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Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal
repair methods. Cell-seeded scafolds aim to prevent urethral stricture and scarring, as efective urothelium and stromal tissue
regeneration is important in urethral repair. In this study, the aim was to evaluate the efect of the novel porous ascorbic acid 2-
phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-ε-caprolactone) (PLCL) scafolds (scPLCLA2P)
on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human
adipose-derived stromal cell (hASC) mono- and cocultures. Te scPLCLA2P scafold supported hUC growth and phenotype both
in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were signifcantly
increased on the scPLCLA2P compared to scPLCL scafolds without A2P, on which the hASCs formed nonproliferating cell
clusters. Our fndings suggest the A2P-releasing scPLCLA2P to be a promising material for urethral tissue engineering.

1. Introduction

Te reconstructive surgery of urethral defects caused by
urethral strictures, infections, traumas, or congenital mal-
formations remains a great challenge [1–3]. Small defects are
reconstructed with autologous genital faps. However, larger
defects require nongenital tissue grafts or allogenic grafts, in
which the reconstruction is highly susceptible to compli-
cations [3–5]. Terefore, tissue engineering aims to develop
new alternatives for enhanced urethral defect re-
construction. Te graft material for a urethral application
must be suturable, elastic, and fexible while promoting the

regeneration of the urothelium barrier and underlying
smooth muscle layer and stromal tissue [6, 7].

Vast research has been conducted to discover a scafold
with adequate mechanical and bioactive properties, yet critical
difculties still remain [7, 8]. Previously, decellularized natural
matrices, such as bladder acellular matrix or small intestinal
submucosa, have been studied for urethral defect re-
construction [5].Teir advantage is the existence of the natural
extracellular matrix (ECM) and good biocompatibility.
However, the natural decellularized matrices are nontailorable,
have high variability with a lack of large-scale manufacturing,
and are prone to immunogenicity regardless of the
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decellularization process [5, 7]. Terefore, there is an emerging
interest in utilizing synthetic biodegradable polymers, such as
poly-lactic acid (PLA), poly-glycolic acid (PGA), and poly-
caprolactone (PCL) for urethral applications [7, 9].

Te poly(l-L-lactide-co-ε-caprolactone) (PLCL), a co-
polymer of PLA and PCL, has been previously studied by us
and others in several soft tissue engineering applications,
such as vascular and urogynaecological research [10–16]. In
the PLCL copolymer, the undesired stifness of PLA [17] and
the very slow degradation time of PCL [18] can be tailored to
the application’s requirements. Since the urethra is a highly
elastic tissue subjected to repetitive stretching and con-
tracting forces, the repair material needs to enable its high
fexibility and simultaneously support the urethral tubular
structure for the time of the tissue regeneration [19, 20].
Terefore, as an elastic and fexible polymer, PLCL is
a potential material for urethral applications [17, 21].

In addition to the biomaterial selection, the scafold
design, interconnected porosity, and pore size are highly
important for the regenerating tissue. Interconnected pores
serve as a route for nutrient transport and allow the mi-
gration of cells and tissue in-growth into the scafold.
Moreover, the scafold fabrication method should enable
large-scale manufacturing without leaving any toxic resi-
dues. Supercritical carbon dioxide (scCO2)-foaming is
a rapid, environmentally friendly, and cost-efective method
for producing scafolds with controlled porosity and pore
size. Porosity and pore size are controlled by temperature
and pressure conditions without requiring any toxic solvents
or other nondesired components [22–25].

Previous preclinical studies have demonstrated that cell
seeding is benefcial in urethral tissue engineering
[19, 26–30]. Most importantly, the use of adipose-derived
stromal/stem cells (ASCs) or smooth muscle cells has been
shown to enhance angiogenesis and the formation of the
urethral stromal tissue during the tissue regeneration,
inhibiting the formation of urethral fbrosis [26–29]. Besides
ASCs, several cell types have been utilized in urethral tissue
engineering research, including fbroblasts [31, 32], smooth
muscle cells [27, 33, 34], stromal/stem cells [35–38] along
with urothelial cells (UCs) [10, 39–42].

As a native cell type, UCs are frequently studied for
urethral tissue regeneration. It is possible to obtain UCs by
performing bladder washing without the need for an in-
vasive biopsy [28, 43, 44]. Still, the regeneration of the
urethral stroma is highly important for the tissue-engineered
urethra. Human ASCs (hASCs) are easily isolated in
abundance and are demonstrated to diferentiate towards
smooth muscle cells [45–47]. As such, they are appealing cell
alternatives to smooth muscle cells for forming urethral
stromal tissue. Moreover, ASCs and other mesenchymal
stem and progenitor cells are capable of reducing in-
fammation and promoting angiogenesis and intrinsic tissue
regeneration in situ [29, 48, 49].

Cell growth and diferentiation can be aided by using
bioactive molecules. Ascorbic acid (AA) is an essential
nutrient and antioxidant that cannot be synthesized by
human cells. It plays a central role in multiple cellular
processes, such as collagen synthesis where it is a critical

cofactor required to form stable collagen fbrils [50, 51].
Supplemented and scafold-embedded AA has been dem-
onstrated to increase collagen production, cell proliferation,
and maturation of various cell types, such as fbroblasts,
osteoblast-like cells, and hASCs [52–56]. Particularly, AA
and its derivatives enhance the proliferation and diferen-
tiation of stem cells into several cell types, such as adipocytes,
cardiac myocytes, and osteoblasts [53, 57–59]. However, AA
is very unstable in aquatic conditions, so a more stable AA
derivative ascorbic acid 2-phosphate (A2P) is commonly
used instead [56, 60].

In this study, the aim was to reveal the potential of A2P-
embedded scCO2-foamed PLCL scafold (scPLCLA2P) for
urethral tissue engineering. We studied the efects of
scPLCL scafolds with and without A2P in hUC and hASC
monocultures and coculture. Human UCs were cultured to
generate diferentiated urothelium, and hASCs were cul-
tured to initiate the formation of the urethral stroma. We
hypothesized that, while supporting the growth of hUCs,
the A2P embedded in scPLCLA2P further enhances the
proliferation and collagen production of hASCs and pro-
motes the formation of the urethral stromal tissue com-
pared to a plain scPLCL scafold. To our knowledge, this is
the frst study where either scCO2-foamed or A2P-
embedded scafolds were studied for urethral applications.

2. Materials and Methods

2.1. Urothelial Cell Isolation and Culture. Te hUCs were
isolated from urothelium tissue pieces of three child donors,
aged 3months to 2 years 9months during elective surgery in
the Tampere University Hospital with the approval of the
Ethics Committee of Pirkanmaa Hospital District, Tampere
Finland (R07160) and written consent from the parents. Te
isolation protocol for hUCs has been presented in our
previous publication [10]. Briefy, the urothelial tissue was
cut into small pieces and incubated in a stripping solution of
1% HEPES (Sigma-Aldrich, St. Louis, MO, USA), 0.001%
aprotinin (1 kIU/µl; Sigma-Aldrich), 0.1% EDTA (Sigma-
Aldrich), and antibiotics (100U/ml penicillin and 0.1mg/ml
streptomycin, P/S; Lonza, BioWhittaker, Verviers, Belgium)
in HBSS without Ca2+ and Mg2+ (Invitrogen, Termo Fisher
Scientifc, Waltham, MA, USA) overnight at +4°C to loosen
the urothelial layer. Te urothelium was separated from the
stroma and incubated at +37°C water bath for 30min in 0.1%
trypsin solution. Te isolated hUCs were suspended in
EpiLife culture medium (Gibco by Life Sciences, Termo
Fisher Scientifc), supplemented with EpiLife Defned
Growth Supplement (EDGS; Gibco by Life Sciences), 0.1%
CaCl2 (Gibco by Life Sciences) and 0.35% P/S, and cultured
on CellBIND T75 fasks (Corning, Sigma-Aldrich) at 37°C in
a humifed atmosphere of 5% CO2. Te hUCs used in
monoculture experiments were passage 4 (P4) whereas
hUCs in coculture experiments were P5.

2.2. Adipose-Derived Stromal Cell Isolation and Culture.
Te hASC were obtained during routine elective surgery in
the Tampere University Hospital from three donors, aged
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between 43 and 71 years, with the approval of the ethics
committee of Pirkanmaa Hospital District, Tampere Finland
(R15161) and written consent from the donors. Te hASCs
were isolated as described previously [61, 62]. Briefy, adipose
tissue was cut into small pieces and incubated on a shaker in
a 37°C water bath for 1 h in 1.5mg/ml collagenase type I
solution. Digested cells were centrifuged and suspended in
basic medium (BM) composed of 5% sterile fltered human
serum (Biowest, Nuaillé, France) and 1% P/S (Lonza) in
Minimum Essential Medium Eagle-Alpha Modifcation
(αMEM; Gibco by Life Technologies).Te cell suspension was
fltered and cultured in Nunc T175 fasks (Nunc, Termo
Fischer Scientifc) at 37°C in a humifed atmosphere of 5%
CO2. Te expression of surface proteins can be found in
Table 1. Te expression of surface proteins was assessed after
the isolation process in passage 1 (P1) to ensure the quality of
the isolation protocol and confrming that the isolated cells
can be stated as ASCs [63, 64]. Te hASCs in monoculture
experiments were P4 and in coculture P5.

2.3. Scafold Manufacturing. Te scafold manufacturing
process was similar to a previously published protocol [65].
Briefy, the porous scPLCLA2P scafolds were manufactured
by melt-mixing 8 wt-% of A2P (Sigma-Aldrich Chemie
Gmbh, Steinheim, Germany) to PLCL 70L/30CL (PLCL
7015, Corbion Purac BV, Gorinchem, Te Netherlands) in
a twin-screw extrusion process, after which the material was
foamed by scCO2 (Waters Operating Corporation, Milford,
MA, USA) using high pressure and temperature of 90°C.
Porous scPLCL scafolds were manufactured similarly but
without the melt mixing of A2P. To acquire the scafolds, the
foamed rods were cut into 8mm diameter discs with
a thickness of 3-3.5mm. Te scafolds were gamma-
irradiated prior to cell culture.

2.4. Scafold’s Porosity and Assessment with X-ray Micro-
computed Tomography Imaging. Te scPLCL and
scPLCLA2P scafolds (n � 3) were analysed with X-ray
microtomography. MicroXCT-400 (Carl Zeiss X-ray
Microscopy, Inc., Pleasanton, CA, USA) device was
used with the X-ray tube voltage of 60 kV and a current of
167 µA. 1601 projections were taken with 1 sec exposure
time. Te pixel size was 5.64 µm. Acquired projection data
were reconstructed with Zeiss’ XMReconstructor soft-
ware. For the pore analysis, a 3.8 × 3.8 ×1.2mm volume
was selected from each scafold. Te image processing and
the visualizations were made with the Avizo 3D 2021.2
software (Termo Fisher Scientifc, Waltham, MA, USA).
Te material of the scafold visible in the images and
denser A2P particles were segmented with manual
thresholding. Te interconnectivity of the scafold pores
was evaluated with a Matlab program that uses the pore
size data calculated with the BoneJ plugin [66] providing
size distribution of the interconnected pores. Te analysis
procedure is described in more detail in [67]. For accu-
racy, a minimum particle size of 11.28 µm (twice the used
pixel size of 5.64 µm) was used for interconnectivity and
A2P-particle size calculations.

2.5. Cell Seeding on Scafolds. Before cell seeding, the
scafolds were prewetted in culture medium, EpiLife for
hUCs, and BM for hASCs, for 24°h at +37°C. Te prewetted
scafolds were placed into 24-well plates for the cell ex-
periments. For the monoculture study, 150 000 hUCs or
hASCs were seeded on the surface of the scafold in
a plating volume of 50 µl. Te cells were left to adhere in
+37°C incubator for 2 h before adding 1ml medium to each
well. For the coculture experiment, 150 000 hASCs in 50 µl
of medium were seeded on the other side of the scafold and
precultured for fve days in BM to allow cell expansion.
Tereafter, 150 000 hUCs in 50 µl of medium were seeded
on the opposite side of the scafold, and the medium was
switched to EpiLife medium for the coculture. A visuali-
zation of the research timeline is presented in Figure 1. Te
cell-seeded scafolds were cultured in a humidifed +37°C
incubator, and the medium was changed three times a week
until analysis. Te analyses were performed at d1, d7, and
d14 time points.

2.6. Cell Viability and Proliferation. Cell viability in
monocultures and coculture was determined at d1, d7, and
d14 time points with qualitative live/dead fuorescent
staining (Invitrogen, Life Technologies) as described pre-
viously [10]. Briefy, the samples were incubated in 3.75∗
10−5 µM ethidium homodimer-1 (EthD-1) and 0.5 µM cal-
cein acetoxymethyl ester (Calcein-AM) solution for 1 h in
RT. Unseeded scafolds were used as negative controls.
Samples were imaged with a fuorescence microscope
(Olympus IX51S8F-2; camera DP71), and the images were
processed with Adobe Photoshop 2022-software by
adjusting contrast and brightness.

On d1, d7, and d14 time points, the relative cell
number in hUC and hASC monocultures was assessed
with a quantitative CyQUANT Cell Proliferation Assay kit
(Invitrogen, Life Technologies). Te assay was repeated
with three donor lines for each cell type with three parallel
samples using technical triplicates in the assay run
(n � 27). To lyse the cells, 0.1% Triton x-100 (Sigma-
Aldrich) in DPBS was added to each sample, and the
lysates were stored at −70°C. For analysis, CyQUANT GR
dye and lysis bufer were added to the thawed lysates, and
fuorescence at 480/520 nm wavelength was measured
with a Wallac Victor microplate reader (PerkinElmer Life
and Analytical Sciences, Wallac, Turku, Finland). Cell
numbers were calculated relative to the scPLCL d1
sample.

2.7. Scanning Electron Microscopy. Scanning electron mi-
croscopy (SEM) was used to assess the cell attachment and
morphology after 1, 7, and 14 d of cell culture in hUC and
hASC monocultures using one donor line from each cell
type. Samples were fxed with 5% glutaraldehyde (Sigma-
Aldrich) in 0.1M phosphate bufer (pH 7.4; Sigma-
Aldrich) for 48 h at RT. Te sample drying procedure with
hexamethyldisilazane (HMDS; Sigma-Aldrich) was per-
formed as described by Sartoneva et al. [68]. Samples were
dehydrated with increasing series of ethanol (Altia Oyj,
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Helsinki, Finland) concentrations (30, 50, 70, 80, 90, 95,
and 100%) after which samples were dried with ascending
series of HMDS in 100% ethanol (1 : 2, 2 : 1 and twice 100%
HMDS). After HMDS was evaporated, samples were
carbon sputtered and imaged with SEM (Zeiss ULTRA-
plus, Oberkochen, Germany).

2.8. Total Collagen Content. Sircol soluble collagen assay
(Biocolor, Carrickfergus, UK) was used to quantify the
amount of total soluble collagen in hUC and hASC
monocultures at d14 time point. Te analysis was per-
formed for three donor lines with three parallel samples
and two technical replicates for each cell type (n � 18). Te
assay was carried out as described previously [69]. Te
samples were incubated in ice-cold 0.1mg/ml pepsin
(Sigma-Aldrich) in 0.5M acetic acid for 4 h at +4°C to
extract the acid-soluble collagen. Sample suspensions were
moved to separate tubes, and Sircol dye reagent, consisting
of picric acid and Sirius red, was added to each sample.
After 30min incubation at RT, the samples were pelleted
and resuspended to ice-cold Sircol Acid-Salt Wash Reagent
to remove any unbound dye. 0.5M sodium hydroxide
solution was then added to resolubilize dyed collagen. Dye
intensity was measured with a Wallac Victor microplate
reader at 540 nm wavelength.

2.9. Quantitative Real-Time Polymerase Chain Reaction.
Quantitative real-time polymerase chain reaction (qRT-
PCR) was used to analyse the relative expression of cyto-
keratin (CK) 7, CK8, CK19, uroplakin (UP) Ia, and UPIb in
hUCs and relative expression of collagen type I (COL I),
COL III, α-smooth muscle actin (αSMA), and elastin in
hASCs.Te assay protocol is described inmore detail in [70].
For each donor line, cells from three parallel sample wells
were pooled for mRNA isolation. Briefy, total RNA was
isolated after 14 d of cell culturing with the NucleSpin RNA
II purifcation kit by following the manufacturer’s protocol
(Macherey-Nagel GmbH & Co. KG, Düren, Germany).
Isolated total RNA was then reverse transcribed to cDNA
using High-Capacity cDNA Reverse Transcriptase Kit
(Applied Biosystems, Foster City, CA). For the qPCR run,
50 ng of sample cDNA was added to the mixture of Power
SYBR Green PCR Master Mix (Termo Fisher Scientifc)
and 360 nM forward and reverse primers. Each sample was
run in duplicates (n� 6). Used primers are listed in Table 2.
Te qRT-PCR run was performed using the ABI PRISM
7300 sequence detection system (Applied Biosystems).
Acquired data were normalized to housekeeping gene hu-
man ribosomal protein lateral stalk subunit P0 (hRPLP0),
and the relative amount of mRNA was calculated using
a previously described mathematical model [71].Te ratio of
hASC COL I/III mRNA was determined by using the qRT-
PCR cycle threshold (Ct) values for COL I and COL
III mRNA.

2.10. Cytochemical and Immunofuorescent Staining of
Cocultures. Cytochemistry and immunofuorescence
staining of acidic and basic cytokeratins detected in epi-
thelial cells (mouse cytokeratin pan type I/II antibody
cocktail, MA5-13156, 1 : 250; Termo Fisher Scientifc),
UPIII (rabbit anti-UPK3A; orb248591, 1 :100; Biorbyt,
Cambridge, United Kingdom), and F-actin cytoskeleton
organization (phalloidin-tetramethylrhodamine B iso-
thiocyanate, P1951, 1 : 500; Sigma-Aldrich) were performed
for cocultures at d14 time point (n� 2). Samples were fxed
with 0.2% Triton x-100 (Sigma-Aldrich) in 4% PFA (Sigma-
Aldrich) and incubated overnight at +4°C with primary
antibodies. Secondary antibodies and phalloidin were added
the next day and incubated for 45min at +4°C. A mixture of
Alexa 488 goat anti-mouse IgG1 (A21121, 1 : 400 green
fuorescence; Termo Fisher Scientifc) and phalloidin was
used for pancytokeratin and F-actin costaining. Alexa 594
goat anti-rabbit IgG (A11037, 1 : 300, red fuorescence;
Termo Fisher Scientifc) was used for UPIII staining. Cell
nuclei were stained with DAPI (1 : 2000, blue fuorescence;
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Figure 1: Research timeline for hUC and hASC monocultures and
hUC/hASC coculture. Te hUC and hASC monocultures were
treated similarly. In coculture, the hASCs were seeded in basic
medium (BM) fve days prior to seeding the hUCs on the opposite
side of the scafold and changing the coculture medium to EpiLife.
Te time points for mono- and cocultures were d1, d7, and d14.

Table 1: Expression of cell surface markers on the used hASC donor cell lines after isolation in passage 1 (P1).

Cell surface marker expression (%)
Donor
line P CD14 CD19 CD34 CD45 CD73 CD90 CD105 HLA-DR

hASC 1 1 1.2 0.6 66.7 2 99 99.7 99.7 0.6
hASC 2 1 0.3 0.2 3.7 4.1 81.4 99.2 96.3 0.4
hASC 3 1 1.1 0.8 26.7 1.5 96 98 99.7 1.8
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Sigma-Aldrich). Monocultures of hUCs and hASCs cultured
in EpiLife medium on polystyrene well bottom served as
control samples. Cell-seeded scafolds without primary
antibodies and nonseeded scafolds were used to exclude any
nonspecifc staining of the secondary antibodies or false
staining caused by the scafold material, respectively.
Samples were imaged with a fuorescent microscope
(Olympus IX51), and images were processed with Adobe
Photoshop 2022 software by adjusting contrast and
brightness.

2.11. Statistical Analysis. Quantitative results were analysed
with IBM SPSS Statistics software (Version 26, IBM Corp.,
Armonk, USA) using statistical tests depending on the
number of samples. Mann-Whitney test or Kruskall-Wallis
test for nonnormally distributed data was used for Sircol
assay results (n� 18), CyQUANT (n� 18–27) and qRT-PCR
results (n� 6). Bonferroni post hoc tests were included.
Signifcance level p< 0.05 was considered as signifcant. All
quantitative assays were performed for three donor lines for
each cell type, and results from technical replicates of each
sample were used in the calculations and statistical tests.

3. Results

3.1. Both scPLCLA2P and scPLCL Scafolds Present High Po-
rosity with High Interconnectivity. Micro-CT was used to
assess scafold architecture and pore interconnectivity. In
addition, the distribution of A2P particles in the scPLCLA2P
was measured. Overall visualization of the scPLCLA2P and
scPLCL scafolds is represented in Figure 2.Te image-based
assessment revealed that the A2P particles are evenly dis-
tributed in scPLCLA2P (Figure 2(c)). Particles larger than
11.28 µm were measured, and approximately 60% of A2P
particles had a diameter between 11.28–15 µm.

Average porosity was slightly lower in scPLCLA2P (63%)
than in scPLCL (69%), yet the average pore size was higher in
scPLCLA2P (490± 200 µm) than in scPLCL (400± 140 µm)
(Table 3). In Figure 3, open porosity (y-axis) represents the
percentage of interconnected scafold pores that could be
passed through by various sizes of spherical particles (x-axis)
from outside of the scafold. For example, particles with
diameter ≤205 µm can pass through 90% of the pores in both
scPLCLA2P and scPLCL scafolds (Figure 3(a)). One no-
ticeably difering scPLCLA2P scafold has been removed from
the results.

3.2. A2P in scPLCLA2P Supports hUC and hASC Viability.
Cell viability was evaluated with Live/Dead staining on d1,
d7, and d14 for monocultures and cocultures. Both hUCs
and hASCs remained viable during the 14-d assessment
period in monocultures. No diferences were detected in
hUC viability on scPLCLA2P and scPLCL (Figure 4). Te
hASCs spread rapidly on scPLCLA2P and covered the whole
scafold surface after 7 d, continuing to form dense cultures
between d7 and d14 (Figure 5). On scPLCL, the hASCs did
not spread widely along the scafold surface but rather
formed viable cell clusters during the 14-d cell culture.

Closer inspection of the monocultures with SEM on d1,
d7, and d14 shows more detailed diferences in the cell
attachment and morphology on diferent scafolds. Te
hUCs cultured on both scPLCLA2P and scPLCL presented
a typical urothelial morphology with defned cell borders,
and the hUCs spread evenly on scafold surface (Figure 6).
On d14, hUCs on scPLCLA2P had more cuboidal mor-
phology with visible cell borders, and some hUCs had ac-
quired apical irregularities. Instead, the hUCs on scPLCL
had fattened appearance along the material surface. Uni-
form and aligned sheet of hASC covered the scPLCLA2P
scafold surface, whereas on scPLCL, the hASCs were
clustered together, supporting the fndings of the hASC
monoculture Live/Dead viability assay (Figure 7).

According to the Live/Dead staining of hUC/hASC
coculture, no distinctive diference was detected in the hUC
viability and spreading between the scPLCLA2P and scPLCL
scafolds (Figure 8), whereas more hASCs appear to be
visible on scPLCLA2P scafold. After commencing coculture
in Epilife medium, hASC growth on scPLCLA2P seems to
have suppressed, yet the cells remain viable. Meanwhile, the
hASCs on scPLCL formed cell clusters similar to mono-
culture, and after switching to Epilife medium, there seems
to be more dead cells compared to scPLCLA2P.

3.3. scPLCLA2P Signifcantly Increased the Proliferation of
hASCs. Te cell proliferation of hUCs (n� 18–27) and
hASCs (n� 27) on scPLCLA2P and scPLCL was assessed with
CyQUANT by measuring the relative amount of DNA in the
samples at d1, d7, and d14 time points (Figure 9). Te
number of hUCs was lower on scPLCLA2P than on scPLCL at
each time point (d1 p< 0.001, d7 p< 0.001, and
d14 p � 0.009). Te number of hUCs increased between d1,
d7 (p � 0.022), and d1–d14 (p � 0.001). On scPLCL, hUC
number increased d1–d7 and d1–d14 (p< 0.001). No sta-
tistical signifcance in hUC amount between d7–d14 was
detected on either scafold. Te number of hASCs was
signifcantly higher (p< 0.001) on scPLCLA2P compared to
scPLCL at d7 and d14 time points. Furthermore, as
a function of time, the hASC proliferation on scPLCLA2P
increased signifcantly from d1 to d7 (p< 0.001), from d1 to
d14 (p< 0.001), and between d7 and d14 (p � 0.003). Te
cell number of hASCs on scPLCL increased between d1 and
d7 (p � 0.002) and from d1 to d14 (p< 0.001). No signifcant
increase in hASC number on scPLCL was detected between
d7 and d14 (p � 0.27).

3.4. Collagen Production by hASCs Signifcantly Increased on
scPLCLA2P. Te total acid- and pepsin-soluble collagen
content of samples was measured with Sircol collagen assay
after 14 d of cell culture (Figure 10). Total amount of col-
lagen in hUC monoculture (n� 18) was signifcantly lower
(p< 0.001) on scPLCLA2P (7.3± 6.3 µg/ml) than on scPLCL
(26.9± 4.5 µg/ml) whereas the hASCs (n� 18) cultured on
scPLCLA2P produced signifcantly more collagen
(129.4± 19.9 µg/ml, p< 0.001) compared to scPLCL
(49.6± 14.2 µg/ml). Te hASCs on scPLCLA2P produced
approximately 17 times more collagen than hUCs. However,
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Figure 2: Micro-CT images of the scPLCLA2P and scPLCL scafolds. Overall structure of scPLCLA2P scafolds (a), volume
(3.8× 3.8×1.2mm) of scPLCLA2P used in the porosity and A2P particle distribution measurements (b), distribution of the A2P particles in
scPLCLas (c), particle size distribution (n� 3) (d), overall structure of scPLCL scafolds (e), and volume (3.8× 3.8×1.2mm) of scPLCL used
in the porosity measurements (f ). Scale bar 500 µm.

Table 3: Average scafold porosity and pore sizes (n� 2-3).

Average porosity (%) Average pore size Maximum
pore size (µm)

scPLCLA2P 63 490± 200 µm 840
scPLCL 69 400± 140 µm 1060
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on scPLCL, the diference was only two times higher for
hASCs.

3.5. scPLCLA2P Supports hUC Phenotype and Enhances hASC
αSMA and COL III Expression. Te expression of specifc
epithelial genes in hUC and stromal genes in hASC
monocultures was measured with qRT-PCR on d14 (Fig-
ures 11 and 12). Te hUC expression of CK7 was signif-
cantly increased (p � 0.004) on scPLCLA2P compared to

scPLCL. No other statistical signifcances were detected.
However, relative mRNA amounts of urothelial maturation
markers UPIa and UPIb both seem slightly higher on
scPLCL. Te expression of CK8 and CK19 appears similar
on both scafolds.

Te expression of stromal markers αSMA, elastin, COL I,
COL III, and ratio of expressed COL I/III was determined in
hASC monocultures. Te amounts of αSMA and COL III
mRNA were signifcantly increased (p � 0.017, p � 0.004,
respectively) in hASCs cultured on scPLCLA2P compared to
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Figure 3: Micro-CTanalysis of the scafold pore sizes and interconnectivity. (a) Scafold pore interconnectivity as a function of particle size
capable of passing through the interconnected pores entering from outside of the scafold. Distribution of pore sizes in scPLCLA2P (b) and
scPLCL (c). Color scale represents the size of a particle capable of entering a pore (0–1000 µm). Scale bar 500 µm.
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Figure 4: Viability of hUCs monoculture on scPLCLA2P and
scPLCL at d1, d7, and d14. Viable cells are shown green and dead
cells red. Cell growth seems parallel on both scafolds. Scale bar
500 µm.
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Figure 5: Viability of hASCs monoculture on scPLCLA2P and
scPLCL at d1, d7, and d14. Viable cells are shown green and dead
cells red. Te hASCs appear to be spreading more on scPLCLA2P
than on scPLCL. Scale bar 500 µm.
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scPLCL. No statistical signifcances were detected in elastin
or COL I expression, and the mRNA amounts appear
parallel on both scafolds. Average ratios of hASC COL I/III
mRNA amounts were similar between the scafolds, 0.6 on
scPLCLA2 and 0.58 on scPLCL, when examining the Ct-
values of the PCR run. No statistical analysis could be done
for the COL I/III ratios, as the sample size (n� 3) is too small
for reliable statistical analysis.

3.6. In Coculture, hUCs Stained for UPIII and hASCs Main-
tained Myogenic Capabilities on Both Scafolds. Cell matu-
ration and phenotype maintenance in hUC/hASC coculture
on scPLCLA2P and scPLCL were examined with cyto-
chemical and immunofuorescent staining on d14. Te
costaining of F-actin and pancytokeratin, the acidic and
basic cytokeratins detected in epithelial cells, indicates that
the hUCs maintained their epithelial phenotype and had
similar cortical actin cytoskeleton organization on both
scafolds (Figure 13). Interestingly, the late hUC maturation
marker UPIII was stained positive in hUCs on both bio-
materials and faintly on PS although the staining was more
of a hue than clearly defned area (Figure 14). Te actin
cytoskeleton of hASCs was organized and aligned on
scPLCLA2P and slightly disorganized on scPLCL. Further-
more, αSMA staining in hASCs was superior on scPLCLA2P
compared to scPLCL, and very minor staining was detected
on control PS.

4. Discussion

Te surgical repair of urethral defects currently lacks optimal
repair methods as the operations are prone to complications,
and suitable autologous donor tissue is scarce [3–5]. To
overcome such issues, tissue engineering can be utilized to
design biomaterials to mimic the mechanical properties of
natural tissues, while also providing optimal niche for tissue
regeneration. In this study, we compared two supercritical
CO2-foamed PLCL-based scafolds, A2P-embedded
scPLCLA2P, and plain scPLCL, for urethral application.
We cultured hUCs and hASCs in mono- and cocultures on
porous scPLCLA2P and scPLCL scafolds to determine the
efect of A2P on hUC maturation and on the capability of
hASCs to form urethral stromal layer.

Porous scafolds with interconnected pores allow cell
migration into the scafolds for tissue ingrowth. In this
study, we used the process of scCO2-foaming to produce
porous scPLCLA2P and scPLCL scafolds. In scCO2 foam-
ing, the porosity can be adjusted by altering the time,
temperature, and pressure during the fabrication process,
and no toxic solvents are required [72, 73]. Porous scafolds
produced with scCO2-foaming have previously shown
promising results in multiple tissue engineering studies,
including in cartilage [22], vaginal [68], and bone [74, 75]
applications.

Te µCTimaging was performed to show similar scafold
porosity for scPLCLA2P (63%) and scPLCL (69%), with an
average pore size of 490± 200 µm and 400± 140 µm, re-
spectively. Te measured porosity was in the same range as
in previous publications using similar scCO2-foamed PLCL
scafolds [65, 67, 68]. Most importantly, our fndings show
that the incorporation of A2P did not afect the scafold
porosity, and the pore sizes of both scPLCLA2P and scPLCL
are sufcient for cell migration enabling tissue ingrowth.
Here, our results indicate that particles up to approximately
400 µm in diameter can enter 50% of the pores in both
scPLCLA2P and scPLCL scafolds, whereas particles up to
200 µm can enter 90% of the pores in both scafolds. Fur-
thermore, hASCs have been demonstrated to migrate into
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Figure 6: Scanning electron microscope (SEM) images showing
the morphology of hUCs in monoculture on scPLCLA2P and
scPLCL at d1, d7, and d14. Spreading of hUCs seems similar on
both scafolds, yet on d14, the hUCs on scPLCLas seem to have
acquired more structural apical surface (arrows). Scale bar 100 µm.
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Figure 7: Scanning electron microscope (SEM) images showing
the morphology of hASCs in monoculture on scPLCLA2P and
scPLCL at d1, d7, and d14. Te hASCs on scPLCLA2P appear to
spread more along the scafold compared to scPLCL. Scale bar
100 µm.
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Figure 8: Fluorescent images showing the viability of hUCs and
hASCs in hUC/hASC coculture on scPLCLA2P and scPLCL at d1,
d7, and d14 time points. Viable cells stain green and dead cells red.
Cell growth of hUCs remains similar on both scafolds. Viability of
hASCs is supported better on scPLCLA2P, whereas hASCs on
scPLCL seem to diminish during the coculture. Scale bar 500 µm.
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similar scCO2-foamed PLCL scafolds with a pore size of
350–660 µm [67].

Previously, porous scafolds embedded with various
bioactive components, such as hydroxyapatite and growth
factors, have been investigated for tissue engineering ap-
plications [75–79]. We wanted to study scPLCL-embedded
A2P, as AA has been reported to increase cell proliferation,
and it is a critical factor in human collagen synthesis [51, 58].
Te scPLCLA2P scafolds used in this study were in-
corporated with 8wt-% of A2P. Our previous drug release
study using similar porous PLCL scafolds with 8wt-% A2P
revealed that approximately 65% of embedded A2P was

released in 37°C bufer solution during the frst week. During
the frst two weeks, the A2P concentration in solution was
6–85 µg/ml which corresponds to 20–260 µM [65]. Similarly,
porous PLGA scafolds embedded with A2P released
52–66% of A2P during the frst 9 days [80]. In addition,
electrospun PLA scafolds were shown to release 50% of the
incorporated A2P in distilled water within the frst 24 h [60].
Previously, 100 µg/ml AA concentration was reported to be
most favourable for hASCs whereas concentrations above
300 µg/ml showed cytotoxic efects [81].

To our knowledge, this is the frst study to assess the
efect of scafold embedded A2P on hUC growth and
phenotype. Te hUCs in monoculture remained viable and
proliferated on both scafolds with no dead cells visible. No
apparent diference in hUC viability or spreading could be
detected in the Live/Dead assay between scPLCLA2P and
scPLCL. Whereas visually the diferences in the hUC pro-
liferation on scPLCLA2P and scPLCL scafolds could not be
detected, the quantitative CyQUANT proliferation assay
revealed signifcantly higher hUC amount on scPLCL than
on scPLCLA2P at every time point.

We utilized SEM to further study the morphology of
hUCs cultured on scafolds. In SEM images, the hUCs had
polygonal cell morphology with well-defned cell borders on
both scPLCLA2P and scPLCL. Especially on scPLCLA2P, the
hUCs had acquired distinctive cell boundaries, possible
precursors of tight junction rings. In a natural urothelium,
well-defned tight junction rings can be detected around
mature umbrella cells, the cells on the mucosal surface of
a matured urothelium [82]. In addition, we detected that
some hUCs on scPLCLA2P had acquired irregular apical
surface which suggests a possible presence of microvilli or
urethral plaques, both signs of the UC maturation [82–84].
Formation of tight junctions and presence of microvilli have
also been previously reported in tissue engineered
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Figure 9: Cell number of hUC and hASC monocultures relative to d 1 scPLCL CyQUANTmean result (n� 18–27). Relative hUC number
(a) was signifcantly higher on scPLCL than on scPLCLA2P at each time point (d1–d 7 p< 0.001, d1–d14 p � 0.009). On scPLCLA2P, the
relative hUC number signifcantly increased between d1–d7 (p � 0.022) and d1–d14 (p � 0.001). On scPLCL, the hUC number increased
d1–d7 and d1–d14 (p< 0.001), but no statistical signifcance was detected between d7–d14 (p � 0.823). Relative number of hASCs (b) was
similar on both scafolds on d 1 (p � 0.27), but signifcantly higher on scPLCLas than on scPLCL on d7 and d14 (p< 0.001). During the
assessment period, relative hASC number on scPLCLA2P increased between each time point (d1–d7 p< 0.001, d1–d14 p< 0.001,
d7–d14 p< 0.003). On scPLCL, hASC number increased between d1–d7 (p � 0.002) and d1–d14 (p< 0.001). (∗∗ � p< 0.01).
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Figure 10: Total amount of collagen present in hUC and hASC
monocultures on d 14 (n� 18). For hUCs, the amount of total
collagen was higher on scPLCL compared to scPLCLA2P, whereas
for hASCs, the total collagen amount was signifcantly higher on
scPLCLA2P. (∗∗ � p< 0.01).
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urothelium [85, 86]. Terefore, even though the hUC
proliferation on scPLCLA2P was signifcantly lower when
compared to scPLCL, the morphology of hUCs on
scPLCLA2P could suggest further signs of hUC maturation
compared to the hUCs on scPLCL scafolds.

In addition, our results indicate that the hUCs retained
their urothelial phenotype on scPLCLA2P and scPLCL.
Importantly, the monocultured hUCs on both scafolds
expressed the UC maturation markers UPIa and UPIb, the
major components of the urethral plaques [83, 87].
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Figure 11: Te hUC expression of epithelial markers in monoculture on d14 relative to d1 results of a single used donor hUC line. Te
expression of CK7 mRNA was signifcantly increased on scPLCLA2P (c). (p � 0.004) compared to scPLCL. No signifcant diference was
detected in the expressions of UPIa (a) (p � 0.329), UPIb (b) (p � 0.931), CK8 (d) (p � 1.0), or CK19 (e) (p � 0.52) between scafolds. (n� 6,
∗∗ � p< 0.01).
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Figure 12: Te hASC expression of stromal markers in monoculture on d14 relative to d1 results of a single used donor hASC line. Te
expression of COL III (d) and αSMA (a) mRNAwas increased on scPLCLA2P (p � 0.004 and 0.017, respectively). No signifcant diference in
COL I (c); (p � 0.429) or elastin (b); (p � 0.931) mRNAwas detected between the scafolds. Ratio of the expressed COL I/COL III mRNA (e)
was similar on both scafolds. (n� 6, ∗ � p< 0.05, ∗∗ � p< 0.01).
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Particularly, the hUCs on both scPLCLA2P and scPLCL
scafolds expressed the cytokeratins CK7, CK8, and CK19,
which are present in the cell layers of a mature urothelium
[83, 88]. Te amount of expressed CK7 mRNA was sig-
nifcantly higher on scPLCLA2P compared to scPLCL. Even
though CK7 is present in all layers of the urethral urothe-
lium, it has been reported to have a critical role in mature
umbrella cells and therefore could further indicate the
maturation of UCs [88, 89]. We have also previously shown
that hUCs cultured on PLCL membranes maintain their

urothelial phenotype and express the cytokeratins CK7,
CK8, and CK19 [10] and that vaginal epithelial cells on
a scafold similar to the scPLCL also expressed UPIa, UPIb,
and UPIII [68].

Along with the mature urothelium, the regeneration of
stromal tissue and smooth muscle layers is critical for
functional urethra [26–29], and therefore, we utilized hASC
for the stromal compartment in our study. A2P in
scPLCLA2P had a noticeable efect on hASC viability and
proliferation. Our results show how cells in the hASC
monoculture proliferated and spread densely over the
scPLCLA2P scafold, whereas on scPLCL, the hASCs formed
clusters. Te dense spreading of hASCs on scPLCLA2P and
clustering on scPLCL was also visible in SEM imaging. Such
clustering on scPLCL scafolds was also seen in our previous
study using human vaginal stromal cells [68]. One possible
explanation for cell clustering could be the hydrophobicity
of the PLCL [90] hindering the hASC attachment and
forcing them to form clusters with each other. Te in-
corporation of A2P could decrease the hydrophobicity of
PLCL and therefore allow better cell attachment, as also
demonstrated for PLA scafolds [60]. Te striking efect on
hASC proliferation was also observed in CyQUANT pro-
liferation assay, where the hASCs on scPLCLA2P kept pro-
liferating the entire 14-d assessing period, and the number of
hASCs remained superior when compared to scPLCL at each
time point. Terefore, in contrast to hUCs, the A2P in
scPLCLA2P strongly enhances the hASC proliferation.

Even though A2P enhanced the hASC proliferation in
our study, too high concentrations of AA or A2P in cell
culture have been suggested to lead to cytotoxicity and
reduced viability [58, 81, 91], although contradictory reports
have been published. For hASCs, cytotoxicity of supple-
mented A2P appears to be dose-dependent and could be
prevented by increasing the cell density. Moreover, AA was
more cytotoxic than A2P. Concentration of 250 µM A2P
supplemented in the cell culture medium has been reported
to be benefcial for hASC proliferation, stemness, and col-
lagen synthesis [53], but cytotoxicity has also been detected
with the same 250 µM concentration [91]. Te 250 µM
concentration has also shown to increase proliferation of
bone marrow-derived mesenchymal stem cells [58].

Collagen is the major component of stromal ECM, and
both AA and A2P can stimulate its production and enhance
the collagen mRNA expression and stability [50, 92–94].
Terefore, we assessed the efect of scPLCLA2P on the total
amount of collagen in hUC and hASC monocultures. Te
amount of collagen in hUC monoculture was lower on
scPLCLA2P compared to scPLCL; however, epithelial cells
are not expected to produce high quantities of collagen
[95, 96]. Instead, the A2P signifcantly increased the total
amount of collagen in hASC monocultures. However, the
increase could not be detected in the COL I mRNA levels, yet
the amount of hASC COL III mRNA was increased on
scPLCLA2P. Terefore, as 90% of produced collagen is COL I
[50], the efect of A2P in scPLCLA2P seems to be associated
with the COL I maturation rather than in the mRNA ex-
pression. Previously, supplemented AA or its derivatives
have been shown to increase the collagen production in
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Figure 13: Immunofuorescent staining for pancytokeratin (green)
and cytochemical staining for F-actin (red) in hUC/hASC coculture
on d 14 on scPLCLA2P and scPLCL.Te hUCs on the left panel and
the hASCs on the right panel. Te PS served as a control material.
Scale bar 100 µm.
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Figure 14: Immunofuorescence staining for UPIII (red) in hUCs
and for αSMA (green) in hASCs in hUC/hASC coculture on d 14 on
scPLCLA2P and scPLCL. hUCs on the left panel and hASCs on the
right panel. Control stainings were performed with hUC and hASC
monocultures on PS.Te hUCs on all materials stain for UPIII. For
hASCs, αSMA is present on all materials, yet it seems more
abundant on scPLCLA2P. Scale bar 100 µm.
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hASCs and bone marrow-derived stem cells [53, 55, 58, 81],
and similarly to our fndings, COL III mRNA but not COL I
mRNA expression was increased in A2P-supplemented
osteoblasts [97]. However, Yu et al. reported an increase
in both total collagen and COL I mRNA amounts in hASCs
cultured with supplemented A2P [53].

Increased amount of COL III may provide more elas-
ticity for the forming tissue [98, 99], but overproduction of
COL III may contribute to the formation of fbrosis
[99, 100]. Decreased ratio of COL I/III in tissue has been
identifed in fbrotic growth [101, 102]. Terefore, the
amount of COL III formed and the ratio of COL I and COL
III in situ are important as abnormal ratio may lead to
stifness or fbrosis in the forming tissue. In our current
study, the hASCs COL I/III mRNA ratio was very similar in
hASC cultured on scPLCLA2P (0.60) and on scPLCL (0.58).
For both, the ratio was less than one, meaning more COL III
to COL I mRNA was detected on both scafolds. Te sig-
nifcance of the increased COL III mRNA should be in-
vestigated in more detail in future research.

In this study, we established hUC and hASC cocultures
to represent the layers of a natural urethra by seeding the
cell types on the opposite sides of the scafold. Te hUCs
cultured on top of the scafold represent the urothelium.
Te scafold functions as a temporary lamina propria for
the hUCs to attach to and the hASCs seeded on the opposite
side represent the stromal layer underlying the lamina
propria. Previously, hUCs have been cocultured with
various cell types, including fbroblasts and smooth muscle
cells [103], and hASCs [81, 104]. In our study, we utilized
pediatric primary hUCs, whereas in many previously
published studies, adult or age unspecifed hUCs have been
used [85, 86, 104, 105]. However, also the adult-derived
hUCs have been demonstrated to retain their capacity to
form functional urothelium [86, 105]. Our results show that
the hUCs remained viable in the coculture with hASCs on
both scPLCLA2P and scPLCL scafolds. Te hUC viability in
coculture with hASCs was similar on both scafolds and
appeared alike to the hUCs in monoculture.

Most importantly, our results revealed that the hUCs
maintained their phenotype also in the coculture with hASCs.
Te hUCs on both scafolds stained positive for pancytokeratin,
the cytokeratins presented by epithelial cells. Notably, staining
of the late hUCmaturationmarkerUPIII appeared to be higher
in the hUCs on the scPLCLA2P and scPLCL scafolds, whereas
only a dim staining was detected on control PS. In a previous
study, the expression of UPIII, UPIa, or UPIb was not detected
in hUCs under static culture conditions [85] or when cocul-
tured on an ASC-basedself-assembled scafold [86]. However,
when cultured on a combination of fbroblast and ASC-
basedself-assembled scafold, UPIa-, UPIb-, and UPIII-
positive hUCs were detected [86]. In contrast, a more recent
study reported that hUCs cultured on self-assembled hASC
scafold did maintain their phenotype and expressed the
specifc markers UPIa, UPIb, CK7, and CK20 [81]. Previously,
hUCs have also been cocultured with hASCs to induce hASC
urothelial diferentiation [104].Te hASCs expressedUPIb and
UPII in a direct hUC coculture, whereas they were not detected
in an in-direct coculture [104].

We observed that the A2P in scPLCLA2P supported the
hASC growth also in coculture despite the used suboptimal
coculture medium, whereas on scPLCL, the viable hASCs
seem to gradually diminish. Viable hASC sheet is visible on
scPLCLA2P also at d14, although the strong hue of hUC
staining through the scafold partly conceals the signal of
hASCs. Tese fndings verify the results of the hASC
monocultures and are also supported by previous research,
where AA and its derivatives have been shown to signif-
cantly increase the proliferation rate of humanmesenchymal
stem cells, including hASCs [53, 58, 106–108]. Additionally,
we studied the presence of hASCs in hUC/hASC cocultures
with F-actin cytoskeleton staining. Tis staining also illus-
trated enhanced hASC growth and spreading on the
scPLCLA2P scafold compared to scPLCL. For the hUCs,
actin staining showed similar cortical organization on both
scafolds.

In the current study, more αSMA mRNA was mea-
sured in hASC monocultures on scPLCLA2P, and more
αSMA-positive hASCs were detected in coculture on
scPLCLA2P when compared to scPLCL. Increased αSMA
expression in ASCs has been linked to enhanced myogenic
diferentiation [47]. Furthermore, increased hASC and
fbroblast αSMA expression has been reported when
cultured with AA [109, 110]. Terefore, in our study, the
A2P in scPLCLA2P may have enhanced the myogenic
capacity of hASCs. However, in addition to indicating
smooth muscle cell diferentiation and presence of smooth
muscle cells, αSMA is expressed by myofbroblasts [111].
It may also indicate pericytic and proangiogenic functions
of hASC [112].

5. Conclusions

We demonstrated the potential of scPLCLA2P scafolds for
urethral tissue engineering applications. Te novel
scPLCLA2P scafold supported the viability of both hUCs
and hASCs in mono- and coculture, even despite the
suboptimal coculturing conditions for hASCs. All our
results support the cytocompatibility and bio-
compatibility of the scPLCLA2P scafolds, yet future
in vivo experiments are still required to further ensure
their safety. Te efect of A2P on hUCs was modest, yet
most importantly, the hUCs maintained their phenotype
and expressed urothelial maturation markers both in
mono- and coculture. We were able to show UPIa, UPIb,
and UPIII expression in hUCs; however, further research
is needed to explore the hUC maturation in more detail.
Te proliferation and collagen production of hASCs were
signifcantly increased on scPLCLA2P when compared to
scPLCL. However, more research on the efect of A2P on
COL I and COL III production is needed to detect and
avoid the formation of fbrosis. Moreover, αSMA ex-
pression in hASC was increased on scPLCLA2P, possibly
suggesting an increased myogenic or proangiogenic po-
tential. For future research, the coculture conditions need
to be optimized to better support both hUCs and hASCs to
allow further assessment of hUC maturation and hASC
stromal production on the scPLCLA2P scafolds.
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