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ABSTRACT

Ali Mehraj: CREATING ELECTRIC VEHICLE CHARGING SIMULATION WITH SIMCES PLAT-
FORM
M.Sc. Thesis
Tampere University
Master’s Degree Programme in Software, Web & Cloud
May 2023

The global number of electric vehicles (EV) is on a continuous rise, alongside the need for an
optimal electric vehicle charging solution. One of the effective approaches for discovering a feasi-
ble electric vehicle charging solution is to simulate the electric vehicle charging environment and
analyze the results.

This research evaluates Simulation Environment of Complex Energy System (SimCES) plat-
form as a simulation development tool for developing electric vehicle (EV) charging simulations.
The aim of the research is to evaluate SimCES platform’s ability to simulate electric vehicle charg-
ing scenarios. The research further addresses issues and limitations discovered during the devel-
opment of the simulation using the SimCES platform. The research aims to evaluate the suitability
of the SimCES platform in terms of electric vehicle charging simulations.

To evaluate SimCES, an EV charging simulation was developed and run using the platform
in this research. To achieve that, three components were developed using the platform and a
greedy algorithm was implemented in one of the components to calculate the power output for
EV charging stations. Issues, drawbacks and limitations were identified during the development
phase of the simulation. Additional external applications were developed and integrated with the
simulation platform for end-user usage.

The results identify issues and drawbacks related to logging and debugging that caused de-
lays in development. The results further reveal the limitations of the current version of SimCES
alongside limitations of the simulation model itself.

The research concludes with suggestions and recommendations for enhancing the SimCES
platform and identifies potential future research topics and approaches.

Keywords: Simulation, Co-simulation, Simulation platform, Electric vehicle charging simulation,
EV charging simulation, Simulation Environment of Complex Energy System, SimCES.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1. INTRODUCTION

Simulation is an essential problem-solving methodology for generating effective solutions

for many real-world problems [1]. Simulations provide the ability to analyze performance

and investigate potential causes in a controlled and reproducible environment [2]. As

the global number of electric vehicles continues to increase, the electric vehicle charging

environment has become a complex scenario that requires an optimal charging solution.

The research aims to create an electric vehicle charging simulation using a simulation

platform called SimCES (Simulation Environment of Complex Energy System), find draw-

backs and shortcomings of the simulation platform, and evaluate whether the simulation

platform is suitable for creating electric vehicle charging simulations. The simulation will

be executed by creating multiple independent components within the SimCES platform,

which will communicate with each other using a message broker for exchanging mes-

sages and data.

In this study, the simulation of electric vehicles (EV) charging consists of an algorithm

that determines the charging and the distribution of the energy from the stations and we

investigate if such a simulation can be developed using the SimCES platform. In previous

research, energy-based simulations were developed using the SimCES platform [3, 4].

However, the simulations were simple in nature and no algorithm was implemented in the

calculation for those simulations. Considering that the SimCES platform is a relatively new

simulation platform, and a simulation of this scale and complexity has not been generated

previously using the platform, it is expected to have some issues and drawbacks while

creating such simulations. Therefore, the first research question is,

RQ1. What are the limitations and challenges encountered when building a simulation for

EV charging using the SimCES platform?

The second research question in this study centers on the methodology for building the

EV charging simulation on top of the SimCES platform, including the tools, methods, and

best practices necessary to ensure successful creation of the simulation. It is focused on

assessing the compatibility and effectiveness of the SimCES platform in simulating EV

charging scenarios. Therefore, the second research question is,

RQ2. How suitable is the simulation platform alongside the simulation model in terms of

developing EV charging simulations?
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Next, Chapter 2 reviews the related research alongside the SimCES platform. Then,

Chapter 3 describes the architecture, development process, and scenarios of the EV

charging simulation. Chapter 4 describes the results and findings gathered from creat-

ing the simulation. Finally, Chapter 5 discusses the research questions alongside the

answers and Chapter 6 concludes the thesis.
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2. RELATED WORK AND LITERATURE REVIEW

This chapter surveys simulations alongside co-simulations and reviews the most relevant

simulations, platforms, and tools followed by the introduction of the architecture, design,

and features of SimCES platform.

2.1 Simulations and Co-simulations

Simulation is “the process of designing a model of a real system and conducting experi-

ments with this model for the purpose of either understanding the behavior of the system

and/or evaluating various strategies for the operation of the system” [5]. Simulation en-

ables the replication of the operations of a real-world process or system over time. It is

possible to model both existing and conceptual systems using simulations [1]. Simulation

can refer to a realization of a representation of a larger, more complex activity [6]. Among

the tools available for designing and operating complex systems or processes, simulation

is considered to be one of the most effective analytical methods [5]. Simulations have

been used to analyze a very large variety of systems [6] and simulation can be a powerful

tool if understood and used properly [7]. Simulation can be used to analyze models of ar-

bitrary complexity [6]. Simulations can further serve as a means to investigate novel poli-

cies, operating procedures, decision-making protocols, organizational frameworks, and

information dissemination channels without disrupting current operations [5]. Through

simulation, we can experiment with scenarios about which we have limited knowledge

and experience. Simulations enable the ability to investigate hypothetical scenarios [5].

An emerging technology called co-simulation allows for the global simulation of a cou-

pled system by combining the simulations of its component pieces [8]. The linking of two

or more simulations that differ in at least one of the areas of the simulation tool, solver

algorithm, and step size is known as co-simulation [9]. Co-simulation is a term used to

describe the collective simulation of multiple aspects or domains within a system. Co-

simulation considers the intricacy of the simulated system and the inter-dependencies

among different domains or aspects that are interconnected within the system [10]. Fre-

quently, modular simulation methods are denoted as co-simulation [8]. The theory and

methods used in co-simulation allow for the global simulation of a coupled system using a

combination of simulators. Each simulator is designed and provided by the team respon-



4

sible for that system, and operates as a black-box model [11]. The black box refers to a

component or system whose internal workings are not known or are intentionally hidden

from the observer. Additionally, it makes it easier for system integrators and suppliers to

work together since each team or supplier may focus on its portion of the issue with its

tools [11].

2.2 EV Charging Simulations, Platforms, and Tools

GridLAB-D is a popular simulation platform that represents a new generation of simulation

tools for power distribution systems. It is open-source and a highly adaptable simulation

platform that can be seamlessly integrated with a diverse range of external data man-

agement and analysis tools [12]. GridLAB-D provides a simulated setting that can be

seamlessly incorporated with a diverse range of external utilities, and merges models

for both end-user and electrical power distribution automation [13]. GridLAB-D system

incorporates various modules that enable it to carry out a range of system simulation

tasks, such as; power flow and control functions including the management of distributed

generation and storage, the modeling of end-use appliances, equipment, and associated

control systems and comprehensive data collection capabilities for every object within the

system. This further includes the management of boundary conditions such as weather

and electrical boundaries [12].

Previous studies have investigated the potential of utilizing GridLAB-D in conjunction with

advanced simulation tools such as DIgSILENT PowerFactory [14] and OpenModelica

[15]. The study aimed at establishing a flexible platform that is capable of simulating

demand response through various electric vehicle (EV) charging algorithms [16]. The

DIgSILENT PowerFactory is a well-established and specialized tool for simulating and

analyzing power systems. It is utilized to depict the electric grid and it offers a range of

dynamic models and controls that can be scripted to examine, for example, frequency

demand response [14]. OpenModelica is a distinct open-source environment for mod-

eling, simulation, optimization, analysis, and development, based on the Modelica and

FMI standards, and designed for large-scale integration [15]. The research aimed to im-

prove the charging process by addressing several key areas, including constraints, grid

efficiency, decentralized resources, market dynamics, and supply-related considerations

[16].

Previous research focused on optimizing the charging process of a combined fleet of

electric vehicles in a way that not only reduces the impact on the overall system load but

also lowers the costs incurred by customers [17]. The simulation in the research was

simulated by utilizing Matlab [18] using Cvx [19] to solve the charging optimizations.

The FEATHERS simulation platform [20] was utilized in a previous research to generate

activity-travel schedules. FEATHERS platform can be utilized to create dynamic activity-
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based models to forecast transportation demand [20]. The information generated by

FEATHERS for every journey in the research includes the scheduled departure time, es-

timated duration of the trip, as well as the originating and concluding zones. An external

application was developed in this study to calculate energy and power requirements in

this study. Two scenarios were considered in this study. The first scenario involves peo-

ple initiating the charging process during the low tariff period as early as possible, which

serves as a baseline reference. The second scenario assumes that people initiate the

charging process at a time that is uniformly distributed, while ensuring their expenses are

minimized [21].

One previous research utilized a hybrid simulator for EV charging scenarios that incor-

porates discrete and continuous state variables and mimics a group of electric vehicles

(EVs) and their connection to the power grid for recharging purposes [22].

With the aim of reducing charging costs, a study was carried out by developing a simula-

tion with Open Distribution System Simulator (OpenDSS) for implementing smart charg-

ing of electric vehicles within a smart grid framework that has access to information such

as driving patterns, electricity prices, and voltage data [23]. OpenDSS is a power dis-

tribution system simulator (DSS) specifically designed to facilitate the integration of dis-

tributed energy resources (DER) and modernization of the grid [24]. The approach in the

research considers both the real-time price signal and the cost of battery degradation in

optimal charging scheduling [23].

2.3 SimCES Platform

2.3.1 Core Principles and Architecture

"Simulation Environment of Complex Energy System (SimCES) is an open-source sim-

ulation platform that facilitates the development of complex simulation systems with a

modular, message-broker-based architecture" [4]. Prior research [4] compared SimCES

with simulation platforms and tools such as iTETRIS [25], Mosaik API [10], DEMKit [26],

SimApi [27], MOOSE [28], LICPIE [29], SpaceCRAFT VR [30], Spine Toolbox [31], CO-

COP [32] and concludes that these simulation platforms or tools do not possess the com-

bination of loose coupling, platform independence, domain-agnostic design, and the abil-

ity to construct a domain ecosystem using simulation components [4]. Furthermore, it

was determined in previous research that SimCES is the only platform that enables a

component-based domain ecosystem [4].

The simulations in SimCES are configured in a human-readable file that defines all the

parameters and components that are included in the simulation [4]. This facilitates the

comparison of simulation results in different scenarios. SimCES offers an additional ben-

efit of having a container ecosystem for simulation images, along with a programming



6

toolkit that streamlines the development process [4].

Service Oriented Architecture or SOA principles [33] are applied in the design of Sim-

CES components. The principles followed in designing SimCES components are loose

coupling, abstraction, autonomy, reusability, and composability [3]. Loose coupling allows

the components to be independent and have logical dependencies rather than physical

dependencies among components. Abstraction enforces only exposing information that

is required for interaction. Autonomy hides the implementation details. Reusability allows

the components to be used in multiple scenarios and by multiple components. Compos-

ability allows a component the ability to be organized into a larger entity consisting of

multiple components [3]. SimCES employs Service-Oriented Architecture (SOA) princi-

ples along with the message bus paradigm to facilitate the separation of components and

runtimes from one another. This approach further enables the addition, removal, or mod-

ification of components without affecting other components in the system [4]. Although

the energy domain was the initial motivator for SimCES, it is not restricted to any specific

application [4].

Additionally, SimCES utilizes a microservice architecture [4]. Microservices represent an

architecture that involves partitioning a system into distinct sections based on particular

concerns [34]. SimCES can be considered as a manually executed microservice system

[4]. This is due to a re-instantiation process being carried out for every individual simula-

tion run in SimCES. The simulations in SimCES run for a fixed period of time rather than

having a long uptime. This allows aspects common in traditional microservice architecture

such as resilience, fault tolerance, and deployment at runtime to be relaxed [4].

2.3.2 Message Broker and Messaging

SimCES employs a message broker that utilizes a topic-based publish-subscribe pattern

to facilitate communication between the components and enable loose-coupling [4]. The

components communicate with each other using message queues and topics. A com-

ponent that produces information and intends to share this information with other com-

ponents will transmit the information to a designated topic. A string is used to denote

or identify this particular topic. Any component that intends to receive the information is

required to subscribe to the topic [3]. Message queues are created by the components for

receiving messages from the designated topic. In cases where a topic has multiple sub-

scribers, the message bus will generate a copy of published messages in each respective

queue. The utilization of a queue-based approach enables asynchronous execution, as

delays in message consumption by one subscriber do not impede the execution of other

subscribers [3].

SimCES utilizes the Advanced Message Queuing Protocol (AMQP) version 0-9-1 as its

communication protocol, which facilitates the geographical dispersion of simulation com-
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ponents via the internet [3]. The implementation of AMQP in SimCES is carried out

through RabbitMQ [35], with messages being encoded using JavaScript Object Notation

(JSON).

2.3.3 Concept of Epochs

In SimCES platform, although the simulation components are distributed, they should still

simulate together. For this, a mechanism is needed to synchronize time [36]. Epochs refer

to simulated time periods that the platform uses to communicate with the components. An

epoch length is not constant and can vary depending on the need of the simulation [4]. For

a single simulation, the value of the epoch length can be set to a fixed value depending

on the need of the simulation. Each component is only able to start operations when

an epoch starts. An epoch is considered complete when all of the components have

concluded their operations [3].

At the beginning of each epoch, a message called the "epoch message" is broadcast

throughout the network. All the components receive this epoch message. This epoch

message originates from a component named ‘Simulation Manager’ that is responsible

for controlling the timing of the epochs [3]. Within the context of an epoch, an epoch

message or the output of a component can trigger the operation of another component.

A component that does not need any input from others can be triggered by an epoch

message [3].

Epochs can only end when all components of the simulations have completed their cal-

culations and operations. After finishing all calculations and operations, each component

publishes a ‘ready’ message. The Simulation Manager receives these ready messages

from the component and can only start a new epoch when all the ready messages have

been received from all the components [3].

2.3.4 Platform Components

Components refer to the building blocks of a simulation in SimCES platform. There are

two types of components in SimCES platform; energy domain components, and platform

components. If components refer to real-life counterparts, then the components are called

energy domain components. Components that are exclusively present for the simulation

are referred to as platform components [3].

The platform components of the SimCES platform are Simulation Manager, Platform Man-

ager, and Logging System. The execution of a simulation run with epochs is coordinated

by the Simulation Manager. For each run of the simulation, a new instance of the Simula-

tion Manager is created. The Platform Manager oversees the initialization of each simula-

tion run [3]. The Logging System comprises two components, namely Log Writer and Log
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Reader. The Log Writer component is responsible for storing all messages transmitted

during a simulation run and the Log Reader component offers a Restful API (Application

Programming Interface) that enables retrieval of the saved messages [3]. This API does

not require any authentication and log messages can be retrieved directly. User authen-

tication and traffic encryption are not available for the API which may result in security

issues if sensitive information is used during a simulation [4]. Additional security may be

implemented with the use of a firewall.

2.3.5 Platform and Image Registry

The SimCES platform provides the flexibility to run components either as Docker con-

tainers that are managed by the platform or in any other environment that is managed

externally. It is possible to apply both approaches for a single simulation [4]. Externally

managed components need to be externally managed if it requires a specific platform.

These platform components can be constructed locally or obtained from a public image

registry. SimCES has three possible sources for its components: externally managed

platform, public or private image registry, and local build. The core of the platform, that

is responsible for managing the execution and synchronization of components, is im-

plemented as Docker containers [4]. The component origins of SimCES platform are

illustrated in Figure 2.1.

Figure 2.1. Component origins of SimCES platform (Licensed under CC BY 4.0, Re-
published with permission) [4].

https://creativecommons.org/licenses/by/4.0/
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For platform-managed components, the workflow is illustrated in Figure 2.2. The workflow

for platform-managed components starts with the user starting the simulation platform

by running the start command. The simulation platform starts all the platform-managed

components and provides the required parameters to the components. Each platform-

managed component starts as a Docker container [37]. The components run the simula-

tion workflow [38]. After finishing the simulation workflow, the components end execution,

and the Docker containers are stopped [37].

Figure 2.2. Workflow of SimCES platform managed components (Re-published with per-
mission) [37].

For externally managed components, the workflow is illustrated in Figure 2.3. The user

needs to ensure that all externally managed or static components are running. After en-

suring that all externally managed components are running, the user starts the simulation

platform by running the start command. The simulation platform starts and then publishes

a Start message [37]. All external components receive this Start message and then run

the simulation workflow [38]. After finishing the simulation workflow, it is the responsibility

of the user to shut down the externally managed components if needed [37].
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Figure 2.3. Workflow of externally managed components (Re-published with permission)
[37].

In order to integrate a newly developed component into the SimCES platform, a man-

ifest needs to be provided. For platform-managed components, the manifest contains

the name, type, description, and Docker image name or location of the component [4].

The manifest can additionally define attributes to be delivered at startup that enables the

simulations to have starting parameters. These attributes are injected as environment

variables for platform-managed components. Dedicated messages containing attributes

are transmitted by the broker to externally managed components [4]. YAML (recursive

acronym from YAML Ain’t Markup Language), is the format of the manifest. The usage

of YAML allows even non-technical users to understand and edit the manifests [4]. An

example manifest of ‘Simple component’ is available at [39]. The component contains

the name, and description alongside the attributes of the ‘Simple component.’ The ‘type’

attribute of the manifest defines how the component is managed. In the Simple compo-

nent’s case, it is managed by the SimCES platform. The Docker image attribute in the

manifest corresponds to the location of the component’s Docker image. For the Simple

component, this corresponds to a link to an image registry where the Docker image is

stored. The ’attributes’ attribute in the manifest define the input parameters of the com-

ponent. The manifest of Simple component is displayed in Listing 2.1.

1

Name: SimpleComponent
3 Type: platform
Description: "Simple test component for the Decoupled Simulation Platform"



11

5 DockerImage: ghcr.io/simcesplatform/simple-component:latest
Attributes:

7 SimpleValue:
Environment: SIMPLE_VALUE

9 Optional: false
InputComponents:

11 Environment: INPUT_COMPONENTS
Optional: true

13 Default: ""
OutputDelay:

15 Environment: OUTPUT_DELAY
Optional: true

17 Default: 0.0

Listing 2.1. Manifest of Simple Component [39].

2.3.6 Development Toolkit

The SimCES platform contains a set of tools that implement the fundamental commu-

nication requirements. This can enable the developers to implement components faster

[4]. The toolkit can be created for other programming languages, as deemed necessary.

At present, the toolkit has an implementation in Python and the Python-based version

of the toolkit is known as Simulation Tools [40]. Simulation Tools contain proxy classes

for message structures that encompass the necessary messages for communicating with

the platform [4]. The message classes can be used to handle messages in the simula-

tion platform and the messages contain validation for the message attribute values. The

proxy classes provide message classes such as BaseMessage that contains the type of

the message, simulation id and the timestamp of a message and EpochMessage that

contains the start time and the end time of an epoch. The structure of EpochMessage is

displayed in Listing 2.2.

2 class EpochMessage(AbstractResultMessage):
"""Class containing all the attributes for a epoch message."""

4 CLASS_MESSAGE_TYPE = "Epoch"
MESSAGE_TYPE_CHECK = True

6

MESSAGE_ATTRIBUTES = {
8 "StartTime": "start_time",

"EndTime": "end_time"
10 }

OPTIONAL_ATTRIBUTES = []
12

MESSAGE_ATTRIBUTES_FULL = {
14 **AbstractResultMessage.MESSAGE_ATTRIBUTES_FULL,

**MESSAGE_ATTRIBUTES
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16 }
OPTIONAL_ATTRIBUTES_FULL = AbstractResultMessage.OPTIONAL_ATTRIBUTES_FULL +
OPTIONAL_ATTRIBUTES

18

@property
20 def start_time(self) -> str:

"""The attribute for the start time of the epoch."""
22 return self.__start_time

24 @property
def end_time(self) -> str:

26 """The attribute for the end time of the epoch."""
return self.__end_time

28

@start_time.setter
30 def start_time(self, start_time: Union[str, datetime.datetime]):

if self._check_start_time(start_time):
32 new_start_time = to_iso_format_datetime_string(start_time)

34 # Check that the start time is not after the end time.
if isinstance(new_start_time, str):

36 if getattr(self, "end_time", None) is not None and new_start_time
>= self.end_time:

raise MessageValueError("Epoch start time ({:s}) should be
before the end time ({:s})".format(

38 new_start_time, self.end_time))
self.__start_time = new_start_time

40 return

42 raise MessageDateError("’{:s}’ is an invalid datetime".format(str(
start_time)))

44 @end_time.setter
def end_time(self, end_time: Union[str, datetime.datetime]):

46 if self._check_end_time(end_time):
new_end_time = to_iso_format_datetime_string(end_time)

48

# Check that the end time is not before the start time.
50 if isinstance(new_end_time, str):

if getattr(self, "start_time", None) is not None and new_end_time
<= self.start_time:

52 raise MessageValueError("Epoch end time ({:s}) should be
after the start time ({:s})".format(

new_end_time, self.start_time))
54 self.__end_time = new_end_time

return
56
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raise MessageDateError("’{:s}’ is an invalid datetime".format(str(
end_time)))

58

def __eq__(self, other: Any) -> bool:
60 return (

super().__eq__(other) and
62 isinstance(other, EpochMessage) and

self.start_time == other.start_time and
64 self.end_time == other.end_time

)
66

@classmethod
68 def _check_start_time(cls, start_time: Union[str, datetime.datetime]) -> bool

:
return cls._check_datetime(start_time)

70

@classmethod
72 def _check_end_time(cls, end_time: Union[str, datetime.datetime]) -> bool:

return cls._check_datetime(end_time)
74

@classmethod
76 def from_json(cls, json_message: Dict[str, Any]) -> Union[EpochMessage, None

]:
"""Returns a class object created based on the given JSON attributes.

78 If the given JSON does not contain valid values, returns None."""
if cls.validate_json(json_message):

80 return cls(**json_message)
return None

Listing 2.2. Simulation Tools EpochMessage Class [41].

Details of other message classes can be found in [42]. The proxy classes feature meta-

data fields that are commonly present in messages [4]. The proxy classes create a

base structure for creating components and messages that provide ready-made func-

tions and attributes that are needed for the simulation. The toolkit offers an abstract base

class for the primary workflow of components that can be extended by the developer for

component-specific requirements and functionality [4].

2.3.7 Deployment

The utilization of Docker [43] containers and virtualization in the SimCES platform facili-

tates easy setup of its components and reduces the need for manual configuration. By

utilizing Docker, SimCES allows for applications to be established with minimal lines of

code. The applications are run in lightweight Docker containers and Docker Compose [44]

can be used to group the containers. Docker Compose enables the grouped containers

to be started and stopped using a single command [3].
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2.3.8 Error Handling and Warnings

In the case an algorithm within a component fails to generate output due to issues or an

unrecoverable error, it is specified that the component reports the error or the failure event

to the Simulation Manager [38]. Simulation Manager will signal the other components and

end the simulation [3]. If any component is in the process of calculation when the stop

message arrives, the component may continue the operation to produce a result and

publish the result before quitting [38]. Once this process is complete, it becomes the

responsibility of the human user to examine the logs generated by the components to

investigate the issue and the errors that occurred [3].

Warnings can occur if there is something wrong in the logic of a process, but this can still

produce a meaningful result. Possible causes for warnings can be invalid or unrealistic

input data or failure to converge the calculation. Warnings are not fatal and can be infor-

mative. However, the presence of a warning in a message can be the cause of a fatal

condition in another process. If a warning occurs in a component, the warning should be

indicated in the result message [38].



15

3. ELECTRIC VEHICLE CHARGING SIMULATION

The goal is to simulate an electric vehicle charging environment using SimCES (Simula-

tion Environment of Complex Energy System) platform, analyze shortcomings and diffi-

culties in developing the simulation and analyze the suitability of the SimCES platform for

developing electric vehicle charging simulations.

This chapter describes the research simulation components, EV charging algorithm, sim-

ulation description, and the simulation environment followed by the simulation develop-

ment process and the scenarios that are simulated using the SimCES platform.

3.1 Components

The simulation is developed by creating independent components. The environment is

built using 3 components: User, Station, and Intelligent Controller. There is one Intelligent

Controller in the simulation. There can be multiple User and Station components. The

components of the simulation are illustrated in Figure 3.1.
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Figure 3.1. EV Charging Simulation Components

User components represent the users alongside their EV cars in the simulation. The role

of each User component is to contain and send information regarding the user, user’s

car and charging requirements to the Intelligent Controller component in each epoch.

The User component is responsible for informing the Intelligent Controller component the

updated state of charge of the user’s car at the end of each epoch.

Station components represent EV charging stations where the users can connect their

EV cars for charging. Each Station component contains information about the station and

sends the information to the Intelligent Controller component in each epoch. The Station

components further provide the power output information to the User components during

each epoch.

The Intelligent Controller represents the charging and power output logic controller. The

Intelligent Controller component holds all the logic and a greedy algorithm for processing

user charging requirements and calculating power output for the stations. The Intelligent

Controller component receives information regarding the users, users’ cars and charging

requirements from the User components and information regarding the stations from the

Station components. The Intelligent Controller component also stores the information to

process the power output for the stations in each epoch.
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3.2 EV Charging Algorithm

The simulation uses a greedy algorithm to calculate the power requirement for each sta-

tion that determines the final power output to the users’ cars from the stations. The Intel-

ligent Controller uses this greedy algorithm and prioritizes power output for the stations

based on the following aspects:

1. The earliest leaving time of the user from the station.

2. The highest total energy requirement by the user.

3. The order the users reported in for the current epoch. The earlier reporter is priori-

tized over later ones.

For the first aspect, if a user leaves earlier than the other users then the user gets the

most priority for charging. The users in each epoch are simultaneously sorted based on

their leaving time from the stations. The earliest leaving user gets the most priority, and

the latest leaving user gets the least priority.

For the second aspect, the highest total energy requirement by a user is the first deter-

ministic factor of the first tiebreaker. If a user has the highest total energy requirement,

the user gets the most priority for charging. Similarly, if a user has the lowest power

requirement, the user gets the least priority.

For the third aspect and the final tiebreaker, the reporting order of the users in the current

epoch is the deterministic factor for prioritization. If a user reports first in an epoch, the

user will get the most priority. Similarly, if a user reports the last in an epoch, the user will

get the least priority.

The power output for each station is dependent on a few factors such as the total max-

imum power of the stations, the maximum power output of the connected station, the

maximum power input of the user’s car, and the power required to reach the target ca-

pacity within the current epoch for the user. The amount of power output depends on the

following aspects:

1. The maximum power output of the charging station that the user is connected to.

2. The maximum power input capacity of the user’s car.

3. Remaining total power during the epoch. The calculation involves subtracting the

allocated power from the total maximum power during the epoch.

4. The power needed to achieve the target capacity within the current epoch, as ap-

plicable to the user.

The power output for the selected station is determined as the minimum value among the

four aspects.
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3.3 Description

3.3.1 Component parameters

The User component has 10 input parameters. These parameters are needed to initialize

the component with starting values for the first epoch. The input parameters for User

components are user id, user model, car model, car battery capacity, car max power,

station id, state of charge, target state of charge, arrival time, and target time. Details of

the User component input parameters are displayed in Table 3.1.

Input parameter Datatype Unit Description

User id Integer Unique id of a user

Username String Name of the user

Car model String Model of the user’s car

Car battery capacity Float kWh The capacity of the battery of the

user’s car

Car maximum power Float (>0) kW Maximum power input of user’s

car

Station id String The unique id of the station that

the user’s car connects to during

the simulation

State of charge Float (0-100) % User’s car’s current state of

charge

Target state of charge Float (0-100) % User’s car’s target state of charge

at the end of charging

Arrival time ISO 8601 datetime The time when the user arrives at

the station

Target time ISO 8601 datetime The time when the user stops

charging the car and leaves the

station

Table 3.1. Input parameters for User component

The Station component has 2 input parameters. These parameters are needed to initialize

the component with starting values for the first epoch. The input parameters for Station

components are station id and maximum power. Details of the station component input

parameters are displayed in Table 3.2.
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Input parameter Datatype Unit Description

Station id String Unique id of a station

Maximum power Float kW The maximum power output of the

station

Table 3.2. Input parameters for Station component

The Intelligent Controller component has only one input parameter of total maximum

power. Details of the Intelligent Controller component input parameters are displayed

in Table 3.3.

Input parameter Datatype Unit Description

Total maximum power Float kW Total maximum output power

across all the stations in the

simulation during each epoch

Table 3.3. Input parameters for Intelligent Controller component

3.3.2 Message flow

All the components in the simulation communicate with each other using RabbitMQ mes-

sage topics. Each message topic names and payloads are unique. Each component

publishes and subscribes to certain topics during an epoch. There are a total of 6 mes-

sages in the simulation. These messages are car metadata message, car state message,

power output message, power requirement message, station state message, and user

state message. The message flow in the simulation is illustrated in Figure 3.2.
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Figure 3.2. Logical message flow in electric vehicle charging simulation

It is important to note that the message flow depicted in Figure 3.2 represents the logi-

cal sequence of the simulation. However, in practice, the order in which the messages

containing car metadata, station state, and user state are published may differ, since all

these messages are published by the User and the Station components at the beginning

of an epoch.

In logical sequence, the initial message of the simulation is the car metadata message,

and it is published by the User components. This message is published at the start of the

simulation in the first epoch and published only once. The Intelligent Controller subscribes

to the car metadata message and saves the car information of the user upon receiving

the car metadata message. The car metadata message payload contains the user id,

username, station id, state of charge, car battery capacity, car model, and car maximum

power.

The Station components publish the station state messages. The message contains

information about the state of the station. This message payload contains the station id

and the maximum power of the station. The Intelligent Controller subscribes to the station

state message, receives the station message, and saves the information regarding the

station upon receiving the message.

The User components publish the user state messages, and the Intelligent Controller

subscribes to the user state messages. The user state messages contain the charging

requirements for the users’ cars. The payload of the user state messages contains the

user id, target state of charge, arrival time, and target time.
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After receiving the car metadata, station state, and user state messages, the Intelligent

Controller performs computations using a greedy algorithm designed specifically for this

simulation that calculates the power output of the stations. Intelligent Controller then

publishes the power requirement message for each station in the simulation. The greedy

strategy exhibits a myopic approach by always selecting the element that appears best

based on pre-defined criteria. In other words, among all the admissible elements, the

highest-weighted element is selected and added to the solution [45]. It should be noted

that the greedy algorithm is designed solely for calculating the power output of the stations

in the current version of the simulation. This algorithm can be modified, or other means

of calculation can be added for different versions of the simulation.

The Station components subscribe to the power requirement messages and process the

power requirement message concerning their corresponding station ids. The payload of

the power requirement messages contains power, station id, and user id. Based on the

power requirement message, the station components publish the power output messages

and the user components subscribe to these messages. The payload of the power output

message contains the user id, station id, and power output. Upon receiving the power

output message based on the user id the user components update their car’s current

state of charge.

The User components then publish the car state message containing their cars’ updated

state of charge. The Intelligent Controller component subscribes to the car state mes-

sages. The payload of the car state messages contains the user id, station id, and the

state of charge of the cars. The Intelligent Controller receives the message and saves the

updated state of charge. The epoch ends after the information is saved. The process is

repeated till the end of the simulation for the number of epochs specified in the simulation.

3.4 Environment

The simulation components and messages are created using Python version 3.7.9. Docker

and Docker Compose are used for containerization. The simulation uses MongoDB ver-

sion 4.2.7 for storing simulation data [46]. The data that was saved for the simulation can

be accessed from Mongo Express [47] using a browser. RabbitMQ version 3.8.4 is used

as the message broker for the simulation. Git is used for version control. The logs of the

simulation can be accessed using the log reader user interface using a web browser.

For viewing the simulations in graphs, an external application is developed using Node.js

version 16.17.1 and React version 18.2.0. Node.js is an open-source runtime environ-

ment for JavaScript that can be used on various platforms [48]. React is a JavaScript

library for building user interfaces [49]. Node.js is used to develop the backend of the ap-

plication and React is used to develop the front end of the application. The Node.js server

fetches simulation data from MongoDB and the React application displays the simulation
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data in graphs. The graphs are created using Charts.js. Charts.js is a JavaScript charting

library [50].

3.5 Development Process

The agile development process was used to create the simulation. Agile methods pro-

mote an iterative mechanism for producing software, and these methods further increase

the iterative nature of the software lifecycle by tightening the design-code-test loop [51].

Kanban was used as the project management methodology. Kanban applies Lean prin-

ciples by providing a tool to optimize an outcome for value through a focus on flow man-

agement [52]. Trello was used as the Kanban board. Trello is a visual tool that is used to

manage projects, workflow, or task tracking [53]. Meetings were held weekly and a weekly

progress report in the form of a demonstration was presented and discussed to review the

work’s advancement. The demonstration was thoroughly analyzed for the identification of

bugs, issues, and areas for further improvement. Additional tasks were assigned based

on the feedback received during the meetings.

The development process was divided into three phases. Phase 1 included planning the

simulation, Phase 2 included the development and testing of the simulation, and Phase 3

included deployment and creating the demo of the simulation.

3.5.1 Phase 1: Initialization and Planning

This phase was the initial stage of the simulation development process. This phase con-

sists of planning and sketching out the simulation. Weekly meetings are held to brain-

storm the following:

• Components needed in the simulation. It was decided that three components User,

Station, and Intelligent Controller are required for the simulation.

• Messages that are needed in the simulation. These messages are required for

the components to communicate and share information. These messages are car

metadata message, car state message, power output message, power requirement

message, station state message, and user state message.

• The payloads of the messages in the simulation.

• Message flow within the simulation. The message flow is illustrated in Figure 3.2.

• Input parameters for the components. These are starting input parameters provided

to each component at the start of the simulation.

• Algorithm for power distribution. The greedy algorithm is implemented in the Intelli-

gent Controller component that is responsible for calculating the power distribution

for each station.
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• Simulation scenarios. Three simulation scenarios were selected to be simulated.

3.5.2 Phase 2: Simulation Development

Phase 2 consists of the development of the simulation. The developers of the simula-

tion had no prior knowledge of SimCES platform and therefore they had to go through

the documentation that is available on SimCES platform’s GitHub page. Two developers

were involved in the development of the simulation and both of the developers had prior

experience in programming. The developers did not have prior programming experience

with Python. However, the developers had prior experience of utilizing Docker and Docker

Compose.

For local development of the simulation, the simulation platform needs to be installed

in the local environment of the developer’s machines. There is a prerequisite of having

Docker and Docker Compose to be installed in the local environment before attempting

the installation of the simulation platform. There are instructions on the SimCES GitHub

page to assist the users to install the simulation platform. Using the instructions, the

developers were able to install the platform on their local machines without any issues.

For creating the simulation, the messages for the simulation were created first as the

components require the messages to communicate with each other. The user and the

station components were created afterward with a dummy Intelligent Controller to send

and receive messages from the user and station components.

For debugging the components, the only way to check the logs of the component is to

run an existing shell script to copy the logs to log files for each component. The Docker

containers are auto-deleted after the simulation has exited so there is no way to check

the container logs. Running the shell script creates log files for each component and

component logs can be checked from there for debugging.

Following the development of the initial working version of the application with the dummy

Intelligent Controller, the algorithm and logic for power distribution were developed and

subsequently integrated into the Intelligent Controller component. After this stage, it was

possible to run the simulation locally using Docker containers.

For displaying the power output of the simulation in graphs, an external application was

developed using Node.js and React. The external application is called the GUI Monitor in

this simulation. The GUI Monitor fetches the simulation data using the Rest API provided

by the Log Reader component. Additionally, the GUI Monitor displays the list of previously

run simulations and the ids of the simulations. The list of simulations in the GUI Monitor

is illustrated in Figure 3.3.
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Figure 3.3. GUI Monitor Simulation list

With the application, users can view power distribution graphs for each epoch using the

unique simulation id that is generated for each simulation. The simulation and the external

application are tested using exploratory testing for detecting bugs and issues. Exploratory

testing is any testing where the tester actively controls the design of the tests. These tests

are performed, and the information gained while testing is used to design new and better

tests [54]. The power output of a simulation in the GUI Monitor graph is illustrated in

Figure 3.4.
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Figure 3.4. Power output graph in GUI Monitor

3.5.3 Phase 3: Deployment and End-User Interface

In Phase 3, the implementation of the simulation and GUI Monitor are deployed on a

server, alongside the creation of Continuous Integration and Continuous Deployment

(CI/CD) pipelines on GitHub by utilizing GitHub actions. GitHub actions can be used

to automate, customize, and execute software development workflows [55]. To enable

simulations to run on the server through a simulation starter, modifications are made to

the external application. The GUI Monitor will be accessible through the internet and

will require basic access authentication, which is a method of verifying user identity by

requesting a username and password.

Additionally, a simulation can be initiated from the GUI Monitor by inputting component
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names and initial variables in JSON format on the Start Simulation page. It is possible to

generate a template payload by clicking the ’Generate Payload’ button on the page that

helps the user with a ready-made format for the simulation. The user can then change the

values in the template as required by the desired simulation. The start simulation page is

illustrated in Figure 3.5.

Figure 3.5. Creating a simulation from GUI Monitor

To initiate a new simulation from GUI Monitor, a new external component called the Sim-

ulation Starter is developed. The Simulation Starter is responsible for validating the input

that is received from the GUI Monitor using a Rest API. After validating the input, the

Simulation Starter generates the YAML file needed to start the simulation. The Platform
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Manager Docker container is then started using the generated YAML file and the simula-

tion is started. The workflow of the Simulation Starter component is illustrated in Figure

3.6.

Figure 3.6. Simulation starter component workflow

With the addition of the Simulation Starter component, the final architecture of the simu-

lation is illustrated in Figure 3.7.
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Figure 3.7. Message bus and components in the research simulation

To replicate a real-world scenario where users request charging from charging stations,

both end-user and admin views are established within the GUI Monitor. The admin can

initiate a simulation and the end-user interface can be used to enter the user’s charg-

ing requirements for the simulation. This allows for a multi-user mode for initiating the

simulation. The end-user interface of the GUI Monitor is illustrated in Figure 3.8.
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Figure 3.8. End-user interface in GUI Monitor
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3.6 Simulation Scenarios

For this research, three main simulation scenarios were created and tested. The first is

the simplest scenario, there are 3 stations and 3 users, and all users arrive at the start

and leave at the end of the simulation. The second scenario has 3 stations and 3 users,

and the users arrive in the middle of the simulation. The third scenario has 3 stations

and 4 users, and one user arrives in the middle of the simulation. In the third scenario,

one station is used by 2 users. The second user arrives at the station after the first user

leaves.

3.6.1 Scenario 1

The scenario has 3 stations, 3 users, and 1 Intelligent Controller. The number of epochs

in the simulation is 12 and the length of each epoch is 3600 seconds or 1 hour.

User and station attributes of the simulation are displayed in Table 3.4.

User ID Connected

Station ID

Car battery

capacity

Car maximum

power input

Station maximum

power output

User 1 Station 1 80 kWh 22 kW 20 kW

User 2 Station 2 90 kWh 12 kW 18 kW

User 3 Station 3 98 kWh 25 kW 15 kW

Table 3.4. User and station attributes of Simulation Scenario 1

The total maximum power output for all stations is 30.0 kW. The total maximum power

refers to the maximum combined power output of all stations during each epoch. The

simulation starts at 2 pm.

Users’ requirements in the scenario:

• User 1 arrives at the start of the simulation to Station 1 and requests a target state

of charge of 80% from the initial charge of 20%. The target time for User 1 is 12

hours later at 2 am the next day.

• User 2 arrives at the start of the simulation to Station 2 and requests a target state

of charge of 70% from the initial charge of 5%. The target time for User 2 is 12

hours later at 2 am the next day.

• User 3 arrives at the start of the simulation to Station 3 and requests a target state

of charge of 95% from the initial charge of 2%. The target time for User 3 is 12

hours later at 2 am the next day.
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The Intelligent Controller uses a greedy algorithm and prioritizes power output for the

stations based on the algorithm. The graphs of the simulation can be displayed using

the React application. The power output and battery percentage for the simulation are

illustrated in Figure 3.9 for User 1, User 2, and User 3.

Figure 3.9. Power output and battery status for User 1, User 2, and User 3 in simulation
scenario 1

According to the greedy algorithm, the earliest leaving time gets the most priority. But in

this case, all users’ arrival and leaving times are the same. All users; User 1, User 2, and
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User 3 arrive at Station 1, Station 2, and Station 3 respectively at the start of epoch 1.

Power output in the scenario:

• User 3 gets the most priority and gets 15 kW power output in the first 4 epochs.

This 15-kW power output is limited due to the station’s maximum power output of

15 kW. The priority for the first 4 epochs is based on the higher energy required to

reach the target. In epoch 5, the energy requirement for User 3 to reach the target

is the lowest. Thus, User 3 gets the least priority and gets 0 kW power in the 5th

epoch. In the 6th epoch the energy requirement is again highest for User 3 and

User 3 gets the most priority for power output and gets 14.4 kW power that fulfills

the total target of the user. User 3’s requirements are fulfilled at the end of epoch

6. User 3 leaves Station 3 at the end of epoch 12 with a final battery percentage of

95.0. User 3’s requirements are fulfilled.

• User 1 gets the highest priority for charging in epoch 5, as the total energy require-

ment for User 1 is the highest. User 1 receives a power of 20 kW in epoch 5. User

1 leaves Station 1 at the end of epoch 12 with a final battery percentage of 80.0.

User 1’s requirements are fulfilled.

• User 2 receives a 10 kW power output in the first two epochs. In the third epoch,

User 2 gets the least priority and receives no power due to having the least energy

required to reach the total target. In epoch 4, User 2 starts receiving power again as

the energy required to reach the total target is relatively higher than User 1 in epoch

4. User 2 leaves Station 2 at the end of epoch 12 with a final battery percentage of

70.0. User 2’s requirements are fulfilled.

3.6.2 Scenario 2

The scenario has 3 stations, 3 users, and 1 Intelligent Controller. The number of epochs

in the simulation is 10 and the length of each epoch is 3600 seconds or 1 hour.

User and station attributes of the simulation are displayed in Table 3.5.

User ID Connected

Station ID

Car battery

capacity

Car maximum

power input

Station maximum

power output

User 1 Station 1 80 kWh 22 kW 20 kW

User 2 Station 2 90 kWh 15 kW 18 kW

User 3 Station 3 95 kWh 20 kW 14 kW

Table 3.5. User and station attributes of Simulation Scenario 2

The simulation starts at 2 pm. The total maximum power output for all stations is 35.0 kW.
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• User 1 arrives at epoch 1 at Station 1 at 2pm and requests a target state of charge

of 90% from the initial charge of 1%. The target time for User 1 is 5 hours later at 7

pm.

• User 2 arrives at the start of epoch 3 at 4pm at Station 2 and requests a target state

of charge of 95% from the initial charge of 4%. The target time for User 2 is 5 hours

later at 9 pm.

• User 3 arrives at the start of epoch 4 at 5pm at Station 3 and requests a target

state of charge of 95% from the initial charge of 15%. The target time for User 3 is

5 hours later at 10 pm.

The power output and battery percentage for the simulation are illustrated in Figure 3.10

for User 1, User 2, and User 3.
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Figure 3.10. Power output and battery status for User 1, User 2, and User 3 in simulation
scenario 2

Power output in the scenario:

• User 1 gets the most priority and gets 20 kW power output in the first 3 epochs.

In the first two epochs, there were no other cars connected to stations 2 and 3.

In the 3rd epoch, User 1 gets the most priority due to having the earliest leaving

time. In the 4th epoch user, 1 gets the second most priority due to the total energy

requirement for User 1 being lower than User 2. User 1 leaves Station 1 at the

end of epoch 5 with a final battery percentage of 90.0. User 1’s requirements are

fulfilled.
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• User 2 gets the highest priority from epoch 4 to epoch 7 due to leaving earlier than

User 3 and thus receiving a power output of 15 kW. User 2 leaves Station 2 at the

end of epoch 7 with a final battery percentage of 87.33. User 2’s requirements are

not fulfilled.

• User 3 leaves Station 3 at the end of epoch 8 with a final battery percentage of

83.21. User 3’s requirements are not fulfilled.

3.6.3 Scenario 3

The scenario has 3 stations, 4 users, and 1 Intelligent Controller. The number of epochs

in the simulation is 12 and the length of each epoch is 3600 seconds or 1 hour.

User and station attributes of the simulation are displayed in Table 3.6.

User ID Connected

Station ID

Car battery

capacity

Car maximum

power input

Station maximum

power output

User 1 Station 1 120 kWh 22 kW 20 kW

User 2 Station 2 90 kWh 12 kW 15 kW

User 3 Station 3 100 kWh 25 kW 10 kW

User 4 Station 3 100 kWh 25 kW 10 kW

Table 3.6. User and station attributes of Simulation Scenario 3

The simulation starts at 2 pm. The total maximum power output for all stations is 30.0 kW.

Users’ requirements in the scenario:

• User 1 arrives at the start of epoch 1 at Station 1 and requests a target state of

charge of 80% from the initial charge of 20%. The target time for User 1 is 2 hours

later at 4 pm.

• User 2 arrives at the start of epoch 1 at Station 2 and requests a state of charge of

70% from the initial charge of 5%. The target time for User 2 is 12 hours later at 2

am the next day.

• User 3 arrives at Station 3 at the start of epoch 6 at 7 pm and requests a state of

charge of 95% from the initial charge of 15%. The target time for User 3 is 5 hours

later at 12 am.

• User 4 arrives at the start of epoch 1 at Station 3 and requests a state of charge

of 95% from the initial charge of 15%. The target and leaving time for User 4 is 6

hours later at 6 pm.



36

The power output and battery percentage for the simulation are illustrated in Figure 3.11

for User 1, User 2, User 3, and User 4.

Figure 3.11. Power output and battery status for User 1, User 2, User 3 and User 4 in
simulation scenario 3

According to the greedy algorithm, the earliest leaving time gets the most priority in this

case.

Power output in the scenario:
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• User 1 gets the most priority and gets 20 kW power output in the first 2 epochs.

User 1’s requirements are not fulfilled even after providing the maximum power

output for both epochs. User 1 leaves the station at the end of epoch 2 with a final

battery percentage of 53.33. User 1’s charging requirements are not fulfilled.

• User 2 does not receive any power for the first 2 epochs as the total maximum power

of 30 kW is used by the other 2 stations. After User 1 leaves at the end of epoch 2,

User 2 starts receiving power from Station 2. The charging requirements for User

2 are fulfilled in epoch 7 and User 2’s car reaches the target battery percentage of

70.0. User 2’s charging requirements are fulfilled.

• User 3 receives 10 kW of power per epoch from epoch 6 to epoch 10. User 3 leaves

Station 3 at the end of epoch 10 with a final battery percentage of 65.0. User 3’s

charging requirements are not fulfilled.

• User 4 gets the second most priority and receives 10 kW for the first 4 epochs.

User 4 leaves Station 3 at the end of epoch 4 with a final battery percentage of

55.0. User 4’s charging requirements are not fulfilled.

All simulation scenarios that were planned to be simulated using the platform, were suc-

cessfully simulated.
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4. RESULTS AND FINDINGS

As specified in section 3.5, the developers had no prior knowledge of the SimCES plat-

form and architecture. However, the documentation of SimCES proved to be beneficial

to have a good understanding of developing a new component and creating a simulation.

Although SimCES is well documented, the content is vast and can be overwhelming. De-

velopers may often encounter challenges when trying to identify appropriate elements

and determining the starting point for developing a simulation. However, the documen-

tation contains a link to an example component in GitHub named ’Simple component’

that contains additional detailed instructions to create a new component using the Python

toolkit in steps [56]. The utilization of the example component proved to be advantageous

for developers during the process of creating simulation components.

The available Python toolkit was particularly useful as it provided reusable software mod-

ules that reduced redundant development work. The addition of Log Reader component

allows users to check the logs of the simulation using a web browser which is convenient.

It was possible to implement a greedy algorithm in one of the components and accurately

calculate the power output of the electric vehicle charging simulation.

The implementation of loose-coupling of components was beneficial in the development

of individual components. Developers were able to develop each component indepen-

dently without relying on other components. This was particularly useful while creating

the User and the Station components independently without the need for creating the In-

telligent Controller component. Abstraction and autonomy are beneficial in terms of not

exposing information about the implementation and only focusing on the messages for

interaction. For the components, the only information exchanged during the interaction

between the components is the component messages. This is beneficial for the devel-

opers of a component as they do not require knowledge of the implementation of the

other components they are interacting with. The components developed in the research

are reusable in different scenarios as observed from the simulations developed in this

research. The components can be reused for future simulations as well.

No issues were observed while simulating different scenarios. The simulations ran suc-

cessfully, and the output results were as expected. The greedy algorithm was imple-

mented in the Intelligent Controller component and the component was able to success-
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fully calculate and publish accurate power outputs for the stations in each of the simulation

scenarios.

The usage of Docker containers proved to be beneficial for the development of the sim-

ulation as well. The simulation alongside all the components in the simulation can be

started with a single Docker Compose file which is very convenient. The utilization of

Docker greatly benefited the deployment of the simulation to servers as well.

An issue was specified in section 3.5 about checking logs of the components. It was

observed that, to check the logs of the component, an existing shell script needs to be

run to copy the logs to log files for each component. The Docker containers are auto-

deleted after the simulation has exited so there is no way to check the container logs

as well. Running the shell script and copying the logs each time after a simulation run

is time-consuming. Additionally, the logs only provide information about the container

itself. In case of any issues or errors arising from Docker or the Docker containers, there

is no means to access the relevant information. The information that is available to the

developers is the logs that are generated only after the container is started. Any issue

regarding the startup of the container remains unknown. Additionally, since the containers

are deleted immediately when the simulation ends or stops, it is not possible to access

the logs from the container or Docker. This makes debugging difficult for the developers.

This issue caused a significant delay in the development of the initial components.

An updated version of the Platform Manager component of SimCES was developed dur-

ing the development of the simulation [57]. This updated version does not automatically

delete the Docker containers after the simulation has ended. This allows the develop-

ers to check the logs from the Docker containers. However, this creates another issue

of manual cleanup after running a simulation. The Docker containers now need to be

manually removed and can be a hassle if there are a lot of containers in the simulation.

Another issue was discovered during the development of the simulation that concerns

debugging the simulation. The aforementioned issue arises when a component is in a

state of waiting, awaiting a component message, or when it becomes stuck at a particular

point within the simulation due to an error or other technical issue. To find the underlying

reason and determine the specific component responsible for the encountered issue, the

developer needs to check every single component’s log to identify the component and

epoch at which the simulation has become stuck. This is time-consuming and caused

significant delays in the development of the simulation.

The REST API provided by the Log Reader component is user-friendly and integrating it

with the GUI Monitor was a straightforward process. It was observed that extending the

simulation with external applications, such as the GUI Monitor and the Simulation Starter,

using the REST API was a straightforward process. The documentation for the REST

API of the Log Reader component is comprehensive and provides clear guidance on its
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usage.

SimCES simulations necessitate setting all attributes and input variables at the begin-

ning of the simulation. The simulation starts with all the attributes and input variables

and runs calculations in each epoch till the end of the simulation. Currently, there is no

functionality for the User components in the simulation to interact with each other or up-

date charging requirements during the runtime of the simulation in SimCES that replicate

more real-world scenarios. The requirements of such scenarios cannot be fulfilled with

the current version of the simulation and the SimCES platform. Additionally, in the course

of discussing the simulation of real-world scenarios using the platform, it has been ob-

served that replicating real-world scenarios can pose significant challenges as real-world

scenarios encompass a multitude of variables. Replicating these complex scenarios in a

simulation environment can prove to be exceedingly difficult and replicating some scenar-

ios may not even be possible due to the limitations of a simulation environment. Future

work on this domain is discussed further in Chapter 5.
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5. DISCUSSION AND FUTURE WORK

The results provide insight into the capability in developing simulations of electric vehi-

cle charging, as well as highlighting the limitations and issues during the development

of the simulation with SimCES platform. As specified in Chapter 1, the first research

question focuses on the limitations and challenges of SimCES platform that were dis-

covered during the development of the EV charging simulation. The study was able to

provide a response to this research question as issues were discovered regarding log-

ging and debugging that caused significant delays in development of the simulation. The

second research question specified in Chapter 1 focuses on the suitability of the plat-

form regarding EV charging simulations. It was discovered from the results in Chapter 4

that SimCES platform is suitable for developing simple EV charging simulations that have

static requirements for charging that is provided to the platform before the simulation is

started. However, in terms of real-world EV charging scenarios that are more complex,

the current version of SimCES platform is not suitable for fulfilling the requirements of

those scenarios. To replicate a real-world EV charging simulation, it is required for the

simulation platform to provide the users the ability to interact, update charging require-

ments, and provide inputs during the run time of the simulation. This is one drawback that

does not allow complex simulations that replicate real-world scenarios to be developed

using the current version of the platform. The research showcases the benefits of de-

veloping an EV charging simulation with SimCES. Furthermore, the findings demonstrate

that incorporating external components and applications is a straightforward process, and

deploying them to the server is effortless due to the implementation of Docker containers.

The research is limited in terms of addressing and simulating EV charging simulations

that replicate real-world EV charging scenarios. This issue has been previously acknowl-

edged as a potential limitation of the platform. However, one potential approach could

involve creating the User component as an external component instead of a SimCES

platform managed component. The component can then be designed in such a way

that it can enable users to have interactive actions due to changing requirements in the

simulation. Another strategy that could have been employed is to use the behavior and

decisions of users as the initial parameters in the simulation. Another approach could

involve implementing artificial intelligence that mimics user behavior and decision-making

in response to changing charging requirements. For instance, artificial intelligence could
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simulate how EV users might adjust their charging preferences based on factors such as

battery state of charge, charging costs, time constraints, and other relevant variables.

The research is also limited in terms of addressing some aspects of EV charging such as

spot pricing, traffic forecasting, and battery degradation that were addressed in previous

studies. The idea of combining simulation tools can be beneficial as discussed in previous

studies.

The research is limited in terms of combining SimCES with other simulation platforms

and tools. Although external applications were developed in this study and integrated

with SimCES, they were not simulation platform or tools. The implementation of com-

bining other platforms and tools similar to previous studies [16, 20] may be beneficial

to incorporate additional EV charging variables and create more complex EV charging

scenarios.

The issues addressed in Chapter 4 regarding debugging can be addressed in future ver-

sions of SimCES by updating the platform and logging system to notify the developers in

events of Docker or Docker container-related issues and identify the component respon-

sible for the event. This will reduce the debugging time and effort required to check every

single container log to find the source of the issue. It may be beneficial to automate the

shell script to run after a simulation has ended to reduce more manual work. Similarly, for

a component that is waiting for a message or is stuck at a certain point, an interface can

be added to the platform that displays the components that are waiting for messages to

be processed or have faced some kind of error. Although this does not completely solve

the problem as the developers still need to manually check the component logs for the

issue, it will certainly reduce the area of search for debugging the issue. Further research

can be conducted to resolve this issue.

Future versions of SimCES platform can be modified to allow complex simulations to be

developed by the platform. Further research can be conducted to explore potential so-

lutions for simulating user interaction in terms of EV charging simulations. As discussed

previously in Chapter 4 replicating real-world EV charging solution can be challenging,

additional research in this area could be undertaken to conduct a more comprehensive

investigation into the challenges associated with replicating real-world scenarios in a sim-

ulation environment, particularly in the context of EV charging.

The future versions of SimCES can focus on data security. As specified in subsection

2.3.4, user authentication and traffic encryption are not available for the Log Reader API

which may result in security issues if sensitive information is used during a simulation.

Further enhancements can be made to the SimCES documentation, with one possible

improvement being the inclusion of detailed instructions for utilizing the Python toolkit

directly within the documentation page, as opposed to merely providing a link to a GitHub
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repository.

Further research can be done for SimCES platform by creating non-energy-based simu-

lations. So far, all research conducted using SimCES platform has focused on energy-

based simulations. As SimCES platform claims not to be restricted to any specific ap-

plication, the validity of the claim can be researched. The usage of iterative simulations

in SimCES can be another topic of future research. Iterative simulations can be benefi-

cial for real-world EV charging simulations. Further research can be conducted on the EV

charging algorithm implemented in this research and discovering the optimal EV charging

solution.



44

6. CONCLUSIONS

The research presented the capability of the Simulation Environment of Complex Energy

System (SimCES) platform in simulating electric vehicle charging scenarios. SimCES

platform offers a microservice-based simulation environment that empowers developers

to create autonomous components and develop electric vehicle charging simulations. The

research involved creating an electric vehicle charging simulation using SimCES plat-

form, followed by an evaluation of the compatibility of the platform with the electric vehicle

charging domain.

The research answers the research questions regarding the capability of SimCES to simu-

late an algorithm-based EV charging scenario. Throughout the research, the advantages

of using SimCES for simulating such scenarios were discovered. It was noted that de-

velopers who are unfamiliar with SimCES but familiar with Docker and Python, can easily

adapt to developing simulation components using the platform, aided by the available

documentation and the development toolkit.

Even though the comprehensive documentation facilitated the development of the simu-

lation, certain challenges were identified. The study investigates and identifies the issues

and drawbacks of the platform related to logging and debugging during the development

of a component using SimCES. Furthermore, the study provides recommendations for

potential enhancements. Enhancements to the existing logging and debugging capabil-

ities of the platform would enable future developers to create simulations with greater

efficiency.

The research highlights the limitations of the platform in accurately replicating real-world

scenarios, particularly in the context of simulating EV charging. Understanding and ad-

dressing these limitations are important areas for further research and improvement in

the simulation of EV charging scenarios.

In addition, the research explores potential avenues for future investigation and research.

The research identifies several promising areas for further research, including enhancing

the platform itself, optimizing debugging techniques, investigating challenges related to

replicating real-world scenarios in a simulation environment and exploring optimal EV

charging solutions. These areas offer significant opportunities for future investigations

and advancements in the field.
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