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In brief

Conventional histopathology uses

chemical staining as the gold standard for

tissue analysis, but it is a time-intensive,

laborious, and irreversible process. This

study systematically evaluates the

potential for deep neural networks in the

virtual staining of tissue images obtained

with regular brightfield microscopy. For

tissues from multiple organs, we

performed quantitative and visual

evaluation of the reproduction accuracy

of virtual staining vs. H&E-stained ground

truth. Using variants of the generative

adversarial network model pix2pix, we

show that increasing neural network

complexity can lead to higher virtual

staining quality. Our study suggests that

virtual staining could be used to reduce

the need for chemical staining in

histopathology.
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THE BIGGER PICTURE Virtual staining of unstained histological tissue by using deep neural networks has
the potential to streamline the sample processing phase in histopathology and to reducematerial consump-
tion. The applicability of virtual staining as a replacement for traditional staining, however, is dependent on
its accuracy in repeating the staining patterns on macro and cellular levels. Here, we show through quan-
titative and comprehensive visual evaluation of tissue samples from several organs that increasing the ca-
pacity of the neural networks produces better virtual staining with fewer artifacts. Our study suggests that
AI-enabled virtual staining of unstained tissue obtained using a widely available basic brightfield micro-
scopy setup can be used to potentially omit the staining process. This technology is scalable and has
tremendous potential in improving sustainability, enabling savings in laboratory work, chemicals, and in
use of histological tissue specimens.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Conventional histopathology has relied on chemical staining for over a century. The staining process makes
tissue sections visible to the human eye through a tedious and labor-intensive procedure that alters the tissue
irreversibly, preventing repeated use of the sample. Deep learning-based virtual staining can potentially alle-
viate these shortcomings. Here, we used standard brightfield microscopy on unstained tissue sections and
studied the impact of increased network capacity on the resulting virtually stained H&E images. Using the
generative adversarial neural network model pix2pix as a baseline, we observed that replacing simple con-
volutions with dense convolution units increased the structural similarity score, peak signal-to-noise ratio,
and nuclei reproduction accuracy. We also demonstrated highly accurate reproduction of histology, espe-
cially with increased network capacity, and demonstrated applicability to several tissues. We show that
network architecture optimization can improve the image translation accuracy of virtual H&E staining, high-
lighting the potential of virtual staining in streamlining histopathological analysis.
INTRODUCTION

Histological stainings are used to colorize tissue specimens,

making the almost transparent tissue sections visible. The chem-

ical staining process is currently required for standard patholog-
This is an open access article under the CC BY-N
ical observations in disease research and in clinical diagnostics.

Different types of dyesmanifest different colors in the stained tis-

sue, adding contrast and revealing details such as cellular and

sub-cellular morphological information that is otherwise indis-

cernible in unstained tissue. For instance, hematoxylin and eosin
Patterns 4, 100725, May 12, 2023 ª 2023 The Author(s). 1
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(H&E), first introduced in 1876 by A. Wissowzky,1 is one of the

most commonly used stain combinations; hematoxylin gives

cell nuclei a purplish-blue color, and eosin gives the extracellular

matrix and cytoplasm different shades of pink.2

While conventional histopathology staining has been the gold

standard for tissue analysis for decades, it comes with its fair

share of drawbacks. The staining process is time- and chemi-

cal-consuming, and resource-intensive. The staining protocols

and color manifestation of dyes vary from one laboratory to

another.3 Moreover, the histological process is laborious and in-

cludes several manual phases where potential technical varia-

tions or artifacts may be introduced. Further, the current chem-

ical protocols allow only one staining to be performed per

tissue section. Hence, for multiple stainings, additional tissue

sections are required. This adds to the consumption of often

limited tissue samples in, e.g., clinical diagnostics.

A possible solution to these problems lies in virtualizing the

staining process. Virtual staining refers to employing an algo-

rithmic approach that takes the scanned image of an unstained

tissue specimen as input and generates its corresponding

stained version digitally. In computer vision, this problem, in gen-

eral, is known as image-to-image translation and there are

several different methods to solve it.4 In medical imaging, im-

age-to-image translation methods have been used especially

in radiology for cross-modality synthesis, for instance, magnetic

resonance (MR) to computed tomography (CT),5,6 MR T1-

weighted to T2-weighted sequence, and vice versa.7 These

methods have rather quickly made the transition from research

to Food and Drug Administration- and European Medicines

Agency-approved commercial products meant for clin-

ical use.8,9

In recent years, deep learning has greatly impacted the field of

computer vision. Deep learning-based algorithms have achieved

superior performance over conventional machine learning

methods at tasks such as image classification and segmenta-

tion,10–13 and image-to-image translation is no exception here.

Most of the deep learning-based image-to-image translation

methods stem froman image synthesismethodcalled generative

adversarial network (GAN).14 A GAN uses two models: a gener-

ator and a discriminator, and both models are trained in a game

theoretic way. The models compete in a zero-sum game, where

the generator tries to generate as realistic synthetic images as

possible by learning a mapping function of a latent space to the

target domain, whereas the discriminator tries to distinguish

synthetic images from the real onesby learning todistinguish fea-

tures of both types of images. The method attains its learning

objective when the realism of generated or synthetic images rea-

ches a point where the discriminator can no longer tell synthetic

images apart from the real ones, and the generator cannot further

improve the realism of the synthetic images. This phenomenon is

known as Nash equilibrium in game theory.15

Image-to-image translation methods are mainly divided into

supervised and unsupervised categories. Supervised image-to-

image translation methods require aligned or registered image

data with pixel-to-pixel correspondence for the training phase,

whereas unsupervisedmethods typically use distributionmatch-

ing loss functions such as cycle consistency loss,16 instead of

relying on pixel-wise correspondence. Unsupervised methods

such as CycleGAN17 have proven to work well for histopatholog-
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ical tasks such as stain normalization18,19 and stain-to-stain

translation.20 However, because of the complexity of the task,

the precision of the pixel-wise loss functions16 has been the

rationale behind the use of supervised methods in most of the

work thus far, on virtual staining of unstained tissue images.21

Recently, GAN-based image-to-image translation methods

have been tested in studies using tissue specimens extracted

from different organs, distinct types of input label-free tissue im-

ages obtained with various imaging modalities, and different

stains to compare virtual staining against chemically stained tis-

sue images.21 Bayramoglu et al.22 used conditional GAN and

dimension reduction to virtually translate hyperspectral lung tis-

sue label-free images to their H&E equivalent. Visual analysis

showed that their method is promising; however, the quantitative

assessment was inconclusive. Rivenson et al.23 proposed a

method called PhaseStain that used label-free quantitative

phase images of human skin, kidney, and liver tissue to generate

their virtual equivalent of H&E, Jones’, and Masson’s trichrome

stain, respectively. Through quantitative evaluation, it was

demonstrated that virtually stained tissue images were of high

quality, and although the network output was sensitive to gran-

ular details (tested through phase noise) it was less affected by

macro-level variability such as wrinkles and height variation

pertaining to the tissue section.

Initial studies focused more on evaluating the image transla-

tion quality through image analysis quantitative evaluation met-

rics. More recent studies have also demonstrated the clinical po-

tential of virtually stained images. Rana et al.24 used a variant of

conditional GAN25 to virtually apply H&E stain to deparaffinized

formalin-fixed paraffin-embedded prostate (core biopsy) tissue

images and then de-stain the virtually stained images. In addition

to direct quantitative evaluation, they used a tumor segmenta-

tion task to further test the clinical utility of their virtual staining

method. The same group later built an end-to-end deep learning

framework for the automatic detection and localization of tumors

on the virtually stained images.26 Some studies have even

ventured into the experimental domain of novel virtual stains.

Zhang et al.27 proposed a novel solution for multiplex staining

that digitally blends existing stains to generate new histological

stains that are physically not possible yet. Along with stain

blending, it also generated different micro-structured regions

stained with H&E, Jones’, and Masson’s trichrome stain within

the same tissue. In a recent study, we used CycleGAN,17 an un-

supervised learning approach, to determine the optimal un-

stained tissue processing and imaging protocols and showed

proof of principle that deparaffinized and, in some cases, still-

in-paraffin tissue sections could be used to achieve meaningful

histology with virtual H&E staining.28

Although the aforementioned studies have explored different

aspects of virtual histopathology staining including imaging

technique, tissue types, and stains, to the best of our knowledge,

the effect of the network capacity on the quality of the generated

virtual histopathology images remains unknown. Furthermore,

although pixel-wise quantitative metrics and general histological

views have been presented, detailed histological accuracy of vir-

tual H&E staining from standard brightfield images has not been

reported thus far. Therefore, in this study, we systematically

explored the effect of increased network capacity on the virtual

staining of label-free, brightfield tissue images. In addition, to



Figure 1. Overview of virtual staining performance

Example views of WSI and tissue level showing the performance of virtual staining. Each column shows original images of unstained or H&E-stained tissue, or

virtually stained tissue with baseline, double convolution, or dense convolution architecture. Scale bars per row.
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demonstrate the level of histological accuracy, we analyzed the

results both quantitatively and qualitatively.

RESULTS

Structural similarity of virtual and chemical H&Estaining
on whole-slide level
Weimagedunstained tissuesectionsofpre-clinicalprostate tissue

with standard brightfield microscopy and produced virtually

stained H&E images with three variants of the supervised image-

to-image translation model pix2pix.25 To study the virtual H&E

staining performance, we first visually compared virtually stained

images with chemically H&E-stained ones from the same tissue

sections at the whole-slide level. At a low magnification, all

three variants, baseline, double convolution, and dense convolu-

tion, performed well, reproducing a highly similar macroscopic

appearanceof tissuehistologyaschemicalH&Estaining (Figure1).

To further guide the visual evaluation, we used tile-wise struc-

tural similarity index measure (SSIM) scores to generate a heat-

map for each whole-slide image (WSI) in the test set (Figure S1).

The heatmap visualization revealed that a significant number of

tissue edge tiles having only a small percentage of tissue content

had high SSIM scores. This discovery led to the decision of

including tiles containing only tissue content in the quantitative

evaluation by excluding edge tiles containing white background

as much as possible (Figure S2).

Quantitative evaluation of virtual H&E staining methods
Followingvisual inspectionof themacro-level correspondencebe-

tween virtual and chemical H&E staining, we proceed to
quantitative evaluation of staining similarity for the three pix2pix

variants using pixel-level similarity metrics. The first variant, a

baseline pix2pix model that uses a single convolution layer on

each level of the encoder anddecoder,was trained to set a bench-

mark. It achieved a mean peak signal-to-noise ratio (PSNR) of

22.609,ameanSSIMof0.725,andameanPearsoncorrelationco-

efficient (PCC) of 0.903. The second variant, a pix2pix model with

double convolution encoder-decoder blocks was trained to

observe if it improved the quality of virtual staining over the bench-

mark training.ThemeanPSNRandSSIMdidnot improve,butPCC

improved slightly; the values were 22.214, 0.720, and 0.904,

respectively. Finally, the third variant, a pix2pix model with dense

convolution encoder-decoder blocks, an approach inspired by

DenseU-net,29 was trained to explore the effect of a more sophis-

ticated approach to increasing the network capacity on the quality

of virtual staining. The dense convolution approach outperformed

the previous two with a mean PSNR of 22.865, a mean SSIM of

0.746, and a mean PCC of 0.916. The overall sample-wise results

can be seen in Table 1, the figures with asterisks represent the

highest score. This trend holds even for evaluation that includes

the edge tiles (Table S1). In addition to sample-wise mean scores,

the results were further compared through violin and density plots

of tile-level SSIM, PSNR, and PCC scores as shown in Figure 2,

which shows a higher density of tiles toward high scores for the

dense convolution approach as compared with the other two ap-

proaches in all three evaluation metrics.

Histological examination of virtual H&E staining quality
We then systematically evaluated the histological performance

of the virtual H&E stainings produced by the three variants of
Patterns 4, 100725, May 12, 2023 3



Table 1. Results from virtual staining experiment excluding edge tiles

WSI

SSIM PSNR PCC

Baseline

Double

Conv.

Dense

Conv. Baseline

Double

Conv.

Dense

Conv. Baseline

Double

Conv.

Dense

Conv.

Sample 1 0.733 0.738 0.719 21.718 21.845 21.704 0.853 0.868 0.869

Sample 2 0.734 0.733 0.729 21.481 21.516 21.604 0.853 0.866 0.868

Sample 3 0.716 0.725 0.726 21.514 21.800 21.957 0.874 0.885 0.890

Sample 4 0.757 0.764 0.764 22.597 22.981 23.205 0.883 0.894 0.900

Sample 5 0.712 0.722 0.724 21.717 22.021 22.039 0.872 0.883 0.887

Sample 6 0.648 0.649 0.680 20.520 19.922 20.083 0.922 0.928 0.934

Sample 7 0.699 0.675 0.729 22.034 20.555 21.465 0.923 0.912 0.930

Sample 8 0.773 0.769 0.800 24.518 24.121 24.652 0.929 0.933 0.940

Sample 9 0.772 0.753 0.798 24.251 23.659 24.839 0.928 0.919 0.933

Sample 10 0.716 0.704 0.758 23.671 22.716 23.915 0.928 0.921 0.940

Sample 11 0.735 0.737 0.778 23.527 23.130 24.430 0.921 0.919 0.934

Sample 12 0.708 0.692 0.745 23.263 22.551 23.919 0.929 0.917 0.940

Sample 13 0.715 0.696 0.752 23.110 21.959 23.437 0.926 0.909 0.938

Mean* 0.725 0.720 0.746* 22.609 22.214 22.865* 0.903 0.904 0.916*

SD* 0.033 0.035 0.039 1.216 1.170 1.688 0.031 0.022 0.0036

Tile-wise comparison of baseline, double convolution, and dense convolution experiments’ virtually H&E-stained images against the chemically H&E-

stained ground truth images. The numbers with asterisks represent the best results.

Conv., convolution; PCC, Pearson correlation coefficient; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure.
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the pix2pix model with the prostate dataset. First, we evaluated

the accuracy of different tissue components and types in the

virtually stained images. The murine prostate consists of glan-

dular structures lined with epithelial tissue abundant in eosino-

philic secretion. The glands are surrounded by stroma consisting

of connective tissue and smooth muscle in addition to the occa-

sional adipose tissue, blood vessels, capillaries, and peripheral

nerves.30 In the three different virtual staining versions, all tissue

components and types were readily detectable. Epithelial and

adipose tissue stainings were reproduced particularly well (Fig-

ure 3). Tiles containing simpler structures, like adipose or secre-

tions, were in fact the best-performing ones. Stroma, including

muscle and connective tissue, nervous tissue, blood vessels,

and capillaries appeared to be more challenging to re-create.

While inspecting cell and nuclear structures at high magnifica-

tion, we observed that round nuclei in epithelium had accurate

shape, size, and location (Figure 3). In other tissue types, most

round and strongly basophilic nuclei were accurately repro-

duced. In each of the three architectures, the accuracy of nuclear

representations decreased with elongated or irregular-shaped

nuclei, or if the nuclei were hypochromatic with a particularly

pale hematoxylin color tone (Figures 3 and S3). Eosinophilic

areas performed well, and color tones in all tissues, particularly

in muscle, nervous, and stromal loose connective tissue

(Figure 3) were reproduced with high accuracy.

BecauseGAN-based image-to-image translationmethods are

notorious for hallucination artifacts, we screened for such in the

virtually stained H&E images. Hallucination artifacts appeared

in the baseline network-generated images, particularly where

erythrocytes and lymphocytes were clustered together. How-

ever, these started to disappear when the network capacity

was increased and seemed to completely vanish in the dense

convolution experiment results (Figure S3).
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Since the general representation of the tissue histology was

astonishingly accurate, we tested the limits of histological accu-

racy that correlate with the potential clinical applicability of the

methods in the future. We performed rigorous screening of all

virtually stained images against the ground truth H&E images

and mapped all possible histological representations requiring

further attention in future model development. We found occa-

sional fine patterning visible in virtual stainings from all three

models (Figure S3); however, its source is not clearly evident.

Other minor artifacts were misrepresented coloring, where

sometimes the tissues would appear notably more or less blue

or pink than in the ground truth; however, the histological inter-

pretability was not affected by these (Figure S3). Occasionally,

the edges of the tiles were visible, mostly in eosinophilic areas

or outside of tissue (Figure S4). In some of the samples, a fine

pattern can be detected in the output of all three network archi-

tectures (Figure S4). Although this pattern can be seen within the

tissue, it is best visible outside of the tissue and does not impede

histological interpretation.

Because histological sections sometimes have tissue artifacts,

we also recorded interpretation of them by virtual H&E staining.

These included patterns created by wrinkles and out-of-focus

areas as well as crystal structures (Figure S5), the first one being

by far the most common and a known challenge with chemically

stained H&E. Interestingly, baseline network-generated images

had themost distinct and largest pattern, resembling a fish-scale

pattern, which decreased in size as the network capacity

increased. Dense convolution did not have a defined pattern

but amore indistinct blur of tissue-like structures. Sporadic black

debris in the tissue was transferred correctly by the algorithm

(Figure S5). Hematoxylin from H&E staining causes occasional

debris in the chemically stained ground truth, which is interest-

ingly eliminated by the use of virtual staining (Figure S5).



Figure 2. Quantitative evaluation plots

Tile-wise violin and density plots of SSIM, PCC, and PSNR scores for the three variants of the pix2pix model. Violin plots showmean, first quartile, minimum, and

maximum values.
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Representation of nuclear morphology in virtual H&E staining

is of particular interest due to its importance in clinical pathol-

ogy including cancer diagnostics. It appears that the more

organized the epithelium is, the more accurately it is repro-

duced (Figure 4). Occasionally, nuclear fusions appear with

adjacent nuclei in virtual staining. This phenomenon was de-

tected in the output of all three architectures at a similar rate.

On the other hand, there were differences in chromatism of

nuclei between the algorithms, as falsely hyperchromatic nuclei
appeared more abundantly with baseline than the other two ar-

chitectures. As opposed to the well-performing epithelium with

nuclei more regular in shape and location, elongated nuclei

were challenging to virtually reproduce. This included mainly

basal cells whose location or shape was incorrect, and in

some cases, false positive nuclei appeared. Although a lot of

variation in fine texturing exists in the virtually stained H&E im-

ages, in some nuclei even intranuclear details, such as hetero-

chromatin, were correctly interpreted (Figure 4). Further, even
Patterns 4, 100725, May 12, 2023 5



Figure 3. Representative images of different virtually H&E-stained tissue types and the corresponding unstained tissue and ground truth

Each column shows original images of unstained or H&E-stained prostate tissue, or virtually stained tissue with baseline, double convolution, or dense

convolution architecture. Scale bars per row.
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Figure 4. Representative images of nuclei in virtually H&E-stained tissue images

Images show nuclear performance in prostate epithelium with the virtual staining algorithms. Virtual staining algorithms generate more accurate nuclei repre-

sentations in the organized epithelium compared with unorganized epithelium (two upper rows). Infrequent nuclear fusions (third row, white arrows) occur

(legend continued on next page)
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cell membranes could also be distinguished in certain eosino-

philic regions (Figure 4).

Quantitative evaluation of nucleus-level statistics from
virtual stained images
In addition to the WSI level similarity using pixel-level metrics, we

evaluated the resemblance between H&E and virtual staining

quantitatively on a single-cell level by comparing nucleus detec-

tion statistics for the prostate dataset. A nucleus segmentation

model called Hover-Net31 was used for segmenting nuclei in

patches extracted from H&E-stained reference images, and

similar segmentation was performed to virtually stained counter-

parts. The original Hover-Net model was used with the CoNSeP

checkpoint. As an output, the model provides centroid coordi-

nates and contours for each nucleus. In total, 135 image tiles of

2048 3 2048 pixels (723 3 723 mm) were extracted from H&E

reference stained samples, covering all WSIs in the test set of

the prostate dataset, and including areas of various tissue types

(epithelial, stromal, adipose, muscle). The statistics reported for

the nucleus segmentation accuracy are shown in Figure 5, illus-

trating overall nucleus counts per tile, and object-level statistics

averaged per tile as F-score, precision, and recall. For calculating

thenucleus-level correspondence, a truepositive isdefinedas the

centroid coordinate of nucleus segmentation fromH&Ehitting the

nucleus segmentation mask for a virtually stained image. A false

negative is anH&Enucleuscoordinate landing on thebackground

(non-nucleus) in segmentationof virtually stained, anda falsepos-

itive is a virtually stained segmentationwithout anymatching H&E

nuclei coordinates within the nucleus mask.

Example tiles with nucleus segmentation overlaid are shown in

Figure 5A for H&E, baseline, double convolution, and dense

convolution. The correlation between nucleus counts from H&E

and virtually stained tiles show very good correspondence (Fig-

ure 5B). All virtual stainingmethods reproducenuclei in very similar

numbers comparedwithground truthH&Eas estimated by the nu-

cleus segmentation model, with PCC of tile-level counts ranging

between 0.912 and 0.952. Object-level correspondence

measured as F-score shown in Figure 5C, however, is suboptimal.

Despite producing roughly the same quantity of nuclei in visually

similar location patterns, their locations do not fully match,

leading to relatively low correspondence when measured by

F-score for all three methods. However, also based on

the F-scores, the dense convolution variant outperforms other vir-

tual staining methods, mainly due to its higher precision when

compared with baseline and double convolution (Figure 5C). The

results indicate high accuracy of recognition of the virtual stain-

ing-produced nuclei and support the results of the histological

evaluation in that nuclei are relatively well reproduced especially

in epithelial compartments,while there is a suboptimal representa-

tion of elongated, e.g., stromal nuclei with the current solution.

Applicability of virtual H&E staining on multiple tissues
As our virtual staining algorithm showed promising results and

accuracy with anterior prostate tissue, we wanted to further
between adjacent nuclei. Black arrows indicate correctly represented adjacent n

baseline architecture (fourth row, white arrows). Occasional false negative basal c

interpreted fine textures (cellular structures indicated with rectangles, nuclear tex

original images of unstained or H&E-stained tissue, or virtually stained tissue wit
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explore the applicability of the virtual staining method with

other organs with different morphologies. Our tissue panel

consisted of three relatively homogeneous tissues in their

composition, namely liver, spleen, and kidney, as well as three

glandular tissues with distinct characteristics from the pros-

tate, namely seminal vesicle, testis, and epididymis. We con-

ducted virtual staining with the dense convolution model,

which performed best with the prostate dataset. Comparing

the virtually stained images to chemically stained H&E ones

from the same tissue sections reveals that, at the WSI level,

virtual stainings of all the six tissues have representative

morphology, and that with higher magnifications, most of the

distinct structures of each organ are clearly distinguishable

(Figures 6A–6F).

Liver tissue consists of hepatocytes and has special charac-

teristics with portal regions.32 Both of these distinctive features

are well characterized in the virtual staining (Figure 6A). Seminal

vesicles are surrounded by a thin layer of stroma-like connec-

tive tissue, lined with branched tall columnar epithelium and

filled with intensely eosinophilic secretion.30 The epithelial tis-

sue and secretion are well reproduced in the virtual staining,

while the connective tissue lining is frequently missing the elon-

gated nuclei (Figure 6B), similar to the prostate tissue results

(Figure 3). The spleen is a nuclei-dense organ that is grossly

divided into two zones: the erythrocyte-rich red pulp and the

basophilic white pulp,33 both of which can be observed in the

virtually stained spleen (Figure 6C). The kidney has two distinct

regions, the outer cortex and the inner medulla, both consisting

largely of cuboidal epithelium,34 which performs particularly

well in virtual staining (Figure 6D). The glomeruli, which are

largely irregular in shape, can be distinguished but their more

nuclei-dense areas were less well reproduced. The testis is

composed primarily of convoluted seminiferous tubules,30 the

structure of which can be observed clearly in the virtually

stained images (Figure 6E). The tubules of the testis contain

the maturing spermatogenic cells, which are basophilic in na-

ture,30 and although most of them are visible in the virtually

stained images, some have not been reproduced (Figure 6E).

The epididymis comprises epididymal ducts, which are lined

with thin epithelium and the lumen is filled with mature sperma-

tozoa.30 The epithelial structures as well as the lumen are rep-

resented well in the virtually stained tissue, although there is

occasional fading of epithelial structures and fusion of overrep-

resented nuclei (Figure 6F).

DISCUSSION

We present here the first work to assess the detailed histological

feasibility and the effect of neural network architecture on virtual

H&E staining from unstained tissue images using GANs. In this

study, we compared three different variants of one of the most

commonly used supervised image-to-image translation

methods called pix2pix on the task of virtual H&E staining of de-

paraffinized unstained tissue images. The three variants were the
uclei. Hyperchromatic nuclei are created by virtual staining, especially with the

ell nuclei appear with all three architectures (fifth row, white arrows). Correctly

ture indicated with circles) are shown in the bottom row. Each column shows

h baseline, convolution, or convolution. Scale bars per row.



Figure 5. Nucleus-level quantification accuracy in virtually stained H&E images

The performance of Hover-Net31 nucleus segmentation for virtually stained images was quantitatively evaluated by using segmentation obtained for the H&E

staining as the ground truth.

(A) Examples of nuclei segmentation masks based on H&E-stained tissue, and virtually stained tissue with baseline, double convolution, and dense convolution

architecture. Scale bars per row.

(legend continued on next page)
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Figure 6. Virtual H&E staining of different organs

(A–F) Tissue images representing different organs virtually stained with dense convolution variant of pix2pix. Images show WSIs at a low magnification (upper

rows) and areas of high magnification (bottom rows) displaying histology of (A) liver, (B) seminal vesicle, (C) spleen, (D) kidney, (E) testis, and (F) epididymis. Scale

bars per row.
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baseline, which is the original implementation of pix2pix, the

double convolution in which convolution layers were doubled

in the encoder and the decoder of the generator, and the dense

convolution in which DenseU-net29 style encoder and decoder

were used in the generator. Doubling the convolution operations

per layer was an intuitive first modification to the baseline, which

was expected to produce better results by honing the features

per layer of the generator. It is a common approach in modern

convolutional neural networks like InceptionV335 and ResNet36

to use multiple convolution operations before pooling the inter-

mediate output. The motivation behind the use of a DenseU-

net-inspired approach was its success in small object detection

in satellite imaging. The idea was to test whether the approach

could be used for virtual staining to accurately reproduce smaller
(B) Nuclei count correlations between ground truth H&E staining and pix2pix v

detected in a tile.

(C) Tile-level averages of nucleus detection F-score, precision, and recall for virtua

truth. Boxplots show the mean, first and third quartiles, and 1.5x interquartile ran
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and finer details like the shape of nuclei. The purpose of these

modifications was to understand the effect of increased network

capacity on the visual quality of virtual staining. Quantitative

evaluationmetrics and rigorous histological analysis for morpho-

logical accuracy were used to establish that, although all

networks produced noteworthy H&E virtual stainings, dense

convolution virtual staining quality was superior to both baseline

and double convolution. The inference time of dense convolution

is approximately 1.5X and 2X as compared with double convolu-

tion and baseline, respectively. Even with dense convolution, it

takes slightly more than 2 min on the hardware setup used in

our study to virtually stain a WSI, which is significantly faster

than the chemical staining process and reasonable for practical

applicability.
ariant virtual stainings. Each data point corresponds to the number of nuclei

l stainings against the segmentation result obtained for the H&E-stained ground

ge as whiskers.



Figure 7. The pix2pix model architecture

The PatchGAN discriminator comprises three encoding blocks, the first one without instance normalization, followed by a zero-padding layer, a 2D

convolution layer, instance normalization, a leaky rectified linear unit activation, another zero-padding layer, and finally a 2D convolution layer. The U-net

generator consists of eight encoding and eight decoding blocks. Each encoder block further consists of a 2D convolution layer with a stride size of

two, followed by instance normalization and leaky rectified linear unit activation. Each decoder block consists of a 2D transposed convolution, with a stride

size of two, followed by instance normalization, and leaky rectified linear unit activation. Skip connections were used in the generator, which means

that the output of each encoding block is concatenated with the output of the corresponding decoding block excluding the first encoding and last decod-

ing block.
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Pathological evaluation in the clinics is currently dependent on

chemical H&E stainings used for visual assessment to, e.g.,

diagnose cancer. The possibility of avoiding chemical staining

would enhance workflows and enable cost savings through

decreased laboratory work and chemical consumption. The util-

ity of virtual stainings, however, depends on the use cases. To

replace the chemical H&E staining in visual assessment tasks,

the accuracy of the virtual staining needs to reach the level

enabling reliable visual interpretations. Hence, we thoroughly

screened the virtual stainings for their microscopic histological

performance and to identify emphasis points for future method

development.

We found that the morphology of the tissues at both micro-

and macroscopic levels was highly accurate. In the three

different virtual stainings, all tissue components and types

were readily detectable. We first used murine prostate tissue,

which is abundant in epithelial tissue, but also contains all the

other major tissue types. This enabled us to get a general over-

view of the tissue types and their attributes that are reproduced

well by the algorithms and the ones that appear more chal-

lenging. Epithelial and adipose tissue performed particularly

well, and epithelial nuclei were well reproduced. Upon high

magnification, those tissue and cell types that were not as abun-

dantly represented in the training data, such as nervous tissue,

vessels, or basal cells, had features that were more difficult to

re-create. This is a typical challenge in deep learning, one that
is likely to be solved by increasing the amount of data for these

specific tissue components in the training.

In virtual staining, eosinophilic areas performed exceptionally

well, for which color tones in all tissues were interpreted with

high accuracy with all three virtual staining architectures. Virtual

staining even had benefits over chemical H&E staining in clearing

debris left behind from hematoxylin. With successfully chemi-

cally stained H&E, even various intracellular details can be distin-

guished from their staining intensity, texture, and color tones.37

We found that the higher capacity networks produce high-accu-

racy H&E images compared with ground truth and that even sub-

cellular accuracy is often high. However, interpreting the details

such as sub-nuclear morphology should still be done with

caution as, depending on the architecture and area, there is

room for improvement especially with color toning and finer

details.

Increased network capacity clearly benefited the histological

accuracy of virtual staining. This was evidenced by a reduction

in hallucination artifacts, tissue section artifact-created patterns,

and virtually hyperchromatic nuclei. The baseline pix2pix perfor-

mance was histologically inferior to double convolution and

dense convolution in most tissue types and, overall, the dense

convolution performed best. Double convolution had more false

positive nuclei than the other two architectures, potentially

contributing to the lower average SSIM and PSNR scores. Over-

all, the higher SSIM and PSNR scores did not always correlate
Patterns 4, 100725, May 12, 2023 11



Figure 8. Three variants of pix2pix encoder

and decoder blocks

(A) Baseline: the reference pix2pix implementation

with single convolution for each encoder and

decoder block.

(B) Double convolution: additional convolutional

layer for each encoder and decoder block.

(C) Dense convolution: amore complex unit inspired

by DenseU-net29 (used for the segmentation of

small objects in remote sensing images) for each

encoder and decoder block.
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fully with the visual inspection, and the tissue composition of

each WSI and the amount of background included in the calcu-

lation substantially influenced the scores. Thus, in future assess-

ments, tissue type-specific scores could give an enhanced nu-

merical interpretation of the results and improve relevance to

diverse pathologies manifesting in different tissue types.

After studying the effect of network capacity on virtual H&E

staining of prostate tissue, we tested the applicability of the

best-performing network to virtually stain tissue images from

six other organs. We saw a similar performance to prostate tis-

sue virtual staining, where the overall morphology at the WSI

level appeared indistinguishable from chemical staining. The

more homogeneously organized tissues were well interpreted,

as were the epithelial tissues with morphological resemblance

to the prostate. With the tissue panel dataset, we noted similar

artifacts, such as patterning in more nuclei-dense areas and

out-of-focus regions, missing elongated nuclei as well as occa-

sional nuclear fusion (data not shown) as with the prostate da-

taset. Our results demonstrate that the dense convolution

model performs well with several tissues and can likely be

applied to additional tissues as well. Overall, the accuracy

demonstrated here for virtual H&E staining with pix2pix and

dense convolution is sufficient for several histological purposes

while bearing in mind the limitations of the method in detailed

histology.

Even though we show that increasing network capacity can in

fact improve the quality of virtual staining, it is purely an algo-

rithmic aspect and there are other factors that affect the overall

quality of virtual staining. For instance, the H&E color manifesta-

tion varies from batch to batch and from laboratory to laboratory
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(Figure S6). Stain normalization methods

were not used in this study to keep tissue

images as unaltered as possible. In the

future, both stained and unstained tissue

images could be normalized beforehand

to explore the impact of color uniformity

on virtual staining.

Most prior reports on virtual staining use

specific imaging or spectroscopic modal-

ities, such as Fourier transform infrared

spectroscopy,38 quantitative phase imag-

ing,23 or fluorescence.27,39 These require

specific instruments not readily available

inmost clinical settings. Hence, wewanted

to develop approaches using standard

brightfield imaging for which the same mi-
croscopes and slide scanners could potentially be used as with

chemically stained H&E slides.28 Virtual staining methods work-

ing on the standard platform images have vast potential to

streamline histopathological workflow without requiring addi-

tional equipment or other investments. Prior studies24,26,28,40 us-

ing brightfield images for virtual H&E staining reported histology

mainly at the macroscopic level. We used imaging with 403

magnification producing high-level reproduction of histology at

a microscopic level. Although images obtained with 203magni-

fication have been reported to suffice for clinical tumor identifica-

tion,24 future work is needed to assess the potential and require-

ments of brightfield imaging setup and image resolution for

histological utility in different pathological tasks.

This study highlights the advantages and challenges of virtu-

ally staining unstained tissues and demonstrates how

increasing neural network capacity improves the performance

of virtual staining both at the quantitative and visual levels. To

study the clinical significance of increased neural network ca-

pacity, diagnostic accuracy could be compared by visual obser-

vation between chemically and virtually stained H&E in future

experiments using tumor tissue. Furthermore, similar to Bayat

et al.,26 another tumor segmentation network could be used

to compare the segmentation results of virtually stained tissue

images against chemically stained. Here, we showed good

concordance in nuclei counts obtained using a dedicated

deep learning tool,31 showing promise for the use of virtual

staining of unstained tissues in performing various tasks based

on nuclear counts,41 and explored the limitations in reproducing

nuclei in the exact same locations. With the encouraging results

so far from computationally generating information using



Figure 9. Preprocessing of stained and unstained tissue images

(A) Registration: Unstained and stained images are first rigidly aligned followed by elastic registration.

(B) Masking: Binary masks for tissue regions in both unstained and stained images are generated.

(C) Tiling: The masks are used to generate tiles only from regions that contain tissue.
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unstained tissue sections that is currently gained through H&E

chemical staining, virtual staining shows great promise in

streamlining sample processing for specific use cases in future

pathology.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, Pekka Ruusuvuori (pekka.ruusuvuori@utu.fi).

Materials availability

This study did not generate any new unique materials.

Data and code availability

d The tissue whole-slide image dataset used for quantitative evaluation in

this study is freely available on a FAIR-compliant server under the

https://doi.org/10.23729/9ddc2fc5-9bdb-404c-be07-c9c9540a32de.

Refer to Table S2 for test set sample names lookup table.

d The implementation of all three variants of the pix2pix model, used in

this study, has been deposited at Zenodo under the https://doi.org/

10.5281/zenodo.7589356 and are publicly available as of the date of

publication. Refer to readme.md for detailed instructions on how to

use the code and requirements.txt to install the dependencies.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
Methods exploration

Virtual staining is an image-to-image translation problem for which there

exist both unsupervised and supervised learning-based approaches and

their combinations in semi-supervised methods. To explore the potential

of the different learning paradigms and their different implementations,

we conducted experiments with several image-to-image translation methods

covering a variety of approaches. First, two different variants of CycleGAN,17

a commonly used unsupervised method, were used for virtual staining. In

the first variant, generators were ResNet-inspired36 and in the second one

U-net-inspired.12 The first variant was also modified to devise a semi-

supervised approach, along with unpaired image data, it was also trained

with varying percentages of paired data. For these batches, an L1 loss func-

tion was used instead of the cycle consistency loss (Figure S7). Unsuper-

vised generative attentional networks with adaptive layer-instance normaliza-

tion for image-to-image translation (U-GAT-IT),42 another unsupervised

method, was also screened for the task of virtual staining (Figure S8).

Based on visual analysis, the second CycleGAN variant, with U-net-based

generators, performed relatively better than other unsupervised methods

(Figure S9).

Using unsupervised and semi-supervised approaches first was driven by

the motivation to make the training process more efficient by having little to
no dependence on image registration. Unfortunately, all the above experi-

ments produced suboptimal results, which were easy to discern even by visual

analysis, and hencewere not deemed suitable for further virtual staining exper-

imentation. Methods such as one-shot43 and few-shots training44 were also

tested out to no avail (Figure S10). The lack of success with the aforemen-

tionedmethods in terms of visual quality as compared with pix2pix results dur-

ing the initial exploration phase led to the decision of selecting pix2pix for

further exploration and modification.
Pix2pix variants

Our implementation of the pix2pix model follows that of the work by Isola

et al.25 The baseline model comprised a generator based on U-net12 and

PatchGAN discriminator,25 both components being fully convolutional neural

networks as shown in Figure 7. The encoder and the decoder block output

in the baseline variant are represented as follows:

Oenc bl = sðW:xÞ
Odec bl = s

�
WT :x

�

where x is the input, Oenc bl and Odec bl are the encoder and decoder blocks

output, respectively. s is the combined effect of normalization and activation.

W and WT represent the convolution and transposed convolution operations,

respectively.

In the subsequent experiments, the encoder and decoder blocks of the

generator were enhanced and its impact on the quality of virtually stained tis-

sue images was studied. First, the convolution layers in each block of both the

encoder and the decoder in the generator were doubled. Convolutions were

also doubled in the encoding blocks of the discriminator, but it was observed

that doubling the convolution layers in the discriminator makes it too dominant

too early in the training hampering the learning of the generator. Since the

generator unit is the actual image-to-image translation module, the

PatchGAN discriminator was used as is in all the experiments. The double

convolution encoder block has an intermediate output which is represented

as follows:

y0enc dc = sðW1:xÞ

where y0enc dc is the intermediate output, s is the combined effect of normaliza-

tion and activation, and W1 represents the first convolution operation. The

encoder final output is represented as follows:

Oenc dc = sðW2:sðW1:xÞÞ
Oenc dc = s

�
W2:y

0
enc dc

�

where Oenc dc is the final output of the decoder block and W2 represents the

second convolution operation. Similarly, the double convolution decoder

block also has an intermediate output, which is represented as follows:

y0dec dc = s
�
WT :x

�
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where y0dec dc is the intermediate output, s is the combined effect of normaliza-

tion and activation and WT represents the transposed convolution operation.

The decoder final output is represented as follows:

Odec dc = s
�
W:s

�
WT :x

��
Odec dc = s

�
W:y0dec dc

�

where Odec dc is the final output of the decoder block and W represents the

convolution operation.

Next, a more sophisticated approach was used to bulk up the generator

network even further. The idea was to make each encoding and decoding

block denser. To that end, the dense convolution unit approach used in the

segmentation of small objects in remote sensing images29 was adopted.

Dense convolution units were developed for both the encoder and the

decoder. The encoder block in the dense convolution variant has two interme-

diate outputs, which are represented as follows:

y0enc dns = sðW1:xÞ
y00enc dns = s

�
W2:

�
x + y0enc dns

��

where x is the input to the encoder block. y0enc dns and y00enc dns are the

first and second intermediate outputs. s is the combined effect of

normalization and activation function. W1 and W2 are first and second

convolution operations, respectively. The final output of the encoder block

is as follows:

Oenc dns = s
�
W3:s

�
y00enc dns + y0enc dns + x

��

where Oenc dns is the final output of the encoder block and W3 represents

the third and final convolution operation. The decoder block of the dense

convolution variant has four intermediate outputs that are represented as

follows:

y0dec dns = s
�
WT :x

�
y00dec dns = s

�
W1:y

0
dec dns

�
y000dec dns = s

�
W2:

�
y00dec dns + y0dec dns

��
y0000dec dns = s

�
W3:

�
y000dec dns + y00dec dns + y0dec dns

��

where y0dec dns, y
00
dec dns, y

000
dec dns, and y0000dec dns are the four intermediate outputs.

s is the combined effect of normalization and activation function.WT, W1, W2,

and W3 are the transposed, first, second, and third convolution operations,

respectively. And the final output of the decoder is as follows:

Odec dns = s
�
W4:

�
y0000dec dns + y000dec dns + y00dec dns + y0dec dns

��

where Odec dns is the final output of the encoder block and W4 represents the

fourth and final convolution operation.

To summarize, three variants of the pix2pix model were implemented to

virtually stain the unstained tissue images. They were baseline pix2pix, pix2pix

with double convolution encoder-decoder blocks, and pix2pix with dense

convolution encoder-decoder blocks. A schematic representation of the three

encoder-decoder block variants can be seen in Figure 8.
Loss function

In all three variants of pix2pix, i.e., baseline, double convolution, and dense

convolution, the same conditional GAN loss function was used. It is defined

as follows:

LcGANðG;DÞ = Ex;y ½logDðx; yÞ�+Ex½log ð1 � Dðx;GðxÞÞÞX�

whereG andD represent the generator and discriminator, respectively. x is the

input and y is the ground truth and GðxÞ is the synthetic output. Here G tries to

minimize the loss against an adversarial D that tries to maximize it, i.e.,
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G� = argmin|{z}
G

max|ffl{zffl}
D

LcGANðG;DÞ

This was further extended by a weighted L1 loss term as suggested in the

original paper to minimize blurriness of the generator output.

LL1ðGÞ = Ex;y

�ky � GðxÞk1
�

The final objective is represented as follows:

G� = argmin|{z}
G

max|ffl{zffl}
D

LcGANðG;DÞ+ lLL1ðGÞ

Tissue material

Murine tissues used in the study were surplus tissue from prior studies.45,46

The prostate tissues were fixed in PAXgeneTM (PreAnalytiX GmbH, Hom-

brechtikon, Switzerland), whereas kidney, liver, spleen, testis, epididymis,

and seminal vesicle tissues were fixed in formalin. This was followed by

paraffin embedding. The tissues were sectioned to 5mm thickness, placed

on slides, and attached in +37�C for 30 min. The paraffin was chemically

removed by xylene wash, followed by rehydration ethanol washes, and finally

a wash in distilled water. The slides were then air dried and imaged as WSIs

unstained with Thunder Imager 3D Tissue slide scanner (Leica Microsystems,

Wetzlar, Germany) equipped with DMC2900 camera and HC PL APO 40x/0.95

DRY objective with a pixel resolution of 0.353 mm. After imaging as unstained,

the samples were stained with H&E by first rehydrating in distilled water, fol-

lowed by Delafield’s hematoxylin (1159380100, Merck, Darmstadt, Germany),

running tap water, 120 mM HCl in 70% ethanol, running tap water, and eosin

(1159350025, Merck). The staining was followed by standard dehydration by

96%, 100% ethanol, and xylene washes, after which the slides were mounted

with coverslips and imaged again. The data consist of 81 WSI pairs of un-

stained andH&E-stained histological sections of anterior prostate tissue (pros-

tate dataset), and one WSI pair of unstained and H&E-stained tissues per tis-

sue type for the other tissues (tissue panel dataset).

Image processing

Image registration

Three-phase registration step was applied to the WSI pairs: First, a subset of

WSI pairs was roughly registered using rigid registration, which uses transla-

tion, rotation, and scaling operations for image alignment. This subset of

WSI pairs was used to train a baseline model to generate an intermediate

H&E-like output for all the unstained WSIs. Since the training WSI pairs were

rigidly aligned, the resulting virtual staining quality was suboptimal, but none-

theless, the intermediate output was imperative for the next step because of its

inherent alignment with the input unstained WSI. Then, the ground truth H&E

WSIs were elastically registered to the intermediate H&E-like WSIs as a proxy

for unstained WSIs, because of similar appearances the resulting alignment

was precise. This in turn refined the alignment between previously rigidly regis-

tered unstained and ground truth H&E WSI pairs. Elastic registration is a

nonlinear content alignment technique that takes into account nonlinear sour-

ces of misalignment such as spherical distortions and nonuniform morpholog-

ical changes in the tissue due to different chemical processes the tissue goes

through. Dice scores for the binary masks of the image pairs were computed

before and after registration. The mean dice score improved by approximately

9% from 0.89 to 0.98 after registration.

Masking

In a WSI, only regions containing the tissue content are important for the

training of a neural network. The binary masks for the tissue content were

generated using the following series of steps: grayscale conversion of the

WSI, thresholding to remove background, dilation, binary hole filling, and

then erosion in the same order. Only regions where tissue content was present

in the registered unstained and stainedWSI pair were used for further process-

ing; this was done by generating an intersection mask of the WSI pair masks

(Figure S11).

Tiling

The tissue masks were used to guide the tiling processing to only include tiles

that contain the tissue content. Tiles of 5123 512 pixels (1803 180 mm) were

extracted for the training process. Since all the models were fully



ll
OPEN ACCESSArticle
convolutional, the tile size was increased to 20483 2048 pixels (7233 723 mm)

for inference, this has been shown to generate output tiles with more consis-

tent colors.19

Figure 9 illustrates an example of the above-mentioned preprocess-

ing steps.
Virtual staining experiment setup

Virtual staining for the prostate dataset

The data were divided into two sets based on the visual appearance of the

H&E-stained WSI. The data originated from two batches, where the color

manifestation in one set was slightly darker than the other (Figure S6). Instead

of applying stain normalization, we opted to keep the tissue images unaltered

to avoid artifacts caused by the normalization methods, such as tiling artifacts

on the WSI level,19 or hallucination artifacts common in GAN-based

methods,16 in particular CycleGAN.17

The darker set contained 49 images; 39 for training, 2 for validation, and 8

for testing. The lighter batch contained 32 images; 25 for training, 2 for vali-

dation, and 5 for testing. Altogether, 64 slides were used for training, 4 slides

for validation, and 13 for testing. A total of 1,149,516 tiles were used in the

training process, and 20k tiles were randomly chosen for samples with

more than 20k tiles. All the models were trained for 40 epochs. For each

epoch of the network training, 50% of the training tiles were randomly

rotated, flipped, and scaled. Epochs with the lowest validation loss were

chosen for inference. Trainings were parallelized over four NVIDIA Volta

V100 GPUs.

For the darker batch, the 40 epochs training of baseline, double convolution,

and dense convolution took approximately 133 h, 213 h, and 340 h, respec-

tively. For the lighter batch, the 40 epochs training of baseline, double convo-

lution, and dense convolution took approximately 97 h, 160 h, and 230 h,

respectively. For the lighter batch, the inference with baseline, double convo-

lution, and dense convolution took approximately 7.5 min, 11.5 min, and

15 min, respectively. For the lighter batch, the inference with baseline, double

convolution, and dense convolution took approximately 6 min, 9.5 min, and

14 min, respectively.

Virtual staining for the tissue panel dataset

The experiment setup for virtual staining for tissue panel data was performed

largely as above with a few modifications. Tissue samples were halved, and

the top part was used for training and the bottom part for testing. Tiles were

sampled based on the size of the tissue, e.g., 35k tiles were sampled from liver

tissue WSI for training, whereas, 9k were from seminal vesicles.

Evaluation metrics

The virtually stained tissue images were evaluated against their corresponding

chemically H&E-stained ground truth images using three different evaluation

metrics: SSIM,47 PSNR,48 and PCC.

SSIM is as follows:

SSIMðx; yÞ =

�
2mxmy + c1

��
2sxy + c2

�
�
m2
x +m2

y + c1

��
s2
x + s2

y + c2

�

where x and y are the virtually stained image and the corresponding chemically

H&E-stained ground truth image, respectively. mx , my , and sx, sy are the mean

and the standard deviation of images x and y, respectively. sxy is the covari-

ance of images x and y, and c1, c2 are stabilization constants used to prevent

division by a small denominator. The value of SSIM ranges from 0 to 1, the

higher the value the more similar the images.

PSNR is:

PSNR = 10$log10

	
MAX2

I

MSE




where MAXI is the maximum pixel intensity and MSE is the mean squared

error between the two images. PSNR is commonly used to quantitatively

evaluate the reconstruction quality of images and videos. The accurate value

is considered to range between 20 dB and 25 dB and a higher PSNR is

better.

PCC is:
rx;y =
covðx; yÞ
sxsy

where x and y are the virtually stained image and the corresponding chemically

H&E-stained ground truth image, respectively. covðx; yÞ is the covariance of

x and y images. sx and sy are the standard deviations of each image x and

y, respectively. The value of PCC ranges from 0 to 1, the higher the value

the more similar the images.

Histological evaluation of performance

While the computational evaluation metrics are suited for the overall

comparison of network performance, the usability of the virtual stainings

for visual pathological evaluation depends on the capacity to reproduce

histological structures accurately. Hence, the histological performance

of the networks was compared against the histological ground truth by

expert evaluators for overall tissue appearance at a low magnification

and for detailed histological accuracy at high magnifications, including

morphological evaluation of the accuracy of overall tissue composition

and structures, tissue type-specific performance, positioning of cells

and nuclei, nuclear morphology, nuclear chromasia, and overall color

representation.
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Supplemental information can be found online at https://doi.org/10.1016/j.
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