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Robust, Energy-Efficient, and Scalable
Indoor Localization with

Ultra-Wideband Technology





Academic Dissertation

This thesis has been done in a double PhD degree agreement between:
University Politehnica of Bucharest, Romania
Tampere University, Finland

The work described in this thesis has been conducted within the project A-WEAR,
http://www.a-wear.eu/. This project has received funding from the European Union’s
Horizon 2020 (H2020) Marie Sklodowska-Curie Innovative Training Networks
H2020-MSCA-ITN-2018 call, under the Grant Agreement no 813278.

Responsible Prof. Dragos, Niculescu
supervisor and University Politehnica of Bucharest
Custos Romania

Supervisors Prof. Dragos, Niculescu Prof. Elena Simona Lohan
University Politehnica of Bucharest Tampere University
Romania Finland

Prof. Jari Nurmi
Tampere University
Finland

Pre-examiners Dr. Christian Gentner Dr. Marc Kuhn
German Aerospace Center ZHAW School of Engineering
Germany Switzerland

Opponents Dr. Christian Gentner Prof. Radu Tudor Ionescu
German Aerospace Center University of Bucharest
Germany Romania

The originality of this thesis has been checked using the Turnitin Originality Check service.
Copyright © 2023 Author

ISBN 978-952-03-2937-2 (print)
ISBN 978-952-03-2938-9 (online)
http://urn.fi/URN:ISBN:978-952-03-2938-9

http://urn.fi/URN:ISBN:978-952-03-2938-9




“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said
the Cat.

“I don’t much care where—” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—so long as I get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long
enough.”

Alice in Wonderland, by Lewis Carroll
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ABSTRACT

Ultra-wideband (UWB) technology has been rediscovered in recent years for
its potential to provide centimeter-level accuracy in GNSS-denied environ-
ments. The large-scale adoption of UWB chipsets in smartphones brings
demanding needs on the energy-efficiency, robustness, scalability, and cross-
device compatibility of UWB localization systems. This thesis investigates,
characterizes, and proposes several solutions for these pressing concerns.

First, we investigate the impact of different UWB device architectures on
the energy efficiency, accuracy, and cross-platform compatibility of UWB lo-
calization systems. The thesis provides the first comprehensive compari-
son between the two types of physical interfaces (PHYs) defined in the IEEE
802.15.4 standard: with low and high pulse repetition frequency (LRP and
HRP, respectively). In the comparison, we focus not only on the ranging/lo-
calization accuracy but also on the energy efficiency of the PHYs. We found
that the LRP PHY consumes between 6.4–100 times less energy than the HRP
PHY in the evaluated devices. On the other hand, distance measurements ac-
quired with the HRP devices had 1.23–2 times lower standard deviation than
those acquired with the LRP devices. Therefore, the HRP PHY might be
more suitable for applications with high-accuracy constraints than the LRP
PHY.

The impact of different UWB PHYs also extends to the application layer.
We found that ranging or localization error-mitigation techniques are fre-
quently trained and tested on only one device and would likely not gen-
eralize to different platforms. To this end, we identified four challenges in
developing platform-independent error-mitigation techniques in UWB local-
ization, which can guide future research in this direction.

Besides the cross-platform compatibility, localization error-mitigation tech-
niques raise another concern: most of them rely on extensive data sets for
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training and testing. Such data sets are difficult and expensive to collect and
often representative only of the precise environment they were collected in.
We propose a method to detect and mitigate non-line-of-sight (NLOS) mea-
surements that does not require any manually-collected data sets. Instead,
the proposed method automatically labels incoming distance measurements
based on their distance residuals during the localization process. The pro-
posed detection and mitigation method reduces, on average, the mean and
standard deviation of localization errors by 2.2 and 5.8 times, respectively.

UWB and Bluetooth Low Energy (BLE) are frequently integrated in lo-
calization solutions since they can provide complementary functionalities:
BLE is more energy-efficient than UWB but it can provide location estimates
with only meter-level accuracy. On the other hand, UWB can localize targets
with centimeter-level accuracy albeit with higher energy consumption than
BLE. In this thesis, we provide a comprehensive study of the sources of in-
stabilities in received signal strength (RSS) measurements acquired with BLE
devices. The study can be used as a starting point for future research into
BLE-based ranging techniques, as well as a benchmark for hybrid UWB–BLE
localization systems.

Finally, we propose a flexible scheduling scheme for time-difference of ar-
rival (TDOA) localization with UWB devices. Unlike in previous approaches,
the reference anchor and the order of the responding anchors changes every
time slot. The flexible anchor allocation makes the system more robust to
NLOS propagation than traditional approaches. In the proposed setup, the
user device is a passive listener which localizes itself using messages re-
ceived from the anchors. Therefore, the system can scale with an unlimited
number of devices and can preserve the location privacy of the user. The pro-
posed method is implemented on custom hardware using a commercial UWB
chipset. We evaluated the proposed method against the standard TDOA al-
gorithm and range-based localization. In line of sight (LOS), the proposed
TDOA method has a localization accuracy similar to the standard TDOA al-
gorithm, down to a 95% localization error of 15.9 cm. In NLOS, the proposed
TDOA method outperforms the classic TDOA method in all scenarios, with
a reduction of up to 16.4 cm in the localization error.
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1 INTRODUCTION

1.1 Background and Motivation

Navigation applications are integral to our lives, allowing us to reach our
destinations faster, interact with our environment, discover new places, or
even save our lives in an emergency. While GNSS services have become the
de facto standard for outdoor positioning, in indoor spaces there are many
competing technologies, each with their advantages and drawbacks. In re-
cent years, ultra-wideband (UWB) has emerged as a promising technology
that can enable localization with centimeter-level accuracy. The advent of
UWB technology was facilitated by its adoption in smartphones, starting
with the Apple iPhone 11 in 2019. Since then, more smartphone developers
such as Google, Samsung, or Xiaomi have followed the trend and deployed
UWB chipsets in their latest smartphone releases. The large-scale adoption of
the technology raises the stakes and creates new ambitious needs for future
localization applications based on UWB.

With so many UWB solutions on the market, there is a need for comparing
the performance of the physical-layer interfaces (PHYs) defined in the IEEE
802.15.4 standard, primarily in terms of localization accuracy and energy-
efficiency. While the accuracy has been the main focus of previous research,
not much attention had been dedicated to the energy-efficiency of UWB de-
vices. Since UWB devices are most often used in battery-powered devices,
it is important to evaluate the trade-off between localization accuracy and
energy-efficiency that can satisfy the desired requirements of an application.

Although UWB can deliver centimeter-level accuracy in ideal conditions,
the quality of location estimates usually degrades to decimeter-level in the
presence of obstructions or multipath propagation (MPP). While there is a
large body of research in the area of error mitigation techniques, most such
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methods rely on time-consuming and expensive measurement campaigns in
order to collect training data [69, 134, 102, 7, 11]. In order for UWB localiza-
tion systems to be deployed on a large scale, they have to be robust in the
presence of environmental noise but, most importantly, easy to deploy and
maintain.

Connecting these first two pressing issues in UWB localization, there is a
need for error mitigation techniques that are device-agnostic and can there-
fore be used irrespective of the model of UWB device carried by the user [103].
Although standards [47] and certifications [15] that ensure the interoperabil-
ity of UWB devices from different developers are currently in place, not much
attention has been dedicated to the cross-compatibility of error-mitigation al-
gorithms at the application layer.

Given these issues, UWB localization systems that are scalable to an un-
limited number of users, highly accurate, energy-efficient, and robust to
MPP and non-line-of-sight (NLOS) scenarios at the same time are hard to de-
velop. Localization systems based on two-way ranging (TWR) techniques
offer centimeter-level accuracy but do not scale well with a high number of
anchors and tags [116]. Time-difference of arrival (TDOA) localization can
solve the scalability issues to a certain extent but needs specialized schedul-
ing algorithms to avoid synchronizing devices [31] and is usually more prone
to measurement noise than its TWR counterpart [118]. Therefore, more re-
search is needed to find a good balance between all the desirable require-
ments of a UWB localization system.

With so many standardized communication protocols available, out of
which the most notable are WiFi and Bluetooth, UWB may not arise as the ob-
vious best solution for indoor localization. In particular, Bluetooth Low En-
ergy (BLE) is often a preferred alternative especially for battery-constrained
wearables owing to its ultra-low power consumption [8]. However, being a
narrowband (NB) technology, BLE ranging can currently achieve at best only
decimeter-level accuracy [5, 77, 86, 3, 26]. It is therefore worthwhile to look
more into detail at the advantages and disadvantages of UWB and BLE in
ranging and/or localization in challenging indoor environments.
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1.2 Objectives and Scope of the Thesis

In line with the identified issues in current indoor localization systems, the
purpose of the thesis is to advance the research on robust, energy-efficient,
and platform-independent indoor localization systems. To this end, we iden-
tified the following research questions:

1. How do UWB physical interfaces compare in terms of energy efficiency, maxi-
mum range, and accuracy?
We compare in [P1] and [P2] the two PHYs defined in the IEEE 802.15.4
standard: with low- and high-pulse repetition (LRP and HRP, respec-
tively) and their implementations in commercial UWB devices.

2. What implications do different UWB hardware architectures have on the cross-
platform compatibility of localization systems?
In [P3], we identified four challenges currently standing in the way of
platform-independent localization systems based on an extensive mea-
surement campaign performed with three different UWB platforms.

3. How can we mitigate the impact of NLOS propagation on UWB localization
accuracy without manually-collected training data?
The thesis proposes in [P4] a novel technique for detecting and miti-
gating measurements acquired in NLOS without the need to perform
time-consuming measurement campaigns.

4. How does UWB compare to complementary low-power technologies, such as
BLE, in terms of ranging performance?
The thesis includes a study [P5] on the variability of BLE received
signal strength (RSS) measurements, which can be used as a starting
point for this comparison.

5. How can we achieve scalable and robust UWB localization?
In [P6], we propose a flexible TDMA scheme for TDOA localization
with UWB devices which scales up to an unlimited number of users
and is robust to NLOS propagation owing to its enhanced channel di-
versity compared to existing approaches in the literature.
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1.3 Outline and Structure of the Thesis

The present thesis is organized into three main chapters, as follows:
Chapter 2 introduces the basic principles of UWB communication and the

most frequently-used ranging and localization methods, which are a prereq-
uisite for presenting our contributions.

Chapter 3 addresses the impact of different UWB device architectures
in localization systems, especially concerning the ranging/localization ac-
curacy, the energy-efficiency, and the cross-platform compatibility of the sys-
tems. The chapter is based on publications [P1], [P2], and [P3].

Chapter 4 examines the main sources of errors in UWB and BLE local-
ization, which can be viewed as complementary technologies. UWB can be
used for fine-grained localization with the disadvantage of a high energy
consumption, while BLE can be used with a high energy efficiency to pro-
vide a rough estimate of the location of the tracked device. This chapter
follows the work in publications [P4] and [P5].

Chapter 5 presents FlexTDOA, a TDOA localization system with a flexi-
ble TDMA scheduling scheme for anchor transmissions. The chapter covers
the principles of the proposed TDMA scheme, the most important results
achieved by the system in both LOS and NLOS propagation, and presents
directions for improving the system in the future.

Finally, Chapter 6 summarizes the main contributions of this thesis and
presents promising directions for future research.

1.4 Author’s Contributions to the Publications

The thesis consists of the work presented in three journal papers [P2], [P5],
[P6], two conference papers [P1], [P4], and one workshop paper [P3].
The Author of the thesis was the main author in the majority of the papers
[P1]– [P4], shared an equal contribution with the second author of publica-
tion [P5], Viktoriia Shubina, and was the second author of publication [P6].
All the publications were the result of a tight collaboration with several re-
searchers, whose input was essential throughout the projects.

The Author’s main supervisors, Prof. Dragos, Niculescu and Prof. Simona
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Lohan from University Politehnica of Bucharest (UPB) and Tampere Univer-
sity (TAU), respectively, contributed to all the publications by guiding the
research direction, offering feedback during the data analysis and writing
process, and generally sharing their ideas throughout the research projects.

In the papers in which the Author is the main author [P1]– [P4], the Au-
thor carried out the experiments for data collection, implemented the pro-
posed localization algorithms, analyzed and interpreted the data, and was
the main writer of the papers.

In [P1] and [P2], D.Sc. Silvan Wehrli implemented the backbone of the
localization network on top of which the Author added new features, such
as a new synchronization mechanism between anchors and new localization
algorithms. In addition, he provided valuable insight into the UWB tech-
nology and feedback throughout the project. Dr. Michele Magno offered his
supervision for publications [P1] and [P2], especially regarding the power
and energy consumption measurements and their analysis.

The Author and Viktoriia Shubina share an equal contribution to publi-
cation [P5]. The publication is based on two measurement campaigns us-
ing BLE devices, which were performed in parallel at UPB and TAU. The
measurements were carried out by the Author and Viktoriia Shubina, re-
spectively. Therefore, each main author was responsible for their own data
collection based on a commonly-agreed setup. The authors identified to-
gether eight key factors that lead to the instability of BLE RSS measurements:
time, space, hardware, advertising channel, distance between the transmit-
ter (TX) and the receiver (RX), device orientation, BLE–WiFi combo chipsets,
and NLOS obstructions. When analyzing the data for each of the identi-
fied factors, the main authors divided their work equally: the Author was
the principal responsible for the sections on the impact of the advertising
channel, NLOS propagation, device orientation, and TX–RX distance on RSS
measurements, while Viktoriia Shubina overlooked the analysis of the rest of
the factors.

In publication [P6], the first author, Cristian Pătru, developed the hard-
ware and software for the TDOA localization system under the close super-
vision of D.Sc. Iuliu Vasilescu. The Author identified the main gaps in the re-
search on UWB TDOA localization systems and proposed a suitable research

25



direction. In addition, the Author designed the setup of the experiments,
helped with the data collection, analyzed the data, and was the main writer
of the publication. The Author contributed to at least 30 % of the work for
publication [P6]. Prof. Dragos, Niculescu and D.Sc. Daniel Rosner provided
valuable feedback during the research and the writing process.

Besides the main publications included in the thesis [P1]– [P6], the Au-
thor was the main author of the work in [28], which proposes a ground-truth
system for UWB localization based on the HTC Vive motion capture system.
The HTC Vive is 10 times cheaper than professional-grade motion capture
systems and still localizes objects with millimeter-level accuracy. The Author
also contributed to a survey on the state-of-the-art (SOTA) and current chal-
lenges in wearables [83]. The Author was responsible for the sections related
to the localization of wearable devices.

All the publications included in the thesis are available in an open-access
format. In addition, the data sets used in publications [P2], [P3], and [P5]
have also been published in an open-source format [56, 55, 57].
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2 INTRODUCTION TO INDOOR
LOCALIZATION WITH UWB DEVICES

In this chapter, we discuss the basic principles of ranging and localization
using UWB communications, which provide a foundation for presenting the
contributions of the thesis in the following chapters. Section 2.1 presents an
introduction of UWB technology, the features that enable its accurate timing
estimation, and the main applications of the technology. Section 2.2 discusses
the principles of distance and time-difference of arrival measurements with
UWB devices, with an emphasis on practical aspects. Finally, Section 2.3
introduces the framework for location estimation using distance and TDOA
measurements.

2.1 UWB Technology

According to international regulations [12], UWB devices must have a band-
width of at least 500 MHz, which means that they transmit pulses with a
very high time resolution, on the order of 1 ns (Figure 2.1). This makes them
particularly suitable for accurate time-based ranging and localization meth-
ods [131, 34].

The range of UWB communication varies from 30 m to over 100 m [2].
Therefore, they are most suited for short- to medium-range indoor applica-
tions, although previous works investigated their use in outdoor environ-
ments as well [137].

Another desirable feature of the UWB technology is that it can penetrate
obstacles, so it is also suitable for through-the-wall communication in multi-
room environments. However, its ranging accuracy degrades in NLOS prop-
agation, which has led to extensive research into methods that mitigate NLOS
errors [69, 134, 102]. We investigate the issue of NLOS propagation in UWB
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Bandwidth  
>500 MHz

High time resolution
< 1 ns 

Figure 2.1 UWB communications have a very large bandwidth, of over 500 MHz, which
means that their pulses have a very high time resolution, of under 1 ns.
Therefore, they can provide high accuracy in time-based ranging and local-
ization methods.

communication in more detail in Chapter 4. In [P4], we propose a NLOS
detection and mitigation method that does not need any manually-collected
data, which is often a pre-requisite of such techniques.

The FiRa™consortium lists four main industries for UWB applications:
smart cities & mobility, smart building & industrial, smart retail, and smart
home & consumer [14]. Figure 2.2 presents examples of applications in each
area. Navigation is a key application of UWB with different requirements de-
pending on the exact use case: for people, in autonomous driving, in drone
delivery, asset tracking, or gaming. For instance, asset tracking and manufac-
turing applications might need highly accurate and robust localization, but
they usually benefit from a controlled environment in which the sensors are
deployed. For personal navigation, decimeter-level accuracy might suffice
in most cases but the sparse and non-uniform deployment of sensors might
pose issues. Autonomous driving and drone delivery localization applica-
tions need to deal with fast-moving objects and likely ensure cooperation
between multiple sensing and localization technologies (e.g., GNSS, UWB,
radar, inertial measurement unit). Gaming applications similarly need to
cater to fast movements and also provide localization with low latency.

In secure building and residential access, as well as in payment systems,
security is a critical component. Indeed, security is a central aspect of the
latest amendment of the IEE 802.15.4 standard [47] and the security of UWB
PHYs has been analyzed in previous works [111, 112]. Key-less car access is
already a large market for UWB chipsets and new studies aim to incorporate
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Figure 2.2 Applications of UWB technology in four key industries: smart cities & mo-
bility, smart building & industrial, smart retail, and smart home & con-
sumer [14]. The figure lists examples of applications for each industry. We
can identify several classes of applications: navigation, access, tracking, and
sensing.
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GNSS: 39°09'24.6''S 
     175°37'55.8''E
Local: x = 12 m
       y = 20 m
       z = 1.2 m
Label: "Fast food
        restaurant"

User device

Anchor

Figure 2.3 Practical localization scenario in everyday life. Several UWB anchors are de-
ployed as part of the infrastructure. The user device (also called a tag) needs
to be equipped with a UWB transceiver. The localization system provides
the user either their position using global coordinates, local coordinates (rel-
ative to the building), or as a label depending on its proximity to surrounding
landmarks.

sensing into the access functionality [53, 67].
In smart home applications, UWB devices deployed in home appliances

can enable custom functionalities depending on the room occupancy or on
the precise location of the user inside the room [43, 44, 133].

Although the localization infrastructure depends on the exact type of ap-
plication, it generally consists of several devices with fixed and known lo-
cations which allow user localization in their local coordinate system. These
devices are usually called anchors and deployed around the tracking area, ide-
ally such that the user moves within the convex hull formed by the anchors.
The anchors in an UWB localization system can be likened to satellites in
GNSS, as they also provide a reference for positioning the user device. If the
global coordinates of the anchors are known, the local coordinates of the tag
can be transformed into global coordinates, allowing the user to seamlessly
navigate outdoors as well as indoors. This setup is illustrated in Figure 2.3,
which shows the anchors, the user device (also called the tag) and its local
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and global coordinates. In other applications, instead of the local or global
coordinates, the user might actually need a label such as the name of the
room in which it is positioned. Therefore, localization applications can also
incorporate other types of local cues.

2.2 Types of measurements

In this section, we discuss the most common time-based types of measure-
ments acquired with UWB devices, namely distance and TDOA measure-
ments. We focus on the practical aspects of performing these measurements
using accurate timing information provided by UWB devices.

2.2.1 Distance Measurements

The distance between two devices can be estimated based on the time of
flight (TOF) of the signal. If T1 represents the transmission time of the signal
measured by the sender and T2 represents the arrival time of the signal at the
receiver, the distance between the sender and the receiver is [106]:

d = (T2 − T1) · c = Tp · c, (2.1)

where c is the speed of light and Tp ≜ T2 − T1 is the propagation time of the
signal. In reality, the clocks of the sender and the receiver run at slightly dif-
ferent speeds, so the devices would have to be clock-synchronized in order
to estimate the TOF using Eq. (2.1). Because synchronizing the sender and
the receiver to nanosecond-level (needed to achieve centimeter-level accu-
racy) is usually unfeasible in practice, more messages are exchanged in order
to eliminate the clock synchronization requirements. This leads to ranging
techniques such as single- or double-sided two-way ranging (SS-TWR and
DS-TWR, respectively).

Single-Sided Two-Way Ranging. The SS-TWR uses two messages per dis-
tance estimate, as shown in Figure 2.4a. The propagation time can be com-
puted as:

Tp =
Tround − Tproc

2
, (2.2)

31



REQ

REQ RESP

RESPInitiator

Responder

Tround

TprocTp Tp

(a) SS-TWR

REQ

REQ RESP

Initiator

Responder

Tround1

Tproc1Tp

RESP FINAL

FINAL

Tproc2

Tround2

(b) DS-TWR

Figure 2.4 Message exchange in the single- and double-sided two-way ranging.

where Tround is the time spent in one message exchange and Tproc is the pro-
cessing time on the responder side.

The main sources of errors in SS-TWR are Tproc, which ranges from hun-
dreds of µs to several ms [21], and the clock drift, which can be up to
±20 ppm in systems compliant with the IEEE 802.15.4 standard [47].

Double-Sided Two-Way Ranging. Because in SS-TWR the errors increase
proportionally to the processing time, one way to increase the ranging accu-
racy is to use an additional message denoted by FINAL in Figure 2.4b. The
TOF can then be computed as:

Tp =
Tround1 − Tproc1 + Tround1 − Tproc2

4
, (2.3)

where Tround1 is the time spent in the first message exchange (consisting of
messages REQ and RESP) by the initiator, Tround2 is the time spent in the second
message exchange (consisting of messages RESP and FINAL) by the responder,
and Tproc1 and Tproc2 are the processing times at the responder and initiator,
respectively. The clock error in Eq. 2.3 is minimized when the processing
times Tproc1 and Tproc2 are equal [76]. When this condition is not satisfied, an
alternative formula for computing the TOF has been proposed in [76]:

Tp =
Tround1Tround2 − Tproc1Tproc2

Tround1 + Tproc1 + Tround2 + Tproc2
, (2.4)

which minimizes the clock drift error even in the presence of asymmetrical
processing times.
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Tj Ti

Figure 2.5 Synchronous DL TDOA. The anchors transmit the POLL messages simulta-
neously. Because the tag is closer to Aj than to Ai, the message POLLj
arrives the first. The TDOA is computed according to Eq. (2.6).

2.2.2 Time-Difference of Arrival Measurements

Whereas distance measurements are useful in themselves, since they can be
used in proximity-based applications such as secure access or payment sys-
tems (Figure 2.2), TDOA measurements are generally used only in localiza-
tion algorithms. In the general case, the TDOA between two anchors Ai and
Aj and the tag T is:

tTAi Aj =
1
c
(︁
dTAj − dTAi

)︁
, (2.5)

where dTAk is the distance between the tag and anchor Ak. This places the
tag on a hyperbola with foci at Ai and Aj.

Conventionally, TDOA measurements required synchronization at the ref-
erence clocks [98]. However, in recent years, various asynchronous TDOA
methods have been proposed [58, 88, 137]. We will first present the syn-
chronous techniques to obtain TDOA measurements, after which we will ex-
amine the modifications needed to bypass the synchronization requirements.

Synchronous TDOA. If Ai and Aj were clock-synchronized, the TDOA
could be obtained either on the downlink (DL) channel (from the anchors
to tag) or on the uplink (UL) channel (from the tag to the anchors). In syn-
chronous DL TDOA, presented in Figure 2.5, the anchors Ai and Aj can si-
multaneously transmit a message which will be received by the tag at times
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POLL

POLL

TAj TAi

Figure 2.6 Synchronous UL TDOA. The tag transmits the POLL message, which arrives
at the anchors Ai and Aj at times TAi and TAj , respectively. The TDOA is
computed according to Eq. (2.7).

Ti and Tj, respectively. In this case, the TDOA can be obtained as:

tTAi Aj = Tj − Ti. (2.6)

Note that in DL TDOA the tag is passive and does not need to transmit
any messages. Therefore, DL TDOA methods can scale up to an unlimited
number of users.

In UL TDOA, presented in Figure 2.6, the tag transmits a message which
is received by the anchors Ai and Aj at times TAi and TAj , respectively. If the
anchors are clock-synchronized, then TAi and TAj will have the same time
reference. The TDOA can then be obtained as:

tTAi Aj = TAj − TAi . (2.7)

In UL TDOA, the anchors usually need to transmit the times at which they
received the tag’s broadcast to a central server, which will compute the tag’s
location. The advantage of UL TDOA is that the tag needs to transmit a
single message, whereas in DL TDOA it needs to receive N messages, where
N is the number of anchors in the system. Since the receive mode has a
higher average power consumption than the transmit mode [21], the energy
consumption of the tag is higher in DL TDOA than in UL TDOA.

Asynchronous TDOA. In asynchronous TDOA (A-TDOA) schemes, the
clocks of anchors do not need to be synchronized. Multiple such variants
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Figure 2.7 Asynchronous DL TDOA. One anchor called the reference anchor (in this
case, Ai) broadcasts a message (POLL). Anchor Aj receives the message,
processes it, and sends a response (RESP). The tag receives the POLL and
RESP messages at times Ti and Tj, respectively. The TDOA is computed
using Eq. 2.8. In the figure, tAi Aj is the TOF between anchors Ai and Aj
and tproc is the processing time of the POLL message at anchor Aj.

have been proposed, but we will focus on asynchronous DL TDOA [58, 88,
137] which, similarly to its synchronous counterpart, uses only transmissions
on the DL channel so that the tag can remain passive.

DL A-TDOA is illustrated in Figure 2.7, where Ai transmits the initial POLL
message, which is received by both the Tag and anchor Aj. Upon the recep-
tion of the POLL, Aj processes the message and sends the response (RESP). The
tag receives the POLL and RESP messages at times Ti and Tj, respectively. We
denote the difference of the timestamps by Tij ≜ Tj − Ti. We can obtain the
TDOA from Eq. (2.5) by subtracting the processing time at Aj (denoted by
tproc) and the TOF between Ai and Aj (denoted by tAi Aj ) from the timestamp
difference Tij as follows:

tTAi Aj = Tj − Ti − tproc − tAi Aj . (2.8)

Because the anchors are usually placed at fixed and known locations, the
TOF between the anchors (tAi Aj ) is known. DL A-TDOA therefore allows a
localization system to scale with an unlimited number of users without any
clock synchronization between the anchors, which would otherwise increase
the complexity of the system.

The drawback of using the asynchronous TDOA version instead of the
synchronous one is that A-TDOA is affected by the relative clock skew be-
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tween Aj and the tag. This is manifested when subtracting the processing
time tproc, which is measured by Aj and is on the order of hundreds of µs,
from the timestamp difference Tij measured by the tag. To correct these er-
rors, we can estimate the relative clock offset between Aj and the tag and use
this value to correct the processing time [20]. This is the method employed
in publication [P6] to reduce clock errors in DL A-TDOA.

In a practical localization system, one of the anchors can be designated as
the reference anchor (or the initiator) which sends the POLL message. Once the
other anchors in the system receive the POLL message, they respond succes-
sively with the RESP messages. In practice, anchors are usually programmed
to respond with different delays δi based on their index i, in order to avoid
overlapping receptions at the tag [35].

2.3 Localization Methods

The position of the tag can be estimated based on distance or TDOA mea-
surements between the tag and multiple anchors described in Section 2.2.

Let xAi = (xAi , yAi , zAi) be the position of anchor Ai in a Cartesian coor-
dinate system with axes x, y, z. Similarly, xT is the position of the tag in the
same coordinate system. We will use a bold script to denote vectors, the sub-
script T to refer to the tag, and the subscript Ai to refer to the anchor with
index i ∈ {1, ..., N}, where N is the number of anchors in the system.

Range-based localization. A distance measurement between the tag and
one anchor places the tag anywhere on a circle centered at the anchor with a
radius equal to the measured distance [98]. Using three such measurements,
we can localize the tag in a 2D coordinate system; similarly, we need at least
four distance measurements to position the tag in a 3D coordinate system.

If we denote by di the true distance between the anchor Ai and the tag,
then for range-based localization a system of equations:

dTAi =
√︂
(xAi − xT)2 + (yAi − yT)2 + (zAi − zT)2 (2.9)

≜ ∥xT − xAi∥, (2.10)
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needs to be solved for all M equations, where i = 1, ..., M and M is equal to
the number of anchors in the system (denoted by N).

TDOA localization. A TDOA measurement between a tag and two anchors
places the tag anywhere on the hyperbola with foci at the two anchors. As in
the case of range-based localization, M + 1 equations are needed to localize
the tag in an M-dimensional space. However, because two anchors deter-
mine one TDOA, the system needs at least M + 2 anchors for M-dimensional
localization. In TDOA localization, we need to solve the system of equations:

dTAi Aj = dTAj − dTAi (2.11)

= ∥xT − xAj∥ − ∥xT − xAi∥, (2.12)

for i = 1, ..., M and M = N − 1. In the noiseless case, any N − 1 TDOA mea-
surements that form a minimum spanning subtree are sufficient for TDOA
localization [114].

Location estimation. Because, in practice, both distance and TDOA mea-
surements are noisy, we need to employ statistical techniques to solve the
localization problem [98]. We consider the measurement model [98]:

zi = fi(xT) + ni, i = 1, ..., M, (2.13)

where ni is the measurement noise and fi is the measurement equation de-
fined as:

fi =




∥xT − xAi∥, for range-based localization

∥xT − xAi∥ − ∥xT − xA0∥, for TDOA localization.
(2.14)

For TDOA, we denoted by A0 the reference anchor which initiates the local-
ization procedure.

In vector notations, we obtain the following measurement model:

y = h(xT) + v, (2.15)
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where y = (z1, ..., zM) is the measurement vector, v = (v1, ..., vM) is the error
vector, and h(·) is the vector-valued measurement function. The goal of a
localization algorithm is to find the position x∗T such that:

x∗T = arg min
xT

∥y − h(xT)∥, (2.16)

where x∗T is the least-squares solution to the localization problem. Since the
measurement equations are nonlinear and do not have a closed-form solu-
tion, the minimization can be done either via numerical search algorithms
such as gradient descent or Gauss-Newton techniques [36] or by linearizing
the equations using techniques such as the simple intersection method [9]
or the Range-Bancroft method [113]. Algorithms that perform a local search
require a good initialization to avoid converging to a local minimum of the
loss function [36]. In practice, the algorithms can be initialized using the
location found through one of the closed-form solutions obtained through
linearization [113] or, in the case of continuous tracking, using the last es-
timated location. Another approach to solve the localization problem is to
track the user’s location over time using tracking filters such as the extended
Kalman filter or the particle filter [98].

38



3 DIFFERENT UWB DEVICE
ARCHITECTURES IN
LOCALIZATION SYSTEMS

This chapter summarizes the main contribution of publications [P1], [P2],
and [P3] on the impact of different UWB device architectures on the accu-
racy, energy consumption, and cross-platform compatibility of UWB local-
ization systems. Section 3.1 provides an overview of the main types of UWB
architectures, the devices that implement them, and previous comparisons
of UWB devices in existing literature. Section 3.2 addresses the differences
between the two main types of physical layer architectures in UWB devices
in terms of energy consumption and ranging and localization accuracy. Sec-
tion 3.3 presents challenges in obtaining platform-independent UWB local-
ization systems. Finally, Section 3.4 provides a summary of the main contri-
butions presented in this chapter and a discussion on their limitations.

3.1 State of the Art

The architecture of UWB devices is critical for their performance. The IEEE
Standard for Low-Rate Wireless Networks 802.15.4 [47] specifies two types
of UWB physical interfaces (PHYs), with low- and high-rate pulse repetition:
LRP and HRP, respectively. Some devices not compliant with the standard
can implement their own proprietary PHYs. Table 3.1 lists the most popular
UWB device models currently on the market, the PHYs they implement, and
references of studies that used these devices.

The device architecture and the accompanying software impact the energy
efficiency, ranging and localization accuracy, maximum range, and channel
estimation. The reception of pulses transmitted at a low rate (so correspond-
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Table 3.1 The most popular UWB devices on the market, the physical interfaces they
implement, and references for studies or articles mentioning the devices.

Device brand Device model PHY References

Qorvo* DW1000 HRP [P1], [97, 50, 117, 100, 18]

Qorvo* DW3000 HRP [P3], [103, 61]

NXP SR040 / SR150 HRP [51, 61]

Apple U1 HRP [15, 61]

imec ULP IR-UWB HRP [48]

3db Access† 3DB6830C LRP [P1], [P2], [P3]

Ubisense Series 7000 LRP [97], [105]

PulsON P220, P400 LRP [54, 71, 136, 68]

BeSpoon B-UWB-MOD1 Proprietary [97, 50]

TDSR P452A Proprietary [P3]

* Previously, Decawave.
† Also called “3db” in the following.

ing to the LRP PHY) can be performed using a non-coherent receiver, i.e.,
without phase information.

When using HRP, individual pulses have a lower energy than with LRP.
Therefore, in the HRP PHY, the reception usually needs to be performed
with a coherent receiver (so using phase information), in order to extract the
weaker pulses from the noise. For optimal reception, the coherent receiver
needs to estimate the multipath delays, their complex-valued channel coef-
ficients, and the pulse shape distortion [4]. Also, coherent receivers have
strict timing requirements in order to be able to track the phase of the signal.
These requirements increase the power consumption of coherent demodula-
tors compared to non-coherent ones [130]. Because non-coherent receivers
can estimate the channel coefficients based on the envelope of the signal, this
allows a more energy-efficient implementation of the LRP PHY compared to
the HRP PHY.

Devices in the IoT can greatly benefit from location awareness, but these
devices are frequently energy-constrained. It is therefore important to de-
termine which UWB solutions are the most energy-efficient for the desired
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applications. At the same time, the performance of localization systems de-
pends on the ranging or timing accuracy of the devices. Most often, studies
focused on the ranging or localization accuracy and overlooked the energy
efficiency of the devices [97, 50, 127]. Prior to our work in [P1] and [P2],
it was not clear whether there is a trade-off between energy efficiency and
localization accuracy in UWB devices.

Although other works have provided a simulation-based comparison be-
tween coherent and non-coherent UWB receivers frequently used in HRP
and LRP PHYs, respectively, we were the first to also perform power con-
sumption measurements with devices representative for each of the PHYs in
[P1] and [P2]. Other works that performed a measurement-based analysis of
the ranging accuracy of UWB devices [117, 110, 100] have focused mostly on
the Decawave1 DW1000 IC [22], which implements the HRP PHY. LRP de-
vices have been less studied and only in terms of their ranging accuracy [97,
105]. Only one other paper [97] compared HRP and LRP devices (developed
by Decawave and Ubisense, respectively), but only in terms of ranging and
localization performance, without analyzing their power and energy con-
sumption. Therefore, a measurement-based comparison between LRP and
HRP UWB devices including both the energy consumption and their rang-
ing/localization accuracy has not been performed prior to our work in [P1]
and [P2].

In [P3], we continued our work on comparing the impact of different
device architectures on localization systems, but this time we focused on
the application level. In order to accurately timestamp the receive times of
incoming messages, UWB devices rely on channel estimation. Many of the
most successful ranging error mitigation techniques rely on the resulting
channel impulse response (CIR) of the signal to correct NLOS errors [138, 101,
29], since the CIR offers extensive information about the propagation path of
the signal. However, prior to our work in [P3], the differences between CIRs
acquired at the same physical locations with different devices had not been
investigated.

1Decawave was acquired by Qorvo in 2020 [92], but up until 2021 the devices were still
referred to as “Decawave” in official documents, e.g., [21]. Since previous literature also re-
ferred to the devices under the “Decawave” name, we also kept this name and, for consistency
reasons, will use it throughout the rest of the thesis.
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As Table 3.1 shows, there are numerous commercial UWB solutions that
must interoperate in localization scenarios. Numerous standardization bod-
ies such as the FiRa™ Consortium [14], the Car Connectivity Consortium
(CCC) [13], or Apple Nearbly Interaction [49] now establish specifications
and certifications that ensure the interoperability of different UWB solutions.
It is, therefore, important to evaluate the impact of the various diagnostics
used in error mitigation solutions across different UWB platforms, in order
to avoid accuracy degradation in localization systems where users carry dif-
ferent models of UWB devices.

Other works are also starting to notice the difficulty in comparing the per-
formance of different UWB solutions. In [103], the authors propose a testbed
that allows the benchmarking of different UWB platforms. Whereas the work
in [103] focuses on network performance indicators such as the packet recep-
tion rate (PRR) under different device configurations, we look at application-
level performance indicators, such as the energy efficiency and ranging accu-
racy of the devices.

To sum up, our contributions from this chapter investigate the impact of
the device architecture from two complementary angles:

1. The energy efficiency, maximum range, and ranging/localization accu-
racy, where we compared two devices implementing the LRP and HRP
PHY. This work corresponds to the publications [P1], [P2].

2. The cross-platform compatibility of localization systems and error mit-
igation techniques, based on a measurement campaign performed with
three devices, implementing an LRP, an HRP, and a proprietary inter-
face. This work corresponds to the publication [P3].

3.2 LRP vs. HRP

In this section, we present our contributions from publications [P1] and [P2]
on the comparison between the LRP and HRP PHYs. In Section 3.2.1 we
present the architecture of both PHYs with a focus on the characteristics that
impact our measurements. In Section 3.2.2 we present the devices used for
the comparison [P1] and [P2]. We present only selected results from our
comparison, regarding their power and energy consumption (Section 3.2.3),
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Figure 3.1 Peak and average power level in LRP and HRP PHYs.

their ranging accuracy (Section 3.2.4), and their localization accuracy (Sec-
tion 3.2.5). For the detailed analysis of the results we refer the reader to
publications [P1] and [P2].

3.2.1 Architecture

UWB transmissions must satisfy two constraints [12]: (i) to have a maximum
average power spectral density (PSD) averaged over 1 ms of −41.3 dBm/MHz,
and (ii) to have a maximum peak power spectral density of 0 dBm/50MHz.
Therefore, UWB devices can either transmit few pulses at high power lev-
els, leading to the LRP PHY (Figure 3.1a) or many pulses at a low transmit
power, leading to the HRP PHY (Figure 3.1b). Both technologies can achieve
an equal average transmitted RF energy if employed optimally.

For the same path loss (or distance), the pulse energy received by the HRP
PHY is lower than that of the LRP PHY because the former transmits pulses
with lower energy, in order to maintain the same average transmitted energy.
Therefore, the HRP PHY often needs more complex receivers to extract the
weak pulses from the noise. A coherent receiver typically achieves this by
correlating the received signal with a template one over many samples. Be-
cause the pulses transmitted by an LRP transceiver are stronger than those
of HRP, the LRP receiver can be based on energy detection.

Coherent receivers need to estimate the phase shift induced by the chan-
nel in the detection process, which typically demands high computational
resources and hardware complexity compared to a non-coherent receiver [4].
Precisely estimating the carrier phase is essential to recover the baseband
pulse since any inaccuracy will introduce a signal power loss and crosstalk
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interference in phase-shift keying (PSK) modulated signals [90]. A time shift
of half the pulse period flips the phase of the signal, so coherent UWB sys-
tems usually tolerate rotations of at most π/4 of the signal phase. For in-
stance, when using a carrier frequency of 8 GHz (UWB channel 11), this cor-
responds to a maximum time shift of 30 ps. These requirements increase the
power consumption of coherent demodulators [130]. On the upside, coher-
ent receivers have low sensitivity to inter-symbol interference and gain from
the multipath diversity of the channel [130].

Non-coherent receivers estimate the channel coefficients using the enve-
lope of the signal. Their synchronization constraints depend on the pulse
envelope (and thus the pulse bandwidth), so they are not so stringent as
those of a coherent receiver. For instance, for a pulse bandwidth of 500 MHz,
a non-coherent receivers needs a timing resolution of 1 ns. As such, non-
coherent receivers can be implemented in a more energy-efficient manner
than coherent receivers. The disadvantages in using non-coherent receivers
are that they have a higher bit error probability than coherent receivers [90]
and that they cannot measure the angle of arrival (AoA) of incoming signals
with closely-spaced antennas.

3.2.2 Devices Used for Measurements

Because the receiver implementation has implications on the resulting en-
ergy efficiency and ranging accuracy of the device, it is necessary to compare
the two variants of UWB PHYs. Since theoretical comparisons have their
limitations, we extend the analysis by comparing the energy efficiency and
ranging accuracy of two devices, each implementing one type of UWB PHY:
the 3db Access 3DB6830C (Release 2016) IC for the LRP PHY and the De-
cawave DW1000 (Release 2014) for the HRP PHY.

The comparisons in [P1] and [P2] include complementary functioning
modes of the DW1000. In [P1], we used a robust configuration of the
DW1000, suitable for long-range distance measurements, which attains a
similar range to the 3db IC. In this case, the DW1000 chipset was integrated
in the EVK1000 module. The devices used DS-TWR, which has a better ac-
curacy than the SS-TWR but more message exchanges and therefore a higher
power consumption. The long-range settings used were the lowest data rate
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of 110 kb/s, a low pulse repetition frequency (PRF) of 16 MHz and a large
preamble length (PLEN) of 2048 symbols. Low data rates increase the link
budget and therefore also the range compared to high data rates, while the
chosen preamble length and PRF minimize NLOS effects and make the sys-
tem robust in the presence of multipath propagation.

In [P2], we used a short-range operating mode for the DW1000 which
decreases the robustness compared to the long-range mode but increases the
energy efficiency of the chip. Since the energy consumption analysis was an
important part of our comparison, this operating mode places the DW1000
chip at an advantage compared to the 3db IC. In this case, the DW1000 chip
was integrated in the DWM1001 module, which contains a Nordic Semi-
conductor nRF52832 BLE microprocessor mostly used for network commu-
nication and an STM LIS2DH12TR 3-axis motion detector besides the UWB
chip. The DWM1001 module was part of the MDEK1001 kit for localization.
The measurements used the default configuration of the kit, corresponding
to operating mode 14, namely: a data rate of 6.8 Mb/s, a PRF of 64 MHz,
and a preamble length of 128 symbols. In this implementation, the distances
are computed using the SS-TWR, which is more energy efficient than the
DS-TWR and therefore provides a more fair comparison to the 3db IC. The
energy efficiency of the two operating modes of the DW1000 are also given
by their packet length. Mode 14 (short-range) has a packet duration of 287 µs,
while a packet in mode 3 (long-range) has a 12× higher packet duration of
3487 µs. In comparison, the packet duration of a 3db message is approxi-
mately 400 µs.

All devices operate at the center frequency of 6.5 GHz (UWB channel 5).
The 3db IC has a total system 10 dB bandwidth of 620 MHz, but because
the devices use binary frequency-shift keying (BFSK) modulation, the pulse
bandwidth is 380 MHz. The DW1000 IC has a pulse bandwidth of ≈662 MHz
(and a 3 dB bandwidth of 500 MHz). Because the 3db IC has a lower pulse
bandwidth, this can decrease the ranging precision because it decreases the
time resolution. However, the frequency diversity of the BFSK modulation
partially compensates for this loss.
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3.2.3 Power and Energy Consumption

We measured the current consumption of the devices and computed their
power consumption according to the input voltage of each device. We mea-
sured the current consumption of all devices with a Keysight DC Power An-
alyzer. We isolated the most important modes, namely the idle, transmit
(TX), and receive (RX) and computed their average current consumption. The
input voltages of the 3db chip and the DW1000 chip are 1.25 V and 3.3 V,
respectively.

As we mentioned, we used different hardware for the HRP PHY in [P1]
and [P2]. In [P1], where we used the long-range mode of the DW1000, we
could isolate the current consumption of the DW1000 chipset alone, which
we were interested in. In [P2], however, we used the Decawave MDEK1001
board, which integrates the DWM1001 module. The module contains, besides
the UWB chip, a BLE microprocessor and a motion detector. Unfortunately,
the board allows for measuring the current consumption only of the entire
module, so we could not isolate the current consumption of the UWB chip
alone in those measurements. This is why we also present the power con-
sumption of the DW1000 chipset reported in the device datasheet [21] for the
two operating modes. We include our measurements for the sake of com-
pleteness, but we rely on the values reported in the datasheet of DW1000
when comparing it against the 3db chipset.

Table 3.2 shows, in order, the power consumption of: the 3db IC, the
DW1000 IC in mode 3 reported in the datasheet, the DW1000 IC in mode 3
measured by us in [P1], the DW1000 IC in mode 14 reported in the datasheet,
and the DWM1001 module in mode 14 measured by us in [P2]. Overall, the
average power consumption of the 3db IC is at least 9 times lower than the
one of the DW1000 IC in the short-range mode (reported in the datasheet),
i.e., the energy-efficient mode. Moreover, the average power consumption of
the DW1000 chip in the idle mode is about 1.45 times higher than the one of
the 3db IC in the RX mode, which is the most power-consuming state. The
results are in line with the theoretical analysis from Section 3.2.1 and show
that the LRP PHY can be indeed implemented in a more power-efficient way
than the HRP one.
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Table 3.2 The average power consumption of 3db (LRP) and DW1000 (HRP) devices.
We include the power consumption of the DW1000 chipset in two operation
modes: 3 (long-range) and 14 (short-range). For mode 3, we include the
power consumption of the DW1000 chipset from the datasheet and the mea-
sured power consumption of the isolated chipset when it is integrated in the
EVK1000 module. For mode 14, we include the power consumption of the
DW1000 chipset from the datasheet and the measured power consumption of
the DWM1001 module (which includes, besides the DW1000 chipset, a BLE
module and a motion detector).

Average power consumption [mW]

Device Mode TX RX Idle

3db Access† — 20.7 40.7 6.6

DW1000, datasheet ‡ 3 165 267.3 59.4

DW1000 (EVK1000 module) ‡ 3 194.5 492.4 68.8

DW1000, datasheet ‡ 14 237.6 392.7 59.4

DWM1001 module‡ 14 297.7 507.2 47.9

† Referenced to 1.25 V.
‡ Referenced to 3.3 V.

The power consumption analysis is the basis for evaluating the energy
consumption of an UWB localization system. A key challenge is minimizing
the energy consumption of the tag, which is usually battery-powered. We
consider that the tag initiates the message exchange and stays in the idle
mode between consecutive rangings. We estimate the energy consumption
only when the device is in the TX or RX mode. The packet length of the
DW1000 chip in Mode 14 is 287 µs and the one of the 3db chip is 400 µs.
Therefore, a DW1000 tag will consume 180 µJ per SS-TWR during transmis-
sion and reception, while a 3db tag will consume 28 µJ, so 6.4× less energy
than the DW1000 tag. When configured in the long-range mode, the packet
duration of Decawave devices is 3487 µs, so about 10× larger2 than that of
3db devices. This means that, in the long-range mode, the DW1000 chipset
consumes at least 100× more energy than the 3db chipset.

2The notation “n×” denotes an increase of the measured quantity by n times.
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(a)

(b)

(c)

Figure 3.2 Setup of ranging measurements in (a) LOS, (b) NLOS with a drywall, and
(c) NLOS with a concrete wall. The UWB devices are placed on tripods.
The NLOS with human body shadowing setup is identical with the LOS one,
except that a person is standing right in front of the transmitter (the device
further away).

3.2.4 Ranging Accuracy

In this section, we compare the ranging accuracy of the 3db IC and the
DW1000 IC in the energy-efficient configuration (mode 14) from [P2]. We
performed measurements in which we placed pairs of devices from each
brand at the same locations, in several LOS and NLOS setups illustrated in
Figure 3.2. We considered four indoor settings: LOS inside a large office and
NLOS caused by either a gypsum wall (12.5 cm thickness), a concrete wall
(29 cm thickness), or a human body. We refer the reader to [P2] for more
details on the experimental setup.

We define the ranging error as:

ed = d̂ − d, (3.1)

where d̂ is the measured and d is the true distance. We compare, on the
one hand, the distribution of the aggregated errors for each type of LOS and
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Figure 3.3 Comparison of the distributions of aggregated ranging errors of 3db Access
and Decawave devices in LOS and NLOS settings where the obstruction is
caused by drywall, concrete wall, or a human body.

NLOS scenario in Figure 3.3, and on the other hand the error distributions
at each test point in each scenario in Figure 3.43. Table 3.3 also presents
the mean, standard deviation, and inter-quartile range (IQR) of the distance
errors of 3db and DW1000 devices.

In all scenarios, both devices had mean errors within 2–5 cm of each
other, with Decawave devices performing better in all scenarios except for
the NLOS with human body shadowing one. In LOS and soft NLOS scenar-
ios, the devices had a difference in the standard deviation and IQR of 1–2 cm,
with Decawave devices yielding a higher accuracy in most cases. In the hard
NLOS scenarios (with concrete wall and human body shadowing), Decawave
devices had a lower spread than 3db devices by 1.23–2×, except for the IQR
in the case with NLOS with human body, which was 1.59× higher than the
one of 3db devices. At individual test points, Decawave devices had 2× lower
spread than 3db devices. Compared to [P1], the performance of 3db devices

3We illustrate the distributions using Tukey’s boxplots.
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Figure 3.4 Comparison of the distributions of ranging errors at selected locations (for
multiple true distances between the transmitter and the receiver) of 3db Ac-
cess and Decawave devices in LOS and NLOS settings where the obstruction
is caused by drywall, concrete wall, or a human body.

in [P2] has improved thanks to the refined calibration and to the correction
of the firmware issues that previously caused large outliers in certain NLOS
situations.

3.2.5 Localization Accuracy

In this section, we compare the localization performance of the DW1000
(short-range mode) and 3db Access devices using measurements acquired in
the same localization area, shown in Figure 3.5. We performed measurements
with each type of UWB IC in identical setups consisting of four anchors and
one tag belonging to the same brand. In each case, we placed four anchors
over an area of approximately 4.5×3.6 m at heights between 1.2–1.8 m. For lo-
calization, we used the regularized Gauss-Newton multilateration algorithm
presented in [113]. More details about the setup can be found in [P2].
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Table 3.3 Statistics of the distance measurement errors: mean, standard deviation (σ),
and IQR.

Scenario Device Mean [m] σ [m] IQR [m]

LOS
3db Access 0.02 0.07 0.09

DW1000 0.00 0.05 0.07

NLOS with drywall
3db Access −0.04 0.08 0.12

DW1000 −0.01 0.09 0.10

NLOS with concrete wall
3db Access 0.46 0.14 0.19

DW1000 0.44 0.07 0.14

NLOS with human body
3db Access 0.55 0.32 0.29

DW1000 0.60 0.26 0.46

Figure 3.5 Localization setup: the four anchors (A1 to A4) encompass an area of ap-
proximately 4.5×3.6 m and the tracking area is on the table. The ground
truth was acquired using two HTC Vive base stations (BS1 and BS2) and a
tracker that was colocated with the UWB tag, shown on the table.

To acquire the ground truth locations, we developed a system based on
the HTC Vive motion capture system [28]. The work was performed and
published during the Doctoral studies of the author, but not included among
the main research publications of the thesis, as it is adjacent to the main
topics presented in the dissertation. The system has an average accuracy of
5 mm, so it is suitable for acquiring ground-truth locations for centimeter-
level localization technologies, such as those based on UWB communication.
Its main advantage is its low cost, which is about 10× lower than the one of
professional-grade motion capture systems, while still retaining a millimeter-
level accuracy.
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Table 3.4 Statistics of measurement-based localization errors.

Case Device
Localization error

Mean [cm] Standard deviation [cm]

2D 3D 2D 3D

LOS
3db Access 9.7 36.8 5.4 14.8

Decawave 12.4 42.7 7.8 19.1

NLOS
3db Access 18.9 72.2 10.5 34.1

Decawave 22.9 89.1 23.5 43.7

We performed two types of recordings: one in which the tag was in LOS
with the anchors and one in which one of the anchors (hereby referred to as
the NLOS anchor) was at all times in NLOS with the tag, obstructed by a
human body.

We define the localization error as the Euclidean distance between the true
and the estimated location, either in 2D or 3D. For the 3D case, the error is:

e =
√︂
(x − x̂)2 + (y − ŷ)2 + (z − ẑ)2, (3.2)

where (x, y, z) and and (x̂, ŷ, ẑ) are the Cartesian coordinates of the true and,
respectively, estimated locations. For the 2D localization errors reported, the
z-axis coordinate is not taken into account.

Table 3.4 presents the mean and standard deviation of the localization
error of the 3db and DW1000 ICs in 2D and 3D. In LOS, the two devices
have the mean and standard deviation of localization errors within at most
5.9 cm of each other, leading to a similar performance. In the NLOS scenario,
the mean and standard deviation of the localization errors of the Decawave-
based localization system are higher with 4–16.9 cm than 3db’s. In 3D, the
average localization errors are significantly higher than in 2D, with about
30 cm in LOS and 60 cm in NLOS. The increase is due to the measurement
noise and high GDOP on the z axis. In 2D localization, 90 % of the LOS
errors are under 20 cm, while in NLOS 75 % of the localization errors are
under 20 cm.
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3.3 Challenges in Platform-Independent UWB
Localization Systems

In this section, we present the work from publication [P3], where the goal
was to identify the main challenges in developing platform-independent
UWB localization systems, especially those that apply data-driven error miti-
gation techniques. For this purpose, we performed a measurement campaign
with devices from three companies: Decawave (now Qorvo), TDSR, and 3db
Access. We acquired measurements with pairs of devices from each brand
at exactly the same locations, in order to assess the differences in their dis-
tance errors and CIRs under the same propagation conditions (i.e., the same
physical location, room layout, furniture, room occupancy and, if the case,
obstructions). We identified four main challenges pertaining to these dif-
ferences that can hinder the cross-platform compatibility of error mitigation
techniques frequently employed in UWB localization systems.

The accuracy of UWB localization systems can be improved in several
ways. First, in case of multilateration localization algorithms, the errors of
individual ranges (between each anchor and the tag) can be corrected before
they are passed to the localization systems. Because high ranging errors fre-
quently appear in NLOS propagation, a line of work has focused on detecting
the NLOS condition and then either discarding the measurement [102], as-
signing it a lower weight in the localization algorithm [37], or correcting the
distance measurement [69]. Another approach is to estimate the TOA using
neural networks (NNs) trained for this task [27, 134]. NNs show better re-
sults than the conventional parameter-based TOA estimation which cannot
easily adapt to changing propagation conditions [27]. Other works bypass
the NLOS detection step and directly predict the distance error of the mea-
surement, also using machine learning (ML) models [101, 29].

In recent years, ML-driven approaches for ranging and localization have
taken precedence over statistics-based techniques [69]. Because the CIR of-
fers rich information about the propagation path of the signal, most error-
mitigation techniques rely on the CIR or on features extracted from the CIR
to detect the NLOS condition. However, all the cited solutions have been
trained on data from only one device brand. Given the breadth of commer-
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cial UWB solutions on the market presented in Table 3.1, we cannot assume
that all users accessing a localization system in a public space (e.g., mall,
airport, university) will be equipped with the UWB hardware that the ML
model was trained on.

Our measurement campaign was novel from several points of view. First,
although measurements with different UWB devices at the same locations
have been previously done in [P1], [P2], [97, 50, 68], these studies were
focused on comparing the performance of the devices. In this work, we were
interested not only in the average errors of each device, but also in the er-
rors at selected locations, which gives insight into their different operating
modes. Second, we were also the first to also compare the CIRs of different
devices and to highlight how these differences can prevent the cross-platform
compatibility of ranging and localization systems. Third, we provide one of
the few open-source datasets [55] of this kind, which can be used to fur-
ther study platform-independent error mitigation techniques. Fourth, these
devices have not been previously compared. The 3db chipset was compared
against the Qorvo DW1000 chipset in our previous works [P1], [P2], whereas
here we use the new-generation DW3000 for the comparison. Also, to the
best of our knowledge, the TDSR P452A has not been used in any other re-
search works to this date. More details about the measurement setup and
the configuration of the devices can be found in [P3].

In this section, we will discuss the main identified challenges hindering
platform-independent UWB localization systems:

Section 3.3.1: The same environmental settings lead to different dis-
tance errors for different devices.

Section 3.3.2: The same (NLOS) environmental conditions can lead to
a different TOA estimation in consecutive measurements even for the
same device. Therefore, NLOS errors depend not only on the obstacle
and environment, but also on the hardware and its TOA estimation.

Section 3.3.3: CIRs acquired by different platforms at the same locations
have different lengths, shapes, and statistics.

Section 3.3.4: Different vendors provide different types of diagnostics
(e.g., signal and noise power), sometimes using incompatible units of
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(a) LOS (b) NLOS with half wall

(c) NLOS with bar refrigerator (d) NLOS with pillar

Figure 3.6 Examples of environments from the measurement campaign.

measurement.

3.3.1 Same Conditions, Different Distance Errors for Different
Devices

The first factor that prevents the extension of error mitigation methods from
one hardware to another is the variability in their distance errors even under
the same propagation conditions.

We performed ranging measurements between pairs of devices belonging
to each brand in several locations at Tampere University. We targeted LOS
and NLOS scenarios, for the latter using as obstructions walls, pillars, fur-
niture, a TV screen, and room divider panels. We performed measurements
in nine different spaces which included meeting rooms, offices, corridors,
or cafeterias. Figure 3.6 shows some of the locations in which we acquired
measurements.

Figure 3.7 shows the cumulative distribution function (CDF) of distance
errors obtained with the three devices in LOS and NLOS scenarios. We com-
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Figure 3.7 CDF of errors in LOS and NLOS for all devices.

pute ranging errors as in the previous chapter, using Eq. (3.1).
While in LOS most devices have a similar performance, as can be seen

from the CDF of aggregated errors in LOS and NLOS for all devices from
Figure 3.7, in NLOS the analysis is more complex.

We observe from Figure 3.7 that even NLOS errors can be very small. In
fact, at least 50 % of NLOS measurements are under 15 cm, which is usu-
ally regarded as an acceptable UWB ranging error. This means that, even
if there were a NLOS detection model with 100 % accuracy, discarding all
NLOS measurements would imply discarding also measurements with ac-
ceptable errors. This can raise issues if the number of anchors in the area is
already small.

Until now, “NLOS” was defined as the absence of a visual direct propa-
gation path between two devices. However, in localization we are frequently
interested only in the localization errors. It might be that NLOS does not,
in fact, cause ranging or positioning errors because the device was able to
lock on the correct TOA. Therefore, instead of detecting the LOS/NLOS sit-
uation, we could try to detect only the NLOS measurements that introduce
significant ranging errors. One difficulty is setting a threshold beyond which
an error is considered “significant” and should be discarded. This can be
selected based on the requirements of a particular application.

However, this approach of detecting only NLOS scenarios which intro-
duce high ranging error poses yet another issue. Figure 3.8 shows the dis-
tribution of distance errors obtained by the three devices with various obsta-
cles. The distributions are illustrated as boxplots using Tukey’s definition.
We notice that there is a high variability in the distance errors achieved by
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Figure 3.8 Distribution of errors from selected locations with different obstacles.

different platforms, even under the same conditions. In some cases, we note
even a high spread in the errors obtained by a single device at one location.
Therefore, according to the definition of the NLOS condition as the situation
which gives rise to “significant” localization errors, the same setup could be
considered NLOS for some devices but LOS for others.

These examples show that a binary LOS/NLOS classification might not
always be the best strategy for distance error mitigation. This is because,
by adopting this strategy, we risk discarding useful measurements. More-
over, there is a high variability in the NLOS errors of different platforms.
This compels us to look more closely into the inner working of the distance
estimation algorithm and identify the cause of this variability.

3.3.2 Same Conditions, Different TOAs

We remind the reader that the distance between two devices is, in our case,
computed based on the time of flight between the TX and the RX, obtained
during a two-way message exchange. Therefore, any error in the timestamp-
ing of the TOA will also incur a distance error.

Even though the TOA estimation algorithms used by the devices are closed-
source, it is fair to assume that most of them follow model-based approaches
that require pre-set parameters such as the power ratio between two con-
secutive multipath components (MPCs), the peak-to-average power ratio, or
the noise threshold beyond which to ignore any peaks [132]. We found that
the most common reason for differences in ranging accuracy between differ-
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(c) CIRs aligned to the maximum cross-correlation
index

Figure 3.9 The plots show CIRs that are stacked vertically, with their amplitude encoded
in the color depth. The measurements were acquired in a NLOS scenario.
The estimated TOA is represented through circle markers and the color of
the circle encodes the distance error of the measurements. Figure 3.9a shows
the unaligned CIRs (i.e., as saved in the buffer by the device). Figure 3.9b
shows the CIRs aligned to the TOA. Figure 3.9c shows the CIRs aligned to
the maximum value of the cross-correlation function computed between the
first CIR and all of the following [P3].

ent devices, on the one hand, and between different measurements acquired
with the same device, on the other hand, is the TOA estimation.

To illustrate this, let us consider a series of CIRs acquired with one pair of
devices from the same brand (DW3000) in a NLOS scenario. The devices are
static during this experiment. Figure 3.9 shows a series of 30 CIRs stacked
vertically with different alignments. The MPCs from each CIR have color-
encoded amplitudes and the TOA is marked with a circle. The color of the
circle encodes the distance error of the measurement corresponding to that
CIR.

Figure 3.9a shows the “raw” CIR alignment, i.e., as the CIR was saved
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in the internal buffer of the device. The documentation does not specify a
preferred position of the TOA within the buffer. Under this representation,
we cannot observe any pattern in CIRs that correspond to large errors.

In most works, the CIRs are cropped around the estimated TOA, as in
Figure 3.9b. This provides a convenient representation for LOS/NLOS clas-
sification or for distance-error prediction, since CIRs are aligned to a common
denominator and deviations from it (e.g., the maximum peak occurring ear-
lier or later in the buffer, shorter or longer tails) can indicate different error
magnitudes. Using this representation, we could believe that different CIR
shapes are correlated with different magnitudes of ranging errors.

Instead, if we align the CIRs according to their maximum cross-correlation
index, i.e., according to their similarity, we obtain the alignment from Fig-
ure 3.9c. Using this arrangement we see that, in fact, consecutive CIRs ac-
quired in the same scenario are very stable. However, it is the estimated
TOA that varies. The measurements with the lowest distance errors have the
earliest TOA. However, because these early paths have amplitudes close to
the noise threshold, they are ignored in some measurements and the TOA is
identified as corresponding to a later reflection.

Therefore, the devices can experience different errors even at the same
location because the SNR of the first path fluctuates or because of the TOA
estimation algorithm implemented by the device.

3.3.3 Same Conditions, Different CIRs

The received signal can be modeled as [60]:

r(t) = s(t) ∗ h(t) + n(t), (3.3)

where s(t) is the transmitted pulse which is convolved with the CIR h(t).
The signal n(t) represents sensor or environmental noise (so not related to
the propagation path), usually modeled as zero-mean white Gaussian noise.

The CIR can be decomposed into K multipath components (MPCs) with
delays τk, k = 1, ..., K and amplitudes αk and a stochastic process ν(t) which
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results in diffuse multipath caused by scattering and diffraction:

h(t) =
K

∑
k=1

αkδ(t − τk) + ν(t). (3.4)

The estimated CIR, denoted by ĥ(t), is obtained by decorrelating the received
signal r(t) with the known reference pulse s(t).

Because the measurements were acquired at exactly the same locations,
we could expect to see the main MPCs at the same delays τk in the CIRs
of all devices. However, we most note that the devices have different pulse
bandwidths and/or center frequencies. Therefore, there will be different
constructive/destructive interference patterns, usually reflected in ν(t). This
means that the delays of the main MPCs τk can also be different, depending
on how the reflections add up. The amplitudes of the MPCs αk are affected
by the different front-end circuits. The various signal processing components
(e.g., low-noise amplifiers, mixers, automatic gain controls, analog filters,
analog-to-digital converters) and digital processing steps can introduce dif-
ferent linear and/or non-linear distortions depending on the hardware. As
such, we will, in fact, see different patterns in the CIRs acquired by differ-
ent devices even if the channel and environmental conditions were kept the
same.

To characterize CIRs acquired at the same location with different devices,
we compute the average number of main peaks (or MPCs) and the average
delay between the first and the last significant peaks. These measures indi-
cate whether we can identify the same main MPCs in all CIRs and how long it
takes until their amplitudes decay to a negligible level. We also compute the
energy, mean excess delay (MED), and root-mean square (RMS) delay spread
of the CIRs. These statistics have been previously used to discriminate LOS
from NLOS measurements based on their CIRs [69].

We compute the number of significant MPCs in each CIR. We consider a
peak significant if it exceeds 25 % of the maximum amplitude of a CIR. We
consider a minimum separation of 2 ns between peaks, to avoid detecting
peaks belonging to the same path. The average number of significant peaks
is denoted by Np. We also compute the average delay between the first and
the last significant peak, which reflects the decay time of MPCs in a CIR.
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Figure 3.10 CIRs and their main peaks acquired with each device at the same location
in a LOS scenario [P3].

Figure 3.10 shows the most significant peaks in a triplet of CIRs acquired
at the same location with the three types of devices. Table 3.5 shows the
CIR statistics averaged over all locations. 3db CIRs have more significant
MPCs than the other two devices and their amplitudes take longer to decay,
reflected in a higher delay µδ and energy. TDSR CIRs are the shortest, so
they capture the fewest significant peaks and have the lowest energy, MED,
and RMS delay spread.

In the literature, a low signal energy and high delay statistics have been
associated with signal attenuation due to NLOS propagation [69]. However,
if CIRs acquired in the same conditions with different brands of devices have,
on average, different statistics, these can introduce issues in error mitiga-
tion methods customized for one device but applied on different brands of
devices.
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Table 3.5 Statistics of the CIRs: number of significant paths (Np), delay between the
first and the last significant path (µδ), energy (E, quantized), mean excess
delay (τMED), and RMS delay spread (τRMS).

Device Np µδ [ns] E [-] τMED [ns] τRMS [ns]

DW3000 3 11.2 2.4 13.5 21.7

TDSR 2 5.3 1.6 8.2 3.0

3db 5 24.4 8.5 13.3 13.8

3.3.4 Different Devices, Different Diagnostics

The length of CIRs was between 256–1632 for the tested devices. For some ap-
plications, it might be too computationally expensive to process CIRs. There-
fore, in some works, diagnostics such as power or noise figures are instead
used for ranging or location error mitigation [101]. However, as we will show
in this section, this approach can also pose issues for platform-independent
localization systems. This is because not all devices provide the same diag-
nostics and often not in the same measurement units.

For instance, the DW3000 provides the power, maximum amplitude, and
phase of arrival (POA) computed on the preamble for regular ranging and,
additionally, the power and POA computed on the scrambled timestamp
sequence for the secure ranging mode. The manufacturer (Decawave/Qorvo)
provides formulas for converting the power to dBm [66].

TDSR devices provide the maximum value in the leading edge (LE) win-
dow of the received CIR and the noise level. However, the documentation
of TDSR devices does not specify the measurement unit of these parame-
ters [64]. Therefore, it is not clear if they can be compared, for instance, with
the ones of the DW3000 chipset. TDSR devices also provide the noise ampli-
tude and a coarse and a precise estimate of the range, of the distance error,
and of the tag’s velocity.

The 3db chip provides the peak and the LE amplitudes (but not expressed
in dBm) and other additional diagnostics [1].

Because the diagnostics provided by different platforms vary and because
they are not expressed in the same unit of measurement, it is difficult to use
this information in a platform-independent UWB localization system. There-
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fore, UWB manufacturers should join forces to provide unified metrics that
could be used to mitigate measurement errors even across different devices.
Such a feature would also be beneficial in comparing the performance of
different devices.

3.4 Summary

In this chapter, we presented the results on our study of UWB device archi-
tectures and their impact on the ranging and localization accuracy, power
and energy comparison, and cross-platform compatibility of error-mitigation
techniques.

We first compared the power energy consumption, distance measurement
statistics, and localization performance of 3db Access and DW1000 ICs, rep-
resentative of the two types of UWB physical interfaces, LRP and HRP, re-
spectively. Publications [P1] and [P2] provided complementary compar-
isons: while [P1] was mostly focused on the power and energy consumption
of the 3db IC and the DW1000 IC in the long-range mode, in [P2] we pre-
ferred a more energy-efficient operation mode for the DW1000, to provide a
more fair comparison to the 3db chipset.

Both the 3db and the DW1000 IC have ranging and localization errors on
the same order of magnitude: cm-level in LOS scenarios and dm-level in hard
NLOS scenarios. The DW1000 chipset generally shows better performance in
LOS and through-the-wall NLOS conditions, while 3db devices have slightly
better performance in NLOS with human body shadowing. For a similar
maximum range, Decawave devices have 125× higher energy consumption
than 3db Access devices, while in the short-range mode (which decreases
the range by at least 8×) they have 6.4× higher energy consumption than
3db Access. Therefore, devices implementing the LRP PHY might be more
suitable for ultra-low power applications, while the HRP PHY might be a
better choice for the highest ranging accuracy.

Second, we presented the main challenges in obtaining ranging or local-
ization error-mitigation techniques that are compatible across different UWB
devices. We derived our observations from a database of measurements
acquired with three brands of UWB devices at exactly the same locations.
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Applying error mitigation customized for one device to other hardware is
hindered by the different errors yielded by the devices even under the same
conditions, which is due to the different TOA estimation algorithm and hard-
ware. The CIRs of different devices acquired under the same propagation
conditions have different lengths and there is not a clear correspondence be-
tween the main MPCs identified in each of them. Since most error-mitigation
methods in recent literature rely on the CIR [101, 29, 69], this could degrade
the accuracy if the algorithms were deployed in locations in which users can
have different UWB devices. We therefore brought to researchers’ attention
the issue of cross-platform compatibility in UWB localization systems and
called for more research in this area.

Possible solutions to this issue include developing error mitigation solu-
tions that can work across multiple platforms. The incorrect TOA estimation
is the root problem for the different ranging errors of the devices we tested,
even when the measurements were acquired under the same conditions. Fu-
ture research should investigate whether it is possible to find a set of device-
agnostic CIR features based on the estimated versus the correct TOA, which
could help identify the correct distance errors even across multiple devices.
Still, even if such features were found for some devices, they are unlikely to
perform as well if applied on an unknown hardware that was not taken into
account in the feature extraction process.

A different approach to the centralized solution suggested previously
would be to implement error-correction methods at the edge. In this way,
we could use models customized for the target device. However, in this case,
more research is needed to develop models that do not depend on the envi-
ronment in which the data used for training was acquired [7]. Measurement
campaigns with only one device are already time-consuming; performing
such measurement for every new location with every commercial device is
simply unreasonable. A solution that estimates the TOA based on synthetic
data was proposed in [27] and showed promising results. However, in order
for the method to be used on-chip to correct clock drift errors, it must also
be fast and lightweight. These aspects were not evaluated in [27], but can be
a promising research topic for the future.
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4 NLOS AND MULTIPATH
PROPAGATION IN WIDEBAND AND
NARROWBAND COMMUNICATIONS

NLOS propagation is arguably the most severe issue that affects the accuracy
of localization systems. In this chapter, we will focus on the effect of NLOS
and multipath propgation on two types of localization or ranging systems:
based on UWB technology, which corresponds to publication [P4], and based
on BLE communication, which corresponds to publication [P5].

Although the main topic of the dissertation has revolved around UWB
localization systems, at the beginning of 2020, the world was shaken by the
COVID-19 pandemic. This event (temporarily) shifted the research topic of
many researchers, including myself, in order to address the pressing con-
cerns at that time. What started as a project meant to fuse BLE and UWB
measurements in order to increase the accuracy of contact tracing applica-
tions, soon turned into the study from [P5], which is focused solely on the
challenges faced by RSS-based proximity detection applications using BLE.
Nevertheless, we believe that the work still fits in the rest of the topics cov-
ered in the dissertation, for two main reasons.

First, the study on BLE complements our prior work by providing an
overview of the challenges faced in localization systems based on narrow-
band communications, as opposed to ultra-wideband. Second, many devices
nowadays integrate both BLE and UWB chipsets (e.g., car keyfobs, the Ap-
ple AirTags). Although BLE modules are mostly used for ultra-low power
communication, they can also be used for coarse energy-efficient ranging,
followed by a refinement of the estimated location or distance using UWB
devices [8]. Since BLE modules are already widespread in wearable devices,
their integration with existing infrastructure is more seamless than in the case
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of UWB. Therefore, we believe that the work presented in [P5] represents a
useful benchmark for comparing and fusing BLE and UWB measurements
in indoor localization applications.

The rest of the chapter is organized as follows. In Section 4.1, we present
the state-of-the-art in error mitigation techniques for UWB and BLE commu-
nications. In Section 4.2, we present an error-mitigation method for UWB
localization systems, corresponding to publication [P4]. The novelty of the
proposed system is given by the fact that it does not need any manually-
collected training data. In Section 4.3, we present the main sources of signal
strength fluctuations in BLE proximity-detection algorithms and how to ad-
dress them, corresponding to publication [P5]. Finally, in 4.4, we summarize
our contributions related to the characteristics of NLOS errors in ranging/lo-
calization systems based on UWB and BLE communications.

4.1 State of the Art

In this section, we discuss how NLOS and multipath propagation affects nar-
rowband and wideband systems, exemplified by BLE and UWB communi-
cation protocols, respectively. Multipath propagation is the phenomenon in
which the transmitted signal arrives at the receiver through multiple paths,
due to the signal reflecting on surrounding objects, as shown in Figure 4.1a.
Obstructions between the TX and the RX can attenuate and delay the RF signal
traveling through the object. This is known as NLOS propagation.

In UWB technology, because of its very large bandwidth (at least 500 MHz),
pulses arriving through multiple paths can be resolved at the receiver (Fig-
ure 4.1b). Because UWB systems generally employ time-based methods for
localization, i.e., they can precisely timestamp the moment at which the sig-
nal arrives at the receiver, they can therefore still recover the TOA of the first
incoming path. Therefore, UWB signals are usually resilient to multipath
propagation. In fact, UWB signals can benefit from the multipath diversity
inherent in the channel [94]. However, when there is an obstruction between
the TX and the RX, the signal traveling through the direct path might be at-
tenuated close to the noise level. In this situation, a later path with higher
amplitude might be identified by the TOA estimation algorithm as the first
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Figure 4.1 Illustrative example of the effect of multipath propagation on narrowband
and ultra-wideband communication. In Figure 4.1a, the signal arrives from
the transmitter (console near the TV) to the receiver (the hand-held device)
through two main paths: the direct one and through the indirect path re-
flected on the wall. While in UWB communication the contribution of the
signal arriving through the direct and reflected paths can be distinguished in
the sum of pulses (Figure 4.1b), in narrowband communication the individual
paths cannot be resolved (Figure 4.1c).

path, as we showed in Section 3.3.2.
In narrowband communication systems such as BLE, because of the poor

time resolution, the signal arriving through multiple paths will not be resolv-
able at the receiver (Figure 4.1c). Such systems generally rely on the received
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Table 4.1 Comparison of UWB and BLE accuracy in ranging and localization applica-
tions. We list the lowest value (or range) of the 95th percentile (denoted by
P95) of ranging/localization errors from the cited references.

Technology Application Method References P95

UWB Ranging TWR [P1], [P2], [18, 50,
97, 100, 117]

10 cm

Localization Multilateration [P2], [P4], [50, 72,
78, 97, 127]

10 cm

TDOA [P6], [6, 35, 38, 58,
88, 118, 124, 137]

30 cm

BLE Localization Multilateration [5, 77, 86, 87, 42] 2–5 m

Fingerprinting [3, 26, 82, 89] 1.5–3 m

signal strength (RSS) to estimate the distance between the TX and the RX or
the location of an user. In proximity detection, multiple empirically-derived
path-loss models have been proposed in the literature to estimate the distance
between the target and a reference device based on the observed RSS [107,
65, 139, 41, 104]. For localization purposes, the most popular approaches
are based on multilateration using the estimated ranges [5, 77, 86, 87, 42] or
based on RSS fingerprinting [3, 26, 82, 89].

Because the narrowband signal that arrives through multiple paths can
add up constructively or destructively at the receiver, multipath propagation
causes fluctuations in the RSS. This, in turn, can cause fluctuations in the
estimated distance or location solely because of the environment, even if the
user is not moving. RSS fluctuations can therefore cause distance or location
errors [42]. Similarly, obstacles between the TX and the RX can attenuate the
signal and lead to ranging errors.

Table 4.1 provides a comparison of the ranging and localization accuracy
obtained by UWB and BLE devices using various techniques such as multilat-
eration, TDOA, and fingerprinting. Undoubtedly, UWB technology provides
the highest accuracy on the order of centimeter, whereas BLE achieves at best
only meter-level accuracy.
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However, the ranging/localization accuracy is only one side of the picture.
Because the devices tracked in positioning applications are generally battery-
powered, their energy efficiency is also crucial. As we showed in [P2], the
average power consumption of a UWB transceiver is between 20.7–40.7 mW
for LRP devices and 165–267.3 mW for HRP devices in the short-range mode.
Also, as we showed in Table 3.1, HRP devices are the most widespread on
the market, especially in smartphones. Qorvo UWB chipsets are available in
Google Pixel smartphones [93], Apple develops its own UWB U1 chipset [74],
and NXP UWB devices are found in Samsung smartphones [81]. All the
aforementioned chipsets implement HRP PHYs. We estimated that the en-
ergy consumption of the Qorvo DW1000 chipset for performing one SS-TWR
measurement in the short-range mode is 180 µJ.

In comparison, the power consumption of a Nordic Semiconductor nRF52
BLE chipset is 22.7 mW [80] and its energy consumption for transmitting an
advertising beacon is between 40–58 µJ (depending on the payload size) [115].
Therefore, BLE consumes around 3–4.5× less energy than a DW1000 chipset
for obtaining a ranging measurement. The RX-to-TX power consumption ratio
is also higher in UWB than in BLE, which makes UWB devices less suitable
for discovery than BLE devices [8]. Therefore, there is a case for using BLE for
localization applications for energy-constrained devices. Alternatively, a hy-
brid BLE–UWB approach has been proposed for tracking social interactions
in [8]. Regardless of the approach, a comparison of the ranging capabili-
ties of BLE and UWB is necessary to find the best strategy for the desired
localization application.

In this section, we present the literature on UWB and BLE localization
methods and NLOS mitigation techniques. We first focus on NLOS mitiga-
tion techniques in UWB localization and how they compare to our proposed
methods from [P4] (Section 4.1.1). Then, we review the SOTA in studies
related to the variability of BLE RSS measurements related to our work in
[P5] (Section 4.1.2).

4.1.1 SOTA on UWB Error Mitigation Techniques

In UWB localization, there are some works that apply semi-definite program-
ming to mitigate NLOS errors which do not need any measurement statis-
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tics [122, 126]. However, such methods need more computational power
than regular localization algorithms [122], which might not be available on
low-power sensors. Other works propose the use of additional hardware,
e.g., inertial measurement units [62]. In [39], only the measurement variance
needs to be known to select one of two extended Kalman filters (EKF), one
for each LOS/NLOS situation.

NLOS identification techniques that rely on the CIR have been proposed
in [69, 134, 102] with over 90 % accuracy in correctly identifying LOS and
NLOS errors. However, all data-aided NLOS mitigation methods need mea-
surement campaigns to collect training data, which are rarely feasible in prac-
tice. Such databases usually include the true distance between two devices,
the measured distance, the CIR of the signal, and a label which indicates
whether the measurement was acquired in LOS or in NLOS. Therefore, such
measurement campaigns are extremely time-consuming. Moreover, models
trained on data from one location have difficulties in achieving the same ac-
curacy when tested on measurements from other locations [7]. Therefore
acquiring new data from every new environment in which a localization system
is deployed is even more intractable.

For this reason, in [P4], we devise a detection and mitigation method for
measurements acquired in NLOS, which does not need any training data.
The proposed framework learns in real-time which measurements were ac-
quired in NLOS based on the localization errors they incur. The framework
then trains a model to recognize such measurements in the future based on
their CIRs. Our method relies on distance residuals of individual anchors, i.e.,
the difference between the distance measured by an anchor and the distance
between the location of the tag estimated using all anchors and the said an-
chor. In other words, the residual distance of an anchor is the deviation of
the measured distance from the location computed using the measurements
from all anchors. Because usually only a few anchors will experience a bad
link to the tag, the correct location of the tag might still be recovered if there
are enough anchors with good links to the tag. In cases in which there is
more than one anchor in NLOS with the tag, the distance residuals need to
be computed over all combinations of anchor subsets in order to identify the
ones that cause large deviations.
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To the best of our knowledge, there are two works [109, 11] that iden-
tify and mitigate NLOS measurements through anchor residuals. In [109],
the authors used anchor residuals to train a classifier, whereas we use the
CIR features of those measurements to train the model. In [109], the au-
thors simulated a ranging NLOS error eNLOS ∼ U (0.75, 3.5), i.e., sampled
from a uniform distribution in the interval 0.75–3.5 m. The LOS errors were
normally-distributed with zero mean. However, in our measurement cam-
paign, NLOS errors were spread in a much smaller range, of 0.25–0.8 m. In
this case, it is more difficult to distinguish NLOS measurements based only
on the residuals, which is why we perform the mitigation in two steps: first
by identifying NLOS anchors based on their residuals, and then by training
a model to recognize anchors with large errors/residuals based on their CIR.

In [11], the authors used residual analysis to identify NLOS errors and
a combination of a fuzzy logic algorithm and Kalman filters to mitigate the
NLOS errors. The method was evaluated through simulation for different
types of NLOS error distributions (Gaussian, uniform, and exponential) and
through measurements using UWB devices. In comparison with this work,
in [P4] we also provide a self-learning NLOS detection method which can
be useful beyond reducing the localization accuracy, for instance to detect
obstacles, to create building maps, or to estimate the crowd density in a
room. In [11], the authors focused more on NLOS error mitigation than on
NLOS identification and they did not mention the accuracy of the classifica-
tion method alone.

There are also a number of works using unsupervised or semi-supervised
ML models. In [24], the authors propose an unsupervised NLOS identifica-
tion method. However, the proposed solution can classify data only in bulk
(so not online), whereas our method could also be used online.

In [85] and [129], the authors proposed NLOS identification methods
based on pre-trained models. In [85], a convolutional neural network (CNN)
is trained using data from one environment and updated with data from
another environment. The method is evaluated in two office environments
with similar setups. It is not clear how well the model could be transferred
between two very different environments, e.g., a mall and an industrial hall.
This is also an open research question for our method. However, the differ-
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ence is that we do not rely on a pre-trained model, but can train such a model
online. In [129], a pre-trained model is improved by retraining using unla-
beled samples. This approach could also be used to improve the accuracy of
our model.

4.1.2 SOTA on BLE RSS Variability

BLE was developed as an energy-efficient communication protocol for wire-
less personal area networks. In recent years, multiple works have investi-
gated the capabilities of BLE communication for ranging and localization
purposes [87, 26]. The RSS variability of WiFi signals has been extensively
studied in [19, 40, 135, 128, 99]. However, no such comprehensive work yet
existed for BLE signals. Previous work focused on only one source of RSS
fluctuations or observed the combined effect of multiple error sources.

In contrast to prior work, in [P5], we isolated the main factors that lead to
RSS variability, such as time, space, hardware, advertising channels, the dis-
tance between the TX and the RX, orientation, and obstructions, and we eval-
uated the impact of each factor on the observed RSS. We also documented a
new source of errors: the influence of combo WiFi–BLE chips on the RSS of
BLE signals.

Our measurement campaign includes the same type of measurements ac-
quired in parallel at two sites: at University Politehnica of Bucharest (UPB)
and at Tampere University (TAU). The Author was responsible for the mea-
surement campaign conducted at UPB and the analysis of the data concern-
ing the impact of the BLE channels, multipath propagation, device orienta-
tion, and transmit power on the variability of BLE RSS measurements.

In the following, we present the SOTA on each of the error sources inves-
tigated in [P5] and our main contributions regarding them.

BLE Channels. BLE has 40 channels of 2 MHz bandwidth each, indexed as
shown in Figure 4.2. Three channels (37, 38, and 39) are reserved for adver-
tising and the rest are for data transfer. The advertising channels are spread
over the 2.4 GHz band at center frequencies of 2.402, 2.426, and 2.48 GHz to
avoid interference with other devices operating in the same band. In [79],
channel 39 was found the most reliable, since it is further away from the cen-
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Figure 4.2 BLE and WiFi channels.

ter frequency of WiFi channels, also illustrated in Figure 4.2. In contrast, the
other advertising channels partially overlap with other WiFi channels.

Variations between the RSS of advertising beacons sent on different chan-
nels at the same location was up to 15 dB in [33] and up to 6 dB in [26].
This can happen because the RSS varies inversely with the squared carrier
frequency and because antennas do not always have a flat response over
the entire bandwidth. Distance estimates can be improved by modifying
the pathloss equation according to the channel on which the beacon was
transmitted [33, 73], but knowledge of the channel is often not available by
default at the receiver. Moreover, smartphones usually hop between differ-
ent advertising channels. In [33], the authors exploited some patterns with
which smartphones switch between different advertising channels to recover
information about the center frequency.

Multipath propagation. The channel-dependent multipath fading of BLE
signals was studied in [26]. The effect of multipath fading can be reduced
by averaging multiple RSS values in a window. However, this solution is,
in practice, hindered by the low rate with which devices send advertising
beacons, in order to save battery power. Fluctuations in the RSS at the same
TX–RX distance were found to be as high as 6 dB in [75] and even 20 dB [59]
or 25 dB [32] over short time periods. In [59], the authors noted that the
average RSS does not always decrease with the distance according to path-
loss models [65].

Device orientation. Changes in the device orientations can result in RSS
fluctuations of up to 30 dB [70] or 3 dB [96] even at the same distance and lo-
cation. The manner in which people hold their mobile devices (e.g., in hand,
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Figure 4.3 Overview of the main steps in the proposed NLOS error mitigation technique.

inside a pocket or a bag, etc.) influences the relative orientation between TX

and RX antennas.

Transmit power and hardware. The RSS depends on the transmission power
of the signal and the receiver’s RF front-end and antenna gain. Because BLE
chipsets from different manufacturers have different settings and designs,
the measured RSS can vary depending on hardware even under the same
environmental conditions. In [84], transmitters from different vendors that
transmitted at different powers had almost the same RSS. In [10], the au-
thors show that the transmission power affects the localization accuracy and
propose a ML-based method to learn the TX power of beacons in order to
maximize the localization accuracy.

4.2 Self-learning NLOS Error Detection and Mitigation
for UWB Localization Systems

4.2.1 Overview of the Proposed Framework

In this work, we propose a method for detecting and mitigating NLOS er-
rors in UWB localization systems. The proposed method does not require
manually-collected training data nor makes assumptions about the channel
statistics.

Figure 4.3 shows the overview of our approach. When a tag is first de-
ployed in an area, it starts the initial phase of the algorithm, in which it collects
distance measurements and CIRs from the anchors in the area. In this first
step, we use residual analysis to label the measurements as LOS, NLOS, or
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Figure 4.4 Using noise-less distance measurements, a geometric localization algorithm
would estimate the tag’s location at the intersection point between the circles
determined by the anchor–tag distances (Figure 4.4a). However, in practice,
the measurements are noisy so the circles do not have a single intersection
point anymore (Figure 4.4b). The distance residual (ri) of an anchor Ai is the
difference between the measured distance (denoted by di) and the Euclidean
distance between the estimated location of the tag and the location of the
anchor (denoted by d′i).

ambiguous. If there are more anchors than the minimum necessary for 2D
or 3D localization, we can compute locations using each subset of anchors.
This is a reasonable assumption, as typically tens of anchors can be deployed
over a certain area for centimeter-level accuracy.

Since NLOS anchors1 introduce higher location errors than LOS anchors,
they also have higher distance residuals. A distance residual is defined as
the difference between the measured distance and the Euclidean distance be-
tween the anchor and the estimated position of the tag. Distance residuals are
illustrated in Figure 4.4b, where all anchors have noisy measurements. The
location of the tag is found in the intersection area of the circles determined
by the anchor–tag distances. In a noise-less case, like in Figure 4.4a, the tag’s
location is at the intersection point of the three circles and the residuals are
equal to zero.

The residual-based labeling step has an accuracy between 70–80 % but it
cannot be used on all sets of measurements, since for small NLOS errors
the separation between LOS and NLOS residuals is not clear. This is why,

1“NLOS anchor” is shorthand for “anchor in NLOS with the tag.”
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besides the LOS or NLOS label, the method can also assign to a measure-
ment the “ambiguous” label, when it cannot say with high confidence if the
measurement was acquired in LOS or NLOS. Moreover, the residual-based
labeling step requires computing the location using all anchor combinations,
which scales with O(2N) for N anchors. Therefore, for a large number of
anchors, computing the residuals over all anchor subsets becomes computa-
tionally intensive.

Therefore, we introduce the second step (named “Model Training” in Fig-
ure 4.3), in which we train a Random Forest (RF) classifier which takes as
input the CIR features of the measurements and the labels predicted in the
first step. The model can recover the correct class boundary even with noisy
labels, reaching a higher classification accuracy than the residual-based la-
beling, of over 90 %. After the RF model is trained, it can directly classify
all distance measurements as LOS or NLOS and the residual-based labeling
can be skipped. Classifying samples using RF has a constant complexity
regardless of the number of anchors.

We further propose a location-correction method based on identified LOS/N-
LOS measurements which does not discard the NLOS measurements. We
evaluate the accuracy and localization error of the proposed method through
a simulation of a localization network but based on a database of real dis-
tance measurements. The simulation therefore resembles a realistic localiza-
tion scenario.

More details about the implementation of the residual-based labeling and
model training steps can be found in [P4]. In the following, we will focus on
the results obtained by the proposed framework.

4.2.2 Simulation Framework

We simulate a localization scenario based on a database of real UWB mea-
surements collected in [P2] to evaluate the feasibility and performance of
the proposed method for NLOS error detection and correction. Some of the
locations in which we acquired measurements are illustrated in Figure 3.2.

Figure 4.5a shows a typical localization application in which four anchors
are deployed over the perimeter of a localization area. However, because
there are two rooms, some of the anchors might be in NLOS with the user’s
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Figure 4.5 (a) Simulated localization setup and (b) data generation process based on
the measurement database.

device. We consider between 5 to 9 anchors distributed uniformly on the
perimeter of the area. We consider a grid of approximately 1700 true loca-
tions of the tag spaced 20 cm apart within the area delimited by the anchors.
For each true location of the tag, we choose a percentage of anchors (either
0 %, 30 %, or 50 %) to be in NLOS with the tag. The anchors which are in
NLOS with the tag are chosen at random among all anchors.

Figure 4.5b explains the data generation process. We start from a mea-
surement database collected in [P2] which contains distance errors and their
corresponding CIRs. We simulate the distance measurements between each
anchor and the tag by adding to the true distance a distance error selected
from the measurement database. The distance error is selected depending on
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Figure 4.7 Model training and testing based on generated labels.

whether the anchor is in LOS or in NLOS with the tag. For instance, if we
consider that the anchor is in NLOS with the tag, we will select one of the
measurements acquired in NLOS from our database. We also store the CIR
corresponding to the selected measurement.

From the CIR, we extract CIR features typically used in NLOS detection:
the energy of the received signal, the maximum amplitude of the signal, the
RMS delay spread, the mean excess delay, the kurtosis, and the difference be-
tween the TOA and the time at which the CIR has the maximum amplitude.

Next comes the label generation process, shown in Figure 4.6. We feed the
N simulated distances from each anchor to a localization engine. The engine
computes the 2D location and average anchor residuals over all anchor sub-
sets. The residual analysis block takes as input the average anchor residuals
and predicts the labels of the measurement between each anchor and the tag.
The label can be either LOS, NLOS, or ambiguous (in case the system cannot
determine the LOS/NLOS label with high confidence).

The model training and testing part is detailed in Figure 4.7. After the la-
bels are predicted for N anchors and M locations, they are split into a training
set and a test set. The training set contains the measurements predicted as
LOS/NLOS, while the test set contains the ambiguous measurements. The
training set is used to train a Random Forest classifier, which takes as input
the CIR features and the labels predicted in the residual analysis step. Once
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Table 4.2 Performance of unsupervised residual-based labeling in UWB localization [P4].

N Q [%]
Accuracy [%]

Classified
instances [%]

LOS NLOS Balanced

5
30 68.2 98.7 83.4 37.6

50 66.8 82.1 74.4 40.2

6
30 68.3 98.9 83.6 29.3

50 72.0 76.5 74.2 39.6

7
30 64.7 84.5 74.6 34.6

50 62.4 79.5 70.9 37.6

8
30 74.4 81.1 77.7 32.8

50 69.9 73.3 71.6 38.1

9
30 70.2 79.2 74.7 36.8

50 66.0 72.5 69.2 35.2

the model is trained, we can use it to directly classify all measurements, with-
out going through the residual analysis step. Finally, we mitigate the NLOS
measurements and reduce the localization error.

4.2.3 Results

Residual-based labeling. Table 4.2 shows the accuracy in correctly identi-
fying LOS measurements, NLOS measurements, and the balanced accuracy
between both. It also shows the percentage of classified instances for the
optimum KDE shaping parameter h used in the residual-based labeling step.
More details about how the optimum value was found can be found in [P4].
The classification accuracy is higher for 30 % NLOS anchors than for 50 %.
This is expected, since when more anchors are in NLOS with the tag, the
location estimate is more skewed and the residuals of all anchors (not only
of NLOS anchors) are larger. In this case, LOS and NLOS anchor residuals
are harder to distinguish.
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Figure 4.8 The accuracy of the trained random forest (RF) classifier using data labeled
with the residual method.

Supervised classification. We now evaluate the accuracy of the RF classifi-
cation applied on measurements labeled with residual analysis. The training
set consists of labeled measurements and their features. Please refer to [P4]
for more details about the simulation setup.

Figure 4.8 shows the LOS, NLOS, and balanced accuracy of the RF model.
The accuracy in identifying NLOS measurements exceeds 90 % in all cases,
while the accuracy in identifying LOS measurements is higher than 95 %.
Compared with only the residual-based labeling, we gain 10–20 % accuracy.
Although it might seem surprising that the RF classification accuracy is that
high even though the labeling accuracy is, in some instances, as low as 63 %,
our scenario fits into the research area of learning in the presence of noisy
labels. Research has shown that certain ML models can recover to a cer-
tain extent the correct class boundaries even in the presence of outliers or
anomalies in the training data [30].

NLOS mitigation. We also devised a strategy to mitigate NLOS measure-
ments after their detection. The detailed algorithm can be found in [P4] and,
in the following, we will only present a summary of it.

If there are enough LOS anchors to compute one location and the set of
anchors is not degenerate (i.e., the anchors are not colinear), we could use
only the LOS anchors to compute the location, since they generally have the
smallest distance errors. However, we noticed that we obtain better location
estimates if we correct NLOS measurements first and then use them for local-
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Table 4.3 Localization error before and after the proposed NLOS mitigation
method [P4].

N Method
Q = 30 % NLOS Q = 50 % NLOS

Mean
[m]

Std. dev.
[m]

Mean
[m]

Std. dev.
[m]

5
No mitigation 0.14 0.27 0.20 0.39

Proposed 0.07 0.06 0.11 0.14

6
No mitigation 0.11 0.08 0.19 0.31

Proposed 0.06 0.04 0.10 0.17

7
No mitigation 0.14 0.30 0.21 0.64

Proposed 0.07 0.05 0.08 0.07

8
No mitigation 0.14 0.36 0.22 0.67

Proposed 0.06 0.05 0.08 0.06

9
No mitigation 0.13 0.35 0.20 0.64

Proposed 0.05 0.04 0.07 0.14

ization, since the LOS anchors might not have an optimum placement, e.g.,
if the tag is located outside the convex hull of the anchors. In these areas,
multilateration algorithms usually have larger errors than inside the convex
hull [98].

For correction, we first estimate the intermediate location using only the
LOS anchors. We compute the residuals of the NLOS anchors based on the
intermediate location. Then, we subtract the residuals from the measured
distances of NLOS anchors. We estimate the final location using the distance
measurements of LOS anchors and the corrected distances of NLOS anchors.
Our algorithm also targets cases in which there are not enough LOS anchors
to compute one estimate or the LOS anchors are colinear.

Table 4.3 compares the localization errors obtained with the proposed mit-
igation algorithm (denoted by “proposed”) with those obtained when using
all anchor–tag distances, without mitigation. The localization errors of the
proposed method have 1.8–2.8× smaller mean and 1.8–11.6× smaller stan-
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dard deviation after NLOS mitigation. On average, the algorithm reduces
the mean and standard deviation of localization errors by 2.2 and 5.8 times,
respectively. Therefore, the proposed method can successfully mitigate local-
ization errors caused by NLOS propagation.

4.3 Signal Fluctuations in BLE Communication

This section describes a part of the sources of BLE RSS fluctuations identified
in [P5], focusing on those where the Author’s contribution was the largest.
As we mentioned, the observations are based on a measurement campaign
that took place, in parallel, at UPB and TAU. Figure 4.9 shows examples of
locations at which we acquired measurements, in LOS and NLOS, at both
universities.

In total, we documented eight sources of variability in BLE RSS data: time,
space (or environment), hardware, advertising channel used, distance, device
orientation, the co-existence of WiFi and BLE on the same chipset, and ob-
structions between the TX and the RX.

In this section, we will discuss only the variations in time, caused by
hardware, with orientation, and in LOS/NLOS propagation, while the rest
can be found in the publication [P5].

4.3.1 Variations in Time

We investigated the stability of the BLE RSS over time, when the devices
were left unmoved at one location. Figure 4.10 shows the RSS distribution in
increasing time window sizes. The median RSS decreases with 3 dB from the
time window of 2 min to the time window of 10 h. However, the mean RSS
(diamond-shaped marker) is relatively stable in all window sizes and varies
with less than 1 dB. The results are meaningful to determine the recording
time needed to obtain a stable value of the mean RSS. In this case, a recording
time of 2 min is enough to capture the characteristic RSS in a location.
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(a) LOS at TAU (b) LOS at UPB

(c) NLOS with wall at TAU (d) NLOS with wall at UPB

(e) NLOS with plexiglass at UPB (f) NLOS with human body at UPB

(g) NLOS with door at UPB (h) NLOS with wall and whiteboard at UPB

Figure 4.9 The pictures of the receiver and transmitter in LOS and NLOS with wall
acquired at UPB and TAU (Figure 4.9a to 4.9d). Figure 4.9e to 4.9h show
NLOS scenarios with a plexiglass panel, human body, a door, and a wall with
a whiteboard at UPB.

4.3.2 Variations Caused by Hardware

In all the measurements, we used as the evaluation hardware Raspberry Pi
4 Model B boards equipped with the same model of BLE chip. However,
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Figure 4.10 The evolution of the BLE RSS distribution over different periods, up to
10 hours. The measurements were acquired in LOS, on channel 37, at a
distance of 1 m between the devices.
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Figure 4.11 The impact of hardware on the RSS in recordings acquired with different
device pairs placed at a distance of 2 m at exactly the same location. The
median RSS varies with 5 dB, even though the boards contain the same
BLE chipset model.

we noted that, when performing measurements with different boards at the
same locations, the mean RSS values differed depending on the pair of boards
used. In order to evaluate the magnitude of the fluctuations, we performed
measurements with different device pairs at the same locations, at a distance
of 2 m, configured to operate only on channel 37. More details about the
devices used in each pair can be found in [P5].

Figure 4.11 shows the RSS distribution of each pair of devices. In device
pairs 1, 2, and 3 we used the same transmitter, while in device pairs 3, 4,
and 5 we used the same receiver. The median RSS varies with up to 5 dB
even between devices from the same model. This experiment shows the
difficulty of calibrating the transmitter and receiver efficiency according to
the device model, since even devices that share the same device model have
RSS variations of several dB.
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Figure 4.12 The impact of orientation on the BLE RSS. In the back, left, and right
poses the receiver was rotated clock-wise with, respectively, 180◦, 90◦, and
270◦ with respect to the front orientation.

4.3.3 Variations with Orientation

We evaluated the effect of the relative orientation between the TX and the RX

on the BLE RSS. We analyzed four poses, where the pose of the transmitter
is fixed and the receiver is rotated clock-wise with 90◦, 180◦, and 270◦ with
respect to the “front” orientation, resulting in the “left,” “right,” and “back”
poses, respectively. The devices were placed on tripods at distances of 1, 2,
and 3 m, and the receiver was rotated around its center axis.

Figure 4.12 shows the RSS distribution obtained in each of the scenarios.
We notice that the RSS fluctuates with the pose for a particular distance but
that there is no orientation which results in a higher RSS at all distances. The
“back” pose has a lower median RSS than the others, most likely because
in this pose the metallic USB and Ethernet ports of the board are placed in
the direct path of the signal and can attenuate the signal. We also noticed
inconsistencies with the distance, in which the average RSS at a distance of
1 m is lower than the RSS at 2 m and 3 m.

4.3.4 Variations in LOS and NLOS Propagation

We investigated the effect of different types of obstructions on the BLE RSS.
We acquired measurements at both locations (UPB and TAU) in LOS and
NLOS with wall shadowing. At UPB, we also tried other types of obstruc-
tions: human body, wall and whiteboard, door, and plexiglass panel. More
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Figure 4.13 Comparison of selected RSS distributions acquired on all advertising chan-
nels at 2 m, in LOS, NLOS with a plexiglass panel, NLOS with a door,
NLOS with a wall and a whiteboard, and NLOS with human body shad-
owing. Underneath each distribution there is the boxplot representation,
where the black box is the IQR that contains 50 % of the values and the
white marker denotes the median RSSI.

information about the setup and the procedure for selecting the measure-
ments to avoid duration biases can be found in [P5].

Figure 4.13 shows the distribution of RSS measurements in selected LOS
and NLOS scenarios at a distance of 2 m between the devices. Measurements
acquired in hard NLOS scenarios (with wall or human body between the
devices) show higher spread than in LOS or in NLOS with a shallow ob-
struction (the plexiglass panel or the door). The median RSS in the NLOS
scenario with a door is −42 dBm, which is only 1 dB smaller than the median
RSS in LOS for the same distance. Such inconsistencies can also be caused
by the fact that we used only a single recording to plot the statistics. How-
ever, we showed in [P5] that single recordings can deviate from statistics
computed on aggregated data with more than 10 dB.

The inconsistency can be also caused by the fact that most of the NLOS
statistics were computed based on a single recording. As we show in [P5],
single recordings can deviate from statistics computed on aggregated data
with more than 10 dB. Therefore, we also compared LOS and NLOS setups
when aggregating data from multiple recordings from campaigns conducted
independently at TAU and UPB. The results are shown in Figure 4.14.
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Figure 4.14 Comparison of BLE RSS distributions based on data acquired in LOS and
NLOS with a wall at UPB and TAU at distances of 1, 2, and 3 m.

First, although we would expect the mean RSS to be higher in LOS than in
NLOS at the same distance, this is not always the case. At 1 m, the mean RSS
values in LOS and NLOS are almost equal at both sites, while at 3 m, at UPB,
the mean RSS in NLOS is higher than the one in LOS. The standard deviation
of RSS measurements acquired in NLOS is generally higher than in LOS.
This is expected, since obstructions can cause the diffraction and reflection
of the signal, which can introduce higher RSS fluctuations.

In the literature, multiple solutions have been proposed to deal with lo-
calization or ranging errors caused by RSS instabilities in NLOS propaga-
tion [73, 17, 52]. Most of the solutions, however, are based on large datasets
for training ML models. However, as we showed in our measurement cam-
paing, the data collected at different sites might show different statistics, so
solutions customized for one environment alone might not work in another
setting.

4.4 Summary

In this chapter, we investigated the effects of multipath propagation on the
ranging and localization accuracy of narrowband and wideband systems, ex-
emplified through the BLE and UWB technologies, respectively. The system
bandwidth has important implications on the type of localization methods
that can be employed and their accuracy. BLE is advantageous owing to its
very low energy consumption and widespread availability. However, most
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proximity detection applications based on BLE use RSS measurements and
hence their accuracy is in the range of meters. UWB, on the other hand, al-
lows centimeter-level ranging and localization accuracy but has higher power
and energy consumption than BLE.

In [P4], we proposed a method to detect and mitigate NOS errors in UWB
localization systems, which does not need any manually-collected training
databases. The novelty lies in using residual analysis to automatically label
measurements as LOS or NLOS. Therefore, we eliminated the need for per-
forming an expensive and time-consuming measurement campaign. Instead,
the measurements can be collected and processed online and the model can
be trained on the user device. The complete framework reduces the mean
localization error by 2.2× and its standard deviation by 5.8× compared to
the case in which no error mitigation method is applied.

In [P5], we identified and characterized eight main sources of variabil-
ity in BLE RSS measurements, basing our observations on a measurement
campaign performed in tandem at two locations: University Politehnica of
Bucharest, Romania, and Tampere University, Finland. Having the experi-
ments replicated at two locations enabled us to identify trends in the data
without being biased by local artifacts. Besides documenting the most im-
portant sources of variability of BLE RSS measurements, we also identified
a new factor, namely the co-existence of the WiFi and BLE functionalities
on the same chipset. The measurements were published in an open-source
format [57], to aid future research focused on proximity detection with BLE
signals.
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5 TDOA LOCALIZATION WITH
FLEXIBLE ANCHOR ALLOCATION

Ultra-wideband (UWB) localization systems currently face high robustness
and scalability demands, as they operate in challenging multipath environ-
ments and need to satisfy an ever-growing number of users. Time-difference
of arrival (TDOA) localization in which the user device remains passive and
listens to beacons sent by the anchors can scale to an unlimited number of
users. This technique is also called downlink (DL) TODA, because the com-
munication occurs only on the downlink, from the anchors to the tag.

The drawback of DL TDOA is that the anchors need to synchronize their
clocks. To bypass this requirement, a common approach is to designate a
reference anchor which periodically sends synchronization beacons. The rest
of the anchors respond to the beacon, while the tag passively listens to every
message and estimates its location based on their TDOAs. This method is
illustrated in Figure 5.1a and will be called the “classic” DL TDOA. However,
the classic TDOA is not robust to obstructions between the devices, especially
between the reference anchor and the tag.

In publication [P6], we propose FlexTDOA, a localization system with a
flexible TDMA scheduling scheme, in which the reference anchor, the num-
ber of responders, and the order of responders can change every time slot.
The TDMA scheme of FlexTDOA is illustrated in Figure 5.1b, where the first
anchor is the initiator in the first time slot, the second anchor is the initiator
in the second time slot, etc.

We compare FlexTDOA against the classic TDOA and TWR-based local-
ization in a deployment that consists of ten anchors and one tag. We evaluate
scenarios with and without obstructions. Results show that FlexTDOA, the
proposed method, has the highest localization accuracy in most of the eval-
uated scenarios. FlexTDOA reduces the localization error with up to 38%
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Figure 5.1 The scheduling of anchor transmissions in (a) classic DL TDOA and (b)
FlexTDOA. In the classic TDOA, there is a single reference anchor which
broadcasts messages. The rest of the anchors respond to this initial message
(usually in a pre-defined order). In FlexTDOA, we propose a flexible schedul-
ing scheme in which all the anchors can become reference anchors and the
order of responses can also change.

compared to the classic TDOA. We also evaluate the impact of multiple pa-
rameters such as the number of responses, their order, or the number of
anchors on the localization accuracy.

This chapter is organized as follows. Section 5.1 presents the SOTA in
TDOA localization and how our work differentiates from previous solutions.
Section 5.2 introduces the TDMA scheduling algorithm which is the core
of FlexTDOA. Section 5.4 shows the most important results achieved by the
proposed localization system. Finally, Section 5.5 summarizes the results and
proposes directions for future research.
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5.1 State of the Art

Next, we review the most important state-of-the-art on TDOA localization.
We first discuss the theoretical differences between TOA (or range-based)
and TDOA localization in Section 5.1.1. Section 5.1.2 presents the most rel-
evant UWB localization systems that implement DL TDOA, since they are
comparable to FlexTDOA in terms of multi-user scalability. We also present
a comparison against uplink (UL) TDOA localization systems which were
optimized for multi-user scalability. Section 5.1.3 discusses the carrier fre-
quency offset (CFO) estimation technique used in the proposed method to
correct TDOA measurements.

5.1.1 TOA and TDOA Comparisons

In [121], TOA and TDOA methods with correlated and uncorrelated noise are
compared from a theoretical standpoint. When the tag transmits an uplink
message which arrives at multiple anchors, the measurements observed by
the anchors are correlated. If the tag is passive and only the anchors exchange
messages, if enough time passes between two consecutive transmissions, the
measurements at the tag are uncorrelated. It is shown that the circular (TOA)
method with an unknown clock offset and the hyperbolic (TDOA) method
with correlated noise are equivalent. It is also shown here that both hyper-
bolic methods, i.e., with correlated and uncorrelated noise, achieve similar
performance. Therefore, there is no loss in localization accuracy when using
DL TDOA instead of UL TDOA.

5.1.2 TDOA Localization

Although TDOA localization systems have been extensively studied in the
literature, most previous works have focused on the classic TDOA scheme
in which the reference anchor and the order of responses are fixed. In this
work, we evaluate the impact of the channel diversity brought by using more
pairs of anchors than in the standard configuration. We also evaluate the im-
pact of several parameters (e.g., number of responses and of anchors) on the
localization accuracy. We compare the FlexTDOA scheme against the classic
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TDOA and TWR localization, which are the most widely-used techniques in
UWB localization. Moreover, most previous TDOA systems have been eval-
uated only in LOS conditions, whereas we also covered the performance of
all three localization algorithms in a NLOS scenario as well.

In [58], the authors propose a DL TDOA localization system with a clock
synchronization protocol based on a reference anchor. It is mentioned, how-
ever, that the system does not scale to large networks. With eight anchors,
the system obtained a 2D localization root-mean squared error (RMSE) of
14 cm and a 3D RMSE of 28 cm. Using a comparable setup of seven anchors,
FlexTDOA obtained a 2D RMSE of 16.2 cm and a 3D RMSE of 23.5 cm (aver-
aged over all considered locations). Therefore, the performance of FlexTDOA
is similar to the system proposed in [58]. In [38], a similar approach to [58]
is proposed. Here, the pairwise clock error is tracked using a Kalman filter
that can handle variations in the reception period. In the proposed method,
each new anchor joining the network has to synchronize itself to all the other
anchors already in the network. The authors only evaluate the case where
each anchor has an allocated (fixed) time slot for transmission. In compari-
son, we also evaluate more complex schemes in which the transmission order
of the anchors can change. This flexibility is facilitated by the fact that we
do not track pairwise clock errors and can hence easily change the order of
transmissions.

In [88], the authors propose a DL TDOA scheme in which the anchors
respond only to the previous message, as opposed to responding to a syn-
chronization beacon, as in our case. The mean and maximum localization
errors obtained with a configuration of four anchors were 31 cm and 81 cm,
respectively.

Although the works in [35, 16] are said to perform concurrent ranging,
they essentially implement the classic DL TDOA scheme. However, in these
works, the novelty is brought by processing all the responses within a single
reception period. This is done by leveraging multipath information from the
CIR. Because of several hardware limitations of the DW1000 chipset used in
these works, the 90 % error obtained by a setup with five anchors in [35] was
55.8 cm, so about 2× larger than the one obtained by FlexTDOA in a similar
setup in which the tag is placed in the center of the room. However, the
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limitations were solved in the new-generation DW3000 chipset used in our
work, so in the future it would be interesting to integrate concurrent ranging
in our system in order to decrease the energy consumption of the tag.

In [118], a UWB-based TDOA localization system called ATLAS is intro-
duced. Even though the system also uses a reference anchor, it is not clear
if the tag is completely passive. Because the paper mentions that only tags
on a white list are processed at a localization server, this implies that the
localization system must be aware of the presence of the tags. This is usu-
ally achieved using uplink transmissions. Therefore, ATLAS uses a centralized
processing to compensate errors in the TDOAs. In comparison, in FlexTDOA,
the localization is offloaded to the user device. This preserves the user’s loca-
tion privacy. Iterations of ATLAS have been introduced in [120, 119]. However,
in these works, it is clear that the tag is active, which poses scalability issues.

A recent localization system called VULoc has been recently proposed
in [137]. The system implements DL TDOA. However, compared to our
method, in VULoc, the reference anchors sends an extra message after receiv-
ing all the responses. This means that the tag has to listen to an additional
message compared to FlexTDOA. The most significant difference between
our system and VULoc is that in FlexTDOA we also propose a highly con-
figurable and flexible TDMA scheme for scheduling anchor transmissions.
In comparison, in [137], the authors mention that a scheduling protocol is
not needed since the tags are passive. However, we argue that, especially
in large-scale deployments, there is a need to easily add or remove anchors
from the localization system and to have a protocol for scheduling their trans-
missions. This allowed us to easily evaluate the performance of FlexTDOA
with up to ten anchors, whereas the performance of VULoc was evaluated
only with five anchors. In [137], the impact of channel diversity is also not
evaluated. In a setting similar to ours, VULoc had a median error of 15.5 cm
and a 90 % error of 23.6 cm. In a similar experiment in which we placed the
tag in the center of the room, FlexTDOA yielded a median error of 15.4 cm
and a 90 % error of 22.2 cm. Therefore, the performance of the two systems
are similar with a small anchor deployment.

Although it does not implement a DL TDOA scheme (so the tag is active),
the work in [124] proposes a scalable UL TDOA localization scheme called
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TALLA. The tags broadcast uplink messages, which are received by wirelessly-
synchronized anchors. A server maintains the synchronization necessary to
correct clock drift errors in TDOA localization. The server can synchronize
to any reference anchor that is part of the system. This approach provides
flexibility in large-scale deployments, but poses more privacy risks, as the
network can record the location of all the tags. In comparison, in FlexTDOA,
the network has no information of the users’ locations since the tags localize
themselves. The system is evaluated in an experiment using 12 anchors in
an area of 100 × 60 m. Simulations were performed for more anchors. The
effect of the synchronization rate and the number of anchors (4 or 8) were
evaluated experimentally. The authors found only small improvements with
more anchors, which confirms our own observations.

One important contribution of [P6] is that we evaluated the performance
of the system in NLOS experimentally. Most previous works considered only
LOS scenarios. VULoc [137] was also evaluated in NLOS conditions. The
authors also proposed an anchor selection algorithm based on a confidence
parameter chosen empirically. Whereas in [137] the goal of the NLOS eval-
uation was to demonstrate the efficacy of the anchor selection mechanism,
we also quantified the effect brought by the added channel diversity when
using the TDOAs between all anchor–tag trios. In [45], the authors derived
theoretical error bounds for TDOA localization under NLOS propagation.
In [141], an anchor-selection method for NLOS scenarios was proposed and
evaluated using simulations. In [140], a sensor-placement strategy for clut-
tered multipath environments was proposed. The method was evaluated
using experiments. In [91], an UL TDOA localization system that accounts
for NLOS conditions was proposed and evaluated in experiments. In [123],
a method for selection anchor pairs in an UL TDOA localization system was
developed. The method takes into account measurement errors incurred by
NLOS propagation.

5.1.3 Clock offset correction

In the proposed TDOA scheme, we avoid tracking clock parameters like in
previous works [58, 38] using, for instance, Kalman filters. Instead, we use
the CFO estimation feature of the DW3000 chipset that allows us to compen-
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sate for the relative clock offset between a transmitter and a receiver directly
at the receiver. The method has been described in [20], where the authors de-
rived the systematic error for SS-TWR, A-TDOA, and SS-TWR with A-TDOA
extension. The authors evaluated the error experimentally but only for TWR
schemes. A similar CFO correction is applied in a TDOA scheme in [108].
However, in [108], the TDOA scheme is based on the alternative DS-TWR
method. This means that the tag is active, so the system uses UL TDOA local-
ization scheme. In [23], a CFO-assisted synchronization algorithm for TDOA
localization has been proposed. Here, the CFO is used to correct the TOA
at each receiver with respect to the reference node. Although FlexTDOA is
different from the TDOA scheme proposed in [23], both works correct errors
in a similar way. We also evaluate the feasibility of the CFO-based correction
experimentally using a commercial UWB system. In [23], the method was
evaluated in simulations and using software-defined radios.

5.2 Improved TDMA Scheduling for TDOA
Localization

In the “classic” TDOA approach, there is a single designated reference an-
chor which broadcasts the synchronization message. The rest of the anchors
respond to the broadcast in a pre-defined order. However, since the TDOAs
are computed with respect to the message broadcast by the synchronization
node, this method is not robust in case the path between the tag and the
synchronization anchor is obstructed. In this case, the synchronization mes-
sage will arrive at the tag with a delay δ. All the TDOAs derived from the
subsequent responses will be biased with −δ 1. This scenario motivated us
to implement the proposed FlexTDOA scheme. In the proposed scheme, all
the anchors in the system can become initiators and the order of responses
can also change.

The TDMA scheme we proposed is shown in Figure 5.2. The same TDMA
scheme can be configured for either TWR or TDOA localization. At this
point, we do not distinguish between anchors and tags; instead, we consider

1The change of sign happens because, in TDOA, the TOF between the initiator and the tag
is subtracted from the TOF between the responder and the tag.
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Figure 5.2 TDMA scheduling with changing initiator and responders.

all of them equally-participating nodes. We will make the distinction accord-
ing to the implemented localization method.

The TDMA scheme consist of time slots. One time slot consists of a broad-
cast message, called request, sent by an initiating node, and K responses from
other nodes. We denote the total number of nodes by N and the number of
responses is always smaller than the number of nodes, i.e., K < N.

In a time slot, each transmission of a node takes place in a subslot. The
duration of a subslot is equal to treq

subslot = 2 ms if the transmission consists of
a request message or equal to tresp

subslot = 250 µs if it is a response message.
A time slot starts with a guard time of 250 µs. This is followed by the

request of the initiator. The request includes, in the payload, the number of
nodes that should respond, their ID, and the order in which they respond.
All the other nodes in the system process this request. If a responder was
scheduled to respond in the subslot with index k ∈ {1, ..., K}, then the node
will wait a time equal to (k − 1)× tresp

subslot and then respond. At the end of the
time slot, the initiator processes the responses.

For TWR-based localization, the tag will be configured as the initiator and
the anchors will play the role of responders in the TDMA scheme.

We can implement four variants of TDOA localization with the proposed
TDMA scheme:

• Fixed initiator, fixed responders (FI-FR), or the classic TDOA. The initiator
(or the reference anchor), as well as the order in which the anchors
respond, are both fixed. The anchors respond in ascending order of
their index.

• Fixed initiator, changing responders (FI-CR). The initiator is fixed, but the
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Figure 5.3 Office setup with ten anchors (A0 to A9) and one tag.

order of the responding anchors changes in a round-robin (RR) manner.

• Changing initiator, fixed responders (CI-FR). The initiator changes every
time slot in a RR manner, but the rest of the anchors respond in a fixed
order, according to their index.

• Changing initiator, changing responders (CI-CR). Both the initiator and
the order of responses change every time slot in a RR manner. This is
the scheduling proposed in FlexTDOA. This is the method illustrated
in Figure 5.2, where a succession of time slots cycling through all the
possible initiator anchors in the system is called a frame.

5.3 Evaluation Setup

We evaluate the localization systems in the office shown in Figure 5.3. The
tag is mounted on a rail of approximately 150 cm which moves the tag and
outputs its ground-truth location with millimeter-level precision. Figure 5.4
shows the anchor placement more clearly. The figure also shows four place-
ments of the rail on which the tag was mounted, at which we evaluated the
algorithms.

For the evaluations presented in the thesis, we implemented a localization
algorithms which estimates the user’s location based on a series of consec-
utive measurements using squared error minimization. We denote this al-
gorithm by AlgMin. AlgMin does not track the user’s location and it does
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Figure 5.4 Setup of the anchors and the tag in the (a) xy and (b) xz planes. The
anchors are denoted, according to their index, by A0 to A9. The tracks P1 to
P4 represent the positions of the linear actuator (on which the tag is moving)
at which we evaluate the localization methods.

not smooth the estimated locations. Therefore, it is suitable to evaluate the
impact of various parameters on the localization accuracy (e.g., the number
of responses or anchors). The algorithm can operate with either TWR or
TDOA data. We refer the reader to [P6] for more information related to the
algorithm implementation.

We also implemented a second algorithm based on an Extended Kalman
Filter, called AlgEKF, which updates the location for every incoming mea-
surement. This approach is beneficial because we do not need to wait for
the minimum number of measurements (four in the case of TWR localization
and five for TDOA localization) in order to update the tag’s location. How-
ever, AlgEKF smooths the location estimates and minimizes the impact of
noisy measurements, which makes the comparison between the localization
methods more difficult. Therefore, we use AlgEKF only when we compare
setups that generate different numbers of equations per time slot, as in the
case where we evaluate the impact of the number of responses for different
tag speeds. We did not include this evaluation in the body of the thesis, but
we direct the reader to [P6] for more information on the algorithm and its
corresponding evaluation.

CFO correction is implemented for all localization techniques (based on
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TDOA and TWR alike).
Throughout the rest of the chapter, localization errors are computed as

the Euclidean error between the true location of the tag and the estimated
location of the tag in a 3D space, as in Eq. (3.2).

5.4 Results

In [P6], we evaluated the impact of multiple parameters on the accuracy
of TDOA measurements or of the localization accuracy: the order of re-
sponse in a time slot, the number of responses per time slot for different
location update rates, the number of anchors, the chosen TDOA variant (with
fixed/changing initiator and/or responders), and NLOS propagation.

In this section, we will review the results only for selected parameters. In
Section 5.4.1, we discuss the effect of the response order on the accuracy of
TDOA measurements and its implications for localization. In Section 5.4.2,
we evaluate the impact of each TDOA scheduling variant on the localiza-
tion accuracy. In Section 5.4.3, we analyze the classic TDOA, the proposed
FlexTDOA, as well as TWR-based localization under NLOS conditions.

5.4.1 Optimal Number of Responses per Time Slot

In the proposed TDMA scheme, we can vary the number of responses in a
time slot between K ∈ {1, ..., N − 1}, where N is the total number of anchors
in the system. However, with more responses, there is a longer delay between
the request and the last response. Because of the relative clock offset between
the responder and the tag, the timing error increases proportionally with the
delay between the request and the response.

To evaluate the magnitude of the TDOA measurement error, we record
TDOA measurements during an experiment with N = 10 anchors, K = 9
responses, during which the tag does not move. Knowing the ground truth
locations of the anchors and of the tag, we can compute the true TDOA
between the tag and each two anchors. We denote the TDOA measurement
between the tag and anchors Ai and Aj as d̃TAi Aj . Similarly, the true TDOA is
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denoted by dTAi Aj . We then define the TDOA error as:

eTDOA = d̃TAi Aj − dTAi Aj . (5.1)

The TDOA error is computed for each anchor and for each response order.
For instance, for a fixed initiating anchor Ai, the errors for the first response
order are computed based on the measurements from all anchors Aj for j ∈
{0, ..., 9} with Ai ̸=Aj, where Aj was the first anchor to respond in a time slot.

Figure 5.5a shows the distribution of TDOA measurement errors accord-
ing to the order of the response (or subslot). The whisker spread of TDOA
errors increases with 14.7 cm between the last and the first in the list of re-
sponses. The results are as we would expect according to the theory. The
error caused by the relative clock skew between two devices increases with
a longer waiting time between the initiator’s message and the response. The
measurements are therefore corrupted by noise.

Over many measurements, the mean error converges to approximately
zero for every order of response. On the other hand, the noise in each mea-
surement increases with the order of response. Therefore, for a relatively
static tag, averaging the TDOAs over more responses could increase the ac-
curacy. However, for tags moving at high speeds, where averaging is not
possible because the location changes at a fast rate, it is preferable to use a
smaller number of responses to minimize the clock drift error. In [P6], we
further explore this aspect by evaluating the optimal number of responses
for different simulated tag speeds.

Since the TDOA measurement error increases with the order of response,
we evaluate how the localization accuracy changes with the number of re-
sponses in a time slot in FlexTDOA.

For this experiment, we keep the same number of anchors as before (N =

10) but we vary the number of responses K ∈ {1, ..., 9}. The tag is moving
along the P1 position of the rail shown in Figure 5.4. Figure 5.5b shows the
TDOA localization error with an increasing number of responses. As pre-
dicted, the localization error is the lowest for the least amount of responses.
However, the increase in the mean and IQR of the localization error for a
higher number of responses is almost negligible: less than 3 cm with nine vs.
one responses.
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Figure 5.5 (a) TDOA measurement error variation with the order of response in a time
slot. The TDOA measurement error increases with the index of response
because of the higher clock drift error in the processing time. (b) TDOA
localization error variation with the number of responses in a time slot. Sim-
ilarly, the TDOA localization error increases with the number of responses
because of the higher clock drift error present in later responses.

Although we would be tempted to say that one response per time slot
is the optimal configuration, because it results in the lowest TDOA mea-
surement error, there are more factors to consider. First, for a fixed period of
time, the number of TDOA measurements decreases inversely proportionally
to the number of responses per time slot. This is because the initiator’s re-
quest adds an overhead. This means that, over the same time period, we have
less measurements for localizing tags with a smaller number of responses.

Second, the energy consumed by the tag to receive a certain number of
TDOA measurements increases inversely proportionally to the number of
responses, because of the same overhead. Publication [P6] includes a more
in-depth analysis of the optimal number of responses given either a fixed
time or a fixed energy budget for different localization update rates.

5.4.2 Channel Diversity

In this section, we evaluate to what extent the localization accuracy is im-
proved by changing the initiating anchor and/or the order of responses in
the four variants of TDOA scheduling: FI-FR (also called the classic TDOA),
FI-CR, CI-FR, CI-CR (implemented in FlexTDOA). We perform three experi-
ments for each scheme, for (N, K) ∈ {(5, 4), (7, 6), (10, 9)}. For these experi-
ments, the tag is moving only along position P1 (Figure 5.4).
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Figure 5.6 Comparison between FI-FR (classic TDOA), FI-CR, CI-FR, and CI-CR
(FlexTDOA) for different numbers of anchors (N) and of responders (K).

Figure 5.6 shows the error distributions obtained with each of the setups.
For five and seven anchors, the schemes with a fixed initiator (FI) have the
highest localization errors. However, the trend is reversed for ten anchors.
One explanation for this is that, when using ten anchors, we placed some of
the anchors on the ground or on the tables. We noticed that these anchors
have slightly higher ranging errors than the ones placed, for instance, on
the ceiling. When these anchors with non-ideal conditions become initiators,
they drive the localization errors higher. Therefore, in the setup with ten
anchors, the localization errors obtained by the FI schemes are slightly lower
than for CI schemes, because the initiating anchor in the former is placed at
an ideal location.

We also notice that changing the responders does not significantly affect
the localization accuracy. Instead, it is the initiator who plays a crucial role
in the location estimation. This is because all the TDOAs in a time slot
are computed relative to the initiator’s time frame. If an error occurs when
timestamping the initiator’s message, then the error will affect every TDOA
in that time slot. Because of this, starting from now, we will consider only the
FI-FR and CI-CR schemes. We alternatively call them the classic TDOA and
FlexTDOA, respectively. FlexTDOA is the proposed method for improving
the classic TDOA localization.

We further evaluate to what extent the channel diversity improves the lo-
calization accuracy in LOS conditions when comparing the classic TDOA and
FlexTDOA. We evaluate the localization errors for (N, K) ∈ {(5, 4), (7, 6), (10, 9)}
at three positions of the rail on which the tag moves, denoted by P1, P2, and
P3 in Figure 5.4.
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Figure 5.7 Distributions of the localization errors of classic TDOA (FI-FR) and
FlexTDOA (CI-CR), in LOS, aggregated over all the evaluated positions (P1,
P2, P3).

We let each experiment for each location, for every method, and combi-
nation of (N, K) run for approximately one minute and a half. This gives
us around 7000 location estimates computed using AlgMin. We provide the
aggregated statistics for the three locations of the rail (P1, P2, P3), which
amount to approximately 21,000 location estimates for each method and
(N, K) combination.

Figure 5.7 shows the distributions of the localization errors for the classic
TDOA and FlexTDOA, aggregated over locations P1, P2, and P3. Because the
measurements were acquired in LOS, where the channel between the anchors
and the tag is already “ideal,” we do not expect to see a large improvement
brought by the channel diversity in the case of FlexTDOA. Indeed, FlexTDOA
yields similar errors to the FlexTDOA.

The LOS evaluation sets a baseline for comparison and allows us to verify
that FlexTDOA does not degrade the accuracy in LOS conditions. A degra-
dation could be possible if, for instance, not all anchors had equally good
channels to the tag. As we have previously seen in Figure 5.6, the chan-
nel between the initiating anchor and the tag is the most important factor
for obtaining a high accuracy. Therefore, if anchors with poor channels to
the tag (for instance, caused by strong nearby reflectors) become initiators in
FlexTDOA, we could expect higher localization errors from FlexTDOA than
from the classic TDOA.
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(a) (b)

Figure 5.8 Setups used to acquire NLOS measurements. The setup in Figure 5.8a
corresponds to position P1 from Figure 5.4. It includes one aluminum panel
placed as a blocker between anchor A1 and the tag. Figure 5.8a corresponds
to the position P4 from Figure 5.4. It includes two aluminum panels that
block the initiating anchor A1 and various anchors depending on the tag’s
position on the rail.

5.4.3 NLOS Propagation

Obstacles between the nodes of a localization system are an integral part of
any real-life deployment of a localization system. In this section, we evaluate
the performance of the three localization approaches considered so far, based
on TWR, the classic TDOA, and FlexTDOA, in NLOS conditions.

We acquired measurements at positions P1 and P4 from Figure 5.4. At P1,
we placed a panel covered in aluminum foil between the anchor A1 and the
tag, shown in Figure 5.8a. At P4, we placed two aluminum panels, shown in
Figure 5.8b. The panel on the left blocks anchors A0 and A9 completely and
anchors A4, A7, A8 partially, depending on the position of the tag on the rail.
The rightmost panel blocks A1 completely (which is the initiator in the classic
TDOA scheme) and A5 partially.

Figure 5.9 shows the distribution of 3D localization errors aggregated over
both locations. The proposed TDOA scheme, FlexTDOA, yields a higher
accuracy than the classic TDOA in all NLOS scenarios. With five anchors,
the improvement is modest, with a reduction of 5–7 cm in the median and
P95 errors. However, for seven and ten anchors, FlexTDOA achieves a marked
reduction in the P95 localization error compared to the classic TDOA, by 19 %
and 38 %, respectively.

As predicted, TWR has the lowest errors in all evaluated scenarios. This
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Figure 5.9 Localization errors in NLOS obtained with TWR, classic TDOA (FI-FR), and
FlexTDOA (CI-CR). The errors are aggregated over both NLOS positions of
the tag (P1 and P4).

is because, in TWR-based localization, obstructions between an anchor and
the tag affect only the distance between them. Consequently, the error might
affect the location estimate only to a small degree if the rest of the distance
measurements have high accuracy.

In contrast, in TDOA localization, an obstruction between the reference
anchor and the tag affects all the TDOAs from that time slot. Therefore,
the location estimate is more prone to biases. This is why FlexTDOA has
an advantage over the classic TDOA. If we change the initiating anchor, we
minimize the risk that one obstructed anchor will lead to high localization
errors at all times. The increased channel diversity brought by using all
anchor–tag combinations improves the robustness of the system.

We must remember that, even though TWR-based localization yields the
highest localization accuracy, it scales poorly with the number of tags. If we
use N = 9 anchors, the time slot needs to have a duration of at least 10 ms
(according to the time slot structure presented in Section 5.2). Therefore, at
most 100 tags could be localized every second using TWR-based localization.
Actually, the number could be even smaller given that a certain air time
would be needed to synchronize the access of the tags to the channel on
the uplink. On the other hand, TDOA localization can scale to an unlimited
number of tags. In the same example, each tag could individually obtain 100
locations per second regardless of how many other users are in the area.
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5.5 Summary

In [P6], we presented a new flexible scheduling scheme for TDOA localiza-
tion called FlexTDOA that fully exploits the channel diversity in the environ-
ment. We compared FlexTDOA against the classic TDOA implementation
and against range-based localization in a deployment of ten anchors and one
tag in an office environment. FlexTDOA achieves the lowest localization er-
rors in most scenarios, with and without obstructions. We also evaluated the
impact of several factors on the TWR/TDOA and localization accuracy: the
order of response, the number of responses, the update rate (or speed) of the
tag, and the number of anchors. Our evaluation can be used to choose the
optimal configuration of a UWB localization system in future deployments.

FlexTDOA has higher localization accuracy than the classic TDOA in most
scenarios, most notably in the presence of obstructions. In LOS, the improve-
ment brought by FlexTDOA in the median localization accuracy compared
to the classic TDOA is small, around 2–3 cm. This is not surprising, because
the initiator in the classic TDOA already had a good propagation link to the
tag. The robustness added by the increased diversity of FlexTDOA is more
evident in NLOS. When using obstructions, FlexTDOA achieves up to 38%
smaller P95 localization errors than the classic TDOA. Overall, FlexTDOA has
a median localization error of 13–17 cm in LOS and 15–22 cm in NLOS (the
error depends on how many anchors are used).

While the flexible TDOA scheduling scheme decreased the localization
error in most scenarios, the channel diversity can be detrimental to the accu-
racy in cases in which anchors that are obstructed from the tag or from other
anchors become initiators. Therefore, in the future, we will propose an an-
chor selection method that prevents such anchors from becoming initiators.
Such a method should adjust to the channel conditions in real time, so that
anchors can be both added to and removed from the blacklist, and should
be flexible enough to adapt to multiple environments (and not, for instance,
based on hard-coded thresholds).

In a real deployment, the proposed system needs to be scaled up to a
multi-room or building environment. This setup will raise more issues that
need to be addressed. First, communication range rarely extends beyond a
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room. Therefore, the TDMA scheme needs to be improved so that initiators
interrogate only other anchors in their radio range (or, preferably, in LOS).
Also, the same time slots should be reused between locations that have no
direct radio connections. Second, the tag should select and use in the local-
ization process only the “best” TDOAs. A quality metric should be devised
such that TDOAs resulting from poor anchor–tag links are discarded.

A pressing issue in the large-scale adoption of UWB localization systems
is the initial calibration and deployment of the anchors. In most anchor-based
localization systems, the anchors’ location is assumed to be known with mil-
limeter accuracy, in order to minimize localization errors. In FlexTDOA,
because the anchors were in LOS of each other, we could use the pair-wise
distances between anchors measured via UWB. We averaged the distances
over several minutes such that the mean error of the distance measurements
was under 1 cm. Moreover, we used a laser range finder to validate that
the measured distances were accurate. However, in a multi-room environ-
ment, some of the anchors will be in NLOS of each other. In this scenario,
the anchor localization will need to be adapted to a network with densely-
connected groups (formed by anchors placed in the same room) but with
sparse connections between different groups (where the groups are formed
by anchors placed in different rooms).
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6 CONCLUSIONS

The thesis explored issues related to the robustness, energy efficiency, ac-
curacy, scalability, and cross-platform compatibility of UWB localization sys-
tems. We compared the energy efficiency and accuracy of UWB PHYs in [P1]
and [P2]. In [P3], we focused on the cross-platform compatibility of error-
mitigation techniques in UWB localization systems. The robustness aspect
was covered in all publications, since we investigated the performance of the
localization systems in NLOS scenarios in all cases. In addition, in [P4], we
proposed a solution for detecting and mitigating NLOS errors in UWB local-
ization systems without manually-collected data. In [P5], we investigated
the robustness of BLE RSS measurements under multipath and NLOS prop-
agation. The study can be used as a benchmark to compare BLE and UWB
ranging/localization systems or to integrate them in a hybrid UWB–BLE po-
sitioning system. In [P6], we proposed a scalable and robust TDOA localiza-
tion system based on UWB devices. The accuracy aspect was an integral part
of all the publications related to UWB, as we investigated the ranging and/or
localization accuracy of the proposed systems under multiple conditions.

6.1 Main Results

We summarize the main results and findings of the thesis in view of the
research questions (RQs) proposed in Chapter 1.

RQ1: How do UWB physical interfaces compare in terms of energy efficiency, max-
imum range, and accuracy?

The analysis on the energy efficiency and accuracy of HRP and LRP UWB
PHYs from [P1] and [P2] revealed that the LRP PHY can enable localiza-
tion applications with 6.4× less energy consumption than HRP devices in
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the short-range mode or with 100× less energy consumption than HRP de-
vices that achieve a similar range. Therefore, the LRP PHY is suitable for
ultra-low power devices and wearables. On the other hand, the accuracy
and precision of the LRP devices we investigated was slightly lower than the
one of HRP devices. For instance, the distance measurements of HRP de-
vices had a standard deviation of up to 2 times lower than the one of LRP
devices. Therefore, the HRP PHY might be preferable in applications where
ranging/localization accuracy is critical. The studies [P1] and [P2] serve
as a benchmark for comparing UWB PHYs and assessing which devices are
more suitable for particular applications.

RQ2: What implications do different UWB hardware architectures have on the
cross-platform compatibility of localization systems?

In [P3], we brought to researchers’ attention the issue of cross-device com-
patibility in error-mitigation techniques for UWB localization systems. To
this end, we identified four main challenges standing in the way of platform-
independent UWB localization systems.

First, we observed that measurements acquired with different devices un-
der identical environmental conditions have different error statistics. Second,
we showed that NLOS errors depend not only on the obstacle and environ-
ment, but also on the hardware and its TOA estimation algorithm. Therefore,
even measurements acquired with the same device can fluctuate. Third, we
showed that CIRs acquired by different platforms at the same locations have
different effective lengths, shapes, and statistics. Therefore, error-mitigation
techniques based on CIRs are highly device-dependent. Finally, we docu-
mented the fact that different vendors provide different types of measure-
ment diagnostics, using incompatible or unspecified units of measurements.
Therefore, error-mitigation techniques based on such diagnostics are also
device-dependent.

RQ3: How can we mitigate the impact of NLOS propagation on UWB localization
accuracy without manually-collected training data?

In [P4], we proposed a method to improve the robustness of UWB lo-
calization systems in NLOS propagation without the need to collect train-
ing data sets. The method arose from a real difficulty in the Author’s re-
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search: the extremely laborious and time-consuming process of collecting
measurements for developing and testing localization algorithms. Therefore,
we sought to bypass this process by proposing a method that could learn
from measurements acquired in real-time. We did that by observing that
NLOS anchors leave artifacts in the localization process that can be used to
identify them and mitigate their errors. The proposed method reduced the
mean localization error by 2.2× and the standard deviation of location errors
by 5.8× compared to the baseline case with no error mitigation.

One drawback of the proposed method is that it needs at least one more
anchor than the minimum necessary for localization in order to identify the
NLOS anchor(s). However, UWB devices are not expensive: their price is
in the range of tens of dollars and will decrease further as the technology
becomes more widely deployed. Therefore, having more than the minimum
number of anchors in a particular setting should not be an issue. Another
limitation is that we did not evaluate the method in a real localization sce-
nario. Therefore, future work should investigate how many measurement
samples are necessary to achieve the same improvement in a practical de-
ployment.

RQ4: How does UWB compare to complementary low-power technologies, such as
BLE, in terms of ranging performance?

Based on the research from [P5], we showed that BLE RSS measure-
ments are highly vulnerable to fluctuations in indoor environments. The
variability can be caused by the environment (i.e., the multipath propaga-
tion conditions), obstructions, hardware, the advertising channel used, or
the co-existence of Wi-Fi and BLE technologies on the same chipset. There-
fore, BLE can typically achieve a ranging accuracy on the order of meters,
while UWB has a ranging accuracy of several centimeters. However, BLE can
complement UWB in localization applications by providing advertising and
communication capabilities with an energy consumption up to 3–4.5 times
lower than UWB. In addition, since BLE is already widely available in many
wearables and sensors, it can facilitate the integration of a joint BLE–UWB
localization solution in existing systems.
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RQ5: How can we achieve scalable and robust UWB localization?
In publication [P6], we proposed a localization system based on UWB

devices that implements a flexible TDMA scheme for TDOA localization.
We chose to implement a TDOA variant in which the tag is passive, which
allows our system to scale with an unlimited number of users, similar to
GNSS. Previous to our work, most TDOA localization systems considered
only rigid scheduling schemes, with a designated reference anchor and a
fixed order of responders. However, we discovered that this approach is
not robust in NLOS propagation, especially when the link between the tag
and the reference anchor is obstructed. Therefore, we proposed a flexible
TDOA scheme in which every anchor can become a reference and the order
of responses can also change. We evaluated multiple system parameters
and the impact brought by the improved channel diversity of the proposed
TDMA scheme.

We compared the proposed TDOA system to the classic TDOA approach
and range-based localization. The improved robustness of the proposed
method was evident in the experiments performed in NLOS conditions. The
proposed TDOA method outperformed the classic TDOA in all experiments,
reducing the 95% localization error with up to 16 cm. The proposed TDOA
method even outperformed range-based localization with five and seven an-
chors, as it decreased the localization error with up to 10 cm. With ten an-
chors, range-based localization slightly outperformed the proposed TDOA
method, the two algorithms achieving a 95% error of 29.4 cm and 32.4 cm,
respectively. However, unlike TDOA, range-based localization does not scale
with an unlimited number of tags. Therefore, we showcased a new TDOA
localization system with unlimited scalability and improved robustness in
most scenarios compared to state-of-the-art localization algorithms.

One possible drawback of the proposed TDOA method is that it might not
achieve the best localization accuracy in case several anchors are obstructed
or have poor links to the tag. In this case, the localization accuracy might be
lower than, for instance, in the case in which there is a single initiating an-
chor with a good link to the tag. This is because, in the proposed method, all
anchors become initiators and the resulting localization accuracy is averaged
over all possible anchor combinations. One solution is to devise a measure-
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ment selection procedure in which TDOAs with a poor quality factor are
not used in the localization process. This could be achieved, for instance, by
tracking the standard deviation of the TDOA measurements over time.

6.2 Future Research Directions

While UWB technology has been extensively researched during the past
20 years, localization systems based on UWB communication have not yet
reached their maturity. As such, there are still pressing issues in UWB local-
ization systems that need to be addressed.

The adoption of UWB devices for building-wide public deployments is
still impeded by certain factors. The first is related to the presence of UWB
chipsets in user devices. Although UWB chipsets have been introduced in
smartphones since 2019 [74, 81, 93], mobile applications using UWB have
not followed the hardware adoption at the same rate. One reason is that
the link budget of UWB communication still has to be improved. This is an
enhancement currently targeted by the IEEE 802.15.4 Task Group 4ab [46].
In addition, the energy (in)efficiency of UWB devices could prevent their
adoption in small wearables. As we saw in Chapter 4, UWB HRP devices
consume 3–4.5× more energy per ranging measurement than BLE devices.
In comparison, UWB LRP devices have an energy consumption of the same
order of magnitude as BLE devices but are not as widely-adopted as their
HRP counterparts.

Second, the deployment of anchors on top of existing infrastructure is dif-
ficult. Anchors are frequently assumed to have fixed and known locations in
order to locate the tag with maximum accuracy. In a single room, it is rel-
atively easy to obtain the anchors’ locations with millimeter-level accuracy
using common tools such as a laser range finder. In [P6], we relied on UWB
distances averaged over several minutes to compute the anchors’ locations.
We validated that the anchors’ locations computed in this way were within
several millimeters of the true locations. However, this procedure was facili-
tated by the fact that the anchors were in LOS of each other. In a multi-room
deployment, the anchors would be placed, most likely, in room-wide clus-
ters and anchors from different clusters will be in NLOS. Therefore, future
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research should investigate how to simplify the deployment of infrastructure
necessary for UWB localization.

Third, and perhaps the most important, UWB localization systems have
not been extensively evaluated in multi-room deployments besides work
done in [31]. In such scenarios, scalable TDMA schemes that cover an-
chor and tag transmissions need to be implemented. We believe that the
FlexTDOA system from [P6] provides a solid base for extending location
services to building-wide areas. In the future, the FlexTDOA system will also
be evaluated in multi-room scenarios. The localization accuracy in transition
areas between clusters of anchors also needs to be evaluated, as location es-
timates usually degrade outside the convex hull formed by the anchors [98].

The robustness of UWB localization systems in NLOS propagation is still
far from being fully addressed. As we highlighted in [P3], ML techniques
can show quick and easy improvements of the localization accuracy, but the
results often do not extend past the environment in which the model was
trained and tested [7]. Work in adjacent fields has shown that the perfor-
mance of models often generalizes better when training on a combination of
synthetic and real datasets instead of relying on real measurements alone [95,
125]. In [P4], we proposed a framework that learns based on data acquired
in real-time, but more work is needed to see how much data is needed to ob-
tain the same results in real deployments and how often the models would
need to be updated with new data.

Most existing ML approaches for improving the resilience of localization
systems in NLOS propagation suffer from cross-device compatibility issues,
as shown in [P3]. Therefore, more work is needed to ensure that robustness-
enhancing methods can yield similar results across different devices.

Finally, integrated sensing and communication (ISAC) is a hot topic in
WiFi, 5G, and 6G communications [63]. Recent works are investigating ICAS
for UWB devices as well [25] and integrating the concept in real-life applica-
tions, e.g., detecting car occupancy using UWB infrastructure [67]. As UWB
devices become more present in our day-to-day lives, the possibilities for
integrated sensing and communication—or, rather, integrated sensing and
localization—should also expand to enable surrounding devices to better re-
act to our presence and movement.
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Behnam Dezfouli. “Empirical analysis and modeling of Bluetooth low-
energy (BLE) advertisement channels”. In: 2018 17th Annual Mediter-
ranean Ad Hoc Networking Workshop (Med-Hoc-Net). IEEE. 2018, pp. 1–
6.

123

https://developer.apple.com/nearby-interaction/
https://developer.apple.com/nearby-interaction/
https://doi.org/10.1109/RADIOELEK.2016.7477344


[80] nRF52840: Multiprotocol Bluetooth 5.3 SoC supporting Bluetooth Low En-
ergy, Bluetooth mesh, NFC, Thread and Zigbee. https://www.nordicsemi.
com/Products/nRF52840. Accessed on 29-11-2022.

[81] NXP’s Trimension™Ultra-Wideband Technology Helps Samsung Users Eas-
ily Find Their Misplaced Belongings. https : / / www. nxp . com / docs /
en/supporting- information/NXPs- TrimensionTM- Ultra- Wideband-
Technology-Helps-Samsung-Users-Easily-Find-Their-M.pdf. Accessed
on 29-11-2022.

[82] Serban Georgica Obreja and Alexandru Vulpe. “Evaluation of an in-
door localization solution based on bluetooth low energy beacons”.
In: 2020 13th International Conference on Communications (COMM). IEEE.
2020, pp. 227–231.

[83] Aleksandr Ometov, Viktoriia Shubina, Lucie Klus, Justyna Skibińska,
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Abstract—Ultra-wideband (UWB) communication is attract-
ing increased interest for its high-accuracy distance measure-
ments. However, the typical current consumption of tens to
hundreds of mA during transmission and reception might make
the technology prohibitive to battery-powered devices in the
Internet of Things. The IEEE 802.15.4 standard specifies two
UWB physical layer interfaces (PHYs), with low- and high-
rate pulse repetition (LRP and HRP, respectively). While the
LRP PHY allows a more energy-efficient implementation of the
UWB transceiver than its HRP counterpart, the question is
whether some ranging quality is lost in exchange. We evaluate
the trade-off between power and energy consumption, on the one
hand, and distance measurement accuracy and precision, on the
other hand, using UWB devices developed by Decawave (HRP)
and 3db Access (LRP). We find that the distance measurement
errors of 3db Access devices have at most 12 cm higher bias
and standard deviation in line-of-sight propagation and 2–3
times higher spread in non-line-of-sight scenarios than those of
Decawave devices. However, 3db Access chips consume 10 times
less power and 125 times less energy per distance measurement
than Decawave ones. Since the LRP PHY has an ultra-low energy
consumption, it should be preferred over the HRP PHY when
energy efficiency is critical, with a small penalty in the ranging
performance.

Index Terms—Ultra-Wideband (UWB), Distance Measure-
ment, Accuracy, Energy Efficiency

I. INTRODUCTION

Ultra-wideband (UWB) radio frequency (RF) signals have
a high time resolution which enables the precise timestamping
of their reception. As a result, they can provide time-of-
flight (ToF) measurements with sub-nanosecond accuracy
which can be further converted into distance and location
information with cm- or dm-level accuracy [1], [2]. Location
awareness can augment the capabilities of devices in the
Internet of Things (IoT) and is often used in wireless sensor
networks, industrial processes, or health-related applications.
UWB devices usually consume tens to hundreds of mA,
making them fit for localization tasks on energy-constrained
devices. Their popularity has therefore risen and they have
been recently included in smartphones [3], facilitating their
large-scale deployment on the consumer market. Moreover,
enhancements to the ranging capabilities of UWB devices are

The authors gratefully acknowledge funding from European Union’s Hori-
zon 2020 Research and Innovation programme under the Marie Skłodowska
Curie grant agreement No. 813278 (A-WEAR: A network for dynamic
wearable applications with privacy constraints, http://www.a-wear.eu/).

currently being developed by the IEEE 802.15.4z Enhanced
Impulse Radio (EIR) Task Group [4]. An overview of the
enhancements to the IEEE 802.15.4 standard proposed by the
EIR Task Group 4z can be found in [5].

The IEEE Standard for Low-Rate Wireless Networks
802.15.4 [6] specifies two UWB physical interfaces (PHYs),
that use that use high- and low-rate pulse repetition (HRP
and LRP, respectively). Transmitting pulses at low rates
means that a single pulse can have the highest energy under
UWB regulations [7]. The high instantaneous pulse amplitude
enables the implementation of LRP PHYs with non-coherent
receivers which are more energy-efficient than coherent ones.
If we increase the pulse rate, we must decrease the energy per
pulse, causing link budget losses which can be compensated
by coherent pulse integration [8].

The LRP PHY, therefore, can be implemented with a more
energy-efficient transceiver design than the HRP PHY, suitable
for low-complexity active RFID tags. Coherent and non-
coherent architectures have been compared from a theoretical
standpoint in [9] and the authors found that the latter typically
have an SNR loss of at least 5 dB but better multipath, phase
jitter, and synchronization characteristics than the former.

The effect of LRP and HRP PHYs on distance measurement
quality has not yet been evaluated. Previous work has focused
mostly on the ranging accuracy of UWB devices [10]–[12]
— most often, the Decawave DW1000 IC [13], which imple-
ments the HRP PHY — or on integrating UWB devices in
localization systems [1], [2]. Comparisons of UWB devices
have evaluated only the distance measurement accuracy, with-
out regards to the power and energy consumption [14]–[16].
Moreover, only one of them has included an LRP PHY device
(developed by Ubisense) [14].

To the best of our knowledge, we are the first to compare
the distance measurements and power and energy consump-
tion of LRP and HRP devices. To quantify the trade-off
between energy consumption and ranging quality, we per-
form measurements using two commercially-available UWB
devices: the Decawave DW1000 IC (HRP) and the 3db Access
3DB6830C IC [17] (LRP)1.

The main contributions of this paper are the following:

1We will refer to the 3db 3DB6830C (Release 2016) and the Decawave
DW1000 (Release 2014) as the 3db and Decawave ICs, respectively.



• We measure the average power consumption of the
chosen devices in the receive, transmit, and idle modes
and compute their energy consumption per ranging.

• We compare the channel impulse responses (CIRs) of
3db and Decawave devices acquired in identical settings,
which are essential to understand the distance estimation.

• We compare the range of 3db and Decawave devices.
• We conducted an extensive distance measurement cam-

paign with 3db devices in indoor multipath environments.
We compare our ranging results with already-published
results on Decawave devices [10]–[12], [15]. We classify
distance measurement errors based on whether they were
acquired in line-of-sight (LOS) propagation, with no
obstruction between the transmitter and the receiver, or
non-line-of-sight (NLOS) propagation, when an object
blocks the direct path.

II. DEVICE CHARACTERISTICS

Decawave devices are compliant with the HRP PHY de-
fined in the IEEE 802.15.4a amendment, now part of the main
standard [6]. They are the most widely-used UWB devices,
which is why we chose them to represent the HRP PHY class.
The 3db IC is compliant with the LRP PHY specified in the
upcoming IEEE 802.15.4z amendment [4]. The chip is already
used for secure keyless car access but it has not been evaluated
in high-accuracy applications so far.
In this section, we study how Decawave and 3db devices

differ in terms of pulse repetition frequency, receiver archi-
tecture, and ranging methods in Sections II-A, II-B, and II-C,
respectively. We also highlight how their characteristics affect
the power consumption and distance measurement accuracy.

A. High- and Low-Rate Pulse Repetition

UWB transmissions have to satisfy two constraints im-
posed by international regulations [18]: a maximum average
power spectral density (PSD) of −41.3 dBm/MHz (averaged
over 1ms) and a maximum peak power spectral density of
0 dBm/50MHz. UWB devices can therefore transmit over a
fixed period of time either few pulses at high power levels or
a large number of pulses with lower transmit power. The first
situation falls under the LRP specification and is employed by
3db devices, while the latter is known as HRP and is used by
Decawave. If optimally employed, both of these technologies
benefit from an equal average transmitted RF energy.

Since the HRP PHY transmits individual pulses with lower
energy than the LRP, the received pulse energy is also lower
for the same path loss (same distance). Therefore, the HRP
PHY needs more sophisticated techniques to extract weaker
pulses from the receiver noise, typically performed with
correlations over a large number of samples.

B. Device Architecture

Owing to the LRP PHY, 3db devices can be implemented
with a non-coherent receiver based on energy detection (ED)
for signals modulated with binary frequency-shift keying

(BFSK). This signaling scheme allows the circuitry imple-
mentation of the receiver to be more energy efficient than the
coherent Decawave receiver.

Coherent receivers have low sensitivity to inter-symbol and
co-user interference and benefit from the multipath diversity
of the UWB channel [19]. At the same time, the receiver
architecture demands high computational resources and hard-
ware complexity [20]. For optimal reception, the coherent
receiver needs to estimate the multipath delays, their channel
coefficients, and the pulse shape distortion [20]. Precisely
estimating the carrier phase is crucial for recovering the
baseband pulse, since inaccuracies will result in signal power
loss and crosstalk interference in PSK-modulated signals [21].
For a carrier frequency of 8GHz, a time shift of half of the
pulse period flips the phase of the signal, so coherent UWB
systems generally tolerate rotations only within π/4 of the
signal phase (around 30 ps). These requirements increase the
power consumption of coherent demodulators [19].

Non-coherent receivers estimate channel coefficients based
on the envelope rather than the phase and amplitude of
the received signal, relaxing synchronization constraints. The
timing requirements of a non-coherent receiver are dependent
only on the pulse envelope, which is related to the pulse
bandwidth. For instance, if the pulse bandwidth is 500MHz,
the non-coherent receiver needs to operate with a timing
resolution of 1 ns and does not need sophisticated RF carrier
synchronization. Therefore, non-coherent receivers can be
more energy-efficient albeit with a higher bit error probability
in comparison with the coherent architecture [21].

C. Ranging Methods

A popular application for UWB devices is indoor local-
ization. Owing to the high time resolution of UWB signals,
time-based localization techniques are the most suitable for
UWB devices [22]. In this paper, we chose to compare
the ranging accuracy and precision of the UWB devices
instead of the localization ones for several reasons. First,
many popular localization algorithms (e.g. trilateration) work
directly with distance estimates between the tracked device
(tag) and the reference devices (anchors), so our results can
be used to compute the expected localization accuracy of those
algorithms. Second, localization results are heavily influenced
by factors unrelated to the devices themselves, such as the
anchor placement, the location of the tag2, or the localization
algorithm. Since we are interested in comparing the devices
themselves, it is easier to avoid these effects by evaluating the
ranging performance instead of the localization one. Third,
there are important applications of UWB devices which do
not involve localization, such as keyless car access and, in
the future, possibly contact tracing, so our results can be used
to evaluate which physical interface is more suitable for them.

The distance between two devices can be estimated based
on the time of flight (ToF) of the signal. If we know the

2Localization errors are larger near the anchors and lower in the center of
the tracking area [23].
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Fig. 1: Message exchange in the single- and double-sided two-way ranging
which are the ranging methods of choice for the LRP and HRP PHYs,
respectively.

transmission time (T1) of the signal measured by the sender
and the arrival time (T2) at the receiver, we can compute the
distance as:

d = (T2 − T1) · c, (1)

where c is the speed of light and Tp , T2 − T1 is the
propagation time of the signal. To accurately estimate the
distance, the devices need to be tightly clock synchronized,
as a small mismatch of 1 ns can introduce a distance error
of around 30 cm. Because synchronizing the sender and the
receiver is usually unfeasible in practice, more messages are
exchanged in order reduce such errors, leading to the single-
and the double-sided two-way ranging.

Single-Sided Two-Way Ranging (SS-TWR): The SS-TWR
uses two messages per distance estimate, as shown in Fig. 1a.
The propagation time is:

Tp =
Tround − Tproc

2
, (2)

where Tround is the time spent in one message exchange and
Tproc is the processing time on the responder side. It can be
shown that the error in estimating Tp is [24]:

eTp
= e1 · Tp +

1

2
Tproc(e1 − e2), (3)

where e1 and e2 are the clock drift errors of the initiator
and responder, respectively. The main source of errors in the
SS-TWR are Tproc, which is in the range of hundreds of mi-
croseconds, and the clock drift, which can be up to ±20 ppm
in systems compliant with the IEEE 802.15.4 standard [6].

In the LRP PHY, a location-enhancing information postam-
ble is introduced at the end of each message to estimate the
clock drift error [6]. In addition, the processing time of LRP
messages is shorter than the one of HRP. It is also more
convenient to minimize the number of exchanged messages
in the TWR since this reduces the time needed to obtain one

Fig. 2: The power spectral density of 3db and Decawave ICs.

distance measurement. Therefore, the SS-TWR is usually the
method of choice for LRP devices.

Double-Sided Two-Way Ranging (DS-TWR): Because the
HRP PHY does not include a postamble, it needs another
method to minimize clock drift errors. This can be achieved
by exchanging an additional message, as shown in Fig. 1b,
leading to the DS-TWR. In this case, eTp

is minimized if the
processing times Tproc1 and Tproc2 are equal. However, this
constraint is often hard to enforce in practice. An alternative
DS-TWR has been proposed which minimizes clock drift
errors even with asymmetric processing times [24]. This is
the method currently used by Decawave [13].

III. EVALUATION SETUP

To evaluate how the system architecture influences the
power consumption and distance measurements, we imple-
ment the ranging techniques on 3db and Decawave hardware.
In the following, we describe the device setups.

3db Access: We integrate the 3db chip in an Arduino shield
on top of an Arduino M0 board. The communication between
the chip and the host MCU is performed via SPI. We use the
lowest channel, centered at 6.52GHz, and a peak data rate of
247 kb/s. The 10 dB bandwidth of a pulse is 380MHz and,
because pulse spectra partially overlap in BFSK modulation,
the total system bandwidth is approximately 620MHz. The
packet duration is 400 µs.
Decawave: We use the Decawave EVB1000 evaluation

boards, which include a software kit for ranging applications.
We configure the devices to communicate on a similar center
frequency as 3db ones, of 6.49GHz (Channel 5), using a 3 dB
bandwidth of 499.2MHz (equivalent to a 10 dB bandwidth
of ≈662MHz). We set a data rate of 110 kb/s, a PRF of
16MHz, and a preamble length of 2048 symbols (Mode 3).
The packet duration in this mode is 3487 µs. The lower data
rate allows longer range and increased link budget compared
to higher-rate setups, while the PRF and preamble length were
chosen to minimize NLOS effects.

The lower pulse bandwidth of 3db devices can, in theory,
decrease the ranging precision, due to the lower time resolu-
tion. However, it is compensated by the frequency diversity
added by the BFSK modulation.

Both ICs were configured to operate within UWB reg-
ulations, which specify a maximum transmit level of
−41.3 dBm/MHz [18]. Fig. 2 shows their measured power
spectral densities (PSDs). The maximum transmit levels of



Fig. 3: The power consumption profiles of 3db and Decawave initiators and responders. The average power consumption of 3db devices is about 10 times
lower than the one of Decawave devices in all modes (idle, transmission, reception).

TABLE I: The average power consumption of 3db and Decawave devices in
the transmission (TX), reception (RX), and idle modes.

Device
Average power

consumption [mW]

TX RX Idle

3db Access 20.69 40.70 6.60
Decawave 194.54 492.45 68.78

the DW1000 and the 3db IC are −45.31 dBm/MHz and
−43.86 dBm/MHz, respectively, but they do not include the
antenna gain. The antenna gains of 3db and Decawave devices
are 2 dBi and 3.3 dBi (at the center frequency), respectively,
resulting overall in almost equal PSDs.

IV. EVALUATION

In this section, we measure the average power consumption,
channel impulse response (CIR), range, and distance measure-
ment accuracy and precision of 3db and Decawave devices.

A. Power Consumption

We measured the current consumption of 3db and De-
cawave devices when performing the SS-TWR and DS-TWR,
respectively, with a Keysight DC Power Analyzer. The 3db IC
is powered with 1.25V and the supply voltage of Decawave
is 3.3V. We configured the 3db devices to perform one SS-
TWR every approximately 14ms. The Decawave profile was
obtained with the default firmware of the EVK1000 kit and the
DecaRanging application which uses the DS-TWR method.
Decawave recommends the use of guard times on the order
of hundreds of ms between each message [25]. In our setup,
Decawave devices perform one DS-TWR every 500ms.

Fig. 3 shows the power consumption of the 3db and
Decawave initiators and responders (note the logarithmic y-
axis). We isolate the receive (RX), transmit (TX), and idle
modes and compute the average power consumption of each
state, presented in Table I.

First, each device consumes more power in the RX mode
than in the TX mode. Because of the large signal bandwidth,
receivers need analog-to-digital converters (ADCs) operating
at high sampling rates (on the order of Gsamples/s). This
increases the processing load at the receiver, demanding more
energy consumption. The RX-to-TX average power consump-
tion ratio is approximately 2 in the case of 3db devices and
2.5 in the case of Decawave.

Overall, the average power consumption of the 3db IC is
10 times lower than the one of the Decawave IC. Note that
the average power consumption of Decawave devices in the
idle mode is about 70% higher than the one of 3db devices
in the receive mode, also the most power-hungry state.

Besides these states, both devices have sleep modes which
consume 1 µA (sleep) or 50–100 nA (deep sleep) in the case
of Decawave [13] and 500 nA in the case of 3db. When used
together with the regular operational modes, they can increase
the battery life of the device.

The power consumption profile is a starting point for eval-
uating the energy consumption of an UWB-based localization
system (LS). A localization system (LS) consists of multiple,
fixed devices with known positions (called anchors) which
localize mobile devices (called tags). A key challenge is
minimizing the energy consumption of the tag, which is
usually battery-powered. To avoid synchronizing the tag and
the anchors, the tag can initiate the message exchange and
stay in the idle or sleep mode between rangings. Using the SS-
TWR implies, in this case, that the tag estimates the distance
(or the location). Alternatively, if the tag initiates a DS-TWR,
the anchors are the last entities in the message exchange, so
the anchor estimates the distance (or the location).

To illustrate the energy efficiency of a tag in a LS, let us
consider the most favorable scenario for each device, in which
the tag is the initiator. We disregard the time spent in the
idle mode3 and compute the energy consumption only when
the device is in the TX or RX mode. Because the packet
duration of the 3db chip is 10 times shorter than the one of
Decawave, a 3db tag would consume 0.028mJ per ranging,
while a Decawave tag would need 3.55mJ. Therefore, a 3db
tag can consume 125 less energy than a Decawave tag.

Decawave devices can indeed be more energy-efficient in
the high-rate mode (6.8Mb/s). In the best case, this allows
a 20x shorter packet duration but about 1.4x higher current
consumption [26]. So even in this mode the 3db IC consumes
at least 9x lower energy, without taking into account the idle
time. The 6.8Mb/s mode also reduces the range, as we will
see in Section IV-C.

3The time spent in the idle mode is subject to the desired location update
rate and the chosen guard times. Since they can be chosen freely to a certain
extent, we neglect them in the energy computation.



Fig. 4: Averaged CIRs and their path variations obtained by placing pairs of
3db and Decawave devices in LOS and NLOS of each other in exactly the
same positions.

B. Channel Impulse Response

Time-based ranging methods precisely estimate the moment
at which the signal is received. This corresponds to the leading
edge (LE) of the first peak in the CIR. In the 3db IC, the CIR
is obtained by directly integrating the pulse envelopes. The
DW1000 IC estimates the CIR by accumulating over time
the correlation of the received signal and a known preamble
sequence [13]. Both CIRs have a sampling period of 1 ns.

The measurement quality depends on how the signal prop-
agates between the transmitter and the receiver. In the LOS
scenario, there is a direct, unobstructed path between two
devices, leading to minimal errors. In NLOS propagation,
walls or large objects block the direct path and therefore
attenuate or block the LOS signal. Copies of the signal
reflected on surrounding objects might still reach the receiver,
but the additional delay can introduce large ranging errors
in NLOS scenarios. We should therefore distinguish between
these two cases when analyzing data.

We conducted an experiment in which we placed pairs of
3db and Decawave devices in a LOS and a NLOS scenario, in
exactly the same positions. In the NLOS case, a concrete pillar
was blocking the direct path between the devices. We acquired
approximately 150 CIR realizations in each recording. Fig. 4
shows the aligned and averaged CIRs (truncated to 110
samples) and their path variations. The 3db and Decawave
CIRs contain in total 256 and 992 samples, respectively.

Peaks in the CIR correspond to replicas of the signal
arriving through multiple paths. Because the pulse bandwidth
of 3db devices is significantly lower than the one of Decawave
devices (380MHz vs. 662MHz, respectively), pulses in the
3db CIR are wider. A larger bandwidth increases the time res-
olution of the device, which improves measurement precision.

The ratio between the amplitude of the first path compared
to later replicas is influenced by the RF front-end linearity and
therefore depends on the receiver implementation. One class
of TOA estimators identifies the maximum-amplitude path and
searches backward for the first sample that exceeds the noise
floor and is smaller than the maximum amplitude [27]. In
NLOS, delayed paths with high amplitudes can produce local

TABLE II: The useful range of Decawave and 3db devices.

Device Data rate Range [m]

3db Access 247 kb/s 116
Decawave 110 kb/s 105
Decawave 6.8 Mb/s 80

minima estimates. Therefore, TOA estimation should take into
account NLOS scenarios for the best accuracy.

C. Distance Measurements

Range: We measured the range of Decawave and 3db
devices with no obstruction between the transmitter and the
receiver on a marked running track in increments of 5m. At
each point, we recorded the number of timeouts (messages
without a response). We define the useful range as the distance
at which measurements have less than 10% timeout probabil-
ity. Both devices use the maximum transmission power within
UWB regulations. The range can be extended by increasing
the transmission power and tuning the channel and preamble
length settings (albeit with higher energy consumption). We
also measured the range of Decawave devices in the 6.8Mb/s
mode. TABLE II shows the measured ranges. The range of
3db devices and Decawave devices in the 110 kb/s mode
exceeds 100m. The high-rate mode (6.8Mb/s) of Decawave
has a lower range, of 80m. Therefore, although the high-rate
mode of Decawave reduces the energy consumption, it also
decreases the range.

Accuracy and Precision: To characterize distance measure-
ments, we performed an extensive measurement campaign
using 3db devices. Because Decawave devices have been
included in numerous studies [10]–[12], [15], we rely on
already-published results for the comparison. Except for [12],
which does not specify the Decawave settings used, all the
references use the 110 kb/s data rate.

Our database includes over 12,000 measurements acquired
with the 3db IC in indoor spaces (e.g. large offices, small
rooms, and hallways) labeled as either LOS or NLOS, covered
in almost equal proportions. To reflect typical real-life situa-
tions, we acquired data when devices are stationary or moving
at walking speed. In NLOS measurements, the obstruction was
caused by the human body, walls, or pillars, out of which the
latter two sharply attenuate the direct path. In all NLOS cases,
the signal can still arrive at the receiver through reflections—
in other words, we did not perform experiments in which the
devices are in different rooms.

Since we compare 3db and Decawave devices using mea-
surements obtained in different experiments, there is a chance
that the results differ not because of the devices but due to
the conditions under which they were acquired (i.e. type of
NLOS or multipath environment). On the other hand, this
weakness is also a strength, since by relying on Decawave
results from more sources, it is more likely that they are more
general. When acquiring 3db Access measurements, we strove
to recreate all LOS and NLOS conditions considered in the
papers which used Decawave devices [10]–[12], [15].



Fig. 5: The PDF and boxplots of LOS and NLOS distance measurements
errors of the 3db IC. The median and IQR are, respectively, 9.04 cm and
14.9 cm in LOS and 47.74 cm and 56.3 cm in NLOS.

TABLE III: Mean and standard deviation of ranging errors in LOS and
NLOS with 3db and Decawave devices. We split LOS measurements based
on whether the antennas were facing each other or had other poses.

Device LOS error [cm] NLOS error [cm]
Facing
antennas

Different
antenna poses

3db Access 4.8 ± 8.4 11 ± 15 62.5 ± 104

Decawave
[10] 4.1 ± 3.2 7.3 ± 3.6* 15.6 ± 7.4*
[11] – 0 ± 15 –
[15] 0.3 ± 5.5 – 34 ± 35

* Average over errors with different antenna poses

Fig. 5 shows the probability distribution function (PDF)
of LOS and NLOS errors and TABLE III summarizes their
statistics. In Fig. 5, we restricted the domain to [−0.5, 3] m
for better visualization but the errors extend up to 19.95m.
Measurements outside the shown boundary occur only in
NLOS and represent 0.2% of their total. These outliers are
caused by a miscalculation of the TOA in NLOS scenarios in
the firmware (the issue was later fixed).

In LOS, the irregular radiation pattern of UWB antennas
can cause errors up to ±0.4m with certain antenna align-
ments [28]. Therefore, we distinguish measurements where
the antennas mounted on the devices were facing each other,
which yield the smallest errors, from measurements acquired
with other antenna poses. The 3db Access measurements with
facing antennas were acquired on a running track (the only
outdoor measurements) where we varied the distance between
the devices in steps of 8.5m up to 51m. In comparison with
Decawave, the ranging accuracy and precision of 3db devices
are at most 5.2 cm higher with the fixed antenna pose and at
most 12 cm higher with different antennas poses.

NLOS scenarios cause the reported distance to be greater
or equal than the true one, so the distribution of 3db measure-
ment errors is heavy-tailed and no longer Gaussian-shaped, as
shown in Fig. 5. In NLOS, the bias depends on the additional
path traveled by the signal and can therefore vary between
experiments with different room plans and furnishing. In this
case, the error spread given by the standard deviation or the
interquartile range (IQR) better describes the performance.

In TABLE III, we report the mean and standard deviation
of 3db NLOS measurements in order to be consistent with
cited Decawave results. However, note that these statistics are
shifted upwards because of the infrequent but large outliers,

so the median and IQR characterize the distribution more
robustly. The IQR of the NLOS error distribution is 56.3 cm.
If we eliminate the outliers (which, in a real application, can
be filtered out), the standard deviation is halved to 42.57 cm.

The reported NLOS standard deviation of Decawave de-
vices is 35 cm in office environments [15], between 3.1–
18.7 cm with human body shadowing [10], and around 20 cm
when the path is blocked by panels made of different materials
or concrete walls [12]. NLOS measurements with 3db devices
were obtained with all these types of obstructions. Therefore,
we should compare the 3db error spread with an average over
the reported Decawave standard deviations, which is around
20 cm. The IQR of 3db NLOS errors is therefore 2–3 larger
than the spread of Decawave errors.

V. DISCUSSION

The results in Section IV warrant a discussion about how
the accuracy of distance measurements obtained with the LRP
PHY can be improved while still benefiting from the same low
energy consumption. We identify several improvements that
can be done at the hardware, system, and application level in
Sections V-A, V-B, and V-C, respectively.

A. Hardware Improvements

As noted in Section III, 3db devices have almost half
the pulse bandwidth of Decawave devices. Since the time
resolution of UWB devices is proportional to the pulse band-
width, increasing the latter could improve the TOA estimation
accuracy of 3db devices in both LOS and NLOS conditions.

At the moment, 3db devices can obtain the CIR either from
the preamble or the postamble for a given measurement. If
both CIRs were available at the same time, we could use
a similarity metric to detect significant differences in their
shape, which usually indicates a highly dynamic environment
(i.e. NLOS). Measurements acquired in such conditions could
then be discarded or further processed.

In NLOS situations, ranging errors are exacerbated by the
clock drift estimation. 3db devices detect the TOA of a packet
during the preamble and also during the postamble (at the end
of a frame). The clock offset between two devices is computed
based on the difference between the two TOAs. Since in
NLOS the CIR is highly variable, the postamble TOA might
include not only the clock drift error but also a delay caused
by the excess path traveled by the signal. In this case, the clock
offset estimation will incorrectly compensate for this excess
path, increasing the ranging error even more. Discarding
measurements in which the postamble and preamble CIRs are
very different could therefore reduce the magnitude of NLOS
errors, shortening the tail of their PDF.

B. System Improvements

System-level improvements comprise aspects that can be
implemented (usually in the firmware) with current hard-
ware capabilities. A firmware issue caused large outliers in
3db measurements acquired in NLOS, which significantly
decreased the accuracy and precision of NLOS measurements.



The issue has since been solved, which should show an
improvement in future measurements.

As already noted, the multipath components (MPCs) in the
CIR significantly affect the TOA estimation. In NLOS, the
first path can be very weak (close to the noise floor) and
arrive tens of nanoseconds before the strongest MPC [29], so
customizing the first path detection algorithm for this scenario
could further improve NLOS results.

C. Application Improvements

Localization applications can improve their accuracy
through NLOS detection and mitigation techniques using
data readily available from the hardware, such as the CIR
and its statistics [30]. In addition, filters (e.g. the Extended
Kalman Filter) can be used to remove outliers in distance
measurements frequently encountered in NLOS situations.

VI. CONCLUSION

We compared the power and energy consumption and
distance measurement statistics of 3db Access and Decawave
UWB devices, which implement the LRP and HRP PHYs,
respectively. In LOS propagation, 3db devices have slightly
higher bias and lower precision than Decawave devices. In
NLOS scenarios, the error spread of 3db devices is 2–3
times larger than the one of Decawave. On the other hand,
3db devices have 10x lower average power consumption and
125x lower energy consumption per distance measurement
compared to Decawave devices. Therefore, the LRP PHY is
suitable for applications which can tolerate a loss in ranging
accuracy and precision for higher energy efficiency.

In the future, we will optimize the leading-edge detec-
tion of 3db devices to reduce the NLOS error spread and
we will integrate the devices in a localization system. The
reduced energy consumption can provide location awareness
to previously constrained devices (millirobots, body sensors)
and generate novel localization applications (for instance, in
swarm robotics). It would be interesting to study how the short
air time and presumably high device density will impact the
access to the medium and the localization update rate of future
positioning systems.
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Abstract—Ultra-wideband (UWB) communications have
gained popularity in recent years for being able to provide
distance measurements and localization with high accuracy,
which can enhance the capabilities of devices in the Internet
of Things (IoT). Since energy efficiency is of utmost concern
in such applications, in this work we evaluate the power and
energy consumption, distance measurements, and localization
performance of two types of UWB physical interfaces (PHYs),
which use either a low- or high-rate pulse repetition (LRP
and HRP, respectively). The evaluation is done through
measurements acquired in identical conditions, which is crucial
in order to have a fair comparison between the devices. We
performed measurements in typical line-of-sight (LOS) and
non-line-of-sight (NLOS) scenarios. Our results suggest that the
LRP interface allows a lower power and energy consumption
than the HRP one. Both types of devices achieved ranging and
localization errors within the same order of magnitude and
their performance depended on the type of NLOS obstruction.
We propose theoretical models for the distance errors obtained
with LRP devices in these situations, which can be used to
simulate realistic building deployments and we illustrate such
an example. This paper, therefore, provides a comprehensive
overview of the energy demands, ranging characteristics, and
localization performance of state-of-the-art UWB devices.

Index Terms—Ultra-Wideband (UWB), Distance Measure-
ment, Ranging, Accuracy, Energy Efficiency.

I. INTRODUCTION

ULTRA-WIDEBAND (UWB) communications have be-
come increasingly popular in recent years for their high-

accuracy ranging and localization capabilities, which makes
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them promising candidates for providing location services to
devices in the Internet of Things (IoT), industrial deployments,
or wireless sensor networks in general. More recently, UWB
chipsets have been included in smartphones and it is estimated
that 50 % of the smartphones on the market will incorporate
UWB chipsets by 2027 [2]. Given the fast adoption of UWB
technology and its integration and interaction with devices
in the IoT, it is crucial to evaluate both its ranging and
localization performance and its energy efficiency in order to
determine its suitability for different types of applications.

UWB devices provide time-of-flight (ToF) measurements
with sub-nanosecond accuracy which can be used to estimate
the distance between two devices. Distance measurements (or
ranges) are the basis of the true-range multilateration algorithm
which is used in many localization applications [3]. Therefore,
evaluating ranging errors is often the first step in analyzing the
localization accuracy of UWB localization systems.

The energy consumption of UWB devices depends on
their architecture. The IEEE Standard for Low-Rate Wireless
Networks 802.15.4 [4] specifies two UWB physical inter-
faces (PHYs), that use high- and low-rate pulse repetition
(HRP and LRP, respectively). Transmitting pulses at low
rates enables a more energy-efficient implementation of LRP
PHYs, using non-coherent receivers, than the ones based on
coherent receivers, which are typically used in HRP PHYs.
Coherent receivers use the phase of the signal in the detection
process, while non-coherent receivers can estimate the channel
coefficients with lower synchronization constraints based on
the envelope of the signal. This makes LRP UWB devices
suitable for energy-constrained devices. So far, it has not been
clear whether this advantage comes with a cost in the ranging
and localization performance.

Although coherent and non-coherent UWB receivers have
been compared from a theoretical standpoint in literature,
these studies have relied on simulations rather than mea-
surements [5], [6]. Previous work that analyzed the ranging
accuracy of UWB devices through measurements [7], [8],
[9] has focused mostly on the Decawave DW1000 IC [10],
which implements the HRP PHY. Few works have analyzed
commercially available LRP UWB devices and they targeted
mostly their ranging accuracy without a detailed analysis of
their power and energy consumption [11], [12]. To the best
of our knowledge, only one paper included a comparison of
HRP and LRP devices (developed by Decawave and Ubisense,
respectively) [11] but only on their ranging and localization
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performance, without regards to the energy efficiency of the
devices. Therefore, the current literature on comparisons of the
two types of PHYs, on the one hand, and on commercially
available UWB LRP devices, on the other hand, is very
scarce. In particular, LRP devices deserve more attention
since they can be implemented with energy-efficient receivers
and can therefore potentially enable ranging and localization
applications on ultra-low-power devices.

In our previous work [1], we compared for the first time the
power and energy consumption and the ranging performance
of LRP and HRP devices using two commercially-available
UWB devices: the Decawave DW1000 IC (HRP)1 and the
3db Access 3DB6830C IC [14] (LRP)2. For the ranging
performance, we used a database of distance measurements
acquired with 3db devices and compared their statistics with
results obtained with Decawave devices from the literature.
This paper goes one step further and compares the ranging
and localization performance of LRP and HRP devices using
real measurements acquired in identical settings. This last
detail is crucial for a fair comparison of the devices since
different environments can have a different impact on distance
measurement errors. In addition, the current work offers a
more in-depth analysis of the typical ranging errors of LRP
devices in several scenarios.

Since indoor localization is often subject to multipath
and shadowing phenomena, we analyzed the statistics of
ranging errors in line-of-sight (LOS) and three non-line-of-
sight (NLOS) scenarios, where the obstruction between the
transmitter and the receiver was caused by a person, a gypsum
wall (also called drywall panel), or a concrete wall. We derived
statistical models for the error distributions obtained from
measurements, which can be used to simulate realistic ranging
and localization scenarios that would otherwise take days or
weeks to implement and evaluate. We argue, in particular, that
there are still unsolved problems about deploying a UWB-
based localization system inside a building. Finding adequate
LOS and NLOS error models, such as the ones proposed in
our work, and using them to simulate the expected localization
errors can help in this regard. For instance, many existing
works [11], [15], [16], [17], [18], [19] consider only setups
where the anchors are placed inside the same room because
they yield the highest localization accuracy. However, this
constraint is often hard to enforce in real deployments. For
one, in highly compartmentalized spaces (for instance, office
buildings) this would lead to a high anchor density, which
in turn increases the deployment costs, the complexity (in
terms of synchronization constraints, multiple access, anchor
selection and placement strategy, etc.), and the total energy
consumption of the localization system. Second, we show that
this constraint might not be even needed, for instance when
rooms are divided by shallow walls which cause only small
localization errors.

1Decawave has recently been acquired by the semiconductor company
Qorvo [13], hence is in the process of changing its name to Qorvo. Since
this change is rather recent, we still refer to the company and devices as
“Decawave,” this being the name under which they are still widely known.

2We will refer to the 3db 3DB6830C (Release 2016) and the Decawave
DW1000 (Release 2014) as the 3db and Decawave ICs, respectively.

This paper, therefore, provides a comprehensive outlook on
the typical power consumption and ranging performance of
two state-of-the-art UWB devices, as well as their expected
localization accuracy based on both real measurements and
simulations. Our proposed error models can be used in future
works to simulate custom building deployments and our mea-
surements are publicly available3 to facilitate future research.

To summarize, the main contributions of this paper are the
following:

• We analyze the average power consumption of 3db Ac-
cess (LRP) and Decawave (HRP) devices in the receive,
transmit, and idle modes and compute their energy con-
sumption per distance measurement.

• We evaluate and compare the accuracy and precision
of distance measurements of 3db Access and Decawave
devices based on measurements recorded in identical
settings in LOS and NLOS scenarios caused by drywall,
a concrete wall, and the human body.

• We analyze the ranging performance of 3db Access
devices on different channels (at 6.5, 7, and 7.5 GHz)
and propose channel diversity strategies that can improve
the ranging accuracy.

• We implement localization systems based on the two
types of devices and evaluate their performance exper-
imentally in both LOS and NLOS settings.

• We provide statistical models for the LOS/NLOS ranging
errors of 3db devices and evaluate their performance in
a simulated building deployment when anchors are either
in the same room or in adjacent rooms separated by a
gypsum or a concrete wall.

The rest of the paper is organized as follows. In Section II,
we analyze the theoretical differences between LRP and HRP
PHYs and introduce the basics of UWB ranging and localiza-
tion. We present the experimental setup in Section III and eval-
uate the power consumption, distance measurement errors, and
localization performance of the ICs based on measurements in
Section IV. In Section V, we model the ranging errors obtained
experimentally and show how they can be used to simulate a
localization application. In Section VI, we present the state-of-
the-art in UWB localization and propose several directions for
future work. Finally, we draw the conclusions in Section VII.

II. BACKGROUND

In Section II-A, we first introduce UWB devices and the
main types of receiver architectures used in commercial de-
vices. UWB devices can perform ToF measurements with sub-
nanosecond accuracy and can therefore measure the distance
between two devices with centimeter-level accuracy. Distances
between two devices have value in themselves (e.g., to find lost
objects) but also as a first step in multilateration algorithms
for localization. In this paper, we compare both the ranging
and localization performance of two types of UWB devices.
We introduce ranging and localization concepts with UWB
devices in Section II-B and II-C, respectively.

3https://doi.org/10.5281/zenodo.4686379
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A. UWB Device Architectures

The IEEE 802.15.4 standard [4] defines two types of phys-
ical interfaces with low and high pulse repetition frequency:
LRP and HRP, respectively. The Decawave DW1000 UWB
chip is compliant with the HRP PHY defined in the IEEE
802.15.4 standard [4]. It is perhaps the most widely-used
UWB device, so we chose it to represent the HRP PHY
class. Decawave has recently released a new UWB chipset, the
DW3000 [20]. However, the new-generation chipsets are cur-
rently available only as engineering samples, which is why we
focused on the old release. The 3db IC is compliant with the
LRP PHY specified in the IEEE 802.15.4z amendment [21].
The chip is already being used for secure keyless car access
but it has not been evaluated in high-accuracy applications yet.

UWB transmissions have to satisfy two constraints im-
posed by international regulations [22]: a maximum average
power spectral density (PSD) of −41.3 dBm/MHz (averaged
over 1 ms) and a maximum peak power spectral density of
0 dBm/50MHz. UWB devices can, therefore, transmit over a
fixed period either few pulses at high power levels or many
pulses with lower transmit power. The first situation falls under
the LRP specification and is employed by 3db devices, while
the latter is known as HRP and is used by Decawave. If
optimally employed, both of these technologies benefit from
an equal average transmitted RF energy.

Since the HRP PHY transmits individual pulses with lower
energy than the LRP, the received pulse energy is also lower
for the same path loss (same distance). Therefore, the HRP
PHY needs more sophisticated techniques to extract weaker
pulses from the receiver noise, typically performed with corre-
lations over many samples. For this reason, Decawave devices
use coherent receivers. Because 3db devices implement the
LRP PHY, they can use a non-coherent receiver based on
energy detection (ED) for signals modulated with binary
frequency-shift keying (BFSK).

Coherent receivers use phase information in the detection
process. They typically have low sensitivity to inter-symbol
and co-user interference and benefit from the multipath di-
versity of the UWB channel [23]. At the same time, the
receiver architecture demands high computational resources
and hardware complexity [24]. For optimal reception, the
coherent receiver needs to estimate the multipath delays,
their complex-valued channel coefficients, and the pulse shape
distortion [24]. A precise estimation of the carrier phase is
crucial for recovering the baseband pulse since inaccuracies
will result in signal power loss and crosstalk interference in
signals modulated using phase-shift keying (PSK) [25]. For
a carrier frequency of 8 GHz, a time shift of half of the
pulse period flips the phase of the signal, so coherent UWB
systems generally tolerate rotations only within π/4 of the
signal phase (around 30 ps). These requirements increase the
power consumption of coherent demodulators [23].

Non-coherent receivers estimate channel coefficients based
on the envelope rather than on the phase and amplitude of
the received signal, so they have lower synchronization con-
straints. The timing requirements of a non-coherent receiver
are dependent only on the pulse envelope, which is related

POLL RESP

RESPPOLL

Tround

Tproc
Tp Tp

Initiator

Responder

Fig. 1. Message exchange in the single-sided two-way ranging.

to the pulse bandwidth. For instance, if the pulse bandwidth
is 500 MHz, the non-coherent receiver needs to operate with
a timing resolution of 1 ns and it does not need high RF
carrier synchronization. Therefore, non-coherent receivers can
be more energy-efficient than coherent ones but have a higher
bit error probability [25]. Another disadvantage of the non-
coherent architecture is that it cannot be used for precise angle-
of-arrival (AoA) measurements with closely-spaced antennas.

B. Ranging Methods

The distance between two devices can be estimated based
on the time of flight (ToF) of the signal. Using the transmission
time (T1) of the signal measured by the sender and the arrival
time (T2) at the receiver, we can compute the distance as [3]:

d = (T2 − T1) · c, (1)

where c is the speed of light and Tp , T2 − T1 is the
propagation time of the signal. To accurately estimate the
distance, the devices need to be tightly clock synchronized,
as a small mismatch of 1 ns can introduce a distance error
of around 30 cm. Because synchronizing the sender and the
receiver is usually unfeasible in practice, more messages are
exchanged in order reduce such errors, such as in the single-
or the double-sided two-way ranging (SS-TWR and DS-TWR,
respectively).

The SS-TWR uses two messages per distance estimate, as
shown in Fig. II-B. The propagation time is:

Tp =
Tround − Tproc

2
, (2)

where Tround is the time spent in one message exchange and
Tproc is the processing time on the responder side. It can be
shown that the error in estimating Tp is [26]:

eTp = e1 · Tp +
1

2
Tproc(e1 − e2), (3)

where e1 and e2 are the clock drift errors of the initiator and
responder, respectively. The main source of errors in the SS-
TWR are Tproc, which is in the range of hundreds of mi-
croseconds, and the clock drift, which can be up to ±20 ppm
in systems compliant with the IEEE 802.15.4 standard [4].

In the LRP PHY, a location-enhancing information postam-
ble is introduced at the end of each message to estimate the
clock drift error [4]. Besides, the processing time of LRP
messages is shorter than the one of HRP. It is also more
convenient to minimize the number of exchanged messages
in the TWR since this reduces the time needed to obtain one
distance measurement. Therefore, the SS-TWR is usually the
method of choice for LRP devices.
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The DS-TWR uses an additional message exchange to
minimize clock drift errors. Although this is the ranging
method typically employed in Decawave devices [10], the
Decawave MDEK1001 kit that we used throughout this paper
applies the SS-TWR [27] to improve the energy efficiency and
reduce the air time. Although the HRP PHY does not include
a postamble nor does it have a fixed processing time, the tags
can estimate their clock drift with respect to the anchors based
on periodic beacons transmitted by the anchors [27].

C. True-Range Multilateration

The true-range multilateration algorithm estimates the lo-
cation of a mobile device (also called a tag) using distance
measurements between the tag and fixed devices with known
locations (also called anchors). The special case for 2D
localization using three anchors is known as trilateration.

Let di denote the distance between anchor Ai and the tag,
which can be written as:

di = ‖xAi − x‖+ vi, i = 1, ..., N (4)

where x is the location of the tag, xAi is the location of anchor
Ai, and vi is the measurement noise. The noise terms of all
anchors are assumed independent.

In vector form, the measurement equation becomes:

y = h(x) + v, (5)

where y is the measurement vector (containing all measure-
ments dj , j = 1, ..., N ), v the error vector, and h the vector-
valued measurement function. The equation can be solved by
the least-squared solution x∗ which minimizes ‖y−h(x)‖ [3].

Multiple algorithms for solving the nonlinear system of
equations were compared in [28]. The regularized Gauss-
Newton multilateration algorithm is an iterative algorithm
which has a similar accuracy to several algorithms with closed-
form solutions and a low computational complexity suitable
for real-time applications [28]. For this reason, we used it to
implement the localization systems evaluated in Section IV-E.

The algorithm needs an initial starting position x0, which
should be chosen as close as possible to the real location for a
quick convergence. For the first iteration, the starting position
can be set to the solution of a closed-form multilateration
algorithm or to the latest location of the tag (if available). At
each iteration k, the algorithm computes the Jacobian matrix:

Jk(x) =

[
xA1
− x

‖xA1 − x‖ , ...,
xAN − x

‖xAN − x‖

]T
. (6)

The solution at step k + 1 is xk+1 = xk + ∆x, where ∆xk

is the least-squares solution to

−(Σ− 1
2 Jk + cI)∆xk =

(
Σ− 1

2 (h(xk)−d)+ c(x−xr)
)
, (7)

where xr is a regularization point taken as the mean of
the anchors’ coordinates and c is a regularization coefficient
equal to the inverse of the standard deviation of a distribution
centered at xr. The algorithm stops if the location increment is
below a tolerance δ or if the algorithm reaches the maximum
number of iterations.

III. EVALUATION SETUP

In the following, we describe the device setups used in the
power, ranging, and localization measurements.

3db Access: The 3db chip is integrated into an Arduino
shield on top of an Arduino M0 board. The communication
between the chip and the host MCU is performed via SPI. We
use the channel centered at 6.52 GHz and the peak data rate
of 247 kb/s. The 10 dB bandwidth of a pulse is 380 MHz and,
because pulse spectra partially overlap in BFSK modulation,
the total system bandwidth is approximately 620 MHz. The
packet duration is 400 µs. The IC was configured to transmit
at the maximum level of −43.86 dBm/MHz, so within UWB
regulations [22].

Decawave: We use the Decawave MDEK1001 kit which in-
cludes the DW1000 UWB chip integrated into the DWM1001
module. The DWM1001 module also contains a Nordic Semi-
conductor nRF52832 BLE microprocessor mostly used for
network communication and an STM LIS2DH12TR 3-axis
motion detector. The kit’s default PANS software supports
only the mode 14 which uses channel 5 (at 6.49 GHz), a data
rate of 6.8 Mb/s, a PRF of 64 MHz, and a preamble length
of 128 symbols, corresponding to a packet length of 287 µs.
The default configuration is suitable for short-range commu-
nication. The devices have a 3 dB bandwidth of 499.2 MHz
(equivalent to a 10 dB bandwidth of ≈662 MHz). In all the
ranging measurements, one of the devices is configured as
a tag in the low-power mode, while the other device is an
initiating anchor.

In our previous work [1], we used Decawave devices
integrated in the EVK1000 evaluation kit which allowed more
configurations and used the DS-TWR. There, we decided to
use the long-range mode (Mode 3), in order to attain a similar
range as with 3db devices. Here, we favored the MDEK
kit because it implements the SS-TWR which requires less
message exchanges and is more energy efficient. The SS-TWR
is also implemented by 3db devices, making the operation of
the two devices similar.

IV. MEASUREMENT-BASED EVALUATION

In this section, we compare how 3db and Decawave devices
compare in terms of power and energy consumption, coverage,
distance measurement accuracy and precision, and localization
performance. Distance measurements are important in them-
selves, for instance in proximity detection applications, but
also because they are at the basis of true-range multilateration.

Section IV-A compares the power consumption of the two
devices, Section IV-B their maximum range, and Section IV-C
the accuracy and precision of their distance measurements.
Section IV-D analyzes measurements acquired on multiple
channels. In Section IV-E, we integrate the devices in local-
ization systems and evaluate their performance.

A. Power Consumption

In this section, we compare the power and energy consump-
tion of the two types of devices. Unfortunately, the Decawave
MDEK1001 board allows for measuring the current consump-
tion only of the DWM1001 module, which contains, besides
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the DW1000 UWB chip, a BLE microprocessor, and a motion
detector. We present the power consumption measurements
of the DWM1001 module for the sake of completeness, but
for the comparison between the two chipsets, we rely on
the current consumption of the Decawave DW1000 UWB
chip from the device datasheet [29]. We used the current
consumption reported for mode 14 which is referenced to
3.3 V [29].

We measured the current consumption of the 3db chip and
the DWM1001 module with a Keysight DC Power Analyzer.
We isolated the most important modes, namely the idle,
transmit (TX), and receive (RX) and computed their average
current consumption. The input voltages of the 3db chip and
the DWM1001 module were 1.25 V and 3.3 V, respectively.

Table I presents the average power consumption in each
mode of the 3db IC, the DW1000 IC, and the DWM1001
module. As mentioned, for the comparison between the UWB
chipsets, we rely on the current consumption of the Decawave
IC provided in the datasheet [29] and on the measured
current consumption of the 3db IC. Overall, the average power
consumption of the 3db IC in the TX, RX, and idle mode is at
least 9 times lower than the one of the Decawave IC. Only in
the deep sleep mode the 3db chipset has 1.9× higher power
consumption than the Decawave chipset. Note that the average
power consumption of the DW1000 chip in the idle mode is
about 1.45 times higher than the one of 3db devices in the
receive mode, also the most power-hungry state. The results
suggest that, indeed, the LRP interface can be more power-
efficient than the HRP one.

The power consumption profile is a starting point for eval-
uating the energy consumption of an UWB-based localization
system. A key challenge in a localization system is minimizing
the energy consumption of the tag, which is usually battery-
powered. To avoid synchronizing the tag and the anchors, the
tag can initiate the message exchange and stay in the idle or
sleep mode between rangings. Using the SS-TWR implies, in
this case, that the tag estimates the distance (or the location).

To illustrate the energy efficiency of a tag in a localization
system, let us consider the most favorable scenario in which
the tag is the initiator. We disregard the time spent in the
idle mode, since it is subject to the desired location update
rate and guard times, which can be chosen freely to a certain
extent. We therefore compute the energy consumption only
when the device is in the TX or RX mode. The packet duration
of the DW1000 chip in Mode 14 is 287 µs and the one of the
3db chip is 400 µs. Therefore, a Decawave tag will consume
180 µJ per SS-TWR during transmission and reception, while
a 3db tag will consume 28 µJ (including the transition times),
so 6.4 times less energy. When placed in the long-range
mode (for instance, mode 3), the packet duration of Decawave
devices increases to 3487 µs which is about 10× larger than
that of 3db devices, causing them to consume at least 100×
more energy [1]. The difference between these modes is the
maximum range at which the devices can communicate, so
in the next section we will compare the range of 3db and
Decawave devices.

TABLE I
THE AVERAGE POWER CONSUMPTION OF 3DB AND DECAWAVE DEVICES.

Average power consumption [mW]

TX RX Idle Deep sleep

3db Access† 20.7 40.7 6.6 6.25 ∗ 10−4*

DW1000 ‡ 237.6* 392.7* 59.4* 3.3 * 10−4*

DWM1001‡ 297.7 507.2 47.9 3.9

† Referenced to 1.25V.
‡ Referenced to 3.3V.
* Based on the device datasheet.

B. Range

In this section, we want to find the ratio of successful
distance measurements between a transmitter (TX) and a
receiver (RX) placed at distances between 5–220 m. Remember
that one distance measurement using the SS-TWR involves
the successful transmission of two messages, a poll (from
TX to RX) and a response (from RX to TX). The devices are
said to have a (maximum) range of d meters when the ratio
between the number of successful distance measurements and
the total number of initiated measurements up to the distance
d is higher than a chosen ratio P = 0.9. We performed
measurements outdoors, on the pathwalk shown in Fig. 2, in
order to minimize the multipath interference from surrounding
objects which is usually higher indoors. At discrete steps,
the TX was programmed to send 60 messages (polls) every
200 ms. If the response from the RX does not arrive at the TX
either because the RX did not receive the probe or because
the response was lost, a timeout occurs and the distance
measurement is unsuccessful. We define the packet delivery
ratio (PDR) as the number of responses received by the TX
over the number of transmitted messages.

The Decawave PANS software reports only the (successful)
responses and produces no output when transmitted packets
are not answered. To compute the PDR of Decawave devices,
we use the transmission period of 200 ms to compute how
many messages should have been exchanged between the first
and the last successful message at every test point. The PDR
is then the number of received messages during that period
divided by the number of expected messages. 3db devices
report when packets are unanswered and we compute the PDR
of 3db devices as described before.

Fig. 3 shows the PDR for 3db and Decawave devices. It
is important to note that the PDR is highly dependent on
the orientation of the devices, since at long distances the
irregular radiation pattern of the antennas can cause high
packet losses along certain directions. The PDR of Decawave
devices dropped to 0 after 25 m, which is more than half of the
expected range of 80 m of Mode 14 reported in the DW1000
Datasheet [29] (Section 6.3). However, this range was provided
for channel 2 at 4 GHz, so the path loss is expected to be
higher (and hence the range lower) at the center frequency
of 6.5 GHz used in our experiment. 3db devices have a PDR
higher than 0.9 at almost all distances up to 194 m, except for
the higher losses between 65–90 m. At those distances, we
found that the PDR was highly influenced by the relative pose
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Fig. 2. Location at which the range of the devices was measured. The devices
were placed at distances between 5–220m along the pathwalk.
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Fig. 3. The packet delivery ratio of 3db Access and Decawave devices.

between the devices, most likely due to destructive multipath
interference and the antenna radiation pattern.

In our previous work [1], we found that 3db devices had
a PDR of 0.9 up to 116 m, but we did not measure the PDR
at longer distances because of the limited space. Similarly, in
this experiment, we did not measure the PDR beyond 220 m.
In [1], we compared the maximum range of 3db devices with
the one of Decawave devices operating in the long-range mode
(Mode 3) and we found that they had a similar PDR over the
covered area. Decawave devices in the long-range mode have a
packet duration about 10× larger than in the short-range mode
and therefore also a higher energy consumption. In practice,
this means that a 3db tag could operate over a similar area as
a Decawave tag in the long-range mode but with 125× less
energy. A Decawave tag in the short-range mode will be more
energy-efficient than in the long-range mode but more anchors
will be needed to provide coverage over the same area.

C. Distance Measurements

In this section, we compare the distance measurements of
3db and Decawave devices acquired in identical settings. We
considered four indoor settings: LOS inside a large office and
NLOS caused by either a gypsum wall (12.5 cm thickness),
a concrete wall (29 cm thickness), or a human body. Fig. 4
shows the settings. Decawave and 3db Access devices were
placed at exactly the same locations and acquired an equal
number of measurements on the 6.5 GHz channel at the same
rate (every 0.6 s). In all ranging experiments from this section,
the devices were calibrated to account for errors caused by

(a)

(b)

(c)

Fig. 4. Setup of ranging measurements in (a) LOS, (b) NLOS with a drywall,
and (c) NLOS with a concrete wall. The UWB devices are placed on tripods.
The NLOS with human body shadowing setup is identical with the LOS one,
except that a person is standing right in front of the transmitter (the device
further away).

TABLE II
SETUP OF RANGING EXPERIMENTS.

Scenario Distances
[m]

Sampling
period [s]

Recording
time per test
point [min]

LOS 1, 2, ..., 8 0.6 2
NLOS with drywall 1, 2, ..., 6 0.6 4
NLOS with concrete wall 1, 2, 3 0.6 2
NLOS with human body 2, 5, 10 0.6 2

hardware, channel, or distance. The calibration method is
described in Appendix A.

For the ranging datasets, at each test point, we recorded
measurements for 2–4 min, which during the calibration phase
was deemed enough to obtain a distribution with a mean
error within ±1 cm of the long-term one. The setup for each
recording scenario is described in TABLE II. The 3db devices
were configured to acquire measurements on all three channels
at 6.5, 7, and 7.5 GHz, cycling through them every 0.2 s. Mea-
surements on all channels will be later used in Section IV-D
to investigate whether channel diversity improves the accuracy
in certain situations. Because the MDEK1001 devices can use
only the 6.5 GHz channel, we compare Decawave and 3db
measurements acquired only on this channel.

TABLE III presents the mean, standard deviation, and
inter-quartile range (IQR) of the distance errors of 3db and
Decawave devices, computed as:

ed = d̂− d, (8)

where d̂ is the measured and d is the true distance. Fig. 5a
to 5d compare the PDF of the aggregated ranging errors at
all distances for a particular LOS/NLOS scenario and Fig. 5e
to 5h compare the error distributions of Decawave and 3db at
each test point. The boxplots use Tukey’s definition.

First, we notice that, at individual test points (Fig. 5e to
5h), the errors of Decawave devices have a smaller spread
than those of 3db devices. After the calibration procedure
detailed in Appendix A, 3db devices had distance errors
of −0.05±6.54 cm, while Decawave devices had errors of
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Fig. 5. Comparison of the distribution of aggregated ranging errors (Fig. 5a to 5d) and of the individual distributions at each distance (Fig. 5e to 5h) of 3db
Access and Decawave devices in LOS, NLOS with drywall, NLOS with concrete wall, and NLOS with human body.

TABLE III
STATISTICS OF DISTANCE MEASUREMENT ERRORS.

Scenario Device Mean [m]
Standard
deviation

[m]
IQR [m]

LOS 3db Access 0.02 0.07 0.09
Decawave 0.00 0.05 0.07

NLOS with drywall 3db Access −0.04 0.08 0.12
Decawave −0.01 0.09 0.10

NLOS with
concrete wall

3db Access 0.46 0.14 0.19
Decawave 0.44 0.07 0.14

NLOS with
human body

3db Access 0.55 0.32 0.29
Decawave 0.60 0.26 0.46

0±3.14 cm. Therefore, on the calibration data set, 3db devices
had a bias 5 mm higher and a standard deviation about
2× larger than Decawave devices. In the LOS scenario, the
location and test points were different from the ones in the
calibration data set. Hence, we expect errors to be slightly
higher than in the calibration setup. Over all test points, 3db
Access devices had errors of 2±7 cm and Decawave devices
achieved errors of 0±5 cm in the LOS scenario. The standard
deviation of Decawave devices in the LOS scenario is higher
than in the calibration data set because, at individual test
points, the absolute average error is also higher.

Drywall is frequently used in modern buildings to delimit
interior spaces. Surprisingly, it does not seem to cause a
positive bias but a small negative one in both 3db and
Decawave measurements, as can be seen in Fig. 5b. The
errors caused by this type of obstruction are within several
centimeters of LOS errors. This type of NLOS scenario is
sometimes referred to in the literature as “soft” NLOS [30],
since the LOS multipath component is still present in the CIR
and the correct distance can be recovered. The fact that drywall
does not introduce large errors is good news for proximity-
detection and localization applications, because it means that
ranging and localization errors will be small even if the devices

are in different rooms, if they are separated by drywall.
Thicker obstacles such as a wall or the human body can

affect the signal in multiple ways. First, through this type
of obstacles, the signals usually travel at a lower speed than
through the air, which causes a delay in the round-trip time
and hence an error in the distance measurement. Second, these
obstacles can attenuate the direct path component or block
it altogether, case in which copies of the signal reflected on
surrounding objects can cause errors in the TOA estimation al-
gorithm. These scenarios are also known as “hard” NLOS [30].

The aggregated distribution of ranging errors in hard NLOS
scenarios (Figures 5c and 5d) is often heavy-tailed and no
longer Gaussian-shaped. However, in most cases, the error
distribution at each test point (i.e., at individual distances)
is still approximately Gaussian, as shown in each boxplot
from Fig. 5g and 5h. The biases depend on the particular
environment and the multipath components that arrive at
the receiver. Hence, at different distances, the bias can vary
depending on how multipath components add up, which is
why the aggregated NLOS distributions can be multi-modal.

With concrete wall and human body shadowing, the ranging
errors are between 44–60 cm. In both hard NLOS scenarios,
Decawave devices had a standard deviation 6–7 cm lower than
3db devices. Only with human body shadowing the IQR of
Decawave errors is 17 cm higher than that of 3db because its
error distribution, although shorter, has a fatter tail.

In conclusion, in all scenarios, both devices had mean
errors within 2–5 cm of each other, with Decawave devices
performing better in all scenarios except for the NLOS with
human body shadowing one. In LOS and soft NLOS scenarios,
the devices differed in the standard deviation and IQR by 1–
2 cm, with Decawave devices obtaining a better performance
in most cases. In the hard NLOS scenarios, Decawave devices
had a lower spread than 3db devices by 1.23–2×, except for
the IQR in the case with NLOS with human body, which
was 1.59× higher than the one of 3db devices. At individual
test points, Decawave devices had 2× lower spread than 3db
devices. Compared to our previous work [1], the performance
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Fig. 6. Impact of channel diversity on distance accuracy when the signal
passes through a concrete wall: at different distances, some channels perform
better than the others.

of 3db devices has improved thanks to the refined calibration
and to the correction of the firmware issues that previously
caused large outliers in certain NLOS situations.

D. Channel Diversity

The analysis so far was based only on distance measure-
ments acquired on the 6.5 GHz channel, since this was the
only one available on the MDEK1001 devices. However, UWB
devices can operate in more bands. The WiMedia Alliance
defined 14 bands with 500 MHz bandwidth in the range of
3.1–10.6 GHz for UWB communications4. The use of the
lower band between 3.5–4.5 GHz is often allowed only with
interference mitigation techniques, while the 6–8.5 GHz band
is less subject to regulations [31] and available in most
countries. Since 3db Access devices can operate in the bands
centered at 6.5, 7, and 7.5 GHz, it is useful to compare
the performance on these channels and investigate whether
distance measurements could benefit from channel diversity.

We programmed the 3db Access devices to acquire measure-
ments on the 6.5, 7, and 7.5 GHz channels consecutively. The
sampling period between measurements on successive chan-
nels is T/3, where T is the sampling period from TABLE II.

We noticed that, while LOS errors have the same charac-
teristics irrespective of the channel (we calibrated the devices
to operate this way), in hard NLOS situations some channels
can experience better conditions at different locations. Fig. 6
presents such an example for NLOS with concrete wall shad-
owing: at 2 m distance, the 7 GHz channel has lower errors
than the others, while at 3 m distance the 7 and 7.5 GHz
channels had the highest accuracy. This can happen due to
multipath interference, when copies of the signal traveling
through multiple paths add up constructively or destructively at
the receiver. The interference pattern depends on the frequency
of the signal. Signals sent on different frequencies can have
different propagation characteristics through obstacles. Since
hard NLOS situations almost always cause positive biases, as
we saw in the previous section, this prompts us to investigate
whether taking the minimum or the mean of consecutive
measurements (also called the min- and mean-select methods,
respectively) acquired on different channels can improve the
ranging accuracy.

4We will alternatively refer to the bands as (communication) channels.
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Fig. 7. The cumulative distribution function (CDF) of 3db Access ranging
errors when using only measurements from the 6.5, 7, and 7.5GHz band or
the mean, median, or minimum of a set of consecutive measurements in all
bands. The figure compares the CDF in (a) LOS, (b) NLOS with drywall, (c)
NLOS with concrete wall, and (d) NLOS with human body. The legend in
Fig. 7a is common to all subfigures.

Fig. 7 shows the cumulative distribution function (CDF)
of measurement errors in the individual bands, as well as
of errors when we select either the mean or minimum of
three consecutive measurements acquired on all channels. In
a regular LOS scenario, all channels perform similarly. The
mean-select method leaves the bias still centered around 0
and decreases the standard deviation with approximately 2 cm.
Instead, selecting the minimum measurement in LOS shifts the
error distribution towards a negative mean, which decreases the
accuracy. The same happens in the NLOS with drywall case.

In hard NLOS (Fig. 7c and 7d), however, the min-select
method achieves a median error of approximately 18 cm with
wall and 5 cm with human obstructions. Therefore, this simple
channel diversity technique reduces the bias of hard NLOS
measurements by more than 2× compared to using only the
6.5 GHz channel. The mean-select method also reduces the
error compared to individual channels in “bad” conditions but
to a lesser degree than the min-select.

It is not always desirable to use channel diversity. First,
acquiring measurements on all channels increases the number
of messages and thus the energy consumption. Second, the
min-select method increased the accuracy by 2× in hard
NLOS but decreased it in LOS. One method to take full
advantage of channel diversity is to apply a NLOS detection
technique [32] and acquire measurements on all channels
only when the devices are in NLOS. In this way, additional
measurements are triggered only when a higher ranging or
localization accuracy is desired. Investigating the viability and
efficiency of this method is left as future work.

E. Localization

Because UWB devices have become popular for indoor
localization, in this section we compare the localization per-
formance of the Decawave and 3db Access devices experimen-
tally. We placed four anchors over an area of approximately
4.5×3.6 m shown in Fig. 8 and at heights between 1.2–1.8 m
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TABLE IV
STATISTICS OF DISTANCE ERRORS IN LOCALIZATION RECORDINGS.

Case Device Mean distance error [cm] Standard deviation of
distance error [cm]

A1 A2 A3 A4 A1 A2 A3 A4

LOS 3db Access 7.4 1.1 12.3 8.6 6.8 6.7 11.3 6.9
Decawave 6.3 1.5 14.6 7.8 9.1 6.7 13.2 14.0

NLOS at A4 3db Access 3.9 3.5 17.8 26.9 6.6 6.1 9.1 16.8
Decawave 3.3 3.4 16.0 32.8 9.5 6.7 12.5 41.7

Fig. 8. Localization setup: the four anchors (A1 to A4) encompass an area of
approximately 4.5×3.6m and the tracking area is on the table. The ground
truth was acquired using two HTC Vive base stations (BS1 and BS2) and a
tracker that was colocated with the UWB tag, shown on the table.

(the anchors need to be at arm’s length to acquire their ground
truth location). We moved the tag by hand, at a height of
approximately 40 cm above the table, along predefined points
marked on the table. Since the tag was moved by hand, the
paths in the two recordings were not identical, but very similar
nevertheless, as can be seen from Fig. 9. This discrepancy
should not significantly impact the comparison. During the
first half of the trajectory, we oriented the tag towards anchors
A1 and A4, while in the second half we oriented it towards
anchors A2 and A3. We changed the orientation in order to
vary the relative pose between the tag and the anchors, which
can influence the ranging error [15].

The tags initiated the SS-TWR to each anchor. The 3db tag
performed distance measurements to anchors A1 to A4 in their
index order. The order in which the Decawave tag interrogated
anchors changed throughout the recording according to the
proprietary localization algorithm of Decawave.

Ground truth locations were acquired by an HTC Vive
motion capture system using the setup described in [33], which
has an average accuracy of at least 5 mm. The HTC Vive
returns the location of a tracker which is colocated with the
UWB tag. Then, a set of transformations is applied to recover
the ground truth location of the tag. The anchor locations are
also acquired using the HTC Vive system.

We recorded measurements in two scenarios: one in which
all anchors were in LOS with the tag and one in which the
direct path to one of the anchors (A4) was blocked by a person,
so the tag was at all times in NLOS with one anchor. Given
the results from Section IV-C, we expect a higher bias in the
measurements coming from anchor A4 but not necessarily the
same bias from TABLE III, since the bias depends also on the

particular room setup and environment. The NLOS distance
error will introduce a localization error, which can be partially
compensated by the correct distances received from the other
anchors. Even in LOS, distance measurements can be affected
by orientation errors caused by the irregular antenna radiation
pattern [15].

During each recording, for each type of localization system
(based on Decawave or 3db Access), we recorded the distances
between each anchor and the tag, which were then given
as input to a multilateration algorithm. As mentioned in
Section II-C, for both localization systems, we used the Gauss-
Newton multilateration algorithm strengthened with a regu-
larization term. We initialized the algorithm with δ =1 mm,
kmax = 10 iterations, xr = the median of the anchors’
locations, and c = 10−1 (corresponding to a standard deviation
of 10 m around xr, suitable for our setup). Although the
Decawave MDEK1001 kit has its own localization algorithm,
we did not use it for the comparison since the algorithm
is closed-source and therefore we could not apply it on the
anchor-tag distances given by 3db Access devices.

TABLE IV presents the mean and standard deviation of
distance errors between the tag and each anchor Ai:

ed = d̂ij − dij . (9)

The true distance dij is computed as the Euclidean distance
between the location of anchor Ai and each ground truth
location of the tag, while d̂ij is the measured distance between
each anchor and the tag.

The average difference between the mean distance error of
the two devices is 1.15 cm and the average difference between
the standard deviation of the distance error is 2.82 cm, with
Decawave devices having smaller errors in about 50 % of
the cases. As previously mentioned, in the localization LOS
scenario, the average bias is no longer null because of the
changing orientation and the movement of the tag. All anchors
have average errors under 10 cm when they are in LOS with
the tag, with the exception of A3. Anchor A3 has higher
distance errors than the others because of its close proximity to
the concrete structure visible in Fig. 8. Although the structure
does not completely obstruct the direct path between the tag
and A3, it might cause the diffraction of the signal or other
multipath effects, especially when the tag is close to the base
station BS1 (the distance errors are higher in that area).

In NLOS, the effect of the human body shadowing is
reflected in the distance error statistics of anchor A4. Similar to
the ranging experiment, 3db Access devices have a mean rang-
ing error lower by 5.9 cm than Decawave devices. However,
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Fig. 9. Localization errors of 3db Access and Decawave devices in LOS and NLOS, where anchor 2 (A2) was obstructed by a human body.

TABLE V
STATISTICS OF MEASUREMENT-BASED LOCALIZATION ERRORS.

Case Device
Localization error

Mean [cm]
Standard

deviation [cm]

2D 3D 2D 3D

LOS 3db Access 9.7 36.8 5.4 14.8
Decawave 12.4 42.7 7.8 19.1

NLOS 3db Access 18.9 72.2 10.5 34.1
Decawave 22.9 89.1 23.5 43.7
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Fig. 10. The CDF of 2D localization errors obtained from real measurements
with 3db and Decawave devices.

unlike in the ranging experiment, here the standard deviation
of the Decawave distance errors in NLOS (i.e., between the tag
and anchor A4) was 2.5× higher than the one of 3db Access
devices. It is worth noting, though, that even in the ranging
experiment in NLOS with human body, 3db Access devices
had 1.59× lower IQR than Decawave devices.

We compute the localization error as the Euclidean distance
between the true location and the estimated one, either in 2D
or 3D. For the 3D case, the error is:

e =
√

(x− x̂)2 + (y − ŷ)2 + (z − ẑ)2, (10)

where (x, y, z) are the Cartesian coordinates of the true loca-
tion and (x̂, ŷ, ẑ) are the Cartesian coordinates of the estimated
location. For the 2D case, only the x and y coordinates
corresponding to the plane parallel to the ground are taken
into account.

The localization algorithm always computes the location in
3D but we analyze the 2D and 3D errors separately because
the selected multilateration algorithm is prone to large errors

on the z axis (height). This happens especially when mea-
surements are noisy since the geometric dilution of precision
(GDOP) on the z axis is large. Therefore, it is important to
distinguish errors in the 2D plan parallel to the ground, which
usually need to be the smallest, from 3D errors.

TABLE V presents the mean and standard deviation of the
localization error of both devices in 2D and 3D. Fig. 10 shows
the CDF of the localization error of the devices only in 2D. In
LOS, the two devices have the mean and standard deviation
of localization errors within at most 5.9 cm of each other,
leading to a similar performance. In the NLOS scenario, the
mean and standard deviation of the localization errors of the
Decawave-based localization system are higher by 4–16.9 cm
than 3db’s because of the higher distance errors between the
tag and the NLOS anchor (A4). In 3D, the average localization
errors are significantly higher than in 2D, with about 30 cm in
LOS and 60 cm in NLOS, due to the measurement noise and
high GDOP on the z axis. In the 2D case, 90 % of the LOS
errors are under 20 cm, while in NLOS 75 % of the localization
errors are under the same threshold.

V. ERROR MODELING AND SIMULATION

The localization results in Section IV-E are useful for
comparing the two types of devices and for providing an
estimate of the expected localization error in a small setup. We
are now interested in evaluating the expected performance of
a localization system that would be deployed on a larger scale
(e.g., on the entire floor of an office building, in a shopping
center, in a home). In such a setup, we expect a larger distance
between anchors and possibly a lower anchor density than
in our small-scale experiment. Moreover, while most of the
existing literature assumes all anchors to be in the same room
and preferably in LOS with the tag for the best accuracy, we
argue that in real deployments such a requirement would be
too costly in terms of price, setup effort, and maintenance. In
such cases, administrators might prefer a localization system
with lower accuracy but also lower setup costs.

In this section, we model the ranging errors obtained with
3db devices in the same LOS and NLOS scenarios as in
Section IV-C, but with augmented data sets. We argue that the
proposed statistical models can be used to simulate realistic
localization scenarios that would otherwise take days or weeks
to implement and evaluate. Section V-A describes the proposed
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TABLE VI
DATABASE OF MEASUREMENTS WITH 3DB ACCESS DEVICES

Scenario Distances
[m]

Nr.
locations

Nr.
meas.

LOS 1, ..., 8 3 18 344
NLOS with drywall 1, ..., 6 2 6600
NLOS with concrete wall 1, ..., 10.5 5 14 868
NLOS with human body 1, ..., 10 3 8144

models and explains why a customized approach is needed to
model errors obtained with different types of obstructions. In
Section V-B, we evaluate the localization error of a simulated
localization system based on 3db Access devices, where the
anchors are in different rooms, which would be characteristic
for a low-cost deployment. We also analyze the effect that
different types of walls (made of concrete or gypsum) have
on the localization error.

A. Error Modeling

In this section, we propose error models for distance mea-
surements acquired in the same scenarios from Section IV-C:
LOS, NLOS with drywall, NLOS with a concrete wall, and
NLOS with human body shadowing. For more statistically
significant results, we augmented the former data sets with
more measurements in at least two locations, so that the results
are not biased by the multipath profile of a single room. TA-
BLE VI lists the number of measurements from each scenario,
the range of distances covered, and at how many locations
we acquired measurements. The NLOS with concrete wall
dataset includes measurements performed through walls with
thickness between 25.5–67.5 cm. For the LOS and NLOS with
human body scenarios, we also included the measurements of
anchors in LOS and NLOS, respectively, with the tag.

To model errors, we fitted some of the most well-known
continuous distributions (the complete list is available at [34])
and computed the sum of squared errors (SSE) between the
empirical PDF (ỹi) and each fitted PDF at discrete points i:

SSE =
∑

i

(yi − ỹi)2. (14)

The best parameters θ̂ for a specific probability distribution
p(x) are found by maximizing a likelihood function:

θ̂ = arg max
θ

p(x|θ), (15)

over the entire parameter space. In other words, maximum
likelihood estimation (MLE) selects the parameters under
which the observed data is the most probable. The returned
parameters are not guaranteed to be globally optimal. Where
necessary, we provided good initial guesses for the optimiza-
tion to improve the fit.

We present the distributions that minimized the SSE and
their parameters obtained through MLE. If there were more
distributions that achieved similar SSEs, we chose the most
well-known and studied distributions. TABLE VII shows the
distributions that best fit experimental data obtained in the four
scenarios, their PDF, as well as the parameters of the best fit.

As illustrated in Fig. 11a, LOS errors can be modeled with
a Gaussian distribution with a mean of 0.4 cm and a standard
deviation of 7.1 cm, whose PDF is given in Eq. (11) from
TABLE VII. The calibration process presented in Appendix A
removed biases caused by different channels, hardware, and
distances such that in regular LOS conditions distance mea-
surement errors are approximately centered around 0 m.

Errors obtained in NLOS with a gypsum wall between the
devices can also be modeled by a Gaussian distribution, as
shown in Fig. 11b. Although errors obtained by 3db Access
devices on the 6.5 GHz channel through this obstacle had
a left-sided tail (see Fig. 5a), when aggregating data from
all channels and from an additional experiment, the errors
converge to a Gaussian with a bias of −4.3 cm and a slightly
larger standard deviation than in LOS, of 9.2 cm. It is not clear
why the gypsum wall causes negative biases. Its relative per-
mittivity was found to be between 2.7–3.1 [35], higher than the
relative permittivity of air, so the signal should travel at a lower
speed through the obstacle, causing a delay. Since this delay is
not reflected in the measurements, additional investigation is
needed to determine whether other environmental factors are
responsible for this bias. The main take-away is that gypsum
walls introduce errors comparable to LOS propagation.

The scenarios where two devices are in NLOS with a con-
crete wall or with human body shadowing can be categorized
as “hard” NLOS scenarios and introduce larger errors with
heavier tails, as can be seen from Fig. 11c and 11d, respec-
tively. We obtained the best fits for the Burr distributions type
XII, also known as the Singh–Maddala distribution (Eq. (12)).
The Burr type XII is part of the family of log-logistic distribu-
tions used to model data that increases in an initial phase and
then decreases, such as wealth distribution, survival analysis,
or mortality rate [36]. Its shape is similar to the more well-
known log-normal distribution but can better handle heavier
tails [36], as it is currently the case with our hard NLOS data.
For the sake of completeness, we presented both the Burr and
log-normal fits for the NLOS with concrete wall and human
body shadowing scenarios, but also because the log-normal
distribution has fewer parameters and is easier to interpret.
The log-normal distribution has also been previously used in
literature to model NLOS scenarios [37]. The PDF of the log-
normal function is given in Eq. (13) with a parametrization in
which s, µ, and σ are also known as the shape, location, and
scale parameters, respectively. Given that Burr distributions are
a better fit than the log-normal one for our experimental data,
this suggests that such NLOS obstructions might introduce
heavier tails than previously thought, especially in the case of
human body shadowing where the Burr type III is a noticeably
better fit than the log-normal (Fig. 11d).

The chosen distributions can be used to simulate different
localization scenarios. Our analysis shows that different types
of obstructions can introduce very different errors and that a
one-size-fit-all error model for NLOS propagation would likely
lead to unrealistic results. Therefore, when evaluating the
expected localization accuracy of a particular setup, different
error models should be taken into account depending, for
instance, on the crowdedness of the room or its wall structure.
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Fig. 11. The histograms of distance errors based on data from the ranging experiment in LOS, NLOS with drywall, NLOS with concrete wall, and NLOS
with human body, and the distributions that best model them.

TABLE VII
PARAMETERS OF THE DISTRIBUTIONS USED TO MODEL DISTANCE ERRORS.

Scenario Distribution PDF Shape µ σ

LOS Gaussian f(x|µ, σ) = 1

σ
√
2π

exp−
1
2

(
x−µ
σ

)2
(11) – 0.004 0.071

NLOS drywall Gaussian See Eq. (11) – −0.043 0.092

NLOS
concrete wall

Burr XII f(x|c, d, µ, σ) = cd

(
x− µ
σ

)c−1/(
1 +

(x− µ
σ

)c
)d+1

, x >= 0, c, d > 0 (12)
c = 9.64
d = 0.98

−0.46 0.72

Log-normal f(x|s, µ, σ) = 1

s(x− µ)
√
2π

exp

(
−

ln2
(

x−µ
σ

)

2s2

)
, x > 0, s > 0 (13) s = 0.17 −0.53 0.81

NLOS human
Burr XII See Eq. (12) c = 32.84

d = 0.24
−1.63 1.66

Log-normal See Eq. (13) s = 0.44 −0.30 0.50
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Fig. 12. Simulation setup with four anchors. We consider a LOS case, in
which there is no wall between the anchors, and two NLOS cases, in which
the anchors are separated by a gypsum or concrete wall shown in the figure.
We consider locations of the tag spread uniformly within the tracking area,
in steps of 0.25m (the figure shows steps of 0.5m for better visibility).

B. Building Deployment

In this section, we illustrate an example in which the pro-
posed statistical models can be used to evaluate the expected
localization accuracy. We consider the setup from Fig. 12, with
four anchors placed in the corners of a space of 9×20 m, which
is the area of our office space together with a meeting room.
We consider a LOS scenario, in which there are no separating
walls in the tracking area such that the anchors and the tag
are at all times in LOS, and two NLOS scenarios when there
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Fig. 13. The CDF of simulated localization errors with four anchors when
the anchors are at all times in LOS with the tag or when the anchors are in
different rooms delimited by a drywall or a concrete wall.

is either a concrete or a drywall separating the area into two
rooms of 9×13 m and 9×7 m (corresponding to the office and
meeting room, respectively). The anchors are placed close to
the ceiling: two (opposing) anchors at a height of 3 m and the
other two at 2.7 m. We consider all possible locations of the tag
over the tracking area in steps of 0.25 m, similar to the points
shown in Fig. 12. At each test point, we simulate the measured
distance between the tag and each anchor by adding an error
term to the true distance. The error term is sampled from the
distributions from TABLE VII, based on the condition: LOS,
NLOS with drywall, or NLOS with concrete wall. We run the
simulation for each scenario five times and compute the error
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statistics over the errors obtained in all runs.
The CDFs of the 2D localization errors obtained in the

three scenarios are presented in Fig. 13. As expected based
on the ranging experiments and error modeling, drywall does
not introduce significant errors. The localization error when
the space is separated by drywall is almost the same as if the
wall were not there. The concrete wall, on the other hand,
introduces a median 2D localization error of about 25 cm. In
some cases, this might be an acceptable localization error,
given that half as many anchors are needed for the entire
space than if four anchors (the minimum necessary for 3D
localization) were deployed in each room.

In a building with many rooms or delimitations (for in-
stance, an office building), placing sets of four anchors in each
room can be detrimental even if it improves the localization
accuracy. First, devices in adjacent rooms (or even further
away from each other) can be in communication range of each
other so the anchors and users need to use different channels
for communication and/or synchronize their transmissions in
order to not interfere with each other. These issues are similar
to challenges in the placement of base stations in cellular
networks [38]. Second, the tag would also need to select
a subset of surrounding anchors with which to range based
on the link quality between them (for instance, using the
techniques described in [39]) and based on the geometry
formed by the anchors, since the localization accuracy is the
highest within the convex hull determined by the anchors [40].
In addition, a higher number of deployed anchors increases
the deployment costs. If the walls in a building introduce only
small errors, these issues can be largely avoided by allowing
walls within the tracking area encompassed by the minimum
number of anchors. To establish whether this is the right
approach for a given space, more work is needed, such as
evaluating how two or more walls of different types influence
the ranging error and developing a flexible, realistic simulator
that outputs the best anchor configuration for a building plan
while taking into account the cost–accuracy trade-off.

VI. DISCUSSION

A. Related work

1) The Accuracy and Precision of UWB Ranging and
Localization: The reported NLOS bias and standard deviation
of Decawave devices was 34±35 cm in office environments
with different types of obstacles [41], 15.6±7.4 cm with
human body shadowing [7], around 56±20 cm when the path
is blocked by concrete walls [9], and about 5±15 cm with
shallow obstructions (such as plasterboard, wood, or steel) [9].
The results for walls and shallow obstructions agree with our
own observations but we obtained much larger errors with
human body shadowing with both Decawave and 3db devices.
In [16], an UWB localization system using Decawave devices
achieved a localization accuracy of 0.21 m in 2D and 0.24 m
in 3D in an industrial environment.

In [11], the authors compared the ranging and local-
ization performance of three UWB devices which imple-
ment either the HRP PHY (Decawave DW1000), the LRP
PHY (Ubisense), or a proprietary PHY (BeSpoon). Decawave

achieved the best average localization error of 0.5 m, followed
by BeSpoon with 0.71 m, and Ubisense with 1.93 m. The
article did not investigate the power and energy consumption
of the devices. Ubisense devices have also been used in [12],
where they achieved sub-15 cm average error in LOS and
about 50 cm through a metallic enclosure. Another brand of
LRP devices is PulsON (models P220 and the P400 series),
but they implement a coherent interface. They have been used
in [42] for detecting a human target through the wall, and
integrated in localization systems in [17], [43] that yielded
localization errors under 20 cm. PulsON and another brand of
LRP devices from Multispectral Solutions Inc. (MSSI, now
known as Zebra) were compared in [44]. PulsON and MSSI
devices had average biases of 10 cm and 50 cm, respectively.
The authors also noted the linear dependence on the errors
with the distance and proposed a first-order linear model to
correct them.

Custom non-coherent UWB transceivers were proposed
in [18] in an FPGA implementation and in [45], [46] as
integrated solutions, out of which only the former achieves
errors lower than 20 cm. To the best of our knowledge, the
solutions are not compliant with the IEEE 802.15.4 standard
nor are they available commercially.

A method for using channel diversity to improve the ranging
accuracy (but only in LOS) was proposed in [19]. The authors
leverage the constructive interference phenomenon to reduce
the number of measurements needed for a single distance
measurement, which can also decrease the energy consumption
when applying diversity methods.

In our work, we focused on a basic localization algorithm,
namely the regularized Gauss-Newton trilateration, since we
focused on comparing the localization performance of two
different devices. More complex algorithms which leverage
constraints common in localization problems can increase
the accuracy even further. For instance, in [47], the authors
proposed an optimization-based localization algorithm suitable
for IoT devices and implemented it using Decawave UWB
chipsets. The proposed method achieves 2–3× higher local-
ization accuracy than standard trilateration methods.

2) The Energy Efficiency of UWB devices: To the best of
our knowledge, we are the first to compare the power and en-
ergy consumption of devices implementing the LRP and HRP
PHYs as defined in the IEEE 802.15.4 standard [4]. Energy
efficiency is starting to be a concern in UWB devices and,
recently, concurrent ranging has been proposed as a solution
to minimize the energy consumption in localization tasks at the
application level [48]. Using this method, a tag can compute
its location based on the time difference of arrival between
multiple anchors’ responses which are processed in a single
message (rather than 2×N messages, where N is the number
of anchors, as in SS-TWR-based trilateration). In [49], the
authors analyzed the energy efficiency of UWB localization
systems depending on the association and synchronization
demands. In the new DW3000 UWB chipset, Decawave claims
to have improved the power consumption, but it is not yet clear
by how much [20]. There is also a newly-released, improved
version of the 3db 3DB6830C chip, namely the ATA8352
chip [50].
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One option to decrease the energy consumption when the
tag does not initiate the ranging is to use an ultra-low-power
wake-up receiver to keep the tag active only before a message
exchange and in the idle or deep sleep mode otherwise [51].

3) NLOS Detection and Mitigation Techniques: There is
a large body of literature dedicated to NLOS detection and
mitigation strategies [32]. Most works detect the NLOS con-
dition using the statistical properties of the channel impulse
response (CIR) of signals acquired in NLOS. These methods
require knowledge of the CIR, which by default is not dumped
by the device, and introduce additional processing times. Our
open-source measurement database also includes the dumped
CIRs of 3db Access devices, which could be used to evaluate
the performance of these methods. It is noteworthy, however,
that in our previous work [1], the multipath components in
the CIRs of 3db Access devices were found to be wider than
those of Decawave because of their lower pulse bandwidth.
Therefore, algorithms based on CIR characteristics might not
generalize well to all types of devices. Other works proposed
NLOS detection and mitigation methods that do not require
prior knowldege on LOS/NLOS statistics, for instance based
on sparse pseudo-input Gaussian processes (SPGP) [52] or
on fuzzy theory [53], which show promising results. Our
measurement database contains also the CIRs of 3db devices,
which can be used to test CIR-based NLOS detection and
mitigation algorithms.

In [8], the authors proposed a method to detect and correct
NLOS biases when the signal propagates through a wall based
on the wall’s relative permittivity and thickness, which reduces
the NLOS error by 53 %. In the future, we will investigate
whether this model fits the data from our experiments with
both concrete and gypsum walls.

4) Comparison with other Localization Technologies: The
power consumption of GNSS modules ranges from 12–72 mW
for super-low-power modules [54] to 160 mW in a typical
smartphone [55]. The accuracy of GPS receivers is about 2.5 m
for high-end receivers [56], 2–5 m in smartphones [57], and at
least centimeter-level for real-time kinematic (RTK) GPS [58].
Therefore, UWB devices can provide significantly higher
localization accuracy indoors than GNSS receivers without
enhancements; in terms of power consumption, LRP devices
are comparable to super-low-power GNSS receivers, while the
average power consumption of HRP devices exceeds the one
of GNSS receivers in smartphones. However, given that the
reception times might vary between the two technologies, their
energy consumption per location might also be different and
needs to be assessed in the future.

Bluetooth Low-Energy (BLE) has been also used in lo-
calization applications in recent years. Its power and energy
consumption is similar to the one of 3db devices [59] but its
accuracy is at best 0.7–1 m with sensor fusion [60]. Wi-Fi also
achieves decimeter-level accuracy [61] but has higher energy
consumption [59] than both BLE and UWB.

B. Future Work

As phone manufacturers started including UWB chips in
smartphones, one vision would be the instrumentation of

entire buildings with anchors to provide seamless positioning
indoors. As briefly mentioned throughout the paper, there
are still unsolved challenges to reach this goal. First, if
anchors are placed in the same room in order to avoid NLOS
measurements, buildings with many rooms or cubicles will
need many localization cells (formed by the minimum number
of anchors for 2D or 3D localization). If the cells are in
range of each other, transmissions within multiple cells need
to be synchronized or allocated to different bands, which in-
creases the administration efforts. Moreover, since localization
accuracy degrades at the edge of a cell, a hand-over protocol
needs to be implemented at the tag to decide which anchors
to select for localization at a given time. Allowing walls
within one cell does not necessarily decrease the localization
accuracy if the walls are shallow (such as gypsum walls) and
can reduce the deployment effort and costs. However, more
work is needed to model the ranging errors and maximum
range through an arbitrary number of walls. Towards this end,
a simulator for building deployments of UWB localization
systems that recommends the optimal number of anchors and
their placement for the desired accuracy–cost trade-off would
be needed.

In this work, we considered only range-based localization,
where each distance measurement is obtained through at least
two message exchanges between the tag and each anchor. This
scheme does not scale well with many users and anchors
because of the large number of messages involved and the
need to schedule uplink transmissions. Moreover, this method
is privacy-sensitive since anchors have access to at least part
of the ranging information, which can be used to track the
user with a certain precision. Instead, a GPS-like localization
system based on the time-difference of arrival (TDOA) of
signals, in which anchors act as satellites and passive tags
use their broadcasts to locate themselves can, in theory, scale
to an unlimited number of users and is more privacy-friendly.
The drawback is that, in this case, anchors need to synchro-
nize their transmissions. Wired synchronization introduces the
lowest errors but is unlikely to be adopted because of the
high deployment costs. Wireless synchronization, on the other
hand, leads to localization errors in the range of decimeters
even when anchors are in LOS with the tag [62] and requires
anchors to be in LOS with each other. More work is needed,
for instance, to determine whether a calibration protocol can
allow wireless-synchronized TDOA systems where anchors
are in different rooms to obtain a similar accuracy with the
case in which anchors are in LOS with each other.

VII. CONCLUSION

This paper provided an outlook on the power and energy
consumption, distance measurement statistics, and localization
performance of 3db Access and Decawave devices, represen-
tative of the two types of UWB physical interfaces, LRP and
HRP, respectively. Both devices have ranging and localization
errors on the same order of magnitude. Decawave devices
generally show better performance in LOS and through-the-
wall NLOS conditions, while 3db devices have slightly better
performance in NLOS with human body shadowing. For a
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similar maximum range, Decawave devices have 125× higher
energy consumption than 3db Access devices, while in the
short-range mode (which decreases the range by at least 8×)
they have 6.4× higher energy consumption than 3db Access.
Therefore, devices implementing the LRP PHY might be more
suitable for ultra-low power applications, while the HRP PHY
might be a better choice for the highest ranging accuracy.

We evaluated the performance of 3db Access and Decawave
devices in multiple LOS and NLOS (caused by a person, dry-
wall, or concrete wall) scenarios and provided models for the
error distribution of 3db Access distance measurements. These
models can be further used to simulate realistic deployments
of localization systems which would otherwise take days or
even weeks to evaluate. We illustrated their applicability by
simulating a localization scenario in which the anchors are
placed in different rooms separated by drywall or a concrete
wall. Results suggest that drywall causes negligible errors and
anchors do not need to be in the same room to obtain high
localization accuracy.

More research is needed to evaluate the impact of multiple
walls on the ranging accuracy and to create suitable models
of the maximum range and distance measurement errors with
an arbitrary number of walls. Using such models, a simulator
of UWB localization systems could then recommend the min-
imum number of anchors for the desired localization accuracy
and their placement. More work is also needed to select the
best anchors at a particular moment based on their link to the
tag and to synchronize UWB transmissions between clusters
of anchors within range of each other.

APPENDIX
DISTANCE CALIBRATION

Before comparing the ranging accuracy and precision of
Decawave and 3db devices, a calibration step is also necessary
since, as we will show, the raw distance error can depend on
the hardware, on the channel used, and even on the distance.

We collected distance measurements between different de-
vice pairs placed 2, 5, and 10 m apart, for at least 30 min,
which was deemed a long enough time period to capture the
long-term distribution of distance measurements. In a different
experiment, we acquired measurements during 24 h to obtain
the long-term error distribution. The mean error obtained in
windows longer than 2 min was within ±1 cm of the long-
term mean error. We chose a longer window, of 30 min, to
obtain more stable distributions.

We recorded measurements on all the available channels
(6.5 GHz, 7 GHz, and 7.5 GHz) using 3db devices and only
on the 6.5 GHz channel with Decawave, since it is the only
available channel when using the default Decawave software
for the MDEK1001 kit. Although the software compensates
the antenna delay, in most cases distance measurements with
Decawave devices still had a non-negative bias that was
eliminated in the calibration process.

Our findings suggest that the measurement bias of UWB
devices varies with the distance, the channel, and the pair of
devices used. The dependency on the distance for the same
channel can be seen in Fig. 14 for the 6.5 GHz channel.

The TOA estimation error increases with lower SNR [63],
so without proper calibration distance measurement errors
increase with the measured distance. Fig. 14 also shows how
the ranging error varies between channels because they have
different amplitude saturation points. Fortunately, the channel
is known at the time of the measurement and these errors can
be compensated.

The mean error also depends on the pair of devices used.
This can occur due to the different clock offset or antenna
delay of the hardware devices. Although these parameters can
be estimated, the clock offset can still deviate in time or the
antenna delay calibration might be imperfect. Fig. 15 compares
the error distributions of distance measurements acquired by
different 3db and Decawave device pairs on the 6.5 GHz
channel. All pairs have a common transmitter (the tag used
for localization in Section IV-E). For distances up to 10 m,
the mean error can vary with 0.6 m for 3db devices and 0.2 m
for Decawave devices, but note that this range includes also
the linear dependence of the distance error on the SNR.

An arbitrary non-negative measurement bias is not desirable
in ranging or localization. Therefore, such errors are often
eliminated during a calibration step. The desired measurement
model in LOS is a zero-mean Gaussian, whose standard devia-
tion is at least partly determined by the hardware capabilities.
It is worth noting that while the mean distance error varies
with up to 0.6 m when we change the hardware, channel, or
distance, the standard deviation of each error distribution is
almost constant for each device (see Table VIII). Since the
raw error distribution is already Gaussian, we need to correct
only its bias.

We consider each set of measurements sij for a given pair
of devices pi, i = 1, ..., 4 and channel cj , where j = {0, 1, 2}
corresponds, respectively, to channels at 6.5, 7, and 7.5 GHz.
Each set sij contains an equal number of approximately 3000
measurements (equivalent to a recording time of 30 min) taken
at each distance dk ∈ {2, 5, 10} m. We assume a simple linear
dependence of the measured distance on the true distance,
which is found by minimizing the squared error:

E =
N∑

n=0

|xn · p0 + p1 − yn|2, (16)

where N is the total number of measurements, yn is the
measured distance at the true distance xn for all n = 1, ..., N
and p0 and p1 are the polynomial coefficients.

Once the polynomial coefficients for a set sij are computed,
the measurements of that set can be corrected as follows:

xc =
xm − p1
p0

, (17)

where xc and xm are, respectively, the calibrated and the raw
measurements.

There are several caveats to this approach. First, we do not
derive error coefficients for each factor that introduces errors
(channel, pair, and true distance). Rather, the accumulated
error is corrected for a particular set.

Second, while it is feasible to obtain the calibration coeffi-
cients for a particular channel by performing measurements at
different distances, the device-dependent calibration is harder
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Fig. 14. Comparison of the distribution of distance measurement errors of
the same pair of 3db Access devices, on the 6.5, 7, and 7.5GHz channels,
at distances of 2, 5, and 10m between the two devices. On the 6.5GHz
channel, the mean error increases approximately linearly with the distance,
while on the other two channels it is constant with the distance.
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Fig. 15. Comparison of the distribution of distance measurement errors of four
pairs of (a) 3db Access and (b) Decawave devices on the 6.5GHz channel.
The same transmitter (tag) was used in all pairs and only the receiver (anchor)
was changed. The error varies with both the distance and the hardware.

to perform in a real application. Localization systems deployed
inside buildings should be able to offer accurate locations even
to unknown users, so one could not calibrate each anchor–
tag pair. Even if all the users were known, for instance in
a privately-deployed localization system, the tag population
can easily reach hundreds or thousands devices, which again
makes pair-wise device calibration impractical. Hardware-
dependent distance errors are an interesting research topic but
outside the scope of this paper, which is why we calibrated
each pair of Decawave and 3db Access devices used (including
the tag and each anchor in the localization experiment from
Section IV-E).

Third, it is worth noting that the distance errors of Decawave
devices do not linearly increase with the measured distance,
as in the case of 3db Access. Instead, the dependency seems
non-linear. Due to the lack of a more appropriate straight-
forward model, we still apply a linear fitting with the mention
that there might be better models for this distribution. Even

TABLE VIII
DISTANCE ERROR STATISTICS BEFORE AND AFTER CALIBRATION.

Device Case Mean [cm] Standard
deviation [cm]

3db Access Before calibration −0.79 16.09
After calibration −0.05 6.54

Decawave Before calibration −7.56 4.79
After calibration 0.00 3.14

so, the calibration reduces the measurement bias with 8 cm,
as shown in TABLE VIII, which presents the mean and the
standard deviation of all errors before and after calibration.

The calibration does not significantly reduce the overall
average error of 3db Access devices because the sets with a
positive bias balance out those with a negative bias (predomi-
nantly on channels 1 and 2 which, for brevity, are not shown),
but there is a benefit in the bias reduction of the individual
sets. Moreover, the calibration reduces the standard deviation
of measurement errors by more than half.
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ABSTRACT
The Ultra-Wideband (UWB) technology has grown in popularity
to the point in which there are numerous UWB transceivers on
the market that use different center frequencies, bandwidths, or
hardware architectures. At the same time, efforts are made to re-
duce the ranging and localization errors of UWB systems. Until
now, not much attention has been dedicated to the cross-platform
compatibility of these methods. In this paper, we discuss for the
first time the challenges in obtaining platform-independent UWB
ranging and localization systems. We derive our observations from
a measurement campaign conducted with UWB devices from three
different developers. We evaluate the differences in the ranging
errors and channel impulse responses of the devices and show how
they can affect ranging mitigation methods customized for one
device only. Finally, we discuss possible solutions towards platform-
independent UWB localization systems.

CCS CONCEPTS
• Hardware → Wireless integrated network sensors; • Net-
works → Location based services.
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1 INTRODUCTION
Ultra-wideband (UWB) devices are increasing in popularity for their
centimeter-level ranging and localization capabilities. At this date,
there are at least fourmajor smartphone brands equippedwith UWB
chipsets and at least six developers of UWB platforms. Therefore,
localization systems must ensure interoperability among different
device brands [22]. For this purpose, the FiRa™ Consortium [4] pro-
vides specifications and certifications that ensure interoperability
between different UWB solutions.
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UWB systems can provide centimeter-level ranging and local-
ization accuracy in line-of-sight (LOS) conditions but their perfor-
mance is affected by obstacles between the transmitter (TX) and the
receiver (RX), which is known as non-line-of-sight (NLOS) propa-
gation. Multiple techniques have been proposed for dealing with
errors caused by NLOS propagation [8, 21, 24]. Most of them rely
on the channel impulse response (CIR) of the signal, since it offers
rich information about the propagation path of the signal. However,
so far, little to no attention has been dedicated to ensuring the
proposed methods perform well on different UWB platforms.

To the best of our knowledge, we are the first to look at the
challenges faced by ranging and localization systems when dealing
with devices from different vendors. We derive our observations
from a measurement campaign using UWB devices developed by
three companies: Qorvo, TDSR, and 3db Access. We acquired mea-
surements with pairs of devices from each brand at the same loca-
tions under different LOS and NLOS conditions. The measurements
are made open-source [6] to facilitate future research in platform-
independent UWB localization systems. The goal of the paper is
to evaluate the differences in terms of distance errors and CIRs
between different device models under the same propagation condi-
tions (i.e., the same location, furniture arrangement, crowdedness,
and, if applicable, obstacles).

First, we illustrate the danger in ignoring the cross-platform
compatibility of a centralized localization system. We evaluate the
performance of a neural network (NN) trained to achieve a good
distance error prediction for one device when it is tested on mea-
surements from different devices (acquired at the same locations),
simulating the scenario in which the system disregards the users’
device models. Our results show that an error mitigation technique
that disregards the device model of incoming measurements may
actually degrade the final performance of the system.

Second, we look at the root causes of cross-platform compatibil-
ity issues in UWB systems and we identify four main challenges:

(1) The same environmental conditions lead to different distance
errors for different devices, especially in NLOS conditions.
Although great efforts are made to reduce ranging and local-
ization errors through NLOS detection and mitigation, not
all types of obstacles introduce significant ranging errors
and, perhaps more interestingly, they do not introduce the
same error in all devices even under the same conditions.

(2) The same (NLOS) environmental conditions can lead to a
different time of arrival (TOA) estimation in consecutive
measurements even for the same device. Therefore, NLOS
errors depend not only on the obstacle and environment, but
also on the hardware and its TOA estimation algorithm.
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(3) CIRs acquired by different platforms at the same locations
have different lengths, shapes, and statistics. This can be due
to different center frequencies, pulse shapes and bandwidths,
nonlinearities imprinted by the different front-end architec-
tures on the CIR, antenna propagation characteristics, etc.

(4) Different vendors provide different types of diagnostics (e.g.,
signal power, noise level), sometimes using incompatible or
undisclosed units of measurement, which can hinder the
cross-platform compatibility of localization methods based
on such diagnostics [21].

Finally, we use these observations to make recommendations
towards platform-independent UWB localization systems.

2 RELATED WORK
Measurements with different UWB devices at the same locations
have been previously performed in [7, 11, 16, 19]. However, these
studies were focused on comparing the performance of the devices
in terms of ranging and/or localization accuracy or energy con-
sumption. In this paper, we look not only at the average ranging
error of each device, but also at the error distribution at selected
locations, which gives insight into their different operating modes.
To the best of our knowledge, we are the first to also compare the
CIRs of different devices and to highlight how these differences can
prevent the cross-platform compatibility of ranging and localiza-
tion systems. We also compare other platforms than in the previous
works and provide one of the few open-source datasets of this kind.

The localization accuracy of UWB-based systems can be im-
proved by filtering or correcting individual distance measurements
used in multilateration algorithms and/or by filtering or estimat-
ing locations directly. Distance errors can be reduced through
NLOS detection and mitigation [24], data-driven TOA estimation
algorithms [5], or models trained for distance error prediction [8,
21]. Other approaches estimate directly the location based on CIR
features [12]. In recent years, ML-driven approaches for ranging
and localization have taken precedence over statistics-based tech-
niques [17]. However, all the cited solutions have been trained on
data from only one device model. Previous work has also revealed
that models trained in one environment have issues in adapting to
different environments [3]. Given the diversity of UWB devices on
the market, we deem necessary to evaluate the differences between
various UWB devices that might affect the performance of error
mitigation methods when applied on unknown devices.

3 DATA COLLECTION
In this section, we briefly present the experimental setup used to
collect the data. The dataset is open-source and a detailed descrip-
tion of all the locations in which we acquired measurements can
be found in the repository [6]. The goal of the measurement cam-
paign is to verify the consistency of CIRs and ranging errors from
different devices at the same locations.

We performed ranging measurements between pairs of devices
belonging to each brand in several locations at Tampere University.
We targeted LOS and NLOS scenarios, for the latter using as obstruc-
tions walls, pillars, furniture, a TV screen, and room divider panels.

(a) LOS (b) NLOS with half wall

(c) NLOS with bar refrigerator (d) NLOS with pillar

Fig. 1: Examples of environments from the measurement campaign.

Table 1: Device settings used in the experiments: the center frequency (𝑓𝑐 ), the
pulse bandwidth (𝐵𝑝 ), and the CIR sampling period (𝑇CIR

𝑠 ).

Device 𝑓𝑐 [GHz] 𝐵𝑝 [MHz] 𝑇CIR
𝑠 [ns]

DW3000 6.5 600 1
TDSR 4.3 620 0.061
3db 6.5 380 1

We performed measurements in nine different spaces which in-
cluded meeting rooms, offices, corridors, or cafeterias. Fig. 1 shows
some of the locations in which we acquired measurements.

We used three models of UWB devices from different developers:
the Qorvo (formerly Decawave) DW3000, the 3db Access 3DB6830C,
and the TDSR P452A. For brevity, we will further refer to the de-
vices, respectively, as DW3000 (or DW), 3db, and TDSR. Table 1
summarizes the characteristics and settings of the devices. DW3000
and 3db devices have the same center frequency of 6.5GHz but
different pulse bandwidths of 600MHz and 380MHz, respectively.
TDSR devices have a different center frequency of 4.3GHz but a
bandwidth close to the DW3000 (620MHz). DW3000 and 3db de-
vices are compliant with the IEEE 802.15.4z standard [1], while
TDSR devices implement a proprietary physical interface.

We took several measures to ensure that the devices from dif-
ferent manufacturers are placed at the same locations for each
measurement. First, we mounted the devices on tripods such that
the center of their antennas are aligned with respect to the tripod.
Second, we marked the locations of the tripod legs on the floor for
each test point. We estimate that, during the measurement process,
there can be a maximum error of 1 cm between the antenna centers
of two different devices.

At each test point, we kept a minimum recording time of 30 s in
order to capture the CIR variations over multiple measurements.
Because of some software limitations, in a part of the measurements
the ranging update rate of DW3000 was lower than the one of 3db
and TDSR devices (2 s vs. approx. 300ms, respectively). In total,
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our database contains approx. 30, 000 measurements with 3db and
TDSR devices each and 2, 800 measurements with Decawave. The
proportion of LOS and NLOS measurements is approx. 50/50.

We need to preprocess the CIRs in order to compare them. TDSR
and 3db devices provide the real part of the CIR, while the DW3000
stores the complex CIR. To unify the three representations, we use
the absolute value of the CIR. The TDSR CIRs have a sampling
period of 61 ps so we downsampled them to 1 ns using linear in-
terpolation. We also rescale the CIRs of each each device to have
amplitudes between [0, 1], taking into account the global minimum
and maximum of the entire dataset for each device. The rescaling
enables us to compare the CIR statistics from different devices and
does not change the statistics of CIRs from the same dataset (i.e.,
from one manufacturer).

4 CROSS-PLATFORM PERFORMANCE OF AN
ERROR PREDICTION MODEL

In this section, we want to highlight the danger in disregarding the
cross-platform compatibility of a centralized localization system
(LS). In many LSs, the anchors collect ranging measurements from a
user, then transmit them to a central server, which further processes
them and estimates the user’s location [8]. Let us consider that the
processing step consists of a NN which predicts the distance error1
based on the CIR and uses the prediction to refine the estimated
distance. Since the data collection process is difficult for one device,
let alone for multiple brands of devices, we can assume that the
NN was trained on a dataset acquired with only one type of device,
as it is frequently the case in the literature [5, 21, 24]. However, in
a public space, the system might have to deal with measurements
from users with different UWB devices. So we evaluate the possible
outcome if the NN naively tried to predict errors based on measure-
ments from devices that it was not trained on. We will compare the
performance of the model when applied on measurements from
the device used for training vs. on measurements from different
devices, both acquired at the same locations.

Let 𝐷 = {⟨𝒙𝑖 , 𝑦𝑖 ⟩}𝑁𝑖=1 be our training set, where 𝒙𝑖 is the feature
vector (a portion of the CIR) from the feature space X and 𝑦𝑖 is an
instance of the target variable 𝑌 (the distance error) defined on the
domain Y. Our goal is to learn the function 𝑓 : X → Y, that maps
a CIR to its distance error.

We use a fully connected network with three dense layers, each
using a rectified linear unit (ReLU) activation function plus an
additional fully connected layer. Each layer uses 256 filters. We
used the Focal-R loss function proposed in [23] for imbalanced
regression to deal with the long-tailed distribution of the target
variable. We used an input size of 40 CIR samples aligned to the
TOA, keeping 30 samples before and 10 samples after the TOA.
Although using more samples after the TOA might show benefits,
we preferred to use the minimum common CIR length among all
devices in order to avoid zero-padding shorter CIRs.

We remind that our dataset includes multiple measurements
performed with the three brands of devices from the same physical
location, from multiple locations inside the same room, and from
1Among the possible error mitigation strategies, we chose predicting the distance error
to better control the target variable distribution compared to directly predicting the
(correct) distance. NLOS detection is another popular method but, as per Section 5.1, it
often discards many useful measurements.
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Fig. 2: CDF of the original distance errors ( |𝑒𝑖 |) vs. the corrected errors ( |𝑒𝑖 −𝑒𝑖 |)
using models trained on the same or different device(s).

different rooms. To avoid overfitting, we include measurements
from different locations in the training, test, and validation sets. We
select at random one location for the test set, one for the validation
set, and assign the rest to the training set. We repeat this procedure
10 times, generating 10 different splits each time. The same split is
used for all devices, meaning that split number 𝑘 ∈ {1, ..., 10} from
each device contains exactly the same combinations of locations
and rooms inside the train, validation, and test sets. Therefore, if
a model𝑀 trained on the set 𝐷train

𝑘
(𝑑1) from device 𝑑1 achieves a

good performance on the test set 𝐷test
𝑘

(𝑑1) but a bad performance
on 𝐷test

𝑘
(𝑑2) from device 𝑑2, the difference in the performance

will be due to the hardware since 𝐷test
𝑘

(𝑑1) and 𝐷test
𝑘

(𝑑2) contain
measurements acquired at exactly the same locations.

We evaluate the initial distance errors and the errors after correc-
tion using the model’s predictions. Let 𝑒𝑖 = 𝑑𝑖 − 𝑑𝑖 be the distance
error of measurement 𝑖 ∈ {1, ..., 𝑁 }, i.e., the difference between the
measured distance 𝑑𝑖 and the true distance 𝑑𝑖 . The average initial
(absolute) error is 𝜇init =

∑𝑁
𝑖=1 |𝑒𝑖 |, where we aggregate the errors

over all test set splits. The average corrected (absolute) error is
𝜇corr =

∑𝑁
𝑖=1 |𝑒𝑖 − 𝑒𝑖 |, where 𝑒𝑖 is the error predicted by the model

for measurement 𝑖 . If the prediction perfectly matches the true error,
then the distance error is completely mitigated.

Fig. 2 shows the CDF of the original distance errors of all devices
vs. the corrected errors using the trained NNs. First, when using
the same device for training and testing, the error after correcting
the distance using the model’s prediction is 22–27 % smaller in the
mean and 31–42% smaller in the standard deviation compared to
the initial error. This shows that the model is able to generalize to
unknown locations from similar environments.

When applying the error prediction model on an unknown de-
vice, i.e., that the model was not trained on, the average corrected
error is always higher than the initial error, in most cases 3–8×
larger. This shows that models not trained on a particular device
might degrade the performance of a ranging system if we disre-
gard information about the platforms used for training and testing.
Therefore, the cross-platform compatibility of error mitigation tech-
niques in LSs should be taken into account from the design stage.
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Fig. 3: (a) CDF of errors in LOS and NLOS for all devices. (b) Distribution of errors from selected locations with different obstacles.

5 CHALLENGES
In this section, we analyze the collected data and highlight the chal-
lenges in obtaining cross-platform compatible UWB-based ranging
and localization systems.

5.1 Same Conditions, Different Distance Errors
for Different Devices

NLOS propagation is defined by the absence of a visual direct propa-
gation path between the TX and the RX. Obstructions can introduce
distance errors in UWB measurements in two ways. First, objects
can attenuate the signal traveling through the direct path, making
it indistinguishable from noise. When this happens, the device can
incorrectly estimate the TOA as corresponding to a later reflection
which has a higher amplitude than the direct path, causing a time
(and distance) error. Second, some obstacles can decrease the prop-
agation speed of signals traveling through them. In this case, the
direct signal will arrive later than it would have arrived through
air, introducing a distance error.

Fig. 3a shows the cumulative distribution function (CDF) of dis-
tance errors obtained with the three devices in LOS and NLOS
scenarios. Indeed, the errors obtained in NLOS scenarios are always
larger than those obtained in LOS. However, it is worth noting
that at least 50 % of NLOS measurements are under 15 cm, which is
usually deemed an acceptable ranging error [19]. Even if we devel-
oped a perfect NLOS detection algorithm, discarding or assigning
lower weights to measurements with small errors might decrease
the accuracy of the localization system, especially in cases with
few anchors available. Therefore, a binary LOS/NLOS classification
might not always be the best strategy for distance error mitigation.

Table 2 shows the median error of each device for all types
of obstacles considered here. While it is true that certain types of
obstacles (e.g., concretewalls, TV screen) generally introduce higher
errors than others (e.g., door) [11, 20], we noted that not all devices
yielded the same ranging errors even when placed under exactly the
same conditions. Fig. 3b shows the distribution of distance errors
(illustrated as box plots using Tukey’s definition) obtained by the
three devices at one location for several obstacles. There is a high
variability in the distance errors obtained by different devices at the
same location and, sometimes, a high spread in the errors obtained
by a single device at one location.

Table 2: Median distance errors with various obstacles.

Median distance error [m]

Device LOS TV
screen Fridge Door Pillar Half

wall
DW 0.06 0.45 0.31 0.10 0.57 0.08
TDSR 0.00 0.22 0.33 0.08 0.28 0.01
3db −0.02 1.89 0.00 −0.23 0.42 0.05

5.2 Same Conditions, Different TOAs
It is perhaps useful to explain the root cause of the differences in the
measured distance of various devices. Since the distance between
two devices is computed based on the (round-trip) time of flight
between the TX and the RX, any error in the TOA estimation will
also yield a distance error.

Although the TOA estimation algorithms used by the devices are
closed-source, the “Applications of the IEEE 802.15.4 standard” doc-
ument [9] describes some approaches that are likely followed by the
manufacturers. In LOS, the maximum peak of the CIR usually corre-
sponds to the direct path, so the (correct) TOA is straight-forward
to obtain. In NLOS, however, the direct path can be attenuated by
an obstruction and later paths, which correspond to longer travel
times, often have higher amplitudes. Therefore, the receiver needs
to also consider other peaks in the vicinity of the strongest one
as possible candidates for the first path. Popular approaches to
implement the back-search include a sequential linear cancellation
scheme [18] or threshold-based techniques [10]. Both techniques
are model-based and require assumptions about the propagation
conditions, such as the power ratio between two consecutive paths,
the number of MPCs to be subtracted, the maximum peak to earlier
peak ratio, or the peak to average power ratio.

We found that the most common reason for differences in rang-
ing accuracy between the devices is the different TOA estimation,
especially in the case of direct paths that have low amplitudes (close
to the noise threshold). In our measurements, the “global” CIR shape
in NLOS propagation is relatively stable for a single device and it is
only the estimated TOA that fluctuates in some NLOS scenarios.

To illustrate this, let us consider a series of CIRs acquired with
one pair of devices from the same brand in a NLOS scenario with a
TV screen between the transmitter and the receiver. The devices
are left unmoved during the experiment. We use the DW3000 for
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(c) CIRs aligned to the maximum cross-correlation index

Fig. 4: The plots show stacked CIRs (with their amplitude encoded through the color depth) acquired during a series of measurements in which there was a TV
screen between two DW3000 devices. The circle markers represent the TOA estimated by the hardware and its color encodes the distance error of that measurement.
Fig. 4a shows a portion of the unaligned CIRs (i.e., as dumped in the buffer by the device), Fig. 4b shows the CIRs aligned to the TOA, and Fig. 4c shows the CIRs
aligned to the maximum value of the cross-correlation function computed between the first CIR and all of the following.

this example, but all devices present similar patterns. Fig. 4 shows
series of 30 CIRs stacked vertically with different alignments. The
MPCs from each CIR have color-encoded amplitudes and the TOA
is denoted by a circle marker. The color of the circle marker encodes
the distance error of the measurement corresponding to that CIR.

Fig. 4a shows the “raw” CIR alignment. In theory, the TOA can
occur at any sample in the internal buffer which stores the CIR.
In practice, we found that all DW3000 TOAs in our dataset occur
between samples 710 and 750 in a quasi-random manner. In Fig. 4a,
batches of consecutive CIRs appear to be shifted versions of each
other, but the pattern changes every 5–10 measurements. In this
representation, we cannot distinguish a clear pattern between CIRs
that lead to large errors or between the MPCs of consecutive CIRs.

In most works, the CIRs are cropped around the TOA identified
by the device, as in Fig. 4b. This provides a convenient representa-
tion for LOS/NLOS classification or for distance error prediction,
since CIRs are aligned to a common denominator and deviations
from it (e.g., the maximum peak occurring earlier or later in the
buffer, shorter or longer tails) can indicate different error magni-
tudes. Using this representation, we could believe that different CIR
shapes are correlated with different magnitudes of ranging errors.

Instead, if we align the CIRs according to the index which yields
the maximum cross-correlation value, i.e., according to their sim-
ilarity, we obtain Fig. 4c. In this figure, it is evident that, in fact,
consecutive CIRs acquired in the same scenario are almost identical.
What differs in this representation is the estimated TOA. The mea-
surements with the lowest distance errors have the earliest TOA.
However, because these early paths have amplitudes close to the
noise threshold, they are ignored in some measurements and the
TOA is identified as corresponding to a later reflection. Note that,
since the devices perform two-way ranging, they must identify the
correct TOA during both the poll and the response messages. In
the plot, we see only the CIRs of the initiator, but large errors can
also be caused by an incorrect TOA estimation at the responder.
Therefore, the devices can experience different errors even at the
same location because of the different SNR of the first path (which
is influenced by the hardware architecture and signal processing
steps) or because of the internal TOA estimation algorithm.

5.3 Same Conditions, Different CIRs for
Different Devices

At first sight, CIRs seem convenient for platform-independent learn-
ing problems, since they provide a representation of the paths
through which the signal travels from the TX to the RX. Therefore,
we would perhaps expect CIRs acquired by different devices at the
same location to be similar. However, we will see why this is not
the case. We focus on two main differences: the effective duration
and the shape of CIRs.

5.3.1 Effective duration. One crucial difference between CIRs ac-
quired by different devices is their length. Let us call the effective
duration of the CIR the portion starting from the estimated TOA
until the end of buffer in which CIRs are stored, since this is usu-
ally the portion of most interest. The buffers have a length of 1016
samples for DW3000, 1632 samples for TDSR, and 256 samples for
3db. However, because we downsampled the TDSR from 61 ps to
1 ns, they will have a shorter (effective) duration than the other
devices. In practice, we found that TDSR devices capture, on aver-
age, the paths which arrive within 17 ns of the TOA. In comparison,
DW3000 and 3db devices have an average effective length of 278 ns
and 125 ns, respectively. This difference is evident in Fig. 5, which
shows an example of CIRs acquired with the three devices at the
same location in one LOS scenario.

Different effective CIR lengths can cause issues in NNs which
receive as input the raw CIR from different platforms. If the net-
works are designed to work on CIRs with a pre-defined length,
shorter CIRs must be padded until the desired length, which can
change the input sample distribution and the model’s performance
on those inputs. Alternatively, recursive NNs can be used on inputs
of different lengths.

5.3.2 CIR shape. The received signal can be modeled as [13]:

𝑟 (𝑡) = 𝑠 (𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡), (1)

where 𝑠 (𝑡) is the transmitted pulse which is convolved with the CIR
ℎ(𝑡). The signal 𝑛(𝑡) represents sensor or environmental noise (so
not related to the propagation path), usually modeled as zero-mean
white Gaussian noise.

The CIR can be decomposed into𝐾 multipath components (MPCs)
with delays 𝜏𝑘 , 𝑘 = 1, ..., 𝐾 and amplitudes 𝛼𝑘 and a stochastic pro-
cess 𝜈 (𝑡) which results in diffuse multipath caused by scattering
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and diffraction:

ℎ(𝑡) =
𝐾∑︁
𝑘=1

𝛼𝑘𝛿 (𝑡 − 𝜏𝑘 ) + 𝜈 (𝑡). (2)

The estimated CIR, denoted by ℎ̂(𝑡), is obtained by decorrelating
the received signal 𝑟 (𝑡) with the known template pulse 𝑠 (𝑡).

Because we acquired measurements with the three platforms at
the same location, we would perhaps expect to see MPCs with the
same delays 𝜏𝑘 in their CIRs. However, because the devices have
different center frequencies and/or pulse bandwidths, there will be
different constructive or destructive interference patterns reflected
in 𝜈 (𝑡) or even in the observed delays of the main MPCs 𝜏𝑘 . In
addition, the amplitudes 𝛼𝑘 are influenced by the different front-end
circuits. The various signal processing components (e.g., low-noise
amplifiers, mixers, automatic gain controls, analog filters, analog-
to-digital converters) and digital processing can introduce different
linear and/or non-linear distortions depending on the architecture.
Therefore, even if the channel conditions and environment are the
same, we will, in fact, see different patterns in the CIRs acquired by
different platforms.

To characterize CIRs acquired at the same location with dif-
ferent devices, we look at the average number of main peaks (or
MPCs) and the average delay between the first and the last sig-
nificant peaks, which indicate whether we can identify the same
main MPCs in all CIRs and how long it takes until their amplitudes
decay to an insignificant level. We also compute the energy, mean
excess delay (MED), and root-mean square (RMS) delay spread of
the CIRs, which have been previously used to characterize CIRs
in LOS/NLOS detection problems [17]. The MED and RMS delay
spread are, respectively, the first and second moments of the power
delay profile of the signal and characterize its delay statistics. The
RMS delay spread captures the temporal dispersion of the signal’s
energy.

We search for the number of significant MPCs in each CIR, which
we define as the peaks that exceed 25 % of the maximum amplitude
of the CIR with a minimum time separation between peaks of 2 ns
(to avoid detecting peaks belonging to the same path). We compute
the average number of significant peaks (𝑁𝑝 ) and the average time
delay between the first and the last significant peak (𝜇𝛿 ). The peak
search is performed on the raw CIR, while the energy, MED, and
RMS delay spread are computed on the CIR starting from the TOA
until the end of the buffer, to mitigate the influence of the TOA
index in the raw CIR buffer on the CIR statistics.

Fig. 5 shows the most significant peaks in a triplet of CIRs ac-
quired at the same location with different devices and Table 3 shows
the average CIR statistics over all locations. 3db CIRs have more
significant MPCs than the other two devices and their amplitudes
take longer to decay, reflected in a higher 𝜇𝛿 and energy. TDSR
CIRs have the shortest duration and therefore capture the fewest
significant peaks, so they have the lowest energy, MED, and RMS
delay spread.

In the literature, a low signal energy and high delay statistics
have been associated with signal attenuation occurring in NLOS
propagation [17]. However, if CIRs acquired in the same conditions
with different brands of devices have, on average, different statistics,
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Fig. 5: CIRs and their main peaks acquired with each device at the same
location in a LOS scenario.

Table 3: Statistics of the CIRs: number of significant paths (𝑁𝑝 ), delay between
the first and the last significant path (𝜇𝛿 ), energy (𝐸, quantized), mean excess
delay (𝜏MED), and RMS delay spread (𝜏RMS).

Device 𝑁𝑝 𝜇𝛿 [ns] 𝐸 [-] 𝜏MED [ns] 𝜏RMS [ns]

DW3000 3 11.2 2.4 13.5 21.7
TDSR 2 5.3 1.6 8.2 3.0
3db 5 24.4 8.5 13.3 13.8

these can introduce issues in error mitigation methods customized
for one device but applied on different brands of devices.

5.4 Different Devices, Different Diagnostics
Since the CIRs are long (256–1632 samples for the devices we used),
for some applications it can be too time consuming and computa-
tionally expensive to process them. Therefore, some works instead
propose using other diagnostics provided by the devices (for in-
stance, power or noise figures) for ranging/localization error miti-
gation [21]. However, this can pose issues for platform-independent
localization systems because not all devices provide the same met-
rics and often not in the same units of measurement.

For instance, the DW3000 provides the power, maximum am-
plitude, and phase of arrival (POA) computed on the preamble for
regular ranging and, additionally, the power and POA computed
on the scrambled timestamp sequence for the secure ranging mode.
The manufacturer provides formulas for converting the power to
dBm [15]. TDSR devices provide the maximum value in the leading
edge (LE) window of the received CIR and the noise level. However,
the unit of measurement of these parameters is not specified in
the documentation [14], so it is not clear if these parameters could
be compared, for instance, with the ones of the DW3000 chipset.
TDSR devices also provide the noise amplitude and a coarse and a
precise estimate of the range, of the distance error, and of the tag’s
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velocity. The 3db chip provides the peak and the LE amplitudes (but
not expressed in dBm) and other additional diagnostics [2].

Given the different diagnostics provided by the devices and the
lack of a commonmeasurement unit for the power and noise figures,
it would be difficult to use this kind of information in a platform-
independent UWB localization system. Therefore, the manufactur-
ers should invest more effort to provide unified metrics for addi-
tional diagnostics.

6 DISCUSSION
As we showed in Section 4, error mitigation techniques developed
for only one UWB hardware should implement a fallback plan to
avoid degrading the accuracy of measurements acquired by other
devices. An alternative that requires further research is to develop
error mitigation solutions that can work across multiple platforms.
Although different platforms have different CIRs and ranging errors
under the same conditions, there is a common reason for all errors:
the incorrect TOA estimation. Therefore, there might exist a set of
device-agnostic CIR features related to the estimated vs. the correct
TOA that could yield the correct distance (or TOA) errors across
multiple devices.

An alternative to centralized solutions is to implement error
correction only at the edge and use models customized for each
target device. However, in this case, more work is needed to create
environment-independent models [3], since it is unreasonable to
collect data from every new location with every device on the
market. Data-driven TOA estimation shows promising results [5]
but it must be lightweight enough to be implemented on-chip and
fast enough to minimize clock drift errors.

7 CONCLUSIONS
In this paper, we provided an overview of the challenges faced
in obtaining platform-independent UWB ranging or localization
systems. We derived our observations from a database of measure-
ments acquired with three brands of UWB devices at exactly the
same locations. We evaluated the differences in their ranging er-
rors, CIRs, and diagnostics. We show that applying error mitigation
models on devices not included in the training phase might result
in a severe degradation of the ranging accuracy.

The cross-platform compatibility of error mitigation methods
should not be taken for granted; instead, ranging and localization
systems deployed in environments where users can have different
UWB platforms must take into account cross-platform compatibil-
ity from the design phase. Future research should focus more on
learning methods that can perform equally well on a wide range of
devices or that degrade gracefully in the presence of an unknown
device. Alternatively, error mitigation techniques could be moved
to the edge and customized on the target device with the caveat
that they must be environment-independent.
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Abstract—Non-line-of-sight (NLOS) propagation is one of the
main error sources in indoor localization, so a large body of
work has been dedicated to identifying and mitigating NLOS
errors. The most accurate NLOS detection methods often rely
on large training data sets that are time-consuming to obtain
and depend on the environment and hardware. We propose
a method for detecting NLOS distance measurements without
manually collected training data and knowledge of channel
statistics. Instead, the algorithm generates LOS/NLOS labels
for sets of distance measurements between fixed sensors and
the mobile target based on distance residuals. The residual-
based detection has 70–80% accuracy but has high complexity
and cannot be used with high confidence on all measurements.
Therefore, we use the predicted labels and the channel impulse
responses of the measurements to train a classifier that achieves
over 90% accuracy and can be used on all measurements,
with low complexity. After we train the classifier during an
initial phase that captures specifics of the devices and of the
environment, we can skip the residual-based detection and use
only the trained model to classify all measurements. We also
propose an NLOS mitigation method that reduces, on average,
the mean and standard deviation of the localization error by 2.2
and 5.8 times, respectively.

Index Terms—Non-line of sight (NLOS), localization, position-
ing, ultra-wideband (UWB), machine learning

I. INTRODUCTION

Indoor localization has garnered attention in recent years
for its useful applications such as navigating in public spaces,
offering customized location-based services and interactions
with the environment, or controlling and monitoring industrial
robots and indoor drones. One popular localization method
uses several sensors (called anchors) with fixed and known
positions that communicate with a mobile target (called tag).
The method estimates the location of the tag based on time
or distance measurements between each anchor and the tag.
Non-line-of-sight (NLOS) propagation, in which an object or
a person obstructs the direct path between two devices, affects
most localization methods. In this case, the observed time of
flight (TOF) or distance between two devices is larger than
without the obstacle, which causes a localization error.

This work was supported by funding from European Union’s Horizon
2020 Research and Innovation programme under the Marie Skłodowska Curie
grant agreement No. 813278 (A-WEAR: A network for dynamic wearable
applications with privacy constraints, http://www.a-wear.eu/). The work was
also partly supported by a grant from the Romanian National Authority for
Scientific Research and Innovation, UEFISCDI project PN-III-P3-3.6-H2020-
2020-0124.

Detecting and correcting NLOS distance errors has been
widely studied in the literature [1], [2], [3], [4], [5], [6].
The methods with the highest detection accuracy rely on the
statistics of the channel impulse response (CIR) of the sig-
nal [2], [3], [4]. However, they require extensive measurement
campaigns to learn the statistics of LOS and NLOS measure-
ments. Such measurements are time-consuming, require some
expertise, depend on the environment and on the used hard-
ware, and need to be repeated frequently in order to capture
the environment dynamics. Therefore, collecting training data
before every deployment and maintaining databases up-to-date
are demanding tasks, which are usually infeasible in practice.

In this work, we propose an NLOS detection and mitigation
method that does not require manually-acquired training data
nor channel statistics. Fig. 1 shows the main steps of our
approach. When a tag is first deployed in an area, it starts
the initial phase of the algorithm, in which it collects distance
measurements and CIRs from all the anchors in the area. In
this first step, the measurements are labeled as LOS, NLOS, or
ambiguous using residual analysis. If there are more anchors
than the minimum necessary for 2D or 3D localization, we can
compute locations using each subset of anchors. Since NLOS
anchors1 introduce higher location errors, they also have
higher distance residuals, defined as the difference between
the measured distance and the Euclidean distance between
the anchor and the estimated position of the tag. The method
labels anchors as LOS/NLOS if their average residuals can
be grouped in two one-dimensional clusters (intervals). The
labeling step has an acceptable accuracy (70–80 %) but it
cannot be used on all sets of measurements, since for small
NLOS errors the separation between LOS and NLOS residuals
is not clear. Moreover, the residual-based labeling step requires
computing the location using all anchor combinations, which
scales with O(2N ) for N anchors.

Therefore, we introduce the second step, in which we train
a Random Forest (RF) classifier using the labels predicted
in the first step and the CIR features of the measurements.
The model can recover the correct class boundary even with
noisy labels, reaching a higher classification accuracy (>90 %)
than the residual-based labeling. After the model is trained, we
can directly classify all distance measurements as LOS/NLOS

1“NLOS anchor” is shorthand for “anchor in NLOS with the tag.”
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Fig. 1. Flowchart of the proposed method for the detection and mitigation of NLOS distance measurements.

using the RF and skip the residual-based labeling. Classifying
samples using RF has a constant complexity and can be used
in all localization instances.

We further propose a location-correction method based
on identified LOS/NLOS measurements which does not dis-
card NLOS measurements. We evaluate the accuracy and
localization error of the proposed method on a database of
measurements acquired with UWB devices, which therefore
resembles a real localization setup.

II. RELATED WORK

NLOS identification methods based on channel statistics
have been well studied in literature [2], [3], [4] and they
achieve very high classification accuracy (>90 %). However,
they need extensive measurement campaigns to collect training
data, which are rarely feasible in practice.

NLOS errors can be directly mitigated using semi-definite
programming [5], [7] without assuming any measurement
statistics. However, these methods are usually more compu-
tationally expensive than plain localization algorithms [5].
Other methods that do not require error statistics use ad-
ditional hardware, such as inertial measurement units [8].
In [9], the authors proposed a NLOS mitigation technique
for dense NLOS environments that does not need training
but it assumes the measurement variance to be known. The
error was corrected using two extended Kalman filters (EKFs)
alternatively depending on the LOS/NLOS condition.

In [10], the authors propose an unsupervised NLOS identi-
fication method. The biggest difference from our approach is
that the method in [10] can classify data only in bulk (so not
online) because it needs a collection of data points to obtain
the distribution of features with Gaussian mixture models.

In [11] and [12], the authors proposed NLOS identification
methods based on pre-trained models. In [11], a convolutional
neural network (CNN) is trained in one environment and
updated with data from a new environment. The method is
validated in two similar office environments, so it is not clear
how well the model can be transferred between two very
different environments, e.g., a mall and an office. This is also
an open research question for our method. However, we do
not rely on a pre-trained model but can train it online. In [12],
a pre-trained model is improved by retraining using unlabeled
samples. This approach can be used to improve the accuracy
of our model (discussed in Section VI).

The closest work to ours is [6], where the authors used
anchor residuals instead of CIR features to train a classifier.
The simulated error for NLOS measurements was sampled

from a uniform distribution between 0.75–3.5 m, so NLOS
measurements were easily distinguishable from LOS ones,
which had zero-centered normally-distributed errors. However,
in our measurement campaigns (desribed in Section IV), we
found that typical NLOS errors with UWB devices are spread
between a smaller range of 0.25–0.8 m, so it was harder to
accurately identify NLOS measurements using only anchor
residuals. Therefore, we propose a classification in two steps:
first using anchor residuals, then using CIR features.

Another work that applied residual analysis to identify
NLOS errors is [13]. The authors used residual analysis to
identify NLOS errors, a voting algorithm to correct these
errors, and a fuzzy C-means algorithm to classify NLOS
errors into “hard” and “soft” NLOS. A Kalman filter (KF)
and an unscented Kalman filter (UKF) filtered the two types
of NLOS errors and corrected the location estimates. The
authors in [13] focused more on NLOS error mitigation than
on NLOS identification and they did not mention the accuracy
of the classification method alone. Compared to [13], we
also provide a NLOS detection method which can be useful
in detecting obstacles, creating building maps, or estimating
crowd densities. We show that we can also reduce localization
errors with our NLOS detection method.

III. NON-LINE-OF-SIGHT DETECTION

In this section, we present the basics of anchor-based local-
ization (Section III-A) and the main steps of the unsupervised
NLOS detection method, also highlighted in Fig. 1. First, we
use residual analysis to obtain LOS/NLOS labels using only
distance measurements (Section III-B). By repeating this step
for multiple locations, we create a database of CIR features
and their predicted labels. These are given as training data to
an RF classifier (Section III-C). Once trained, the classifier
can directly classify subsequent measurements.

A. Localization

Range-based localization estimates the coordinates x̂ of a
target (also called a tag) using the distance measurements
between the tag and N anchors with known locations xAi

,
where Ai is the ith anchor, for i = 1, ..., N . When the direct
path between two devices is unobstructed, also known as line-
of-sight (LOS) propagation, the distance between two devices
can be recovered as d = c · TOF, where c is the speed
of light. If an object or person blocks the direct path, the
signal usually travels at a lower speed than through the air.
This causes a larger TOF than without the obstacle and the
estimated distance is larger than in reality. Obstacles can also
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completely block the direct signal; in such cases, reflections
which travel longer paths than the direct signal can arrive at
the receiver and also cause time delays. The last two scenarios
are known as non-line of sight (NLOS) and cause distance and
localization errors in UWB localization.

The anchor–tag distances can be written as:

di = ‖xAi
− x‖+ vi, i = 1, ..., N (1)

where x is the true location of the tag, ‖·‖ is the Euclidean
norm, and vi is a noise term. In vector form, this becomes:

y = h(x) + v, (2)

where y is a vector which contains all distance measurements
di, i = 1, ..., N , v is the error vector, and h is a vector-valued
measurement function.

The location can be found using the least squares method:

x̂ = arg min
x
‖y − h(x)‖. (3)

We chose the regularized Gauss-Newton multilateration
algorithm from [14], because it has low computational com-
plexity and localization errors comparable to closed-form
solutions. The algorithm needs an initial location, which can
be obtained with a closed-form solution. For each iteration k,
the algorithm computes the Jacobian matrix:

Jk(x) =

[
p1 − x

‖p1 − x‖ , ...,
pN − x

‖pN − x‖

]T
. (4)

The solution at each iteration is xk+1 = xk + ∆x and ∆xk

is the least-squares solution to:

−(Σ−
1
2 Jk+cIN )∆xk =

(
Σ−

1
2 (h(xk)−d)+c(x−xr)

)
, (5)

where IN is the unitary matrix of size N × N , xr is a
regularization location and c is a regularization coefficient
equal to the inverse of the standard deviation of a distribution
centered at xr. The algorithm stops when the norm of the
incremental location is smaller than the tolerance δ or when
it reaches the maximum number of iterations kmax.

B. Unsupervised Labeling with Anchor Residuals

If the distance measurements di are noiseless, i.e. vi = 0 in
Eq. (1), then in the 2D case the tag is found at the intersection
between circles centered at the anchors, with a radius equal to
di, for i = 1, ..., N (see Fig. 2a). If the distance measurements
are noisy, the circles do not intersect in a single point anymore
and the tag’s location is (ideally) found inside the intersection
area of the circles, as shown in Fig. 2b. The residual of anchor
Ai is defined as [1]:

ri = di − d′i, (6)

where di is the measured distance between anchor Ai and the
tag and d′i is the distance between the anchor and the estimated
location x̂ of the tag. Intuitively, an anchor’s residual is likely
to be higher when the anchor is in NLOS with the tag, since
this causes a higher distance measurement error [1].

For M -dimensional localization, at least M +1 anchors are
needed to solve the system of equations from Eq. (2). If N

A1 A2

A3

Tag

(a) Ideal

A1 A2

A3

Tag

d1

d'1

r1

(b) Noisy

Fig. 2. In the ideal (2D) case, the tag is found at the intersection point
between the circles centered at the anchors’ locations with the radius equal to
each anchor–tag distance. When the measured distances are noisy, the circles
do not intersect in a single point anymore. An anchor’s residual ri is the
difference between the measured distance di and the distance between the
estimated location and the anchor’s location d′i.
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Fig. 3. Average anchor residuals, computed over all subsets in which an
anchor is used. The residuals of LOS and NLOS anchors are linearly separable
in many cases.

anchors with N > M + 1 are available, we can form subsets
of K anchors, where M + 1 ≤ K ≤ N , and compute the
residual of a subset S as the mean of the squared residuals of
all anchors:

RS =
1

|S|

|S|∑

i=1

r2i,S , (7)

where | · | denotes the cardinality of a set and ri,S is the
residual of the ith anchor in this subset. In [1], the final
location estimate is obtained as the weighted average of the
intermediate locations obtained in all subsets, where the weight
is the inverse of a subset’s residual.

Starting from the insight that anchor residuals are higher
when anchors are in NLOS with the tag, we propose using
the average residual of an anchor, computed over all subsets
in which it is used, to identify NLOS anchors:

Ri =
1

|{S|Ai ∈ S}|
∑

{S|Ai∈S}
ri,S . (8)

Because NLOS anchors have higher distance measurement
errors, their average residuals are also usually higher than
those of LOS anchors. In many cases, residuals coming from
LOS and NLOS anchors form two 1D clusters (or intervals)
which can be separated. Fig. 3 shows such an example, for a
simulation of eight anchors when the tag and some anchors
are separated by a wall. The wall introduces a lognormally-
distributed error with a median of 24 cm and a standard
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Fig. 4. Examples of kernel density estimation (KDE) applied on anchor residuals for the shaping parameter h = 0.08.

deviation of 1.8 m (the parameters were obtained from a
measurement campaign [15]). In many cases, the average
residuals of LOS and NLOS anchors can be clearly delimited.

To find the threshold that separates LOS from NLOS
residuals, we use kernel density estimation (KDE) to get the
distribution of the average anchor residuals (for a given loca-
tion). The kernel density estimator of a series of independent
and identically distributed samples {R1, ..., RN} is:

f̂h(R) =
1

Nh

N∑

i=1

K
(R−Ri

h

)
, (9)

where K is a non-negative function called the kernel (we used
a Gaussian kernel) and h > 0 is a smoothing parameter. Fig. 4
shows three examples of KDE applied on anchor residuals,
for h = 0.08. When LOS and NLOS anchor residuals form
two different clusters, the distribution has two maxima and a
single minimum, like in Fig. 4a. In this case, we label anchors
whose residual is higher than the minimum as NLOS and the
rest as LOS. There can also be ambiguous cases. In Fig. 4b,
the residuals are uniformly spread over the interval and the
distribution has only one maximum. In Fig. 4c, on the other
hand, there are more than one local minima found.

The parameter h determines the smoothness of the fitted
distribution. If h is too small, the estimated distribution will
contain spurious data artifacts, similar to the distribution in
Fig. 4c. If h is too high, the estimator cannot capture the under-
lying data structure, leading to an estimate similar to Fig. 4b.
Therefore, too large or too small of a smoothing parameter
leads to ambiguous cases in which the data cannot be labeled.
Because we aim for a high LOS/NLOS detection accuracy,
we label only unambiguous cases in which the distribution
has exactly one minimum. In the current implementation, we
use the ambiguous cases only for validation but in the future
we could use them to retrain the RF model and increase its
accuracy (see the discussion in Section VI). In Section III-B,
we will discuss the choice of h which maximizes the labeling
accuracy and the percentage of instances classified.

Because not all anchor residuals can be unambiguously split
into two intervals, we cannot apply the residual-based labeling
on all measurements. Also, we need to compute locations
using all anchor subsets, which scales with 2N . Therefore,
we use the labels provided by the residual method to train an
ML model that can classify all distance measurements.

C. Model Training

The identification and mitigation of the LOS/NLOS con-
dition using features based on the CIR of the signal has
been studied in [2], [3], [4]. Supervised classification methods
have very high accuracy (> 90%) but need training data, i.e.,
a database of distance measurements labeled as LOS/NLOS
and their CIRs. We replace the manual labeling with the
unsupervised labeling based on anchor residuals, as described
in Section III-B. Because our training set has label noise (LOS
measurements labeled as NLOS and vice-versa), we want to
train a machine learning model robust to label noise. We
chose a Random Forest (RF) classifier, since it is an ensemble
machine learning (ML) algorithm that performs well with
noisy labels [16]. The RF is a collection of decision trees
which outputs the class predicted by most of the individual
decision trees through bootstrap aggregating.

The purpose of this paper is not to find the best ML
algorithm for the task, but to demonstrate the general idea, that
we can detect NLOS measurements without training data using
residual-based labeling. We leave as future work an exhaustive
search through more ML models suitable for data sets with
noisy labels that further increase the NLOS detection accuracy.

We train the model using CIR features known to charac-
terize well LOS/NLOS conditions [2], [3]: the energy of the
received signal, the maximum amplitude of the signal, the
mean excess delay, the RMS delay spread, the kurtosis, and
the difference between the TOA and the time at which the
signal has the maximum amplitude (∆T (TOA,Max)).

IV. EVALUATION SETUP

We simulate a localization scenario based on a database
of real UWB measurements to evaluate the feasibility and
performance of the proposed method for NLOS error detection
and correction. Fig. 5 describes the simulation flow. We start
from a setup with an area of 9×20 m and N ∈ {5, 6, 7, 8, 9}
anchors distributed approximately uniformly on the perimeter
of the area. When N is odd, one anchor is in the center of the
area, while the others are on the perimeter. We consider a grid
of ≈ 1700 true locations of the tag spaced 20 cm apart within
the area encompassed by the anchors. In a real deployment
with a reasonable location update period of 100 ms, 1700
locations could be obtained in under 3 min. For each true
location of the tag, we choose at random bN ∗ Qc anchors
to be in NLOS with the tag, where Q ∈ {0, 0.3, 0.5}.
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Fig. 5. Flowchart of the simulation framework for NLOS detection and mitigation.

We simulate the distance measurements between each an-
chor and the tag by adding to the true distance a distance
error selected from a measurement database, based on whether
the anchor is in LOS or NLOS with the tag. We also store
the CIR corresponding to the selected measurement. Although
we could simulate the distance errors for each obstacle based
on proposed models [15], it is harder to simulate the CIR
for a particular type of obstruction. Therefore, for a realistic
setup, we preferred selecting the distance error and CIR of
a real measurement from a database. We use a database of
distance measurements and CIRs acquired with UWB devices
developed by 3db Access, which was partly described in [15].
The measurements were acquired in LOS, in NLOS with
human body shadowing, or in NLOS with concrete wall
shadowing at various indoor locations. The NLOS database
aggregates the measurements with both types of obstructions.
TABLE I shows the number of measurements acquired in each
scenario and the range of covered distances.

We feed the N distances to a localization engine, which
computes the 2D location and average anchor residuals over
all anchor subsets. For localization, we used the Gauss-Newton
multilateration algorithm strengthened with a regularization
term. We initialized the algorithm with δ =1 mm, kmax = 10
iterations, xr = the median of the anchors’ locations, and
c = 10−1 (corresponding to a standard deviation of 10 m
around xr, suitable for our setup).

The residual analysis block receives as input the average
anchor residuals and predicts the labels of each anchor–
tag measurement. The label can be either LOS, NLOS, or
ambiguous (in case the density of the anchor residuals does
not have exactly one minimum). We repeat the procedure for
M locations and build a database of M ∗N predicted labels
and the corresponding CIR features.

We split the database into a training set, which contains
the measurements predicted as LOS/NLOS, and a test set,
which contains the ambiguous measurements. We use the
training set to train a Random Forest classifier, which learns
the LOS/NLOS CIR features based on the labels predicted by
the residual analysis. Once the model is trained, we can use it
to directly classify all measurements, without going through
the residual analysis procedure. Finally, we mitigate NLOS

TABLE I
DESCRIPTION OF THE DATABASE WITH DISTANCE MEASUREMENTS.

Scenario Distances Number of
measurements

LOS 1–8m 16 814
NLOS with concrete wall 1–10.5m 13 770
NLOS with human body 1–10m 8462

measurements and reduce the localization error.

V. EVALUATION

We now evaluate the performance of the residual-based
labeling (Section V-A), of the trained RF classifier (Sec-
tion V-B), and of the NLOS mitigation method (Section V-C).

A. Residual-based LOS/NLOS Labeling

The first step is the unsupervised labeling using anchor
residuals, described in Section III-B. We can alternatively
formulate the labeling as a detection problem, where the
detected event is a NLOS measurement. To evaluate the
performance of the labeling method, we use the balanced
accuracy, which is the arithmetic mean of the true positive
and true negative rates (TPR and TNR, respectively):

Balanced accuracy = (TPR + TNR) /2, where (10)

TPR = TP/(TP + FN), and (11)
TNR = TN/(TN + FP). (12)

TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the
number of false negatives.

Because we label only cases where the density estimate
of the anchor residuals has exactly one minimum, we are
also interested in the percentage of instances labeled (denoted
by PC), defined as the number of locations for which the
algorithm provides a label for all anchors. This ratio and
the accuracy depend on the KDE shaping parameter (h). If
h is too small or too large, the estimation is oversmoothed
or undersmoothed, respectively, resulting in few classified
instances (because the distribution has either too many or no
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Fig. 6. The balanced accuracy and percentage of classified instances of the residual-based labeling as a function of the KDE shaping parameter for 30% and
50% NLOS anchors out of N ∈ {5, 6, 7, 8, 9} anchors.

minima at all). Therefore, we want to find the KDE shaping
parameter which maximizes the accuracy and PC .

Fig. 6 shows the balanced accuracy and percentage of clas-
sified instances against h for 30 % and 50 % NLOS anchors.
We omitted the case when all anchors are in LOS with the tag
because less than 1 % instances are classified in this case. This
is desirable for the RF classifier because it keeps the number
of LOS and NLOS measurements balanced.

Fig. 6a and 6b show that h changes the balanced accuracy
with at most 15 % for Q =30 % NLOS anchors and at most
10 % for Q =50 % NLOS anchors. On the other hand, Fig. 6c
and 6d show that h has a marked impact on the percentage
of classified instances. PC is the highest for h = [0.03, 0.06]
(depending on the number of anchors) and decreases for values
outside the interval. Because, for different values of h, the
change in accuracy is small but the change in PC is large,
we want a performance score based on these two metrics
which increases the impact of PC . Therefore, we chose as the
aggregated performance score the harmonic mean between the
balanced accuracy and PC .

In practice, we usually have mixed NLOS conditions which
can change over time. Therefore, we extend the performance
score to be the harmonic mean of the balanced accuracy and
percentage of classified instances for both Q = 30% and
50% and choose the KDE shaping parameter which maximizes
this score. The optimum shaping parameter is h = 0.04 for
N = 5 to 8 anchors and h = 0.03 for N = 9 anchors.
TABLE II shows the LOS, NLOS, and balanced accuracy and
the percentage of classified instances for the optimum h.

The classification accuracy is higher for 30 % NLOS an-
chors than for 50 %. When more anchors are in NLOS with the
tag, the location estimate is more skewed and the residuals of
all anchors (not only of NLOS anchors) are larger. In this case,
LOS and NLOS anchor residuals are harder to distinguish.

We note that the accuracy slightly decreases for more
anchors. This is because, with more anchors (out of which
only a few are in NLOS), it is harder to find a value of h
low enough to delimit the few NLOS anchors from the LOS
ones but high enough to avoid an oversmoothed distribution
that leads to more than two intervals.

B. Supervised Classification
We now evaluate the accuracy of the RF classification

applied on measurements labeled with residual analysis. The
training set consists of labeled measurements and their fea-
tures. We aggregated the measurements for Q = 30 % and

TABLE II
PERFORMANCE OF UNSUPERVISED RESIDUAL-BASED LABELING FOR THE

OPTIMUM h.

N Q [%]
Accuracy [%] Classified

instances [%]LOS NLOS Balanced

5 30 68.2 98.7 83.4 37.6
50 66.8 82.1 74.4 40.2

6 30 68.3 98.9 83.6 29.3
50 72.0 76.5 74.2 39.6

7 30 64.7 84.5 74.6 34.6
50 62.4 79.5 70.9 37.6

8 30 74.4 81.1 77.7 32.8
50 69.9 73.3 71.6 38.1

9 30 70.2 79.2 74.7 36.8
50 66.0 72.5 69.2 35.2

50 % NLOS anchors, since in practice we can have mixed
NLOS conditions. We train a classifier for each number of
anchors. The test set contains all measurements which were
not labeled in the previous step, i.e., where the density of
anchor residuals did not have exactly one minimum. The
training set has approximately 6, 500–10, 000 samples and an
almost equal number of LOS and NLOS samples. We use
stratified K-fold cross-validation with K = 4 folds to identify
the best model’s parameters from a specified subset.

Fig. 7 shows the LOS, NLOS, and balanced accuracy of the
model. The NLOS detection accuracy slightly exceeds 90 %
in all cases, while the LOS accuracy exceeds 95 %. Compared
with only the residual-based labeling, we gain 10–20 % accu-
racy. It is perhaps surprising that the RF classification accuracy
exceeds 90 % even when the labeling accuracy can be as low
as 63 %. This is because noisy labels resemble outliers or
anomalies and ML models can usually recover to a certain
extent the correct class boundaries [16].

C. NLOS Mitigation

We now devise a strategy for handling NLOS measurements
in order to improve the localization accuracy. We present the
NLOS mitigation procedure as a pseudocode in Algorithm 1
and describe it in the following.

If there are enough LOS anchors to compute one location
(at least D + 1 anchors for D dimensions) and the set of
anchors is not degenerate (i.e., the anchors are not collinear),
we can use only the LOS anchors to compute the location.
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Fig. 7. The accuracy of the trained random forest (RF) classifier using data
labeled with the residual method.

Algorithm 1 NLOS Mitigation
1: xAi = Location of anchor Ai, i = 1, ..., N
2: di = Distance from anchor Ai to the tag
3: SLOS = {Ai|Ai is in LOS with the tag}
4: D = Number of dimensions
5: if (|SLOS | ≥ D + 1) and (SLOS is not degenerate) then
6: x̂ = compute location({di|Ai ∈ SLOS})
7: for i = 1, ..., N do . Distance correction
8: if Ai in NLOS then
9: ri = ‖xAi

− x̂‖ . Anchor residual
10: di ← di − ri . Corrected distance

return x̂← compute location({di, i = 1, ..., N})
11: else
12: S = The set of all anchor subsets using all LOS

anchors and all combinations of NLOS anchors
13: for Sk in S do
14: x̂k = compute location({di|Ai ∈ Sk})
15: Rk = 1

|Sk|
∑
{i|Ai∈Sk} r

2
i . Subset residual

return x̂ =
(∑|S|

k=1 x̂kR
−1
k

)
/
(∑|S|

k=1R
−1
k

)

However, if there are few LOS anchors and their placement
is not ideal (for instance, the tag falls outside the convex
hull of the anchors), the location estimated using only the
LOS anchors can sometimes have large errors. Therefore,
we noticed that we obtain better location estimates if we
correct NLOS measurements and use them for localization.
For correction, we first estimate the intermediate location using
only the LOS anchors. We compute the residuals of the NLOS
anchors based on the intermediate location. Then, we subtract
the residuals from the measured distances of NLOS anchors.
We estimate the final location using the distance measurements
of LOS anchors and the corrected distances of NLOS anchors.

If the set of LOS anchors is degenerate or there are not
enough LOS anchors to compute the location, we must use
some NLOS anchors to compute the tag’s location. Because
we cannot correct the NLOS measurements as in the previous
case, we generate all subsets Sk containing all LOS anchors
and all combinations of NLOS anchors such that |Sk| ≥ D+1.
For each subset, we compute the intermediate location and the
subset’s residual using Eq. 7. The final location is the weighted
linear combination of all intermediate locations, similar to the
method proposed in [1], except that we do not use all possible

TABLE III
LOCALIZATION ERROR WITH NLOS MITIGATION

N Method
Q = 30% NLOS Q = 50% NLOS

Mean
[m]

Std. dev.
[m]

Mean
[m]

Std. dev.
[m]

5 No mitigation 0.14 0.27 0.20 0.39
Proposed 0.07 0.06 0.11 0.14

6 No mitigation 0.11 0.08 0.19 0.31
Proposed 0.06 0.04 0.10 0.17

7 No mitigation 0.14 0.30 0.21 0.64
Proposed 0.07 0.05 0.08 0.07

8 No mitigation 0.14 0.36 0.22 0.67
Proposed 0.06 0.05 0.08 0.06

9 No mitigation 0.13 0.35 0.20 0.64
Proposed 0.05 0.04 0.07 0.14

subsets, thus reducing the complexity of the algorithm.
We compute the localization error as the Euclidean distance

between the estimated location x̂ and the true location x:

e = ‖x̂− x‖. (13)

We evaluate the localization error on the test data set from
Section III-C. For each set of anchor–tag measurements, we
predict the LOS/NLOS condition using the trained model
and then apply Algorithm 1 to mitigate the NLOS errors.
TABLE III compares the localization errors obtained with the
proposed mitigation algorithm (denoted by “proposed”) with
those obtained when using all anchor–tag distances, without
mitigation. The localization errors of the proposed method
have 1.8–2.8× smaller mean and 1.8–11.6× smaller standard
deviation after NLOS mitigation. On average, the algorithm
reduces the mean and standard deviation by 2.2 and 5.8 times,
respectively. Therefore, the proposed method can successfully
mitigate localization errors caused by NLOS propagation.

VI. DISCUSSION AND FUTURE WORK

One remaining question is whether it is worth deploying
more anchors than the minimum necessary (e.g., three anchors
for 2D localization). In buildings with rooms separated by
thick walls, if we want to provide high-accuracy location
services everywhere, we have to deploy at least three anchors
in each room. However, the tag can still be in the range of
anchors in other rooms, so it has to decide which anchors
are in LOS. Even within the same room, some anchors
might be shadowed by surrounding objects, so it is worth
having extra anchors. In TABLE III, we see that when we
correct NLOS errors, the localization error decreases for more
anchors. Therefore, more anchors than the minimum are often
needed in practical deployments.

So far, we have not discussed which entity should train
the classifier: the localization engine (LE) or the tag. There
are arguments for both sides. On the one hand, NLOS er-
rors depend on the environment in which the LE operates.
For instance, in an industrial setting with metallic objects,
NLOS errors might be larger than in an office. Therefore,
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the LE could collect anchor–tag distances from tags operating
in an area and train a model which can then classify all
measurements at the LE or the tag, depending on which entity
computes the location. On the other hand, the learned CIR
features can also depend on the hardware of the end device.
For instance, the CIR can have different shapes depending
on the type of UWB device [15]. Therefore, models trained
on features from one hardware model might not generalize
well to others. One future research direction is to evaluate
how well a model trained on one type of hardware or at one
location generalizes to other device models and environments.
If CIR features are indeed model- or environment-specific, one
option is to train an initial model and periodically update it
with new data from different devices and locations. This is
also beneficial if the training is performed by the tag, since it
requires less data storage and the model can be updated online.
Since the residual labeling step outputs labels only for a part
of the input measurements, the accuracy of the model could
be improved using semi-supervised learning methods. For
instance, the model can be retrained using its most confident
predictions [17], which can also speed up the training process.

The localization error can also be reduced by applying
Chen’s residual weighting algorithm [1] or variations of it,
without going through the labeling and training process. How-
ever, computing the location using all anchor combinations
has a complexity of O(2N ) for N anchors. In our case, the
complexity is high only during the short training phase. After
this, samples can be classified with the RF with a constant
complexity of O(kp), where k is the number of decision
trees and p is the maximum depth of one tree. In practice,
the execution time of the proposed NLOS mitigation method
(excluding the training phase) was faster than the residual
weighting algorithm for N ≥ 8 anchors.

NLOS identification has interesting applications beyond
reducing localization errors, especially when it can be done
without supervision, as in our proposal. Our method can
potentially be used to build maps of a building by aggregating
the locations at which the tag is consistently in NLOS with cer-
tain anchors. Crowd density estimation is another interesting
possible application. Since human body shadowing introduces
large distance errors, any increase in the number of detected
NLOS measurements could suggest that a room gets more
populated. Note that this method does not require all users to
be connected to the localization network. Finally, the trained
model can be applied on individual distance measurements,
so it can be useful in peer-to-peer proximity applications (e.g.
contact tracing, object finding).

VII. CONCLUSIONS

We proposed a method for detecting NLOS measurements in
localization systems without manually-acquired training data
or knowledge of channel statistics. The method predicts the
LOS/NLOS labels using the measured distances between each
anchor and the tag. We use the predicted labels and the CIR
features of the measurements to train a classifier, which has
over 90 % classification accuracy. We also proposed a NLOS

mitigation technique which reduces, on average, the mean and
spread of the localization error by at least 2×.
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Abstract—This paper presents a measurement-based analysis
of the Received Signal Strength (RSS) of Bluetooth Low Energy
(BLE) signals, under Line-of-Sight (LOS) and Non-Line-of-Sight
(NLOS) scenarios, performed in tandem at two universities in
Tampere, Finland, and Bucharest, Romania. We adopted the
same hardware and methodology for measurements in both
places, and paid particular attention to the impact of RSS on
various environmental factors, such as LOS and NLOS scenarios
and interference in 2.4 GHz band. In addition, we considered
the receiver orientation and the different frequencies of BLE
advertising channels. We show that snapshot RSS measurements
typically have high variability, not easily explainable by classical
path-loss models. A snapshot recording is defined here as
one continuous recording at fixed device locations in a static
setup. Our observations also show that aggregated RSS data
(i.e., considering several snapshot measurements together) is
more informative from a statistical point of view and more
in agreement with current theoretical path-loss models than
snapshot measurements. However, in BLE applications such as
contact tracing and proximity detection, the receivers typically
have access only to snapshot measurements (e.g., taken over
a short duration of 10–20 minutes or less), so the accuracy
of contact-tracing and proximity detection can be highly
affected by RSS instabilities. In addition to presenting the
measurement-based BLE RSS analysis in a comprehensive
and well-documented format, our paper also emphasizes open
challenges when BLE RSS is used for contact tracing, ranging,
and positioning applications.

I. INTRODUCTION AND MOTIVATION

Proximity-based applications have become increasingly
popular in recent years. Estimating the distance between two
devices can be used to find lost objects, to share files between
nearby devices, to enable smart homes to react to owners’
location, or to fight against a pandemic. In the past year, digital
contact-tracing applications (shortly called apps) have received
increasing attention to prevent the spread of COVID-19 and
many countries have developed such digital apps. Detailed
overviews of existing contact-tracing apps can be found in
our previous works [1], [2] and in other recent works [3]–[7].

The most popular technologies that enable proximity-based
applications are Wi-Fi, Bluetooth Low-Energy (BLE), Ultra-
Wideband, and Global Navigation Satellite Systems (GNSS).
BLE is the most promising candidate of them since it

∗ The first two authors had equal contribution to this paper.

offers the lowest power consumption and is supported by
most mobile devices and operating systems [8]. While BLE-
based positioning can reach meter-level accuracy when both
angle-of-arrival (AOA) and received signal strength (RSS)
information are combined [9], most consumer devices such as
mobile phones and wearables are not equipped with direction-
finding capabilities and they rely only on RSS measurements
for proximity detection. RSS measurements from any wireless
signal (BLE, Wi-Fi, cellular, etc.) are known to fluctuate due to
the presence and movement of people in the signal’s path [10],
the presence of multipath [11], the switches between carrier
frequencies of sub-channels used in the transmitted signal [11],
the antenna polarization [12], the orientation of the transmitter
(TX) and receiver (RX) [13], and the chipset model [14].

While there are currently many studies about the RSS
variability in Wi-Fi signals, e.g., [15]–[19], most such studies
focus only on one source of fluctuations or investigate the
aggregated effect of multiple error sources. In contrast, this
paper documents the (in)stability of the BLE RSS over
time, over space (with different multipath characteristics),
with different hardware, on different advertising channels,
at different distances, with different device orientations, and
with different type of obstructions between device pairs. We
isolated these factors and evaluated their impact individually.
In addition, we documented a new error source, namely
the influence on Wi-Fi–BLE combo chipsets on the RSS.
Based on an extensive measurement campaign, we provide
recommendations that can partly mitigate BLE fluctuations
caused by these factors.

We also provide open-access data that accompanies this
study in order to aid future research. During the COVID-
19 pandemic, open-access BLE RSS data sets have proven
essential for the research community. However, most such
data sets, e.g., [20]–[22], have limited documentation or
do not analyze the behavior of the BLE RSS with all
the aforementioned instability sources. Therefore, a more
thorough investigation on BLE RSS instabilities documented
by open-source data is still needed.

This paper offers a comprehensive analysis of BLE
RSS instabilities, fluctuations, and challenges in BLE-based
proximity detection and contact tracing. We based the
analysis on two extensive measurement campaigns performed
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in parallel at Tampere University (TAU) in Tampere,
Finland and at University Politehnica of Bucharest (UPB)
in Bucharest, Romania between January–March 2021. The
tandem measurements were conducted with exactly the
same type of devices to eliminate the possible fluctuations
coming from different hardware models as well as possible
calibration issues. Our measurements will be available, upon
the paper publication, in open-access at the A-WEAR research
community on Zenodo1.

The main contributions and findings of this paper are:
• Offering an extensive measurement-based analysis of

BLE RSS fluctuations and showing that current single-
slope path-loss models from the literature do not capture
these effects.

• Comparing snapshot (or single recording) measurements
with aggregated recordings and showing that, when
enough RSS data is aggregated, the statistics converge
to stable models;

• Analyzing the effect of BLE advertising channels on RSS
fluctuations and showing that the aggregated RSS from
all BLE advertising channels has significantly higher
fluctuations than on individual BLE channels. This is
an important challenge in current BLE-based proximity
apps, where channel information is usually not available;

• Analyzing the effect of non-line-of-sight (NLOS)
propagation on the BLE RSS;

• Analyzing the effect of relative orientations between the
transmitter and the receiver on the RSS;

• Analyzing the same-chip Wi-Fi interference with BLE.
Based on our state-of-the-art review (Section II), we

believe that these high BLE RSS fluctuations have not yet
been reported and documented to their full extent in the
current literature and that there are still several challenges
to be overcome when dealing with snapshot BLE RSS
measurements, as those used in contact-tracing and proximity
detection applications. Therefore, this paper documents BLE
RSS fluctuations and raises several research questions about
the applicability of classical path-loss models in the line-of-
sight (LOS) and NLOS propagation of BLE signals.

II. STATE-OF-THE-ART OVERVIEW

In Section II-A we provide an overview of the state-of-
the-art in digital contact tracing and proximity detection apps
based on BLE signals, which are increasingly relevant in our
times. In Section II-B we discuss the main factors that cause
BLE RSS variability and the most important studies that have
investigated them. In Section II-C we summarize the findings
and state the key points that differentiate our work from past
research.

A. BLE-based Contact Tracing and Proximity Detection
Principles

Digital contact tracing is a particular case of proximity
detection, used as an identification and follow-up solution

1https://doi.org/10.5281/zenodo.4643668

d ≤ 2m, t ≥ 15 min
exchange EphIDs, timestamps

Upload EphIDs,
timestamps

Positive test result

Upload EphIDs,
timestamps

Download
reports

Download
reports

Cloud Server

User A User B

Fig. 1. An illustration of the contact-tracing chain with users A and B
exchanging BLE signals at a distance of at most 2m and interacting with
the cloud server to receive the anonymized reports for crossing paths with
infected users.

aiming to break the transmission chains of airborne infections
within communities.

In a digital contact-tracing chain such as in Fig. 1,
smartphones and wearables are commonly assigned with
permanent and temporary identifiers generated by each
device for privacy-preserving purposes. The server owns the
complete list of the users reporting their confirmed cases of
infection, which includes both permanent and ephemeral IDs.
Periodically, the user devices receive anonymized data with
user reports of confirmed test results from the server, such as
the case of the user A in Fig. 1, and then locally estimate the
risk of having been exposed to the infection.

A device equipped with a BLE chipset starts to log the
ephemeral IDs and timestamps of other users when these are
nearby (within a distance d) for a certain time window (e.g.,
typical thresholds used in many apps nowadays are 15min
time widow and d = 2m distance, which is currently deemed
a safe distance). The infection risk is computed based on the
time spent in proximity with a confirmed case.

By nature, BLE signals are susceptible to the environment
and therefore require calibration and averaging. When the
range is estimated with a certain error, there is a higher risk
of generating false positives, when a user appears to be closer
than in reality, or false negatives, when the actual distance is
less than the estimated one. These errors could also appear
if a wall or a door blocks the space between the devices,
leading to NLOS propagation, when in fact the infection risk
is low. Therefore, it is crucial to accurately estimate the range
between two users. When the estimation fully relies on BLE
RSS measurements, it is therefore important to understand the
various causes of BLE RSS fluctuations.

B. Related Studies on BLE RSS Variability

BLE was primarily designed for communication purposes
and its use as a ranging technology has appeared only
recently. As any wireless signal, BLE signals are susceptible
to environment dynamics such as multipath, signal scattering,
shadowing, refraction, or attenuation. In addition, the difficulty
of evaluating the exact distance between two persons might
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Fig. 2. An illustration of the 2.4GHz ISM band channels. Advertising
channels 37, 38, and 39 are scattered deliberately to avoid interference with
Wi-Fi.

be exacerbated by noisy measurements, faulty BLE chipsets,
low transmit power, low received signal strength, or infrequent
scanning intervals [2].

One of the key challenges of digital contact tracing, which
is the scope of on-going research, is the high false positive
rate. This occurred, for example, when experts from The
Alan Turing Institute used the GAEN system to build the
National Health Service (NHS) COVID-19 app [23]. The
authors reported a problem of high false positive rates in
detecting distances between users staying apart from 2 to
4m; in other words, 2m distance proved to be a reliable
threshold both for epidemiological safety measures and for
BLE performance specifications. Another critical goal for
contact tracing is accurate LOS and NLOS detection, yet many
factors are still unknown regarding BLE signal propagation.
In the following, we outline some of the most important
challenges in proximity detection based on BLE RSS and the
state-of-the-art concerning them.

1) Advertising on different carrier frequencies: BLE uses
40 radio frequency (RF) channels, 2 MHz wide each and
assigned with a unique index illustrated in Fig. 2. BLE
channels are divided into two groups: advertisement channels
(indexed 37, 38, and 39) and data channels (indexed from 0 to
36). In BLE, the three advertisement channels indexed 37, 38,
and 39 with center frequencies at 2.402, 2.426, and 2.48GHz,
respectively, are scattered over the 2.4GHz band to avoid
interference with other devices operating in the Industrial,
Scientific, and Medical (ISM) band. Based on the analysis
and modeling of these advertising channels in [24], channel 39
was deemed the most reliable, since it is further away from the
center frequency of a main Wi-Fi channel, whereas channels
37 and 38 overlap with one, respectively two Wi-Fi channels.

The impact of advertising channels on the RSS is
twofold. First, according to path-loss models, the RSS
is inversely proportional to the squared carrier frequency.
Second, embedded antennas usually do not have a flat
response over the entire bandwidth, resulting in different gains
depending on the frequency [25]. The difference between RSS
values acquired at the same location on different channels was
found to be as high as 15 dB in [11] or almost 6 dB in [25],
therefore decreasing the RSS-based ranging accuracy.

Knowing the channel on which a beacon was transmitted

can improve distance estimates [11], [26], but this information
is often obfuscated by the driver at the receiver, unless the
transmitter explicitly includes this information in the beacon’s
payload (which is rarely done). As a result, most receivers
cannot recover the advertising channel index on which a
beacon was transmitted. Smartphones usually switch between
all three advertising channels, resulting in RSS fluctuations.
In [11], the authors proposed a method for identifying the
advertising channel at the receiver by exploiting the pattern
with which some smartphone models switch between the
advertising channels.

2) Multipath propagation: Multipath propagation causes
radio signals to arrive at the receiving antenna via multiple
paths due to reflection, refraction, or scattering [37]. Signal
components arriving through different paths can add up
constructively or destructively, the latter resulting in multipath
fading. The channel-dependent multipath fading of BLE
signals was studied in [25]. Channels experience deep fades at
different locations due to their different center frequencies. The
effect of multipath fading was eliminated in a training phase
by averaging the RSS in a window. In that case, window sizes
of 0.5 s to 2 s mitigate fading effects for walking speed at a
BLE packet reception rate of 25Hz. However, in practice, such
a high advertising rate is uncommon as it increases the energy
consumption, so observation windows need to be longer to
mitigate multipath fading.

The authors in [28] noticed RSS fluctuations on the order
of 6 dB at the same transmitter–receiver (TX–RX) distance
due to the presence of multipath and Wi-Fi interference. The
authors in [29] also noticed fluctuations as large as 25 dBm
over short periods of time, in particular for channels 38 and
39 due to channel-dependent fast fading.

In [34], the authors studied RSS fluctuations at various
TX–RX locations and noticed that the average RSS is not
always decreasing with distance, as predicted by path-loss
models [27], but they observed that the average RSS at
2.5m was consistently higher than the average RSS at 2m,
also when measurements were done with different BLE
transmitters. They also observed signal fluctuations as high as
20 dB at constant TX–RX locations, due to human movement
around the BLE transmitters.

3) Orientation: The way people are holding their mobile
devices (e.g., inside front of back pockets, in hand, inside
a bag, etc.) influences the relative orientation between
transmitter and receiver antennas. These orientation changes
can, in turn, cause RSS fluctuations. Fluctuations of up to
30 dB between maximum and minimum RSS at constant TX-
RX distances were observed in [31] when RSS data acquired
with different device orientations was aggregated.

The authors in [13] found that different device orientations
can affect the RSS with differences of up to 3 dB at exactly
the same TX-RX distance, and that an RSS at 3m TX-RX
distance can be higher (with few dBs) than the RSS at 1m
TX-RX distance, if different receiver orientations are used.

4) Transmit power: The RSS also depends on the
transmission power, the RF front-end characteristics, and the
antenna gain. Because these factors depend on the hardware or
implemented firmware, the observed RSS from devices from
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TABLE I
OVERVIEW OF STATE-OF-THE-ART: MEASUREMENT-BASED BLE RSS STUDIES AND DATASETS.

Reference Year
BLE RSS
provided in
open access?

Measurement devices
(transmitter side) Studied effects related to RSS

[27] 2015 No StickNFind (SNF) beacons RSS fluctuations based on TX–RX distance.

[28] 2016 No RN4020 PPDB board with
RN4020 BLE chipsets

RSS fluctuations based on TX–RX distance and BLE channels 1,
10, 20, and 30 (non-advertising channels).

[29] 2018 No iBKS105 BLE beacons

RSS fluctuations based on multiple carrier frequencies on
advertising channels (i.e., channels 37,38, and 39); orientation
effects are also discussed but directly in the context of positioning,
not as effects on RSS.

[24] 2018 No nRF52840 wireless System on
Chip (SoC) Advertising channels characterization in the BLE standard.

[13] 2018 No A smartphone and Estimotes
BLE beacons

RSS fluctuations based on different TX power levels, device
orientations, advertising intervals, LOS/NLOS cases, density of the
devices.

[30] 2018 Yes Gimbal SEries 10 BLE
iBeacons

One-month measurement campaign generated from 10 BLE
beacons transmitting signal and carried by people inside a
university building, reporting a realistic scenario.

[31] 2019 No Raspberry Pi 3 (Model B) RSS fluctuations based on receiver orientation, transmit power, and
TX–RX distance.

[32] 2019 Yes Accent Systems’ IBKS 105 with
Nordic nRF51822 BLE chipset

None (database was used to study BLE-based positioning, but RSS
fluctuations are not studied separately).

[11] 2020 No 8 Android mobile phones and
one iPhone 6

RSS fluctuations based on multiple carrier frequencies on
advertising channels and on the TX–RX distance.

[33] 2020 Yes
Nokia 8.1 with Android 10,
HTC M9 with Android 7.0
Nougat

RSS fluctuations based on the TX–RX distance with respect to
various transmitter orientations/placements on the body.

[34] 2020 No 3 Android mobile phone models

RSS fluctuations based on the TX–RX distance, on the presence of
human bodies (and their orientation) around TX and RX devices,
on a NLOS scenario due to wall presence, and on mobility of
persons carrying the mobile phones.

[35] 2020 Yes Raspberry Pi 3 (Model B)

Three scenarios of different room sizes and with the use of Zigbee,
BLE, and WiFi are documented. The authors reported different
techniques for precise and accurate location estimates, where K-
Nearest Neighbor (KNN) was chosen as an optimal solution.

[20] 2020 Yes iPhone 10, Ubertooth One,
nRF52 eval board

RSSI dataset collected in different environments, with various
device orientations and body placements.

[21] 2020 Yes Raspberry Pi Zero W, Raspberry
Pi 3, and Raspberry Pi 4 RSSI data collected at different distances via GAEN.

[22] 2020 Yes Samsung Galaxy S7, iPhone 7,
iPhone 11 Pro

Data set of measurements collected in the university environment,
interchanging device pairs used as TX and RX.

[36] 2021 Yes
Android smartphones: Nokia
8.1 with Android 10, HTC M9
with Android 7.0 Nougat

Report of RSSI fluctuations with different device placements on
human bodies; described the effect of window size on the accuracy
of the estimates.

This article - Yes Raspberry Pi 4 (Model B+,
Cypress CYW43455)

RSS fluctuations based on LOS/NLOS scenarios, NLOS cases
with different obstacles, receiver orientations, multiple carrier
frequencies on BLE advertising channels, on-chip BLE and Wi-
Fi interference in 2.4GHz band, hardware instabilities, and the
TX–RX distance; also the test–retest reliability of measurements
is addressed here.
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different manufacturers can vary even when the environmental
conditions are identical. This behavior was documented in [38]
where, even though transmitters from different vendors had
different TX powers, the RSS was within the same range.
In [39] it was shown that the transmission power influences
the localization accuracy and the authors proposed machine
learning models to identify the individual TX power of the
deployed beacons that maximize the localization accuracy.

One way to solve this issue is to compute RSS correction
factors at the transmitter and the receiver [40]. The calibrated
TX power can be measured for a particular model of
transmitter at a known distance (e.g., 1m for the iBeacon
standard and 0m for EddyStone) and sent in the payload
of the advertising beacon. For instance, if a transmitter has
a calibrated TX power of −45 dBm at 1m, an RSS of
−55 dBm will indicate that the receiver is at more than 1m
away from the transmitter, whereas for another device model
−55 dB might be the calibrated TX power. Similarly, each
receiver should have a correction coefficient that reflects the
receiver efficiency, or with how much its RSS deviates from a
reference value. Ideally, there should be a database with RSS
correction factors for each mobile device. However, such a task
is intractable because of the sheer number of mobile devices on
the market. A 2015 report counted more than 24, 000 Android
devices made by almost 1300 companies [41]. Moreover, as
we will show in Section IV-C, this does not account for
RSS variations between devices from the same model. To the
best of the authors’ knowledge, the RSS variability within
devices from the same vendor has not been documented in
the literature.

5) Non-line-of-sight between the devices: RF signals
propagate at a different speed through the air than through
obstacles such as walls, furniture, or the human body.
Therefore, obstructions between the transmitter and the
receiver will typically cause fluctuations in the RSS. There
are several research works [26], [42], [43] that investigated
the effect of shadowing on the BLE RSS with applications
in proximity detection or localization. [26] proposed artificial
neural network (ANN) models for detecting human-body
shadowing and compensating RSS values to improve distance
measurements or localization based on the BLE RSS. In the
best case, the ANN can correctly detect the obstacle more
than 87% of the time. The method leverages measurements
acquired on individual channels, so knowledge of the
advertising channel is also required, as well as a training phase
for the ANN.

In [43], the authors proposed a NLOS detection method
based on the variance of the BLE RSS. The algorithm is able to
detect when a concrete wall is blocking the direct path between
the transmitter and the receiver with an accuracy of 76.25%
based on a fixed threshold of the RSS variance, below which
the signal is classified as being acquired in NLOS. The same
method could not be applied on NLOS with plasterboards,
since the standard deviation was inconsistent. The effect of
several obstacles (wooden door, iron door, window, hand,
paper) on the BLE RSS was studied in [38]. The mean
RSS values obtained with these obstructions varied between
−50 dBm to −90 dBm at a TX–RX distance of 2m. The

strongest attenuation was caused when a hand covered the
transmitter and when the LOS was blocked by an iron door.
These results show that different NLOS obstacles can have
a different impact on the RSS and that the topic should be
further explored.

In [34], a NLOS case was analyzed with two types of walls
between the TX and RX: a stud partition and a blockwork
wall. No differences between LOS and NLOS scenarios
were observed for the stud partition, while the blockwork
wall introduced attenuations of up to 20 dB in the received
signal strength compared to LOS case. The main conclusions
in [34] are similar to the ones in our measurement-based
analysis, that BLE signals have high fluctuations and their
RSS does not necessarily follow classical path-loss models.
Therefore, developing accurate BLE RSS-based proximity-
detection methods remains a challenging topic.

Changes caused by the human body in wireless signal
propagation in the 2.4GHz band have also been documented
in [44]–[46].

6) Interference in ISM band at 2.4GHz: As the ISM band
is heavily used by many wireless systems, fluctuations in
the BLE RSS are also caused by RF interference, especially
coming from shared antennas between Wi-Fi and BLE
modules coexisting on the same chipset (as it is the case
with most mobile phones). The authors in [28] noticed RSS
fluctuations on the order of 6 dB at the same TX-RX distance
due to multipath fading and interferences from Wi-Fi.

The authors in [38] performed an experiment in which a
BLE TX was placed directly under a Wi-Fi access point (AP)
and the RSS was recorded, in turns, when the AP was on and
off. When the Wi-Fi AP was on, the reception rate dropped
to 75% and the RSS decreased with 10 dB in 50% of the
measurements compared to the case in which the AP was
turned off. We further explore this topic in Section IV-G.

C. State-of-the-art Summary

The work in [34] can be seen as the closest to our
work from the BLE RSS literature (as summarized also
in Table I). However, our work focuses only on indoor
scenarios in a more systematic approach, by duplicating BLE
RSS measurements in two different locations (Tampere and
Bucharest), by performing extensive and repetitive tests at
distances relevant to contact-tracing apps (i.e., 1 to 3m), and
by investigating the effects of Wi-Fi interference and the three
BLE advertising channels.

The main reason we focused on indoor scenarios is that
outdoor proximity detection can be be achieved with high-
accuracy GNSS receivers. For indoor proximity detection,
however, there are more viable candidates, out of which BLE
is the most promising but also perhaps the most challenging
one. In addition, in digital contact tracing apps, infectiousness
levels are lower outdoors than indoors [47], [48].

Our paper offers a comprehensive survey of various causes
of BLE RSS variability as well as of the related works in the
literature. The state-of-the-art main studies on BLE RSS are
summarized in Table I and the last row shows the contributions
of this article at a glance.
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2.4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac
wireless LAN, Bluetooth 5.0, BLE

Broadcom BCM2711,
Quad-Core Cortex-A72 64-bit SoC

PCB Antenna

2 × USB 3.0

Gigabit Ethernet

2 × USB 2.0

Fig. 3. Raspberry Pi 4 Model B devices are used in our experiments as TX
and RX.

Other works in similar spirit but for Wi-Fi, found variations
across channels, time scales, interfaces used for 5GHz Wi-
Fi [49], and across direction, device manufacturer, sampling
period, presence of humans and of other radio devices [50].

For IEEE 802.15.4, that also uses 2.4GHz ISM band, but
lower power, [51] finds that the main variability sources when
measuring RSS are antenna orientation, hardware sample, and
link asymmetry.

III. MEASUREMENT-BASED BLE DATA COLLECTION

In all our experiments, we used Raspberry Pi 4 Model
B devices, as illustrated in Fig. 3. The internal 2.4GHz
antenna is located in the left upper corner, next to the Cypress
CYW43455 combo Wi-Fi and BLE module. The devices have
a 1.5GHz 64-bit Quad-Core Cortex-A72 CPU in the middle
of the Raspberry Pi. The Gigabit Ethernet, two USB 3.0 and
two USB 2.0 ports are located on the right, which might cause
signal degradation in some TX–RX orientations (which will
be discussed in Section IV-F). One advantage of using this
hardware is that we can configure the advertising channel
and payload, an option that not many open-source smartphone
applications offer.

We acquired a database of BLE RSS measurements between
devices placed at 1, 2, and 3m in several LOS and NLOS
scenarios with obstructions caused by walls (with and without
a whiteboard on it), human body, plexiglass panels, and doors,
shown in Fig. 4. We conducted two measurement campaigns
in parallel at UPB and TAU. The different locations enabled
us to compare and validate measurements acquired with the
same hardware models but in different settings.

We define a measurement as the process of collecting
data in a specific manner. Measurements can be grouped in
recordings (or snapshot measurements), when data is collected
continuously from a start time to an end time, in a static
setup and without modifying the devices in any way, and in
scenarios (or aggregated measurements), which are collections
of recordings according to a pre-defined criterion. For instance,
a scenario can be a collection of recordings acquired in LOS,
with a TX–RX distance of 1m, on channel 37.

We configured the transmitter to send non-connectable
un-directed advertisements (ADV_NONCONN_IND) with a
period of 100ms, which satisfies the broadcasting interval

(a) LOS at TAU (b) LOS at UPB

(c) NLOS with wall at TAU (d) NLOS with wall at UPB

(e) NLOS with plexiglass at UPB (f) NLOS with human body at UPB

(g) NLOS with door at UPB (h) NLOS with wall and whiteboard
at UPB

Fig. 4. The pictures of the receiver and transmitter in LOS and NLOS with
wall acquired at UPB and TAU (Fig. 4a to 4d). Fig. 4e to 4h show NLOS
scenarios with a plexiglass panel, human body, a door, and a wall with a
whiteboard at UPB.

recommendation of 200ms to 270ms of the Bluetooth
protocol for contact tracing developed by Apple and
Google [52]. The same specification suggests a scanning
period (at the receiver) of at least 5min, although this is
likely to vary depending on the application. For instance, in
the GAEN API the scanning period was found to be between
2.5 and 4min [53]. Since a higher scanning rate provides more
RSS samples and the devices are not energy-constrained, we
chose a scanning frequency of 1Hz.

The recording time ranged from 3 minutes to 3 days.
In some cases, we were interested in the stability of RSS
measurements over a longer period of time, case in which the
recording time spanned several days, whereas in other cases
we were interested in the variability of RSS measurements
at different locations with constant TX-RX distances, case
in which shorter recording times of several minutes were
more convenient. Fig. 4 shows examples of LOS and NLOS
scenarios in which data was acquired at TAU and UPB.

IV. MEASUREMENT-BASED BLE RSS
CHARACTERIZATION

This section provides an overview of the results acquired
during our experiments and describes the challenges discussed
in Section II-B.

In order to compare in a comprehensive manner the RSS
distributions in different scenarios, throughout this section we
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Fig. 6. The effect of the time evolution on the RSS distribution in LOS on
a single channel (37), recorded at UPB.

represent the data using standardized box plots such as the one
in Fig. 5, as they give information at-a-glance about the mean,
median and spread of the RSS. The box shows where most
of the RSS values are found, namely the data from the first
quartile (Q1 or the 25th percentile) to the third quartile (Q3
or the 75th percentile), also known as the interquartile range
(IQR). The lines extending from the box are called whiskers
and cover the range from a , Q1−1.5∗(Q3−Q1) to b , Q3+
1.5∗(Q3−Q1) (corresponding to Tukey’s original definition of
box plots). The red vertical line inside the box plot denotes the
median. In some plots, we also added via a diamond marker,
the mean of the data. The circle markers to the right (can also
appear to the left) of the whiskers are outliers. Occasionally,
the outliers or the mean value are omitted in our plots to
preserve a good readability of the plot. In some cases, the
RSS is stable enough that the IQR contains only the median
value and therefore the box is not shown.

A. The (In)stability of BLE RSS Measurements Over Time

We first investigate the stability of BLE RSS measurements
in a particular setting over time. Fig. 6 shows the boxplots
of the BLE RSS distribution in windows of 2min up to
10 h acquired in LOS, on channel 37, at a distance of 1m
between the transmitter and the receiver. The measurements
were acquired in a locked room during the weekend, so there
was no human activity around the devices during the recording.
Although the median RSS changes with up to 3 dB over the
course of the recording, the mean RSS varies with less than
1 dB with different window lengths.

It can be seen from Fig. 6 that, if we are interested only in
the mean RSS, then a recording time of 2min is sufficient to
obtain the mean RSS that best captures the characteristics of
the particular setting in which measurements are acquired. If
we are also interested in the shape of the distribution, a longer
recording time of at least 30min is necessary. In general,
the RSS during each snapshot recording was stable over time
with the exception of some random fluctuations that sometimes
appeared at the beginning of a recording and which will be
discussed in Section IV-G.

B. The (In)stability of BLE RSS Measurements Over Space or
Test–Retest Reliability Studies

Next, we study the stability of the BLE RSS under LOS
scenarios, at a fixed distance of 1m between the same TX–
RX pair, and using only the advertising channel 37 in order
to eliminate frequency-dependent fluctuations. We acquired
measurements at TAU and UPB, in different rooms or with
the TX and RX placed in different spots in the same room,
while maintaining a distance between the two devices of 1m.
Fig. 7 compares the RSS distribution in 15 recordings when
taking a fixed number of 326 random measurements from
each recording (the fixed number was selected based on the
minimum length among all 15 recordings).

We expected to get similar RSS measurements in
different snapshot recordings, given that the multipath fading
is mitigated by averaging samples over several minutes.
However, even after multiple test-retest measurements
performed at UPB and TAU, results (see Fig. 7) indicate
fluctuations of the median RSS of up to 40 dB between
snapshot recordings even though the TX–RX distance was
constant. Moreover, the median RSS can vary even in the
same location between two recordings taken in different
days, even though results in Section IV-A suggested that
RSS measurements are very stable over time. For instance,
recordings with indices 3, 4, and 5 were acquired at the
exact same locations over multiple days but the mean RSS
of recording number 4 is higher with 15 dB than the other
two recordings. Such a large variability might be caused
by the chipset warm-up after a reboot, interference in the
ISM band, or other environmental factors such as the room
temperature. Although we used the same model of devices
for the measurements, the TAU data set from Fig. 7b had a
smaller (but still significant) spread than the UPB data set from
Fig. 7a, of 20 dB compared to 40 dB, respectively.

When aggregating data from multiple recordings, however,
for at least 4 recordings the mean RSS converges to
approximately −49 dBm and −55 dBm for UPB and TAU,
respectively, as shown in Fig. 8. It is important to note that,
although a relatively small number of recordings is necessary
to capture the variability of the mean RSS between two devices
across different locations, the shape of the distribution (and
hence its spread) stabilizes only after 12–13 recordings.

C. The Impact of Hardware on the BLE RSS

We evaluated the impact of the hardware choice on the RSS
when the same device model (Raspberry Pi 4 Model B) was
used on both the transmitter and the receiver side. The devices
were placed at the exact same location, with a fixed distance
between them of 2m, and the transmitter sent advertising
beacons only on channel 37. We used in total four different
Raspberry Pi boards, from exactly the same manufacturer and
same model type, labeled RPi1 to RPi4 which integrate a
Cypress CYW43455 BLE and Wi-Fi chipset.

Fig. 9 shows the RSS distribution of each pair of devices.
Pair 1 consisted of the TX–RX pair RPi1–RPi2, pair 2
of RPi1–RPi3, pair 3 of RPi1–RPi4, pair 4 of RPi2–
RPi4, and pair 5 of RPi3–RPi4. In other words, device
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Fig. 7. Boxplots showing the RSS distribution in 15 recordings acquired between the same device pair in LOS, at 1m, at UPB and TAU, using only channel
37.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of recordings

−80

−60

−40

−20

RS
S 

[d
Bm

]

LOS, d = 1 m, Channel 37

(a) UPB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of recordings

80

60

40

20

RS
S 

[d
Bm

]

LOS, d = 1m, Channel 37

(b) TAU

Fig. 8. The impact of the number of snapshot recordings from a particular scenario on the RSS distribution. A total of 15 recordings were acquired in the
same scenario (LOS at 1m on channel 37). This figure presents the RSS distribution when an equal number of samples (326, corresponding to approximately
5min) are taken from 1 to 15 recordings selected at random. The median, mean, and inter-quartile range (IQR) converge for more than 12–13 recordings.
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Fig. 9. The impact of hardware choice on the RSS in recordings acquired
with different device pairs placed at a distance of 2m at exactly the same
location. The median RSS varies with 5dB, even though the devices have
the same model.

pairs 1, 2, and 3 share the same transmitter, while device
pairs 3, 4, and 5 share the same receiver. The median RSS
varies with up to 5 dB even between devices from the same
model. This experiment shows the difficulty of building a
database that documents the transmitter and receiver efficiency
of different brands of devices, since even devices that use the
same hardware have RSS variations of several dB.

D. The Impact of the Advertising Channel Index on the BLE
RSS

As mentioned earlier, BLE devices transmit beacons on
channels 37, 38, and 39 which correspond to frequencies of

2.402, 2.426, and 2.48GHz, respectively. Fig. 10 illustrates
the impact of three advertising channels on the RSS, compared
with a recording where all 3 advertising channels were used.
The data was collected at the same location with the devices
2m apart and on the same day within a short time interval.
The same type of measurements were done in parallel at UPB
and TAU. By default, beacons are transmitted on all three
advertising channels. Therefore, a receiver cannot determine
the channel of the transmitted packets, resulting in a larger
variance of the samples and inaccurate distance estimates. At
both UPB and TAU we noticed variations of at least 5 dB
between measurements acquired on different channels. Other
sources measured differences between BLE channels as high
as 15dB (Figure 2 in [54]).

E. The Impact of Transmitter-Receiver Distance on the BLE
RSS

Under the LOS assumption (i.e., no obstacle between the a
BLE transmitter and a receiver), one can start from the well-
known free-space path-loss (FSL) model:

PR = PT − 20log10d− 20log10
(4πfc

c

)
+ η, (1)

where PR is the received signal strength in dB scale, PT is
the apparent transmit power of the BLE transmitter computed
at 1m away from the transmitter, d is the distance between
the transmitter and the receiver (i.e., between the two persons
under consideration in the digital contact-tracing app), fc is the
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Fig. 10. The channel impact on RSS values in a LOS scenario at 2m distance,
based on measurements acquired at UPB and TAU. This plot illustrates the
RSS distributions (with an equal number of samples: 95 per snapshot) when
receiving beacons on all three channels and on individual channels.

carrier frequency of the transmitted BLE signal (i.e., the carrier
frequency on the used advertising channel or an average carrier
frequency when several advertising channels are used), c is the
speed of light (i.e., about 3 ∗ 108 m/s), and η is a noise factor
encompassing the shadowing effects in the wireless channel,
interference, and possible other noise sources. By virtue of
the central-limit theorem, η can be assumed to be Gaussian
distributed of variance σ2. We also assume that η is a zero-
mean noise under LOS scenarios.

The FSL is rarely used as such in RSS modeling; instead,
most authors prefer the one-slope path-loss model below for
its simplicity [27], [55]–[57]:

PR = PTa
− 10nlog10d+ η, (2)

where the apparent transmit power PTa
factor includes also

the frequency-dependent effects, in such a way that multi-
frequency effects, as those generated by RSS measurements
on multiple advertising channels can be lumped into a single
parameter, and n is a positive number modeling the path-loss
parameter. An n value below the FSL path-loss factor of 2
would signal the presence of some conductivity effects in the
building walls as well as multipath-enhanced propagation (e.g.,
multipath adding constructively). The lower n is, the flatter the
RSS curve is with the distance, and the harder would be to
differentiate between close distances (e.g., between 1m and
2 m or between 2 m and 3 m). Typically, in model-driven
RSS approaches (as opposed to data-driven approaches), the
purpose is to estimate the best-fit parameters PTa and n of
an underlying path-loss model. This is usually done via a
least-square (LS) fit, where the unknown parameter vector
x , [PTa

n] is estimated via x̂ [55]:

x̂ = (ATA)−1ATb, (3)

with A ∈ Nmeas × 2 being a matrix with i-th row equal
to [1 − 10log10di], i = 1, . . . , Nmeas, and b ∈ Nmeas × 1
being a vector with the i-th element equal to the received
signal strength PRi observed in the i-th measurement at di
distance between TX and RX. Above, Nmeas is the number
of measurements (or observations) used in the LS fitting, and
encompassing various TX-RX distances di. The shadowing

variance σ̂2
η is then computed as the error between the

measurements and the reconstructed data, namely:

σ̂2
η =

1

Nmeas

Nmeas∑

i=1

(
PRi − P̂Ta − 10n̂log10(di)

)2

. (4)

When a NLOS obstacle such as a glass window, a wall, or
the body of another person is present between the transmitter
and receiver, we expect the NLOS apparent transmit power
PTa

to be smaller than the LOS PTa
, as it should incorporate

the additional absorption losses due to obstacles. However,
repeated measurements are both TAU and UPB showed that
this is not always the case.

Table II gives examples of the path-loss parameters
estimated from aggregated measurements on all three BLE
advertising channel, in four considered scenarios (two LOS
and two NLOS, with two of them from TAU and two from
UPB scenarios). In the NLOS scenarios, the obstruction was
caused by a wall between the TX and the RX. In order to have
a fair comparison also between long recordings, we extracted
326 samples from each available recording (which correspond
to a recording time of around 5min) and aggregated them.
Several Monte Carlo runs showed very similar parameter-
fit results from one run to another. For illustrative purposes,
Table II shows the results based on one random run in each
scenario.

The main conclusion is that there is not a one-size-fit-
all model with constant [P̂Ta n̂] vector estimate, but that
there are high fluctuations between the four shown scenarios,
and therefore a model-driven approach for BLE RSS-based
contact tracing will likely suffer from large errors. This is also
reflected in the high shadowing standard deviations σ̂η shown
in Table II (around 6 dB for TAU data and around 9 dB for
UPB data).

Indeed, other literature results have shown that the path-loss
parameters used in different works vary widely. For instance,
although a path-loss exponent between 2.4–2.6 is frequently
recommended [26], in [43] the path-loss exponent was set to
1.8 for LOS scenarios and 2.2 for NLOS ones. In the survey
part of [2], the path-loss exponents extracted from various
research papers varied between 0.63–2.32 and TABLE II
suggests that in some cases (NLOS, UPB) this value might
be even lower.

Instead of model-driven contact tracing, data-driven
approaches such as those based on large training data sets
and machine learning solutions (e.g., in [26]) could be
adopted, but they have high complexity and are impractical
at large scales. Other works [58], [59] propose online
path-loss estimation methods based on cooperating nodes
in wireless sensor networks. However, tens of nodes are
usually needed for an accurate estimation. Another solution
is to have a gateway that collects the RSS of surrounding
BLE beacons, tracks the fluctuations, and sends back RSS
correction factors to individual nodes in real time [24].
However, such an approach is not suitable for a peer-to-
peer and privacy-sensitive application like contact-tracing.
Therefore, the challenges of finding the right approach (model-
driven versus data-driven) and the right models (e.g., more



10

TABLE II
EXAMPLE OF PATH-LOSS PARAMETERS ESTIMATED FROM AGGREGATED

MEASUREMENTS.

Environment P̂Ta

[dBm]
n̂ [-] σ̂η

[dB]

Total number of
measurements

at 1m at 2m at 3m

LOS, TAU -55.35 0.76 6.01 5868 2608 1630

NLOS, TAU -49.98 3.31 5.70 3586 2934 1956

LOS, UPB -44.07 1.60 8.73 5216 2608 2934

NLOS, UPB -51.69 0.37 8.72 1630 1630 1630

sophisticated models than the simple single-slope path-loss
model of Eq. (2)) are still important challenges to be solved by
the research community dealing with BLE RSS-based contact
tracing or proximity detection.

F. The Impact of Transmitter and Receiver Orientation on the
BLE RSS

We considered the effect of the relative orientation between
the transmitter and the receiver on the BLE RSS. We analyzed
four poses depicted in Fig. 12, where the pose of the
transmitter is fixed and the receiver is rotated clock-wise with
90°, 180°, and 270° with respect to the “front” orientation
from Fig. 12a, resulting in the “left,” “right,” and “back” poses,
respectively. The radiation pattern (Fig. 11) for the frequency
of Bluetooth channel 37 shows a 2.7 dB standard deviation
across all angles, but the maximum differences on each of the
three planes is of 10.1, 13, and 14.1 dB.

Fig. 13 presents the RSS distribution in all poses, when
the devices are placed at distances of 1, 2, and 3m. The
devices were placed on tripods which were kept fixed at the
aforementioned distances, while only the receiver was rotated
around its center axis for each pose. Each recording had a
duration of approximately 10min and was performed only on
channel 37. First, we notice the same inconsistencies with the
distance discussed in Section IV-E, in which the average RSS
at 1m distance is lower than the one at 2 and 3m. Second, the
RSS changes with the pose for a particular distance, although
the receiver was not moved but only rotated around its axis
and the transmitter’s position was the same in all recordings.
There is no orientation which results in a higher RSS at all
distances. However, the “back” pose has a lower median RSS
than the other poses at all distances, most likely because in
this pose, as can be seen from Fig. 12b, the metallic USB
and Ethernet ports of the receiver board are in the LOS of the
signal and attenuate it. While the median RSS in the “front,”
“left,” and “right” poses varies with about 5 dB for the same
distance, the median RSS in the “back” pose can be with even
20 dB lower than in the other poses.

G. Random Fluctuations Caused by BLE–Wi-Fi Combo
Chipsets

The interference between Bluetooth and Wi-Fi is well
documented in literature, and IEEE has recommendations
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Fig. 11. Radiation pattern of Raspberry Pi 3B+ antenna plotted from anechoic
chamber measurement data [60]. It is a PCB antenna designed by Proant AB
present in many IoT devices operating in the 2.4GHz band.

(a) Front (b) Back

(c) Left (d) Right

Fig. 12. The four orientations of the receiver (device on the right) with respect
to the transmitter (device on the left) we considered in our experiment: (a)
front, (b) back, (c) left, and (d) right. In the back, left, and right poses the
receiver was rotated clock-wise with, respectively, 180°, 90°, and 270° with
respect to the front orientation.

[61] for the coexistence of the technologies operating in the
ISM bands. [62] has shown experimentally that Bluetooth
and ZigBee are affected by Wi-Fi, stating agreement with
previous studies. One way to tackle the coexistence is to use
specific algorithmic mitigations in the way each technology
is used [63], but some might require updates to the standards.
When both Wi-Fi and Bluetooth are implemented on the same
chipset, as is the case with most smartphones, [64] determined
through measurements that performance is degraded at the
application layer.

For the purpose of contact tracing however, only RSS
measurements and timestamps of the recordings are needed
and the question is whether the BLE measurements are
influenced by Wi-Fi activity on the same chipset. We turn the
Wi-Fi on and off simultaneously at both the transmitter and
the receiver every one hour and record the RSS. During the
time when the Wi-Fi is on, synthetic Wi-Fi traffic is generated
with 112 kb/s. Fig. 14 shows that, on average, the mean RSS
when the Wi-Fi is on is 2.5 dB lower than during the time the
Wi-Fi is off. There is also a small difference in the standard
deviation: when the Wi-Fi is on, the standard deviation of the
RSS is 1.1 dB compared to 0.83 dB when the Wi-Fi is off.
Although Fig. 14 presents the results for 6 hours only, for
better visualization, the pattern remained consistent over two
days, during which there was no human activity around the
devices.

Wi-Fi scanning might occasionally cause even larger
differences in the BLE RSS than 2.5 dB. We sometimes
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Fig. 13. The impact of orientation on the BLE RSS. The front, left, right,
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Fig. 14. The impact of Wi-Fi and BLE combo chipsets: the Wi-Fi is turned
on and off every one hour at the indicated markers. On average, the mean
RSS with the Wi-Fi off is with 2.5dB higher than with the Wi-Fi off.

noticed spurious measurements occurring only when the Wi-
Fi was on, usually at the beginning of a snapshot recording,
as shown in Fig. 15 around minute 100, when the signal
fluctuated for several minutes between−40,−55, and−90 dB.
The recordings with the settings of Wi-Fi on and off were
acquired during different times of the day; however, the
environment was static with no people moving inside the
room. We acquired results which show the mean RSS values
to be with 6.8 dB higher with Wi-Fi off than with Wi-Fi
switched on. Overall, Fig. 15 illustrates the instabilities in
single recordings which might be caused by coexistence of
different signals within the 2.4GHz frequency. A similar
pattern was observed also in [65], where Figures 6 and 7 reveal
a 20 dB difference in BLE readings when Wi-Fi scanning is
active with a Samsung Galaxy S4 smartphone.

H. On the Difficulty of LOS/NLOS detection

In this section, we investigate the effect of different types
of obstructions on the BLE RSS. At both UPB and TAU
we acquired measurements in LOS and NLOS with wall
shadowing. In addition, at UPB, we tried more types of
obstructions: wall and whiteboard, door, human body, and
plexiglass panel. All the setups are shown in Fig. 4, where
for NLOS measurements we varied only the distance between
the devices, while in LOS we also tried different locations.

We consider a “scenario” a set of snapshot measurements
acquired at the same distance, on the same channel, in the same
LOS/NLOS setting. TABLE III presents the mean and the
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Fig. 15. The impact of Wi-Fi switched on and off, in LOS at 1m distance.
When the Wi-Fi is off, the mean RSS is higher with 6.8dB than when the
Wi-Fi is on. When the Wi-Fi is on, we also notice RSS fluctuations of up to
30dB around minute 100.

standard deviation of the RSS computed in different scenarios
from measurements acquired at UPB. Because recordings in
the same scenarios have lengths from 5min to several days
and we do not want longer recordings to bias the statistics,
when there are multiple recordings in the same scenario we
chose an equal number of measurements at random from each
recording from that scenario and computed the mean and
standard deviation using only the subset of samples. Usually,
recordings within the same scenario were acquired at different
locations to capture the variability of the RSS across space
for the same TX–RX distance. As a result, when there are
multiple recordings in a scenario, the standard deviation of the
RSS is higher than in single-recording scenarios. The number
of recordings (“Nr. rec.”) and the number of samples in each
recording (“Nr. samples per rec.”) are specified in TABLE III
for each scenario, as well as the advertising channel(s) on
which measurements were acquired.

Comparing the statistics in LOS and NLOS when all
advertising channels are used, we note that the mean RSS
varies within a range of 20 dB, indicating that the attenuation
introduced by an obstacle depends on the type of obstacle. The
mean RSS in LOS is usually higher than the one in NLOS but
not always—the mean RSS in the “NLOS door” recording is
higher than the one in LOS. Note also that the human body
causes a higher standard deviation than the other obstructions.
This can be seen more clearly in Fig. 16, which shows the
distributions of selected NLOS measurements from TABLE III
and one recording acquired in LOS on all channels. The large
spread can be caused by slight movements of the body which,
by nature, cannot be perfectly immobile (breathing alone
causes a slight movement of the body). These characteristics
can make the human body more easily detectable than other
obstructions, as previous works showed [26]. However, other
obstructions might be more difficult to detect. For instance,
the mean RSS in the “NLOS plexiglass” case is similar to the
mean RSS in LOS on individual channels, while the highest
mean RSS was obtained in the “NLOS door” case.

The inconsistency can be also caused by the fact that most of
the NLOS statistics were computed based on a single recording
and, as we saw in Section IV-B, single recordings can deviate
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from statistics computed on aggregated data with more than
10 dB. Therefore, next we compare LOS and NLOS with a
wall distributions aggregated from all channels, at distances of
1, 2, and 3m, acquired independently at UPB and TAU, shown
in Fig. 17. The distributions are plotted based on the same
data used in Section IV-E to estimate the path-loss parameters
from TABLE II. Each distribution was computed based on 5 to
18 recordings based on 326 measurements selected at random
from each recording. Based on the results in Section IV-B,
the mean computed based on 5 recordings should be within
several dB of the “stable” mean, but the standard deviation
can still fluctuate for less than 12–13 recordings.

Although the distributions in Fig. 17 mostly behave as
expected, i.e. the mean RSS should decrease with the distance
and the mean RSS should be lower in NLOS than in LOS
at the same distance, there are exceptions. The average RSS
in NLOS is higher than the one in LOS at 3m for the UPB
data set and at 1m for the TAU data set. Also, the NLOS
distributions have higher or equal spread than LOS ones in
most of the cases, even though the NLOS data sets contained
less recordings than the LOS ones. This result contradicts
observations in [43], where NLOS obstructions caused by
walls were identified when the standard deviation of RSS
measurements in a window was lower than a fixed threshold.
Although UPB and TAU data sets were acquired using the
same model of Raspberry Pis, measurements acquired at TAU
had a smaller spread than those from UPB even in LOS, which
points once more to the instability of RSS measurements.

In proximity-detection or RSS-based localization
applications, obstructions will most of the time lead to
inaccurate distance or location estimates. Therefore, multiple
solutions have been proposed to correct RSS-based ranges
by detecting the NLOS condition [26], [42], [43] with the
caveat that such solutions might not generalize easily, as
our measurements show, or that large data sets might be
necessary to extract features that improve classification. In
contact-tracing applications, such instabilities can lead to false
alarms or failures in detecting potentially unsafe interactions.
For instance, since human body shadowing sharply attenuates
the signal, the distance predicted by a standard path-loss
model can be larger than in reality, so people might not be
notified of risky encounters. On the contrary, if the RSS
reported when devices (or people) are separated by walls is
larger or equal than the average RSS in LOS, an alert might
be raised even if people staying in different rooms are safe
from each other. Therefore, LOS/NLOS detection is still a
highly relevant topic with room for improvement. Hybrid
solutions that combine BLE with UWB, cameras, or other
sensors might increase the reliability of NLOS detection.

V. DISCUSSION

One of the unexpected results of our measurement
campaigns—a result which has also not been emphasized
enough until now in the current literature—is the fact
that snapshot BLE RSS measurements are highly unstable
and fluctuating, and only by lumping together enough
measurements (i.e., by using aggregated data), the results

TABLE III
THE MEAN AND STANDARD DEVIATION OF THE BLE RSS IN DIFFERENT

SCENARIOS AT A TX–RX DISTANCE OF 2m.

Scenario Ch. Nr.
rec.

Nr. samples
per rec.

RSS

Mean
[dBm]

Std.
[dB]

LOS 37 7 326 −50.5 7.6
LOS 38 1 3215 −46.0 5.6
LOS 39 1 25 607 −54.2 1.7
LOS all 5 736 −45.6 7.3
NLOS wall 37 3 1726 −55.4 6.0
NLOS wall all 1 1824 −58.2 2.0
NLOS human all 1 495 −60.0 4.3
NLOS plexiglass all 1 1824 −50.7 2.9
NLOS door all 1 1808 −40.7 3.3
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Fig. 16. Comparison of selected RSS distributions acquired on all advertising
channels at 2m, in LOS, NLOS with a plexiglass panel, NLOS with a wall
and a whiteboard, and NLOS with human body shadowing.
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Fig. 17. Comparison of RSS distributions based on data acquired in LOS and
NLOS with a wall at UPB and TAU at distances of 1, 2, and 3m, irrespective
of the advertisement channel.

seem to converge, to some extent, to the classical path-
loss models (e.g., average RSS decreasing with transmitter-
receiver distances, average RSS under LOS scenarios stronger
than the average RSS under NLOS scenarios). Nevertheless,
for fast proximity-detection or contact-tracing algorithms,
when the observation window can be as small as 15min,
aggregated RSS data may be unavailable, and estimations
based on what we called snapshot recordings can suffer
from significant errors due to high RSS fluctuations. We also
provided guidelines for building data sets that best represent
the conditions in a particular scenario.
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VI. CONCLUSIONS, AND OPEN ISSUES

This paper presented a detailed analysis of BLE RSS
fluctuations based on an extensive measurement campaign
performed in tandem in Tampere, Finland, and Bucharest,
Romania. We documented in detail the main sources of
high fluctuations (or instabilities) of BLE RSS measurements
occurring, surprisingly, in static scenarios and diverging from
the classical path-loss models, e.g., as given in Eqs. (1)
and (2). We defined controlled scenarios, such as fixing
the transmitter and receiver BLE models, fixing the BLE
advertising channel to have transmission on a single carrier
frequency, turning the Wi-Fi transmitter off in chipsets sharing
the 2.4GHz antenna between BLE and Wi-Fi, and fixing the
transmitter-receiver distance.

We emphasized several challenges that still remain to be
addressed by the research community when standalone BLE
RSS measurements are used for contact tracing, proximity
detection, or positioning purposes, namely: the challenges of
NLOS scenarios with stronger average (and median) RSS than
LOS scenarios at the same distance, the challenge of increased
RSS fluctuations (or variance) when the measurements are
acquired on multiple BLE advertising channels (as it is
customary in contact-tracing applications) or with different
receiver-transmitter orientations (which again are highly
variable, as users can keep their mobile devices in various
positions: in hand, inside bags, inside front or back pockets,
etc.).

A possible solution to overcome the instability of snapshot
BLE RSS recordings is, for example, the hybridization of
BLE RSS measurements with other sensors, such as vision
sensors (to enable LOS/NLOS detection) or time-of-arrival
UWB sensors (to enhance the range estimation). However, this
will increase the energy consumption of end-user devices, so
the trade-off between proximity detection accuracy and energy
consumption must also be considered. Collecting data from
additional sensors can also potentially decrease user privacy.
Another possibility would be to collect large training databases
in hotspot areas (e.g., shopping centers, commuting halls, etc.),
which could facilitate a baseline statistical modeling based on
both snapshot and aggregated training data, and to further use
machine-learning approaches to derive data-driven estimators
instead of the model-driven estimators which rely on path-loss
modeling.

The main goal of this paper is to shed additional light on
the challenges encountered in BLE-based contact tracing and
to raise awareness among the research community that several
challenges related to BLE RSS ranging and positioning are still
to be solved. One solution based on our measurements is to
use enough aggregated data, as, by virtue of the central-limit
theorem, this seems to remove the outliers and to converge
towards known path-loss models. Such a solution could be
sufficient for positioning purposes when training databases
can be based on large amounts of aggregated data, but it
may still be unfeasible for contact-tracing solutions in need
working with snapshot data. Another solution could envisage
more sophisticated path-loss modeling, such as by taking
waveguide effects [66] into account or using stochastic ray-

tracing modeling [67].
The measurement data will be made open-access at the

research community on Zenodo2, in order to enable the
reproducibility of the research and to provide benchmark data
for further investigations on BLE RSS-based contact tracing.
Future work also includes collecting data from more devices,
including various types of mobile phones, and looking into
more detail at the yet-unsolved research question of whether
NLOS situations can be separated with high accuracy from
LOS situations and under which conditions.
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George-Cristian Pătru, Laura Flueratoru, Iuliu Vasilescu, Dragoş Niculescu,
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ABSTRACT In this paper, we propose FlexTDOA, an indoor localization method using ultra-wideband
(UWB) radios, and we demonstrate its performance in a functional system. Our method uses time-difference
of arrival (TDOA) localization so that the user device remains passive and is able to compute its location
simply by listening to the communication between the fixed anchors, ensuring the scalability of the system.
The anchors communicate using a custom and flexible time-division multiple-access (TDMA) scheme in
which time is divided in slots. In each time slot, one anchor interrogates one or more anchors which respond
in the same slot. The anchors do not need to have their clocks synchronized. We implemented FlexTDOA
on in-house designed hardware using a commercial UWB module. We evaluate the localization accuracy of
FlexTDOA with different system parameters such as the number of responses, the order of responses, and
the number of anchors. We simulate and evaluate the effect of the physical speed of the tag on the choice of
optimum system parameters. We also compare FlexTDOA against the classic TDOA approach and range-
based localization in a deployment of ten anchors and one tag, both with and without obstructions. Results
show that FlexTDOA achieves the highest localization accuracy in most of the scenarios, with up to 38%
reduction in the localization error compared to the classic approach.

INDEX TERMS ultra-wideband, indoor localization, time-difference of arrival, Internet of Things (IoT)

I. INTRODUCTION

Ultra-wideband (UWB) technology has experienced a revival
during the past few years, mainly for its high-accuracy rang-
ing and localization capabilities. It is estimated that more
than 1 billion UWB devices will be shipped by 2025, and
that over the next 5–10 years all smartphones will have
UWB capabilities [1]. With the growing number of users,
localization systems will face high scalability requirements
to satisfy network demands with acceptable location update
rates [2].

UWB-based localization systems usually consist of a mo-
bile node that needs to be localized, called tag, and several
fixed nodes with known locations, called anchors, which

communicate with the tag and aid the localization process.
Range-based localization is arguably the most popular local-
ization technique since it provides the highest accuracy [6]. In
range-based localization, the location is computed based on
distances between each anchor and the tag using multilatera-
tion. To avoid synchronizing the transmitter (TX) and the re-
ceiver (RX) [3], [4], at least two message exchanges between
the tag and each anchor are needed to compute one distance,
technique known as TWR. Because of the high number of
messages, range-based localization (or multilateration) scales
poorly with the growing number of tags and anchors.

Time-difference of arrival (TDOA) is an alternative local-
ization method which uses the difference between the arrival
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times of two packets (usually, exchanged by the tag and two
anchors) [5]. For each difference, the tag can be located on a
hyperbola focused at the anchors (in a 2D coordinate system).
By computing the TDOA for more anchor pairs, the tag’s
location can be found at the intersection of multiple hyperbo-
las [6]. One TDOA variant frequently called downlink (DL)
TDOA [7] has gained popularity for its scalability properties.
In this setup, only the anchors transmit periodic messages,
while the tag records their arrival times and localizes itself.
In DL TDOA, the tag can remain passive, i.e., does not need
to transmit any uplink messages. Using passive tags, since
there is no need for the tags to share the channel, DL TDOA
can scale to an unlimited number of users [8]–[11].

The main drawback of TDOA localization is that the
anchors need to be synchronized, usually by estimating the
clock offsets of each anchor relative to a reference clock [11].
A convenient way to obtain the reference clock is to designate
a reference anchor that periodically broadcasts a synchro-
nization beacon [12]. The rest of the anchors respond to
this beacon and track their clock offsets with respect to the
reference anchor. The disadvantage of this approach is that,
if the link between the reference anchor and the tag is ob-
structed, the tag will receive the synchronization beacon with
a delay and all subsequent TDOAs pertaining to that beacon
will be corrupted. This method is therefore not reliable in the
presence of obstructions.

In this paper, we propose an alternative TDMA schedul-
ing scheme for TDOA localization called FlexTDOA. In
FlexTDOA, there is no single reference anchor. Instead, all
the anchors in the system can be configured to take turns
in transmitting the synchronization beacon. Similarly, the
order of the anchors that respond to the beacon changes in
a round-robin manner. Therefore, depending on the needs
of the system, less anchors than the maximum available can
respond to a beacon, which reduces clock drift errors caused
by the delay between the first and the last response while
allowing all anchors to participate in the localization process.
FlexTDOA therefore exploits the full channel diversity of the
environment, is not subject to single-link failures, and can
maintain small errors even in large networks.

We implemented FlexTDOA in a localization system
based on the Qorvo DW3000 UWB chipset [13]. We compare
the proposed system against the classic TDOA approach and
the standard range-based multilateration algorithm in a de-
ployment of ten anchors and one tag in an office environment,
in both line-of-sight (LOS) and non-line-of-sight (NLOS)
conditions. We also evaluate the impact of several parameters
on the ranging and localization accuracy, such as: the number
of responses for each synchronization beacon for different
system update rates, the number of anchors in the system,
and the impact of changing the initiator and/or the order of
responses.

Besides providing an increased robustness to harsh con-
ditions, FlexTDOA distinguishes itself from previous ap-
proaches by not using tracking filters to estimate clock pa-
rameters, such as in [10], [11]. Instead, each receiver uses

carrier frequency offset (CFO) estimation to locally correct
the relative time skew between its clock and the transmitter’s
clock. This allows administrators to easily add new anchors
to the system without increasing its complexity. Moreover,
the flexible scheduling scheme facilitates the deployment of
the localization system in larger spaces where the anchors
might be split over multiple rooms and only a subset of
anchors should respond to an initiating message. The pro-
posed scheme also preserves the location privacy of the user,
since the user device remains passive in the localization
process [7]. Therefore, no information of the user presence
or their location is leaked to the infrastructure.

We make all the measurements available open-source1, in
order to facilitate the evaluation of other network parameters
than those covered in the paper. The dataset can also be used
to prototype NLOS error-mitigation techniques in the future.

The rest of the paper is organized as follows. Section III in-
troduces the basics of the localization methods used through-
out the paper and the particularities of the proposed schedul-
ing scheme. Section IV presents the setup of the localization
system, such as the hardware used for evaluation, the envi-
ronment, and the anchor placement. Section V evaluates the
most important parameters of the localization system, while
Section VI compares range-based localization, the classic
TDOA, and FlexTDOA. Section II reviews related work
and highlights differences from previous approaches. Finally,
Section VII sums up our contributions.

II. RELATED WORK
In the following, we will review the most important previous
works on TDOA localization, with a focus on DL TDOA
schemes which offer the best multi-user scalability.

A. SCALABLE UWB LOCALIZATION
In [10], a DL TDOA localization system which implements
a clock synchronization protocol with a reference anchor is
proposed. The authors mention that the system does not scale
to large anchor networks. In a setup of eight anchors, the
system obtained a 2D localization root-mean squared error
(RMSE) of 14 cm and a 3D RMSE of 28 cm. In a comparable
setup of seven anchors in LOS, FlexTDOA obtained a 2D
RMSE of 16.2 cm and a 3D RMSE of 23.5 cm (averaged over
all considered locations), so comparable to the ones in [10].
In [11], a similar approach to [10] is proposed, in which the
pairwise clock error is tracked using a Kalman filter that can
handle fluctuating reception periods.

In [14], the authors propose a DL TDOA scheme in
which the anchors respond only to the previously-transmitted
message instead of responding to a single synchronization
beacon, as in our case. The mean and maximum localization
errors obtained with a configuration of four anchors were
31 cm and 81 cm, respectively.

Although named concurrent ranging, the works in [15],
[16] essentially implement the classic DL TDOA scheme.

1https://zenodo.org/record/7619764
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However, here the focus is on processing all the responses
within a single reception period by exploiting the multipath
information from the channel impulse response of the signal.

In [17], a TDOA localization system implemented using
UWB devices called ATLAS is introduced. Although the
system also uses an initiating anchor for synchronization, it is
not clear if the tag is completely passive since it is mentioned
that only whitelisted tags are processed at a localization
server. Therefore, ATLAS relies on centralized processing to
correct the TDOAs, whereas in FlexTDOA the localization is
offloaded to the user device, preserving its location privacy.
Iterations of ATLAS have been introduced in [18], [19];
however, in these works, the tag is active.

A localization system named VULoc that follows the
principles of DL TDOA has recently been proposed in [20].
However, in VULoc, the initiator sends one additional mes-
sage after all of the anchors have responded, which means
that the tag has to listen to one extra message compared to
FlexTDOA. Perhaps the most significant difference between
VULoc and FlexTDOA is that we also propose a flexi-
ble, highly-configurable TDMA scheme for anchor trans-
missions, whereas in [20] it is mentioned that VULoc does
not need a scheduling protocol because tags are passive.
However, we argue that in large-scale building deployments
there is a need to easily add or remove anchors from the
system and to schedule their transmissions. As a result, we
could easily evaluate the performance of FlexTDOA with
up to ten anchors, whereas VULoc was evaluated only with
five anchors. While VULoc also uses changing initiators, it
does not evaluate the impact brought by the added channel
diversity, as we do. In a laboratory setting, VULoc obtained
a median error of 15.5 cm and a 90 % error of 23.6 cm. In a
similar experiment in which the tag was placed in the center
of the room, FlexTDOA obtained a median error of 15.4 cm
and a 90 % error of 22.2 cm, so comparable to the errors
achieved by VULoc.

Although it does not implement a DL TDOA scheme,
the work in [21] proposes a scalable UL TDOA localization
scheme called TALLA. The high-precision synchronization
necessary for TDOA localization is maintained by a server,
which can compute the clock parameters to synchronize to
any reference anchor in the system. While this approach
provides great flexibility in the case of large-scale deploy-
ments, it poses more privacy concerns since the network has
information about the location of all tags in the system. In
our approach, since the tag localizes itself, the network does
not have any information about the users’ locations.

Another important contribution of our work is that we
evaluated the performance of a DL TDOA localization sys-
tem in NLOS conditions experimentally, since most previous
works either consider only LOS scenarios or base their ob-
servations on simulated data. In [20], the proposed TDOA
system is also evaluated in NLOS conditions and an anchor
selection method based on an empirically-chosen confidence
parameter is proposed. However, in [20], the purpose of the
evaluation is to demonstrate the effectiveness of the anchor

selection method, whereas we quantified the effect of the
channel diversity brought by the scheduling method proposed
in FlexTDOA. In [22], the authors propose a sensor place-
ment strategy for cluttered environments that is validated
through experimental data. A UL TDOA localization system
that takes into account NLOS conditions has been proposed
and evaluated experimentally in [23]. In [24], the authors
propose an algorithm to select anchor pairs in a UL TDOA
by taking into account errors caused by NLOS propagation.

In [25], the authors propose a framework designed for
scalable indoor localization and implement it using UWB
radios. The work in [25] is focused on the software, which
enables cooperation between both fixed and mobile nodes in
order to achieve seamless localization. In comparison, we
focus on the specific TDOA localization algorithm, which
enables scalable and accurate localization.

B. CLOCK OFFSET CORRECTION
In our TDOA scheme, we avoid tracking the clock parame-
ters using Kalman filters like in previous works [10], [11].
Instead, we correct the relative clock offset between two
devices directly at the receiver using the CFO estimation fea-
ture of the DW3000 chipset. The method has been described
in [26] and the systematic error has been derived for single-
sided two-way ranging (SS-TWR), A-TDOA, and SS-TWR
with A-TDOA extension. The method has been evaluated ex-
perimentally but only for TWR schemes. A similar CFO cor-
rection is evaluated for a TDOA scheme in [27]. However, the
proposed TDOA scheme is based on the alternative double-
sided TWR (AltDS-TWR) method, in which the tag is active,
which is different from the DL TDOA schemes evaluated
in our work. A CFO-assisted synchronization algorithm for
TDOA has been proposed in [28], in which the TOA at
each receiver is compensated using the estimated CFO w.r.t.
the reference (master) node. Although the TDOA scheme
from [28] is different from the DL TDOA scheme used
in our work, the correction method is similar. In addition,
we evaluate the feasibility of the correction method through
experiments with commercial UWB systems, whereas in the
cited work the method was evaluated in simulations and using
software-defined radios.

III. BACKGROUND
In this section, we introduce principles related to the pro-
posed localization methods. For more in-depth details on
UWB ranging and localization, we refer the reader to the
papers [29], [30]. In Section III-A and III-B we explain how
distance measurements and, respectively, TDOA measure-
ments are obtained using UWB devices. In Section III-C,
we describe the two approaches we use to solve the system
of equations in order to estimate the user’s location: either
least-squares minimization between the measured and the
calculated ranges or an extended Kalman filter (EKF). In Sec-
tion III-D, we describe the scheduling scheme implemented
in FlexTDOA.
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ANA0 Tag...

...

time

(a) Range-based localization

A0 A1 AN Tag...

...

(b) Downlink (DL) TDOA

Fig. 1: Localization based on TWR or on DL TDOA (the time
periods are not to scale).

A. TWR
Range-based localization uses distances between a mobile
target, called tag, and anchors with known locations to
compute the location of the tag. The tag is found at the
intersection of circles (in a 2D space) or spheres (in a 3D
space) with a radius equal to the anchor–tag distances and
centered at the anchors.

We use the following notations:
• ~XA1

, ~XA2
, ..., ~XAN

are the locations of anchors
A1, A2, ..., AN , respectively;

• ~XT (x, y, z) is the location of the tag;
• d ~X~Y is the true distance between the nodes with loca-

tions ~X, ~Y ∈ { ~XT , ~XA1
, ..., ~XAN

};
• d̃XY is the measured distance between the nodes
X,Y ∈ {T,A1, ..., AN}.

The true distance between the tag and anchor Ai is the
Euclidean distance between their locations:

d ~XT
~XAi

= ‖ ~XT − ~XAi
‖. (1)

The measured distance between a tag and an anchorAi can
be written as:

d̃TAi
= d ~XT

~XAi
+ ωTAi

, i = 1, ..., N, (2)

where ωTAi
is the measurement noise, which is modeled as

a zero-mean Gaussian random variable with variance σ2
i .

To avoid synchronizing the anchors and the tag, the dis-
tances are usually obtained using TWR by exchanging at
least two messages between the tag and each anchor [29]. We
implemented the SS-TWR variant which uses two message
exchanges between each anchor and the tag, illustrated in
Fig. 1a. One distance is obtained as:

d̃TAi = c · ∆TT
i −∆Ti

2
, (3)

where c is the speed of light. ∆Ti is the time between the
arrival of the tag’s request at anchor Ai and the anchor’s trans-
mission of the response message, as measured by the anchor.
Similarly, ∆TT

i is the time between the tag’s transmission
of the request and the arrival of the anchor’s response, as
measured by the tag.

Because each device measures its own processing time,
there is no need to synchronize the clocks of neither the
anchors nor of the anchors and the tag. However, due to the

fact that ∆TT
i is measured by the tag while ∆Ti is measured

on the anchor, the relative clock skew of the two nodes
compounded with the significant value of ∆Ti can introduce
large errors in the measurement. To counter this effect, the
DS-TWR was proposed [31], in which the tag transmits a
third message which is used by the anchor to measure the
clock skew. Modern radios, such as the one we are using,
can directly measure the relative clock skew by analyzing the
carrier frequency of the received packet. Research shows [32]
that DS-TWR and SS-TWR attain almost the same precision
with clock skew estimation.

SS-TWR based localization (which we will alternatively
call TWR localization) is attractive because it enables
centimeter-level localization and does not need any synchro-
nization between the devices. However, it does not scale
well when increasing the number of anchors and tags, since
it needs pair-wise message exchanges between each anchor
and each tag in the system. DS-TWR is even less scalable
than SS-TWR because it needs an extra message for the
ranging. Moreover, because of the asymmetry, in DS-TWR
the distance is computed by the responder (anchor), not the
initiator (tag). Therefore, for navigation, the distance would
need to be sent back to the user in another message. Given
these drawbacks, we will use SS-TWR as a comparison
baseline for FlexTDOA.

B. TDOA
An alternative localization technique uses the time difference
between the arrival of two messages either at one device or at
multiple clock-synchronized devices [4]. We define the true
distance difference between anchorsAi andAj relative to the
tag as:

d ~XT
~XAi

~XAj
= d ~XT

~XAj
− d ~XT

~XAi
(4)

= ‖ ~XT − ~XAj
‖ − ‖ ~XT − ~XAi

‖. (5)

The measured distance difference between anchors Ai and
Aj relative to the tag is:

d̃TAiAj = d ~XT
~XAi

~XAj
+ ωTAj − ωTAi , (6)

where, similarly to the TWR case, ωTAk
is the measurement

noise between the tag and anchor Ak, k ∈ {1, ..., N}, mod-
eled as zero-mean Gaussian noise with variance σ2

k.
In the noiseless case, any N − 1 distance difference mea-

surements that form a minimum spanning subtree are suffi-
cient for TDOA localization [33]. However, more redundant
measurements can be used to improve the resilience to noise
in a realistic setup. In TDOA localization, the tag’s position
is found at the intersection of hyperbolae. This makes TDOA
localization more sensitive to noise than range-based (or
TOA) localization [6].

The time difference of arrival can be derived from Eq. (6)
by dividing the distance difference by the speed of light:

tTAiAj
=
d ~XT

~XAi
~XAj

c
=
d ~XT

~XAj
− d ~XT

~XAi

c
. (7)
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The time differences can be computed either by a passive
tag when the anchors transmit simultaneously their messages
or by the anchors (or a central entity) when an active tag
transmits a broadcast message which is received by all an-
chors. We will, respectively, call the two methods downlink
(DL) and uplink (UL) TDOA.

To avoid synchronizing the anchors, we use a DL TDOA
variant with reference and responding anchors previously
used in [10], [11], [15], [16] The scheme is illustrated in
Fig. 1b. Anchor A0 is the initiator and transmits a broadcast
message, received by the tag at time T0. Anchors A1 to
AN receive the message and then wait a period ∆Ti which
includes the processing time and a delay necessary to avoid
overlapping transmissions from successive anchors. The tag
receives the responses at times T1 to TN .

For the general case in which Ai is the initiator and Aj is the
responder, let us denote by ∆Tij , Tj−Ti the difference be-
tween the time at which the tag receives the response (Tj) and
the time at which the tag receives the request (Ti). In order to
obtain only the TDOA from Eq. (7), we need to subtract the
processing time ∆Tj and the TOF between anchors Ai and Aj
(denoted by tij) from the timestamp difference ∆Tij :

t̃TAiAj
= Tj − Ti −∆Tj − tij , (8)

where t̃TAiAj
is the estimated TDOA between the tag and

the anchors Ai and Aj. The TOF tij is usually known because
the anchors are placed at fixed, known locations.

Because ∆Tj is measured by Aj but subtracted from the
timestamp difference ∆Tij measured by the tag, the TDOA
will contain an error due to the relative clock skew between
anchor Aj and the tag. Because in TDOA localization multiple
anchors respond to the same synchronization message, the
processing times are longer for this scheme than in TWR
localization. It is therefore crucial to correct the relative clock
skew errors in TDOA localization [15]. To eliminate the
errors, we leverage the capability of the DW3000 chipset
to estimate the carrier frequency offset (CFO) between the
local receiver and the remote transmitter [26]. The interval
measured by the tag will contain an error due to the tag
running at a different frequency from an “ideal” nominal
frequency [13]:

∆T̂ij = kT ∆Tij = (1− eT )∆Tij , (9)

where kT is the multiplicative and eT the additive error of
the tag’s clock. Similarly, the processing time measured by
the anchor Aj will contain an error:

∆T̂j = kj∆Tj = (1− ej)∆Tj , (10)

where kj and ej are the multiplicative, respectively, the
additive errors of the anchor’s clock.

The relative CFO between the clocks of the tag and Aj as
measured by the tag is [26]:

κTj =
kT
kj

= 1− εTj , (11)

where κTj and εTj are the multiplicative, respectively, the ad-
ditive relative clock frequency offsets. The DW3000 chipset
estimates εTj (expressed in ppm), which we use to correct
the processing time2:

∆T corr
j = ∆Tj(1− εTj). (12)

C. LOCALIZATION ALGORITHMS
So far, we have discussed the basic principles to obtain the
ranges or the range differences between the anchors and
the tag. In order to estimate the user’s location, we need
to solve a system of equations based on Eq. (1) and (5).
We implemented two localization algorithms, each capable
of operating with either TWR or TDOA data, each suiting
different needs.

The first algorithm, AlgMin, solves the localization prob-
lem for a series of consecutive measurements using squared
error minimization. This algorithm does not track the user’s
location nor does it smooth the location estimates, and it is
therefore suitable to evaluate the impact of several parameters
(e.g., the number of responses or anchors) on the localization
accuracy.

The second algorithm, AlgEKF, solves the localization
problem using an EKF, by incrementally updating the loca-
tion with each additional available measurement. This ap-
proach is advantageous because we do not need to wait for
the minimum number of measurements (four in the case of
TWR localization and five for TDOA localization) in order
to update the tag’s location. However, it smooths the loca-
tion estimates and hides the impact of noisy measurements.
Therefore, we use it only when we compare several setups
that generate a different number of equations per time slot in
Section V-C.

Both algorithms start with the known anchor positions
~XA1

, ~XA2
, ..., ~XAN

and estimate the tag’s location ~̂XT . In
our experiments, the anchors’ positions are determined using
a self-localization algorithm, which is a variant of AlgEKF
using TWR measurements between each pair of anchors, run
over a period of several minutes. The locations of the anchors
are determined once, at the beginning of the experiments, and
kept fixed thereafter.

1) AlgMin
We use least square error minimization between the measured
and the calculated distances. Therefore, for the TWR mea-
surements:

~̂XT = arg min
~X

∑

i

(
d ~X ~XAi

− d̃TAi

)2
, (13)

2The conventions for the additive clock offset are opposite for the
DW1000 and DW3000 chipsets. For the DW1000 chipset, which uses the
conventions from [26], if the additive clock offset is positive, then the
receiver’s clock is running at a faster rate than the transmitter clock [34],
while for DW3000 the reverse is true [35]. In this paper, we used the
conventions for the DW3000 chipset.
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where d ~X ~XAi
is the calculated Euclidean distance between

the 3D locations ~X and ~XAi and d̃TAi is the TWR measured
distance between the tag T and anchor Ai (Fig. 1a).

For TDOA measurements, the equivalent minimization
problem is as follows:

~̂XT = arg min
~X

∑

i,j

(
d ~X ~XAj

− d ~X ~XAi
− d̃TAiAj

)2
, (14)

where d̃TAiAj
= c · t̃TAiAj

and t̃TAiAj
is the TDOA

measurement performed by the tag T while listening to the
two-way communication between nodesAi andAj (Fig. 1b).
The TDOA measurement t̃TAiAj

is computed using Eq. (8),
where tij is obtained from the payload of the packets trans-
mitted by the anchors.

The algorithm needs a good initialization to avoid converg-
ing to a local minimum of the function that is optimized [36].
In practice, we first initialize the algorithm using the starting
position of the tag and for subsequent initializations we use
the position of the tag estimated by AlgMin in the previous
iteration.

2) AlgEKF
The location of the moving tag is computed iteratively using
an EKF. Again, we implemented two filters one for the TWR
and one for the TDOA. In both cases, the state of the filter
is constituted by the position of the tag. The EKF assumes
a system that can be described by the following general
equations:

~Xk = f( ~Xk−1, Uk) + wk (15)

zk = hk( ~Xk) + vk,

where:
• ~Xk is the position of the tag estimated at moment k;
• f( ~Xk−1, Uk) is the motion model for the tag dependent

on input command Uk and previous state;
• wk is Gaussian noise N (0, Qk) due to the uncertainty

in the motion model, where Qk is the covariance matrix
of the motion model;

• zk is the vector of measurements (either TWR or
TDOA);

• hk(~x) is a function that computes the expected value of
the measurements given the state (position) ~X of the tag;

• vk ∼ N (0, Rk) is Gaussian noise modeling the uncer-
tainty in the measurements, where Rk is the covariance
matrix quantifying the uncertainty in our measurements.

In our case, we do not assume a known motion model, so
f( ~Xk−1, Uk) = ~Xk−1, corresponding to a static tag. We
choose Qk, the uncertainty in the model, large enough to
cover the motion of the tag. In IV-B, we detail the choice
of values for the covariance matrices using in the EKF.
The choice of using a static model was deliberate, in order
to evaluate the raw performance of our UWB localization
method. In a real system, any knowledge about the actual

movement of the tag can be input into f to improve the
accuracy of the system.

The function h and the vector z depend on the type of
measurement performed. In the case of TWR:



d̃TAi

d̃TAj

...




︸ ︷︷ ︸
zk

=



d ~Xk

~XAi

d ~Xk
~XAj

...




︸ ︷︷ ︸
hk

. (16)

In the case of TDOA:



d̃TAi1

Aj1

d̃TAi2
Aj2

...




︸ ︷︷ ︸
zk

=



d ~Xk

~XAj1

− d ~Xk
~XAi1

d ~Xk
~XAj2

− d ~Xk
~XAi2

...




︸ ︷︷ ︸
hk

. (17)

In both cases, we use the classical prediction and update
steps of the EKF filter to compute the tag’s current position
~Xk, starting from the tag’s previous position estimate ~Xk−1
and the new measurements:

~X ′k = ~Xk−1 (18)
P ′k = Pk−1 +Qk

Kk = P ′kH
T
k (HkP

′
kH

T
k +Rk)−1 (19)

~Xk = ~X ′k +Kk(zk − hk( ~X ′k))

Pk = (I −KkHk)P ′k,

where Pk is the covariance matrix quantifying the uncer-
tainty in our estimation andHk is the Jacobian of the function
h. The rest of the notations are defined above. Compared
to the general EKF case for a system of equations, ours is
simpler given that f is the identity function and its Jacobian
is the unit matrix I .

The EKF update step can be done with a single measure-
ment at a time (zk is a single distance) or with multiple
measurements at a time. To minimize the latency, we update
the tag’s position with every incoming measurement.

For the self-localization of the anchors, we use AlgEKF
with TWR measurements. The algorithm works similarly to
the tag’s localization, with the following differences: (1) the
state variable ~Xk contains the 3D location of all anchors, (2)
we use a much smaller covariance Qk to account for the fact
that the anchors are fixed, and (3) we perform an update using
multiple ranges at a time (instead of updating the location
for every incoming measurement). For simplicity, we align
the resulted coordinate frame such that anchor A0 has the
location (0, 0, 0), anchor A1 is on the Oy axis, anchor A2

is located in the Oxy plane with a positive x, and A3 has a
negative z coordinate.

D. SCHEDULING
In the “classic” TDOA approach, there is a single desig-
nated reference anchor which broadcasts the synchronization
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Slot 1 Slot 2 Slot M ...

Guard
Aj

RESP ...
Aj+k(mod N) 

RESP
Process
RESP

Process
REQ

tguard tsubslot
req

tsubslot
resp

Frame

Ai
REQ

Fig. 2: TDMA schedule used for both TDOA and TWR
localization. Each slot in a frame belongs to a node which
is the initiator in that slot and decides which K nodes to
interrogate (depending on the current scheme).

message. The rest of the anchors respond to the broadcast
in a predefined order. Instead, we propose, implement, and
evaluate a flexible TDOA scheduling scheme in which all the
anchors in the system can play the role of the initiator and the
order of responses can also change.

We propose and implement a time-division multiple access
(TDMA), scheme shown in Fig. 2, which can be configured
for either TWR or TDOA localization. At this point, we
do not differentiate between anchors and tags and instead
consider all of them equally-participating nodes. The distinc-
tion will be made according to the implemented localization
method.

The TDMA scheme is organized in time slots, which are
comprised of a broadcast message sent by an initiating node,
which we will call a request, and K responses from other
nodes, where K < N and N is the number of nodes in
the system. Each response will provide a TWR measurement
between the initiator node and the responding node and a
TDOA measurement for each of the other nodes listening to
the exchange. Inside a time slot, each transmission by a node
occurs in a subslot with duration tsubslot. At the beginning of
a time slot there is a guard time, followed by the request of
the initiating node. The request includes the number of nodes
that will respond, their ID, and the order of their response.
All the listening nodes in the system process the request. If
the initiator requested a response from the listening node in
the subslot with index k ∈ {1, ...,K}, the node will wait a
period of (k − 1) × trespsubslot and then answer. During the last
part of a time slot, the initiator processes the responses.

The time slots are organized in frames (Fig. 2). Each frame
contains M time slots, each of them assigned to one of the
nodes (anchors or tags). For instance, if slot i is assigned to
node j, then, in all frames, node j will be the initiator in
slot i, and will decide which K nodes to interrogate based
on the currently-selected scheme. More than one slot can be
assigned to the same node and there may be nodes that have
no slot assigned (e.g., a tag that is passively listening and only
using TDOA measurements for localization).

The network starts with the default programmed parame-
ters. The nodes first listen for a few seconds before transmit-
ting. From any received message, they can determine the cur-
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Fig. 3: Localization packet format used by the anchors and
the tag.

rent slot and synchronize with the TDMA schedule. All the
TDMA parameters are decided by the system administrator
and can be changed at runtime: M, K, the slot assignment,
the list of nodes that are allowed to be interrogated (for ex-
ample, to avoid the interrogation of a passive tag). To change
the parameters, the system administrator connects via USB to
any of the nodes, uploads the new configuration into the node,
and requests the node to broadcast it. The node broadcasts
the information using a special packet format. All the nodes
that hear the new configuration will rebroadcast it for several
seconds. In a real system, we could envision an algorithm that
makes the decisions instead of the administrator.

All localization messages exchanged by the anchors or
the tag have the format shown in Fig. 3. It consists of: the
message type (request or response), the source ID, the list
of interrogated anchors (in case of a request), and a pay-
load in which the sender can include a previously-acquired
TWR measurement. Each packet contains the current slot
ID, which is a 32-bit counter incremented continuously. This
counter is used by the nodes to determine the current slot
in the frame (modulo M) and to stay synchronized with the
TDMA schedule.

In the current implementation, the node IDs,K, and M are
8-bit packet fields and variables, which implies a maximum
of 256 devices and 255 slots in a frame. A larger network
can be accommodated by choosing larger packet fields. At
the moment, a slot can only be assigned to one node. For
a network spread over a larger area, this should be changed
so that nodes that are sufficiently far apart (i.e., not in radio
range) can reuse the same slot.

To configure the TDMA scheme to perform TWR localiza-
tion, the tag will be set as initiator in all slots and the anchors
will be the responders. In one time slot withK responses, the
tag obtains K raw distance measurements which are input to
the multilateration system to estimate the tag’s location.

To perform DL TDOA localization, only the anchors will
be initiators, interrogating other anchors, while the tag will be
a passive listener. Depending on how we choose the initiators
and the responders, we can derive four variants of TDOA
localization:
• Fixed initiator, fixed responders (FI-FR), or the “classic”

TDOA, with a designated reference anchor (or initiator),
where the other anchors in the system respond in a fixed
order according to their index. In this case, all slots in
a frame are assigned to a single anchor (the initiator).

VOLUME 4, 2016 7



Fig. 4: Custom build UWB Node: a completed hardware and
software UWB node which is battery powered and capable to
expose ranging information over multiple serial communica-
tion interfaces.

In every slot, the initiator interrogates the same list of
(responding) anchors.

• Fixed initiator, changing responders (FI-CR) with a des-
ignated reference anchor, where the responding anchors
change in a round-robin (RR) manner. In this case, in the
first slot, the initiator will pick K anchors to interrogate
(from the allowed list), in the next slot the next K, and
so on, wrapping around.

• Changing initiator, fixed responders (CI-FR), in which
the initiator changes every time slot in a RR manner and
the rest of the anchors respond in a (fixed) ascending
order of their index. In this case, there are multiple
initiators (anchors that have slots assigned) and each of
them interrogate the same fixed list of responders.

• Changing initiator, changing responders (CI-CR), in
which both the initiator and the responder order change
every time slot in a RR manner. This is the scheme used
in FlexTDOA. Multiple initiators interrogate K other
nodes at a time from the pool of allowed responders.

We note that the TDMA scheme also allows the anchors
to localize themselves. The initiator measures the distance
between itself and each responder (other anchors) using
TWR. These distances are then transmitted as piggyback
payloads of future messages (requests or responses) of the
initiator. As a result, simply by listening to the message
exchanges, the localization engine can compute the location
of each anchor in the local coordinate system using the self-
localization algorithm described in Section III-C.

IV. EVALUATION SYSTEM
In this section, we present the localization system used to
evaluate the TWR and TDOA algorithms. In Section IV-A,
we describe the hardware used; in Section IV-B, we present
the settings used for the UWB radio, scheduling algorithm,
and EKF. In Section IV-C, we describe the environment in
which we acquired the measurements and the placement of
the anchors.

A. HARDWARE
For the experimental evaluation, we designed and fabricated
our own UWB node, shown in Fig. 4. We used the Qorvo
DWM3000 wireless transceiver [13], which implements the
IEEE 802.15.4 standard [37].

At the core of the UWB node is an Arm Cortex-M4 based
STM32F429ZIT6 microcontroller with 2 MB of Flash mem-
ory, 256 KB of SRAM memory and a frequency of 168 MHz
[38]. All the ranging and scheduling algorithms are running
on the on-board MCU and the ranging results are transmitted
over an USB 2.0 port. However, the board can be configured
to transmit the information over any other interface, like I2C,
SPI or UART. The entire software stack was written in-house.

The UWB node is powered by a single Li-ion rechargeable
battery with a capacity of 6Wh, providing over 15h of auton-
omy. This allowed us to easily place the nodes independently
of available power sources.

The power management is implemented using an
MCP73830 IC, which is a 1 A Single-Cell Li-Ion battery
charge management controller. This allows easy charging
over the USB port. The MCU and the radio are powered
through a 500 mA LDO voltage regulator, NCV8705.

B. SYSTEM SETTINGS
We configured the UWB transceiver to operate on channel 5
(6.5 GHz) with a preamble length of 128 symbols, a 6.8 Mb /s
data rate, and a pulse repetition frequency of 64 MHz.

The duration of one time slot in the TDMA scheme shown
in Fig. 2 is computed as:

tTS = tguard + treq
subslot + treq

process +K · tresp
subslot + tresp

process (20)

where:
• tguard = 250 µs is the guard time at the beginning of the

time slot necessary to wait for the responders to go into
the receive mode;

• treq
subslot = 2000 µs is the period it takes the initiator to

send a request;
• treq

process = 250 µs is the period during which the initiator
enters the receive mode and the responders process the
request message;

• K is the number of responses;
• tresp

subslot = 250 µs is the duration of one response in a
subslot;

• tresp
process = K ·600 µs is the time allocated for the initiator

to process the responses.
The subslots have different durations for sending a syn-

chronization beacon or a response because of additional time
needed to prepare request message sent it over UWB radio
and send measurement data over serial port. Table 1 shows
the duration of one time slot for each number of responders.

For both EKF filters (based on TWR and TDOA mea-
surements) we chose a variance of the model uncertainty of
σ2
Q = 100 cm2, which accounts for the motion of the tag

between measurements and assumes a maximum speed of the
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Table 1: Duration of one time slot (tTS) for each number of
responders K.

K 1 2 3 4 5 6 7 8 9

tTS(ms) 3.35 4.20 5.05 5.90 6.75 7.60 8.45 9.30 10.15

Fig. 5: Office setup.

tag of 10 cm/s. We chose a variance of σ2
R = 10 cm2 for the

measurement noise, which was based on the measurement
noise we obtained during experiments.

For the EKF filter used for the self-localization of the
anchors, we used σ2

Q = 1 cm2 because the anchors are
static. The location of the anchors is determined once, at the
beginning of the experiments and kept fixed thereafter.

C. ENVIRONMENT AND ANCHOR PLACEMENT
We evaluate the localization systems in the office shown in
Fig. 5. The 3D anchor placement is shown more clearly in
Fig. 6. Five of the anchors (A0 to A3 and A9) are fixed on
the ceiling using metallic bars, while the rest of the anchors
are either placed on the ground (A4) or on tables (A5 to
A8). The location of the anchors is determined using the
self-localization algorithm described in Section III-C. We
validated the resulting locations using a laser level and a laser
rangefinder, both with mm-level precision.

To accurately measure the ground truth (GT) of the tag, we
have built a custom electronic linear actuator shown in Fig. 7.
We used a 140 cm-long aluminum rail, a stepper motor, a
timing belt, an aluminum trolley carrying the tag, and a driver
connected via USB to the computer. The speed of actuator is
10 cm/s and the positioning resolution is 0.1 mm.

The actuator continuously sends the current position over
the USB serial port. To measure the GT of the node in
our positioning system, we placed the actuator at a known
location relative to the anchor A0, which is the origin of the
coordinate system. Unless stated, the actuator moves only
along the x axis of the coordinate system, between the x axis
coordinates of approx. (110, 270) cm, as shown in Fig. 6. We
have two experiments in which the actuator is placed in a 3D
orientation.

In all of the experiments, we precisely align the actuator

with the local coordinate system using a laser rangefinder and
a laser level.

V. EVALUATION OF SYSTEM PARAMETERS
In this section, we evaluate the impact of several factors on
the localization accuracy: the order of response of an anchor,
the number of responses in a time slot for the maximum
update rate of the localization system and for lower update
rates, and the number of anchors available. We evaluate
these parameters for localization algorithms that use distance
measurements (obtained using TWR), which we call “TWR
localization,” and for the proposed FlexTDOA system, called
simply “TDOA localization.” The goal of the comparison
between TWR and TDOA localization is to evaluate the
impact of system parameters of both distance and TDOA
measurements.

Unless explicitly mentioned, we use the AlgMin algorithm
described in Section III-C to estimate the user’s location.
The localization error is computed as the Euclidean distance
between the 3D GT location and the estimated location:

e =
√

(x− x̂)2 + (y − ŷ)2 + (z − ẑ)2, (21)

where (x, y, z) and (x̂, ŷ, ẑ) are the Cartesian coordinates of
the GT, respectively, the estimated location.

We use boxplots to illustrate the error distributions. In a
boxplot, such as the ones in Fig. 8, the box is drawn from
the first to the third quartiles (or, respectively, the 25th and
the 75th percentiles), which is also known as the interquartile
range (IQR). Boxplots drawn for samples that can take nega-
tive and positive values (e.g., the distance and TDOA errors)
have whiskers that extend from the 5th to the 95th percentiles.
For strictly positive errors (for instance, the localization
errors which are computed as the Euclidean distance between
the estimated and the ground truth locations), the whiskers
extend from the 0th to the 95th percentiles. The reasoning is
that, when we plot the distribution of absolute errors, we are
interested in the minimum value of the error. We omit plotting
the outliers for simplicity. We will frequently report the 95th

percentile, which we will alternatively call the 95% error (or
P95) for short, which represents the value below which 95%
of the errors are found.

A. ORDER OF RESPONSE
First, we investigate how the TWR or TDOA measurement
error changes depending on the order of the response in a
time slot. In Section III-B, we mentioned that it is important
to correct the processing times to account for the relative
clock skew between a transmitter and a receiver. With a
longer time period elapsed between the initiator’s request
and an anchor’s response, the error in a TWR or a TDOA
measurement will increase because the additive relative clock
offset εTj will be multiplied by a longer processing time
∆Tj in Eq. (12). Although we compensate for these errors
using CFO estimation, the correction is imperfect. Therefore,
we expect to see larger TWR and TDOA errors for higher
response indexes in a time slot.
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Fig. 6: Setup of the anchors and the tag in the (a) xy and (b) xz planes. The anchors are denoted by A0 to A9. We evaluate the
localization accuracy at four positions of the linear actuator, along which the tag moves, denoted by P1 to P4.

Fig. 7: Ground truth linear actuator: An aluminum trolley that
carries the tag and returns over USB the position of the tag
relatively to the zero point of the actuator.

To evaluate the magnitude of the errors, we perform an
experiment in which the tag is kept unmoved, in order to
avoid any accuracy loss due to the movement of the tag. We
configure the system to compute either the distance (using
TWR) between each anchor and the tag or the TDOA be-
tween the tag and each pair of anchors. We use the maximum
number of anchors (N = 10) and of responses (K = 9 for
TDOA and K = 10 for TWR). To compute the distances,
the tag is always the initiator and the anchors respond to its
broadcast. The order in which the anchors respond changes
every time slot using round-robin (RR) scheduling. To com-
pute the TDOA, the tag only listens to the messages and
both the initiating anchor and the responding nodes rotate
every timeslot in a RR manner (CI-CR scheduling). We run

each experiment for 3 min and compute the TWR and TDOA
errors for each possible index of response.

Fig. 8 shows the TWR and TDOA error distributions for
each order of response. Table 2 shows the statistics of the
errors in the first and last response: the mean, standard devi-
ation (σ), IQR, and whisker spread (P95 − P5). The whisker
spread of TDOA errors increases with 14.7 cm between the
last and the first in the list of responses. TWR errors are
less affected by the order of response than TDOA errors:
the whisker spread of TWR errors increases with only 4.1 cm
between the last and first order of response. The results are
in line with the theory: with a longer waiting time between
the initiator’s message and the response, the error due to
the relative clock skew increases and the measurements are
corrupted by noise. Over many measurements, the mean
error remains small, in absolute terms, regardless of order
of response. What increases significantly is the noise in each
measurement. This suggests that, for a relatively static tag, a
larger number of responses and averaging would increase the
accuracy (since it uses the time more efficiently), while for
a fast moving tag, where averaging is not possible without a
motion model, a smaller number of responses would perform
better. We further explore this trade-off in Section V-C.

B. NUMBER OF RESPONSES

Since the TWR and TDOA measurement error increases with
the order of response in the time slot, we investigate to what
extent the localization accuracy changes with the number
of responses in a time slot. In schemes with a fixed order
of responses (FI-FR and CI-FR), the number of responding
anchors is given by the number of anchors in the system (so
that all anchors can participate in the localization process).
In schemes with a changing order of response, however, we
can decrease the number of responses to be smaller than the
number of anchors in the system and still have all the anchors

10 VOLUME 4, 2016
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Fig. 8: The distribution of (a) TWR and (b) TDOA errors (expressed in cm using the speed of light) against the order of response
aggregated over all anchors.
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Fig. 9: Localization error of TWR and TDOA localization depending on the number of responses in a slot. The error increases
for more responses due to the longer period between the first and the last response, which increases the effect of clock drift
estimation error.

Table 2: Statistics of raw measurement errors in the first and
last (9th) response: mean, standard deviation (σ), IQR, and
difference between the 95th (P95) and 5th (P5) percentiles.

Measurement Response
index

Mean
(cm)

σ
(cm)

IQR
(cm)

P95 − P5

(cm)

TWR 1 −1.5 4.8 5.7 18.1
9 −1.2 6.9 8.9 22.1

TDOA 1 0.7 9.0 11.8 29.3
9 1.3 13.5 17.9 44.0

participate, only in different time slots.
For this evaluation, we keep the same setup as in Sec-

tion V-A, so using N = 10 anchors, but we vary the number
of responses K ∈ {1, ..., 9} and let the tag move on the
trolley.

Fig. 9 shows the localization error of TWR and TDOA lo-
calization with a varying number of responses. As expected,
the localization error is the smallest for the minimum number
of responses. However, the increase in the mean and IQR of
the localization error with a higher number of responses is
almost negligible: less than 3 cm between the maximum and
the minimum number of responses for both TDOA and TWR
localization. The 95% TDOA localization error has a slightly

larger increase than the IQR with nine vs. one responses, of
5.2 cm.

The results seem counter-intuitive: more responses in a
slot yield more measurements per unit of time, which should
decrease the error. This is not the case because of several rea-
sons. (1) Even in the worst case (one response in a slot), the
system generates about 300 measurements per second. This
is enough to approach the maximum theoretical performance
given the relatively slow speed of the tag of 10 cm/s. So, for
a slow tag, we get a better performance with few precise
measurements than with many noisy measurements. (2) Even
with a lower number of responses in a slot, all anchors remain
engaged as initiators and pick their responders round-robin
from all other anchors, thus preserving the diversity. We fur-
ther investigate the effect of K, under additional constraints,
in the next section.

C. NUMBER OF RESPONSES FOR DIFFERENT TAG
SPEEDS
Although using only one response per time slot yields the
smallest error spread, this configuration has at least two
disadvantages. First, over a fixed time period, the number
of TDOA measurements decreases with the number of re-
sponses per time slot, because of the overhead added by
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Fig. 10: (a) The number of TWR/TDOA measurements
(Nmeas) obtained per second vs. the number of responses
(K) in a slot and (b) the ratio betweenNmeas and the number
of messages (Nmsg) obtained per second vs. K.

the initiator’s request. This trend is illustrated in Fig. 10a,
which shows the number of distance or TDOA measurements
(Nmeas) obtained per second for K ∈ 1, ..., 9 responses.
With K = 9, the number of measurements per second
is approx. 3× larger than with K = 1. Second, because
of the same reason, the energy consumed by the tag to
receive a certain number of TDOAs increases as the number
of responses decreases. We can compute the ratio between
the number of measurements and the number of exchanged
messages (Nmsg) over the same time period, which is an
indicator of the efficiency of the tag. This ratio (denoted by
Rm) is illustrated in Fig. 10b. With K = 4, the efficiency is
1.6× higher than with K = 1, but the slope declines as K
increases.

In a real system, the system administrator will face the
question of choosing K to optimize the location accuracy
under the specific conditions: available power to the system,
available air time for transmissions, and maximum speed
of the tag. To give an insight on the trade-offs involved,
we evaluate how the 3D localization error changes with K
when we keep constant over the same time period either the
total transmission time (TTX) or the number of exchanged
messages (Nmsg).

Additionally, to measure the effect on errors of a tag that
is moving faster than our ground truth trolley, we deliber-
ately slow down our system by introducing some idle time.
To achieve all this, we group one or more time slots plus
some the necessary idle time in a frame which has a fixed
length. We call this the repetition period (Fig. 11). In our
experiments, it takes the values Trep ∈ {0.02, 0.5, 1} s. By
increasing the repetition period with additional idle time,
we simulate the scenario in which the tag is listening for
localization messages at a lower rate or, equivalently, the
situation in which the tag is moving at a higher speed.

In both experiments, we used N = 10 anchors and varied
the number of responses K ∈ {1, 4, 9}. We therefore want to
find the repetition time (or tag speed) for which more TDOA
measurements compensate for the clock drift error incurred
by a higher number of responses either when we have a fixed
time budget (TTX) or a fixed energy budget (Nmsg). We
consider that the number of received messages is proportional

Table 3: Setup for experiments with approximately the same
transmission time (TTX ).

K NTS Nmeas TTX (ms)

9 1 9 10.15
4 2 8 11.80
1 3 3 10.05

to the energy consumed by the tag.
For the evaluation, we perform the localization using the

AlgEKF algorithm from Section III-C, which updates the
location for every incoming measurement. We prefer using
the AlgEKF over the AlgMin because the latter needs a
minimum of four TDOA equations for one location update.
If that were the case, would have to update each experiment
at different rates, which can bias the results.

1) Same transmission time

We first evaluate how the 3D localization error changes when
the total transmission time (TTX) is constant and the number
of responses varies. In all three experiments, during each rep-
etition period, we have approximately 10 ms of transmission
time (1 slot with 9 responses, 2 slots with 4 responses, or 3
slots with 1 response). The rest is idle time. Given our tag’s
actual speed of 10 cm/s and the repetition period of 20 ms,
0.5 s, and 1 s, we essentially simulate a tag speed of 20 cm/s,
5 m/s, and 10 m/s, respectively.

Fig. 12 shows the error distributions for all combinations
of number of responses and number of TDOA measurements
per repetition period ((K,Nmeas)) and for all repetition peri-
ods (Trep). When Trep is the lowest, the highest localization
accuracy is obtained for the minimum number of responses,
K = 1, as in Section V-B. However, as Trep increases, so
does the average localization error for K = 1. At Trep = 1 s,
for K = 1, the mean error is 10 cm higher and the spread is
almost double compared to K = 9.

The error is so high for K = 1 because the number of
TDOAs obtained every second is lower than the minimum
number of TDOAs needed to obtain a location. Because the
EKF updates the tag’s location for every incoming measure-
ment, we do not need to wait for the minimum number of
TDOAs. However, the location estimate suffers as a result.

It is interesting to note that, for Trep = 0.5 s, the lo-
calization error is lower for K = 4 and Nmeas = 8 than
for K = Nmeas = 9. This means that one extra TDOA
cannot compensate for the higher clock drift errors of K = 9
responses. However, at Trep = 1 s the update rate becomes
low enough such that the mean 3D error is approximately
equal for K = 4 and K = 9. In this case, the error spread is
actually smaller for the highest number of responses. There-
fore, at a high tag speed (low update rate), it is preferable to
use a high number of responses.
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Fig. 11: To evaluate the optimal K under various simulated situations (time constraints, energy constraints, and tag speed),
we create localization frames of fixed duration Trep, containing NTS time slots and the required idle time. Each time slot
contains one request and K responses. We do two experiments: (1) we vary NTS and K while keeping the total air time
(TTX = NTS · tTS) constant, thus simulating time constraints, and (2) we vary NTS and K but we keep the total number of
messages exchanged (Nmsg = NTS · (K + 1)) constant, thus simulating energy constraints. In both cases, we vary the idle
time to simulate a tag moving at various speeds.
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Fig. 12: Error distributions for the same TX time (TTX). By
increasing Trep, we simulate a higher speed of the tag.

2) Same number of messages
We consider that the energy consumed by the tag is propor-
tional to the number of received messages3 denoted byNmsg .
Therefore, we want to find out which configuration is optimal
for a fixed number of messages (or energy consumption).
Note that, although the number of messages is fixed, the
number of TDOAs that can be extracted from these messages
increases with the number of responses in one time slot.

We keep the number of messages (Nmsg) fixed during each
repetition period and we vary the repetition time as in the
previous experiment. Fig. 13 shows the error distributions
for a fixed number of exchanged messages. Similar to the
previous case, for a high update rate, K = 1 is the optimal
number of responses. However, as Trep increases, it is more
beneficial to have more TDOAs than to minimize the clock
drift error. At Trep = 0.5 s, the mean error and the error
spread in all three configurations are approximately equal.
Beyond this Trep value, it pays off to maximize the number
of responses per time slot.

In a real deployment, the number of responses cannot be
adjusted based on each user’s needs, since the mobile devices
are passive and the localization system may not even be
aware of their presence. Therefore, we should aim to find the

3Although the transmission time TTX is higher for the “Same Nmsg”
configuration than for the others in Fig. 11, the transmission time also
includes the time during which the responding anchors process the initiator’s
request and the guard time between the anchors’ responses. Because this
time is known, we put the tag in the idle mode between the reception of two
successive responses, such that the time during which the tag is in the receive
mode is shorter than TTX.

Table 4: Setup for experiments with the same number of
messages (Nmsg).

K NTS Nmeas Nmsg

9 1 9 10
4 2 8 10
1 5 5 10
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Fig. 13: Error distributions for the same number of transmit-
ted messages (Nmsg).

optimal number of responses that covers a wide range of user
movement patterns, update rates, and accuracy constraints.
Based on our data, we suggest that using up to K = 9
responses is preferable to using the minimum number of
responses for several reasons. First, at the maximum rate,
the decrease in the localization accuracy is only 3 cm in the
mean and 8 cm in the spread for K = 9 compared to K = 1.
However, at Trep = 1 s, the mean localization error is 10 cm
lower and the IQR twice as small for K = 9 compared
to K = 1. Therefore, it is preferable to use the maximum
number of responses in most cases.

D. NUMBER OF ANCHORS
During the previous experiments, we kept the highest number
of anchors available (N = 10). However, depending on the
deployment, it might be unfeasible to have that many anchors
available in the tracking area. Therefore, we evaluate the 3D
localization error (computed as in Eq. (21)) when varying the
number of anchors participating in the localization between
5 and 10.

As illustrated in the anchor setup from Fig. 6, the first four
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Fig. 14: The 3D localization error of range-based localization depending on the number of devices.

anchors (which are used in the smallest configuration) are
placed close the ceiling and the fifth anchor on the ground,
to ensure enough spread on the z axis. The first four anchors
are placed on the perimeter of the tracking area and the fifth
anchor approximately in its center. For the configurations
with more anchors, we add one anchor in the order of its
index (e.g., the setup with 6 anchors uses the anchors A0
to A5). In order to eliminate the influence of the number
of responses on the localization error, we set the number
of responses to K = 4 (which is the minimum number of
responses for the minimum number of anchors N = 5).

Fig. 14 shows the 3D localization error for TWR and
TDOA localization when varying the number of anchors.
The general trend is that the localization error decreases for
more anchors. However, the decrease is much smaller for
TWR than for TDOA localization. For TDOA localization,
the mean localization error with 10 anchors is 1.7 cm smaller
than with 5 anchors, while the 95% error decreases with
2.1 cm. For TWR localization, the gains in the localization
accuracy are even smaller.

There is an anomaly in TDOA localization, in which the
errors are the highest for N = 6 anchors, and not for the
minimum number of anchors, as one would expect. These
errors are caused by the unfavorable geometry of this con-
figuration, since anchors A4 and A5 are placed quite close
to each other. This configuration results in large localization
errors when the tag is furthest away from these anchors.
We also noticed that TDOA localization is more sensitive
to a poor anchor placement than TWR localization. This
means that the deployment should be done according to a
simulation of the expected localization errors for different
configurations. Strategies for optimal anchor placement are
outside the scope of the paper, but we refer the reader to [22],
[39] for analyses of sensor placement in TDOA localization.

The improvement brought by using more anchors might
seem modest, since we could perhaps expect the localization
accuracy to improve more dramatically with more anchors.
However, the improvement is bounded by the accuracy of the
technology, which is reflected in the distance/TDOA errors
from Fig. 8. Since the measurements for different numbers

of anchors were acquired in ideal conditions, i.e., with LOS
between each pair of nodes, adding more devices cannot
improve the localization accuracy beyond the capabilities of
the technology itself. However, having more anchors than
the minimum necessary is more beneficial in challenging
conditions, where part of the nodes are in NLOS with each
other. We will evaluate this scenario in Section VI-B.

VI. COMPARISON OF LOCALIZATION METHODS
In this section, we compare the localization accuracy of the
considered localization methods. In Section VI-A, we first
compare the four variants of TDOA localization presented
in Section III-D: FI-FR (or the classic TDOA), FI-CR, CI-
FR, and CI-CR (or FlexTDOA). The goal is to evaluate the
improvement brought by changing only the initiator, only the
list of responders, or both. In Section VI-B, we compare only
the classic TDOA, FlexTDOA, and TWR localization in a
NLOS scenario. Throughout this section, we use the AlgMin
algorithm to estimate the user’s location.

A. FIXED VS. CHANGING INITIATOR AND/OR
RESPONSE ORDER
In the classic (FI-FR) TDOA scheme, there is a designated
reference anchor (analogous to our initiator) which broad-
casts a message. All the anchors in the system respond in a
predefined order with a certain time delay in order to avoid
overlapping answers at the receiver. This approach is not
ideal because it does not fully exploit the channel diversity
of all anchor pairs. Moreover, if the tag does not have a good
link to the reference anchor, all the measured TDOAs will be
biased or noisy.

As we mentioned in Section III-D, we can derive three
other TDOA schemes from the classic approach (denoted
by FI-FR): with a fixed initiator but changing the order
in which anchors respond (FI-CR), changing the initiat-
ing anchor every time slot but keeping the order of the
responding anchors fixed (CI-FR), and changing both the
initiator and the order of responses every time slot (CI-CR,
implemented in FlexTDOA). In the FI schemes, anchor A1
will be the initiator. The FI-FR experiences the lowest and
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Fig. 15: Comparison between FI-FR (classic TDOA), FI-CR,
CI-FR, and CI-CR (FlexTDOA) in LOS at location P1.

CI-CR the highest channel diversity. Therefore, we expect
these schemes to have the worst and, respectively, the best
localization accuracy, assuming that all anchors have equally
good propagation conditions to the tag. However, in case the
link between some anchors and the tag leads to higher errors,
the CI-CR will be at a disadvantage because those anchors
can become initiators and corrupt all the TDOAs in one time
slot.

In this part, we evaluate to what extent the channel di-
versity improves the localization accuracy in LOS condi-
tions. We evaluate the localization errors for (N,K) ∈
{(5, 4), (7, 6), (10, 9)}4 at three positions of the rail on which
the tag moves, denoted by P1, P2, and P3 in Fig. 6. Position
P1 is in the center of the room, parallel to the XY plane,
where we should have the highest accuracy. Position P2 and
P3 are inclined relative to the XY plane, so that we can
evaluate the errors at multiple tag heights.

Each experiment, i.e., for each location, for every method
and for each (N,K) combination, lasts one minute and a
half, which gives us approx. 7000 location estimates obtained
with AlgMin. When aggregating the measurements over the
3 locations of the rail, we obtain approx. 21,000 location
estimates in LOS for each method and (N,K) combination.
The number of actual TDOA measurements in each experi-
ment depends on the (N,K) configuration; for instance, for
(N,K) = (10, 9), we obtain approx. 80,000 TDOAs in one
run of the experiment.

Fig. 15 compares the four TDOA variants at location
P1. The FI schemes have the highest localization errors for
five and seven anchors, but the lowest for ten anchors. One
explanation for the reverse trend in the case of ten anchors
is the fact that, in this case, some of the anchors on the
ground or on the tables will become initiators and they do
not have ideal propagation conditions to all other anchors.
Therefore, in this scenario, the localization errors will be
slightly higher for the CI schemes than for the FI schemes,
where the initiating anchor is placed at an ideal location.

We observe that changing the order of responders does not
bring a significant improvement to the localization accuracy.
Instead, the initiator plays a crucial role in the localization

4In each case,K = N − 1 so that, even for a fixed order of responses, all
anchors get to participate in the localization process.

Table 5: Median (P50) and 95th percentile (P95) of the
3D localization error for all combinations of changing/fixed
initiators and order of responses. The errors are presented for
the positions P1, P2, and P3, shown in Fig. 6.

N = 5, K = 4 N = 7, K = 6 N = 10, K = 9

Pos. Method P50

(cm)
P95

(cm)
P50

(cm)
P95

(cm)
P50

(cm)
P95

(cm)

P1 FI-FR 13.6 30.2 14.1 28.5 7.9 16.1
CI-CR 12.3 26.6 10.8 23.0 10.1 19.4

P2 FI-FR 23.0 71.0 20.8 59.9 17.6 46.9
CI-CR 19.1 69.4 15.2 41.4 13.8 30.6

P3 FI-FR 29.0 79.3 18.4 67.3 11.4 29.1
CI-CR 25.2 78.1 19.1 62.3 15.6 38.2
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Fig. 16: Distributions of the localization errors of classic
TDOA (FI-FR) and FlexTDOA (CI-CR), in LOS, aggregated
over all the evaluated positions (P1, P2, P3).

process because all the TDOAs in a time slot are computed
with respect to its time frame. Any error in timestamping the
initiator’s message at the tag will affect all the TDOAs in
that time slot. For this reason, from now on, we will consider
only the FI-FR and CI-CR schemes, which we will alterna-
tively call the classic TDOA and FlexTDOA, respectively.
FlexTDOA is our proposed method for improving TDOA
localization.

Table 5 shows the localization errors of the classic TDOA
(FI-FR) and FlexTDOA (CI-CR) at the three considered
locations: P1, P2, and P3. Fig. 16 shows the distributions of
the localization errors for the same methods, aggregated over
all considered locations. In LOS, where the channel between
all anchors and the tag should be “ideal” (i.e., without ob-
structions), the FlexTDOA yields a similar or slightly better
accuracy compared to the classic TDOA.

B. NLOS PROPAGATION
Obstacles between the nodes of a localization system are
common in real-life scenarios. In this part, we evaluate
the NLOS performance of the three localization approaches
considered so far: based on TWR, the classic TDOA, and
FlexTDOA.

We performed measurements at two positions of the rail on
which the tag moves. The positions are denoted by P1 and P4
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(a) (b)

Fig. 17: Photos of the setups used to obtain NLOS mea-
surements. The setup in Fig. 17a, which corresponds to the
actuator position P1 from Fig. 6, includes one aluminum
panel placed as an obstruction between anchor A1 and the
tag. The setup in Fig. 17a, which corresponds to the actuator
position P4 from Fig. 6, includes two aluminum panels
placed as obstructions. The rightmost aluminum panel blocks
the LOS between the tag and A1 and partially A5. The left-
most aluminum panel blocks A0 and A9. There is significant
interference due to multipath propagation for A4, A7 and A8.

Table 6: Median (P50) and 95th percentile (P95) of the 3D
localization error in the FI-CR and CI-CR TDOA schemes,
in NLOS, in positions P1 and P4 (from Fig. 6), using the
obstructions shown in Fig. 17a and Fig. 17b, respectively.

N = 5 N = 7 N = 10

Pos. Method P50

(cm)
P95

(cm)
P50

(cm)
P95

(cm)
P50

(cm)
P95

(cm)

P1
TWR 15.5 55.4 11.8 45.5 8.1 29.4

Classic TDOA 16.5 45.1 17.3 48.1 14.5 48.8
FlexTDOA 15.5 44.6 11.8 35.4 10.6 32.4

P4
TWR 26.9 64.4 24.0 60.7 23.7 44.4

Classic TDOA 55.5 167.7 32.5 89.6 32.6 106.9
FlexTDOA 40.3 176.5 22.5 79.3 22.3 59.4

in Fig. 6. At P1, we placed a panel covered in aluminum foil
between the anchor A1 and the tag, shown in Fig. 17a. At P4,
we placed two such panels, shown in Fig. 17b. The panel on
the left can obstruct multiple anchors depending on the tag’s
position on the actuator. The panel on the right obstructs the
direct path to anchor A1 at all times.

We perform the experiments for N ∈ {5, 7, 10} anchors.
For TDOA localization, we use K = N − 1 responses. For
TWR, we use K = N responses. For each algorithm and
each (N,K) combination, we have approx. 14,000 location
estimates in NLOS (7,000 at each position of the rail).

At the moment, we do not implement any NLOS miti-
gation procedure and we take into account all the measure-
ments.

Table 6 shows the median and the 95th percentile (P95)
3D localization errors of each method at the positions P1 and
P4. Fig. 18 shows the distribution of 3D localization errors
aggregated over both locations. FlexTDOA achieves lower
errors than the classic TDOA in all NLOS scenarios. With
five anchors, FlexTDOA has only a modest improvement of
5–7 cm in the median and P95 errors compared to the classic

N = 5, K = 4 N = 7, K = 6 N = 10, K = 9
0
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Aggregated NLOS errors

TWR
Classic TDOA (FI-FR)

FlexTDOA (CI-CR)

Fig. 18: Distributions of localization errors in NLOS using
TWR, classic TDOA (FI-FR), and FlexTDOA (CI-CR), ag-
gregated over both NLOS scenarios (at location P1, with one
obstruction, and at location P4, with two obstructions).

TDOA. However, the improvement is more evident for seven
and ten anchors, where FlexTDOA reduces the P95 error by
19 % and 38 %, respectively, compared to the classic TDOA.

As expected, TWR has the smallest errors in all scenarios.
This happens because, in TWR-based localization, an obsta-
cle placed between an anchor and the tag introduces an error
only in the distance between them. Therefore, the bias in the
location estimate using TWR can be reduced if the rest of the
distance measurements have small errors.

On the other hand, in TDOA localization, if the obstacle
is between the initiating anchor and the tag, it incurs an
error in all the TDOAs from that time slot. This is where
FlexTDOA is more advantageous than the classic TDOA:
by changing the initiating anchor, we ensure enough channel
diversity to improve the robustness of the location estimate if
the initiating anchor is obstructed.

Even though TWR-based localization provides the most
accurate location estimates, it scales poorly with the increas-
ing number of tags. For N = 9 anchors, the minimum
duration of a time slot needed to obtain measurements be-
tween all anchors and the tag is approx. 10 ms (see Table 3).
Therefore, with TWR, at most 100 tags could be localized
per second. In fact, the number of tags would likely be
smaller given that such a scheme would need a multiple
access protocol to synchronize their access to the channel.
TDOA-based localization, on the other hand, can scale to an
unlimited number of tags. Using the same example, each tag
could obtain 100 measurements per second independent of
the number of tags in the area.

VII. CONCLUSION
In this paper, we presented a new flexible TDMA scheduling
scheme for TDOA localization that fully exploits the channel
diversity in the environment. We compared FlexTDOA, the
proposed method, against the classic TDOA implementation
with a fixed reference anchor and responder list and against
range-based localization in a deployment of up to ten anchors
and one tag in an office environment.
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FlexTDOA achieves lower localization errors than the
classic TDOA in most scenarios, with and without obstruc-
tions. In LOS, the improvement in the median accuracy
brought by FlexTDOA compared to the classic TDOA is
modest (2–3 cm) because the initiator in the classic TDOA
already has a good link to the tag. However, the robustness
brought by the increased diversity is evident in NLOS. In
NLOS, FlexTDOA reduces 95th percentile of the localization
error with up to 38% compared to the classic TDOA. Overall,
FlexTDOA achieves a median localization error of 13–17 cm
in LOS and 15–22 cm when one or more anchors are in
NLOS with the tag (the error depends on how many anchors
are used).

While TWR localization yields the highest accuracy
among all methods, it has poor scalability with a growing
number of anchors and responders. In contrast, FlexTDOA
can scale to an unlimited number of tags.

In the future, we will scale up the proposed system to a
multi-room or building environment. This will require several
issues to be addressed: pairs of anchors that are not in
communication range, system calibration (self-localization)
for the sparsely connected network, and an efficient TDMA
scheme which reuses slots for out-of-range nodes.
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