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FinnGen provides genetic insights from a 
well-phenotyped isolated population

 

Population isolates such as those in Finland benefit genetic research because 
deleterious alleles are often concentrated on a small number of low-frequency variants 
(0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck 
rather than being distributed over a large number of ultrarare variants. Although this 
effect is well established in Mendelian genetics, its value in common disease genetics is 
less explored1,2. FinnGen aims to study the genome and national health register data of 
500,000 Finnish individuals. Given the relatively high median age of participants 
(63 years) and the substantial fraction of hospital-based recruitment, FinnGen is 
enriched for disease end points. Here we analyse data from 224,737 participants  
from FinnGen and study 15 diseases that have previously been investigated in large 
genome-wide association studies (GWASs). We also include meta-analyses of biobank 
data from Estonia and the United Kingdom. We identified 30 new associations, 
primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 
diseases also identified 2,733 genome-wide significant associations (893 phenome- 
wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807  
(247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding 
variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele 
frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were 
enriched by more than twofold in Finland. These findings demonstrate the power of 
bottlenecked populations to find entry points into the biology of common diseases 
through low-frequency, high impact variants.

Large biobank studies have become an important source of genetic 
discoveries. The FinnGen study aims to construct a resource that 
combines the power of nationwide biobanks, structured national 
healthcare data and a unique, isolated population. Owing to increased 
genetic drift, isolated populations with recent bottlenecks can have 
deleterious, disease-predisposing alleles at considerably higher  
frequencies than permitted by selection in larger and older out-
bred populations. Counterbalancing this enrichment of specific 
low-frequency alleles, the other consequence of a recent bottleneck 
is that isolated populations have considerably fewer rare variants 
overall1,3. As a result, isolated populations provide an opportu-
nity to identify high-impact disease variants that are rare in other  
populations1,2. In Finland, a strong founding bottleneck occurred about 
120 generations ago followed by rapid population expansion. This 
bottleneck effect has resulted in numerous strongly deleterious alleles 
that occur more frequently in Finland compared with other European 
populations. This is manifested in the Finnish Disease Heritage, a set 
of 36 mostly recessive diseases that are more prevalent in Finland than 
elsewhere in the world4. This population history (which facilitates the 
identification of low-frequency deleterious alleles) combined with 
longitudinal information from registers that record hospital in-patient 
and outpatient diagnoses, purchases of prescription medications and 
many other national health registries centrally collected for decades 
provides valuable opportunities for understanding the genetic basis 
of health and disease.

FinnGen is a public–private partnership research project that com-
bines imputed genotype data generated from newly collected and legacy 
samples from Finnish biobanks and digital health record data from  
Finnish health registries (https://www.finngen.fi/en) with the aim to 
provide new insights into disease genetics. FinnGen includes 9 Finnish 
biobanks, research institutes, universities and university hospitals,  
13 international pharmaceutical industry partners and the Finnish 
Biobank Cooperative (FINBB) in a pre-competitive partnership. As of 
August 2020 (release 5 described in this article), samples from 412,000 
individuals have been collected and have been 224,737 analysed with the 
aim to have a cohort of 500,000 participants ( Supplementary Methods, 
section 2). The project utilizes data from the nationwide longitudinal 
health register collected since 1969 from every resident in Finland.

Here we describe the FinnGen project and its current genotype 
and phenotype content and highlight a series of genetic discoveries 
from the first data collection phase. In other articles, we describe 
more detailed studies that showcase different aspects of the rich 
data available from population registries. Here we first show that 
FinnGen register-based phenotypes are comparable to those used 
in disease-specific GWASs in 15 previously well-studied common 
diseases. We demonstrate the power of the combination of data 
from an isolated population and other registers to discover new 
low-frequency variant associations, even in previously well-studied 
diseases in which FinnGen has a much smaller number of cases than 
in published disease-specific GWASs. Finally, through a GWAS of 1,932 
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end points followed by statistical fine-mapping, we demonstrate the 
ability to identify probable causal coding variants even with low allele 
frequencies (AFs).

Phenotyping and genotyping
In Finland, similar to the other Nordic countries, there are nationwide 
electronic health registers that were originally established primar-
ily for administrative purposes to monitor the usage of health care 
nationwide and over the lifespan of each Finnish resident. These reg-
isters have almost complete coverage of major health-related events 
such as hospitalizations, prescription drug purchases (not including 

hospital-administered medications), medical procedures or deaths, 
with a history of data collection spanning more than 50 years. Pheno-
types based on health registers (end points) were created by combining 
data (mainly using classification codes from the International Classi-
fication of Diseases (ICD) and the Anatomical Chemical Therapeutic 
(ACT)) from one or more nationwide health registers (Extended Data 
Fig. 1, Supplementary Table 1 and Supplementary Figs. 1–4). For the 
phenome-wide GWAS, we initially constructed more than 2,800 end 
points by combining data from different health registers, including 
hospital discharge registers, prescription medication purchase regis-
ters and cancer registers (Fig. 1 and  Supplementary Methods, section 1; 
see also https://r5.risteys.finngen.fi/).
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Fig. 1 | FinnGen sample collection and phenotyping. a, Samples collected 
from different geographical areas. The map of Finland is divided into major 
administrative areas. Coloured regions represent the areas of the nine 
biobanks that provide samples to FinnGen. The Finnish Institute for Health and 
Welfare (THL), the Blood Service and the Terveystalo biobanks are not regional. 
The circle size represents relative sample sizes. The number of samples given 
are those used in the analyses after QC. b, National registries utilized to 
construct FinnGen end points. The numbers indicate the number of events in 
each register at the time of FinnGen release. An individual can have multiple 
diagnoses and can have events from multiple registers contributing to the end 
point of the individual. c, Sample prevalence of major disease categories in 
FinnGen. Major diseases for each category were chosen for demonstration 
purposes (Supplementary Tables 3 and 4). d, Examples of registers used for 
constructing four selected end points. The y axis represents individuals with 
matching register code in each register according to FinnGen end point 

definitions. Each individual can contribute only once to each register but the 
same individual can be counted in multiple registers. e, Comparison of effect 
sizes (beta values) in known genome-wide significant loci between four 
example FinnGen end points and large reference GWAS. The y and x axes 
represent FinnGen and reference GWAS beta values respectively. Beta values 
are aligned to be positive in reference studies. Lines extending from points 
indicate standard errors of beta values. Regression lines omit intercept and 
two types of regressions are provided: unweighted and weighted by pooled 
standard errors from the two studies. Solid line indicates identity line and 
dotted line and dashed lines indicate unweighted and weighted regression, 
respectively. Sample sizes used for e are given in Supplementary Table 7. Only 
variants with P < 1 × 10−10 in reference study were included. A comparison of all 
15 diseases is provided in the Supplementary Information. Part a adapted with 
permission from an original biobank map created by BBMRI.fi.

https://r5.risteys.finngen.fi/
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FinnGen release 5 presented here contains genotype data for 224,737 

individuals after quality control (QC). A total of 154,714 individuals 
were genotyped with a custom Axiom FinnGen1 array. Data on 70,023 
additional individuals were derived from legacy collections (Sup-
plementary Table 2) genotyped with non-custom genotyping arrays  
(QC details provided in  Supplementary Methods, section 3). We devel-
oped and utilized a population-specific imputation reference panel 
of 3,775 high-coverage (25–30 times) whole-genome sequence data 
for Finnish individuals, containing 16,962,023 single nucleotide poly-
morphisms, and insertions and deletions (minor allele count of ≥3) 
( Supplementary Methods, section 3). The majority (16,387,711) of the 
variants were confidently imputed (information (INFO) score of >0.6; 
Supplementary Fig. 5).

Population structure and relatedness
To study the genetic ancestry data of 224,737 FinnGen participants 
that passed genotyping QC ( Supplementary Methods, section 3), we 
combined the FinnGen data with 2,504 phase 3 reference samples from 
the 1000 Genomes Project5 and used principal component analysis 
(PCA) to identify FinnGen participants who have non-Finnish genetic 
ancestry. Most participants have broadly Finnish ancestry; 3,676 out of 
224,737 (1.63%) outliers were removed (Extended Data Fig. 2 and  Sup-
plementary Methods, section 4). We estimated that 165,448 (73.6%) of 
FinnGen participants have third-degree or closer relatives, which is 
higher than the estimated 30.3% in the UK Biobank (UKBB)6; this result 
is partially explained by the family-based legacy cohorts in FinnGen. 
We removed 5,780 duplicates and monozygotic twins (one from each 
pair removed randomly) and genetic population outliers (Supplemen-
tary Methods, section 4) and built a set of approximately unrelated 
individuals for which the relation between any pair is third degree or 
higher. In total, we obtained data for 156,977 independent individuals, 
which were used to compute the PCA, and data for the 61,980 related 
individuals were projected onto these principal components (PCs) 
(Supplementary Methods, section 4, and Supplementary Table 5). 
The first two PCs captured the well-known east–west and north–south 
genetic differences in Finland7 (Supplementary Fig. 9). Out of the total 
remaining 218,957 genotyped samples, we had phenotype data for 
218,792 individuals (56.5% females (123,579)), which were then used 
in all analyses.

GWAS of nationwide health registries
To benchmark our register-based phenotyping and to explore the value 
of the isolated setting of Finland, we selected 15 diseases with more 
than 1,000 cases in FinnGen and for which well-powered GWAS data 
have been published. We evaluated the accuracy of our phenotyping by 
comparing the genetic correlations and effect sizes with the previous 
GWAS results (Supplementary Table 6). None of the genetic correlations 
were significantly lower than 1 (the lowest genetic correlation was 0.89 
(standard error = 0.07) in age-related macular degeneration (AMD); 
Supplementary Table 6). For diseases with a large number of cases in 
FinnGen, the effect sizes of lead variants in known loci were largely 
consistent between FinnGen and previously published meta-analyses. 
This result demonstrates that our register-based phenotyping is com-
parable to existing disease-specific GWASs (Fig. 1e, Supplementary 
Information and Supplementary Table 6). The effect sizes varied 
more in some diseases that have a smaller number of cases in FinnGen  
(for example, ankylosing spondylitis, n = 1462, r2 = 0.62).

GWAS of these 15 diseases identified 235 loci (that is, regions selected 
for fine-mapping; Methods) and 275 independent genome-wide signi-
ficant associations (here onwards, ‘association’ means an independent 
signal) outside the human leukocyte antigen (HLA) region (GRCh38, 
chromosome 6: 25–34 Mb). A phenome-wide association study 
(PheWAS) of FinnGen imputed classical HLA gene alleles has been 

previously reported8. Overall, 44 of the non-HLA associations were 
driven by low-frequency lead variants (we define ‘low frequency’ as 
an AF of <5% in non-Finnish, Swedish or Estonian European (NFSEE) 
individuals in the Genome Aggregation Database (gnomAD; v.2.0.1)9) 
that were more than twice as frequent in Finnish individuals compared 
with NFSEE individuals. We use NFSEE as a general continental Euro-
pean reference point, excluding individuals from Finland, Sweden and 
Estonia. As there were large-scale migrations from Finland to Sweden 
in the twentieth century, many of the chromosomes from sequencing 
studies of Swedish individuals are of recent Finnish origin. Moreover, 
the geographically close and linguistically and genetically similar9 
population of Estonia is likely to share elements of the same ancestral 
founder effect.

Replication of many such enriched variant associations in the Finnish  
population is hindered by low AFs or missingness in other European 
populations. People from Finland are genetically more similar to people  
from Estonia than other European countries9. Therefore we first 
conducted replication using data from 136,724 individuals from the  
Estonian Biobank (EstBB) and then extended the analysis to individu-
als from the UKBB (Methods and see Supplementary Table 7 for defi-
nitions of end points and case–control numbers). The effect sizes in 
genome-wide significant hits in FinnGen were mostly concordant with 
the EstBB (average inverse variance weighted slope of 1.5 (with FinnGen 
higher) and r2 = 0.69) and the UKBB (slope = 1.1, r2 = 0.84) (Extended 
Data Fig. 3). FinnGen had a higher case prevalence in the 15 disease 
diagnoses than in the UKBB, which is probably due to slightly different 
ascertainment schemes. By contrast, the EstBB had the highest case 
prevalence in ophthalmic diseases (AMD and glaucoma) and inflamma-
tory skin conditions (atopic dermatitis and psoriasis) (Fig. 2a).

After a meta-analysis of the EstBB and UKBB data, 241 of the 275 
associations remained genome-wide significant (Supplementary 
Table 8). We performed a further meta-analysis of 232 associations 
that did not meet the genome-wide significance threshold in FinnGen 
(5 × 10−8 < P < 1 × 10−6), and 57 of those were genome-wide significant 
after meta-analysis. This meta-analysis resulted in 298 genome-wide 
significant associations (see also Supplementary Table 8 for results 
after multiple testing correction for 15 end points).

To determine whether the observed associations have been previ-
ously reported, we queried the GWAS Catalog association database 
(and largest recent relevant GWAS) for genome-wide significant 
(P < 5 × 10−8) variants that are in linkage disequilibrium (LD) (r2 > 0.1 in 
the FinnGen imputation panel) with observed lead variants in FinnGen. 
As the lowest AF of the new findings was low (0.15%), in addition to 
published GWASs, we checked whether credible set variants in these 
loci have also been previously reported in ClinVar. We observed six 
known pathogenic or likely pathogenic variants, such as a frameshift 
variant in PALB2 (p.Leu531fs; AF of 0.1%, not observed outside Finland 
in gnomAD; Supplementary Table 8) associated with breast cancer. 
Thirty out of the 298 associations have not been previously reported 
in the largest published meta-analysis so far (Supplementary Table 6), 
in a manual literature search, the GWAS Catalog or in ClinVar (Table 1). 
As expected, we observed that lead variants in novel loci were mostly 
of low frequency and enriched in Finland compared with known loci 
from previous GWASs. Specifically, 27 lead variants had minor allele 
frequency (MAF) values of <5% in gnomAD NFSEE individuals, and 
88% of novel and 11% of known loci (after LD pruning, see below) had 
gnomAD NFSEE MAF values of <5% (Fisher’s exact test, P = 4.29 × 10−17).  
In most cases, the AFs of lower frequency variants (MAF < 5% in gnomAD 
NFSEE population) were the highest in FinnGen followed by the EstBB 
and lowest in NFSEE individuals in gnomAD (Fig. 2d).

Next we performed statistical fine-mapping (Methods) on all 298 
genome-wide significant associations (each association is independ-
ent; that is, 298 credible sets). Coding variants (missense, frameshift, 
canonical splice site, stop gained, stop lost or inframe deletion) with 
posterior inclusion probability (PIP) values of ≥0.05 were observed in 
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44 (18.7%) out of the 95% credible sets (17 coding variants had PIP > 0.5). 
Here onwards, we report coding variants with PIP > 0.05 as putatively 
causal. We recognize that there may be occasions in which assignment 
of the causal variant to a coding variant is incorrect (see our accompa-
nying paper10 for discussions on fine-mapping calibration and replica-
bility). In addition to identifying putative causal coding variants, we 
sought to identify potential gene expression regulatory mechanisms 
by colocalizing credible sets with fine-mapped expression quantita-
tive trait locus (eQTL) datasets from the eQTL Catalogue (Methods).

We then wanted to describe the AF spectrum and putative mech-
anisms of action of risk variants. To do so, we LD pruned the 298 
genome-wide significant associations and prioritized the most signifi-
cant phenotype among the same hits to represent a single putative 
causal variant (LD r2 value between lead variants of <0.2). This process 
resulted in 281 previously unknown associations (27 new).

Most of the 281 previously unknown associations were common 
variant associations. However, 53 of these had a lead variant frequency 
of less than 5% in NFSEE individuals, and 38 of them were enriched 
by more than two times in the Finnish population compared with the 
NFSEE population. We observed a coding variant more often in the 
credible sets of associations that were enriched by more than twofold 
(19 out of 38; 50%) than in non-enriched associations (6 out of 15; 40%) 
at lower frequencies (MAF < 5%).

Following the discovery of 27 new associations, we sought to deter-
mine potential mechanisms of action through the identification of 

coding variants in their credible sets and potential regulatory effects 
by colocalization with eQTL associations from the eQTL Catalogue. We 
identified putative causal coding variants in 9 out of 27 loci and eQTL 
colocalization in 4 out of 27 loci. In two out of the four eQTL loci, we 
observed a coding variant in credible sets (IL4R and MYH14; the eQTLs 
point to different genes than the coding variants). The two remaining 
eQTL colocalizations were breast cancer loci colocalizing with H2BP2 
eQTL in lung tissue and type 2 diabetes colocalizing with PRRG4 in 
lipopolysaccharide-stimulated monocytes. The disease relevance of 
these eQTLs is currently not evident.

No credible coding variants or eQTLs were identified in 16 out of 27 
loci (Supplementary Table 8). The fraction of associations in which 
we observed eQTLs was small (14.8%). Most of the new associations 
were driven by variants with low AFs in NFSEE populations (Table 1 
and Fig. 2b,d). The low fraction of observed eQTL colocalizations is 
probably explained by the low AF of 25 out of the 27 of the variants in 
available eQTL studies (such as GTEx), for which the majority of the 
samples do not have Finnish or Estonian ancestry.

We next aimed to explore the benefits of the FinnGen dataset in GWAS 
discovery. We extrapolated observed meta-analysis results in FinnGen, 
the UKBB and the EstBB to match the sample size of the UKBB in 14 
demonstration diseases (excluding Alzheimer’s disease;  Supplemen-
tary Methods). The distribution of extrapolated P values was shifted 
towards greater significance in FinnGen compared with those of the 
UKBB and the EstBB in a matched total sample size scenario for the  
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Table 1 | A total of 30 previously unreported associations identified in a GWAS of 15 selected, previously extensively studied 
phenotypes

Phenotype rsID (hg38)a MAFFinnGen/ 
MAFNFSEE

Protein change 
(HGVSp)b

Function of 
variantc

Gened Meta-analysis 
OR; P

FinnGen 
AF %; OR; P

EstBB AF 
%; OR; P

UKBB AF %; 
OR; P

IBD rs748670681 115.0 Intron TNRC18 3.2; 2.4 × 10−61 3.6; 3.2; 
1.1 × 10−56

1.3; 3.9; 
2.8 × 10–06

NA; NA; NA

Ankylosing 
spondylitis

rs748670681 115.0 Intron TNRC18 3.4; 3.6 × 10−31 3.6; 4.2; 
1.8 × 10−34

1.3; 1.4; 
0.11

NA; NA; NA

Type 2 
diabetes

rs45551238 9.6 5′ UTR ATP5E 0.8; 
6.6 × 10−24

5.0; 0.8; 
2.2 × 10−19

1.1; 0.7; 
0.001

0.7; 0.8; 
0.001

Primary 
open-angle 
glaucomae

rs377027713 
(rs147660927,  
PIP: 0.293)

87.4 p.Arg220Cys Upstream 
gene 
(missense)

TARDBP 
(ANGPTL7)

0.7; 2.6 × 10−14 4.3; 0.6; 
1.5 × 10−12

1.1; 0.7; 
0.003

NA; NA; NA

Type 2 
diabetes

Chromosome 23: 
56173773:A:C

3.6 Intergenic 1.1; 3.2 × 10−13 4.8; 1.1; 
2.2 × 10−10

1.8; 1.2; 
0.016

1.4; 1.1; 
0.005

Atrial 
fibrillation

rs190065070 
(rs199600574, 
PIP:0.051)

16.6 p.Arg1845Trp Intergenic 
(missense)

(MYH14) 1.4; 2.3 × 10−12 2.1; 1.4; 
1.9 × 10−12

0.6; 1.2; 
0.46

NA; NA; NA

Asthma rs74630264  
(PIP: 0.232)

13.6 p.Ala82Thr Regulatory 
region 
(missense)

(IL4R) 0.9; 1.1 × 10−11 8.2; 0.9; 
2.5 × 10−12

2.9; 0.9; 
0.061

0.7; 1; 0.72

Atrial 
fibrillation

rs147972626  
(PIP: 0.69)

2.7 p.Arg242Trp Missense RPL3L 
(RPL3L)

1.4; 1.1 × 10−11 1.3; 1.5; 
8.2 × 10−11

0.64; 1.5; 
0.033

0.6; 1.2; 
0.017

Psoriasis rs138009430 
(rs144651842,  
PIP: 0.211)

136.0 p.Ala82Thr Regulatory 
region 
(missense)

FLJ21408 
(IL4R)

1.2; 1.9 × 10−11 7.9; 1.3; 
3.5 × 10−9

2.8; 1.2; 
0.001

0.7; 1.1; 0.51

Myocardial 
infarction

rs534125149  
(PIP: 0.232)

INFf p.Asn239dup Inframe 
insertion

MFGE8 0.7; 3.8 × 10−11 2.9; 0.7; 
1.1 × 10−10

0.6; 0.7; 
0.14

NA; NA; NA

Atrial 
fibrillation

rs201864074  
(PIP: 0.536)

23.1 p.Arg4Gln Missense RPL3L 1.5; 9.2 × 10−11 1.2; 1.5; 
1.4 × 10−8

0.27; 1.6; 
0.1

0.04; 2.7; 
0.001

Psoriasis rs748670681 115.0 Intron TNRC1 1.4; 1.2 × 10−10 3.6; 1.6; 
1.2 × 10−13

1.3; 1.1; 
0.27

NA; NA; NA

Breast 
cancer

rs1457477682 0.9 Intergenic 1.1; 1.6 × 10−10 32; 1.1; 
1.6 × 10−10

NA; NA; 
NA

NA; NA; NA

Type 2 
diabetes

Chromosome 23: 
48591031:T:C

1.5 Intron WDR13 0.9; 2.3 × 10−10 2.7; 0.9; 
8.6 × 10−7

3.0; 0.9; 
0.007

2.4; 0.9; 
0.002

Type 2 
diabetes

rs190116876 57.7 Intron CTNNA3 1.3; 2.9 × 10−10 2.0; 1.4; 
3.1 × 10−10

0.35; 1.2; 
0.53

NA; NA; NA

Type 2 
diabetes

rs540205414 35.9 Upstream 
gene

SCT 1.3; 3.1 × 10−10 1.4; 1.3; 
2.1 × 10−9

0.74; 1.3; 
0.048

NA; NA; NA

Type 2 
diabetes

rs1458770448 
(rs762966411,  
PIP: 0.141)

INFf p.His293LeufsTer7 Intergenic 
(frameshift)

(RFX6) 3.1; 5.2 × 10−10 0.1; 3.1; 
5.2 × 10−10

NA; NA; 
NA

NA; NA; NA

Atopic 
dermatitis

rs2227472 0.9 Upstream 
gene

IL22 1.1; 5.7 × 10−10 55.8; 1.1; 
1.8 × 10−10

66.1; 0.66; 
1; 0.07

59.3; 1.1; 
0.004

Type 2 
diabetes

rs10835932 0.9 Intergenic 1.1; 7.7 × 10−9 18.4; 1.1; 
7.2 × 10−7

18.7; 1.1; 
0.023

20.2; 1; 
0.009

Atrial 
fibrillation

rs755287827 
(rs766868752, PIP: 0.131)

9.4 c.105+1G>T Intron (splice 
donor)

USP54 
(SYNPO2L)

2.7; 9.6 × 10−9 0.14; 2.9; 
3.2 × 10−9

0.057; 1.2; 
0.71

NA; NA; NA

AMD rs139779213 (PIP: 0.467) INFf 3′ UTR CFI 2.1; 9.9 × 10−9 1.1; 2.0; 
1.8 × 10−7

0.05; 6.8; 
0.002

NA; NA; NA

Breast 
cancer

rs1171552087 6.2 Intron CNTNAP2 33.1; 1.1 × 10−8 0.04; 33.1; 
1.1 × 10−8

NA; NA; NA NA; NA; NA

Prostate 
cancer

rs1301285839 INFf Downstream 
gene

SNORA40 7.1; 1.2 × 10−8 0.1; 7.1; 
1.2 × 10−8

NA; NA; NA NA; NA; NA

Atopic 
dermatitis

rs950951813 
(rs201208667, PIP: 0.191)

INFf p.Cys379Tyr 3′ UTR 
(missense)

SERPINB8 
(SERPINB7)

1.6; 1.4 × 10−8 0.6; 2.1; 
5.6 × 10−9

0.4; 1.3; 
0.021

NA; NA; NA

Type 2 
diabetes

rs193302380 13.9 Intron SPATS2 1.1; 1.8 × 10−8 6.1; 1.1; 
1.7 × 10−7

4.2; 1.1; 
0.028

0.2; 1; 0.91

Asthma rs552196550 INFf Intron DYNC1I1 2.0; 2.3 × 10−8 0.3; 2.0; 
2.3 × 10−8

NA; NA; NA NA; NA; NA

Prostate 
cancer

rs954957419 
(rs965427251, PIP: 0.44)

0.2 p.Ala139_
Leu148del

Intron 
(inframe 
deletion)

TTLL1 (BIK) 3.5; 2.5 × 10−8 0.3; 3.5; 
5.4 × 10−8

0.09; 3; 
0.21

NA; NA; NA

Continued
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14 demonstration diseases ( Supplementary Methods and Supplemen-
tary Fig. 11). Moreover, frequency enrichment was a major driver in 
the gain of power in low-frequency variants (Supplementary Fig. 12).  
In individual end points with similar sample prevalence in FinnGen and 
the UKBB, similar for inflammatory bowel disease (IBD), the greatest 
gain in power was in variants in which the AFs are <0.5% in the UKBB 
(see Supplementary Fig. 13 for a comparison for each end point and 
biobank).

The identification of a new signal for IBD mapping to a single variant 
in an intron of TNRC18 highlights the value of FinnGen for discovery, 
even when the case sample size is below that of existing meta-analyses. 
This variant has a strong risk-increasing effect (AF = 3.6%, odds ratio 
(OR) = 3.2, P = 2.4 × 10−61), which eclipses the significance of signals at 
IL23R, NOD2 and the major histocompatibility complex. The variant is 
enriched by 114-fold in the Finnish population compared with the NFSEE 
population, in whom the AF is too low (0.04%) to have been identified in 
previous GWASs (this FinnGen association was also reported in ref. 11).  
We were, however, able to replicate this association in the EstBB 
(AF = 1.3%, OR = 3.9, P = 2.8 × 10−6) owing to the relatively higher fre-
quency in the genetically related Estonian population. This variant was 
also associated with risk for multiple other inflammatory conditions 
evaluated in FinnGen, including interstitial lung disease (OR = 1.43, 
P = 6.3 × 10−26), ankylosing spondylitis (OR = 4.2, P = 1.8 × 10−34), irido-
cyclitis (OR = 2.3, P = 1.2 × 10−27) and psoriasis (OR = 1.6, P = 1.1 × 10−13). 
However, the same allele appears to be protective for an end point 
that combines multiple autoimmune diseases (https://r5.risteys.
finngen.fi/phenocode/AUTOIMMUNE) (OR = 0.84, P = 6.2 × 10−12; for 
example, type 1 diabetes (OR = 0.64, P = 2.7 × 10−7) and hypothyroidism 
(OR = 0.85, P = 7.8 × 10−7).

The highest number (eight loci) of new and enriched low-frequency 
associations were identified in type 2 diabetes, which is probably due 
to the large number of patients with type 2 diabetes in FinnGen release  
5 (29,193). Other noteworthy observations from this set of 30 findings 
for 15 well-studied diseases are described in Supplementary Note 1.

Coding variant associations
Motivated by the identification of high-effect coding variant associa-
tions within the selected 15 diseases, we performed a PheWAS followed 
by fine-mapping to identify putative causal coding variants enriched 
in the Finnish population.

In a GWAS of 1,932 distinct end points and 16,387,711 variants (Sup-
plementary Table 4; case overlap < 50% and n cases > 80), we identified 
2,733 independent associations in 2,496 loci across 807 end points 

(Supplementary Table 9) at a genome-wide significance threshold 
(P < 5 × 10−8). Moreover, 893 signals in 771 loci across 247 end points 
at PWS thresholds (P < 2.6 × 10−11) were identified. The HLA region was 
excluded here, and a PheWAS of imputed classical HLA gene alleles in 
FinnGen is reported in ref. 8.

Using statistical fine-mapping, we observed a coding variant  
(missense, frameshift, canonical splice site, stop gained, stop lost or 
inframe deletion; PIP > 0.05) in 369 associations (13.5% of all associa-
tions) spanning 202 end points. Full results with all 2,803 end points 
(including end points with a case overlap of >50% that are excluded 
here) are publicly available from a customized browser based on the 
PheWeb code base (https://r5.finngen.fi) and as summary statistic files 
(https://www.finngen.fi/en/access_results).

To put the frequency spectrum and putative mechanisms of action in 
an interpretable context, we chose a single most-significant association 
per signal by LD-based merging (r2 > 0.3 lead variants merged), which 
resulted in 1,838 unique associations in 681 end points (Supplementary 
Table 10). Overall, 493 of the associations in 112 end points were PWS 
(P < 2.6 × 10−11). Although most of the 493 PWS unique associations 
were driven by common variants, 143 and 97 had a lead variant fre-
quency of <5% and <1%, respectively, in gnomAD NFSEE populations. 
We observed that 82 (57.3%) of the 143 low-frequency (MAF < 5%) lead 
variants were enriched by more than twofold in Finland compared with 
NFSEE populations. To estimate the number of putative new associa-
tions, we searched for known significant associations using the Open 
Targets API platform (GWAS Catalogue and the UKBB) and ClinVar 
for each of the 1,838 associations. Among these, 864 (47%) were not 
associated with any phenotype in those databases (75 out of 493 (15%) 
of the stringent P < 2.6 × 10−11 associations). The fraction of previously 
unreported associations among genome-wide significant (702 out of 
841 (84%)) and stringent (69 out of 143 (48%)) associations were notably 
higher among low-frequency variants (MAF < 5% in NFSEE individuals).

After statistical fine-mapping of the 493 unique PWS associations, we 
identified a coding variant (PIP > 0.05) in 73 (14.8%) of the credible sets 
associated with 42 end points (Supplementary Table 10). Most (43) of 
the fine-mapped coding variants had PIP values of >0.5 and 28 had PIP 
values of >0.9 (Fig. 3a). The highest proportion and the majority (54 out 
of 73) of associated coding variants had NFSEE MAF < 10% (Fig. 3b,c). 
The coding variant associations were more enriched in Finland than 
noncoding associations in associations driven by variants with AFs of 
<5% in NFSEE people (Fig. 3d; Wilcoxon rank sum test P = 3.6 × 10−3). 
For example, we observed a coding variant in 42% (34 out of 89) of the 
associations with a lead variant that was enriched by more than two 

Phenotype rsID (hg38)a MAFFinnGen/ 
MAFNFSEE

Protein change 
(HGVSp)b

Function of 
variantc

Gened Meta-analysis 
OR; P

FinnGen 
AF %; OR; P

EstBB AF 
%; OR; P

UKBB AF %; 
OR; P

Seropositive 
rheumatoid 
arthritis

rs555210673 INFf Intron SFRP4 1.5; 2.7 × 10−8 2.3l 1.5; 
7.4 × 10−7

0.4; 2.7; 
0.002

NA; NA; NA

Primary 
open-angle 
glaucoma

rs10658374 1.5 Upstream 
gene

PAM 135.6; 2.7 × 10−8 0.03; 135.6; 
2.7 × 10−8

NA; NA; NA NA; NA; NA

Atopic 
dermatitis

rs775241954 INFf Intron NOTCH2 1.9; 3.8 × 10−8 0.6; 2.1; 
2.7 × 10−8

0.2; 1.4; 
0.16

NA; NA; NA

Table is ordered by meta-analysis P values in descending order of significance. All reported variants were mapped to GRCh38. Rows that are in bold are variants surpassing Bonferroni multiple 
testing correction for 15 end points (P < 3.3 × 10–9).  
NA, not applicable; UTR, untranslated region. 
aThe coding variant rsID in PIP is given in parentheses if a coding variant was observed in the credible set (omitted if the reported lead variant was a coding variant). 
bHGVS notation protein coding change is provided if either the lead variant was coding or coding credible was observed in the credible set (if either one exists). 
cCoding variant consequence is given in parentheses in cases in which the lead variant was not a coding variant and a coding variant was observed in the credible set. 
dGene corresponding to the variant function. In cases in which a lead variant was not a coding variant, but there was a coding variant in the credible set, the credible set coding variant gene is 
given in parentheses. 
eWe have previously published the ANGPTL7 variant association with glaucoma35. 
fDenotes values of infinity (INF) resulting from MAFNFSEEbeing 0.00.

https://r5.risteys.finngen.fi/phenocode/AUTOIMMUNE
https://r5.risteys.finngen.fi/phenocode/AUTOIMMUNE
https://r5.finngen.fi/
https://www.finngen.fi/en/access_results
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times in Finland compared with NFSEE people among low-frequency 
associations (NFSEE MAF < 5%). By contrast, the proportion of coding 
variants was lower at 21.7% (13 out of 60) in non-enriched associations 
(see Extended Data Fig. 4 for enrichment in various NFSEE MAF bins). 
The higher proportion of coding variants in those that were enriched by 
more than two times persisted when the PIP threshold was increased to 
0.2 (enriched, 30 out of 77 (35.8%); non-enriched, 11 out of 58 (18.9%)).

The fine-mapping properties and replicability of 67 FinnGen traits 
across diverse biobanks (FinnGen, Biobank Japan and the UKBB) are 
explored in detail in another manuscript10, and functional variant  
associations in the UKBB and FinnGen are described in ref. 12.

We next wanted to quantify the benefits of population isolates such 
as Finland in GWAS discovery. To this end, we assessed whether lower 
frequency (MAF < 5% in NFSEE people) variants enriched in the Finnish 
population were more likely to be associated with a phenotype than 
would be expected by chance. We randomly sampled 1,000,000 times 
the number of genome-wide significant variants observed (143) from  
a set of frequency-matched variants (MAF NFSEE < 5%) that were not 

associated with any end point (P > 0.001). None of the 1 million random  
draws had a higher proportion of variants enriched by more than  
twofold in the Finnish population than was observed in the significant 
associations (57.3% observed versus 33% expected; P = 1.0 × 10−16).

Known pathogenic variant associations
Among the genome-wide significant coding variant associations, we 
identified 13 variant associations (AF range of 0.04–2%) classified as 
pathogenic or likely pathogenic in ClinVar (Supplementary Table 10). 
Nine out of the 13 variants were enriched by more than 20-fold in Finland 
compared with NFSEE populations. Some of these variants have previ-
ously been primarily considered recessive. Here, however, we observed 
that some were a risk variant in the heterozygous state. An example is a 
rare frameshift variant at NPHS1 associated with nephrotic syndrome, 
including the congenital form (ICD-10: N04,p.Leu41fs; AF FinnGen =  
0.9%; gnomAD NFSEE = 0.009%; OR = 185, P = 4.3 × 10−27). Congeni-
tal nephrotic syndrome in Finnish individuals is a recessively inher-
ited rare disease, and is in the Finnish Disease Heritage database4.  
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Fig. 3 | Characteristics of unique associations in end points identified in 
FinnGen. Characteristics of 493 (73 with coding variants in the credible set) 
specific associations in 112 (42 end points with coding variants in the credible 
set) end points identified in FinnGen release 5. Note that 25 of the associations 
with a coding variant with PIP < 0.05 in credible sets were removed from plots 
as ‘uncertain to contain coding variant’. a, Distribution of fine-mapping PIP 
values of the 73 coding variants. b, AF spectrum in associations with and 
without coding variants in credible sets (CS). c, Proportion of coding variants 
identified in different AFs (in NFSEE individuals in gnomAD). The numbers 

above the bars indicate the number of associations within a bin, the y axis 
indicates the proportion of associations with coding variants in their credible 
sets. d, Enrichment in Finland as a function of AF in the gnomAD NFSEE 
population (enrichment value for variants with AF values of 0 in NFEE 
individuals in gnomAD was set to maximum observed enrichment value of 
log2(166) = 7.38). The smoothed regression lines of local average enrichment 
are estimated by local polynomial fitting (loess) and the shaded areas 
represent 95% confidence intervals of the model fit.
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The pathogenic variant associations listed in ClinVar include a mis-
sense variant in XPA (xeroderma pigmentosum) associated with 
non-melanoma neoplasm of skin (‘other malignant neoplasm of skin’) 
(p.Arg228Ter; AF FinnGen = 0.02%, gnomAD NFSEE = 0%; OR = 4.4, 
P = 8.3 × 10−18), and the abovementioned frameshift variant in PALB2 
associated with breast cancer (p.Leu531fs, ‘malignant neoplasm of 
breast’; p.Ala82Pro; AF FinnGen = 0.2%, gnomAD NFSEE = 0%; OR = 28.8, 
P = 3.7 × 10−33). Furthermore, a known pathogenic recessively acting  
missense variant in CERKL was associated with hereditary retinal dys-
trophy (p.Cys125Trp; AF FinnGen = 0.6%, gnomAD NFSEE = 0%; 
OR = 98,716, P = 5.15 × 10−25). This association is, however, driven by 
compound heterozygotes, as previously detailed13. These associations 
demonstrate that imputation using a population-specific genotyping 
array and an imputation panel combined with national-registry-based 
phenotyping in the isolated Finnish population can successfully iden-
tify associations and fine-map causal variants even in rare variants 
and phenotypes. An extended study of ClinVar variants and variants 
with specific biallelic Mendelian effects in FinnGen is provided in a 
companion paper13.

Associations in known disease genes
In the remaining 135 genome-wide significant coding variant associa-
tions not reported as pathogenic in ClinVar, 77 had NFSEE MAF values 
of <5%. Of the 77 variants, 54 were more than 5 times more common 
in Finland than in NFSEE populations, and 19 had not been previously 
observed in NFSEE people (Supplementary Table 2). Nine out of the 19 
variants are in a gene in which other variants are pathogenic for vari-
ous traits, 3 of which are for the same or related traits. These FinnGen 
associations include the following variants: a RFX6 frameshift vari-
ant associated with type 2 diabetes (p.His293LeufsTer7; AF = 0.15%, 
OR = 3.7, P = 1.2 × 10−10; ClinVar, ‘monogenic diabetes and others’);  
a TERT missense variant (AF = 0.15%, OR = 1,032, P = 6.5 × 10−21) asso-
ciated with idiopathic pulmonary fibrosis (ClinVar, ‘idiopathic pul-
monary fibrosis’); a missense in MYH14 associated with sensorineural 
hearing loss (p.Ala1156Ser; AF = 0.04%, OR = 19.9, P = 1 × 10−15; ClinVar, 
‘non-syndromic hearing loss’ and others); and a stop gained variant 
in TG associated with autoimmune hypothyroidism (p.Gln655Ter; 
AF = 0.1%, OR = 3.2, P = 3.9 × 10−11). These variants in RFX6, TERT and 
TG have been previously observed in Finnish and Nordic cohorts14–16, 
but had uncertain significance (single carrier in TG) or conflicting inter-
pretation (TERT) in ClinVar. Pathogenic variants in RFX6 cause Mitchell–
Riley syndrome with recessive inheritance (characterized by neonatal 
diabetes). However, heterozygote enrichment of RFX6-truncating vari-
ants have been observed in maturity-onset diabetes of the young14, for 
which the same variant observed here was identified in a replication 
in Finnish data. RFX6 is a regulator of transcription factors involved in 
beta-cell maturation and has a specific role in releasing gastric inhibi-
tory peptide (GIP) and GLP1 in response to meals. Our results propose 
that around 1:700 individuals in Finland carry a frameshift variant that 
has been previously shown to reduce incretin levels and to lead to iso-
lated diabetes14. It is tempting to speculate that early administration 
of GLP1 analogues would benefit carriers of this diabetes-associated 
variant.

New disease associations
Among the previously undescribed genome-wide significant coding 
variant associations without previous associations in Open Targets 
(GWAS Catalog and the UKBB) or ClinVar, we observed 29 that had 
NFSEE MAF values of <5% and were 2 times more frequent in Finland, 9 of 
which had no copies in NFSEE populations (Supplementary Table 11). We 
summarize selected new discoveries and biological knowledge gained 
in Supplementary Table 12. A missense variant not observed outside 
Finland (p.Val70Phe; AF = 0.2%, OR = 3.0, P = 2.1 × 10−9) in PLTP was asso-
ciated with coronary revascularization (n = 12,271 coronary angioplasty 
or bypass grafting). PLTP is a lipid-transfer protein in human plasma 

that transfers phospholipids from triglyceride-rich lipoproteins to 
high-density lipoprotein, and its activity is associated with atherogen-
esis in humans and mice17. Noncoding variations near PLTP independent 
of p.Val70Phe are associated with lipid levels (high-density lipoprotein 
and triglycerides)18 and coronary artery disease19. The identification of a 
coding variant in this gene provides support for PLTP as the causal gene 
for symptomatic atherosclerosis in this locus. Other variants associated 
with coronary artery disease included a missense variant (p.Gly567Arg; 
AF = 0.9%, OR = 2.0, P = 5.2 × 10−12) in HHIPL1, which was associated with 
coronary revascularization (n = 12,271), and a splice acceptor variant 
(c.7325-2A>G; AF = 0.7%, OR = 2.5, P = 2.9 × 10−08) in NBEAL1, which was 
associated with coronary artery bypass grafting (n = 5,779). Both genes 
are susceptibility loci for coronary artery disease19 and have been sug-
gested as causal, although for NBEAL1 the evidence is inconsistent20. 
HHIPL1 encodes a secreted sonic hedgehog regulator that modulates 
atherosclerosis-relevant smooth muscle cell phenotypes and promotes 
atherosclerosis in mice21. NBEAL1 regulates cholesterol metabolism by 
modulating low-density lipoprotein (LDL) receptor expression, and 
genetic variants in NBEAL1 are associated with decreased expression 
of NBEAL1 in arteries22. Our results strengthen the evidence that both 
these genes are causal in the loci.

A missense variant in LAG3 (p.Pro67Thr; AF = 0.08%, gnomAD 
NFSEE = 0%) was associated with autoimmune hypothyroidism 
(n = 22,997, OR = 3.2, P = 4.6 × 10–8, lead variant P = 4.57 × 10–8). LAG3 
encodes an immune checkpoint protein that is involved in inhibitory 
signalling of immune response, especially in T cells23. LAG3 has been a 
target of active immune checkpoint inhibitor cancer immunotherapy 
development. One such immunotherapy was recently approved by 
the US Food and Drug Administration as a combination treatment for 
unresectable or metastatic melanoma24. Immune checkpoint inhibi-
tion therapies aim to enhance immune responses against tumour cells. 
Excessive immune responses, however, can exert deleterious effects on 
healthy tissue and lead to autoimmune disease. A common side effect 
of immune checkpoint inhibitors, including those that target LAG3, is 
hypothyroidism. The p.Pro67Thr variant could be acting as an inhibitor 
of LAG3 immunoregulatory activity, which in turn leads to susceptibility 
to hypothyroidism. In a PheWAS of p.Pro67Thr, we observed a nomi-
nally increased risk for other immune-related conditions (for example, 
psoriatic arthropathies (M13_PSORIARTH_ICD10) n = 1,455, OR = 7.8, 
P = 3.3 × 10−3; urticaria and erythema (L12_URTICARIAERYTHEMA),  
n = 6,328, OR = 3.7, P = 2.7 × 10−4; and streptococcal septicaemia (AB1_
STREPTO_SEPSIS), n = 1,090, OR = 15, P = 2.2 × 10−3), but we did not 
observe protective effects with any cancers. It should be noted, how-
ever, that owing to the rarity of the variant, the data were not sufficiently 
powered to detect more subtle effects.

We found a missense variant (p.Tyr212Phe, rs35937944) in COLGALT2 
that was enriched by >20-fold in the Finnish population. This variant was 
associated with a reduced risk for arthrosis (OR = 0.79, P = 2.57 × 10−10), 
coxarthrosis (OR = 0.68, P = 1.34 × 10−19) and gonarthrosis (OR = 0.80, 
P = 7.5 × 10−7). A noncoding variant near COLGALT2 has recently been 
described as a GWAS locus for osteoarthritis25. COLGALT2 encodes the 
procollagen galactosyltransferase 2, which initiates post-translational 
modification of collagens by transferring β-galactose to hydroxylysine 
residues, an important step to ensure structure and function of bone 
and connective tissue. Modulating COLGALT2 enzymatic activity with 
drugs could be a potential strategy to reduce arthritis risk.

CD63 is a cell surface protein involved in basophil activation and 
mast cell degranulation. We identified a missense variant in CD63 
(rs148781286) that was enriched by >42-fold in the Finnish popula-
tion. This variant was associated with childhood asthma (OR = 3.5, 
P = 3.37 × 10–9). In a combined analysis with data from the EstBB and 
the UKBB, this variant was also associated with atopic dermatitis26. 
Mediators secreted by basophils and mast cells correlate with asthma 
severity in the clinic, and a CD63-based basophil activation test has been 
reported to predict asthma outcome in young children with wheezing 
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episodes27. The observation of a putative causal relationship between 
genetic variations in CD36, basophil activation and childhood asthma 
risk and severity may point to a new intervention point for targeted 
asthma therapies.

A missense variant in TUBA1C (p.Ala331Val; AF = 0.2%, OR = 35.2, 
P = 1.4 × 10−10) was associated with sudden idiopathic hearing loss 
(n = 1,491). No relevant phenotype has previously been reported for vari-
ants in TUBA1C. TUBA1C encodes an α-tubulin isotype. The precise roles 
of α-tubulin isotypes are unknown, but mutations in other tubulins can 
cause various neurodevelopmental disorders28. The p.Ala331Val variant 
was also associated with vestibular neuritis (inflammation of the ves-
tibular nerve; n = 1,224, OR = 40.9, P = 3.2 × 10−10). Pure vestibular neuritis 
presents acutely with vertigo but not hearing loss, and accurate diagnosis 
of vertigo in acute settings is challenging and misdiagnosis is possible.

A >30-fold-enriched missense variant, pThr155Met (rs145955907), 
in ZAP70 was associated with sarcoidosis (OR = 2.05, P = 1.03 × 10−8). 
Previously, homozygote or compound heterozygote mutations in 
ZAP70 have been described in cell-mediated combined immuno-
deficiency caused by abnormal T cell receptor signalling29. Associations 
of heterozygote variants have not been associated with any disease so 
far. Given its crucial role in cell signalling, the ZAP70 association with 
sarcoidosis seems in line with its key role in immunity.

A 75-fold-enriched missense variant, p.Ala777Thr (rs199680517), in 
PPP1R26 was associated with endometriosis (OR = 1.97, P = 3.41 × 10−8). 
PPP1R26 (protein phosphatase 1 regulatory subunit 26) has been associ-
ated with tumour formation and has been observed to be upregulated in 
various malignancies. Cellular GWAS analyses have identified one variant 
to be associated with carboplatin-induced toxicity30. In one study, a copy 
number variant has been associated with endometriosis, but how this 
gene contributes to endometriosis susceptibility remains speculative31.

We also report several of these coding associations in separate manu-
scripts. One such new observation is a missense variant (p.Arg20Gln; 
AF = 3%, gnomAD NFSEE = 0.7%) in SPDL1 with a pleiotropic association. 
It is associated with a strongly increased risk of idiopathic pulmonary 
fibrosis (OR = 3.1, P = 1.0 × 10−15) but protective with an end point that 
combines all cancers (OR = 0.82, P = 2.1 × 10−15)32. Other associations 
between variants and disease described in separate manuscripts include 
the following: an inframe deletion in MFGE8 and coronary athero-
sclerosis (p.Asn239dup; AF = 2.9%, gnomAD NFSEE = 0%, OR = 0.74, 
P = 5.4 × 10−15)33; a frameshift variant in MEPE (p.Lys101IlefsTer26; 
AF = 0.3%, gnomAD NFSEE = 0.07%, OR = 18.9, P = 1.5 × 10−11) and otoscle-
rosis34; and a missense variant in ANGPTL7 (p.Arg220Cys; AF = 4.2%, 
gnomAD NFSEE = 0.06%, OR = 0.7, P = 7.2 × 10−16) and glaucoma35.

Coding variants associated with drug use
An notable registry available in FinnGen is a prescription medica-
tion purchase registry (KELA; Supplementary Table 1), which links all 
prescription medication purchases for all FinnGen participants since 
1995. Using prescription records from this registry, we identified two 
enriched low-frequency coding variants that were associated with 
drug purchase of statin medications (three or more purchases per 
individual) (Supplementary Table 11). A missense variant in TM6SF2 
(p.Leu156Pro, rs187429064) was associated with a decreased likelihood 
of being prescribed statins (AF = 5.2%, gnomAD NFSEE = 1.2%; OR = 0.86, 
P = 3.8 × 10−13) but with an increased likelihood for insulin medication 
for diabetes (OR = 1.17, P = 8.2 × 10−11) and type 2 diabetes (OR = 1.15, 
P = 2.6 × 10−8). In addition, the same variant showed a strong associa-
tion with a strongly increased risk of hepatocellular carcinoma (ICD-10 
C22 ‘hepatic and bile duct cancer’; OR = 3.7, P = 5.9 × 10−10). The hepatic 
and bile duct cancer association did not change after conditioning on 
statin medication (OR = 3.7, P = 7.1 × 10−10). Consistent with a decrease 
in the likelihood of being prescribed statins, TM6SF2 p.Leu156Pro 
and another independent (r2 = 0.003) missense variant (p.Gly167Lys, 
rs58542926) have previously been associated with decreased LDL 
and total cholesterol levels36. In a mouse model, both p.Gly167Lys and 

Leu156Pro lead to increased protein turnover and reduced cellular 
TM6SF2 levels37. TM6SF2 p.Gly167Lys leads to decreases in hepatic 
large, very LDL particle secretion and increases in intracellular lipid 
accumulation38. These effects probably explain its associations with 
non-alcoholic fatty liver disease39, alcohol-related cirrhosis40, hepato-
cellular carcinoma41 and incident type 2 diabetes42. Our results provide, 
in a single PheWAS analysis, strong evidence of a previously unknown 
p.Leu156Pro variant that has similar consequences of decreasing circu-
lating lipid levels and increasing the risk of diabetes, cirrhosis and liver 
cancer, as observed for p.Gly167Lys. Such pleiotropy of the variant 
can be explored in the custom PheWeb browser (http://r5.finngen.fi/
variant/19-19269704-A-G).

Conclusions
In this paper and accompanying publications, we present FinnGen, one 
of the largest nationwide genetic studies with access to comprehensive 
electronic health register data of all participants. The final aim of the 
study is to collect data for 500,000 biobank participants by the end 
of 2023. The interim releases of FinnGen have already contributed to 
many new discoveries and insights into human genetic variation and 
how it affects disease and health35,43–47, including contributions to the 
COVID-19 host genetics initiative48 and the global biobank meta-analysis 
initiative49. Summary statistics from each data release will be made pub-
licly available after a 1-year embargo period, and all summary statistics 
described here are freely available at www.finngen.fi/en/access_results.

An important feature of FinnGen compared with other similar pro-
jects, such as the UKBB6, is the specific genetic makeup of the Finnish 
population. In the GWAS of selected, well-studied diseases, we were 
able to identify several new associations with a fraction of the cases 
compared with the largest published GWAS. These associations were 
largely observed with variants that were increased in frequency in the 
Finnish population bottleneck and would have required prohibitively 
large sample sizes in older, non-bottlenecked populations (Fig. 2d).

Moreover, in the GWAS of 1,932 end points, we observed that variants 
in the Finnish population that were enriched by more than twofold were 
1.7-times more likely to be associated with a phenotype than would be 
expected by chance.

Furthermore, we observed that putative coding variant associations 
were not only of lower AF but also more often enriched in Finland than 
noncoding variant associations (Fig. 3). This observation is expected, as 
coding variant associations are more deleterious on average and selec-
tion drives the AFs down. However, some of these deleterious alleles 
survived the bottleneck and increased in frequency, which facilitated 
the identification of their associations with diseases.

Imputation with a population-specific imputation panel provides 
high imputation accuracy down to very low AFs (Supplementary Fig. 5), 
which enabled the identification of associations with low-frequency 
variants using a GWAS approach instead of direct sequencing. This high 
imputation accuracy combined with broad population registry-based 
phenotyping facilitates the identification of very low-frequency vari-
ants associated with rare phenotypes, which have largely been missed 
in the majority of GWASs published so far50. We demonstrated this by 
identifying known ClinVar variant associations with diseases such as 
congenital nephrotic syndrome or polycystic liver disease, which are 
both registered in the Finnish Disease Heritage database. Furthermore, 
we uncovered new low-frequency variant associations with common 
and rare phenotypes, including clinically challenging but not well 
genetically studied sudden idiopathic hearing loss or carpal tunnel 
syndrome. The recently reported35 Gln175His variant in ANGPT7, which 
is enriched in the Finnish population and is protective against glau-
coma, is also an example of the benefit of the bottleneck effect in the 
discovery of disease-associated variants.

The university-hospital-based recruitment, together with legacy 
case cohorts of several diseases, is another feature of FinnGen. This 

http://r5.finngen.fi/variant/19-19269704-A-G
http://r5.finngen.fi/variant/19-19269704-A-G
http://www.finngen.fi/en/access_results
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strategy captures cases in many disease areas and distinguishes it from 
many working-age population cohorts. For example, in the UKBB,  
in which recruitment was based on postal invitation to individuals 
aged 40–69 years and living within 40 km (25 miles) of one of the 
assessment centres51, the participants are likely to be healthier than 
in hospital-based collections. The approach in FinnGen has advantages 
and disadvantages. For many disease-focused studies, it provides a 
higher number of cases and a relatively economical way of recruiting 
a large sample within a feasible time frame. For example, in the 15 com-
mon diseases studied in this paper, the sample prevalence in FinnGen 
was higher than in the UKBB. The difference was the most extreme for 
Alzheimer’s disease (2.7% in FinnGen compared with 0.2% in UKBB), 
a disease of old age, and the most similar in asthma (9.4% in FinnGen 
compared with. 7.4% in the UKBB) (Fig. 2a). FinnGen also has a relatively 
high sample prevalence of severe mental disorders such as schizo-
phrenia (2.5%, n = 5,562) and bipolar disease (2.1%, n = 4,501), which 
are often underrepresented in biobank studies. A key aspect of the 
recruitment strategy for the Finnish biobank is that legislation enables 
participants to donate samples with broad consent to medical research 
in general. This makes recruitment cost-effective, as the same samples 
and data can be used, after appropriate application steps, for many 
medical research studies. However, owing to the recruitment strategy, 
FinnGen is not epidemiologically representative, and some disease 
prevalence estimates might be over or underrepresented in FinnGen 
compared with population values (for example, asthma is 10.4% in 
FinnGen, 7.7 in FinRegistry, and type 2 diabetes is 14.5% in FinnGen, 
8.2% in FinRegistry (https://www.finregistry.fi/)). The recruitment 
strategies for FinnGen are not anticipated to cause significant biases to 
the GWAS results presented here, but would be an aspect to consider, 
for example, when studying disease progression or building predic-
tive models. We further explored the benefit of the FinnGen approach 
and showed that data from FinnGen has greater discovery power than 
data from the UKBB in a matched sample size scenario for 14 common 
diseases (Supplementary Fig. 11).

In conclusion, FinnGen as a large-scale biobank resource with specific 
features of the Nordic healthcare system and population structure 
provides opportunities for a wide range of genetic discoveries. These 
include identification of disease-associated coding variants, iden-
tification of variant pleiotropy and longitudinal analyses of disease 
trajectories. Combining results with other large-scale biobank projects 
can further improve our understanding of the role of genetic variation 
in health and disease, especially in genetically understudied diseases.
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Methods

Biobank samples
The FinnGen study (https://www.finngen.fi/en) is an ongoing research 
project that utilizes samples from a nationwide network of Finnish 
biobanks and digital healthcare data from national health registers. 
FinnGen aims to produce genomic data with linkage to health register 
data of 500,000 biobank participants. Samples in the FinnGen study 
include legacy samples (prospected number 200,000) from previous 
research cohorts (often disease-specific) that have been transferred to 
the Finnish biobanks, and prospective samples (prospected number 
300,000) collected by biobanks across Finland. Prospective samples 
from six regional hospital biobanks represent a wide variety of patients 
enrolled in specialized health care, samples from a private healthcare 
biobank enable enrichment of the FinnGen cohort with patients 
underrepresented in specialized health care, whereas participants 
recruited through the Blood Service Biobank enrich the cohort with 
healthier individuals. Samples have not specifically been collected for 
FinnGen, but the study has incorporated all that have been available in 
the biobanks (see  Supplementary Methods for details). In the current 
study, we included samples from 224,737 biobank participants.

Phenotyping
Registry data on all FinnGen participants were collected and processed 
from the following different national health registers: hospital and 
outpatient visits in HILMO, a care register for health care (in-patient 
and outpatient primary and secondary diagnoses: ICD-8, ICD-9 and 
ICD-10; operations: NOMESCO Classification of Surgical Procedures 
and Hospital League surgical procedure codes); AvoHILMO, a register 
of primary health care (main and secondary diagnosis using ICD-10 
and ICPC2 codes, operations and procedures using NOMESCO and 
national SPAT codes); Cause of Death (immediate, underlying and con-
tributing causes of death on the death certificate with ICD-8, ICD-9 and 
ICD-10 codes); reimbursed medication entitlements and prescribed 
medicine purchases (specific Social Insurance Institution of Finland 
reimbursement codes and ATC codes, respectively); and the Finnish  
Cancer Registry (using ICD-O-3 codes). Pseudonymized register data 
were combined with the minimum phenotype dataset from the Finnish 
biobanks (age, sex, year of sampling, height, weight and smoking status).  
Clinical end points were constructed from the register codes using the 
Finnish version of the International Classification of Diseases, 10th  
revision (ICD-10) diagnosis codes and harmonizing those with defini-
tions from ICD-8 and ICD-9. The Finnish ICD version is mostly identical 
to the international ICD classification, but has minor modifications. For 
example, there are additions to certain disease classifications in the 
fourth and fifth character level to add specificity. When relevant, the 
information on reimbursed medication and/or prescription medicine 
purchases and operations augmented the end point data. Cancer end 
points were constructed on the basis of the Finnish Cancer Registry 
and Cause of Death data. The definitions of FinnGen disease end points 
and their respective controls for each release are available at https://
www.finngen.fi/en/researchers/clinical-endpoints, and FinnGen end 
points can also be browsed at https://r5.risteys.finngen.fi/. See  Sup-
plementary Methods, section 1 for further details.

Some of the end points have a high number of overlapping cases. 
Therefore, to avoid reporting highly repetitive end points, we clustered 
all end points if there was an overlap of >50% of cases between them 
and chose the one with the most genome-wide significant hits. On a few 
occasions, a manual choice was made to select the most representative 
end point among the correlating end points. After clustering, we had 
1,932 end points for the main GWAS analysis.

Genotyping and QC
Samples were genotyped with Illumina (Illumina) and Affymetrix arrays 
(Thermo Fisher Scientific). Genotype calls were made with GenCall and 

zCall algorithms for Illumina and the AxiomGT1 algorithm for Affym-
etrix data. Chip genotyping data produced with previous chip platforms 
and reference genome builds were lifted over to build v.38 (GRCh38/
hg38) following a previously described protocol52. In sample-wise QC, 
individuals with genetically inferred sex not matching the reported sex 
in registries, high genotype missingness (>5%) and excess heterozy-
gosity (±4 standard deviations) were removed. In variant-wise QC,  
variants with high missingness (>2%), low Hardy–Weinberg equilibrium 
(P <1 × 10–6) and minor allele count < 3 were removed. Chip-genotyped 
samples were pre-phased with Eagle v.2.3.5 (https://data.broadinstitute.
org/alkesgroup/Eagle/) using default parameters, except the number 
of conditioning haplotypes was set to 20,000.

Genotype imputation with a population-specific reference 
panel
The population-specific Sequencing Initiative Suomi (SISu) v.3 
imputation reference panel was developed by using high-coverage 
(25–30 times) whole-genome sequencing data for 3,775 Finnish indi-
viduals. In brief, the variant call set was produced using the GATK 
HaplotypeCaller algorithm by following GATK best practices for 
variant calling. Genotype-wise, sample-wise and variant-wise QC was 
performed using the Hail framework (https://github.com/hail-is/hail) 
v.0.1, and the resulting high-quality whole-genome sequencing data 
were phased (Supplementary Methods). Genotype imputation was 
carried out using the SISu v.3 reference panel with Beagle 4.1 (v.08Jun17.
d8b, https://faculty.washington.edu/browning/beagle/b4_1.html) 
as described in a previous protocol53. Post-imputation QC involved 
non-reference concordance analyses, checking expected conformity 
of the imputation INFO values distribution, MAF differences between 
the target dataset and the imputation reference panel, and checking 
chromosomal continuity of the imputed genotype calls. After these 
steps, variants with imputation INFO scores of <0.6 or MAF values of 
<0.0001 were excluded.

Association analysis and fine-mapping
The mixed-model logistic regression method SAIGE (v.0.35.8.8)54 was 
used for association analysis. We used sex, age, genotyping batch and 
ten PCs as covariates (see  Supplementary Methods for details). We 
used SuSiE55 for fine-mapping. We fine-mapped all regions with variants 
that had values of P < 1 × 10−6 and extended regions 1.5 Mb upstream 
and downstream from each lead variant. Finally, overlapping regions 
were merged and subjected to fine-mapping. The major histocom-
patibility complex region (chromosome 6: 25–36 Mb) was excluded 
owing to its complex LD structure. We allowed up to ten independ-
ent signals per region, and SuSiE reports a 95% credible set for each 
independent signal. As LD, we used in-sample dosages (that is, cases 
and controls used for each phenotype) computed with LDStore2. The 
FinnGen fine-mapping pipeline is available in GitHub (https://github.
com/FINNGEN/finemapping-pipeline).

To define independent signals within a locus, we utilized fine-mapping  
results. For each locus, we report the credible set as an independent 
hit if it represents a primary strongest signal with lead P < 5 × 10−8.  
For secondary hits, we required genome-wide significance and log 
Bayes factor (BF) > 2. The BF filtering was necessary because SuSiE 
sometimes reports multiple credible sets for a single strong signal but 
this is indicated in SuSiE as a low BF (the model does not improve by 
adding another signal in the region that is not an independent signal).

Browser development
The https://r5.finngen.fi browser was developed based on the PheWeb56 
codebase.

Estimation of expected number of enriched variant associations
We aimed to estimate whether we observed variant associations that 
were enriched by more than twofold in the Finnish population in the 
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lower frequency range (NFSEE MAF < 5%) than would be expected by 
chance. To this end, we sampled a subset of variants (NFSEE MAF < 5%) 
that were not associated with any end point in FinnGen (P > 0.001).  
We drew 1 million random samples of the number of independent 
hits (143) observed in a GWAS from the set of non-associated variants.  
To closely follow the observed frequency distribution, we further 
matched the random samples to contain the same number of variants in 
each frequency bin ((0,0.001], (0.001,0.005], (0.005,0.01] and then in 
0.01 bins up to 0.05). We computed the mean and standard deviations 
of per cent twofold enriched variants from the random samples and 
calculated P values from the normal distribution using the randomized 
mean and standard deviation.

EstBB and UKBB replication
The EstBB is a population-based biobank at the Institute of Genomics, 
University of Tartu. The current cohort size is 200,000 individuals 
(aged ≥18 years), reflecting the age, sex and geographical distribu-
tion of the adult Estonian population. Overall, 83% of the samples are 
from Estonian individuals, 14% from Russian people and 3% from other 
ethnicities. All participants were recruited by general practitioners, 
physicians in hospitals and during promotional events. After recruit-
ment, all participants completed a questionnaire about their health 
status, lifestyle and diet. Specifically, the questionnaire included per-
sonal data (place of birth, place(s) of living, nationality, among others), 
genealogical data (family history of medical conditions spanning four 
generations), educational and occupational history, and lifestyle data 
(physical activity, dietary habits (food frequency questionnaires), smok-
ing status, alcohol consumption, women’s health and quality of life).  
The EstBB database is linked with national registries (such as the  
Cancer Registry and Causes of Death Registry), hospital databases 
and the database of the national health insurance fund, which holds 
treatment and procedure service bills. Diseases and health problems 
are recorded as ICD-10 codes and prescribed medicine according to the 
ATC classification. These health data are continuously updated through 
periodical linking to national electronic databases and registries.  
All participants were genotyped with genome-wide chip arrays and 
further imputed with a population-specific imputation panel consisting 
of 2,244 high-coverage (30 times) whole-genome sequence data from 
individuals and 16,271,975 high-quality variants57. Researchers at the 
EstBB ran an association analysis of the 15 phenotypes (Supplemen-
tary Table 8) used in this study in 136,724 individuals. The association 
analysis was conducted with SAIGE52 mixed models with age, sex and 
ten PCs used as covariates.

We used the Pan UKBB (https://pan.ukbb.broadinstitute.org/) project 
European subset association analysis summary statistics in the UKBB 
replication58 (Supplementary Table 7).

As both the EstBB and the UKBB are on human genome build 37, 
we lifted over the coordinates to build 38 to match FinnGen. Variants 
were then matched on the basis of chromosome, position, reference 
and alternative alleles.

Inverse variance weighted meta-analysis was used to perform a 
meta-analysis on the three cohorts (code available at https://github.
com/FINNGEN/META_ANALYSIS).

Variant annotation
We utilized Variant Effect Predictor (https://www.ensembl.org/info/
docs/tools/vep/index.html) for annotating imputation panel variants. 
For coding variants, we chose a single most-severe consequence and 
corresponding gene among canonical transcripts. We considered stop 
gained, frameshift variant, splice donor, splice acceptor, missense 
variant, start lost, stop lost, inframe insertion and inframe deletion 
as coding variants. We executed the variant annotation using Hail59.

Colocalization. We applied colocalization to all fine-mapped regions. 
As a colocalization approach, we used the probabilistic model for 

integrating GWAS and eQTL data presented in eCAVIAR60. Given the 
PIP values of each phenotype in a region of interest, we calculated the 
colocalization posterior probability (CLPP). In contrast to eCAVIAR,  
we used SuSiE55 to estimate the posterior inclusion probabilities.

For a pair of phenotypes, we searched for an intersection of variants 
between their credible sets CSk, k = 1…k, and computed the CLPP as 
follows:

∑CLPP = in CS p1 × p2 ,k k
i

i i

where p1 and p2 are the PIP values from phenotypes 1 and 2, respectively.
We performed colocalization between FinnGen end points, the eQTL 

Catalogue61 and selected 36 continuous end points and 57 biomarkers 
from the UKBB10. eQTL Catalogue and UKBB traits were processed  
with a functionally equivalent fine-mapping pipeline10 to FinnGen 
and ref. 61, and credible sets provided by those studies were used in 
colocalization.

Annotating putatively new associations. For each association lead 
variants, we used the Open Targets62 API platform (https://api.platform.
opentargets.org/) to search whether any genome-wide significant hits 
(P < 5 × 10−8) have been reported for the variant (or tagging LD variants 
r2 > 0.2) in the GWAS Catalog or the UKBB as harmonized by Open Targets  
(annotated 19 May 2022). We also searched whether the variant was 
reported as pathogenic or likely pathogenic in ClinVar63 (ClinVar release 
date 7 May 2022).

Automatic annotation of known GWAS hits. To identify new hits 
from the GWAS results, we compared the fine-mapped results against 
genome-wide significant hits (P < 5 × 10−8) in the GWAS Catalog asso-
ciation database64 and manually curated genome-wide significant 
hits from large GWASs (Table 1). We checked and reported separately 
matches in credible set variants and matches with any variants in LD 
with a lead variant (highest PIP) after fine-mapping. LD lookup vari-
ants were chosen using the following criteria: (1) they were less than 
1,500 kb away from the lead variant; (2) they had a P < 0.01; (3) and their 
LD squared Pearson’s correlation with the lead variant was higher than a 
dynamic LD threshold based on the P value of the lead variant so that the 
expected P value of the linked variant would be nominally significant 
(r2 = 5/inverse chi-squared survival function (P value)).

A variant was considered to be already associated if its chromosome 
and position were identical to the GWAS Catalog association and if 
its reference and alternative allele matched the strand-aligned and 
effect-aligned association alleles. Because the GWAS Catalog asso-
ciations do not have complete allele information, the allele informa-
tion for associations was retrieved from dbSNP data, human genome 
build 153, assembly 38. The GWAS Catalog version used was released 
on 21 April 2021.

Ethics statement
Participants in FinnGen provided informed consent for biobank 
research on basis of the Finnish Biobank Act. Alternatively, separate 
research cohorts, collected before the Finnish Biobank Act came into 
effect (in September 2013) and the start of FinnGen (August 2017) were 
collected on the basis of study-specific consent and later transferred to 
the Finnish biobanks after approval by Fimea, the National Supervisory 
Authority for Welfare and Health. Recruitment protocols followed the 
biobank protocols approved by Fimea. The Coordinating Ethics Com-
mittee of the Hospital District of Helsinki and Uusimaa (HUS) approved 
the FinnGen study protocol (number HUS/990/2017).

The FinnGen study is approved by the THL (approval number THL/2031/ 
6.02.00/2017, amendments THL/1101/5.05.00/2017, THL/341/6.02.00/ 
2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019 and THL/1721/ 
5.05.00/2019), the Digital and Population Data Service Agency 
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(VRK43431/2017-3, VRK/6909/2018-3 and VRK/4415/2019-3), the Social 
Insurance Institution (KELA) (KELA 58/522/2017, KELA 131/522/2018, 
KELA 70/522/2019 and KELA 98/522/2019) and Statistics Finland  
(TK-53-1041-17).

The Biobank Access Decisions for FinnGen samples and data utilized 
in FinnGen Data Freeze 5 include the following datasets: THL Biobank 
BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, 
BB2019_7, BB2019_8 and BB2019_26; Finnish Red Cross Blood Service 
Biobank 7.12.2017; Helsinki Biobank HUS/359/2017; Auria Biobank 
AB17-5154; Biobank Borealis of Northern Finland_2017_1013; Biobank of 
Eastern Finland 1186/2018; Finnish Clinical Biobank Tampere MH0004; 
Central Finland Biobank 1-2017; and Terveystalo Biobank STB 2018001.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Based on National and European regulations (GDPR) access to 
individual-level sensitive health data must be approved by national 
authorities for specific research projects and for specifically listed 
and approved researchers. The health data described here was gener-
ated and provided by the National Health Register Authorities (Finn-
ish Institute of Health and Welfare, Statistics Finland, KELA, Digital 
and Population Data Services Agency) and approved, either by the 
individual authorities or by the Finnish Data Authority, Findata, for 
use in the FinnGen project. Therefore, we, the authors of this paper, 
are not in a position to grant access to individual-level data to others. 
However, any researcher can apply for the health register data from 
the Finnish Data Authority Findata (https://findata.fi/en/permits/) 
and for individual-level genotype data from Finnish biobanks via the 
Fingenious portal (https://site.fingenious.fi/en/) hosted by the Finnish 
Biobank Cooperative FINBB (https://finbb.fi/en/). All Finnish biobanks 
can provide access for research projects within the scope regulated by 
the Finnish Biobank Act, which is research utilizing the biobank sam-
ples or data for the purposes of promoting health, understanding the 
mechanisms of disease or developing products and treatment practices 
used in health and medical care. The genotype data for the FinnGen 
release 5 used in this study was returned to the biobanks at the same 
time as the public release of the FinnGen release 5 summary results was 
done. All summary statistics described in this manuscript can be found 
in the Supplementary Information. All information regarding data 
download of summary statistics of additive GWAS of FinnGen release 
5 can be found through the following link: https://finngen.gitbook.io/
documentation/v/r5/data-download. You can learn more about access-
ing other FinnGen data here: https://www.finngen.fi/en/access_results. 
A full list of FinnGen end points for release 5 is available at: https://www.
finngen.fi/en/researchers/clinical-endpoints. A full list of gene variants 
captured by the FinnGen specific Axiom array can be found at: https://
www.finngen.fi/en/researchers/genotyping and https://www.dropbox.
com/s/n8srnyy547resrq/finngen2_proposal_5_5_2019.tsv?dl=0.

Code availability
Central data analysis and processing pipelines used are freely 
available: fine-mapping pipeline (https://github.com/FINNGEN/
finemapping-pipeline); meta-analysis (https://github.com/FINNGEN/
META_ANALYSIS); genetic ancestry and PCA pipeline (https://github.
com/FINNGEN/pca_kinship); and GWAS SAIGE pipeline (https://github.
com/FINNGEN/saige-pipelines). Please see https://finngen.gitbook.
io/documentation/ for a detailed description of data production and 
analysis including code used to run analyses. Please see https://github.
com/FINNGEN/ for further code repositories used to run analyses in 
FinnGen.

R v4.0.3 (https://www.r-project.org/) was used to create plots and ana-
lyse data. R codes used to reproduce figures are available upon request.
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Extended Data Fig. 1 | FinnGen Age Distribution and Registers.  
A) Distribution of the current age (age at the end of the follow-up) and age of 
death for FinnGen participants B) Follow-up time and main coding used in each 
register among FinnGen participants in FinnGen release 5. Abbreviations: 
CANCER = The Finnish Cancer Registry; DEATH = Cause of death register; 

INPATIENT = HILMO - Care Register for Health Care: Inpatient hospital visits; 
OUTPATIENT = HILMO - Care Register for Health Care: Specialty outpatient 
visits and day surgeries; PURCHASE = Drug Purchases: All Prescription drug 
purchases; REIMBURSEMENT = Drug Reimbursement: entitlements for 
prescription drug reimbursement for certain chronic diseases.



Extended Data Fig. 2 | PCA classification of 224,737 FinnGen participants combined with 1000 genomes samples (AFR,AMR,EAST,EUR,FIN,SAS). FinnGen 
outlier samples were removed as deviating from the bulk of the FinnGen samples.
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Extended Data Fig. 3 | Comparison of effect sizes between biobanks.  
A,B) Effect size (log(OR), beta) comparison of 275 genome-wide significant lead 
variants identified in FinnGen among 15 analysed diseases in Estonia and UKBB. 
The sign of beta is aligned to be positive in Estonia and UKBB. C,D) beta 

comparison of variants only in known loci. E,F) beta comparison of novel loci. 
Dashed lines indicates identity line and solid lines are the regression line  
(red line and text weighted by pooled standard error of betas).



Extended Data Fig. 4 | Enrichment of 493 unique phenome-wide significant 
associations binned by NFSEE MAF and split by whether 95% credible sets 
contain a coding variant. The p-values of the test of difference in average 
enrichment are shown on the right side of each MAF bin. Lines indicate  

95% confidence interval of the mean enrichment. Number of coding/non- 
coding variants in each bin : 21/27, 12/35, 11/22, 3/10, 7/24 and 19/277 given in 
the same order as in the figure x-axis.
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