

1

Eveliina Hämäläinen

WEBUI IMPLEMENTATION OF DESIGN
PATTERNS FOR DRILLING MINING

MACHINE CONTROL SYSTEM

Bachelor’s thesis

Faculty of Engineering and Natural Sciences
Examiner: Veli-Pekka Pyrhönen

May 2023

i

TIIVISTELMÄ

Eveliina Hämäläinen: Suunnittelumallien toteutus poralaitteen ohjausjärjestelmän web-käyttöliit-
tymälle
Kandidaatintutkielma
Tampereen yliopisto
Automaatiotekniikan tutkinto-ohjelma
Toukokuu 2023

Suunnittelumallit ovat ohjelmistotekniikassa käytettäviä yleisiä ratkaisuja usein toistuviin on-

gelmiin. Suunnittelumalleilla voidaan dokumentoida hyväksi todettuja käytäntöjä ja ne tarjoavat
apua erilaisten ongelmien ratkaisujen johdonmukaiseen toteutukseen. Tässä työssä tutkitaan
maanalaisten poralaitteiden ohjausjärjestelmiä ja ohjelmistoarkkitehtuuria sekä esitellään niissä
käytettyjä web-teknologioita. Lisäksi poralaitteiden web-käyttöliittymille kerätään ohjelmistovaati-
muksia ja etsitään erilaisia suunnittelumalleja, joiden tarkoituksena on dokumentoida parhaita
käytänteitä kohdeyrityksen web-sovellusten kehitykseen. Tämän työn tavoitteena on löytää ja do-
kumentoida erilaisia suunnittelumalleja poralaitteiden web-käyttöliittymille.

Web-käyttöliittymien vaatimustenkeruuta varten haastateltiin kahta kohdeyrityksen ohjelmisto-
ja ohjausjärjestelmäasiantuntijaa maaliskuussa 2023. Haastatteluissa korostettiin yleisten ohjel-
mistovaatimusten lisäksi poralaitteille erityisiä vaatimuksia kuten laitteiden pitkää käyttöikää ja
korkeita turvallisuusvaatimuksia. Lisäksi haastatteluissa korostuivat kaksi eri näkökulmaa: mitä
vaatimuksia ohjelmistoarkkitehtuuri asettaa ja mitä vaatimuksia asiakkaat asettavat web-käyttö-
liittymille poralaitteissa. Vaatimukset jaettiin haastatteluaineiston perusteella kolmeen eri katego-
riaan.

Tätä työtä varten toteutettiin uusi web-käyttöliittymä Sandvikin sähkökäyttöiseen poralaittee-
seen. Poralaitteiden web-käyttöliittymille etsittiin erilaisia suunnittelumalleja uutta käyttöliittymää
sekä vanhoja käyttöliittymätoteutuksia tutkimalla. Erilaisia suunnittelumalleja tutkittiin myös kirjal-
lisuudesta.

Työn tuloksena löydettiin kolme erilaista suunnittelumallia. Kirjallisuudesta löytyi kymmeniä
suunnittelumalleja, joista tähän työhön valittiin yksi. Tämä suunnittelumalli tarjoaa ratkaisun suu-
rien web-sovellusten tilan hallintaan, kun sovelluksessa on paljon samaa tietoa, jota sovelluksen
usea eri osa käyttää. Kaksi muuta suunnittelumallia löydettiin tutkimalla tätä työtä varten toteutet-
tua web-sovellusta ja vanhoja sovellustoteutuksia. Ensimmäinen löydetty malli liittyy erilaisten
web-komponenttien uudelleenkäyttöön ja niiden varastointiin niin, että ne ovat saatavilla kootusti
komponenttikirjastossa. Usein samoja komponentteja käytetään useissa eri projekteissa, jolloin
tätä mallia käyttämällä tarve kopioida koodia useisiin eri projekteihin poistuu. Toinen löydetty malli
tarjoaa ratkaisun tehokkaaseen web-testaukseen määrittelemällä jokaiselle web-komponentille
pakollisen ainutlaatuisen tunnisteen.

Avainsanat: Web-käyttöliittymä, ohjelmistokehitys, suunnittelumalli, maanalainen poralaite,

web-teknologiat

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

ii

ABSTRACT

Eveliina Hämäläinen: WebUI implementation of design patterns for drilling mining machine
control system

Bachelor’s thesis
Tampere University
Automation technology
May 2023

Design patterns are generic solutions to commonly occurring problems in software

engineering. Design patterns are a means for capturing best practices of implementations and
provide a guide for implementing solutions in a consistent manner. This work examines
underground drilling mining machines’ control systems and software architecture and presents
used web technologies. Additionally, the work includes collection of software requirements and
study of different design patterns for drilling mining machines’ web user interfaces. Design
patterns are used to document best practices for web application development for the target
company. The target of this work is to select and document various design patterns for drilling
mining machines’ web user interfaces.

Two software- and control system specialists of target company were interviewed for collection
of requirements in March 2023. The interviews highlight specific requirements for drilling mining
machines, which are related to, for example, the long-life cycle and high safety demands of the
machines. Additionally, two different perspectives were highlighted in the interviews: what
requirements software architecture sets and what are the customer demands for web user
interfaces in drilling mining machines. Requirements were divided in to the three categories based
on interview material.

A new web application for Sandvik battery-electric mining jumbo was developed for this work.
To find design patterns for drilling mining machines’ web applications, new web application and
several already existing web applications were studied. Various design patterns were studied
from literature.

Three different design patterns were discovered as a result of this work. Numerous design
patterns were found from literature, and one was selected for this work. This design pattern offers
a solution for state management of large web applications, when application contains large
amount of same data, that multiple different parts of the application use. Two different design
patterns were found by studying the web application developed for this work and old application
implementations. First discovered pattern is related to reusability of various web components and
their storing in a way that they are easily accessible from the component library. Same
components are regularly used in various projects, and by implementing this pattern the need to
copy code to multiple different projects is not required. Second discovered pattern offers a solution
to efficient web testing by defining a mandatory and unique id for each web component.

Keywords: Web user interface, software development, design pattern, underground drilling

mining machine, web technologies

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

iii

FOREWORD

I have been able to develop myself, my skills and learn a lot from software development.

At the beginning of this work, web technologies were almost completely new for me. At

the beginning, the amount of new things felt overwhelming but when I progressed with

the work I experienced many successful moments. I appreciate all the experience I

gained on the web development.

I want to take this opportunity to thank my supervisor Esa Vikman for interesting topic,

the opportunity to learn new things, and assistance during this work. I also want to take

this opportunity to thank Jouni Lindgren and Petri Nurminen, who were interviewed for

this work. I would also want to thank all my colleagues for their support and help. I would

like to extend my sincere thanks to Veli-Pekka Pyrhönen for constructive feedback and

support.

Tampere, 29.5.2023

Eveliina Hämäläinen

iv

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. MINING MACHINE CONTROL SYSTEM ARCHITECTURE 2

2.1 SICA 2.x Architecture .. 3

2.2 SICA 3.x Architecture .. 5

2.3 Used web technologies .. 6

2.3.1 HTML ... 6
2.3.2 CSS ... 8
2.3.3 JavaScript .. 9
2.3.4 TypeScript .. 10
2.3.5 Vue.js .. 11

2.4 Requirements for web applications in mining machine 13

3. DESIGN PATTERNS ... 18

3.1 The structure of a design pattern .. 19

3.2 Categories of design patterns .. 20

3.3 Implementation of design patterns .. 21

3.3.1 The Library pattern ... 22
3.3.2 The ID pattern .. 23
3.3.3 Pinia State Management Pattern ... 25

4. SUMMARY .. 30

SOURCES ... 32

v

ABBREVIATIONS AND NOTATIONS

UI User Interface
SICA Sandvik Intelligent Controls and Automation
SUP SUPervisor
MC Machine Control
GUI Graphical User Interface
CU Control Unit
MCC Machine control module platform with C implementation
CAN-bus Controller Area Network, electronic communication bus
WLAN Wireless Local Area Network
IO Input Output
HMI Human Machine Interface
HTML HyperText Markup Language
CSS Cascading Style Sheets
API Application Programming Interface
DOM Document Object Model
NPM Node Package Manager
XPath XML Path Language

1

1. INTRODUCTION

In web development and in the development of many other things, the same problem

can be solved multiple ways and some problems occur more often than others. There-

fore, similar problems may be solved within a development team of a company in several

ways, which may waste time and resources. One solution to this problem is to use design

patterns.

A design pattern is a general solution to a commonly occurring problem, whether for

software, web design or buildings. Design patterns are a means for capturing best prac-

tices of implementations and provide a guide for implementing solutions in a consistent

manner. With web design patterns, the web developers could create reusable and mod-

ular code which improves quality and improves development time. Consequently, devel-

opment becomes more efficient and consistent. [1, p. 4]

Work machine UI (User Interface) is traditionally tightly integrated to machine control

system and with fixed resolution. In Sandvik, the traditional UI implementation is done

using Qt Framework. The future target is to make user interface views more independent

from the rest of the control system using web technologies.

One major benefit when using web technologies is that machine views can be used out-

side of the machine itself for example in mobile devices. In long lifetime of the machine,

the scalable web UIs also bring possibility to transfer widescreen displays in machine

control system.

However, just selecting the web UI framework and tools is not enough for implementing

long-lifetime Web UIs for mining machines. To use the web technologies efficiently, it is

necessary to agree what design patterns or architecture is used in mining machine views.

The target of this work is to define implementation design patterns for mining machine

web UIs in a way that UI implementation and maintenance are efficient and fills the min-

ing machine requirements. The work includes literature study of design patterns, collec-

tion of requirements for mining machine web UIs and implementation and selection of

design patterns used in views. Furthermore, the work investigates drill rig's control sys-

tem and software architecture and outlines the web technologies used at Sandvik.

2

2. MINING MACHINE CONTROL SYSTEM ARCHI-
TECTURE

Sandvik manufactures several different types of underground drilling equipment for var-

ious needs. Sandvik underground mining drill rigs are used for mining development and

production and can be deployed for example installing rock support or drilling to break

up ore [2]. Table 1 presents different types of underground drill rigs manufactured by

Sandvik.

Table 1. Different types of Sandvik underground drill rigs [2].

Development drill rigs For applications ranging from face drilling

for small-scale mine development to

large-scale tunneling.

Tunneling Jumbos For fast face drilling or mechanized long-

hole drilling and bolting.

Top hammer longhole drill rigs For mechanized and automated under-

ground mass mining. Capable of drilling

51–127 mm diameter holes up to 54 me-

ters in length.

Rock support drill rigs For rock reinforcement.

In-the-hole longhole drill rigs Produce long and straight holes at depths

greater than 100 meters.

Low profile drill rigs For work in tabular ore bodies, such as

chrome and platinum mines.

Narrow vein drill rigs For narrow vein drifts and small tunnel

projects.

3

Figure 1 presents Sandvik’s DD422i development drill rig. It is used for underground

mine development and small scale tunneling [2].

Figure 1. DD422i development drill rig [3].

Sandvik iSeries underground drilling mining machines manufactured in Tampere have

SICA (Sandvik Intelligent Controls and Automation) based control system. Sandvik

iSeries underground drill rigs include different automation options and digital services,

for example, fully automated face drilling.

SICA is control system platform. Platform means that SICA includes software libraries,

documents and hardware modules and it is not ready-made application. [4, p. 6] Sub-

section 2.1 introduces SICA 2.x control system architecture and subsection 2.2 SICA 3.x

control system architecture and drivers for moving towards SICA 3.x architecture.

2.1 SICA 2.x Architecture

The SICA 2.x architecture foundation is based on division of two parts, SUP (SUPervisor)

and MC (Machine Control). SUP is a soft-realtime environment for GUI (Graphical User

Interface), data collection and other similar tasks. Software in SUP level is based on Qt

C++ framework which is used for developing GUIs and cross-platfrom applications [5, p.

1]. SICA SUP contains ready-made views, services, and libraries for applications to be

build [4, p. 7].

MC is a hard-realtime control application platform, including CUs (Control Unit) running

MCC (Machine Control module platfrom with C implementation) applications, CAN (Con-

troller Area Network) buses and IO-modules (Input Output) [4, p. 7]. MCC is for real-time

machine control, and it is roughly comparable, for example, to Beckhoff’s TwinCAT. It is

software platform for all supported target hardware. [4, p. 8] SUP-level and MC-level

4

communicate only with MCon which is a component providing process image for SUP

application. Figure 2 presents architecture of SICA 2.x control system in drill rig view.

Figure 2. Physical view of the drill rig’s control system [6, p. 8].

In figure 2, areas E1-2, R1-2, M1-2, and F1-2 form an upper-level machine coordinate

system. Location of different components can be presented using this coordinate sys-

tem. Figure 3 presents architecture layers in SICA 2.x control system. SUP contains

graphical user interface or views and SUP services which includes non-real time control

logic and data management [6, p. 6].

Figure 3. Architecture layers and hardware [6, p. 7].

Figure 3 shows the hardware on different layers. SUP-level contains drilling- and tram-

ming display. Ethernet-level contains ethernet switch and WLAN (Wireless Local Area

Network) client. MC-level contains embedded Linux computers. Last level contains IO-

slave, HMI (Human Machine Interface) control panel and HMI push-button panel.

The 2.x generation software is implemented in one package and is typically composed

of shared components, but it must be built and tested as one entity [6, p. 17]. It means

that to have SICA-based real product both SUP and MC are needed. SICA 2.x -based

control system is currently the standard for iSeries underground drill rigs manufactured

in Sandvik’s Tampere site.

5

2.2 SICA 3.x Architecture

The SICA 3.x is a major architecture update, and it moves control system architecture

from integrated single SUP having single application towards distributed, multiplatform

architecture. Main changes from SICA 2.x architecture are remote invocation and system

wide events, clear separation of data, data processing, system control and UI (User In-

terface).

The SICA 3.x architecture is hardware compatible with SICA 2.x architecture meaning

that it supports the lifetime update of any SICA 2.x machine without major changes to

hardware. The SICA 3.x system is built from coupled modules, which are not bound

together at build time and can be built as independent submodules. Despite of the dis-

tributed and modular control system, the user experience must be like using integrated

machine. [6, p. 16]

The 3.x generation software consists of small, build time independent releases. It con-

sists of application software release and carrier software release. [6, p. 17] This enables

modularization, for example if both diesel- and battery drill rig variants are required for

the same mining application, the same application software can be used in both variants,

but the carrier software used is different. This limits the number of software variants be-

cause there is no need to implement an entire software package for each different prod-

uct variant. Both releases can be tested as its own entity [6, p. 17]. Figure 4 presents

architecture of SICA 3.x control system.

Figure 4. Architecture layers and hardware [6, p. 21].

In SICA 3.x architecture, SUP views are separated from SUP services. SUP services are

included in carrier software. Figures 3 and 4 have one difference between each other:

the WLAN client component is replaced with data collection and connectivity gateway

6

unit also called Knowledge Box. This connectivity gateway has multiple functionalities in

it such as functions as a WiFi Access Point or a WiFi client [7].

GUIs in SICA 2.x architecture were built with Qt. In SICA 3.x, views are built with latest

web technologies including HTML (HyperText Markup Language), CSS (Cascading

Style Sheets), JavaScript, and web based Vue.js. Views run in a browser-like environ-

ment and system has a front- and backend. The backend contains all data and applica-

tion state, and it can serve multiple frontends [6, p. 22]. The frontend can display data

from multiple backends, and data is available for frontend through APIs [6, p. 22].

During transition from SICA 2.x to SICA 3.x, new views built with web technologies can

be embedded as part of Qt display [6, p. 24]. It means that migration of existing content

from Qt to web view can be done step-by-step and SICA 3.x features can be imple-

mented in SICA 2.x releases when it is practical.

There are multiple drivers for moving from SICA 2.x architecture to SICA 3.x architecture.

There is need to limit the number of software variants and split SUP views from SUP

services [6, p. 14]. Also, in 2018, decision was made not to engage in commercial Qt [6,

p. 14]. Responsive UIs built with web technologies bring possibility to use widescreen

displays in machine control system in the future and machine views can be used outside

of the machine for example in a tablet or mobile device or anything that can display web

views.

2.3 Used web technologies

Modern web sites and web applications are built with three core technologies of web,

HTML, CSS, and JavaScript [8, ch. 8] and with different frameworks such as AngularJS

or React. In Sandvik, web applications are developed using the following technologies:

HTML, CSS, JavaScript, TypeScript and Vue.js. In the next five subsections, used tech-

nologies are briefly explained.

2.3.1 HTML

HTML is specification language and the backbone of all web pages [9, ch. 3]. It provides

structure to the content on a website including buttons, videos, images, text and more.

The current version used is HTML5, which was launched in 2012 [9, ch. 3]. HTML uses

elements to form structure of the web pages and majority of elements have opening and

closing tag. [10, ch. 2] One example of the HTML element is <p> element that defines a

paragraph in HTML document and it has an opening tag <p> and a closing tag </p>.

7

Tags are like annotations that provide information about the type of the content they

contain. In other words, HTML element is an individual component in an HTML docu-

ment, and it is formed by opening and closing tags and the media or text it contains.

HTML elements form a tree-like structure in an HTML document and the structure can

be described like a family tree. Program 1 presents the structure of a simple HTML doc-

ument and a syntax of the HTML language.

Program 1. The structure of the simple HTML document.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<!DOCTYPE html>
<html>
 <head>

 <title>Example site<title>
 <link rel=”stylesheet” href=”style.css”>
 </head>

 <body>
 <header>
 <h1>My Example Site</h1>
 <nav>
 Navigation 1
 Navigation 2
 Navigation 3
 </nav>
 </header>

 <main>
 <p id=”paragraph”>Here is a paragraph!</p>
 <button id=”hide”>Hide</button>
 </main>
 <script src=”main.js”></script>
 </body>
<html>

8

A diagram of the HTML document tree of program 1 is presented in figure 5. The diagram

shows more clearly the tree-like structure of HTML elements than HTML document does.

Figure 5. A diagram of the HTML example document.

Program 1 and figure 5 show that HTML elements can be parallel or nested. Nested and

parallel elements can be described with family relations. In program 1 and figure 5, the

<html> element is the ancestor of all elements in the HTML document. It can also be

said that all the elements inside the <html> are descendants of the <html> element. The

structure can also be described with parent, child, and sibling relations. For example, the

<nav> element is the parent of three <a> elements and <a> elements are children of the

<nav> element. Elements that are parallel, are siblings. In the example in program 1 and

figure 5, the <h1> element and the <nav> element are siblings.

2.3.2 CSS

CSS is a layout and formatting language, and it is used to format HTML. CSS contains

selectors that specify HTML elements to which the style should be applied and visual

rules that specify how that selected content should be displayed. [9, ch. 4] For example,

CSS can be used to change the font and color of the heading or paragraph. In other

words, CSS controls the look of the web page, colors, and appearance. It is also possible

to control different display modes for different devices based on the width and height of

the screen with CSS [9, ch. 4]. The current version used is CSS3 [9, ch. 4]. Program 2

presents the syntax of the CSS.

9

Program 2. Example of the syntax of the CSS language.

The example CSS document in program 2 adds styling to example site presented in

subsection 2.3.1 in program 1. Html CSS selector selects all <html> elements and gives

them and their descendants font “Segoe UI”. H1 selector selects all <h1> elements and

gives them color blue and font size 32. P selector selects all <p> elements and gives

them color red. Figure 6 presents example web site styled with CSS. The web page

consists of the HTML document in program 1 and the CSS file in program 2.

Figure 6. The example web page styled with CSS.

It is easy to see with program 1, 2 and figure 6 how styles are applied to the web page.

Without CSS formatting, it would be difficult to distinguish different parts of the web pages

and navigate in the web pages, among other things.

2.3.3 JavaScript

JavaScript is a programming language that provides interactivity to web sites and web

applications. It can be used on server and client side of applications. The server side of

an application is the backend which usually interacts with databases and runs in data

centers. The client side of an application is the frontend, and it runs on the device of the

user, usually in browser. [11, ch. 1] For example, popup ads and animated graphics are

1
2
3
4
5
6
7
8
9

10
11
12

html {
 font-family: ‘Segoe Ui’;
}

h1 {
 color: blue;
 font-size: 32px;
}

p {
 color: red;
}

10

features that are built with JavaScript. One of the biggest features of the JavaScript is

that it can respond to the browser events like mouse clicks and keyboard actions. Pro-

gram 3 presents the syntax of the JavaScript language.

Program 3. Example of the syntax of the JavaScript language.

The example JavaScript file adds interactivity to example web page presented in sub-

section 2.3.1 in program 1. In the example, event listener is added to hide button. When

user of the page clicks this button, the paragraph element’s style is changed, and para-

graph disappears from the view. Figure 7 presents web page after hide button is clicked.

It shows that the paragraph element has disappeared from the web page.

 Figure 7. The example web page after hide button is clicked.

The example JavaScript file shown in program 3 does not affect to other elements of the

HTML document. It only modifies the visibility of the selected text.

2.3.4 TypeScript

TypeScript is created by Microsoft, and it was released in 2012. It is often called a su-

perset of JavaScript. TypeScript is a programming language that includes all the existing

features and syntax of JavaScript and a new TypeScript specific syntax for using types.

It allows developers to add types for data and reports when the types are set incorrectly.

[12, ch. 1] For example, if the type of the variable is string and the developer tries to

assign a new value which is a number to the variable, TypeScript detects it and throws

an error. JavaScript does not have this feature and any type of new value can be as-

signed to the variable. This can cause, for example, that string operations are executed

in a variable that is type of number. Also, without types it can be difficult to keep track of

the different data types in large projects. When TypeScript is compiled, it will deliver a

1
2
3
4
5
6

const hideButton = document.getElementById(‘hide’);
const elementToHide = document.getElementById(‘paragraph’);

hideButton.addEventListener(‘click’, () => {
 elementToHide.style.display = “none”;
});

11

JavaScript file that can run in any browser or runtime environment that is capable of

executing JavaScript [13, ch. 2]. Program 4 presents the syntax of the TypeScript lan-

guage compared to JavaScript syntax.

Program 4. Example of the TypeScript syntax compared to JavaScript syntax.

Program 4 creates a variable message and then logs it in the console. Both the Type-

Script and JavaScript examples work the same way, and the only difference is that in the

TypeScript example, the type is defined for the message variable. When compiled, the

TypeScript example generates to JavaScript example.

2.3.5 Vue.js

Vue.js is a minimal frontend framework for creating web applications [13, ch. 1]. It is a

JavaScript framework, and it builds on top of three main web technologies, including

HTML, CSS, and JavaScript. Vue.js is component-based programming model, and it has

two core features: declarative rendering and reactivity. Declarative rendering means that

Vue.js uses template syntax that extends HTML. It allows developers to declaratively

describe HTML output based on JavaScript state. Reactivity means that Vue.js keeps

track of state changes and updates the DOM (Document Object Model) of the web site

when changes appear. [14] In Sandvik, the used version is Vue.js 3, and it is also the

current version of Vue.js. Program 5 presents a simple example of Vue.js web application

and the syntax of Vue.js.

1
2
3
4
5
6
7

// This is TypeScript
let message: string = “Hello!”;

 console.log(message);

// This is JavaScript
let message = “Hello!”;
console.log(message);

12

Program 5. Example of the Vue.js syntax.

Program 5 produces a simple web application where data property with value ‘Hello!’ is

shown on the web page. The message is styled with CSS. Vue.js files usually contain

template, script and style sections as shown in program 5. Vue.js templates are valid

HTML; script section contains the data and functionality of the component, or the view

and style section contain CSS formatting of the component or view.

One of the core concepts in Vue.js is components. Vue.js applications usually consist of

several, even tens of components. In Vue.js, components split the UI into independent

and reusable parts [14]. Vue.js components form a tree-like structure, such as HTML

elements on HTML document introduced in subsection 2.3.1. Every component encap-

sulates custom content and logic [14].

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

<template>
 <h1>{{ helloMessage }}</h1>
</template>

<script>
export default {
 data() {
 return {
 helloMessage: ‘Hello!’
 }
 }
}
</script>

<style>
h1 {
 color: red;
}
</style>

13

Figure 8 presents a diagram of the component tree. The diagram illustrates the tree

structure in the Vue.js application that contains multiple components.

Figure 8. The structure of the Vue.js application containing multiple components.

Like the HTML document structure, the structure of the Vue.js application can be de-

scribed like a family tree. The root component of the application is the ancestor of all

components. Components that are parallel are sibling components. In figure 8, compo-

nent B is a parent of child components A and B. Parent components use the child com-

ponents by importing them and registering them in to use on the script section of the

component.

2.4 Requirements for web applications in mining machine

This section presents the software requirements for mining machines’ web UIs and their

implementations. For requirements collection, two Sandvik employees were interviewed.

The first interviewee was Petri Nurminen, Subject Expert Software Engineer, and the

second interviewee was Jouni Lindgren, Systems Engineering Manager. Tables 2, 3,

and 4 have been compiled based on the interviews, and they present found requirements

and more detailed descriptions of the requirements. The requirements are divided into

three categories: design constraints, and customer and cybersecurity requirements. Ta-

ble 2 presents design constraints for web applications in Sandvik’s underground mining

machines. Design constraints refer to the limitations imposed on the design of a system

or the development process that must be met to comply with technical, contractual, or

business obligations [15, ch. 17].

14

Table 2. Design constraints for web applications in mining machine [16][17].

Requirement Description

Supported by the browser It is not necessarily possible to use the lat-

est browsers on the mining machine,

which means that the latest web technol-

ogies can not be used. This means that

for example latest version of the JavaS-

cript can not be used in development of

the web applications.

The development process must be effi-

cient and well-planned

As a result, the software architecture is

such that the third-party resources can be

used. Third party components can be in-

tegrated into Sandvik’s own web compo-

nents and applications.

Reusability of web components Uniform Sandvik look and feel is wanted

for all products and that can be partly

achieved with reusable components. The

look and feel of software refer to the im-

pression that a user gets from the appear-

ance and functionality of a program’s user

interface [18]. Also, components should

be available to other developers.

Maintainability of the software The life cycles of Sandvik products are

long and that is why the code should be

written a certain agreed way to achieve

maintainability.

The used technology should not stand out Qt and web technologies will live side by

side for a long time when the transition to-

wards the use of web technologies is

made. It should not be possible to distin-

guish whether the UI is made with web

technologies or Qt. Both Qt and web

views must have the same Sandvik look.

15

Reusability of individual frontends The same frontends can be used in sev-

eral different product variants. For exam-

ple, the same frontend can be used in

both diesel and battery drill rig variants.

Table 3 presents customer requirements for web applications in Sandvik’s underground

mining machines. Customer requirements are specifications or features of a product

which customers consider necessary [15, ch. 1].

Table 3. Customer requirements for web applications in mining machine [16][17].

Requirement Description

Possibility to use different screen sizes As a result, web views in mining machine

should be responsive. This means that

displays should be scalable. This imposes

fewer requirements for used hardware.

Several views open The overall design should consider that

several views could be open at the same

time. For example, the operator of the

machine and the maintenance personnel

can operate at the same time on different

screens.

The order of operations The user experience should be such that

it guides the user in which order to per-

form different tasks. As a result, although

the user interfaces are independent from

each other, it should be possible to limit

the views depending on each other. For

example, if calibration of the drilling is in

progress, drilling can not be started from

different screen. It means that the

screens must be aware of each other

even though they are independent enti-

ties.

Screen specific localizations Localizations are determined by where

the machine is used and who is using the

16

machine. As a result, localization is imple-

mented in web UI.

Screen specific units Units are determined by where the ma-

chine is used and who is using the ma-

chine. This leads to the need to make a

unit conversion in the web UI. For exam-

ple, if the operator has chosen imperial

measurement units, the UI converts met-

ric units to imperial units.

UI works differently at different user levels Depending on the user and the place of

the use of the machine, different addi-

tional features should be available in the

user interface. Authentication can not

only be responsibility of the UI, because

the UI can be bypassed if the user knows

how to do it. As a result, user manage-

ment is implemented in the UI and in the

backend.

3D views and graphics 3D graphics should be implemented with

web technologies, since open-source Qt

does not offer tools for 3D. 3D models

provide different viewing angles for the

user. For example, it should be possible

to present point clouds in 3D.

17

Table 4 presents cybersecurity requirement for web applications in Sandvik’s under-

ground mining machines. Cyber security requirements are specifications for cyber secu-

rity set forth for example by some organization, in this case by Sandvik.

Table 4. Cyber security requirement for web applications in mining machine. [16]

Requirement Description

Can not be misused The system shall remain safe and should

be protected against external attacks. As

a result, connections must be protected

and encrypted.

Nurminen [16] and Lindgren [17] had a different approach to the requirements, Nurminen

approached the requirements from a software perspective and Lindgren from a cus-

tomer-oriented perspective. The found requirements highlight specific requirements for

the drill rigs, which are related to, for example, the long-life cycle and high safety require-

ments of the machines.

18

3. DESIGN PATTERNS

Design patterns were first introduced by an architect named Christopher Alexander. He

studied design issues by making observations of building and towns, among other things.

[19, ch. 1] He discovered that, for certain architectural creations, good constructs had

thing in common with each other. Alexander looked at the structures that solve similar

problems and discovered that he could see similarities between designs that were high

quality. He called these similarities patterns. [21, ch. 5] A pattern is described by Chris-

topher Alexander as follows: “Each pattern describes a problem that occurs over and

over again in our environment, and then describes the core of the solution to that prob-

lem, in such a way that you can use this solution a million times over, without ever doing

it the same way twice.” [20] Alexander says that a pattern includes four items: the name

of the pattern, the problem it solves, how the pattern could be accomplished and the

constraints and forces we must consider in order to accomplish a pattern [21, ch. 5].

Alexander produced a pattern language with Sara Ishikawa and Murray Silverstein and

in 1977 they published a paper called “A Pattern Language”. Later, they released a com-

plete hardcover book called “A Pattern Language: Towns, Buildings, Construction”. [19,

ch. 1]

Approximately three decades ago, software engineers started incorporating the concepts

that Alexander had described in his initial documentation on design patterns [19, ch. 1].

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides wrote a book called

“Design Patterns: Elements of Reusable Object-Oriented Software” in 1995 [19, ch. 1] [

22, ch. 1]. The book was inspired by the work of Christopher Alexander among other

authors [22, ch. 1].

In software engineering, a design pattern is a generic solution that can be reused to solve

common problems that occur in software design [19, ch. 1]. The purpose of design pat-

terns is to give guidance on how to solve common problems. Although the design pattern

may not be a precise solution for the specific problem at hand, it serves as a guide and

provides suggestions to facilitate the implementation of solution. [22, ch. 1]

Using design patterns have multiple advantages for software developers because pat-

terns are proven solutions, reusable and often expressive. Patterns provide generalized

solutions; help avoid repetition and that way decrease the overall code file-size footprint

and help to prevent minor issues that could potentially lead to major problems by encour-

aging the writing of structured and organized code. Additionally, patterns can help with

19

communication with other developers. Developers can reference the pattern while com-

municating with their colleagues. [19, ch. 1]

Before publishing the complete pattern, it should pass some “tests”. To design pattern to

be interpreted as “good”, the following properties should be fulfilled:

- A design pattern should solve a particular problem. It means that the pattern

should not capture just strategies, it needs to capture solutions.

- The design pattern should not offer an obvious solution and the most valuable

design patterns typically provide solutions to issues indirectly.

- The design patterns should be proven to function as described so that their use

can be seriously considered.

- The design pattern should describe a relationship. It means that the pattern’s

description must detail the system’s architecture and mechanisms, which eluci-

date how it relates to the code. [19, ch. 2]

To be considered valid, a design pattern must fulfill one additional requirement. A design

pattern should display some recurring phenomena. This can often be qualified with the

help of the “rule of three”. The rule of three is used to show recurrence with three ques-

tions: What are the criteria for determining the success of a pattern? What factors con-

tribute to pattern’s success? Does the design have a wider purpose of use so that it can

be considered a pattern? [19, ch. 2]

Patterns are beneficial as they assist in ensuring that all developers within an organiza-

tion are aligned when designing or maintaining solutions. [19, ch 1] Patterns are also

valuable because they offer a general-purpose solution to a specific, frequently occurring

problem and prevent the implementation of several different solutions to the same prob-

lem. A well-documented pattern can save time and extra work.

3.1 The structure of a design pattern

The structure of the design pattern includes multiple elements. A design pattern can have

the following elements:

- Name. A unique name that represents the purpose of the pattern.

- Description. A brief description of what the pattern helps achieve.

- Context outline. The pattern's context is outlined, detailing the scenarios in

which it can effectively meet the requirements of its users.

- Problem statement. A description of the issue that needs to be solved.

20

- Design. An explanation of the pattern’s design approach.

- Implementation. A guidance for developers of how to implement the pattern.

- Illustrations. Visual representations.

- Examples. Examples illustrating the pattern’s implementation in its simplest

form.

- Corequisites. Which additional patterns may be necessary to assist in utilizing

the pattern?

- Relations. What pattern does this pattern resemble?

- Known usage. Is the pattern being used elsewhere?

- Discussions. Author’s perspective on the advantages of the pattern. [19, ch. 3]

Of the listed elements, the first five are the most important. A good pattern should also

ideally provide reference material for users of the pattern and evidence of why the pattern

is necessary. [19, ch. 3]

3.2 Categories of design patterns

In object-oriented programming, design patterns can be separated into three main cate-

gories based on the type of problem the pattern solves. These three categories are cre-

ational design patterns, structural design patterns and behavioral design patterns. [19,

ch. 6]

Creational design patterns provide object creation mechanisms. Creational design pat-

terns involve the creation of objects in a way that is appropriate for the given scenario.

The basic approach to object creation could result in design problems or added com-

plexity to the design. Creational design patterns aim to solve this problem by controlling

the object creation process. [19, ch. 6]

Structural design patterns explain how to compose objects and classes and typically

these patterns define straightforward techniques for establishing connections between

different objects and classes. These patterns help to ensure that the entire structure of

the system does not have to change if one part of the system changes. Additionally, they

aid in adapting parts of the system to a specific function for which they were previously

unsuitable. [19, ch. 6]

21

Behavioral design patterns focus on the communication between different objects in the

system and the way they operate together. They identify communication patterns be-

tween objects and offer solutions that share the communication responsibility between

different objects, which increases the flexibility of communication. [19, ch. 6]

3.3 Implementation of design patterns

To find design patterns for Sandvik’s web applications, one new web application partly

implemented for this work and several already existing web applications were studied.

This subsection presents the new application that was implemented and the subsections

3.3.1, 3.3.2, and 3.3.3 present identified design patterns from Sandvik’s web applica-

tions. The design patterns presented in this subsection include the given name of the

pattern, problem to be solved, descriptions, illustrations, guidance how to implement the

pattern, examples, and when the pattern should be used.

The name of the new web application implemented is Inverter Parameters App and it is

used for maintenance purposes. The display was implemented for Sandvik DD422iE

development drill rig, which is a battery-electric mining jumbo. In the view, user can set

parameters for three different inverters and select a parameter set from ready-made pa-

rameter sets. Figure 9 presents the Inverter Parameters App.

Figure 9. Inverter Parameters App.

The view consists of three separate tabs, one for each inverter, which are named APU,

CIU and WIU. Each tab has the same content. The view contains the names of the pa-

rameters, current values of parameters read from the inverter, input boxes for manual

22

editing of the values and a dropdown list containing ready-made sets. The user can edit

all the values or just certain values and after the save button is clicked, new values are

sent to inverter and active values are changed automatically. The user can also click the

refresh button if needed, which reads active values from the inverter.

By examining Inverter Parameters App and old web applications, including, for example

DrillConnect App which is for visualizing and interfacing different kinds of underground

drill rig’s drill data, three design patterns were selected. One of the chosen design pat-

terns was found in the literature.

3.3.1 The Library pattern

The first identified design pattern is the Library pattern. It can be combined with require-

ments listed in subsection 2.4 and it solves the problem related to these requirements. It

can be classified as a creational design pattern. The problem that the pattern solves is

that if the same components and views are used in multiple different mining machines,

the code may have to be copied to several different machine applications. For example,

Inverter Parameter App is included in two different mining machine applications, without

the Library pattern, two different applications containing the same code should be cre-

ated. With the Library pattern code, does not need to be copied in every application: the

code can be reused from library.

In the Library pattern, reusable components and views are stored in the common library.

The Library pattern is related to the “reusability of web component” requirement pre-

sented in subsection 2.4. Its advantage is code reusability and its disadvantage is that

changes made in the library for certain application can break other applications using the

same library.

The library can be created using, for example, ViteJS which is a frontend build tool. Com-

ponents and views can be created just as in any Vue.js application. In the library, com-

ponents and views are exported and configured. After this, the build of the library will be

created, and the library is shared in an NPM (Node Package Manager) package.

23

The library pattern can be used by installing the NPM package of the library and import-

ing wanted components or views in the application. Program 6 presents how to start use

library in the application’s main file after the installation of the library is done with NPM.

Program 6. The main.ts file in the application.

After the library is included in the main file of the application, the components from the

library can be used by importing single components and views in the Vue.js application.

Program 7 presents how to use a single component from the library in the Vue.js appli-

cation. In this example, the view implemented for this work is imported and used from

ug-components library.

 Program 7. The usage of the components from the library.

The library pattern should be used when views and components are used in multiple

different projects. Multiple libraries, including commonly used views and components are

already in use in Sandvik’s web applications.

3.3.2 The ID pattern

The second identified design pattern is ID pattern. This pattern can be classified as a

creational design pattern. In Sandvik, two different test automation frameworks are used

for test automation: Robot Framework and Sandvik’s own test automation framework.

Both frameworks use Selenium for testing web applications. Selenium offers a variety of

libraries and tools for testing web applications.

SeleniumLibrary in Robot Framework supports finding elements based on different ways

such as the HTML element id, XPath or CSS selectors. Robot Framework uses keywords

for testing. Keywords are single test steps and in SeleniumLibrary, all keywords support

1
2
3
4
5
6
7
8

import { createApp } from ‘vue’;
import App from ‘./App.vue’;

import UgComponents from ‘@sandvik-sica/ug-components’;

createApp(App)
 .use(UgComponents)
 .mount(‘#app’)

1
2
3
4
5
6
7
8

<template>
 <InverterParametersView />
</template>

<script setup lang=”ts”>
import { InverterParametersView } from
 ‘@sandvik-sica/ug-components”;
</script>

24

finding elements based on the id attribute of the HTML element. [23] The problem is that

if the HTML does not have an id, it quickly becomes complex to find an element using

attributes of HTML element or CSS selectors. For example, often multiple HTML ele-

ments have the same class attribute. In complex cases, XPath (XML Path Language)

expressions can be used, but often they can also get complex, and hence, maintaining

test cases becomes difficult [23]. In some cases, without element id’s, the XPath expres-

sion is the only way to locate an element. The problem can be approached with an ex-

ample. The code line below presents an XPath locator to element that can not be found

with CSS selectors or HTML attributes and the element does not have an id.

XPath uses path syntax to identify elements in the HTML document. The element that

the example locates is deeply nested element and the XPath locator shown is complex.

The same element located with the element’s id with the XPath expression is shown in

the code line below.

xpath=//*[@id=”percussion-presssure-gauge”]

In the ID pattern, every component created in Vue.js is given a unique id. When the

component is created, the mandatory id prop is declared to component. In Vue.js props

are attributes that can be registered on any component and with props a parent compo-

nent can pass data to child components [14]. Program 8 presents a simple Vue.js com-

ponent which have a mandatory id prop.

Program 8. A simple Vue.js component with a mandatory id.

xpath=/html/body/div/div/div[2]/div/div/div/div[1]/div/div[2]/span

1
2
3
4
5
6
7
8
9

10
11
12
13
14

<template>
 <button :id=”id”>Click me!</button>
</template>

<script>
export default {
 props: {
 id: {
 type: String,
 required: true
 }
 }
}
</script>

25

When the component is used, the id prop needs to be given to component. Program 9

presents how to pass an id prop to component.

 Program 9. The usage of the component with mandatory prop.

The component presented in program 9 can be tested with id with test automation frame-

works. The ID pattern does not only solve the complex syntax problem, locating elements

by id is fast for browsers and it makes testing as efficient as possible. This pattern should

be used for every component in the Sandvik’s web applications to ensure efficient web

testing.

3.3.3 Pinia State Management Pattern

This section presents the already existing design pattern found from literature that can

be used and is already used in the web applications of Sandvik’s underground drill rigs.

The third design pattern presented is Pinia State Management pattern. State Manage-

ment Pattern is a behavioral design pattern. State management is an important part of

the web applications: all complex applications need state management. The problem

that the pattern solves can be approached with a simple example.

1
2
3
4
5
6
7
8
9

10
11
12
13

<template>
 <Button id=”button”></Button>
</template>

<script>
import Button from ‘./Button.vue’;

export default {
 components: {
 Button
 }
}
</script>

26

Program 10 presents simple Vue.js app. It implements a simple counter functionality.

Program 10. Simple Vue counter app. Adapted from [21].

The app in program 10 contains the following parts: the state that contains the application

data and its status, the view that shows the state and the actions that manage how the

state changes in reaction to user inputs from the view [24]. The example shown is simple

and state management works well in an example for very simple one component appli-

cation.

The problem is that state management quickly becomes more complex when application

has multiple components that share a common state. The first problem is that multiple

components can depend on the same piece of state and the second problem is that

actions from different components may need to mutate the same piece of state. [24] In

a simple situation when there are not many components, the first problem can be solved

with props. However, props do not work in the case of sibling components and passing

data through props to deeply nested components make the state quickly unmanageable.

The second problem can be solved with emitting events, again, in a simple situation. In

Vue.js, component can emit custom events in template expressions meaning that in a

child component event can be triggered and data can be passed up to the parent com-

ponent [14].

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

<!-- View -->
<template>
 <div>{{ count }}</div>
 <button @click=”increment>Add</button>
</template>

<script>
export default {
 // state
 data() {
 return {
 count: 0
 }
 },
 // actions
 methods: {
 increment () {
 this.count++;
 }
 }
}
</script>

27

Figure 10 presents a diagram of a more complex Vue.js application that contains multiple

components that depend on the same state.

Figure 10. State management with props.

In figure 10, multiple components use the same data, and the data is passed down to

child components with props. Multiple components can also modify the same data with

actions. The situation in the example is still simple, but the state management is already

considerably complicated.

Problems presented can be solved by extracting the shared state out of the components

and manage state in a global store [24]. Pinia is one of the two libraries and a State

Management Pattern in Vue to handle the state of the application. Pinia serves a cen-

tralized store for all components in a Vue.js application. [25] It means that Pinia allows

to share a state across components and pages in Vue.js. In Sandvik, Pinia is used in

multiple web applications.

Pinia store consists of the following parts: the state, the actions, and the getters. The

state holds the data of the store, the actions are used to mutate the state and the getters

are used to access the data of the store. [25] Next, it will be presented how a store can

be created and therefore also how to implement the State Management pattern.

Firstly, Pinia needs to be installed. Multiple different package managers can be used, for

example, NPM (Node Package Manager). Secondly, a Pinia store needs to be created.

It is highly recommended that stores are kept in folder named “store” or “stores”. Program

11 presents a simple store named somedata.

28

Program 11. A simple Pinia store in file somedata.ts.

After the installation and creating a store, the store needs to be declared in the applica-

tion. Program 12 presents how to declare the store in the application’s main file.

Program 12. The main.ts file in the application.

Now the state and actions can be accessed using useSomeDataStore call at any com-

ponent in the application. All the components in the application can use the state and

mutate it with the actions regardless of where they are located in the component hierar-

chy.

As said before, Pinia is one of the two libraries used to state management in Vue.js.

Another library and State Management pattern is Vuex. Like Pinia, Vuex also offers a

centralized store for state management. However, Pinia has been chosen as the State

Management pattern used in Sandvik’s web applications. Pinia provides a simpler API

than Vuex and it supports usage of Composition API [25]. Most important feature in Pinia

compared to Vuex is that it has type inference support when used with TypeScript [24].

Pinia, unlike Vuex, also offers an opportunity to create many instances off the same

store, which was found to be useful in web applications in Sandvik. This feature enabled,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

import { defineStore } from ‘pinia’;

export const useSomeDataStore = definestore(‘somedata’, {
 state: () => {
 return {
 someData: 0
 }
 },
 actions: {
 addone() {
 this.someData++;
 }
 },
 getters: {
 getSomeData(state) {
 return state.someData;
 }
 }
})

1
2
3
4
5
6
7
8
9

import App from ‘./App.vue’;
import { createApp } from ‘vue’;
import { createPinia } from ‘pinia’;

const pinia = createPinia();
const app = createApp(App);

app.mount(‘#app’);
app.use(pinia);

29

for example, the management of data across the three distinct tabs displayed in this

project. Using a distinct instance of the same store for each tab prevented the creation

of three nearly identical stores. With Vuex, this would not have been possible.

The state management pattern should be used when application’s size is medium or

large and there is same data that is used in multiple components. A store should contain

data that can be accessed from everywhere in the application.

30

4. SUMMARY

The target of this work was to identify design patterns for Sandvik drilling mining ma-

chines’ web applications. Drill rigs’ control systems and software architecture was also

studied. Additionally, the work gathered software requirements for the web applications

of drill rigs. Also, for this work, a new view was implemented with web technologies for

Sandvik battery-electric mining jumbo.

This work found that drill rigs set application-specific software requirements for software

development. Special requirements arose from, for example, high safety demands and

working areas of the machines. Additionally, in the future when different technologies

develop further new requirements arise. Web technologies achieve a lot that Qt can not

such as scalable views, which enable the use of UIs outside of the machine itself, for

example, in mobile devices or in any device that contains modern web browser. Addi-

tionally, with web technologies, 3D graphics can be implemented. In the future, there is

need to observe, for example, different drilling point clouds from different angles and

tunnel depth with the help of UI.

During the work and especially during development of new web application, several tar-

gets for development were discovered to unify web development. Among other things,

the importance of communication and documentation was highlighted. One solution to

unification of web development is using and documenting design patterns. With the help

of design patterns, it is possible to transfer data from best practices inside the organiza-

tion, also making communication more fluent. Design patterns can also help new em-

ployees at the beginning and prevent design errors.

Numerous design patterns can be found from literature and selecting patterns for this

work was challenging. Selection of patterns was affected by new web application devel-

oped and the selected patterns are used in the new web application. Only one pattern

was selected from literature.

As a result of this work, three various design patterns were selected. First pattern is

related to reusability of various web components and their storing in a way, that they are

easily accessible from the component library. Multiple component libraries are already in

use in Sandvik, and by utilizing them, the target is to reduce the need to copy code to

multiple different applications. This pattern can also be connected to discovered require-

ments because it offers opportunity to use same components in different applications.

Second pattern is related to test automation and to enhance web testing by unique ids

31

given to elements and components in web applications. In web testing, locating elements

by id is the fastest way for web browsers. Third selected pattern is related to state man-

agement of large web applications. Usually, in large web applications, application con-

tains large amount of same data, that multiple different parts of the application use. With-

out this pattern, state management of large applications would be extremely complex.

In the future, it is recommended to continue searching and documenting new design

patterns and best practices. With these recommendations more harmonized way of

working can be achieved in web development.

32

SOURCES

[1] J. I. Hong, J. A. Landay, D. K. Van Duyne, The Design of Sites: Patterns for
Creating Winning Web Sites, Second Edition. Pearson, 2006, 1024 pp.

[2] Underground drill rigs and bolters, Sandvik, 2023. Available (referenced
1.3.2023): https://www.rocktechnology.sandvik/en/products/underground-drill-
rigs-and-bolters/

[3] MediaBank, Sandvik, 2023. Limited availability (referenced 1.3.2023).

[4] J. Viitala, SICA Training: SICA/MCC, pdf document, Sandvik, 2022. Limited
availability (referenced 1.3.2023).

[5] N. Dey, Cross-Platfrom Development with Qt 6 and Modern C++, Packt Publish-
ing, 2021, 442 pp.

[6] V.-P. Jaakkola, Control system architecture evolution, pdf document, Sandvik.
Limited availability (referenced 1.3.2023).

[7] Knowledge Box, Sandvik, 2023. Limited availability (referenced 9.5.2023).

[8] K. Taylor, B.E. Smith, Getting a Web Development Job For Dummies. For Dum-
mies, 2015, 312 pp.

[9] J. Krause, Introducing Web Development, Apress, 2016, 89 pp.

[10] B. Frain, Responsive Web Design with HTML5 and CSS, Fourth Edition. Packt
Publishing, 2022, 498 pp.

[11] L.L. Svekis, M. van Putten, R. Percival, JavaScript from Beginner to Profes-
sional. Packt Publishing, 2021, 546 pp.

[12] J. Goldberg, Learning TypeScript. O’Reilly Media, Inc, 2022, 318 pp.

[13] H.R. Ribeiro, Vue.js 3 Cookbook. Packt Publishing, 2020, 562 pp.

[14] Guide, Vue.js. Available (referenced 4.4.2023): https://vuejs.org/

[15] D. Leffingwell. Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley Professional, 2010, 562
pp.

[16] P.Nurminen, Subject Expert Software Engineer, Sandvik Mining and Construc-
tion Oy, Tampere. Interview 8.3.2023.

[17] J.Lindgren, Systems Engineering Manager, Sandvik Mining and Construction
Oy, Tampere. Interview 17.3.2023.

[18] Tietotekniikan termitalkoot, Sanastokeskus ry, 2001. Available (referenced
10.5.2023): https://sanastokeskus.fi/tsk/fi/termitalkoot/haku-266.html

https://www.rocktechnology.sandvik/en/products/underground-drill-rigs-and-bolters/
https://www.rocktechnology.sandvik/en/products/underground-drill-rigs-and-bolters/
https://vuejs.org/

33

[19] A. Osmani, Learning JavaScript Design Patterns, Second Edition. O’reilly Me-
dia, Inc, 2023, 286 pp.

[20] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fikshdal-King, S. An-
gel, A Pattern Language: Towns, Buildings, Construction. Oxford University
Press, 1977, 1071 pp.

[21] A. Shalloway, J.R. Trott, Design Patterns Explained: A New Perspective on Ob-
ject-Oriented Design, Second Edition. Addison-Wesley Professional, 2004, 480
pp.

[22] S. Timms, Mastering JavaScript Design Patterns. Packt Publishing, 2014, 290
pp.

[23] SeleniumLibrary, Robot Framework. Available (referenced 4.5.2023): https://ro-
botframework.org/SeleniumLibrary/SeleniumLibrary.html

[24] Guide, Vuex. Available (referenced 23.4.2023): https://vuex.vuejs.org/

[25] Guide, Pinia. Available (referenced 23.4.2023): https://pinia.vuejs.org/

https://vuex.vuejs.org/
https://pinia.vuejs.org/

