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Abstract: One of the main challenges for linerless, fully composite hydrogen tank structures is 
the permeability of the material for hydrogen gas (H2). In this study, a carbon fibre reinforced 
epoxy composite was modified with graphene oxide (GO) to decrease the H2 permeation through 
the laminate with different GO concentrations. The geometric pore size of graphene is small 
compared to the diameter of hydrogen molecules, and therefore, it is an efficient barrier 
material. The permeability was tested at 20 °C and 200 bar pressure. Further, the mechanical 
performance of the CFRP laminates with and without GO modification was evaluated by short-
beam and three-point flexural tests.   
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1. Introduction 

The transition towards more sustainable options in transportation has evoked an interest in 
lightweight, high-pressure vessel options for hydrogen storage. Especially linerless fully 
composite hydrogen tank structures are in the interest of the automotive industry. The main 
challenge of these structures is the permeability of the material for small molecule hydrogen 
gas.  

Incorporation of impermeable fillers, such as graphene oxide (GO) and reduced graphene oxide 
(rGO), can effectively decrease the hydrogen permeability of polymeric materials [1]. The 
oxygen-containing functional groups in GO act as spacers between graphene layers and trap the 
H2 molecules on the graphene sheets with hydrogen bonds [1]. Also, topological defects 
developed during the GO synthesis are shown to enhance the H2 storage capacity of GO [1]. 
Reduced graphene oxide (rGO) has fewer oxygen groups in its structure compared to GO. 
Rajaura et al. [1] reported better H2 uptake capacity (1.9 wt%) for GO compared to rGO (1.34 
wt%) at room temperature and 80 bar pressure. Singh et al. [2] reported hydrogen uptake of 
3.12 wt% at -196 °C and 30 bar pressure for thermally (300 °C) exfoliated GO flakes. Regardless 
of extensive studies on the H2 permeability of GO and rGO sheets and laminates, their 
application to fibre reinforced hydrogen tank structures is not yet covered. Graphene is 
considered one of the most effective reinforcement materials for polymers. Significant 
improvements in mechanical properties (stiffness, strength, ductility) have been shown for 
GO/polymer nanocomposites, especially with low load [3]. Therefore, finding a synergy between 
the optimal mechanical performance and hydrogen storage capability of GO modified fibre 
reinforced pressure vessels is desirable. 

In this study, the hydrogen permeability of carbon fibre reinforced epoxy (CFRP) composites 
with GO nanofillers was investigated by custom-made equipment. The dispersion quality of GO 
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in epoxy resin was studied based on optical image analysis. The effect of nanofillers on the 
viscosity of epoxy resin was analysed by the rheology method. The mechanical performance of 
composites was assessed based on quasi-static flexural testing. 

2. Materials and Methods 

The fibre reinforcement in this study was twill 2/2 woven carbon fibre fabrics (Primetex® Hexel, 
purchased from Kevra Oy, Vantaa, Finland) with an areal density of 200 g/m2 and 0.2 mm in 
thickness. Standard bisphenol-A epoxy resin and suitable hardener were used as the polymer 
matrix system with a 26 wt% hardener to resin ratio, according to supplier’s guidelines.  

A stable graphene oxide-acetone slurry (10 gr GO/390 mL water/600 mL acetone) was provided 
by Graphenea (Donostia, Gipuzkoa, Spain). The datasheet provided by the manufacturer 
reported the GO particles size of 29-33 µm (90th percentile), 14-17 µm (50th percentile), and 6-7 
µm (10th percentile). The X-ray photoelectron spectroscopy results provided in the datasheet 
suggested an elemental composition of 49-50% carbon, 41-50% oxygen, 2-3% sulfur, 0-2% 
nitrogen, and 1-2% hydrogen for the GO. Three types of epoxy-GO dispersions with GO 
concentrations of 0.038 wt%, 0.075 wt%, and 0.15 wt% were prepared to find the best 
combination between hydrogen-barrier properties and mechanical performance of carbon fibre 
epoxy composites. The GO slurry was dispersed in epoxy resin and stirred for 10 minutes by a 
mechanical stirrer. The GO-epoxy dispersion was placed in a vacuum oven (40°C, 0.7 bar) for 24 
hours to remove acetone and water before mixing it with the hardener. Viscosities of the GO-
epoxy dispersions were measured with a rotational rheometer (model MCR 301, Anton Paar 
GmbH, Graz, Austria) at a constant temperature of 22 °C. Shear rates between 0.1 – 100 s−1 were 
tested using a concentric cylinder system. 

The GO dispersion in epoxy was studied with an optical stereomicroscope (model MZ 7.5, LEICA, 
Heerbrugg, Switzerland). Epoxy resins with three different GO concentrations were cast into 
circular shape specimens with dimensions of 10 mm × 5 mm epoxy (diameter × thickness). The 
resins were first degassed in a vacuum chamber (23 °C, 0.7 bar) and then cured at 80 °C (2 hours). 
The areal coverage of the GO in epoxy was analysed with Image J software (1.52n version, 
National Institutes of Health, USA). A representative, approx. 30 mm2 area was considered in 
the image analysis per series. 

Carbon fibre reinforced epoxy composites (CFRP) were manufactured by vacuum-assisted resin 
infusion (23°C, 0.7 bar). The epoxy resins were degassed in a vacuum chamber before infusion. 
Each laminate was comprised of seven plies of twill 2/2 woven carbon fibre fabrics with ply 
dimensions of 200 mm × 200 mm × 0.2 mm (length × width × thickness). Composites were cured 
at 80 °C (2 hours) and post cured at 120 °C (4 hours) in a hot press. Steel-made spacers were 
used to control the final thickness of composites. Composite laminates with 2 mm and 1.4 mm 
thickness values were prepared for hydrogen permeability and flexural testing, respectively.  

The quasi-static flexural testing of CFRP composites was carried out with a universal testing 
machine (model 5967, Instron, MA, USA). The three-point flexural (3PF) testing of CFRP 
specimens with dimensions of 1.4 mm × 13 mm × 70 mm (thickness × width × length) was 
performed with a 30 kN load cell, 45 mm span length, and 1 mm/min crosshead movement rate 
following the ASTM D7264 standard guidelines. The 3PF testing was selected as the loading 
condition of specimens is similar to the main loading conditions in hydrogen tanks (concurrent 
compression and tension). Effects of the GO dispersed epoxy resins on the interlaminar shear 
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strength of CFRP composites were studied by short beam shear (SBS) testing according to ASTM 
D2344 with specimen dimensions of 1.4 mm × 2.8 mm × 20 mm (thickness × width × length). 
The SBS testing was performed with a 500 N load cell, span length of 5.6 mm and 1 mm/min 
crosshead movement rate. Specimens for the mechanical testing were cut from the CFRP 
laminates using a band sawing machine (model RBS904, Ryobi, Hiroshima, Japan). Specimen 
edges were polished to a final finish so that fibres in each ply were clearly observable. 

The hydrogen permeability of CFRP laminates was studied at 20 °C and 200 bar hydrogen 
pressure with custom-made equipment developed by HyCentA (Graz, Austria). The CFRP 
laminates for the hydrogen permeability testing were water-jet cut into circular-shaped 
specimens with 150 mm × 2 mm (diameter × thickness) dimensions.  

3. Results and discussions 

3.1 GO dispersion analysis 

Figure 1 shows the optical microscope images of graphene oxide (GO) dispersed epoxy resins. 
Based on the image analysis, the GO coverage of 0.038 wt% and 0.075 wt% samples were 54% 
and 71%, respectively. The optical microscopy images of the 0.15 wt% samples were fully black, 
so the coverage was considered to be 100%. It is clear that already very low GO concentrations 
ensure good coverage, and an improvement in barrier properties can be achieved. 

 
Figure 1. Epoxy films (thickness 5 mm) modified with 0.038 wt% and 0.075 wt% GO.  

3.2 Rheological studies 

To ensure the processability of the GO modified resin, its viscosity should not exceed the values 
of unmodified resin around the shear rates realistic for filament winding, which is the 
manufacturing method used for composite tanks. Figure 2 presents the shear rate – viscosity 
relation of the uncured reference epoxy and 0.15 wt% GO dispersed epoxy. The reference 
material obeys an expected Newtonian behaviour while the GO dispersed material shows clear 
shear thinning behaviour which likely evens out into a Newtonian plateau at high shear rates. 
This phenomenon is known as the apparent yield stress, and it represents the change in 
dominance from particle interactions to hydrodynamics in the flow behaviour. The lower 
Newtonian plateau is likely due to the small platelet-like GO particles orienting in the flow 
direction. Based on the results, the GO addition does not cause issues from the processability 
point of view, even at the highest GO concentration. 
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Figure 2. Viscosity- shear rate relations of pure and 0.15 wt% GO dispersed epoxy resins. 

Crossed out data points indicate unstable measurements within the shear rate range. 

3.3 Three-point flexural (3PF) testing of composites 

In Figure 3, the typical flexural stress-strain curves of CFRP composites are presented. The chord 
moduli (Ef

chord) of elasticity (within 0.001-0.003 nominal strain range) were in the range of 54 
GPa for all CFRP composites. The extent of the resin cure can alter the elastic modulus of 
composites [4]. Similar Ef

chord values of the composites (see Table 1) indicate that the addition of 
the GO slurry does not hinder the curing state of the epoxy resin. The flexural failure strength 
(σf) values of the reference CFRP composite and CFRP composites with GO concentrations of 
0.038 wt% and 0.075 wt% were in the same range considering their error margin. However, the 
highest GO concentration (0.15 wt%) decreased the σf of CFRP composites by 17%, possibly due 
to the GO agglomeration and stress concentration. Therefore, from the mechanical behaviour 
point of view, the optimal GO concentration would be below 0.15 wt%. 

 
Figure 3. Typical and representative flexural stress-strain curves of CFRP composites. 

The GO-dispersed composites had relatively low flexural failure strain values compared to the 
reference CFRP. However, the highest GO centration (0.15 wt%) altered the brittle failure of 
CFRP composites to a progressive failure mode which can be ascribed to a lower interlaminar 
shear strength (ILSS), allowing interlaminar crack propagation before fracture.  
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Table 1: Results of three-point flexural (3PF) testing of the CFRP composites. 

CFRP  Ef
chord (GPa) σf [MPa] ε [%] 

Referene 54 ± 2 1000 ± 70 2.02 ± 0.07 

0.038 wt% GO 54 ± 1 950 ± 20 1.75 ± 0.09 

0.075 wt% GO 55 ± 1 970 ± 70 1.64 ± 0.09 

0.15 wt% GO 54 ± 1 830 ± 50 2.28 ± 0.08 

 

3.4 Short-beam shear (SBS) testing of composites 

The results of SBS testing of CFRP composites are summarised in Figure 4. The interlaminar shear 
strength (ILSS) of CFRP composites with 0.038 wt% GO (52 ± 5 MPa) was the same as the 
reference specimens (53 ± 4 MPa). Further increasing the GO content by one and two folds, 
respectively, decreases the ILSS values by 11% and 23% compared to the reference CFRP. Lower 
ILSS values of CFRP composites with GO dispersed content beyond 0.038 wt% GO can be related 
to the stick-slip friction between GO and epoxy and interfacial sliding inside the GO platelets. 
For instance, Lu et al. [5] showed that laminated polyurethane (PU) nanocomposites with 0.08 
wt% GO possess a 94% higher damping factor in dynamic mechanical analysis than unmodified 
PU. Similarly, epoxy resins with 0.075 wt% and 0.15 wt% GO concentrations in this study might 
enhance CFRP composites’ damping performance and long-term service life, which needs 
further studies with dynamic loading conditions. 

 
Figure 4. The average ILSS values of CFRP composites. 

3.5 Hydrogen permeability  

The H2 permeability of the reference and GO modified (0.038 wt%) laminates was approximately 5 ∙ 10 ∙ ∙  . Testing of composite specimens with the high pressure test system was 
challenging due to the relatively thick laminate (2 mm) and a good time-lag curve was not 
achieved during the measurement. Further, one of the sample surfaces was rough due to the 
peel ply used during infusion. To avoid H2 leaking due the rough surface, an additional soft 
sealing was used. However, the poor time-lag curve was still an issue. Therefore, thinner 
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laminates (1 mm) with very smooth surfaces will be used in the test to get more accurate results 
and the test system will be further developed. 

4. Conclusions 

Lightweight and linerless carbon fibre reinforced plastic (CFRP) composites as hydrogen storage 
tanks should be developed to promote sustainable vehicles and transportation. This study aimed 
to find a synergy between hydrogen (H2) permeability and the outstanding mechanical 
performance of CFRP composites. Hydrogen impermeable graphene oxide (GO) flakes were 
uniformly dispersed in epoxy resin as a polymer matrix for CFRP. The microscopic analysis of GO 
dispersed epoxy resins showed that well-dispersed and exfoliated graphene oxide flakes at low 
concentrations of 0.038 wt% and 0.075 wt%, respectively provide 54% and 71% surface 
coverage. The GO concentration of 0.15 wt% provided a complete surface coverage. Based on 
the rheological investigation, the GO addition did not cause any issues from the processability 
point of view, even at the highest GO concentration of 0.15 wt%. Overall, the mechanical 
performance of unmodified and GO dispersed (0.038 wt% and 0.075 wt%) CFRP composites was 
in the same range. The flexural strength and interlaminar shear strength of CFRP specimens with 
the highest GO concentration (0.15 wt%) were respectively 17% and 23% lower than the 
unmodified CFRP.  
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