, and supplemen-

tary. Essential patterns, such as Clues and Postponed feedback, should be included in all train-

ing simulators. Meanwhile, recommended patterns, such as Real-time instructive feedback and

Goal Indicators, are not required but do add value. Supplementary patterns can increase trainee

engagement, but require more careful evaluation of return on investment. Additionally, some

implementation considerations are discussed.

Key words and terms: simulation, serious games, training, education, gamification, game design

patterns, game elements

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

-ii-

Contents
1 Introduction..1

2 Gamification..3

2.1 Definitions..3

2.2 Benefits...6

2.3 Potential challenges..7

3 Game design patterns...9

3.1 Game elements...11

3.2 Resource and resource management...13

3.3 Information, communication, and presentation..14

3.4 Actions and events..16

3.5 Narrative structures, Predictability, and Immersion Patterns.............................17

3.6 Social interaction..18

3.7 Goals...18

3.8 Goal structures..19

3.9 Game sessions..19

3.10 Game mastery and balancing...19

3.11 Meta games, Replayability and Learning Curves..21

4 Game design patterns in video games...22

4.1 TramSim Vienna..22

4.2 City car driving...26

4.3 Gran Turismo 7...31

4.4 Observations...40

5 Training simulator..43

5.1 Introduction..43

5.2 Architecture..44

5.3 Game design patterns..45

6 Evaluation..48

6.1 Essential patterns..49

-iii-

6.2 Recommended patterns...51

6.3 Supplementary patterns..54

6.4 Implementation considerations...56

7 Conclusion...60

References...62

-1-

1 Introduction
Gamification as a topic has gained popularity starting in 2010s as seen in internet search
interest on the topic shown in Figure 1. Gamification as a term has many definitions
with some nuances due to its use in many areas, such as business and education. How-
ever, it is generally accepted that the term means the act of adding elements found in
games to a non-game context. The main purpose of gamification is usually to make an
activity more motivating and/or enjoyable. For a business this might mean better pro-
ductivity in a gamified task, while in education this usually means making learning
more fun and engaging. In the realm of education, Duolingo is an example of a gamified
app [Duolingo, 2023].

A simulator is a machine made to simulate environmental and other conditions
[Collins, 2023]. One use case is training people, such as training a pilot to fly a plane
with the help of a flight simulator. These type of simulators can be called training simu-
lators. The main advantage of a training simulator is that it is a safe way to practice the
operation of a potentially dangerous machine. In the case of a pilot trainee, even a criti-
cal mistake in a flight simulator won’t lead into casualties caused by falling from great
heights. The case study of this thesis is a tram simulator designed for tram driver
trainees. For this and many other simulators, the simulation happens in a virtual world
simulated by software. This includes the simulated version of the machine being trained,

Figure 1: Worldwide search interest in the topic of gamification from 2004
[Google Trends, 2023]

-2-

which the trainee can control using controls attached to the computer. By containing a
virtual world, these types of simulators have common elements with video games.

The case-study training simulator in this thesis is the Tampere tram training simula-
tor. It was released for use in 2020 and was developed in collaboration between Creanex
Oy, Škoda Transtech Oy, and 3D Talo Finland Oy, with Creanex Oy being in charge of
the simulation, training exercises, and hardware [Creanex Oy, 2021]. The length of the
tram driver training is about six months, and includes theory lessons, teaching with the
simulator, and teaching in a real tram [Creanex Oy, 2021].

 This thesis aims to find ways to improve the tram training simulator with the help
of gamification. More precisely, this thesis tries to answer three questions. First, does
gamification offer useful elements that help improve the training simulator from the
trainee’s perspective? Second, what gamification elements, if any, are already present in
the training simulator? And finally, could simulation video games offer useful elements
or ideas for the training simulator? The main goal of the improvements is to enhance the
learning gained from the use of the simulator as a part of training. More specifically the
goals are to make the trainee aware of what is expected of them, help the trainee gain
mastery through repetition, and make the trainee aware of their own skill level so that
the trainee doesn't have a false understanding of their skill level, be that because of too
much or too little confidence. This is hoped to add to the value of the simulator from the
point of view of the trainee, the training provider as a customer, as well as the simulator
provider in terms of product value. The research is carried out with a qualitative analy-
sis of three video games guided by a literature review.

The thesis is structured into seven chapters. Following the Introduction, Chapter 2
discusses the definitions of gamification, as well as some of its potential benefits and
challenges in educational contexts. Chapter 3 contains an introduction and a literature
review of game design patterns, which are used to analyze video games in Chapter 4.
Chapter 5 introduces the case study training simulator, an overview of its software ar-
chitecture, and an analysis of its game design patterns. Recommendations on how to im-
prove the case study training simulator are presented in Chapter 6. The recommenda-
tions are based on the game design patterns found in the video game and training simu-
lator analyses. Included are some implementation considerations, as well as discussion
about the applicability of the recommendations to training simulators in general. Chap-
ter 7 concludes the thesis.

-3-

2 Gamification

2.1 Definitions

Gamification can be defined in many ways [see e.g.: Bogost, 2011; Deterding and oth-
ers, 2011; Kapp, 2012]. Here we will discuss three of them and choose one to be used
for the rest of the thesis. Before trying to define gamification, defining the concept of a
game can be helpful. An important distinction that should be made is that the concept of
“play” is separate from “game” [Salen and Zimmerman, 2004; Deterding and others,
2011; Kapp, 2012]. Salen and Zimmerman [2004] stress that “play” as a concept should
be separate from “game”, but that they have a strong relationship with each other, and
can be understood as subsets of each other depending on the context. Deterding and oth-
ers [2011] propose that in game studies this should be understood in the way that “play”
is a broader and looser category, which contains, but is different to, “game”. Kapp
[2012] offers the following definition for games: “A game is a system in which players
engage in an abstract challenge, defined by rules, interactivity, and feedback, that re-
sults in a quantifiable outcome often eliciting an emotional reaction.”. Kapp [2012] fur-
ther defines the elements of this definition as listed below:

• A system is a set of interconnected elements that interact and are integrated with
each other. The elements and interactions occur within the space of the game.
For example, actions are limited by the rules and can affect score.

• A player is a person playing the game thus interacting with the game content,
game elements and other players. This applies to all games ranging from board
games to video games. Kapp argues that playing games often leads to learning,
and this possibility can be useful in educational settings.

• Abstractness in games typically means the abstraction of reality which causes
the game to take place in a specially defined “game space”. Thus a game has ele-
ments of realistic situations or their essence, but does not copy them completely.
And example for this is the game of Monopoly, which is a simplified imitation
of real estate and business transactions and dealings.

• Challenge comes from players trying to achieve goals and outcomes. These
should not be simple or straightforward, not necessarily even in games with sim-
ple rules and mechanics. Lack of, or too little, challenge makes the game boring.

• Rules define and provide structure to the game. They can, for example, define
sequence of play, winning states, what is allowed and not allowed, fair and not
fair in the bounds of the game environment.

• Interactivity is a large part of games. Games involve and are built around inter-
actions of players with one another, the game system, content and other elements
of game.

-4-

• Feedback provided to players is major and one the most important feature of
games. Feedback within the game is usually instantaneous, direct and clear.
Players can react to feedback by attempting corrections, changes or maintaining
current behavior based on received feedback, which can be positive or negative.

• Quantifiable outcome means that games are designed so that the winning state is
concrete. In well-designed games, a player should clearly know whether the
player has won or lost the game. No ambiguity exists. A clear outcome can be
defined by, for example, a score, level, or winning state such as a checkmate in
chess. “Play” does not have a defined end state or quantifiable outcome, there-
fore making games distinct from a state of “play”. Kapp suggests that this ele-
ment of games make them ideal for instructional settings.

• Emotional reactions are typically involved in games. This can be a feeling of
satisfaction from winning or completing the game, or excitement during the ac-
tual playing of the game. Or, they can be feelings of frustration, anger and sad-
ness. Games can evoke a wide range of emotions, some of which can be very
strong.

Arguably, improper level of challenge is harmful, because this may lead to the player
becoming frustrated and even giving up on the challenge altogether. Games should con-
tain enough challenge to keep the game interesting. Brathwaite and Schreiber [2008]
agree with Kapp [2012] in that feedback is an important part of games. I agree with
Kapp’s [2012] suggestion that quantifiable outcome is ideal for instructional settings.
For example, a student can clearly tell if a grade received from a course or an exam is
“winning” as in passing the exam. In my view, receiving and seeing the grade is also a
form of feedback, although not instantaneous. This is because the student can “react”
and use it to assess their study methods and performance, and decide on whether
changes are needed, just like with regular feedback defined by Kapp [2012]. This ap-
plies to games as well, when feedback is given after a game-play section or session.

Deterding and others [2011] offer the following definition: “the use of game design
elements in non-game contexts”. Same definition is used by other sources as well [Bas-
ten 2017]. Deterding and others [2011] note that although a “full-fledged” game made
for non-entertainment purposes is considered a “serious game”, and an application that
just incorporates elements of games is called a “gamified application”, the distinction
between them is not always clear. This, combined with the variety of game genres, and
the fact that games can be digital or not, cause challenges when defining what a game
element is. As a solution, Deterding and others [2011] suggest that elements of games in
the context of gamification should describe elements that are “characteristic” to games.
These are elements that can be found in most, though not all, games, and are easily as-
sociated with games. They also play a role in game-play. Deterding and others [2011]

-5-

recommend that the term gamification is reserved for design, and not game-based tech-
nologies or practices, such as game controllers or game authoring tools. Deterding and
others [2011] identify that elements that are compatible with this definition, the game
design elements, exist on multiple levels of abstraction, and argue that all of them
should be included in the definition. These levels and the example elements that belong
to them will be discussed later. Deterding and others [2011] believe that “gamifying” a
game should instead be considered game design, and not gamification. This is because
“non-gaming context” in the definition is intended to exclude the use of game design el-
ements when designing a game.

Bogost [2011] advocates replacing the term “gamification” with “exploitationware”.
This is meant to disassociate it from games, and to connect it to software fraud, such as
malware, and eventually remove the practice and concept altogether. This is motivated
by a concern that the implementation of low effort and nonessential game elements
could exploit the user, or in a business context, the customer or employee. An example
given is a loyal employee who advances the company’s goals being awarded a worth-
less virtual badge or points instead of real rewards, like a promotion or pay raise. Bo-
gost [2011] asserts that games should be used for meaningful and complex things, in-
stead of something “easy, cheap, and replicable”. This criticism is evidently directed to-
wards gamification in a business context. Since our topic is about training and educa-
tion, we will not discuss this use case in this thesis. However, I would argue that this
definition and concerns do not fully apply to educational contexts. This is because even
if the students receive “cheap” things such as badges, points or a high place on the
leader board, they will always gain something “real”: learning. This doesn’t mean that
Bogost’s [2011] concerns should be discarded in this context, and should be kept in
mind. After all, gamification and even the educational aspect itself can be done poorly
and therefore offer subpar value to the student.

Kapp [2012] defines gamification using the concept of a “game”: “Gamification is
using game-based mechanics, aesthetics and game thinking to engage people, motivate
action, promote learning, and solve problems.” Aesthetics here refers to elements such
as the user interface, look and feel, design of the experience and engaging graphics of
the gamified experience [Kapp, 2012]. This definition of aesthetics seems to be focused
more on software-based solutions. Kapp [2012] argues that aesthetics is an essential part
of gamification, and that gamification may not even be successful without it, because it
affects how a person perceives the experience thus influencing the person’s willingness
to accept gamification. Mechanics in this definition includes things like levels, earning
of badges, point systems, scores, time constraints and other elements used in many
games [Kapp, 2012]. The term “(game) mechanic” can refer to other things in the game
design space too [see e.g.: Brathwaite and Schreiber, 2008].

-6-

Kapp’s definition of mechanics are included as a sub-category of Deterding and oth-
ers’ [2011] definition of game design elements. This makes the definition of gamifica-
tion offered by Deterding and others [2011] a subset of Kapp’s [2012] definition in a
way, limited to mainly game design elements and not covering aesthetics and other
things. However, Kapp [2012] argues that game design elements alone are insufficient
to turn a boring experience in to an engaging, game-like experience, but agrees that they
are vital building blocks to be used during the gamification process. We will keep this in
mind to address concerns identified by Bogost [2011].

This thesis uses the definition of gamification offered by Deterding and others
[2011]. This is done to limit the scope of the thesis and focus the research. Choosing
this definition ignores, for example, the aesthetics aspect of gamification as mentioned
by Kapp [2012]. However, the case study software we are discussing in this thesis is
trying to be a realistic simulation and current aesthetics have already been found accept-
able. If the training simulator would indeed be considered a full-fledged (serious) game,
and therefore a “gaming context”, it would hurt the applicability of the definition by De-
terding and others [2011] for our needs. However, the training simulator experience
consists of many parts, as will be explained later in the thesis, so it is not exclusively a
game in my opinion. Further, Kapp [2012] argues that serious games are influenced by
gamification, and could be considered a sub-set of gamification.

2.2 Benefits

Feedback is a core part of games, and therefore gamification, as discussed before.
Gamified learning tries to maintain positive relationship with failure by providing a
rapid feedback cycle and keeping the stakes low for individual learning events [Lee &
Hammer, 2011]. Kapp [2012] believes that gamification offers a safe environment that
adds the opportunity of gaining experience via trial and error to the learning process, es-
pecially when learning safety topics. Arguably, virtual simulations seem to offer this
benefit the best. Training to use powerful and potentially dangerous devices or machin-
ery in a simulated virtual environment mitigates any damage that could be caused by us-
ing the “real thing” in the real world.

Gamification may be beneficial for repetitive and monotonous tasks by making
them more motivating and engaging [Basten, 2017] Training, especially in the context
of the usage of complex machines or vehicles, can be repetitive. This repetition can
arise, for example, from the need to repeat certain maneuvers to build muscle memory,
thus making the maneuvers more efficient and make it easier for the trainee to study
more advanced topics like combinations of different maneuvers.

-7-

2.3 Potential challenges

Improper implementations of gamification can induce unwanted behavior. Basten
[2017] suggests some ways to mitigate unwanted behavior in organizations and busi-
nesses and to encourage desired behavior. These have been summarized in Table 1.

Behavior Mitigation

Gamification distracts users from the
task's main purpose leading to decreased
work quality and productivity.

Level of gamification provided in the soft-
ware must be appropriate.

Users feel a disadvantage due to other
users cheating the system. May cause de-
creased productivity or even rejection of
gamification.

Users must not be able to easily gain re-
wards by cheating. Cheating may be
caused, for example, by unclear rules.

Non-meaningful design such as simply
awarding points only, or treating gamifica-
tion as the only element that increases user
acceptance and makes the system more en-
joyable to use.

Meaningful design choices such as mean-
ingful and more complex rewards, and
treating gamification as only one of many
elements of satisfying design.

Feeling of strict organizational control,
lack of trust and privacy concerns caused
by data collection and monitoring accom-
panied by gamification. Both data about
the activity being performed and the user
performing it can be collected.

Clear differentiation between public and
private data, and giving the user more con-
trol over what data should be published.
Data should preferably be used in an ag-
gregated form.

Positive effects of gamification decreasing
because of novelty wearing off, or tasks
being perceived as too simple as the user's
skills improve. Removal of game elements
may cause user performance to decline
dramatically.

Updates such as new challenges in the
long term. Not removing game elements
abruptly.

Table 1: Mitigation of unwanted behaviors caused by gamification. Summarized from:
Basten [2017].

While these suggestions focus on business and organizational contexts, most of them
apply to training and educational contexts as well. Distraction from the task's purpose,
which in our case is learning and improving skills caused by inappropriate amount of
gamification should be taken into account. Too much gamification might make the ac-
tivity an actual game rather than a learning tool. Being rewarded for cheating is an un-
wanted behavior in any context. In training, this might lead to skills not being acquired

-8-

or, even worse, learning to do things the wrong way. If the training has a competitive el-
ement such as a leader board, easy rewards by cheating further encourages the behavior
from others and likely frustrates those who don't cheat. Before adding gamification to a
training, the goals of the training should be decided first. User data collection from soft-
ware training solutions that contain gamification is a useful tool for educators. But, both
users and their data must be respected even in training contexts. The need for long term
motivational solutions such as adding new challenges may be less important in the train-
ing context we are discussing in this thesis. Having appropriate challenges for the
trainee for all levels of skill they may reach during the training process is most likely
good enough.

Kapp [2012] asserts that implementations that only use "badges, points and re-
wards" and other less useful or “exciting” elements of games should not be considered
gamification at all. Kapp [2012] argues that gamification should instead be built on
more complex elements of games such as engagement, storytelling, interactivity and
problem solving. Kapp [2012] recommends that entire experience of the learner is con-
sidered, and that all elements work together. Bogost’s [2011] comments indicate an
agreement with Kapp [2012]. This would imply that Bogost’s [2011] concerns can be
addressed by following the suggestions proposed by Kapp [2012].

GDP Wiki [2023] identifies a separate category for game elements, also known as
game design patterns, called called “negative patterns”, which game designers should in
general avoid, or at the very least limit, when designing a game. Often referred to as
‘anti-patterns’ in other pattern collections, these patterns generally cause the player to
subjectively experience negative emotions related to the game [GDP Wiki, 2023]. How-
ever, GDP Wiki [2023] argues that some of the patterns of this type may be useful in
certain situations in carefully measured ‘doses’. Examples of negative patterns include
unwinnable game states, repetitive game-play, non-consistent narration, and such. Since
we are focusing on beneficial patterns, this category will not be the focus of the research
and thus will not be focused on further, though the patterns are good to keep in mind in
general.

-9-

3 Game design patterns
This chapter introduces relevant game design patterns. Björk and Holopainen [2005] de-
fine game design patterns as parts of game-play, the “core aspect” of games. Other
names include atoms [Brathwaite and Schreiber, 2008], game design elements [Deterd-
ing and others, 2011], and mechanics or elements [Kapp, 2012]. Due to the number of
game design patterns that have been defined in literature, choosing a way to categorize
them for analysis is reasonable. One categorization, or “levels of abstraction”, is pro-
vided by Deterding and others [2011]. The five levels, ordered from concrete to more
abstract, are: “interface design patterns”; “game design patterns” or “game mechanics”;
“design principles, heuristics or ‘lenses’”; “conceptual models of game design units”,
and finally, “game design methods and design processes” [Deterding and others, 2011].
The more concrete first and second levels contain patterns such as badges, levels, and
time constraints [Deterding and others, 2011]. These two categories are more interesting
for our purposes because they are something that can be more readily added to an exist -
ing application.

The patterns in this chapter use the categories described by Björk and Holopainen
[2005]. We use this categorization system because the number of patterns discussed
here is quite small, and this system is adequate for our needs. Other categorization sys-
tems for game design patterns exist. One such example is proposed by the GDP Wiki
[2023], which expands the original categorization system by Björk and Holopainen
[2005] with new categories, and identifies that the categories are overlapping such that a
pattern can indeed belong to more than one category. Thus category membership, ac-
cording to GDP wiki [2023], could be considered as a form of tagging. This categoriza-
tion could arguably be more useful when there are a large amount of patterns. Another
categorization system is the Mechanics-Dynamics-Aesthetics (MDA) framework pro-
posed by Hunicke and others [2004], which sorts game design patterns into three main
categories. This system seems to have very few example patterns for the categories and
would thus increase the categorization effort in this chapter.

Kapp [2012] does not define categories per say, but does however identify patterns
that exist in all games, such as goals, rules, and feedback. Since they exist in all games,
and are therefore essential, there is little reason to individually state that they exist in ev-
ery game we are analyzing, especially if the patterns are abstract like “rules”. Another
example that applies to our case could be the pattern “game world”. Björk and
Holopainen [2005] define the pattern as “The environment in which the gameplay or
parts of the gameplay takes place is determined by the spatial relationships of the game
elements”. GDP Wiki [2023] renames the pattern “game worlds”, and gives an “updated
version” of the definition: “Fictional worlds in which gameplay takes place”. GDP Wiki

-10-

[2023] points out that with this definition, not all games have or need game worlds. One
of the examples given is Rock-paper-scissors. Evidently, simulations, which includes
the games and the training simulator we are going to analyze and are concerned with,
require a game world in which the simulation takes place. Some patterns, such as “feed-
back”, we will split into more than one pattern to help the analyses.

Category Patterns

Game elements Avatars; Clues; Enemies; Ghosts; High
Score Lists; Levels; Obstacles; Save
points; Score

Resource and resource management

Information, communication, and presen-
tation

Feedback (real-time instructive and post-
poned)1; Goal Indicators; HUD inter-

faces1; Loading hints2; Mini-maps;
Progress Indicators

Actions and events Reward structures; Save-load-cycles

Narrative structures, Predictability, and
Immersion Patterns

Character development; Storytelling

Social interaction

Goals Goal

Goal structures

Game sessions Game Pauses; Time1

Game mastery and balancing Difficulty levels1; Replay1

Meta Games, Replayability, and Learning
Curves

Achievements2

Table 2: Placement of game design patterns in the categories proposed by Björk and
Holopainen [2005]. Patterns categorized without further explanation are categorized by
Björk and Holopainen [2005]. Other categorization reasoning: 1 Similar to other patterns

in this category. 2 Compatible or similar category found in GDP Wiki [2023].

-11-

Table 2 shows at a glance which patterns are included, and which pattern is placed
into which category. The categories form the sections for this chapter, and a definition is
provided for each category and pattern. The patterns are introduced and defined in the
section titled after their category.

Since the GDP Wiki [2023] alone lists over 600 patterns, some curating had to be
done. In general, we focus on introducing patterns that appear in games that we will an-
alyze in Chapter 4. Another consideration to try to limit the number of patterns dis-
cussed here is to focus on patterns most detectable by the player, or patterns that, in
some other way, affect the game-play experience the most.

Something that should be mentioned is that the GDP Wiki is maintained by Björk
and Holopainen, the authors of the book Patterns in Game Design (2005) [GDP Wiki,
2023]. It seems that most, if not all, content in the book is included in the wiki. Some
pattern entries in the wiki have a note of being a “rewrite” or an “updated version” of
the pattern in the book. Because the content is mostly the same, citations to the wiki and
the book are used somewhat interchangeably.

3.1 Game elements

Björk and Holopainen [2005] define this category as patterns that represent in-game ob-
jects that the player can manipulate and that have characteristics that are used to define
the area of the game reality. Included in this category are “abstract objects”, which may
or may not have a concrete manifestations in the game world, but represent abstract ab-
stract values associated with game states. One example of these is the “score” pattern.

Avatars are game elements that allow the player and computer controlled entities to
affect the game world [Björk & Holopainen, 2005]. When present, the avatar is usually
the only way the player can affect the game world. Avatars is a common game design
pattern. Usually the players control their own avatar and make actions through them
such as jumping on a button to open a door in a platform game. Avatars represent the
player and those that exist in non-digital games may have different terminology such as
“tokens” or “pawns” [Brathwaite and Schreiber, 2008].

Clues are game elements or information that provide help and instructions for play-
ers on how to complete goals [GDP wiki, 2023]. Clues may be categorized as explicit in
that they describe the exact way a goal is reached, or they can be implicit and therefore
describing facts and events in the game world and require interpretation by the players.
The vagueness of clues can vary therefore making this categorization more of a spec-
trum. Some games are designed so that finding out what the goals are is part of the
gameplay and thus contain little to no clues. Examples of clues include Non-Player
characters instructing the player via dialogue, as well as simple signs in the environment
that point out where certain locations are in the game world. Clues can also communi-
cate advice, encouragements, and warnings [GDP Wiki, 2023]. Encouragements include

-12-

near miss indicators, which are shown when the player started, or tried, doing correct
actions but failed to execute them correctly. We will call these types of clues as “real-
time instructive feedback” defined in Section 3.3. Clues can also be in the game world
itself as objects or in the UI as static elements. Arguably, clues that are communicated
in response to player actions could be considered a form of feedback.

Enemies are game elements, such as avatars and other units, that actively hinder the
player while they are trying to achieve and complete goals in the game [GDP Wiki,
2023]. When designing an enemy, how to overcome or evade them should also be de-
fined. Overcoming them can mean eliminating them. It should also be decided where in
the level they appear, for example blocking a path.

Ghosts is a pattern that is used to show actions from previous game sessions and
help the player compare their current progress with other people, or their previous at-
tempts [GDP Wiki, 2023]. Ghosts are often found in racing games where the player can
race against their previous attempt. Ghosts are often shown as a translucent and immate-
rial avatar that the player avatar can pass through. Some games allow the player to prac-
tice, and compare, against the optimal path [GDP Wiki, 2023]. Some Ghosts implemen-
tations could be seen as an instance of the High Score Lists pattern, because it records
players attempts and allows comparison [GDP Wiki, 2023].

High Score Lists [Björk and Holopainen, 2005; GDP Wiki, 2023], or leaderboards
[Kapp, 2012], are a list of top scores, or results, players have achieved in the game. The
score pattern is explained later in this section. The High Score Lists pattern allows the
player to compare their performance in relation to others [Kapp, 2012; GDP Wiki,
2023], or their previous attempts [GDP Wiki, 2023]. Kapp [2012] sees that the pattern
works as a motivator to play the game repeatedly, and gives bragging rights and social
capital to the individuals who achieved the highest scores. This fact qualifies the pattern
as a form of Reward Structure found in Section 3.4.

Levels are part of the game world where all player actions happen [Björk &
Holopainen, 2005]. Levels are completed by reaching a certain goal or when an end
condition is fulfilled [Kapp, 2012]. Kapp [2012] writes that sequential levels build and
enforce skills. This is done by introducing new techniques or abilities level by level
starting with the basics at early levels. Some levels can also simply offer a chance to
practice skills acquired earlier without introducing new skills or information. Basten
[2017] suggests that sequential game levels of increasing difficulty or complexity over-
all improve usability by introducing new features gradually. Kapp [2012] suggests that
well-designed levels also aid the game's storytelling by revealing new information each
level compelling the player to continue to see the conclusion of the narrative. Kapp
[2012] also writes that often more advanced levels require the player to perform skills

-13-

more quickly or under pressure to increase challenge. We will address this more in Sec-
tion 3.9 when discussing the time game design pattern.

Obstacles are defined by GDP Wiki [2023] as “game elements that hinder players
from taking the shortest route between two places in game worlds”. GDP Wiki [2023]
remarks that overcoming unnecessary obstacles can be considered as one of the defini-
tions of a game. Often, obstacles in games will slow or block the player’s progress in
the game until they are moved, destroyed, or avoided by performing specific actions.
This definition seems to be quite broad, since it includes even walls in the game world
as an example [GDP Wiki, 2023]. Evidently, by this definition, the obstacles pattern is
an essential pattern that is found in all games, at least those that have a game world. In-
terestingly, this pattern definition is quite similar to the enemies pattern definition. The
key difference here is that enemies hinder the player actively.

Save points are locations in the game world where players can save the game state
[GDP Wiki, 2023]. The saving can be initiated manually by the player, or the game can
be made to do it automatically. Another consideration is whether to allow the player to
save the state at any location in the game world, or only in places determined by the
game designer. The Save points pattern is used with the Save-Load Cycles pattern,
which is presented in Section 3.4.

Score, or points [Kapp, 2012], is used to numerically represent the player’s success
in a game [Björk & Holopainen, 2005]. It allows the player to compare performance
against other players or their previous attempts. When creating a score system it should
be determined which actions or goals give score points and how much. Kapp [2012]
suggests that the score pattern could be used to enforce the rules of the game. Björk and
Holopainen [2005] state that the typical way players can compare score between at-
tempts is the use of a high score list pattern. In video games score is often visible in the
user interface as a game state overview, or extra information that extends information
provided by game elements.

3.2 Resource and resource management

Patterns in this category are related to defining resources in games, and how their flow
within and outside the game can be controlled [Björk and Holopainen, 2005]. An exam-
ple is the Resources pattern, which describes “commodity” game elements that the
player uses to enable actions in games. These include health, ammunition and money
found in many games. It is worth investigating if and how much the patterns in this cat-
egory bring value to educational contexts. Could student motivation be increased by
awarding currency to the student for doing well, where the currency can be spent on
decorating a public profile page for bragging rights? Perhaps. Patterns in this category
won’t be discussed explicitly in this thesis. Instead, we will take a look at Reward Struc-
tures pattern discussed in Section 3.4, which is somewhat similar.

-14-

3.3 Information, communication, and presentation

This category contains patterns that focus on how information about the game state is
presented to or hidden from the player [Björk and Holopainen, 2005]. Arguably, pat-
terns that reveal something about the game state can make the game easier for the
player. Hiding the state, on the other hand, could then make the game more difficult. I
see that these patterns can be used when implementing the Difficulty Levels pattern pre-
sented in Section 3.10.

Feedback is a foundational feature of games that is almost constantly present
[Kapp, 2012]. In video games the player receives real-time feedback on the state of the
game, such as progress towards the goal or amount of resources, and especially in learn-
ing games the feedback is often designed to encourage correct behavior and actions.
Feedback can also guide the player towards proper outcome with the information it pro-
vides. Brathwaite and Schreiber [2008] clarify that feedback can be visual, auditory or
tactile, and common ways of providing visual feedback is in the user interface (UI),
such as the HUD, including mini-maps of the surrounding area and the use of icons in-
stead of text-based descriptions. HUD will be explained later in this section. Kapp
[2012] notes that designers strive for something called “juiciness” when creating feed-
back. “Juicy” is a term used in game design that refers to “effective, exciting, and en-
gaging feedback”. Juiciness certainly seems like something players would appreciate.
However, it adds another level of analysis to game design patterns, so we will skip it for
this thesis. Because feedback is a foundational element and present in all games, for the
purposes of our analysis, we will concentrate on patterns derived from it that we will
call real-time instructive feedback and postponed feedback. These names are refer-
ences to the timing when the player receives the feedback in the game. More specifi-
cally, we will call real-time instructive feedback the kind of feedback the player re-
ceives during the game-play that explicitly and clearly informs the player of their mis-
takes or successes. Near miss indicators mentioned earlier fit this definition. An exam-
ple of this pattern would be text boxes that appear in the HUD in reaction to player ac-
tions. The text in the box could then describe what the player did that warranted the box
appearing. Icons might work as well if they are informative enough. Combining the two
might be more viable. Postponed feedback is simply feedback that is given to the
player after completing or failing a part of the game. These parts can be, for example,
levels, challenges, or sometimes goals. An example of this would be an indicator on
how close the player was to the goal, when the player’s distance from the goal is not re -
vealed during the game-play. Another example would be a summary of the player’s ac-
complishments in the level, like the time it took for the player to complete the level.

Goal Indicators pattern provides information to the player about their current
goals, which helps the player keep track of them [GDP Wiki, 2023]. The pattern can

-15-

also help the player estimate how close they are to reaching the goals. One way to create
a Goal Indicator is with the Progress Indicator pattern. Narration can also be used. We
will focus on Progress Indicators, which will be introduced later in this section. Goal In-
dicators generally prevent players from defining and carrying out their own-made goals
[GDP Wiki, 2023]. Arguably, this is good in educational contexts, because this means
that the focus is on the educator-defined goals.

HUD interfaces are visual elements that are presented in a video game as if they
were in a plane in front of the game world [GDP wiki, 2023]. They can be combined
with game state indicators to provide information about the game state to the player. Ex-
ample of this pattern is weapon ammo count shown at all times in a corner of the screen
in first person shooter games. GDP Wiki [2023] notes that this definition is intended to
be more generic than a HUD [see e.g.: Wikipedia, 2023a], but we will simply use
“HUD” to refer to this pattern. Brathwaite and Schreiber [2008] suggest the following
considerations to make information presented to the player, for example via the HUD,
easier to access:

• Grouping several pieces of information that relate to each other and placing
them near each other on the screen. For example, if magic points are used to heal
hit points (health), or are otherwise equally important, their indicators should be
placed so that the player can get all relevant information at a single glance.

• If there are events in the game that the player needs to know about, they must be
indicated in some way too. An example would be to make the screen flash red,
play a sound, make the controller vibrate, or combine all three, when the player
takes damage from a hit.

Loading hints is a game design pattern in which hints about the game or game-play
are presented to the player during loading sequences [GDP wiki, 2023]. Hints may con-
tain information such as game controls, explanations on how some abilities work and so
on. Loading sequences can be triggered when the game needs to halt the game-play to
load data, for example, when the player enters a new level or world.

Mini-maps are elements in the user interface that provide an overview of the game
world, for example to help the players to know their own or friendly players' location in
the game world [GDP Wiki, 2023]. The pattern is an instance of the “game state over-
view” pattern [Björk and Holopainen, 2005]. The mini-map is separate from the pri-
mary representation of the game world, and can thus show a larger area of the game
world, or maps of locations different to the player's location [GDP Wiki, 2023]. Mini-
maps are a compact representation of the game world, so they are often used in games
where the game world, or level being played, is too wast to be seen all at once. Mini-
maps are very common in racing games, in which they can show the race track in small

-16-

form. Many open-world games may also have a mini-maps. Mini-maps can show the lo-
cations of objectives, allies, and locations, among other things, on the map.

Progress Indicators are presentations outside the game world, such as in the HUD,
that provide information to the player about their current progress towards “closures”,
such as goals [GDP Wiki, 2023]. The pattern can be used, for example, to indicate how
close the player is to completing a Combo, or a competition. Racing games sometimes
have maps that indicate how far the player has traveled. A “negative Progress Indicator”
can, for example, show how much time is left before a negative event occurs, possibly
motivating the player to work faster to prevent it. We will focus on this pattern as the
way to create Goal Indicators.

3.4 Actions and events

Most of the patterns in this category describe what kinds of actions are available to the
player, and how they change the game state, or progress towards goals [Björk and
Holopainen, 2005].

Reward structures, including badges, points and other rewards, can be used to help
motivate the player to play the game [Kapp, 2012]. In general, rewards are positively
perceived things that the player can receive, usually as encouragement for game pro-
gression, or for other changes in the game state [GDP Wiki, 2023]. Kapp [2012] argues
that reward structures are a very important part of games. But they shouldn't be the fo-
cus of a gamification process as argued by both Bogost [2011] and Kapp [2012]. Kapp
[2012] explains that there are two views on how to give out rewards to players. The first
one suggests making rewards as easy as possible to get so that players get hooked and
thus keep playing. The latter advocates not awarding easy rewards for activities that are
by themselves rewarding. Kapp [2012] argues that rewards linked to activities within
the game should be used over random rewards.

Save-load-cycles: In some video games, players can save the game state during
game-play to disk. The saved game state can then later be loaded back by the game to
return to the saved state and continue game-play from that point. These actions of sav-
ing and loading are called save-load cycles [Björk & Holopainen, 2005]. Save-load cy-
cles allow players to return to different saved states in the game and thus replay them as
many times as they wish. This can be done, for example, to successfully complete ac-
tions or to try to perfect how the actions are performed. Save-load cycles also allow
player experimenting. Arguably, this pattern could be used in combination with or as a
part of the Replay pattern, which will be discussed in Section 3.10.

-17-

3.5 Narrative structures, Predictability, and Immersion Patterns

These patterns here are designed to support the player’s immersion into and commit-
ment to the game [Björk and Holopainen, 2005]. Arguably, commitment is something to
pursue for educational contexts.

Character development describes the changes in player character's abilities, skills,
or powers as an element of game-play [GDP wiki, 2023]. For our purposes, we combine
the patterns player levels [Kapp, 2012], character levels [GDP wiki, 2023] and char-
acter development [GDP wiki, 2023] as one pattern. This is done because of the pat-
terns' close similarity with each other and to simplify game analysis. Player levels are
often awarded for making progress in the game, such as by completing levels or other-
wise gaining experience [Kapp, 2012]. Progression is usually measured, especially in
role-playing games, using 'experience points' that can be awarded from completion of
quests, overcoming obstacles and enemies, or for completing levels. Experience points
are usually accumulated during the game and can give the player access to new features,
such as special abilities or valuable items. This kind of progression can also be called
character development, and usually makes the character under the player's control more
powerful, such as by making the player more likely to succeed [GDP wiki, 2023]. Char-
acter development and experience points can be expressed with character levels, which
indicates to the player their progression, such as a numerical value [GDP wiki, 2023].
Kapp [2012] suggests that gaining of player levels can bring the feeling of mastery and
accomplishment to the player.

Storytelling is a game design pattern, where the game tells a story as the game pro-
gresses [GDP wiki, 2023; Kapp, 2012]. Kapp [2012] argues that this is an essential part
of educational games, since it brings relevance, guidance, and meaning to the experi-
ence, as well as context to tasks. Kapp [2012] supports this with the fact that stories
have throughout history been used to pass information from a person to another to guide
behavior and thinking. I disagree with Kapp [2012] on the importance of this pattern for
all educational games. This is because I think that a story is not necessary, for example
when training to operate a machine or vehicle. This is not to say that the pattern doesn’t
bring value. A counterargument to my view is if we use the broadest definition of story-
telling and interpret the whole training experience as a story. Video games usually have
stories, or can conjure stories in the player's mind, from simply through the name of the
game found in older games, to having a complex story-lines with plot twists and sur-
prises found in modern video games [Kapp, 2012]. Kapp [2012] argues that involving
the player in the story makes learning more memorable. Kapp [2012] suggest four ele-
ments for building a story for an instructional game: characters, plot, tension, and reso-
lution. Characters can be the player's coworker or a mentor who can guide the player to

-18-

correct behavior, while the plot can simply mean that something happens, or has hap-
pened, which the player then has to react to.

3.6 Social interaction

This category covers patterns that describe ways that games can contain social behavior
[Björk and Holopainen, 2005]. We will not address these patterns, since the games we
are analyzing contain very little social interaction within the game especially among
players. High Score Lists and characters in Storytelling shall fulfill the role of this cate-
gory. We will instead leave the management of social interaction between students to
educational institutions.

3.7 Goals

Björk and Holopainen [2005] use this category to identify different types of goals,
which are arranged into four sub-categories. The categories are “Ownership and Over-
coming Opposition”, “Arrangement”, “Persistence”, and “Information and Knowledge”.
Technically the closest category here for the goal of educational games, learning, would
be “Information and Knowledge”. As said before, every game, as well as the training
simulator, has a goal, as do courses in education, so we will not concentrate on the ab-
stract pattern that a goal is. However, we will discuss the definition of “goal” offered by
Kapp [2012] since I think it offers useful observations, and we can link it to other pat-
terns we discuss in this chapter.

A goal is an element of games that adds purpose, focus and quantifiable outcome to
the activity [Kapp 2012]. Kapp [2012] suggests that giving players a way to visually de-
termine how far they are from the goal creates incentive, feedback and an indication of
progress that can be compared against other players. Kapp [2012] also says that a clear
goal gives the player more choices on which techniques to use to achieve the goal thus
more freedom. I would urge care that the freedoms given to the players shouldn’t inter-
fere with the focus of the given training exercise. This means that the player mustn’t
pass a training exercise using the ‘wrong’ technique that is not the point of the exercise.
Instead, usage of the technique currently being taught in the exercise should be encour-
aged. Clear goals that specify what is and is not allowed is arguably an appropriate to
support this. Kapp [2012] recommends that goals are structured and sequenced meaning
that a terminal goal is supported by a series of enabling objectives, which function as in-
cremental steps that allow the player to move from one completed objective to the next.
Kapp [2012] justifies this by arguing that smaller goals leading to a larger one sustain
the play, and that smaller goals help with building the skills necessary to achieve the
larger goal. The smaller goals are often levels in the game [Kapp 2012]. Evidently,
Progress Indicators can be implemented to accomplish issues related to keeping the

-19-

player informed of larger goals and progress in them. This of course assumes the large
goal can be defined as smaller steps.

3.8 Goal structures

This category inspects patterns that affect goals, explain how goals relate to winning the
game, the interactions between goals, and the effect of goals on player’s relations to
each other in gameplay [Björk and Holopainen, 2005]. Since we excluded goals in gen-
eral, and are generally interested in only one goal, we will skip this category as well.

3.9 Game sessions

This category’s patterns describe characteristics of game instances and play sessions, as
well as the limitations, possibilities, and features of player participation in games [Björk
and Holopainen, 2005]. We focus on the first two.

Game Pauses cause the game-play and progression of game time to suspend [GDP
wiki, 2023]. Typically, games progress automatically through a series of game events.
Game pauses intentionally break this flow of progress [GDP wiki, 2023]. For example,
many single-player video games implement the game pauses pattern by allowing the
player to pause the game by entering a menu by pressing a specific pause-button. The
player can then allow the game-play to continue by exiting the menu by pressing the
pause-button again.

Time can be harnessed as an element of games, for example, to motivate the player
to act [Kapp, 2012]. This can be done via creating consequences for the player by re-
warding speed and penalizing slowness. This is also a form of the time limits pattern
[GDP wiki, 2023]. One way to do this is through the use of the score: faster completion
of goals leads to a higher and better score. Time could be used as a metric for the skill
of the player: the more skilled the player is, the faster they can complete goals. An ex-
ample of this is the concept of 'speed-runs', where a video game is completed from be-
ginning to end as fast as possible [Wikipedia, 2023b]. To rank high in the speed-run
community leader board, by achieving lower game completion times, the player, or
'speed-runner', has to be highly skilled in the game.

3.10 Game mastery and balancing

Björk and Holopainen [2005] define this category as a collection of “features related to
how the players can use their skills and abilities in playing the game and how it is possi-
ble to balance the gameplay for players with different abilities”. Most of the patterns
given, such as Game Mastery, and Strategic Knowledge, are quite extensive in that al-
most the whole game’s design needs to be considered. However, there are two interest-
ing patterns that I think should be mentioned: “Right Level of Difficulty”, and “Right
Level of Complexity”. I think one of the patterns we will discuss, Difficulty Levels,

-20-

implements the first satisfyingly enough. The latter I argue, for education, should
mainly be considered during the design phase of the training, such as the design of exer-
cises/levels.

Difficulty levels [GDP wiki, 2023], or playing levels [Kapp, 2012], allow the
player to adjust the difficulty level of the game to match their needs or skill level. Kapp
[2012] explains that having different difficulty levels in the same game, such as easy,
intermediate and difficult, allows more players to be able to enjoy and play the game.
One way to do this in video games is by adding time constraints for completing the
level or puzzle, faster obstacles and enemies, and overall making the game faster in the
difficult or advanced difficulty level. On easier difficulty levels the game is slowed
down and the game offers more guidance to the player with helpful text or other clues,
and the challenges are usually simpler. The easier difficulty levels appeal to beginner
players who are trying to learn the game, or to players who need simpler challenges or
assistance with playing the game [Kapp, 2012]. For educational games, Kapp [2012]
suggests adding three difficulty levels: demonstration, practice and test. In demonstra-
tions the player can watch the proper procedure or technique being executed correctly.
The practice levels guide the player through the procedure with feedback, clues and in-
formation. And finally, the test levels give no guidance to the player and are graded af-
terwards allowing the player to apply their learning in a similar environment as on the
job. From this definition, we can identify patterns that are useful for implementing this
pattern: Clues, Enemies, Obstacles, Real-time instructive feedback, and Time. Though
arguably, all patterns from Sections 3.1 (Game elements); 3.3 (Information, communi-
cation, and presentation); and 3.9 (Game sessions) affect the difficulty of the game in
some way, and should thus be considered when implementing this pattern.

Replay, or do over [Kapp, 2012], or extra chances [GDP Wiki, 2023], is a pattern
that allows the player to restart the game, level or challenge. Replay is often imple-
mented in the form of a button in the UI. It should be noted that replay pattern is distinct
from replayability, which is a pattern of providing new challenges or experiences when
the game is played again [GDP Wiki, 2023]. Kapp [2012] proposes that the replay pat-
tern gives the player permission to fail and encourages, among other things, discovery-
based learning, especially when the consequences of failure are minimal. It can be ar-
gued that this pattern helps in keeping the stakes low and thus maintaining a positive re-
lationship with failure, which Lee and Hammer [2011] consider important. Practice lev-
els could make use of the Save-load-cycles pattern and allowing player-defined Save
Points, which would enable the player to choose where the replay begins, and thus en-
able them to practice things they find difficult. The other option is that the game de-
signer identifies the difficult portions where Save Points should be placed. The replay

-21-

pattern itself should be usable even in graded exercises when the exercise is started from
beginning, just like exams in education in general can be retaken to improve grading.

3.11 Meta games, Replayability and Learning Curves

Björk and Holopainen [2005] describes patterns in this category as “issues that are out-
side the playing of a single game instance”. Like patterns in Section 3.11, the patterns
here are generally quite abstract, so we will generally not discuss them, although with
one exception.

Achievements are goals, whose completion state by the player is stored outside in-
dividual game sessions [GDP Wiki, 2023]. Achievements can be used to motivate the
player to test all ways of playing provided by the game. This is especially useful if the
core mechanics of the game are not enough. Simplest form of an achievement is a re-
ward for completing a goal that is required for completing the whole game. These can
thus measure how much progress the player has made in the game. Achievements can
also be awarded for optional activities in the game. These include playing the game in a
more challenging way, testing of optional activities, and perseverance. Perseverance
here can mean that the achievement is awarded after the player has performed a certain
task or action very many times. Achievements are often not stored on the player’s own
device, such as a computer or game console, but are instead publicly viewable through
the internet. It seems that achievements are a very common pattern in modern video
games. Popular gaming platforms such as the PlayStation consoles (where achievements
are called trophies) [PlayStation website, 2023], the Xbox consoles [Xbox website,
2023], and the Steam PC gaming platform and store [Steamworks, 2023] all have sup-
port for achievements in games. The consoles even require the game developers to use
them [GDP Wiki, 2023]. Completing achievements can give the player bragging rights
[Xbox website, 2023]. The act of striving to achieve every objective in the game, in-
cluding all achievements, is called “completionism” [Wiktionary, 2019]. This pattern
could also be considered an instance of Reward Structures, because they function as re-
wards for player actions. Achievements also function as goals.

-22-

4 Game design patterns in video games
In this chapter we analyze video games by identifying game design patterns found in
them. Only focusing on one type of analysis was done to limit the scope of the research.
The choice of focusing on video games for analysis was done because the video games
chosen for analysis were easily available. Other training simulators or educational soft-
ware could be found, for example, in educational institutions' premises, but they would
not be as easily accessible.

All the games chosen for analysis here are simulations, more specifically dealing
with vehicles. This is because the training simulator under study simulates the operation
of a tram, a type of vehicle. Two differentiating factors are that, unlike the training sim-
ulator, these games are aimed at the general public and for recreational use. This means
that the games are meant to be able to be played with common controllers, such as com-
puter keyboards and mice, game-pads, joysticks and similar. Some of these games do,
however, allow the use of a driving wheel type controller with pedals that can be con-
nected to the game console or computer. The training simulator, on the other hand, is
not meant for the public at large, and is instead intended to be used with real tram con-
trols and dashboard connected to a computer. The training simulator will be discussed
more closely in Chapter 5.

Even though the training simulator is not meant for recreational use like video
games, it can still benefit from design patterns from video games that make the playing
of the game more enjoyable, encouraging and memorable. The games discussed here do
also contain some training elements, such as when guiding the player on how to play,
thus teaching them on how to drive the vehicle used in the game.

The video games chosen for analysis, presented in their own following sections, are
TramSim Vienna, City car driving, and Gran Turismo 7. Other games that were consid-
ered, but ultimately not included to limit the research scope, include the Bus Simulator
series [see: Bus Simulator, 2023], the Euro Truck simulator 2 [see: Euro Truck Simula-
tor, 2023], the Farming Simulator [see: Farming Simulator, 2023] series. The reason for
choosing TramSim Vienna as one of the games was because its similarity to the training
simulator, both being tram simulators. City car driving was chosen because its marketed
educational features, and Gran Turismo 7 because of its popularity and recreational as-
pects. The final section in this chapter summarizes the findings.

4.1 TramSim Vienna

TramSim Vienna aims to be a modern tram simulator game with realistic graphics
and tram functions [Steam, 2023d]. The target audience of the game is public at large
including those who have never driven a tram or played a tram simulator before. The
game can be played with keyboard and mouse, a gamepad, or in virtual reality.

-23-

The game offers three interactive tutorials accessible from the main menu, as well
as some general help documentation, to get started with the game. The tutorials are built
so that the user does not need to read the manual of the game. The tutorials are game-
play interspersed with pauses during which the game explains information about the
game. This is done using the game pauses pattern when needed to halt the game-play
and with the HUD interface pattern to show the tutorial instructions as text. Figure 2
shows an example of this HUD interface. The game has a virtual driving instructor who
speaks and instructs the player via these HUD interface texts, so the text in the HUD in-
terfaces can be thought of as coming from the virtual instructor. The virtual driving in-
structional qualifies the game to have light Storytelling elements. The game does not
include spoken language, only the HUD interface texts. The HUD interfaces contain a
"Continue" button that moves the tutorial forward when pressed.

Figure 2: A HUD interface that is shown in TramSim Vienna tutorials whenever
instructions need to be shown.

Figure 3: A red HUD interface element near the center of the screen which shows
the player where to go next.

-24-

First of the tutorials, titled "Basics", offers overview of the main controls used in the
game. The tutorial does this by showing button names, for example keyboard keys, in
the HUD interface. Here the tutorial advances either by the player pressing the correct
button on their controller, or by pressing the "Continue" button depending on the task.
Topics covered by this tutorial include, for example, preparing the tram for driving, ac-
celeration and braking, how to open and close the tram doors and so on. The tutorials
also use HUD interface elements to show where the player should move the tram next.
The HUD interface element is shown in Figure 3. Also seen in the figure are parts of the
tram Avatar, which the player view is inside of. The whole tram model can also be
viewed from the outside of the tram. The HUD elements can also be understood as a in-
stance of the Clues pattern, and the instructions given are a form of a Goal Indicator.
There are also Clues placed in the game world, such as traffic signs.

The second tutorial titled "Signals" teaches the player on how to read tram specific
traffic signals. This time the HUD interfaces are combined with a Game Pause and a
change in game view to show signal devices the interface text is talking about. The
player can always pause and continue the game during game-play as well. The tutorial
guides the player through all the different signal types and related traffic rules. The
guiding of the player in small steps towards the larger goal, end of the tutorial, classifies
as a Progress Indicator.

The third tutorial titled "Gameplay" mainly explains the game's scoring mechanic.
The game uses a Score game design pattern to assess player actions in the game. The
scoring mechanic is based on TramSim Points (TSP) that are awarded for actions in the
game. TSP qualifies as an implementation of a Reward Structure as well. Actions that
award TSP and their descriptions are listed in Table 3. As punctuality, how well the
player sticks to the tram line schedule, is tracked, makes the Time pattern relevant.
Whenever TSP is awarded a HUD interface in the right side of the screen is displayed
showing the amount of TSP earned as shown in Figure 4. This is a form of Real-time
instructive feedback, and gaining TSP to the player’s in-game profile, and the fact that

Figure 4: HUD interface element notifying the player of the TSP
earned.

-25-

it can be used to unlock new features, can be considered Character development. At
the end of the trip the game shows to the player how much TSP they earned, which is an
implementation of Postponed feedback. Different game modes and duration of trip af-
fect the amount of TSP awarded. The three tutorials are separate sections accessed from
the menus. Different driving routes, and challenges, also have their specific goal for that
section of the game. Therefore, these can be considered as Levels in the game. Since
there are different types of levels, such as tutorials and challenges, which could translate
to “practice” and “test” levels, the game has some form of Difficulty Levels. The Lev-
els can be Replayed.

Action Description and notes

Stopping at a tram stop Stopping at a tram stop. The tram stop has an optimal
stopping point and more points are awarded the closer the
player stops the tram to that optimal point. The optimal
point is visible in the game world usually as a texture on
the ground.

Punctuality The game awards points for 'punctuality'. Neither the
game nor the manual explains clearly what this means
but it seems to be related to following tram schedule. The
more punctual the player is the more points are awarded.

Completing a route or tuto-
rials

Generally completing goals, like driving a route end-to-
end, grants TSP.

Table 3: Actions that award TSP in TramSim Vienna.

The game simulates traffic as part of the simulation of driving a tram in the city.
The traffic consists of cars, pedestrians, and other trams that follow the traffic rules.
Whether to treat the other traffic participants as mere Obstacles or Enemies is more nu-
anced. They are active because they move, and the player is expected to avoid collisions
with them. This should be easy as long as the player themselves follows traffic rules. If
the other traffic “purposely” broke rules which would lead to dangerous situations, they
could qualify them as Enemies. We will consider this as a possibility.

-26-

The game does not punish or take away player's TSP for making mistakes during
game-play [TramSim, 2020]. The game doesn't inform the player about mistakes either,
except for mistakes where the player collides with another traffic entity such as a car or
another tram. When colliding with another traffic entity the game displays a warning to
the player shown in Figure 5. This is done using the game pauses game design pattern
combined with a HUD interface. When the player presses the "Understand" button in
the HUD interface, the collided traffic entity is removed from the game world and the
game-play continues as if the collision mistake never happened. In the real world, crash-
ing with another traffic entity has serious consequences that realistically stops driving.
However, not punishing the player lowers the stakes of the game and makes it more fun
for a casual audience. The feedback from the traffic collisions and TSP accumulation
are immediate so the feedback cycle in the game is rapid and a form of Real-time in-
structive feedback.

The game has Achievements via the Steam platform on PC [Steam, 2023b]. They
can be mostly considered to be awarded from progression and perseverance.

The game allows saving the game state mid-route in player-defined Save Points and
loading it later to continue driving with Save-load-cycles [Steam, 2023c].

4.2 City car driving

City car driving is a video game designed to train car driving skills in various environ-
ments and conditions [Steam, 2023e]. The game tries to simulate reality with immersive
environment, sophisticated traffic including computer controlled other vehicles and
pedestrians, different weather and road conditions as well as times of day. The traffic in-
cludes dangerous situations via other cars violating traffic rules such as other vehicles
switching lanes improperly and suddenly, others driving on the wrong side of the road,
traffic lights being sometimes broken and unpredictable pedestrians that may run in
front of the player’s car, to name a few. Weather, road and time of day conditions range

Figure 5: Warnings to the player when colliding with other traffic entities. The
left warning is displayed on collision with a car while the right warning is dis-
played on collision with a tram.

-27-

from easy clear skies and dry roads up to challenging heavy morning fog combined with
slippery ice or snow.

The game assesses player’s traffic rules compliance in real time while driving and
gives continuous feedback [Steam, 2023e]. This fulfills the Real-time instructive feed-
back pattern. The game supports traffic rules from multiple regions chosen by the
player such as the United States, European Union and Australia (with left-hand traffic)
[Steam, 2023e]. In addition to city driving training the game contains different types of
driving exercises from driving basics to practicing extreme driving conditions and
counter accident training. These different types of exercises can be considered Levels,
and their varying difficulties as Difficulty Levels. The Levels can have time limits for
completion, thus bringing an element of Time into the game. The game can be played
with keyboard and mouse, gamepads, gaming wheels and supports playing in virtual re-
ality. The game has "Career" and "Free driving" modes [City car driving home edition
user manual¸ 2019]. The career mode is separated into five levels, with each level con-
sisting of a number of tasks. The Career mode could be considered to have elements of
Storytelling. Another instance of Storytelling are in Free driving mode, when the player
can work as a taxi driver, transporting passengers around the city. The passengers can
comment the player’s driving an can therefore be considered characters in the “story”.
Doing well in the Free driving mode can increase some player statistics in a positive di-
rection, thus enabling Character development. The Career mode can also be thought
of as an implementation of this.

Figure 6: A loading screen containing a loading hint in City car driving.

-28-

The game implements the Loading Hints pattern by showing information about the
gameplay during loading sequences. Examples of hints given are, for example, how cer-
tain driving and accident avoidance affects passenger satisfaction, what to do when the
car is damaged and what to do before beginning to drive. Loading sequences are present
when starting a new game or starting an exercise. Figure 6 contains an example loading
screen with a loading hint.

The game has a HUD, which contains various elements. Always visible elements
include a speedometer in the upper left corner, the car’s transmission state and current
gear in the lower right, a timer on the right that shows time elapsed since beginning of
exercise, or alternative time left, and a Mini-map in the upper right corner. Figure 7
shows these elements as well as the overall gameplay view. Shown as needed elements
are the instruction text box in the upper center of the screen and driving feedback text
box in the right side of the screen. These two elements will be discussed in more detail
later.

The game implements the Mini-map game design pattern as an element in the
HUD. The mini-map shows the location of the player’s car as a green triangle and the
streets the player can drive on. The mini-map may be useful when navigating a city and
for clearly spotting intersections so the player can prepare to stop in case of traffic lights
or other signs that call for stopping or letting crossing traffic pass. The map can also
show an optimal route to reach the player’s goal from their current position so it works
also as a Goal Indicator, and a Progress Indicator.

Figure 7: Game view during gameplay.

-29-

The game contains many Clues. The two most obvious ones are the instruction text
box and driving feedback text box implemented as HUD interfaces. Other clues in the
game are in the game world itself: traffic signs, lights and road markings. The player is
expected to obey these clues and will be given feedback based on traffic rules compli-
ance. The instructions text box is mostly used in exercises where it contains instructions
for the next step the player should do, such an action like fastening the seat belt, and
possibly the buttons the player should press. This is also a form of Goal Indicator, and

possibly a Progress Indicator as well because when the next instructions are shown it
indicates progress in the exercise. The feedback text box is shown as a reaction to player
actions. The most common feedback is a notification about traffic violations or about
breaking exercise rules. These count as negative feedback and are shown as red boxes.
Other feedback is shown in different color text boxes, such as green for encouraging
feedback. Figure 8 shows examples of negative feedback text boxes. The feedback is
given instantly so the feedback cycle in the game is rapid and is therefore Real-time in-
structive feedback.

The game shows goals visible in other places as well. An example can be seen in
Figure 9 in he level instructions text box where the goals are listed. These include the
main goal of the exercise, which is required to complete the level, and optional goals.
When a goal is completed, the player is awarded an “achievement”. Completed achieve-
ments are indicated as colored stars next to the exercise selection. Missing achievements
are indicated as empty star shapes. If the player seeks to complete all goals, the player
can see what is missing at a glance.

Figure 8: Examples of negative feedback text boxes shown when violating ex-
ercise rules.

-30-

After finishing a level the game tells the player which goals, and thus achievements,
they completed. This is Postponed feedback. This can be seen in Figure 10. The
achievements here satisfy some of the features of the Achievements design pattern as
well, since they show the player’s progress and are awarded for achieving objectives.
However, there is another system for achievements in the game, which is more fitting,
because they can be seen in the player’s public profile, while the purely in-game
achievements can not. The achievement stars here can be considered a form of Reward
structure also, as well as a form of the Score design pattern.

The game offers Achievements, the “real” implementation according to us, that are
awarded during the game-play with integration with the Steam platform [Steam, 2023a].
The main types of achievements in the game are for optional activities and persever-
ance. Activities related achievements encourage the player to try the different features
of the game, while the perseverance related achievements are awarded from long-term
activity, such as driving long distances in a certain area or country. Achievements
awarded from playing the career mode could be considered progress related. Safe and

Figure 9: Exercise selection screen showing the exercise instructions (goals) as well as
current score (star rating) of all exercises.

Figure 10: The completion of a goal in City car driving [Northernlion, 2021b].

-31-

correct driving is also awarded, such as from receiving the maximum passenger satis-
faction score on a task.

Because the other traffic participants, cars and pedestrians, can sometimes actively
hinder the player by causing accidents that lead to negative feedback, they can be con-
sidered Enemies. An example mentioned earlier is the event of a pedestrian breaking
traffic rules and walking in front of the player’s vehicle Avatar. This forces the player
to react and evade the pedestrian either by emergency braking or driving off the road,
whichever has a hope of preventing the accident. Cars can also do this as well, such as
by unpredictably changing road lanes, possibly even to the wrong direction lane, which
can lead to a head-on collision with the player’s car, if they player doesn’t react to pre-
vent it.

Replay: Some levels in the game have stricter rules for driving. Figure 11 has an
example of the consequences of doing certain mistakes in a stricter level. The Figure
also shows an implementation of the replay pattern, where the player can quickly try the
level again by pressing a button. Providing an easy and quick way to try again lowers
the stakes of the level. The player can also Pause and continue the player at any point
during game-play.

4.3 Gran Turismo 7

Gran Turismo 7 is a driving and racing game released in 2022 for the Sony PlaySta-
tion 4 and 5 game consoles, and developed by Polyphony Digital [PlayStation website,
2023b]. The game is marketed as a “real driving simulator” because it aims for realism
and realistic feeling of driving [Gran Turismo website, 2023]. The Gran Turismo web-
site [2023] lists the following features included in the game:

• Weather simulation that can alter the driving experience, such as by rain making
the track surface wet thus affecting traction and vehicle handling.

Figure 11: Consequence of driving off the exercise area in a
more strict level in City car driving [Northernlion, 2021a].

-32-

• Wind direction and air turbulence and their effects on the vehicle are simulated.
• The game caters to both beginners to the Gran Turismo game series up to experi-

enced players. This is done by including a variety of ways to play the game,
such as participating curated races, playing car-based mini-games, learning rac-
ing basics in instructional type levels, and racing against other players in online
races.

• The game is suitable for E-sports by offering competitive online daily races and
an official online championship.

The game has a reward and rating system that is based on the player’s in-game ac-
tivity [Gran Turismo 7 online manual, 2023], therefore Reward Structures. The player
can earn credits by participating races and events. The player can improve the credit
amount they receive with the following ways: playing higher difficulty races, longer
distance races and finishing in a higher position in the race. The game awards a “clean
race bonus”, if the player manages to complete the race without going off-course or col-
liding with other cars. The clean race bonus, and other rewards are awarded as Post-
poned feedback in a screen shown after the race. The credits can be used to buy cars
and to pay for tuning and maintenance work. Purchasing cars accumulates the player’s
“collector points” which in turn increases the player’s “collector level” when a suffi-
cient amount of points are reached. Collector levels unlock new levels called “mis-
sions”, parts used to tune the player’s vehicles, and cosmetic items that the player can
use to modify the look of their avatar, such as helmets and racing suits. Collector levels
and the credit system count as Character development.

-33-

The game offers two ways to customize the Difficulty Level of the game to cater to
beginner, intermediate, and advanced players. The game allows the player to choose
these settings when the player starts the game for the first time. First, the player selects
the level of assistance and guidance features, as seen in Figure 12. The easiest option,
the beginner difficulty, is aimed for players new to driving games in general. It enables
all of the assistance features. The intermediate difficulty setting disables some assis-
tance features, and the most advanced setting, the expert difficulty, disables almost all
assistance. These last two settings are meant for intermediately skilled, and very skilled
and experienced driving game players respectively.

Figure 12: Choosing the level of assistance and guidance features in Gran Turismo 7
[Error1355, 2022].

-34-

The second difficulty selection occurs after a short introductory game-play section, dur-
ing which the player can test their skills, and possibly reassess their need for assistance
features. The second difficulty setting is concerned with modifying the AI-controlled ri-
val cars', the Enemies of the game, behavior by modifying their speed. Slower rival cars
are more easily bypassed in the race and thus it is easier to reach higher rankings in the
race by the player. Again, the game offers the player three different skill and difficulty
level options, as seen in Figure 13. The race difficulty option affects the player's access
to certain races and features, such as racing online against other players. The player can
change these two difficulty settings from the settings menu. This allows the player to
raise the difficulty of the game as their confidence and skill level increases helping the
game stay interesting as the player becomes better at the game, and avoiding frustration
caused by too much difficulty for the less skilled beginner players.

Another way the difficulty and complexity of the game is incrementally increased
are the changes in the HUD. In the introductory game-play section the HUD has fewer
elements than the normal HUD used in the main game during races. This can be seen in
Figure 14 that shows the introductory section, the music rally, HUD above the normal
racing HUD. The music rally game mode has some UI elements specific to that mode
that don't appear in the normal racing UI.

Figure 13: Choosing race difficulty level in Gran Turismo 7 [Error1355, 2022].

-35-

In the upper-right area of both HUDs in Figure 14 we can see an implementation of
a Mini-map, which depicts the race track and the player Avatar's location in it. The
player is shown as a red triangle pointing towards the direction of movement. Other ri-
val cars, or Enemies, are shown as blue triangles. Another mini-map can be seen in the
at the bottom right area of the standard racing mode UI. This mini-map has the same el-
ements, but showing a more closer view of the player's surroundings and incoming turns
on the race track. Both of these mini-maps make the game more predictable by showing
the track and incoming turns in advance allowing the player prepare, such as by slowing

Figure 14: Gran Turismo 7 game-play user interfaces in the introductory
Music rally game mode (above) [Error1355, 2022], and the UI used in stan-
dard racing mode (below) [Error1355, 2022].

-36-

down in advance. The map also work as Progress Indicators, because they show the
player’s distance, how far ahead or behind the player is, compared to rival drivers.
Other elements in the HUD also support the function of the map. The visibility of other
cars on the maps adds to predictability by allowing the player to prepare for passing, or
being passed by, a rival car. These features can arguably make the game more pleasant,
easier, and less stressful.

Another element of both HUDs is the visibility of goals in Goal Indicators. In the
music rally, the goals are laid out at upper center of the screen with small trophy sym-
bols, from bronze to silver to gold, next to the description of the goal, the target distance
to be traveled. Near the center of the screen is also the current distance traveled, which
helps the player track and assess their progress towards the targets, and is therefore a
Progress Indicator. The goal in the normal race is to place as highly as possible in the
race. This goal is made visible with elements in the upper-left corner: the position indi-
cator text, the lap count, and the leader board. The position indicator text and the leader
board carry mostly the same information: the player's position in the race and distance
from the goal. The lap count informs the player how many rounds on the race track the
player has available to try to reach higher positions. Other ways the state of the game is
portrayed are the UI elements around the screen, like the speedometer.

The game contains some Storytelling elements in the single player campaign, such
as characters. Examples of these are Sarah, the player's guide to the game, and Luca,
who gives the player objectives. Sarah can be seen in Figure 15, and Figure 16 shows
some dialogue with Luca, where he is giving the player a new objective to collect cars.
The campaign consists mostly of collecting cars and completing races [Gran Turismo

Figure 15: Sarah, the player's guide character in Gran Turismo 7.

-37-

Wiki, 2023a]. At the Figure 16 top right corner we can see an instance of the Achieve-
ments, called trophies here, system provided by the game and the PlayStation platform
together [IGN, 2022]. The achievements are mostly related to progress towards and
completion of goals in the game.

Gran Turismo 7 provides constant Real-time instructive feedback on the behavior
and performance of the player. Figure 17 shows some examples of visual feedback in
the game. Images 1 & 2 show the player their speed compared to previous rounds next
to the stopwatch element at the center of the screen, with 1 informing the player it is
their fastest round, and 2 informing that the player was a little slower. 5 tells the player
they are going the wrong way on the race track with the traffic sign. Feedback on player
mistakes is usually different in challenge levels than in races. In challenge levels a mis-
take can end the challenge, as seen in image 3. Races often use the penalty system. Ex-
amples of the penalty system feedback can be seen in image 4. The penalty information
overlay appears under the stopwatch element, and is made up of two parts: text inform-
ing the player of the reason for the penalty, and the punishment caused by the penalty.
The punishment causes the player to slow down, thus losing time and potentially risking
rival cars passing the player. Penalties can be given from various mistakes and illegal
actions, and the penalty system's purpose is to be a deterrent against unfair game-play
[Gran Turismo Wiki, 2023b]. Images 1, 2, and 4 add the Time element to the game. The
game can also be Paused during game-play by the player.

Figure 16: Luca character giving the player a new objective in Gran Turismo 7
[Error1355, 2022].

-38-

Image 3 in Figure 17 shows the potential result of a challenge. The challenges can
be Replayed, as can races, to allow the player to try again for a better result. The chal-
lenges and races in the game can be considered Levels.

The game offers the Ghosts game design pattern to help the player improve their
performance. The ghost appears as a translucent car on the track, which the player can
drive through. An example of a ghost can be seen in Figure 18. The ghost can display
the player's personal best and the demonstration driving [Gran Turismo 7 online man-
ual, 2023]. The player can choose whether one, or both, are visible. Passing the ghost on
the track means the player is faster than their personal best or the demonstration.

Figure 17: Examples of visual feedback in Gran Turismo 7. Images: 1
& 2 [Error1355, 2022]. 3 [Consistent Walkthroughs, 2022]. 4 [Gran
Turismo Wiki, 2023b]. 5 [Nismonath5, 2022].

-39-

Figure 18: A ghost in Gran Turismo 7 [RA Shadow, 2022].

-40-

4.4 Observations

In this section we will briefly compare and find similarities, and differences, in the three
games we have discussed thus far. Looking at Table 4, we can see that the games are
very similar when considering that they contain mostly the same game design patterns.
However, we used quite broad interpretations of what qualifies as the pattern in ques-
tion. So differences can be found on how many different components have the pattern
been implemented with, as well as how the pattern has been implemented in general.
Something to note is that the focus of game analysis was on at most the first few hours
of the game, so some details may be missing. We will start with patterns that have the
most similar implementations and work towards those with more differences.

Achievements, Avatars, Clues, Game Pauses Levels, Reward Structures, Score, and
Storytelling have very similar implementations across the games. Achievements can
mostly be explained in that the game platforms dictate how they are implemented, and
the pattern is pretty standardized in general. So are Game Pauses mostly. All games here
have an avatar of the vehicle being driven. Also, all of them allow the player to view the
avatar from the outside, be that by walking outside the vehicle, or by a third person
view. The games all have Clues in the environment and in the HUD. The games provide
multiple types of Levels as well: tutorials, challenges, as well as “real driving”, be that
driving in simulated traffic or in a race against other cars. Score is always awarded from
player actions. All the games contain minimal storytelling, including some characters at
most, and not implementing full stories with strong narratives.

Differences in the presentation of the pattern implementation are found in Character
development, Goal Indicators, HUD interfaces, Postponed feedback, Progress Indica-
tors, Real-time instructive feedback, Reward Structures, and Time. The games differ in
ways and metrics Character development is measured, from mostly only TSP in Tram-
Sim Vienna, to collector levels in Gran Turismo 7. The arguably clearest presentation of
a Goal Indicator and Progress Indicators is in Gran Turismo 7, because the goal can be
interpreted from multiple elements visible in the HUD. Next comes City Car Driving
with the use of Mini-map and instructional texts. And last TramSim Vienna, which con-
tains minimal indicators of the goal or progress, though the goal is likely already clear
to the player. Time is also presented differently in the games with different kinds of
HUD elements, like Gran Turismo 7’s penalty indicator, to the countdown timers found
in City Car Driving. In Gran Turismo 7 the goal is to drive in the lowest time possible,
while in TramSim Vienna it is to stay on schedule. HUD interfaces, and Postponed
feedback differ in how many elements, or statistics about the player’s performance, are
made reported and made visible. Evidently, the “prize” for the highest abundance of
Real-time instructive feedback belongs to City Car Driving, since it provides constant
informative feedback about the successes and mistakes made by the player.

-41-

Game design pattern TramSim Vienna City car driving Gran Turismo 7

Achievements X X X

Avatars X X X

Character development X X X

Clues X X X

Difficulty Levels X X X

Enemies X X X

Game pauses X X X

Ghosts X

Goal Indicators X X X

HUD interfaces X X X

Levels X X X

Loading hints X

Mini-maps X X

Postponed feedback X X X

Progress Indicators X X X

Real-time instructive feedback X X X

Replay X X X

Reward structures X X X

Save-load-cycles X

Save Points X

Score X X X

Storytelling X X X

Time X X X

Table 4: Game design elements found in analyzed games. “X” means that the pattern is
found in the game, while empty cells indicate that the pattern is not in the game.

-42-

 The second place goes to Gran Turismo 7 because it, although less than City Car Driv-
ing, offers both positive and negative feedback. TramSim Vienna offers minimal feed-
back in general, especially in negative types. Reward Structures differ in the amount of
actions they can be received from, and how many types of rewards there are in the
game.

Some implementation differences can be found too in Difficulty Levels, Enemies,
and Replay. TramSim Vienna has fewer ways of customizing the difficulty of the game-
play compared to City Car Driving and Gran Turismo 7. They do all offer different
types of Levels with different levels of difficulty. Enemies behave differently in the
games. Our analysis is unclear whether TramSim Vienna has “real” Enemies that fit the
pattern, while in City Car Driving they exist and actively hinder the player by trying to
cause accidents and make the player do mistakes. The enemies in Gran Turismo 7 are
more predictable and are not generally “hostile” towards the player, for example by try-
ing to make the player drive off the track. The Gran Turismo 7’s multiplayer mode dif-
fers in this aspect, but that was excluded from the analysis.

Next pattern to discuss are Mini-maps, which are missing form TramSim Vienna.
There are many differences in the maps in Gran Turismo 7 and City Car Driving.
Things found in the first that are missing from the latter include: visibility of other cars,
and the existence of another map elsewhere on the screen, as well as visibility of the
whole track at once. Missing from Gran Turismo 7 is the highlighted optimal route.

And finally, patterns that are found in only one game. Ghosts are found only in
Gran Turismo 7, Loading hints in City Car Driving, and both Save Points and Save-
load-cycles in TramSim Vienna.

-43-

5 Training simulator
This chapter introduces the Tampere Tram Simulator, the training simulator to be gami-
fied. The first section introduces the features and intended use case. The next section the
software architecture of the simulator. And in the last section we look at game design
patterns that are already implemented in the simulator.

5.1 Introduction

The simulator was placed inside the cabin of a tram replica, and consists of controls
matching the real tram’s, three large computer screens displaying the driver’s view from
the cabin, and other equipment related to operating the tram in the dashboard. All con-
trols and equipment are configured to function the same in the simulation, as they do in
the real tram. The tram mirrors, which the driver can use to see outside the tram, are dis-
played on the screens. Creanex Oy [2021] explain that this setup aims to be realistic and
to mirror the experience of driving a tram as much as possible. This is to get drivers ac-
quainted with the use of the controls in a real tram cabin. Figure 19 shows some of the
simulator equipment and setup.

On release two tram lines were modeled and included in the simulation. The simula-
tion can be updated to include future expansions to the Tampere tram network. Creanex
Oy [2021] describe the tram training simulator as a safe environment for drivers and
traffic controllers to practice and improve their skills. Creanex Oy [2021] maintain that

Figure 19: The Tampere Tram Simulator setup.

-44-

the simulator had an especially great importance to the driver trainees when the tram
lines were not yet operational.

5.2 Architecture

The training simulator software has been split into three separate applications: the
training app, the simulator app, and one or multiple visual apps. These three applica-
tions communicate with each other via an inter-process communication (IPC) frame-
work. The training app has the user interface where the training material, and exercise
instructions and results are displayed and managed. The training app user interface is
the main entry to the simulator for trainees, and the program can send commands to the
simulator app, such as to start an exercise. Teachers can use this app to manage course
content and assign courses to trainees. The simulator app contains the majority of the
simulation logic, and has the user interface for creating, saving, and running exercises.
Teachers can use this user interface to create and edit individual exercises. The user in-
terface also has options for controlling and monitoring simulation parameters, among
other things. The simulator app controls the visual apps. The visual app is the display
for the simulator app showing the simulated environment and game objects themselves,
as well as other things needed to be displayed like user interface elements. The visual
app has minimal logic and mostly applies textures and models to data sent by the simu-
lator app. Figure 20 shows a visualization of the simulator software stack. The trainee
and teacher mainly interact with the simulator via the training and visual app. The simu-
lator and visual apps can be used without the training app, for example when creating
exercises to be added to the training material, or for testing purposes.

All three applications use data saved on disk. The visual apps only read data, with
the exception of writing into a log file. The visual application loads required assets
when the simulator app starts an exercise. The assets stay in the application's memory
until it is terminated. The simulator application reads configuration files, and writes and
loads exercise files. The training app manages the education material and user data,
such as exercise results.

Figure 20:Visualization of the training simulator software stack, and communication
between the different parts. Solid line represents the main communication direction,
while the dotted line represents less communication.

-45-

5.3 Game design patterns

Here we will take a look at the game design patterns that are already found in the tram
training simulator.

The Avatar pattern is present in the form of the tram model the player is driving
seen in Figure 21. The tram is the only thing through which the player can affect the
game world. The tram avatar’s capabilities are not limited in any way in the beginning
and it does not gain new capabilities as the training progresses. The simulator allows the
user to see the tram model from the outside. This is done by providing a user-control-
lable flying camera, that when activated, allows the user to explore the game world
without the tram. The camera could be used, for example, when the user is unsure of the
state of the tram, such as which doors are currently open. Or it can also be used to scout
what is ahead on the tram track. The game world contains Clues in the form of traffic
signs and lights, including those specifically addressed to trams.

The simulation contains the Enemies in the form of cars and light traffic (pedestri-
ans). The car traffic is automatically generated and simulated to mostly obey traffic
rules such as traffic lights. The pedestrians are instead added to the level by the trainer.
The trainer can set the pedestrian to walk in front of the tram while the tram is in mo-
tion. The trainee must then notice the pedestrian in time and stop the tram using brakes.
Hitting any of the other traffic immediately stops the simulation and results in a training
report with a fail marked on it.

Different training exercises can be thought of as Levels. Trainers can create exer-
cises with different requirements for passing the exercise. This can be done, for exam-

Figure 21: The avatar in the form of a tram model that the trainee controls in the
training simulator.

-46-

ple, by setting a minimum Score value that the trainee must exceed through their ac-
tions during the exercise. The parameters and actions which affect scoring can be con-
figured. The trainer can add enemies and obstacles to the level as well. One other con-
figurable property is setting target Time limits to the exercise. Ability to add levels with
differing level of challenged means that Difficulty Levels pattern is supported. The
trainer can Replay an exercise to try to get a better result.

The training simulator implements Save-load-cycles. This pattern is used when cre-
ating exercises. The Save Points can be defined by users, as well as the simulation de-
signer. Game Pauses are possible to do during game-play.

The Score, the result, and statistics of an exercise are shown and recorded in the
training report. The training reports are used by the trainer for tracking progress in the
tram driver training. The trainee can access the reports to compare their different at-
tempts. The training reports are generated and displayed after the exercise has ended
and thus qualify as Postponed feedback. The report contains the scores for different
criteria and assessment of the training exercise. An example of the training report can be
seen in Figure 22. The colored Figure in the report shows the trainee’s achieved Score
compared to the target score. It therefore works as a Progress Indicator. Progression in
the material managed by the training app could also be considered an indicator of
progress.

Figure 22: A screenshot of the training report.

-47-

The data collected for the training report is organized into five categories: passenger
comfort, startup and shutdown, time, tramway operation, and tram line operation. Some
examples for items in the categories can be seen in Table 5.

Data category Examples

Passenger comfort Maximum curve transition comfort index (standing and
seated),
Longitudinal acceleration (5 levels)

Startup and shutdown Successful start procedures,
Failed start procedures,
Failed shutdown procedures

Time Total training time,
Drive time,
Braking time

Tramway operation Collisions with other traffic entities,
Speed limit exceeded (3 levels),
Traffic light violation count,
Failed checkpoints

Tram line operation Average arrival time compared to target time,
Number of late arrivals,
Doors released at stop on the correct/wrong side
Correct/Erroneous blinker usages at on-street stops

Table 5: Examples of items in the data categories present in the training report.

Passenger comfort measures things that affect the comfort of passengers, such as the
amount of acceleration of the tram. Too much changes in speed can be uncomfortable
for passengers, especially those not seated. Startup and shutdown category tracks how
correctly the trainee starts the tram for operation, and shuts down the tram after driving.
Time category measures times of certain things, such the duration of trainee actions
with the tram. Tramway operation category's main interest is the trainee's adherence to
traffic rules while driving the tram, and how many traffic offenses the trainee does.
Tram line operation is concerned mainly with activities with tram stops, such as adher-
ence to line timetable, blinker usage, and door usage. The trainer can set training ending
conditions using these criteria. For example, collision with other traffic entities is usu-
ally set to abort and stop the training.

-48-

6 Evaluation
In this chapter we will discuss differences between the three games and the training sim-
ulator, as well as evaluate the suitability of the patterns collected from the games. The
patterns in this chapter have been sorted into three categories: essential, recommended,
and supplementary patterns, each category and its patterns discussed in its own section.
In the final section we will evaluate where in the simulator software stack modifications
should be made to implement a given pattern.

My role as an employee of Creanex Oy is software development. My main responsi-
bility is to maintain, add new features, and help direct the evolution of the training ap-
plication. The improvement suggestions offered in this chapter are intended specifically
to the tram training simulator, but most of the suggestions are likely applicable to other
simulators as well. I will participate in the implementation of accepted patterns.

The most similar game to the training simulator, at least in terms of the setting, is
TramSim Vienna, itself being likewise a tram simulator. Similarity with City Car Driv-
ing is in one of the goals of the game, education. In the game’s case it is to help the
player learn to drive a car, which the training simulator aims to achieve but with a tram.
TramSim Vienna and City car driving have simulated traffic like cars and pedestrians,
which the player needs to be aware of. Gran Turismo 7 is the most dissimilar to the
training simulator. Gran Turismo 7 and City Car Driving both simulate driving a car,
and both provide instructive feedback in real-time. City Car Driving offers a lot more
feedback, though clearly, driving in traffic has more things to be aware of compared to a
race track. The most valuable game to take inspiration from is City Car Driving, simply
due to the versatile instructive feedback system. The tutorial levels in TramSim Vienna
provide a functional introduction to tram operation and key traffic rules. These could be
used as inspiration for demonstration- or practice-type difficulty levels. Gran Turismo 7
has features that help in gaining mastery of the game. An example of this is the ghosts
pattern, which is very useful to a player trying to improve their game-play. The charac-
ter development and reward structure patterns motivate the player to keep playing.

A major limitation in the games we have analyzed is the control scheme: playing
with a gamepad, or keyboard and mouse for that matter, does not really teach you on
how to operate a car in City Car Driving or Gran Turismo 7. Neither does using a joy-
stick in TramSim Vienna. However, this problem can be alleviated somewhat. For City
Car Driving and Gran Turismo 7, players can purchase and plug into their computer or
console a racing wheel controller, which includes common car controls like the steering
wheel and pedals. TramSim Vienna can be played in virtual reality, which is a more re-
alistic experience. Arguably physical controls, such as racing wheels, are tactile and
thus the player can build muscle memory that they could translate to a real car. This is

-49-

much more difficult to achieve in virtual reality. The player likely needs to look at their
virtual “hands” when moving them to press buttons, which could mean taking eyes off
the road in traffic.

Games can be played for as long and as many times as the player wants. The tram
driving training, on the other hand, has a completion schedule to follow. The simulator
is also only a portion of the training program. These facts should be considered when
evaluating whether a pattern adds enough value to justify the effort of implementation.

6.1 Essential patterns

It can be argued that the game design patterns shown in Table 6 can be considered es-
sential to training simulators in general. The list here is of course incomplete, since it's
missing "foundational" patterns, such as the abstract "feedback" pattern, discussed in
Chapter 3. However, to make the virtual experience on which the training simulator is
built upon, the foundational patterns must have been implemented. Thus they are not in-
cluded in this list. The list may also be missing some other important patterns not ex-
plicitly discussed in this thesis. Next we will take a closer look at some arguments on
why these patterns should be considered essential.

Pattern Already implemented?

Avatars Yes

Clues Yes

Difficulty Levels Yes*

Levels Yes

Postponed feedback Yes

Replay Yes

Score Yes*

Time Yes

Table 6: Essential game design patterns for training simulators. *Could be improved

Avatar of the vehicle being driven or used is required for the trainee to perceive the
vehicle’s position compared to the surrounding area and other objects. Allowing the
trainee to see the avatar from the outside can be helpful at beginning of the training

-50-

might be valuable, though not required. Enabling the trainee to see the avatar around
them and from mirrors in case of a large vehicle should be enough.

Clues, especially in the environment, are essential. This is because Clues can repre-
sent things found in the real world that guide and set restrictions to the operation of a
vehicle. In the case of the tram training simulator, these would be the traffic signs.

Difficulty Levels can be considered essential because they allow increasing the dif-
ficulty of training exercises gradually. This hopefully prevents the player from getting
frustrated when practicing. Having the three types of exercises suggested by Kapp
[2012] is valuable. I think the Difficulty Levels in the training simulator could be im-
proved by more clearly implementing and separating these three types. Patterns in Sec-
tion 6.2, such as Real-time instructive feedback, should be considered when implement-
ing this pattern. They can be used to adjust the difficulty of the simulation.

Levels are required because it’s highly impractical in most cases to include the
whole training into one game-play section. Being able to split the practice of different
skills and maneuvers into separate parts and grading them separately is valuable. It al-
lows the trainer and the trainee see which skills require more attention, among other
things.

Postponed feedback is a key element for a training simulator, because the trainee
must get information about their successes and mistakes after completing a simulator
session. This is an important way for the trainee to know what to improve. This pattern
ca be used to provide a clear indication of success is important, which helps the trainee
know of what is expected of them. The postponed feedback should generally be stored
for later use, so it can be compared to newer results when needed. This is useful for both
the trainee, as well as the trainer. The trainer can use the feedback in their assessment of
the trainee's skill. It is highly beneficial to combine the score pattern with this pattern.
This is because actions in the game world could be made to affect score, positively or
negatively, thus helping with the implementation of the postponed feedback. The score
could be made visible in the feedback, as a way to give a numerical representation of
the trainee's skill.

Replay is essential because it allows failure. And failure is a great way to learn. Ar-
guably, it also lowers the stakes of exercises, thus reducing stress experienced by the
trainee. This is especially important in practice-type exercises. Replaying an exercise
dedicated to a specific skill repeatedly is one way to build muscle memory and skill.

Score is important because it can be used in grading trainee performance more eas-
ily. Actions can be tied to Score. Score is also a clear representation of performance in
general. It should be included in Postponed feedback. For the training simulator, I think
it is worth investigating whether making the currently accumulated total Score visible

-51-

during game-play in some type of exercises. This could be done using patterns in Sec-
tion 6.2.

Time is important because it measures skill. It also important after the simulator
training period, for example when working with the machine in the real world in a com-
pany. For the training simulator here, it translates to sticking to the tram line schedule,
for example. Being fast enough to do emergency procedures, like braking to avoid a
crash, is also something to consider.

6.2 Recommended patterns
Pattern Already implemented?

Enemies Yes*

Game Pauses Yes

Ghosts No

Goal Indicators Yes*

HUD interfaces No

Progress Indicators Yes*

Real-time instructive feedback No

Save-load cycles Yes

Save Points Yes

Storytelling Yes*

Table 7: Game design patterns that are recommended to be included in the training sim-
ulator. *Could be improved

The patterns in this section are recommendations on which patterns could be beneficial
to a training simulator. The vast majority of patterns here work best in practice-type
training sessions, because these patterns mostly offer corrective feedback, helpful infor-
mation, and in general make the use of the simulator easier. For example, if the goal of
the training session was to test the trainee's knowledge and skill in an exam-type ses-
sion, then real-time instructive feedback informing the trainee about their mistakes
could greatly affect the test results. This is because the trainee could then correct their
behavior based on the feedback. Some of the patterns here, such as Goal Indicators,
Progress Indicators, and Real-time instructive feedback, as well as Postponed feedback

-52-

in the previous section, all help make the trainee aware of expected actions and behav-
ior. The patterns and their implementation status can be seen in Table 7.

Enemies pattern is recommended for simulators whose setting has to do with places
where other people can interfere with safe operation of the machine. Examples of this
are traffic and construction sites. Both places can have people doing reckless things,
such as jaywalkers in traffic, and careless workers at a construction site. Many ma-
chines, such as a tram, can cause major damage in accidents, maybe even death. The
trainee's goal here is of course safe operation of the vehicle. In the training simulator,
pedestrians have been added as something to look out for. Cars could be also considered
as enemies. This would be especially true if they could be used in the same way as
pedestrians in the simulator. For this, inspiration could be taken from City Car Driving.
However, the traffic simulation as a whole would need to be somewhat deterministic.

Game pauses make the training simulator easier to train with. This allows the
trainee to take a break from the simulator without abandoning the exercise. One way the
pause can be used is to allow the trainee to stop to think. The pause could even be initi-
ated by the trainer during instruction if the trainer thinks a pause might be beneficial, for
example to correct behavior or if the trainer believes some explanation beforehand
would better prepare the trainee for an upcoming situation in the simulator. In class-
room-type settings an ability to take a break during the class could be appreciated as
well. The "danger" of this pattern is that real life doesn't have pauses. Driving a vehicle
in real traffic requires constant attention. For example, pausing to think is not possible
when quick actions are needed to prevent a traffic accident. This would imply that
pauses might not be appropriate in exam-type training sessions, or when the agenda is to
mimic real life.

Ghosts may be an useful addition to the training simulation. A good way to use
them would be to record professional tram drivers. This way trainees can be shown a
ghost of the professional driver’s tram while practicing. Trainees can then try to match
their driving to the ghost’s thus possibly enabling learning from professionals.

Visual Goal and Progress Indicators might be good to have. Both indicators tech-
nically exist in the Postponed feedback training report. The progression in the training
material as indicated by the training app can also be considered as a Progress Indicator.
However, I think implementing them so that they are visible during game-play could be
valuable, especially in practice sessions. A Goal Indicator that explains what the trainee
should do in a text box in the HUD can solve the problem of trainee’s awareness of
what is expected of them. A Progress Indicator could simply be an indicator that
shows the trainee's current score value in relation to the score threshold required to pass
the exercise. For the training simulator, the graphic indicator in the training report might
suit this purpose. Care should be taken to prevent trainees from doing the bare-mini-

-53-

mum for passing the exercise using these indicators, if that is a concern. As with other
patterns in this section, suitability for exam-type sessions should be evaluated, espe-
cially if the trainee is expected to remember the goal of the session, like in real life.

HUD interfaces: HUD interfaces are beneficial because implementing patterns such
as real-time instructive feedback and visual goal indicators would be impossible to im-
plement without them, at least visually. The HUD would be important as well if a simu-
lator doesn't have separate equipment to display important information. For example, if
the physical simulator setup doesn't have a speedometer, the same information should
be displayed in the HUD of the program. This applies to other similar devices as well.
Ability to hide certain HUD elements might become important when altering the diffi-
culty of a simulator session. Especially exam-type session should hide real-time instruc-
tional feedback notifications, mini-maps, and such.

Real-time instructional feedback is arguably the most recommended pattern to
implement. The ability to inform the trainee of their mistakes immediately is very valu-
able. The problem with Postponed feedback is that the trainee might not know when the
mistakes were made. This pattern solves that problem. Positive feedback is not as im-
portant, but it could improve trainee motivation and maintain correct behavior. It is im-
portant that positive and negative feedback are clearly distinguished. In case of visual
implementation, color is one way to achieve this, like in City car driving. Icons, such as
thumbs up or down, could also be used. Different actions, such as speed limit related,
could have different icons and symbols linked to them. Auditory feedback could per-
haps also be used alone or in combination with visual feedback. It would be good to
make sure the feedback is not too distracting to the trainee.

Save-load cycles: Save-load cycles are beneficial in the practice phase. If the trainer
or trainee think that a certain situation or section in the training warrants special practice
or training, then this pattern helps achieve that. Again, not appropriate for exam-type
sessions. Implementation of Save Points is needed to implement this pattern.

Storytelling was recommended by Kapp [2012]. Might be a nice addition to pro-
vide some meaningfulness to individual exercises and make them more memorable.
Overarching narrative is most likely unnecessary because it requires more effort to im-
plement, and the purpose of the training should be clear to the trainees. The simplest
way this pattern can be implemented is by naming exercises in the training material dif-
ferently. Another simple way is to add narrative text to exercise instructions. This pat-
tern technically already exists in the training simulator because exercise titles and de-
scriptions can already be edited and then displayed. Perhaps adding characters or similar
elements could be entertaining to the trainee.

-54-

6.3 Supplementary patterns

These patterns, listed in Table 8, are not essential to a training simulator, but could im-
prove the user experience. These patterns mainly provide helpful information, or in-
crease the trainee’s engagement during a training. Arguably, training with the simulator
is not as “exciting” as operating the real thing, so these patterns may have some use
from that point of view. However, it is appropriate to take care when implementing
these patterns because they could make the simulation too easy for the trainee. Another
concern is that they can distract the trainee from the real goal of training with the simu-
lator. With these patterns, It is especially worth considering whether the value given by
implementing a pattern here is worth the effort required. Though, these patterns should
be somewhat easy to implement in most cases. This is because most simulator architec-
tures might already support adding these patterns. Also, these patterns are quite com-
mon, so examples and templates for implementation are likely easy to come by. Issues
mentioned before, namely the length of the training and the role of simulator, are rele-
vant here.

Supplementary game design patterns

Pattern Already implemented?

Achievements No

Character development No

Loading hints No

Mini-maps No

Reward structures No

Table 8: Game design patterns that are nonessential to the training simulator but could
add value from the perspective of pleasurable user experience.

Achievements are very common in video games. However, the limitation with
training simulators is that the simulator is only used during the training period. There-
fore, after the training is done, the trainee's achievements would be lost, because the
training provider would have no interest in using resources to store them in their sys-
tems after the training is over for that individual. Storing the achievement data on a
trainee-owned storage medium is possible, but likely not useful. This is because a major
point of achievements is for other people to see them. This might also lead to leaking of
trade secrets, or other business data, if the achievements reveal something about the

-55-

training or simulator architecture. Another disadvantage of achievements is that if there
are optional ones, a trainee prone to completionism in games would get upset if they
were unable to complete them all. A useful application of achievements could be to
make them all obligatory to complete via progressing in the training. The trainee could
then use them to track their progression towards the end goal, completion of the train-
ing.

Character development has some of the same problems as achievements, namely
losing data about the progression after the training ends. This pattern has some synergy
with the difficulty levels pattern because character development can simply mean gain-
ing new abilities. Slowly gaining new abilities and ways of operation for the simulated
machine makes the learning curve of using it potentially more manageable. If we use
the pattern this way, then data loss similar to achievements would not feel so severe for
the trainee. This is in combination with the other solutions to the problems with the
achievements pattern.

Loading hints: Loading hints is a relatively "inoffensive" pattern in that it doesn't
affect difficulty levels that much, or otherwise have much of an effect on a training ses-
sion. Of course, use before an exam-type exercise might accidentally give away some
information that is being tested. This of course depends on what kind of information the
loading hints generally give to the trainee. Information to give might include things like
how to operate the simulator, what functions are available in the simulator, hints about
how to generally operate the simulated vehicle, or even hints specific to the exercise be-
ing loaded. In the case of the training simulator under study, these could be things like
how to enter the flying mode to survey surroundings outside the tram, and what to do
when starting the tram. Whether it is worth it to implement this pattern depends on how
long it takes to load an exercise in the simulator, and whether there are enough hints to
be given. Fast load times don't really give time to read the hints. This could be solved by
having the trainee confirm with a button press that they wish to proceed, therefore al-
lowing the trainee to finish reading the hint on the screen. Cycling through only a few
hints might cause useless repetition, and thus not make the pattern worthwhile to imple-
ment either.

Reward structures: Reward structures, points and badges, are quite similar to
Achievements, since Achievements could even be considered a reward structure.
Though, Reward structures in general are likely more easily gained, unlike achieve-
ments. This is a benefit in a way because the loss of data is less significant to the
trainee. Care should be taken to avoid patterns of this type becoming a big focus of the
simulator experience, like Kapp [2012] warns.

-56-

6.4 Implementation considerations

To implement game design patterns not already present in the simulator requires modifi-
cations to the applications in the simulator software stack. An illustration of which ap-
plications would need modifications for given pattern can be seen in Table 9. For appli-
cability for other simulators, the software stack could roughly be understood as an im-
plementation of the model-view-controller software pattern, where the visual app would
be the view, and the simulator app contains both the model and the controller, with the
two parts separated in the simulator app's internal architecture. Next we will look at
some justifications for the information presented in the illustration.

Since an Achievement's completion state is user data, they should be mainly stored
and managed by the training application, where the user can view them. Achievements
could be awarded from both progressing in the training material, and from actions done
during an exercise session. The former would be handled by the training app, while the
latter would fall onto the simulator app. As mentioned earlier, awarding achievements
from progressing in the training material would be more appropriate. However, com-
pleting simulator exercises is mandatory for progressing in the material, therefore the
simulator application is needed, at least to report the completion of an exercise to the
training app. If achievements were to be awarded from actions in the simulation, the vis-
ual apps could be used to notify the trainee. To implement the achievements pattern, the
observer software design pattern could be used.

The best place for Character development pattern is likely, in the case of the train-
ing simulator, the training application. In general, the correct place is the component
that handles permanent storage and user data. Character development metrics can be
displayed in the training application. Restricting implementation only to the training app
can make the character development simpler, especially if the only thing considered is
advancement through the material. Optionally, character development could also be im-
plemented in the simulator app for more complex character development metrics. These
metrics can also be displayed in the visual apps, especially when advancements to char-
acter development happen during a simulator session as is likely if the simulator app is
made to monitor trainee activities.

Improvements to the difficulty levels pattern require modifications to at least the
simulator app. This is because the exercises created by the simulator app contain the
data of what is included in the exercise. Data to be added could include flags on which
HUD elements, or help in general, are visible or enabled. If HUD element visibility is to
be changed per exercise, then modifications to the visual app are needed. Modifications
to the training app software itself may also not be needed. The already supported chang-
ing of exercise instructions and descriptions in the training material are likely enough.

-57-

Pattern Training app Simulator app Visual app(s)

Achievements X X X*

Character development X X* X*

Difficulty levels X* X X*

Enemies X

Ghosts X X

Goal Indicators X* X X

HUD interfaces X X

Loading hints X X

Mini-maps X X

Progress Indicators X* X X

Real-time instructive feed-
back X X

Reward structures X X X*

Storytelling X* X* X*

Table 9: Illustration of which applications in the training simulator software stack would
need to be modified in order to implement patterns not already found in the simulator.

*Modification optional.

-58-

Enemies are already implemented in the visual app, and modifications need to be
directed to the simulator app, and more specifically to the traffic simulation. If the
trainer should be able to add cars the same way as pedestrians, then the traffic simula-
tion might need to be more deterministic. The other options is to add randomness to car
and pedestrian behavior. This randomness would add unpredictability to the traffic ex-
perience, since cars and pedestrians could break traffic rules. Adding nondeterminism
to the simulator might interfere with other patterns, however. Ability to configure the
randomness could be appropriate to manage difficulty.

Ghosts pattern requires recording the machine's, in this case the tram's, movement
and actions in the game world. With the tram this could include movement, acceleration
and braking, as well as door operations. The main problem for recording movement is
how and where to store the data generated by the recording. Perhaps streaming the
recorded data to a file on disk is appropriate. This would be done by the simulator app.
The visual app's job is to display the ghost based on the data sent by the simulator app.
Another problem is the randomness of the traffic, which can make following the ghost
difficult or dangerous. Making the traffic more deterministic might be required in the
case of this pattern.

Goal and Progress Indicators that are visible during game-play first require the
HUD to be implemented. Graphic, or even textual, presentation support needs to be
added to the visual app, and the simulator app needs to update those presentations by
tracking trainee actions to detect when the next step needs to displayed. Data about the
steps should be built into the exercise files. The steps could also be shown in the train-
ing app, but modifications to it are not needed if it is simply typed into the exercise’s
description. Adding a way to hide these elements in the HUD is appropriate for exam-
type sessions.

HUD interfaces pattern implementation is required for many of the patterns sug-
gested. The visual app and the simulator app both need to be modified. The visual app
renders the actual HUD, and updates and content to it are sent by the simulator app.

Loading hints are displayed by the visual app in the loading screen and their con-
tents are sent by the simulator app. The simulator app could read these from a file on
disk. Some logic needs to be implemented if certain hints are not to be displayed for
certain types of exercises. Keeping track of which hints the trainee has already seen, or
randomizing which hints are shown, could also be appropriate to reduce too much repe-
tition.

Mini-maps: Mini-maps are displayed in the HUD, which in turn is rendered by the
visual app. The simulator app needs to track and send the machine's location in the
game world constantly so it can be displayed on the map correctly. The map itself could
be made by hand, or automatically by processing the game world in some way. Adding

-59-

some kind of invisible markers or elements to the game world for the processing could
help.

Implementing Real-time instructive feedback presented during the training session
game-play would require analyzing the trainee’s performance and presenting it on-the-
fly. This may require collecting more data for analysis. The complexity of the data may
require different ways of data storage structures. Quantity of data should also be ac-
counted for storage. The level of detail in feedback in turn determines the complexity of
the analysis. Statistical calculations are most likely adequate for simple feedback, such
as speed limit calculations. More complex feedback that tracks, for example, chains of
actions, could require some form of artificial intelligence type analyzer in some cases.
Inspiration for analysis could be gathered from video games, such as the ones discussed
in this thesis. Things to consider are:

• What data is relevant from the training point of view?
• What data can be collected?
• How to store the data?
• How to process the data?

Presenting the feedback visually should be done using the HUD.
Reward structures: Tracking actions that trigger rewards should be implemented

in the simulator app. This information could then be stored in the training app for dis-
play either permanently or for a fixed time after the training session. The other option
would be to document the rewards in the training report, which would eliminate, or at
least reduce, the need to modify the training app. Displaying the rewards as they are
triggered in the visual app is appropriate in cases where they don't interfere the session,
such as in exam-type sessions. This pattern can be handled using the same methods, or
as part of, real-time instructive feedback.

As said before, Storytelling could be improved without any modifications to the
software just by changing text related to exercises. Characters with dialogue could be
implemented in the same way as in TramSim Vienna and Gran Turismo 7. This would
require modifications to the HUD in the visual app, with the simulator app being modi-
fied to send content for the dialogue or command which character picture is shown (if
needed).

-60-

7 Conclusion
The thesis looked for answers to three questions. First, we have found “gamification el-
ements” that should be useful from a trainee’s perspective. In the literature we chose
these are called game design patterns. We sorted the patterns into three categories: es-
sential, recommended, and supplementary. There were also some patterns that are foun-
dational to games, and thus simulators because of the same technologies used. However,
these patterns were not the focus of the thesis. The essential patterns are called so be-
cause they arguably the patterns that make a simulator useful for training. These pat-
terns mainly allow assessment of trainee performance, help manage the difficulty curve
of the training, and help divide training with the simulator into appropriate pieces. The
patterns in this category are: Avatars, Clues, Difficulty Levels, Levels, Postponed feed-
back, Replay, Score, and Time. The recommended patterns improve the simulator train-
ing effectiveness with real-time feedback structures, as well as allow further adjustment
of the training session difficulty. The patterns belonging to this category are: Enemies,
Game Pauses, Ghosts, Goal Indicators, HUD Interfaces, Progress Indicators, Real-time
instructive feedback, Save-load cycles, Save Points, and Storytelling. Achievements,
Character development, Loading hints, Mini-maps, and Reward structures are supple-
mentary patterns. These patterns help with trainee engagement potential commitment to
the training, as well as make the simulator operation, depending on the machine, easier.
With these patterns care should be taken to not distract the trainee from the goal of the
training.

Many of the gamification elements listed above can be found in the training simula-
tor, at least when the whole software stack is considered. The basic building blocks, the
essential patterns, are there, as well as most of the recommended patterns. However,
there is much room for improvement on the current implementations of the patterns in
both categories. Supplementary patterns were not found in the simulator. When consid-
ering which patterns to improve or implement, some effort to value estimation should
be done, to assess whether a given pattern adds enough business value to be worth the
resource expenditure.

The patterns listed above were picked from simulation video games. The games an-
alyzed were TramSim Vienna, City Car Driving, and Gran Turismo 7. The games do of-
fer some usable ideas too. For the training aspect of the simulator, City Car Driving of-
fers the most valuable content. The main reason for this is the feedback system that noti-
fies the player of their mistakes and successes in real-time. Because the notification are
immediate, they allow the player to accurately connect their actions to the feedback.
TramSim Vienna gives a good introduction to tram driving, with some interactive tuto-
rials on tram controls and relevant traffic rules. Gran Turismo 7 has a big focus on

-61-

player engagement and commitment to the game. Inspiration could be taken to bring
some of these aspects to a training simulator.

The research in this thesis was done with a mixture of literature review of game de-
sign patterns, analysis of their implementations in the software industry, and an assess-
ment of their applicability to the tram training simulator under study. To keep the
amount of work required by the thesis under control, limitations for the research were
made. One of these was with the literature review.

Because there are vast amounts of game design patterns, as well as definitions of
gamification, only a small number of them were discussed. Finding of the patterns was
not done systematically either. One way the discovery of patterns could have been done
more systematically, for example, would have been to focus on only one category or
type of patterns. This would reduce some of the subjectivity of the pattern choices, but
also make the analysis less diverse. Use of different sources for patterns was done for
making the discussion more polyphonic, but the problem was that different sources had
differing definitions of patterns.

Another issue concerns the choice of software industry products that were analyzed.
Although the games discussed in this thesis can be considered simulators, it is arguable
whether they can be considered training simulators. Though, City Car Driving is very
close to the definition of a training simulator, if not an actual instance one. Better things
to analyze would have been other training simulators. This was considered, but ulti-
mately judged to be difficult. This is due to very limited access to training simulators,
among other things. An option would also have been to do a more careful search for
games with training elements. Nevertheless, I argue that the games discussed in the the-
sis offered some acceptable ideas.

There are also some other ways on how the research could have been done, or how
the research could be expanded upon. One example is that of the case of usability and
user experience design. This could be done by finding usability oversights in the simu-
lator, or even in the game design patterns in general, and offering improvement sugges-
tions. Another expansion would be a case study on the implementation phase of ac-
cepted patterns. Here, problems that are encountered during development would be doc-
umented, as well as the solutions to those problems. Following implementation, user
testing could empirically prove pattern impact.

-62-

References
Basten, D. "Gamification," in IEEE Software, vol. 34, no. 5, pp. 76-81, 2017, doi:

10.1109/MS.2017.3571581.
Björk, S., and Holopainen, J. 2005. “Patterns in Game Design”. Charles River Media,

Boston, MA.
Bogost, I. 2011. “Persuasive Games: Exploitationware”. Game Developer. Accessed

29.5.2023. Available at: https://www.gamedeveloper.com/design/persuasive-games-

exploitationware
Brathwaite, B., and Schreiber, I. 2008. “Challenges for Game Designers”. Charles River

Media, Boston, Ma.
Bus Simulator. 2023. Website. astragon Entertainment GmbH. Accessed 30.5.2023.

Available at: https://www.bussimulator.com/en/
City Car Driving Home Edition User manual. 2019. “Version 1.5.9.”. Forward Global

Group, Ltd.
City Car Driving website. 2023. Forward Global Group, Ltd. Accessed 10.5.2023.

Available at: https://citycardriving.com/
Collins. 2023. “English Dictionary”. Accessed 29.5.2023. Available at: https://www.-

collinsdictionary.com/us/
Consistent Walkthroughs. 2022. “Gran Turismo 7 PS5 Gameplay - MY FIRST TIME

PLAYING! | Part 1 (GT7 Playstation 5 Gameplay)”. Available at: https://www.y-

outube.com/watch?v=PRMmyOLEIMQ
Creanex Oy. 2021. “Tampere Tram Simulator”. Accessed 10.4.2023. Available at

https://creanex.fi/en/tampere-tram-simulator/
Deterding, S., Dixon, D., Khaled, R., & Nacke, L. 2011. “From game design elements

to gamefulness: defining gamification”. Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media Environments,
MindTrek 2011. 11. 9-15. 10.1145/2181037.2181040.

Duolingo. 2023. Website. Accessed 29.5.2023. Available at: https://www.duolingo.com/
Error1355. 2022. “Gran Turismo 7 - (PS5) - First Time Startup - Launch Day (March

4th 2022)”. Available at: https://www.youtube.com/watch?v=p1RHMqWt2eY
Euro Truck Simulator. 2023. SCS Software s.r.o. Accessed 30.5.2023. Available at:

https://eurotrucksimulator2.com/
Farming simulator. 2023. Website. Giants software. Accessed 27.4.2023. Available at

https://www.farming-simulator.com/about.php?
lang=en&country=us&platform=pc

Game design patterns (GDP) wiki. 2023. “Patterns collection”. Accessed 30.5.2023.
Available at: http://virt10.itu.chalmers.se/index.php/Category:Patterns

http://virt10.itu.chalmers.se/index.php/Category:Patterns
https://eurotrucksimulator2.com/
https://www.youtube.com/watch?v=p1RHMqWt2eY
https://www.duolingo.com/
https://creanex.fi/en/tampere-tram-simulator/
https://www.youtube.com/watch?v=PRMmyOLEIMQ
https://www.youtube.com/watch?v=PRMmyOLEIMQ
https://www.collinsdictionary.com/us/
https://www.collinsdictionary.com/us/
https://citycardriving.com/
https://www.bussimulator.com/en/
https://www.gamedeveloper.com/design/persuasive-games-exploitationware
https://www.gamedeveloper.com/design/persuasive-games-exploitationware

-63-

Google Trends. 2023. Accessed 27.4.2023. Available at https://www.google.com/trends
Gran Theft Auto V. 2023. Website. Rockstar games. Accessed 30.5.2023. Available at:

https://www.rockstargames.com/gta-v
Gran Turismo 7 online manual. Accessed 6.4.2023. Available at

 https://www.gran-turismo.com/us/gt7/manual/
Gran Turismo website. 2023. Gran Turismo 7 product page. Accessed 6.4.2023. Avail-

able at: https://www.gran-turismo.com/us/products/gt7/
Gran Turismo Wiki. 2023a. “Gran Turismo 7”. Accessed 27.4.2023. Available at:

https://gran-turismo.fandom.com/wiki/Gran_Turismo_7
Gran Turismo Wiki. 2023b. “Penalties”. Accessed 27.4.2023. Available at: https://gran-

turismo.fandom.com/wiki/Penalties
Hunicke, R., Leblanc M., and Zubek, R.. 2004. “MDA: A Formal Approach to Game

Design and Game Research.” AAAI Workshop - Technical Report. Vol. WS-04–
04. N.p., 2004. 1–5. Print.

IGN. 2022. Gran Turismo 7 Trophy List. Accessed 31.5.2023. Available at: https://

www.ign.com/wikis/gran-turismo-7/Trophies
Kapp, K. 2012. Gamification of learning and instruction : game-based methods and

strategies for training and education. Pfeiffer.
Lee, J., & Hammer, J. 2011. Gamification in education: What, how, why bother?
Nismonath5. 2022. “Gran Turismo 7 Drag Racing - What Happens When You Drive

The WRONG Way?”. Available at: https://www.youtube.com/watch?v=QXrU-

c_oOtg
Northernlion. 2021a. “Where'd You Learn To Drive??? (City Car Driver)”. Available

at: https://www.youtube.com/watch?v=P5YmxOO3120
Northernlion. 2021b. “Going Back To Driver's Ed (City Car Driver)”. Available at:

https://youtu.be/oFrfJvAVDVE
PlayStation website. 2023a. “How to earn trophies on PlayStation consoles”. Accessed

12.5.2023. Available at: https://www.playstation.com/en-us/support/games/how-to-

earn-trophies-on-playstation--consoles/
PlayStation website. 2023b. Gran Turismo 7. Accessed 6.4.2023. Available at https://

www.playstation.com/en-fi/games/gran-turismo-7/
RA Shadow. 2022. “GT 7, using the Ghost to improve our times! Tips and Tricks”.

Available at: https://www.youtube.com/watch?v=2b58O94VWu8
Salen, K. and Zimmerman, E. 2004. “Rules of play: Game design fundamentals”. MIT

Press, Cambridge, Ma.
Steam. 2023a. “City Car Driving global achievements”. Valve corporation. Accessed

12.5.2023. Available at: https://steamcommunity.com/stats/493490/achievements

https://steamcommunity.com/stats/493490/achievements
https://www.youtube.com/watch?v=2b58O94VWu8
https://www.playstation.com/en-fi/games/gran-turismo-7/
https://www.playstation.com/en-fi/games/gran-turismo-7/
https://www.playstation.com/en-us/support/games/how-to-earn-trophies-on-playstation--consoles/
https://www.playstation.com/en-us/support/games/how-to-earn-trophies-on-playstation--consoles/
https://youtu.be/oFrfJvAVDVE
https://www.youtube.com/watch?v=P5YmxOO3120
https://www.youtube.com/watch?v=QXrU-c_oOtg
https://www.youtube.com/watch?v=QXrU-c_oOtg
https://www.ign.com/wikis/gran-turismo-7/Trophies
https://www.ign.com/wikis/gran-turismo-7/Trophies
https://www.gran-turismo.com/us/products/gt7/
https://www.gran-turismo.com/us/gt7/manual/
https://www.rockstargames.com/gta-v
https://www.google.com/trends

-64-

Steam. 2023b. “TramSim Vienna global achievements”. Valve corporation. Accessed
19.5.2023. Available at: https://steamcommunity.com/stats/1314140/achievements

Steam. 2023c. “TramSim | Patch 1.0.9”. Valve corporation.
Accessed 19.5.2023. Available at: https://store.steampowered.com/news/app/

1314140/view/3057350018513745186?l=english
Steam. 2023d. TramSim Vienna Store page. ViewApp GmbH. Accessed 31.5.52023.

Available at: https://store.steampowered.com/app/1314140/

TramSim_Vienna__The_Tram_Simulator/
Steam. 2023e. City Car Driving Store page. Forward Global Group, Ltd. Accessed

31.5.2023. Available at: https://store.steampowered.com/app/493490/City_Car_Driv-

ing/
Steamworks. 2023. “Step by Step: Achievements”. Accessed 12.5.2023. Available at:

https://partner.steamgames.com/doc/features/achievements/ach_guide
TramSim. 2020. Manual. ViewApp GmbH and Aerosoft GmbH.
Wikipedia. 2023a. “HUD (video gaming)”. Accessed 30.5.2023. Available at: https://

en.wikipedia.org/wiki/HUD_(video_gaming)
Wikipedia. 2023b. “Speedrunning”. Accessed 30.5.2023. Available at: https://

en.wikipedia.org/wiki/Speedrunning
Wiktionary. 2019. “completionism”. Available at: https://en.wiktionary.org/wiki/comple-

tionism

Xbox website. 2023. “Tracking Xbox achievements in your game”. Accessed
12.5.2023. Available at: https://support.xbox.com/en-US/help/games-apps/game-

setup-and-play/tracking-achievements-in-your-game

https://support.xbox.com/en-US/help/games-apps/game-setup-and-play/tracking-achievements-in-your-game
https://support.xbox.com/en-US/help/games-apps/game-setup-and-play/tracking-achievements-in-your-game
https://en.wiktionary.org/wiki/completionism
https://en.wiktionary.org/wiki/completionism
https://en.wikipedia.org/wiki/Speedrunning
https://en.wikipedia.org/wiki/Speedrunning
https://en.wikipedia.org/wiki/HUD_(video_gaming)
https://en.wikipedia.org/wiki/HUD_(video_gaming)
https://partner.steamgames.com/doc/features/achievements/ach_guide
https://store.steampowered.com/app/493490/City_Car_Driving/
https://store.steampowered.com/app/493490/City_Car_Driving/
https://store.steampowered.com/app/1314140/TramSim_Vienna__The_Tram_Simulator/
https://store.steampowered.com/app/1314140/TramSim_Vienna__The_Tram_Simulator/
https://store.steampowered.com/news/app/1314140/view/3057350018513745186?l=english
https://store.steampowered.com/news/app/1314140/view/3057350018513745186?l=english
https://steamcommunity.com/stats/1314140/achievements

	1 Introduction
	2 Gamification
	2.1 Definitions
	2.2 Benefits
	2.3 Potential challenges

	3 Game design patterns
	3.1 Game elements
	3.2 Resource and resource management
	3.3 Information, communication, and presentation
	3.4 Actions and events
	3.5 Narrative structures, Predictability, and Immersion Patterns
	3.6 Social interaction
	3.7 Goals
	3.8 Goal structures
	3.9 Game sessions
	3.10 Game mastery and balancing
	3.11 Meta games, Replayability and Learning Curves

	4 Game design patterns in video games
	4.1 TramSim Vienna
	4.2 City car driving
	4.3 Gran Turismo 7
	4.4 Observations

	5 Training simulator
	5.1 Introduction
	5.2 Architecture
	5.3 Game design patterns

	6 Evaluation
	6.1 Essential patterns
	6.2 Recommended patterns
	6.3 Supplementary patterns
	6.4 Implementation considerations

	7 Conclusion
	References

