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ABSTRACT Chronic Kidney Disease (CKD) is currently experiencing a growing worldwide incidence and
can lead to premature mortality if diagnosed late, resulting in rising costs to healthcare systems. Artificial
Intelligence (AI) and Machine Learning (ML) offer the possibility of an early diagnosis of CKD that could
revert further kidney damage. However, clinicians may be hesitant to adopt AImodels if the reasoning behind
the predictions is not understandable. Since eXplainable AI (XAI) addresses the clinicians’ requirement of
understanding AI models’ output, this work presents the development and evaluation of an explainable CKD
prediction model that provides information about how different patient’s clinical features contribute to CKD
early diagnosis. The model was developed using an optimization framework that balances classification
accuracy and explainability. The main contribution of the paper lies in an explainable data-driven approach
to offer quantitative information about the contribution of certain clinical features in the early diagnosis
of CKD. As a result, the optimal explainable prediction model implements an extreme gradient boosting
classifier using 3 features (hemoglobin, specific gravity, and hypertension) with an accuracy of 99.2%
(standard deviation 0.8) and 97.5% with a 5-fold cross-validation and with new unseen data respectively.
In addition, an explainability analysis shows that hemoglobin is the most relevant feature that influences the
prediction, followed by specific gravity and hypertension. This small number of features selected results in
a reduced cost of the early diagnosis of CKD implying a promising solution for developing countries.

INDEX TERMS Clinical prediction model, early diagnosis, chronic kidney disease, feature selection,
medical explainable AI.

I. INTRODUCTION
Chronic kidney disease (CKD) has become a worldwide
public health problem with increasing incidence (more than
800 million individuals in 2017) and prevalence (13.4%
globally) which can lead to premature mortality for many
patients (1.2 million people died from CKD in 2017) [1].
CKD is one of a small number of non-communicable diseases
that have shown an increase in associated deaths over the
past 2 decades, producing a significant burden to healthcare
systems, especially in low-middle income countries where
lack of appropriate renal replacement therapy results in a high
mortality rate [2], [3], [4]. CKD, usually caused by diabetes
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and hypertension, is a non-communicable chronic disease
with comorbidities associated, and cardiovascular diseases
are themajor cause of early morbidity andmortality sustained
by patients with CKD [5].

Typically, CKD has no early symptoms [5], and when
detected through laboratory testing, which quantifies the
estimated glomerular filtration rate (eGFR), the kidney has
already lost 25 percent of its capacity and is under irreversible
and progressive damage toward the so-called end-stage kid-
ney disease. At this point, symptoms may appear such as leg
swelling, extreme fatigue, generalized weakness, shortness
of breath, loss of appetite, or confusion [6]. If this irre-
versible deterioration is not slowed by controlling underlying
risk factors (hypertension, obesity, heart disease, age) [7],
hemodialysis or even kidney transplantation becomes crucial
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for the patient to avoid an exponential rise of risk of death.
[4], [5], [6]. Consequently, early diagnosis of CKD based on
risk factors, along with their monitoring, allows for initiating
preventive treatments and therapeutic measures that slow the
progression of kidney damage and prolong patients’ life. [4].
In addition, the early identification of groups at high risk
of CKD has become an important focus in kidney disease
management strategies [8].

In the medical domain, Artificial intelligence (AI) and
machine learning (ML) have become promising tools for
building computer-aided diagnosis (CAD) systems. These
systems use algorithms that learn to classify individuals with
specific symptoms either as sick or healthy [8], [9]. AI/ML
can be employed to discover latent patterns and correlations
between CKD and its risk factors, enabling an early discovery
of patients at risk in an effective, convenient, and low-cost
manner [9], [10]. Feature selection (FS) is a crucial step in
the ML process, which removes unnecessary and unimpor-
tant attributes to result in less complicated and more accu-
rate and interpretable models [11]. This features selection
step becomes a relevant aspect when dealing with medical
datasets due to their high dimensionality resulting from the
combination of different variables and multiple measurement
techniques when registering patient information.

When CAD systems’ decisions affect patients’ lives, the
transparency and explanations of the AI models’ outputs
are essential to support clinicians in their diagnosis and
treatments. Thus, eXplainable Artificial Intelligence (XAI),
which can be defined as a class of systems that provides
insight into how an AI system makes decisions and predic-
tions by giving details or reasons to make its functioning
clear or easy to understand, allows healthcare experts to make
reasonable and data-driven decisions that would enhance the
clinical adoption of AI models and their acceptance [12].
XAI is a research area in AI that is acquiring recently an
emergent relevance [13], and different solutions have been
developed over the last decade in several clinical fields,
namely: urology [14], toxicology [14], endocrinology [15],
neurology [16], cardiology [17], cancer (e.g. breast cancer or
prostate cancer) [18], and chronic diseases (e.g. diabetes or
Alzheimer’s disease) [19], [20]; and it. Developing explain-
able AI models in the medical domain involves an inherent
trade-off between predictive accuracy, which provides the
reliability of the model, and the explainability requested by
clinical experts. This tension must be addressed properly
by engaging the clinical experts in the development process
because the most accurate models, which might be the most
interesting to them, are usually less transparent and vice
versa. Concerning the application of XAI approaches to CKD
prediction models, to the best of our knowledge, no XAI
analysis beyond applying feature selection has been found in
the literature.

The aim of this paper is to describe the development and
assessment of an explainable prediction model of CKD.1

1Source code of this research can be found at: https://github.com/
petmoreno/Chronic_Kidney_Disease_Predictor

This model is developed using an automated optimization
framework, named SCI-XAI (feature Selection and Classi-
fication for Improving eXplainable AI), that calculates the
best combination of different ensemble tree algorithms and
feature selection techniques in terms of accuracy performance
and minimum number of selected features. Additionally,
an explainability analysis is conducted to determine the rele-
vance of the different features selected by the optimal model,
as well as to assess the model using explainability metrics
to find an appropriate balance between classification perfor-
mance and explainability. To adhere this research to standard-
ized reporting practices for prediction models in medicine,
the TRIPOD statement guideline [21] has been adopted, and
its 22-item checklist is reported as supplementary material.
This work contributes to the state-of-art by extending the
feature selection approach and providing an explainability
analysis that quantifies the relevance of different risk factors
for the early diagnosis of CKD. Furthermore, the results
obtained in terms of feature selection improve upon those
reported by related works, making this work the one that
selects the least number of features while maintaining a rea-
sonably good classification performance.

The remainder of the article adopts the following structure:
(1) an overview of the different related works identified that
aim to develop a CKD prediction model considering feature
selection, (2) a description of the dataset, the optimization
framework employed to develop our model, the machine
learning algorithms, evaluation metrics, and explainability
techniques employed in this research; (3) the evaluation
results in terms of classification and explainability, and the
explainability analysis; (4) the discussion of the results as
well as the conclusions obtained.

II. RELATED WORKS
In order to promote timely identification of patients at high
risk of kidney function deterioration, researchers have devel-
oped several disease prediction models. Although these mod-
els performed well at internal validation, they present an
uncertain generalization capability due in part to the use
of non-public datasets, such as medical images or clinical
data from EHR [22], which hinders benchmarking of the
models [8].

This research paper advocates for an open-science
approach and describes CKD early-diagnosis model devel-
oped using a public open dataset from UCI-ML reposi-
tory [23]. This allows other researchers to benchmark the
generalization performance of their models. Table 1 shows
the most recent and accurate works (with accuracy above
98%) that use the CKD dataset from the UCI-ML repository
and implement feature selection as a preprocessing step in
their CKD data analysis pipeline.

Although the related works consider the reduction of the
original number of features, there has not been a proper
tackling, to the best of our knowledge, of the explainability
of their results. Thus, our research provides a novel approach
by analyzing the explainability of the prediction model
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TABLE 1. Classification results (in % and descending order) and their machine learning classifiers (best ones in italic underlined) of related works.

developed offering information on the influence of the
selected features in the classification of CKD.

III. MATERIAL AND METHODS
A. CHRONIC KIDNEY DISEASE DATASET
To promote the reproducibility of this research as well as to
benchmark to the existing related works, the CKD dataset
from UCI-ML was employed. Table 2 describes the dataset
collected from the Apollo Hospital, Karaikudi, India during
a nearly 2-month period in 2015 that includes 400 patients
where some presented missing values in their features. Each
instance of the dataset is composed of 11 numeric, 10 nomi-
nal, 3 ordinal features, and 1 target feature (notCKD/CKD).

The features contained in the dataset represent the fol-
lowing information [legend in brackets]: age in years [age],
diastolic blood pressure in mm/Hg [bp], specific gravity to
compare the density of urine to the density of water [sg],
presence of albumin in urine[al], level of sugar is present
in urine[su], red blood cells present in urine[rbc], pus cells
present in the urine, indicating major or minor infection [pc],
pus cell clumps indicating if the infection is present in the
urine [pcc], if the growth of bacteria is evident in urine [ba],
sugar level in blood in mgs/dl [bgr], level of urea nitro-
gen in blood in mgs/dl [bu], level of creatinine in blood in
mgs/dl [sc], level of sodium in blood in mEq/L [sod], level
of potassium in blood in mEq/L [pot], protein in red blood
cells in Gms [hemo], percentage of cells in blood [pcv],

amount of white blood cells present in the blood (cells/cumm)
[wc], amount of red blood cells present in the blood
(millions/cmm) [rc], whether the patient has higher level of
blood pressure [htn], presence of diabetes [dm], whether the
patient is suffering from coronary artery disease [cad], loss
of appetite [appet], level of leg swelling [pedal], whether
the patient is suffering from anemia [ane], and whether the
patient has CKD or not [target class].

B. AUTOMATED FRAMEWORK FOR MODEL
SELECTION OPTIMIZATION
In this work, the automated framework named SCI-XAI (fea-
ture Selection and Classification for Improving eXplainable
AI) and published in [42] is employed to develop the explain-
able CKD prediction model (Figure 1). SCI-XAI, imple-
mented with the Python scikit-learn package [43], allows
obtaining a balanced prediction model in terms of classifi-
cation performance (accuracy) and explainability (number of
features selected) by considering different kind of param-
eters. Through a brute force optimization algorithm imple-
mented with GridSearchCV method of scikit-learn, SCI-XAI
finds the optimal combination regarding ensemble trees clas-
sifier, the number of features selected, and the feature selec-
tion method, which provides the best accurate classification.

Initially, the dataset is split with target feature stratifica-
tion allocating 280 and 120 instances respectively into train-
ing and held-out test sets (ratio 70/30). Thus, the model’s
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TABLE 2. Description of statistical information of the features included in the dataset.

performance is evaluated over unseen new data from the held-
out test set that is applied to the optimal parameters selected
by the framework in the preprocessing and training phases.
The data preprocessing phase is performed in three separate
threads respectively for numerical, nominal, and ordinal fea-
tures; and entails missing data imputation, scaling/encoding,
and feature selection. Next, the preprocessing data thread
merged in a 5-fold cross-validation training phase. Due to
the small sample size (400 instances), the choice of 5-folds
allows reducing overfitting and improve the generalizability
of the classification. Finally, the optimal model selected is
also assessed in terms of explainability with the interpretabil-
ity, fidelity, and FII metrics. The methods employed in the
different phases of the framework are described in the next
subsections.

C. DATA PREPROCESSING
The SCI-XAI framework tackles the preprocessing of the
data in three phases: missing data handling, data encoding,
and feature selection. Regarding data missing, the strategy
of imputation is implemented depending on the data type
of features. Mean value imputation is used for numerical
features, while the mode (or most frequent value) is used
for ordinal and nominal features. In the case of the encoding
phase, a minimum-maximum scaling process is applied to
numerical features, while the categories of the ordinal and
nominal features are encoded into numbers, i.e. 0-5 with
1 step unit for ordinal, and 0 or 1 for nominal features.

These two steps of missing data handling and encoding are
not considered parameters for the optimization algorithm.

In addition to the explainability approaches, it’s worth
mentioning that feature selection procedures can remove fea-
tures with non-relevant information from the classification,
thereby enhancing models’ explainability [44]. This research
addresses feature selection by applying filter methods, where
intrinsic properties between the dataset’s features and the
target class are measured with methods like ANOVA, Chi-
squared, or mutual information. These methods determine
the univariate statistical mutual dependence or significance
that justifies the inclusion or withdrawal of a subset of
features. Moreover, wrapper feature selection methods are
also used, like Recursive Feature Elimination (RFE), where
a classification algorithm (e.g. logistic regression) is uti-
lized to find the most significant features by finding a high
correlation between the target feature and the rest of the
features [45].

D. ENSEMBLE TREES CLASSIFIER
Thanks to their stability and robustness with datasets of
different sizes, as well as a reasonably good predictive per-
formance, ensemble trees have become one of the most
popular ML classifiers nowadays. Ensemble trees perform
classification tasks by weighting various decision trees and
combining them to reach a final model that improves each
base estimator [46]. In addition, these classifiers also offer a
good performance to mitigate class imbalance situations.
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The classifiers used in this research belong to the family
of ensemble trees and their different approaches of bagging
and boosting, namely: Random Forest and Extra Trees [46],
which follow the bagging technique, where each base deci-
sion tree is trained using a sample with the same num-
ber of instances taken with replacement from the original
dataset. Additionally, adaptative boosting (AdaBoost) [46]
and extreme gradient boosting (XGBoost) [47] apply the
technique of boosting, which is focused on instances that
have been previously misclassified when training a new base
decision tree.

E. EXPLAINABILITY TECHNIQUES FOR AI
In domains like healthcare where the model’s predictions
should be as interpretable as possible, maintaining the predic-
tive performance of the classifier balanced with explainable
capabilities is crucial. Ensemble trees are considered black-
box classifiers in terms of explainability due to the poor
transparency offered when dealing with multiple base esti-
mators to estimate their predictions. Therefore, post-hoc XAI
techniques are required to facilitate providing understandable
information about how an already developed model produces
its predictions [48].

In this work, the following explainable post-hoc techniques
have been used: permutation feature importance (PFI), which
quantifies the prediction error increase of the model after per-
muting a specific feature’s values, being the most important
features those that provoke an error increase [49]. Partial
dependence plot (PDP) shows visually the marginal effect
in terms of the probability that a given feature has on the
predicted outcome over a range of different observed val-
ues [50]. SHapley Additive exPlanations (SHAP) compute an
additive importance score, known as Shapley value, for each
feature in every individual prediction by applying coalitional
game theory, which are then aggregated to give a global
explainability of the model [51], [52].

F. CLASSIFICATION PERFORMANCE AND EXPLAINABILITY
EVALUATION METRICS
Since the dataset employed presents an imbalance in its
target feature (250 CKD/150 notCKD), other metrics than
accuracy are recommended to use to have a more compre-
hensive view of the performance, namely: sensitivity, speci-
ficity, precision, and F1-score [14]. Additionally, to assess
the explainability performance of the classifiers employed,
the explainability metrics proposed by Tagaris et al [53] are
used: Interpretability, defined as the ratio of those masked
features that do not bring relevant information to the final
classification result and the total number of features of the
dataset; Fidelity measures the accuracy relation between the
evaluated model and its equivalent full-interpretable model
that is built with a decision tree on the same data input; and
the Fidelity-Interpretability Index (FII) that allow comparing
explainability performance between different models.

FIGURE 1. SCI-XAI automated model selection framework.

TABLE 3. Metrics of classification performance and explainability
evaluation.

With the aim to benchmark the classification and explain-
ability balance of our research results with the ones iden-
tified in the related works, we propose a new metric:
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TABLE 4. Feature selection results (#: number of features selected; Feats: name of features selected; mut-inf: mutual information, RFE: Recursive feature
elimination.

TABLE 5. Classification metrics results (in %). Cross-validation training results expressed with mean (standard deviation).

Fidelity-Accuracy Index that relates the number of features
selected and the accuracy performance. The formulas of these
metrics are shown in Table 3.

IV. RESULTS
A. FEATURE SELECTION
Table 4 shows the best combination of features selected
for each ensemble trees algorithm obtained by the SCI-
XAI framework. The features selected are denoted by their
type (numerical, nominal, and ordinal) as well as the selec-
tion method (i.e. ANOVA, Chi-squared, Mutual Information,
or Recursive Feature Elimination). Considering all the ML
classifiers, the framework achieves a reduction of at least
50% of the original features. The major reduction, leaving
3 out of 24 features, is achieved with XGBoost implying that
21 features are non-relevant for the classification. Thus, using
the mutual information technique, the features selected are
hemo, htn, and sg. Random Forest and Extra Ttrees (both
bagging ensemble trees) achieved a similar general reduction
with 7 and 8 features left, respectively. However, there is
a substantial difference concerning the numerical features
(1 selected by Random Forest and 4 by Extra trees). The
worst case is performed by AdaBoost, where 12 features are
selected, with a relatively high number of numerical features
(7) selected compared to the others ML classifiers.

B. CLASSIFICATION PERFORMANCE RESULTS
Table 5 shows the classification performance of the different
ensemble trees algorithms considered after the training cross-
validation module, as well as the evaluation with the held-out
test set (unseen data). The results show a solid classification
performance in the training phase, where the classification
results for all the metrics considered i.e. accuracy, sensitivity,
specificity, f1-score, and precision are 100% in the cases
of Random Forest, Extra Trees, and AdaBoost. Concerning
XGBoost, the performance decreases slightly although it
maintains fairly good results, with the highest value of 100%
in sensitivity and the lowest value of 98.1% in specificity

TABLE 6. Explainability metrics results.

meaning that XGBoost would generate a reduced number of
false positives (around 2%).

When evaluating the model with the held-out test set, all
classifiers considered obtain an accuracy higher than 97.5%,
and values above 95% in the rest of the classification metrics.
This implies a robust classification performance even with
new and unseen data. Similar to training data, the lowest value
is obtained for specificity with XGBoost classifier, indicating
a less strong performance in classifying true negative cases.

C. EXPLAINABILITY METRICS RESULTS
For the evaluation of explainability, the metrics employed are
Fidelity, Interpretability, and Fidelity Interpretability Index.
Table 6 shows the results of these three metrics considering
the features selected by SCI-XAI for each of the classifiers.
Concerning Interpretability, the different models achieve val-
ues between 50 to 88%, denoting that at a minimum, half
of the initial features are removed. The highest value is for
XGBoost, which achieves 88% due to the selection of only
three features (hemo, htn, and sg) in the resultant optimal
model when using that ML classifier algorithm. In terms
of Fidelity, all models achieved high values close to 100%,
which indicates that a decision tree built over the same
selected features as input would have almost the same an
accuracy than the original ML classifier. Moreover, FII gives
a balanced measure between interpretability and fidelity to
compare different algorithms. Thus, XGBoost (FII = 0.85)
achieved the most balanced model in comparison to the
other models (Random Forest 0.71, Extra Trees 0.66, and
AdaBoost 0.50).
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FIGURE 2. Comparison of fidelity accuracy index of the different CKD prediction models from the related compared
to our prediction model.

Since the aim of this research is to achieve the most
balanced CKD prediction model in terms of classification
performance and explainability, we propose the model built
with XGBoost and its group of selected features: hemoglobin
(hemo), hypertension(htn), and specific gravity (sg) to con-
duct an explainability analysis of its predictions.

Finally, to benchmark this balance accuracy-interpretability
capability of our model with the ones identified in related
works, we propose a comparison by using the Fidelity-
Accuracy-Index for each of the prediction models. Figure 5
shows the graphical comparison where our model achieves
the best result, above 80%, either considering the perfor-
mance with the training or the test set. Since some related
works express their classification performance using cross-
validation and other related works use the test set, the FAI
of this work is calculated and depicted with the training set,
which uses cross-validation, and the test set.

D. EXPLAINABILITY ANALYSIS OF THE
PREDICTION MODEL
Since XGBoost is the most balanced model in terms of
explainability and accuracy, the relevance of hemo, htn, and
sg features is analyzed using different post-hoc explainability
techniques to demonstrate their influence on the model’s
outputs.

Figure 3 shows the features’ importance obtained with PFI,
which allows visualizing the global explainability of each
feature without indicating the direction (positive or negative)
of the contribution to the probability of CKD. According to
the Figure 3, hemo is the most relevant feature followed by
sg and htn, (in descending order of importance.

FIGURE 3. Global explainability obtained with Permutation Feature
Importance technique.

FIGURE 4. PDP plots of CKD probability contribution for each model’s
feature.

The PDP plots presented in Figure 4 provide information
about the marginal effect of the selected features values
(x-axis) on the probability of a positive CKD prediction
(y-axis). Thus, the marginal contribution of hemo values
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between 12.3 gms and 13.5 gms to predict CKD decreases
from 0.98 to 0.53 in several steps with values of 0.94, 0.57,
0.55, and 0.53, and remains monotonic for the rest of hemo
values above 13.5 gms. Moreover, patients with hypertension
(htn = 1) have a marginal increase of 0.33 (from 0.6 to 0.93)
in the probability of developing CKD. In the case of sg,
values of 1.020 and 1.025 decrease the marginal probability
of predicting CKD by 0.4 (from 0.98 to 0.58).

SHAP technique also allows for explaining the general
contribution of every feature to the model’s probability con-
cerning its values. Similar to the trends shown when using
PDP, Figure 5 depicts that the hemo feature has the greatest
attribution to the CKD probability, decreasing it at high hemo
values (red/magenta color) and vice versa. Similarly, high
values of the sg feature contribute by reducing the proba-
bility of CKD. Additionally, the presence of hypertension
(htn equals 1) increases the CKD probability (red color).
Besides, SHAP offers explanations concerning predictions
of individual cases (shown in Figure 6), by depicting the
attribution of each feature value not only specifying the direc-
tion force towards the final Shapley value (red: positive con-
tribution, blue: negative contribution) but also the feature’s
weight (length of the bar). As an example of this individual
explainability, Figure 5.a and Figure 5.b show the explana-
tions of a predicted true negative case (y = 0, the patient
does not have CKD, and the features’ values for that specific
case are hemo = 17.1, sg = 1.025, htn = 0) and a predicted
true positive case (y = 1, the patient does have CKD, and
the features’ values for that specific case are hemo = 11.4,
sg = 1.015, htn = 0). In both cases, the prediction contri-
bution starts from a base of 1.58, which means the average
Shapley value of the model output over the training set. In the
case of the true negative with a final Shapley value of −4.87,
hemo equals 17.1 gms is denoted as the most relevant feature
in the prediction with a Shapley value attribution of −3.2,
meanwhile, sg and hth, with values 1.025 and 0 respectively,
have negative Shapley values attributions (−1.92 and−1.44).
Regarding the true positive case (Shapley value equals 5.76),
the values of hemo= 11.4, sg= 1.015, and htn= 1 contribute
to a positive prediction of CKD with nearly similar additive
Shapley values (+1.7 +1.77, +1.27 respectively). It is worth
noting that the contributions shown for the feature values in
these individual cases agree with the findings obtained with
the PDP plots.

V. DISCUSSION
Due to the current increase in the global incidence of CKD,
timely detection of patients at risk becomes a relevant tool
for doctors to achieve a disease early diagnosis. Besides
the advent of ML algorithms to develop prediction models
that support CKD early diagnosis, XAI could additionally
improve these models by meeting the healthcare profession-
als’ demands for a clearer understanding of models’ deci-
sions. With more explainable CKD early diagnosis models,
doctors could make more data-driven decisions and focus

FIGURE 5. General explainability of CKD probability contribution by using
the SHAP technique.

FIGURE 6. Local explainability through SHAP (a. True negative case;
b. True positive case).

on controlling underlying features or indicators to slow the
progressive damage of the kidneys.

This paper describes a CKD prediction model developed
not only to seek high accuracy but also to analyze the explain-
ability of its results, thus contributing to enlarging the works
dedicated to AI for CKD diagnosis from a novel perspective,
to the best of our knowledge, that focuses on the model’s
explainability. By using post-hoc explainability techniques,
this work aims to ‘‘open’’ the black-box paradigm of the
ensemble trees classifiers when predicting CKD.

The development of the explainable CKDpredictionmodel
is based on a data management framework developed by the
authors, which allows for automatic inference of the optimal
combination of different parameters such as the appropriate
ensemble tree algorithm, relevant features selected, and fea-
ture selection method to obtain the best classification per-
formance of the prediction model. Moreover, the framework
allows for the evaluation of the model’s performance over
new unseen data (by allocating 30% of the original dataset
to a held-out test set), which could emulate deployment in a

38366 VOLUME 11, 2023



P. A. Moreno-Sánchez: Data-Driven Early Diagnosis of CKD: Development and Evaluation of an XAI Model

real clinical environment. However, the model’s performance
might differ since actual medical records are not usually as
curated as the dataset employed.

The optimization framework considers parameters focused
not only on classification but also on the preprocessing
stage, where feature selection strategies have proven to be
influential in achieving the most accurate classifier. Regard-
ing this preprocessing step, a feature type-driven approach
was implemented to process the features into three paral-
lel threads (numerical, ordinal, and nominal) where data
imputation, data encoding, and feature selection are applied.
Thus, filter and wrapper feature selection methods (ANOVA,
chi-squared, mutual information, and recursive feature elim-
ination) were implemented in the optimization framework to
remove unimportant features based on the statistical mutual
dependence or significance with the target feature.

Concerning the classification, a set of four different ensem-
ble trees ML algorithms (Random Forest, Extra Trees,
AdaBoost and XGBoost) were used to obtain the optimal
classification model to support CKD early diagnosis since
that kind of classifiers are reported in the literature to provide
stability and robustness with datasets of different sizes as well
as a reasonably good prediction capability. Considering our
classification results, this work obtains achieve fairly good
performance by achieving the state-of-art of CKD prediction
models found in the literature, especially when comparing the
number of features selected. Therefore, the SCI-XAI frame-
work’s feature selection step has proven to be valuable by sub-
stantially reducing the original number of features, leaving
3 out of 24 when using the XGBoost classifier, which is the
best CKD prediction model when compared to other related
works in terms of minimum features considered. This insight
is supported by a benchmark with the related works, compar-
ing the results regarding the metric Fidelity Accuracy Index.
Furthermore, 3 out of 4 ensemble learning algorithms used in
the framework obtained their best classification results with
only 33% of the original features, showing the capability of
the framework to detect relevant features when building the
prediction model.

To the best of our knowledge, this paper is the first in
the literature to address an explainability analysis of a CKD
prediction model selected through an accuracy-explainability
trade-off perspective. Thus, albeit not obtaining the best
classification performance, XGBoost is selected as the most
balancedmodel, providing an example of the tension between
accuracy and explainability that occurs in prediction models
intended for use in specific domains where understanding the
results is crucial, such as healthcare.

Regarding the analysis of the features’ importance in the
prediction model, the hemo (hemoglobin) feature is denoted
as the most relevant in all post-hoc analysis techniques con-
sidered, followed by the sg (specific gravity) and then htn
(hypertension). It is worth highlighting the utility of the
PDP plots to identify thresholds at which a particular feature
modifies the marginal probability prediction. For instance,
this work establishes thresholds in 12.3 gms and 1.015 for

hemo and sg, respectively, where the probability starts to
decrease, implying that doctors could set up a treatment for
the patient to be above these values and reduce the probability
of CKD disease. Moreover, the local explainability results
exemplify how XAI could contribute to the promotion of
personalized medicine by demonstrating the relevance of the
different features for an individual prediction case.

The results described in this work exhibit the added value
of explainability to a clinical prediction model. Addition-
ally, the feature selection approach is valuable not only for
improving the explainability of clinical prediction models
but also for reducing the cost of the diagnosis having fewer
clinical indicators to extract. Thus, since this explainable
CKD prediction model implies the processing of three fea-
tures (hemoglobin, specific gravity, and hypertension), the
cost associated with their extraction, following the price list
defined by Salekin et al [54], is 1.65 USD for hemo in a
hemoglobin test, and no cost for specific gravity (sg) and
hypertension (htn). Therefore, the cost associated with an
early diagnosis of CKD by using this explainable predic-
tion model would be around 1.6 USD, which would have
an important impact on developing countries where medical
access is more difficult [55].

However, our research has some limitations. First, the
present study employs a widely used CKD dataset from a
UCI-ML repository, which, although it allows benchmarking
with other related research works, lacks an external validation
to support objective experimentation. Therefore, to conclu-
sively validate the results, more CKD data would be needed
from a different clinical setting from the original.

VI. CONCLUSION
This research work presents the development and evalu-
ation of an explainable prediction model for CKD early
diagnosis. The main goal is to show how XAI contributes
to improving prediction models used in the medical field.
This research also pursues to exemplifying how to address
the existing trade-off between accuracy and explainability
when dealing with black box AI models. Therefore, using
an automated optimization framework, the best combina-
tion of the ensemble tree algorithm and the number of
features are selected to provide the best balanced model
according to the classification and explainability metrics.
The optimal balanced explainable model detected by the
framework was an XGBoost classifier that used three fea-
tures for the CKD prediction: hemoglobin (hemo), specific
gravity (sg), and hypertension (htn). After conducting an
explainability analysis with different post-hoc techniques, the
features’ relevance in descending order of importance was
found to be hemo, sg, and htn. The prediction model devel-
oped in this work achieved the classification performance of
the best CKD prediction models identified in the literature
with the least number of features selected compared to the
other works.

To advance in the line of trustworthiness and transparency
of our model, we propose as future works to perform an
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external validation with other datasets that contain the same
group of features to evaluate the generalization capability
of the model in the early CKD diagnosis. Additionally, this
external validation could be deployed in a clinical setting with
the aim at also gathering insights from clinicians about the
explainability results and discussing how it could affect
the CKD treatment plans. Therefore, we could confirm that
the explainability approach presented in this paper would
provide clinicians with an easier understanding and inter-
pretability of how CKD is diagnosed early with a reduced
group of indicators. This information would allow them to
also focus on tackling relevant features and their values to
avoid the CKD onset or even to revert its progress.

APPENDIX
The TRIPOD statement guideline filled according to the
research study characteristics is amended as appendix.
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