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Abstract— Extending the existing near-shore terrestrial
infrastructure with non-terrestrial network capabilities helps
maritime operators alleviate the high costs of communication and
meet the requirements imposed by time-sensitive applications.
Recognizing that the deployment of terrestrial and non-terrestrial
networks necessitates selecting from the available wireless back-
haul solutions, which have dissimilar data transmission costs
and communication link qualities, it is essential to propose an
appropriate backhaul selection policy. Specifically, in this letter,
we coin a backhaul selection policy that manages the inherent
trade-off between data transmission expenses and timely through-
put guarantees for maritime communications. We formulate the
backhaul selection problem as a Markov decision process and
show that the proposed solution is not only more cost-efficient,
but also satisfies the timely throughput requirements in contrast
to the currently used greedy strategies.

Index Terms— Backhaul selection, cost efficiency, near-shore
communications, non-terrestrial networks, timely throughput.

I. INTRODUCTION

VESSELS spend up to 60% of their time in ports or
in coastal waters potentially within the coverage of

terrestrial cellular networks [1]. This fact motivates the wide
use of the terrestrial infrastructure when available to support
near-shore communications instead of solely relying on costly
satellite connectivity [2]. In addition, airborne platforms, such
as unmanned aerial vehicles (UAVs), can foster the rollout
of on-demand fifth-generation (5G) and beyond networks for
the needs of various industrial setups, including maritime
domain [3]. Hence, vessel operators can benefit from different
integrated terrestrial and non-terrestrial backhaul solutions [4].
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5G base stations (BSs) can be deployed onboard vessels
similarly to the cells-on-wheels and cells-on-wings utilized in
public safety applications [5]. A vessel-mounted BS (VBS)
can thus employ wireless backhauling and transmit data from
onboard devices through the available terrestrial BS (TBS),
UAV-mounted BS (UBS), or low Earth orbit (LEO) satellite.
Specifically, we consider a scenario where traffic from onboard
devices is aggregated at the VBS and subsequently forwarded
to the core network either over a direct backhaul route to the
TBS or over two-hop wireless backhaul routes via UBS or
LEO satellite. Such onboard devices include wearables, which
typically perform discontinuous transmissions to save battery.
Hence, the periodically generated data should be delivered
within a given time frame to offer timely and relevant onboard
monitoring.

To date, coverage extension of the near-shore wireless
terrestrial networks with the aid of non-terrestrial platforms,
as well as their optimal deployment, management [6], and
integration [7] within a single system for maritime applica-
tions, have been extensively studied in the literature. However,
the use of non-terrestrial platforms is usually limited to areas
wherein vessels are out of coverage of the terrestrial infras-
tructure, i.e., beyond coastal waters [6]. Even in coastal waters,
vessels may experience low radio link quality or be out of the
terrestrial network coverage.

The duration and frequency of the out-of-coverage periods
and poor communication conditions increase as the distance
between the TBS and the vessel grows due to irregular
deployment of the BSs. Such coverage gaps may signifi-
cantly deteriorate the performance of time-sensitive maritime
applications, e.g., asset monitoring where staff onboard a
vessel send high-definition footage from body cameras to
shore-based control centers for data analytics [8]. In addition,
the backhauling solutions can be costly and may not always
be efficient for the vessel operator. The latter seeks a time-
averaged cost–performance trade-off for choosing a backhaul-
ing solution at a given time. This problem motivates our work
and, to the best of our knowledge, has not been addressed in
prior literature.

In this letter, we propose a framework to devise the
backhaul selection policy that achieves a desired trade-off
between communication expenses and system performance.
We formulate the backhaul selection problem as an infinite
horizon discounted Markov decision process (MDP) with the
aim of jointly minimizing the total cost of data transmission
and the number of data units lost due to deadline viola-
tion. We then compare the obtained ϵ-optimal policy with
greedy approaches in terms of communication cost efficiency
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Fig. 1. Considered maritime communication scenario.

and timely throughput [9] under different system parameters.
As the computation of the ϵ-optimal policy may be time-
and resource-consuming, our contribution in this regard is
lightweight heuristics that offer near-optimal backhaul selec-
tion for the given environment and system parameters.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an integrated terrestrial and non-terrestrial cel-
lular network to support near-shore maritime communications.
The network comprises a terrestrial infrastructure (i.e., TBS
and ground station (GS) for satellite communications) and
a non-terrestrial segment (i.e., UBS and satellite). Hence,
it offers the VBS three options for wireless backhaul relaying:
direct backhaul to the TBS, two-hop backhaul via UBS,
or two-hop backhaul via LEO satellite. Let N , M, and K
be the sets of TBS, UBS, and satellite, respectively.

The locations of TBS and UBS form 3D spatial Poisson
point processes in ΦN and ΦM with densities λN and λM

nodes per km2, respectively, while the location of the LEO
satellite is defined by its altitude hLEO and elevation angles
ϕV S and ϕSG. The geometry of ΦN and ΦM features the
essential properties of the coastline, feasible communication
ranges for the considered backhaul, and potential mobile
network operator restrictions. Hence, the area of terrestrial
access is restricted by YN and HN , as well as the aerial access
segment that is bounded by YM and HM (see Fig. 1).

In the considered communication scenario, a given VBS
transmits aggregated onboard traffic to the core network.
As the vessel moves with the constant speed v along the coast-
line, the quality of its communication links may change due to
the time-varying fading. Therefore, the network controller may
choose between the three different backhaul options (TBS,
UBS, or satellite) to provide timely throughput guarantees [9].

Let the system time be slotted and indexed by t ∈ {1, 2 . . . }
with equal slot duration ∆t. At the beginning of every slot t,
Q data units arrive at the backlog queue of the VBS and
the deadline for the newly arrived units is ∆t. The controller
chooses a backhaul at from the set A of the available options
for data transmission based on the system state st. Due to
predefined vessel mobility and slowly changing environment,
the controller estimates only the expected loss rate l(st, at)
for each backhaul at a given time t. Hence, the outcome of
the data transmission in every slot is unknown.

Let D be a random variable for the number of delivered data
units out of Q units under the given loss rate l(s, a). There-
fore, D follows a binomial distribution [10] with parameters
1− l(s, a) and Q, and has the probability mass function of:

PD(d|s, a) =
(

Q

d

)(
1− l(s, a)

)d

l(s, a)Q−d. (1)

Hence, the expected number of delivered data units d(s, a)
in state s if backhaul a is selected becomes:

d(s, a) =
Q∑

d=0

PD(d|s, a)d =
(
1− l(s, a)

)
Q. (2)

Data transmission over the three backhaul options incurs
different costs. Let ma be a known monetary cost per data unit
transmission over backhaul a. The immediate cost of using
backhaul a in state s is m

(
d(s, a)

)
≜ mad(s, a). Let π denote

a feasible policy that specifies the backhaul selection in state
st, i.e., at = π(st). For an arbitrary communication session
that takes τ slots on average, the expected total cost Cπ,τ and
the timely throughput Tπ,τ can be obtained using (3) and (4):

Cπ,τ = Eπ

[
Eτ

[ τ∑
t=1

m
(
d
(
st, π(st)

))]]
, (3)

Tπ,τ = Eπ

[
Eτ

[1
τ

τ∑
t=1

d
(
st, π(st)

)]]
, (4)

where Eτ [·] and Eπ[·] are the expectations with respect to
the probability distribution of τ and policy π, respectively.
We assume that τ follows a geometric distribution with
parameter γ and mean 1/(1− γ) [11, p.125]. The expectation
over τ can be transformed into the discounted cost Cπ and
timely throughput Tπ over infinite time horizon given as:

Cπ = lim
τ→∞

Eπ

[
τ∑

t=1

γt−1m
(
d
(
st, π(st)

))]
, (5)

Tπ = lim
τ→∞

1
τ

Eπ

[
τ∑

t=1

γt−1d
(
st, π(st)

)]
. (6)

Let q∗ be the timely throughput requirement. If the outcome
of the transmission d(st, at) violates this requirement, action
at incurs penalty ϵ

(
d(st, at)

)
. Our goal is to find policy

π∗ ∈ Π that minimizes the expected total normalized cost
and penalty as given in (7), shown at the bottom of the next
page.

III. MDP FRAMEWORK AND SOLUTION

The problem in (7) is an MDP with infinite horizon. In this
section, we define states, actions, transition probabilities, cost,
and penalty to transform the optimization problem (7) into
an MDP and solve the latter to obtain the optimal policy for
backhaul selection.

A. States
Let st =

(
n1(t), . . . , n|A|(t)

)
denote the system state at

slot t, where na(t) stands for the state of the backhaul a.
We assume that the number of states of every backhaul is finite
and na(t) takes an integer number from the set {1, . . . , Na}.
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Each state na of the backhaul a is associated with the loss
rate l(s, a). Therefore, the state space S = {(n1, . . . , n|A|) :
na ∈ {1, . . . , Na},∀a ∈ A} is a countable and finite set with
cardinality |S| =

∏|A|
a=1 Na.

B. Actions
At each time slot t, the controller chooses action at from

the set of actions A. We assume that any action a ∈ A is
feasible in any state s ∈ S. Hence, A is finite and does not
depend on the state of the system.

C. Transition Probabilities
Let Pna,n′a

denote the transition probability from state na to
n′a of the backhaul a. In the proposed formulation, we assume
that the states of the three backhaul options are independent
and that their evolution is not impacted by the action taken.
The transition probability p(s′|s, a) from system state s =
(n1, . . . , n|A|) to s′ = (n′1, . . . , n

′
|A|) can then be given as:

p(s′|s, a) =
|A|∏
a=1

Pna,n′a
. (8)

D. Cost and Penalty
The cost incurred by transmitting d(s, a) data units is

m(d(s, a)). To penalize the actions that violate the timely
throughput requirement q∗, we define penalty function
ϵ(d(s, a)) as follows:

ϵ
(
d(s, a)

)
=

 1, if d(s, a) < q∗,
Q− d(s, a)

Q
, if q∗ ≤ d(s, a) ≤ Q.

(9)

We normalize the monetary cost m(d(s, a)) by its maximum
possible value max(ma)Q. Hence, the immediate cost of
taking action a in state s yields:

c(s, a) =
m

(
d(s, a)

)
max(ma)Q

+ ϵ
(
d(s, a)

)
. (10)

E. Solution
Based on the above MDP formulation, we note that (i) the

cost and transition probabilities are stationary and do not vary
from slot to slot, (ii) the cost is bounded c(s, a) > 0 for
all a ∈ A and s ∈ S, (iii) the future costs are discounted
according to the discount factor γ, and (iv) the sets of states
and actions at each state are discrete and finite.

Let Vπ(s) be the expected total discounted cost over the
infinite horizon starting from state s and applying policy π.

Vπ(s) = lim
τ→∞

Eπ,s

[
τ∑

t=1

γt−1c(st, at)

]
. (11)

The policy π∗ ∈ Π exists and is optimal if and only if Vπ∗

is a solution of the following optimality (Bellman) equation:

vn(s) = min
a∈A

(
c(s, a) +

∑
s′∈S

γp(s′|s, a)vn−1(s′)
)
, (12)

where vn(s) denotes the expected cost after n slots starting in
state s.

According to [11, Theorem 6.2.10], under the assump-
tions (i)-(iv), there exists an optimal deterministic stationary
policy. As the cost bound in the assumption (ii) does not
reach 0, we apply the value iteration method summarized in
Algorithm 1 that guarantees ϵ-optimality of the obtained sta-
tionary policy over a finite number of iterations. By choosing
small ϵ, e.g., ϵ = 0.01, the devised sub-optimal policy π∗ϵ
approaches the true-optimal policy π∗ in norm as ||Vπ∗ϵ

−
Vπ∗ || ≤ ϵ.

Algorithm 1 Value Iteration for ϵ-Optimal Solution of MDP
n = 0, v0(s) = 0, ∀s ∈ S, ϵ = 0.01, θ = ϵ(1− γ)/2γ
repeat

for ∀s ∈ S do
vn+1(s)← min

a∈A

(
c(s, a) +

∑
s′∈S

γp(s′|s, a)vn(s′)
)

end for
∆← ||vn+1 − vn||
n← n + 1

until ∆ < θ
π∗ϵ (s) = arg min

a∈A

(
c(s, a) +

∑
s′∈S

γp(s′|s, a)vn+1(s′)
)

IV. PERFORMANCE EVALUATION

In this section, we outline the behavior of π∗ using heuris-
tics and evaluate the performance of our system when applying
several policies. We start with providing the main simulation
parameters used in this evaluation.

A. Communication Assumptions
Areas ΦN and ΦM are approximated by the rectangles [X×

YN ] ∈ R2 and [X × YM ] ∈ R2, respectively. Here, X =
20 km represents the length of the area along the shore, YM

denotes the distance from the coastline to the vessel path in
km, YN = Y − YM , where Y is the maximum supported
distance between the TBS and the vessel path in km. The
densities λN = (dTBSYN )−1 and λM = (dUBSYM )−1 are
determined by the mean inter-BS distances dTBS = 5 km
and dUBS = 2.5 km. We assume that the VBS and the UBS
have the same antenna heights above the sea level (hV BS =
hUBS = 30 m), while the height of the TBS is uniformly
distributed with mean hTBS = 40 m due to variable coast
elevation. The LEO satellite has altitude hLEO = 600 km
and elevation angles ϕV S = ϕSG = 40◦. The vessel speed is
v = 20 knots, which corresponds to the speed of a cruise ship.

Minimize
π∈Π

Eπ

[ ∞∑
t=1

γt−1

[
m

(
d
(
st, π(st)

))
max(ma)Q

+ ϵ
(
d
(
st, π(st)

))]]
, max(ma) ≜ max(m1, . . . ,m|A|). (7)



1238 IEEE COMMUNICATIONS LETTERS, VOL. 27, NO. 4, APRIL 2023

To capture the propagation losses, such as reflection, diffrac-
tion, and tropospheric scattering in maritime environments,
we employ the empirical propagation model (EPM-73) [12]
for the corresponding backhaul links between VBS, TBS, and
UBS. We also account for random fading caused by sea wave
movement as suggested in [13]. We consider that both TBS
and UBS operate at the 3.5 GHz frequency band with the avail-
able bandwidth of 100 MHz and 80 MHz, respectively. For the
satellite backhaul links, we use the third generation partnership
project (3GPP) propagation model for non-terrestrial networks
(NTNs) [3] and assume Ka-band with 30 GHz and 20 GHz
for uplink and downlink transmissions, respectively. A total
bandwidth of 400 MHz is available in both directions. The
transmit power of all the involved nodes is PT = 33 dBm,
while the antenna gains for the backhaul links are selected
according to the 3GPP recommendations in [3] and [6].

We consider a variable number of data units Q to arrive in
the backlog queue of the VBS and to be transmitted within
a slot. We assume a slot duration of ∆t = 100 ms, which is
convenient for periodic time-sensitive transmissions and back-
haul switching. Moreover, for the two-hop backhaul solutions,
we assume that each time slot is equally shared by the two
communication links and that the data units are transmitted
sequentially. Intuitively, this requires higher data rates on both
links of the two-hop backhaul path to successfully deliver the
demand within a slot as compared to the direct link between
the VBS and the TBS, and can be captured by the loss rate
l(s, a) when the data loss is due to a deadline violation. The
data unit size is 1500 bytes, and we let the requirement q∗

be 0.8 ·Q.

B. Heuristic Backhaul Selection

Computation of ϵ-optimal policy π∗ϵ may be challenging
due to several reasons. First, it requires the knowledge of all
the possible MDP states and transition probabilities, which
can be difficult to obtain in practice. Second, storing all
the state- and action-related information and computation of
the ϵ-optimal policy can be time- and resource-consuming
as the number of states is subject to the combinatorial explo-
sion. We, therefore, propose a lightweight heuristic algorithm
that allows for computing a sub-optimal backhaul solution on
the fly and for any state of the system. It does not require
the knowledge of previous or future states and relies only
on the expected loss rate l(s, a) at the current state for all
a ∈ A. It has constant complexity (O(1)) as the number of
actions at every state is constant and is fast since the number
of actions is small (|A| = 3). The main shortcoming of the
suggested heuristics is the fact that the bound on the optimality
gap may vary with the parameters of the system model.
However, it shows adequate empirical results as discussed
in Section IV-C.

To introduce a heuristic algorithm that describes the behav-
ior of the obtained policy π∗ϵ , we first define π1, π2, and π3,
such that policy π1 chooses the backhaul with the lowest mon-
etary cost when applied, policy π2 selects the backhaul with
the second lowest cost, and policy π3 chooses the backhaul
with the third lowest cost, which is the most expensive one in
our scenario. The proposed lightweight method for backhaul

Fig. 2. Cost efficiency with proposed and reference policies.

selection applies each of these policies according to (13),
where p∗ = Q−q∗

Q . Hence, the most costly backhaul is selected

only when the loss rate l(s, π3) associated with its state is less
than or equal to p∗, while the loss rates of the other backhaul
options are greater than p∗. If the loss rate associated with
the state of the least expensive backhaul l(s, π1) is greater
than p∗ but the loss rate l(s, π2) associated with the state
of the second cheapest backhaul does not exceed p∗, then
the backhaul with the second lowest cost is to be selected.
Otherwise, the algorithm suggests the backhaul with the lowest
cost:

π∗(s)=


π3, l(s, π1) > p∗ ∧ l(s, π2) > p∗ ∧ l(s, π3) ⩽ p∗,

π2, l(s, π1) > p∗ ∧ l(s, π2) ⩽ p∗,

π1, otherwise.

(13)

C. Evaluation Results
We compare the ϵ-optimal policy and the proposed heuristic

solution given in (13) with two greedy backhaul selection
approaches chosen for benchmarking. In the considered sce-
nario, a greedy policy always selects the backhaul with the
minimal monetary cost of data transmission (referred to as
MinCost) or selects the option with the highest signal-to-
noise ratio (named MaxSNR). The key performance indicators
utilized in this comparison are cost efficiency, defined as the
number of data units delivered within the deadline per unit of
the monetary cost, and timely throughput [9].

In Fig. 2, we vary the cost per data unit transmission via
TBS (mTBS), while the costs of the two remaining options are
updated accordingly by considering the proportions from the
existing microwave and satellite backhaul deployments [14].
More precisely, we assume that transmitting one data unit via
UBS and satellite is two and eight times more expensive than
doing so via TBS, respectively (i.e., mUBS = 2 ·mTBS and
mLEO = 8 ·mTBS) [14]. Fig. 3 displays the obtained results
for timely throughput as a function of Q.

As reported in Fig. 2 and Fig. 3, the output of the heuristics
given in (13) approaches the results of the ϵ-optimal policy for
a variable monetary cost mTBS per data unit transmission
and traffic demand Q. Therefore, the proposed heuristics
demonstrate near-optimal performance under a wide range
of key system parameters. The performance gap between
ϵ-optimal policy and the proposed heuristics as a function of
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Fig. 3. Timely throughput with proposed and reference policies.

Fig. 4. Timely throughput gap between the proposed heuristic solution and
ϵ-optimal policy.

Fig. 5. Utilization of the alternative backhaul solutions.

demand Q for the average timely throughput is highlighted
in Fig. 4. This gap grows with an increase in demand Q but
remains below 1% of the performance loss, which justifies the
use of the proposed heuristics as a lightweight solution for the
near-optimal backhaul selection.

By applying the proposed heuristics, the system can make
more cost-efficient decisions for backhaul selection than when
following the MaxSNR strategy (see Fig. 2). These two poli-
cies help the system meet the timely throughput requirement
in contrast to the MinCost approach, as demonstrated in Fig. 3.
Hence, the heuristic solution proposed in this work provides
the system with better cost efficiency than the MaxSNR
strategy and with higher timely throughput than the MinCost

approach, which confirms the benefits of taking into account
both cost and loss rate factors in the backhaul selection and
the limitations of making a decision based on signal quality
or monetary cost alone.

As the distance from the vessel to the coastline impacts
the behavior of the backhaul selection policy, we illustrate
the utilization of each of the three backhauling options as a
function of such distance in Fig. 5. The latter shows that the
system relies more on the NTNs with an increase in the vessel-
to-shore distance, and specifically on the UBS backhauling
solution. As the LEO satellite is the most costly option, it is
selected only in a few cases where the other two alternatives
are not available.

V. CONCLUSION

In this letter, we studied the backhaul selection problem
for time-sensitive applications in a near-shore maritime
communication system leveraging integrated terrestrial and
non-terrestrial networks. Aiming to control the trade-off
between data transmission expenses and stringent application
requirements, we formulated the problem as an MDP and
proposed a lightweight algorithm for near-optimal backhaul
selection. We evaluated the performance of the ϵ-optimal
policy and heuristics, and compared these against two
reference greedy strategies in terms of the cost efficiency
and timely throughput. Several extensions are considered for
future work, including complex scenarios with more relaying
options and relay mobility.
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