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Purpose 
 Automated feature extraction combined with deep learning has had and continues to have 
a strong impact on the improvement and implementation of pattern recognition driven by machine 
learning. Systems without prior expertise about a problem but with the ability to iteratively learn 
strategies to solve problems, tend to outperform concepts of manual feature engineering in vari-
ous fields. In ECG data analysis as well as in other medical domains, models based on manual 
feature extraction are tedious to develop, require scientific expertise, and are oftentimes not easily 
adaptive to variations of the problem to be solved. This work aims to examine automated feature 
extraction and classification of ECG data, specifically of shockable heart rhythms, with convolu-
tional neural networks and residual neural networks. The precise and rapid determination of 
shockable cardiac conditions is a decisive step to improve the chances of survival for patients 
having a sudden cardiac arrest. Conventional, commercially available automated external defib-
rillators (AEDs) deploy algorithms based on manual feature extraction. Approximately 1 out of 10 
shockable conditions is not recognized by the AED. Consequently, strategies for improvement 
need to be explored.   
 
Methods 
 125 ECG recordings from four annotated cardiac arrhythmia databases (American Heart 
Association Database, Creighton University Tachyarrhythmia Database, MIT-BIH Arrhythmia Da-
tabase, MIT-BIH Malignant Ventricular Arrhythmia Database) with a duration of 30 mins or 8 mins 
(Creighton University Tachyarrhythmia Database) per recording were processed. Shockable con-
ditions are identified as ventricular tachycardia, ventricular fibrillation, and ventricular flutter. The 
1 channel ECG recordings (modified limb lead II) were normalized to 250 Hz sampling frequency, 
high-pass filtered (1 Hz cutoff and 0.85 filter steepness), second order Butterworth low-pass fil-
tered (30 Hz cutoff), and notch filtered at 50 Hz. Consistent wavelet transformation with 5 octaves, 
20 voices per octave, and a time bandwidth product parameter of 50 was applied to generate 
greyscale spectrogram representations of the ECG data (pixel value range from 0 to 255). The 
recordings were segmented into 3 s segments. Data augmentation around the borders of shock-
able episodes and along shockable episodes was carried out to create balanced datasets con-
sisting of 60340 samples. 45% of samples in the balanced dataset contain shockable rhythms 
with more than 60% temporal prevalence within each sample. Conventional convolutional neural 
networks and residual neural networks with varying architectures and hyperparameter settings 
were trained and evaluated on balanced datasets (train/val/test: 70/15/15). The approach focused 
on examining a broader range of parameter settings and model architectures rather than optimiz-
ing a specific configuration. The best performing model was evaluated in a 5-fold cross-validation. 
Exemplarily, a leave-one-subject-out cross-validation was deployed with 3 randomly chosen re-
cordings, with the constraints that each subject must come from a different database and contain 
a different shockable condition.  
 
Results and Conclusion 
 The best performing model was a residual neural network with 96 residual blocks. The 5-
fold cross-validation results on average in an accuracy of 0.987, a sensitivity of 0.992 on shock-
able rhythms, and a specificity of 0.984 for non-shockable rhythms on the test sets. The ROC 
AUC score is 0.998 on average. The 3-fold leave-one-subject-out cross-validation reaches on 
average an accuracy of 0.984, a sensitivity of 0.984, and a specificity of 0.980. The ROC AUC 
score reaches 0.997 on average. The analysis of misclassified segments reveals that the classi-
fier performs less accurately on border segments containing a shockable and at least one non-
shockable rhythm. While the test set contains 4.73% border segments, the set of misclassified 
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samples includes 11.29% border segments. The label distributions of the test set and the set of 
misclassified samples show that segments annotated as “not defined” (ND) and “ventricular fibril-
lation or flutter” (VF-VFL) are significantly more prevalent in the set of misclassified samples. 
Histogram analysis, referring to the mean pixel intensity of the spectrograms, indicates that the 
classifier works less accurately on spectrograms with mean pixel values below 2 (practically flat-
line signals or signals with very small amplitude).         
 The results indicate that it is possible to improve the analysis of ECG data by deploying 
automated feature detection combined with artificial neural networks. The methods presented in 
this work are not restricted to the detection of shockable cardiac arrhythmias, they likewise em-
phasize the potential of machine learning in the domain of biosignal analysis and correlated med-
ical data. In the next step, the approach needs to be verified on a broader database. The tech-
nology can even help create more comprehensive databases of clinical ECG data by supporting 
automated annotation.       
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1. INTRODUCTION 

Sudden cardiac arrest, the abrupt loss of heart function, accounts for 5-15% of the total 

death rate in developed countries [1]. In a public situation where a person is found un-

conscious or unresponsive, it might be likely that this person suffers from a shockable 

cardiac condition that requires the immediate deployment of defibrillation. On the other 

hand, if strong electrical shocks to the heart are applied when medically not indicated, 

the patient can suffer severe complications and even die. If the same situation happens 

in a hospital, medical expertise and medical devices are present to assess the problem 

and provide proper treatment. Therefore, survival chances are significantly higher for 

cardiac arrests in a in hospital situation (see Section 2.2.1). In public places, it is reason-

able to develop and deploy devices that can substitute for medical expertise and auto-

matically apply the right treatment. One such device is the automated external defibrilla-

tor (AED). For people with chronic heart diseases, it might be indicated to use an im-

plantable version, the implantable cardioverter defibrillator (ICD). Both concepts are ex-

plained in more detail in Sections 2.2.2 and 2.2.3. AED and ICD are both based on elec-

trocardiogram (ECG) analysis.  

For decades, research has been carried out in ECG data analysis to manually find dis-

tinct features and characteristic patterns that are associated with certain medical or, 

more specifically, cardiac conditions. Medical devices such as the AED and ICD are de-

rived from this research. The feature extraction is correlated with the assessment of 

shockable cardiac conditions. The features are logically linked in a decisive algorithm 

that determines if defibrillation should be applied or not. Commercially available AEDs 

approximately reach sensitivities of 90% for shockable conditions and specificities of 

95% for non-shockable conditions. Consequently, 1 out of 10 shockable conditions is not 

recognized by the AED and remains untreated  [2] [p. 23] [3–5].  

Manual feature extraction has some weak spots. It is often tedious, and it might be too 

insensitive to catch the relevant patterns in detail. Since 2012, with the implementation 

of GPU support, Convolutional Neural Networks (CNNs) have been on the rise and have 

contributed heavily to the approach of automated feature extraction. In many domains, 

automated feature extraction with deep learning methods tends to outperform handmade 
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feature extraction and has brought machine learning applications to the next level. Algo-

rithms that learn relevant features from scratch don’t require to be configured and trained 

by domain-specific experts. Instead, similar CNN architectures can be utilized to solve a 

variety of problems across different domains. This advantage is boosting machine learn-

ing applications in almost all parts of society.    

This thesis is dedicated to examining automated feature extraction and the classification 

of shockable heart rhythms in the context of ECG analysis. The main question raised in 

this work is whether and how CNNs can be utilized to solve the classification problem of 

shockable cardiac conditions without the implementation of expert driven manual feature 

extraction. This is realized by converting 1 channel ECG recordings into spectrogram 

segments with a length of 3s. These ECG image representations are calculated by ap-

plying wavelet transformation. The annotated ECG data are derived from cardiac ar-

rhythmia databases, namely the MIT-BIH Arrhythmia database (MITDB), the Creighton 

University Ventricular Tachycardia database (CUDB), the MIT-BIH Ventricular Arrhyth-

mia database (VFDB), and the American Heart Association database (AHADB) (see 

Section 3.1). Different CNN architectures, such as conventional CNNs and residual neu-

ral networks with varying configurations, are trained and evaluated with annotated ECG 

spectrograms. 

The thesis starts by providing basic theoretical background on cardiac physiology, ECG 

analysis, and shockable cardiac arrhythmia (see Section 2.1). Then the defibrillation 

technology and its relevance are discussed in Section 2.2, followed by an overview of 

algorithmic strategies to assess shockable conditions. This begins with algorithms im-

plemented in commercially available defibrillation devices. Further, research into solving 

the problem by implementing machine learning approaches is discussed. Hybrids com-

bining manual feature selection with machine learning classifiers are followed by 1D and 

2D CNNs deploying automated feature selection (see Section 2.3). To round up the the-

oretical background, CNNs are explained in more detail: How do CNNs process data? 

How do they extract features? What are their components? How are these components 

structured? And how do CNNs learn (see Section 2.4)?  

The work continues by discussing the applied methods in Chapter 3. The ECG source 

data are described, and the pre-processing steps applied to the data are discussed, in-

cluding querying, filtering, wavelet transformation, and annotation. The pre-processing 

is concluded by implementing augmentation strategies and generating balanced da-

tasets, ready to be fed into CNN models. Further, the applied CNN models as well as 

their configuration options and hyperparameter settings are introduced. Finally, the ap-

plied evaluation metrics are described.       
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Chapter 4 summarizes the results obtained from the evaluation of the applied CNN mod-

els. The model configurations are not a comprehensive approach to maximizing the de-

tection performance of shockable heart rhythms. Instead of examining narrow adjust-

ments of model parameters, the approach rather focuses on deploying 2 different con-

cepts of CNN architecture: conventional CNNs and residual neural networks. Most of the 

time, the individual models differ by implementing and adjusting several structural 

changes and hyperparameters at once. Therefore, a wider range of settings and their 

impact on detection performance could be captured. At first, conventional CNNs and 

residual neural networks are trained and evaluated on balanced datasets derived from 

the mentioned databases. Further, the best performing model is evaluated in a 5-fold 

cross-validation. Then, again on the best-performing model, a leave-one-subject-out 

cross-validation is exemplarily carried out with 3 entire recordings from different patients 

with a focus on different shockable conditions. Eventually, a closer look at misclassified 

data is taken to draw some assumptions about why the model failed on those samples.    

The thesis concludes by emphasizing the medical relevance of accurate detection algo-

rithms for cardiac arrhythmias. Weaknesses, especially regarding the available anno-

tated ECG data sources, are discussed, and an outlook is drawn for a potential solution 

and the general potential of automated feature detection in ECG data analysis.       
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2. THEORETICAL BACKGROUND 

2.1 Physiology of the heart and Electrocardiogram (ECG) 

The following Section gives a brief overview of the physiological phenomena that are 

related to shockable conditions of the heart. Shockable conditions are a form of cardiac 

arrhythmia that, without intervention, are likely to lead to cardiac arrest and the death of 

the patient. Shockable conditions indicate intervention by defibrillation, which utilizes 

electrical shocks to depolarize the heart muscle. Defibrillation is an attempt to terminate 

the shockable arrhythmia and restore coordinated contractions of the heart.  

Further, this Section provides basic information about ECG signals while focusing on 

parameters that are expedient for the interpretation of ECG signals. 

2.1.1 Physiology and anatomic aspects of the heart 

In many cases, evolution utilized diffusion to transport substances within organisms. Dif-

fusion works sufficiently on the cellular level. But the larger and more complex the or-

ganism, the higher the demand for substances to be transported over long distances. 

Vital substances like oxygen and nutrients require an efficient delivery system. At its 

center is the heart, an engine that generates the flow in every blood vessel and ensures 

the delivery of substances and the removal of waste at the right velocity and at the right 

time to supply every other organ in the system.  

The heart is part of the closed circulatory system in the human body. As a muscular 

pump, it powers the circulation of blood by elevating its pressure in the arteries. The 

elevation is produced by contraction of the heart muscle, which is induced by an orches-

trated rise of action potential throughout the organ. The human heart consists of four 

chambers: two atria, which receive blood returning to the heart, and two ventricles, which 

pump the blood out of the heart [6] [pp. 272-277]. The heart’s size is comparable to a 

fist, and it is located behind and slightly to the left of the breastbone. Figure 1 gives an 

overview of the components of the heart and the direction of blood flow. 
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Figure 1: Anatomy of the heart [7] 

The contraction of cardiac muscle cells is driven by the action potential. It is caused by 

the inflow of sodium ions into the myocytes. The change in electric gradient in the cell 

causes depolarization with an amplitude of around 100 mV. The repolarization is initiated 

by the outflow of potassium ions. The action impulse lasts about 300 ms and causes 

contraction of the cell. The activation in cardiac muscle tissue can propagate in any di-

rection from cell to cell and forms orchestrated wavefronts of the cardiac electrical activity 

[8] [p. 185]. 

Ventricles 

The heart contains two large chambers at its bottom, the ventricles. The ventricles are 

responsible for collecting blood from the atrium and expelling it towards the peripheral 

vascular system. The right ventricle pumps blood, which is low in oxygen, through the 

pulmonary arteries towards the lungs. The left ventricle pumps oxygen-rich blood through 
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the aorta towards the systemic capillaries in order to provide the body tissues with oxy-

gen. 

The electrical conduction system of the heart 

The electrical conduction system, as shown in Figure 2, consists of specialized cells that 

are responsible for the transmission of electrical impulses throughout the heart tissue as 

well as for pacemaker functions. The pacemaker sets the rate at which the heart’s pump-

ing cycle is repeated. Each component of the conduction system can set the pace, 

though there is a hierarchy following the cells with the fastest pace, the sinoatrial node 

(SA node), down to the cells with the slowest pace (Purkinje cells), which is likewise the 

direction of the electrical impulse throughout the heart tissue.  

 

Figure 2: The electrical conduction system of the heart [9] 

In case the SA node, the main pacemaker, fails to fire, there are several backups in place 

to ensure contraction of the heart muscle. The electrical impulse starts at the SA node, 

which is located in the right atrium, and it propagates through the atrioventricular node 

(AV node), which slows down the impulse conduction from the atrium to the ventricles to 

ensure a separate atrial contraction. Eventually, the impulse is conducted to the left and 

right bundle branches (LBB and RBB), which innervate the ventricles [10] [pp. 43-52].   

 

2.1.2 Electrocardiogram (ECG) 

The electrical activity of the heart can be detected by electrodes applied to the body 

surface. The change in the electric potential can be measured as a change in voltage 

               

                

    

              

      

            

          

      

          

        

      



7 
 

between two electrodes. The measurement of cardioelectrical activity is called electro-

cardiography. The most common approach to measure the heart’s electrical activity is 

the standard 12-lead ECG, which allows a time dependent representation of the strength 

and direction of electric impulses emerging from the heart. The 12-lead ECG consists of 

3 bipolar limb leads (I, II, III), 3 augmented unipolar leads (aVR, aVL, aVF), and 6 unipo-

lar chest leads (V1-V6) [10] [pp. 71-72]. As the leads, or electrodes, pick up the electrical 

activity of the impulse vectors, each of the leads represents the heart’s activity from a 

different angle. Therefore, the more leads used, the higher the resolution of the repre-

sentation, and the better certain aspects and processes can be localized.  

In practice, shockable conditions of the heart (2.1.3) can be determined with a single-

lead ECG, where only 2 electrodes are placed on the body to assess the ECG signal 

[11]. The 2 electrodes are usually placed in the anterior-lateral scheme, which can be 

used for ECG heart rhythm analysis as well as for defibrillation. The anterior electrode is 

placed below the right calvarium. The lateral electrode is placed on the left side of the 

patient below and towards the left end of the chest muscle [12].  

The regular heartbeat can be described as a cycle of coordinated, consecutive electrical 

events, which are represented as characteristic waveforms in the ECG signal. These 

characteristic waveforms, which are repetitive and synchronized with each heartbeat, 

are defined as the ECG complex. The ECG complex can be segmented into single and 

several consecutive waves, that represent basic components of the heart rhythm (Figure 

3).  
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Figure 3: Basic components of the ECG complex [13] 

The illustrated segment between the T and P waves in Figure 3 indicates the baseline 

on which the characteristic waves are deflected.  

The P wave represents the depolarization of both atria, which provokes the atrial con-

traction or atrial systole. The normal duration of the P wave lies between 0.08 and 0.11 

s.  

The PR wave runs along the baseline. If the PR wave is shifted below normal, it can 

indicate pathological conditions. Within the PR wave, the electrical depolarization wave 

is transmitted through the AV node down to the bundle branches.   

The PR interval consists of the P wave and the PR wave. PR intervals shorter than 0.11 

s are considered shortened, while PR intervals longer than 0.20 s are first-degree AV 

blocks. AV blocks are a disease in which the conduction of electrical impulses from the 

SA node towards the ventricles is slowed down.  
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The QRS complex describes the ventricular depolarization with a normal duration of 0.06 

to 0.11 s. If the Q wave is longer than 0.03 s or if its height is greater than one-third the 

height of the R wave, it indicates myocardial infarction. 

The ST wave represents an electrically neutral period between ventricular depolarization 

and repolarization, during which blood is pushed out of the ventricles. 

The T wave stands for ventricular repolarization [10] [pp. 100-112].    

2.1.3 Shockable Cardiac Arrhythmia 

Arrhythmias of the heart associated with dysfunctional ventricles are related to conditions 

that are treated by electrical shocks induced in the myocardium (defibrillation). There are 

3 cardiac arrhythmias to be classified as shockable conditions: ventricular tachycardia 

(VT), ventricular fibrillation (VF), and ventricular flutter (VFL) [14,15]. 

 

Ventricular Tachycardia 

Ventricular tachycardia (VT) is a medical condition that is associated with a fast, regular 

beating of the ventricles, which is usually dissociated from an underlying atrial rate [10] 

[p.159]. VT is defined as four or more ventricular ectopic beats in rapid succession (Fig-

ure 4) [14] [p. 77]. The ventricular ectopic beats occur at a rate of at least 100 bpm, while 

the QRS complex lasts more than 0.12 s. VT is commonly caused by myocardial infarc-

tion and can occur with or without the presence of heart disease, though VT is more likely 

to occur when associated with chronic coronary artery disease, congenital heart disease, 

and cardiomyopathy [15] [p. 280]. The two main types of VT are monomorphic and pol-

ymorphic. Monomorphic VT is characterized by a rapid succession of ventricular ectopic 

beats with rates from 120 to 250 bpm and similar occurrences. Polymorphic VT is asso-

ciated with repeated, progressive changes in the direction and amplitude of ventricular 

complexes and prolonged QT intervals [14] [p. 77]. 
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Figure 4: Monomorphic VT (sequence of ectopic beats) followed by two sinus beats and 
a single ventricular ectopic beat [14] [p. 78] 

In consequence, the heart loses its ability to pump blood sufficiently into the cardiovas-

cular system and fails to provide the body with oxygenated blood. When VT lasts longer 

than a few seconds, it causes falling blood pressure and shortness of breath, which can 

lead to dizziness and fainting. VT can further lead to severe hypotension, ventricular 

fibrillation (VF), and cardiac arrest [16]. In general, severe symptoms are more likely with 

longer episodes of VT (> 30 s) and faster rates over 150 bpm [15] [pp. 280-281]. 

In acute situations, VT is treated by defibrillation. In the long term, VT is treated by sur-

gical removal of the heart cells that cause VT and by medication [16]. VT at rates be-

tween 130-170 bpm can often be terminated by antitachycardia pacing. Antitachycardia 

pacing refers to painless shocking techniques applied by implantable cardioverter defib-

rillators (ICDs), intending to stimulate the heart’s pace [17]. Fast VT rates are likely to 

cause a collapse. In cases where the antitachycardia pacing is failing after several at-

tempts, the condition is treated with defibrillating shocks. If the VT doesn’t show hemo-

dynamic impairment, the initial shocking energy is between 50-100 J. In case of intoler-

able or pulseless VT, the initial shock is given at 200 J. If necessary, repeating shocks 

are initiated at increasing energy steps of 300 J and 360 J [18] (pp. 236). Energy levels 

for internal shocks (from implantable devices) are approximately one tenth of energy 

levels for external defibrillation [19]. 

Ventricular Fibrillation 

Ventricular fibrillation (VF) is characterized by uncoordinated quivering of the ventricles 

due to rapid, irregular electrical impulses ranging between 350-450 bpm. VF is the most 

prevalent arrhythmia related to cardiac arrest (a pulseless situation). VF causes circula-

tory arrest, and unconsciousness develops within 10-20 s [14] [p. 106]. 



11 
 

If VF continues for more than 1-2 minutes, it often leads to death. The ECG signal is 

characterized by a wandering baseline and strongly varying QRS complexes in morphol-

ogy and height (Figure 5). The QRS complex appears indistinguishable from ST seg-

ments, and P and T waves are not recognizable. VF is occasionally difficult to separate 

from polymorphic VT [15] [p. 306]. VF is commonly initiated by ventricular ectopic beats 

and can arise from ventricular tachycardia.  

 

Figure 5: 12-lead ECG recording of ventricular fibrillation [20] 

Ventricular fibrillation is treated by prompt defibrillation with high energy shocks, which 

successfully defibrillate 90% of cases. Initial shocks have an energy level between 150-

200 J, if unsuccessful, further shocks between 200-360 J are induced (Bennett 2012) 

(pp. 106, 144, 173). The energies mentioned refer to an external defibrillator. Energy 

levels for internal shocks are approximately one tenth of energy levels for external defib-

rillation [19]. 

Ventricular Flutter 

Ventricular Flutter (VFL) is a rapid form of VT with rates over 280 bpm [18] [p. 236]. The 

ECG signal is characterized by a regular, almost sinusoidal pattern without distinguish-

able components, as shown in Figure 6 [10] [p. 163].  
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Figure 6: ECG lead of Ventricular Flutter [21] 

QRS complexes and T waves become indistinguishable [15] [p. 306]. VFL is treated with 

emergent electrical shocks as described earlier for VT. 

 

2.2 Defibrillation 

Defibrillation is the application of electrical shocks into the heart with the purpose of ter-

minating a shockable, non-perfusing cardiac arrhythmia (Section 2.1.3). The electrical 

shock is induced to depolarize the myocardium and restore coordinated contractions [22] 

[Ch 23]. The depolarization of the heart muscle enables the SA node to reimplement its 

natural pace throughout the electrical conduction system of the heart. In defibrillation, 

the electrical shock to the heart is delivered at a random moment, whereas in cardiover-

sion, electrical impulses are applied at specific moments with regard to the cardiac cycle 

[23].  

At the end of the 19th century, researchers found that moderate electrical shocks could 

provoke ventricular fibrillation in dogs, while strong electrical shocks could terminate the 

arrhythmia and restore the normal heart beat [24]. In 1947, the first successful human 

defibrillation was performed on a patient suffering from VF [25]. Today’s standard are 

automated external defibrillators (AEDs) and implantable defibrillators that have the abil-

ity to automatically assess if a shockable condition is present and therefore electrical 

shocking is required. Next to in-hospital use, the automated detection of shockable 

rhythms enabled the defibrillation technology to be used in out-of-hospital care and there-

fore to save more lives. Manual defibrillation is still performed in the intensive care unit 

since the patients are constantly monitored by medical professionals and the decision if 
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and how to perform defibrillation remains the responsibility of the medical experts. 

Though, computer-based alarm systems are used to inform the personnel about critical 

situations.   

2.2.1 Relevance of defibrillation technology 

Sudden cardiac arrest is the abrupt loss of heart function, resulting in the cessation of 

blood flow. In developed countries, sudden cardiac arrest accounts for 5-15% of the total 

death rate [1]. In Europe, approximately 38 out of every 100000 persons per year suffer 

from an out-of-hospital sudden cardiac arrest, which is treated by emergency medical 

services. The survival rate is 10.7% [26]. In the USA, 55 out of every 100000 persons 

per year are affected, and the survival rate lays at 8% [27]. Approximately 80% of cardiac 

arrests are out-of-hospital incidents [28].  

Around 70% of out-of-hospital cardiac arrests and 80% of in-hospital cardiac arrests are 

caused by conditions with pulseless electrical activity and asystole, which are typically 

not treatable by electrical shock [29,30]. For shockable conditions that occur outside of 

hospitals and are treated by emergency medical services, the survival rate lays between 

17 and 21% [26]. In contrast, for shockable conditions that occur and are treated in hos-

pitals, the survival rate increases to 45-60% [29–31]. The main reason for this deviation 

is based on immediate access to appropriate treatment in a clinical environment. When 

the heart loses its ability to provide perfusion of the body, the risk of irreversible organ 

damage and death rises quickly without treatment. The survival rate decreases approx-

imately by 5-10% with each minute from collapse to defibrillation [32]. In the case of a 

shockable condition, early defibrillation is a key measure to enhance the chance of sur-

vival [29]. On the other hand, the inappropriate use of defibrillation can cause severe 

damage, even leading to the death of the patient and the person who is applying the 

measure [11]. Manual defibrillators require the expertise of healthcare professionals. 

With automated detection of shockable arrhythmias, defibrillation becomes a medical aid 

technology that is not restricted to being used by medical professionals only. Conse-

quently, automatic defibrillation technology became beneficial for public and outpatient 

usage. Automated external defibrillators (AEDs) and implantable cardioverter defibrilla-

tors ease and save the lives of many people [2] [p. 7]. Observational studies show that 

early out-of-hospital defibrillation of shockable conditions with AEDs, which is applied by 

first aid responders (mainly people with no or little medical training), reaches a median 

survival rate of 53.0%. The survival rate (generated from the same studies) for people 

treated by emergency medical services lies at 28.6% [33].  
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2.2.2 Automated External Defibrillator (AED) 

AEDs aim to automatically assess shockable arrhythmias of the heart accurately and 

apply the appropriate therapy by inducing electrical shocks through electrodes placed on 

the patient’s body. The electrodes are usually attached following the anterior-lateral 

scheme as illustrated in Figure 7 (Section 2.1.2). AEDs are utilized for public access 

defibrillation. Therefor, it is required that the AED perform robustly and accurately even 

under unfavorable conditions. Further, the AED needs to be widely accessible in public 

places, safe, and easy to use to enable quick and correct usage by untrained persons 

without medical expertise. When the electrodes are attached, the AED determines if de-

fibrillation is indicated. If so, the device advises the shock, and the rescuer is informed 

to stay clear of the patient. When the capacitors are charged, the rescuer is informed to 

press the shock button on the device, and the shock is delivered [2]. 

 

Figure 7: Automatic external defibrillator [34] 

Only arrhythmias such as ventricular tachycardia, ventricular fibrillation, and ventricular 

flutter can be treated by defibrillation. Strong electrical shocks in the presence of another 

rhythmical condition of the heart can cause serious complications or death to the patient. 

It is crucial that the AED classifies the patient’s condition accurately as shockable or non-

shockable. A shockable rhythm refers to a lethal condition that terminates in the patient’s 

death unless defibrillation is applied quickly [11].     
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The accuracy of commercially available AEDs focuses on maximizing the specificity for 

shockable rhythms at the cost of sensitivity for detecting shockable rhythms. This is due 

to potential legal problems in certain countries in which the person providing first aid is 

held responsible for harm caused to the patient by a falsely applied electrical shock [3]. 

According to the IEC 60601-2-4 international standard, the requirements of the American 

Heart Association, and several performance studies, commercially available AEDs reach 

a sensitivity of approximately 90% and a specificity of around 95% [2,4,5,35]. It means 

that around 1 out of 10 shockable conditions is not detected by the device, and if a 

shockable condition is detected, the AED is accurate in 95% of the cases. The actual 

performance values might vary slightly depending on the study, the kind of devices, and 

the test data. It might be beneficial for the comparability of device performances if all 

devices are tested on a common and officially verified ECG database [11]. 

2.2.3 Implantable Cardioverter Defibrillator (ICD)  

Implantable cardioverter defibrillators (ICDs) are subcutaneously implanted devices with 

leads either positioned within the heart or subcutaneously. The main purpose of ICDs is 

to detect and treat shockable arrhythmias. Additional to defibrillation, ICDs can deliver 

electrical impulses to the heart at specific moments of the cardiac cycle (cardioversion) 

and more recently, pacing of the heart [36]. The implantation of ICDs is indicated as a 

form of secondary prevention when patients have already suffered from life-threatening 

cardiac events. Another indication is primary prevention, when patients haven’t had a life 

threatening cardiac event but are at high risk for one to occur [35]. 

In contrast to AEDs, the algorithms of ICDs are designed to maximize sensitivity in the 

detection of shockable rhythms at the cost of specificity. This is due to the assumption 

that missing shockable conditions results in a higher fatality risk than falsely delivered 

shocks from ICDs. Some devices perform at up to 99% sensitivity, while specificity is 

decreased below 90% [37]. Occasionally, this results in the delivery of shocks without 

the presence of a shockable condition. Studies show that wrongfully detected ventricular 

arrhythmias lead to inappropriate shocks in approximately 20% of patients with ICDs. 

With common detection algorithms, wrongfully delivered shocks are mainly caused by 

false discrimination of supraventricular tachycardia and oversensing of other physiolog-

ical signals and interferences [38] [p. 66]. Falsely delivered shocks diminish the life qual-

ity of the patient and increase mortality [39]. International efforts have been put forth by 

the industry, the research community, and governments to address the problem and 

work on solutions that improve the performance of detection models for shockable con-

ditions [38] [p. 87].  
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2.2.4 Detection algorithms in commercial defibrillation devices 

The most established methods for detecting shockable cardiac rhythms by defibrillation 

devices are based on count algorithms, which analyze the ECG data that is collected 

from the patient. The detection algorithms utilize the heart rate to roughly classify the 

present heart rhythm. Further techniques that analyze the ECG morphology and the be-

havior of the heart cycle intervals are applied to make the classification more distinct, as, 

for example, it is crucial to correctly distinguish between VT and supraventricular tachy-

cardia [40]. In contrast to VT, supraventricular tachycardia is not a shockable condition 

and requires a different treatment. False classification of supraventricular tachycardia 

still remains a weakness of defibrillation devices, as described in Section 2.2.3.  

In 1990, the threshold crossing intervals (TCI) algorithm introduced a time-domain 

method for the detection of VF and VT and laid the groundwork for many subsequent 

developments and improvements [40,41]. Another relevant time-domain procedure for 

VF detection is the auto-correlation function [42]. The VF-filter by Kuo and Dillman and 

the spectrum analysis methods are popular VF detectors in the frequency domain [43]. 

Threshold crossing interval algorithm (TCI) [44] 

Though different approaches are mentioned, the principle of heartrate-based detection 

algorithms for shockable rhythms is explained with the TCI algorithm by Nitish Thakor 

and Yi-Sheng Zhu as follows [44]: The pre-processing part starts with digitizing the ECG 

signal and filtering to clean up the signal. A low-pass filter removes muscle noise, a high-

pass filter removes baseline drift, and a notch filter is applied to suppress power line 

interference. Then the signal is segmented into 1 s segments and transformed into a 

binary signal. A threshold set at 20% of the peak value in each segment serves as the 

boundary for the binary signal generation, everything above the threshold is considered 

1 and everything below as 0. Further, for each segment, the average interval between 

threshold crossings is calculated as described in Figure 8:  
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Figure 8: Threshold crossing interval (TCI) [44] 

In order to say if the calculated TCI of a segment indicates a shockable condition, a 

probability distribution with labeled ECG data was created (Figure 9). In the original TCI 

research paper, 170 clinical recordings of VF and VT were used.  

 

Figure 9: Probability distribution of TCIs [44] 

As shown in Figure 9, the TCI distributions for normal sine rhythm and shockable rhythms 

don’t overlap, which means a decision can be easily obtained from the TCI value of a 

given segment. Since the distributions for VF and VT overlap, further testing is necessary 
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to discriminate between the two. The paper suggests a sequential probability ratio test 

in which no decision is made if the sample TCI lies in the overlapping zone between 2 

preset probability thresholds. The test is repeated with consecutive TCI samples until the 

resulting probability is no longer within the probability threshold window and the segment 

can be assigned to either VF or VT.    

Philips SMART Analysis AED algorithm [45] 

Since the publication of the TCI algorithm, detection methods for shockable rhythms 

have been constantly developed. Philips SMART analysis AED algorithm gives an ex-

ample of present decision-making in defibrillation devices. The device-algorithm systems 

by Philips meet the requirements of IEC 60601-2-4, which requires a sensitivity of >90% 

and a specificity of >95% in the detection of shockable rhythms [46]. Before processing 

the ECG signal further, the patient’s impedance is measured to ensure that the electrode 

pads are properly attached and the ECG signal can be read efficiently. Likewise, trans-

thoracic impedance, common mode current, and electrical potentials are sensed by the 

electrode pads. If these signals correlate with the ECG signal and are disturbingly high 

in their amplitudes, the algorithm classifies the artifact and provides appropriate 

measures. For example, if pacemaker artifacts are classified, the algorithm removes the 

pacemaker spikes from the signal and proceeds.  

The rhythm detection part of the algorithm is applied on 4.5 s segments and considers 4 

parameters in the decision-making for shocking: the heart rate, the shape of the QRS 

complex, the regularity of the waveform pattern, and the amplitudes of the signal. The 

higher the heart rate the stronger the vote of the heart rate parameter for shocking. But 

regardless of the heartrate, if the QRS complex, or rather the R wave, is sufficiently nar-

row, the algorithm decides against shocking. 135 bpm is the lowest rate at which the 

algorithm can decide to give a shock, depending on the evaluation of the other parame-

ters. A shock decision at 135 bpm is only granted if the rhythm is strongly disorganized 

and the QRS complex is sufficiently wide. Eventually, the peak-to-peak median ampli-

tude within the segment is checked. If it’s below a certain threshold, the segment is con-

sidered asystole, and the shock decision is rejected.  

The heart rate is a key feature in the assessment of a shockable condition, but in contrast 

to the TCI algorithm (Section 2.2.4) this feature can be overruled, for example, if the 

shape and stability of the QRS-complex are within normal values.  
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2.3 Detection of shockable rhythms based on Machine Learn-
ing approaches 

The exponential growth in computational capacity per spatial unit and the development 

of self-learning algorithms opened the path for new, promising approaches in almost 

every field of society, including the field of detecting and classifying cardiac rhythms. 

When applied, it is most likely that new, machine-learning-driven solutions will outper-

form the standard, as more and more scientific studies show promising results. And since 

the requirements for shockable rhythm detection devices formulated in international 

standards are still at >90% for sensitivity and >95% for specificity, there is room for im-

provement [46]. Classic algorithms, which are solely based on the combination of signal 

processing steps and medical expertise, are prone to overlook subtleties, which can add 

up, especially the more complex the system is and the more ramified the underlying 

patterns are. In contrast, supervised learning techniques are capable of optimizing the 

detection or classification model automatically. Machine learning algorithms can make 

slight adjustments to certain or even random parameters within the model and compare 

the model output to the ground truth. Automatically means in this context that a great 

number of iterations in which the model parameters are tweaked can be performed in a 

short time compared to manual approaches. After each iteration, the model output is 

compared to the ground truth, which is a set of annotated samples. The learning algo-

rithms are typically designed to discard parameter adjustments which decrease the 

model performance, while adjustments that improve performance are further examined. 

The first observable trend focuses on the combination of ECG features with machine 

learning classifiers like Support Vector Machine (SVM), Logistic Regression, Random 

Forest, and Neural Networks [47–50]. Well-known features, such as the TCI metric (Sec-

tion 2.2.4) are evaluated for their suitability in discriminating between shockable and non-

shockable ECG signals. Then a selection of suitable features is implemented in a clas-

sifier that is trained by labeled ECG data.  

The performance metrics of detection algorithms for shockable rhythms highly depend 

on the data on which the models are trained and tested. Since there is currently no official 

standard database to evaluate the models, most of the publications, which are referred 

to in this work, use public ECG databases with a focus on cardiac arrhythmias, such as 

the MIT-BIH Arrhythmia Database (MITDB), the Creighton University Ventricular Tach-

yarrhythmia Database (CUDB), the Malignant Ventricular Arrhythmia Database (VFDB), 

and the American Heart Association Database (AHADB). Based on data from the men-

tioned databases, the models reached sensitivity values above 95% and specificity val-

ues up to 98% for shockable rhythms [47–50].  
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The second, more recent trend in the classification of cardiac rhythms is to automate 

feature detection and selection by utilizing convolutional neural networks (CNNs). The 

CNN models reached overall accuracy values of 98.8%, with sensitivities of up to 95% 

and specificities of up to 99% [5,51].  

2.3.1 Feature selection combined with machine learning classi-
fiers 

During the last decades, the research community provided numerous algorithms that 

proved to be suitable for emphasizing characteristic patterns of shockable cardiac ar-

rhythmias. These characteristic features can be grouped into three categories: time do-

main features, frequency domain features, and complexity features.  

Time domain features focus on heart rate, signal amplitude, slope, or sample distribution 

[48]. Examples are TCI (Section 2.2.4), threshold crossing sample count (TCSC), stand-

ard exponential, and mean absolute value. TCSC counts the samples that cross a certain 

threshold within 3 s segments [41]. The standard exponential is another count algorithm 

that sets a decreasing exponential curve on the point where the maximum amplitude 

within a segment occurs. Then the algorithm counts the crossing points of the ECG signal 

with the exponential curve within the segment [52]. The mean absolute value refers to 

the absolute mean of a 2 s segment [53]. 

Frequency domain features examine spectral concentrations, power contents in different 

frequency bands, or normalized spectral moments [48]. Examples are the VF filter and 

the M, A1, and A2 parameters. The VF filter applies a narrowband elimination filter that 

is centered at the mean signal frequency of the ECG segment [54] [pp. 347-349]. M, A1, 

and A2 parameters measure the energy content in different frequency bands using the 

Fourier transform.  

The complexity features of the ECG signal are represented by the complexity measure, 

covariance, frequency, and others [48].  

Several studies have examined the combination of the described characteristic features 

with machine learning classifiers such as logistic regression, SVM and Random Forests 

[[49], [48], [47]]. To determine a selection of the most relevant features, which generate 

the most decisive output of the classifier and likewise minimize the computational effort, 

certain methods were introduced to rank the features regarding their ability to emphasize 

distinctions between shockable and not shockable rhythms.  
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Genetic algorithm in feature selection 

One method to find the optimal combination of features uses genetic algorithms, which 

are adapted from Darwin’s evolution theory and mimic the processes of natural selection, 

reproduction, and mutation. Genetic algorithms select the fittest individuals from a pop-

ulation (the best performing sets of feature combinations) to be reproduced and tested 

in the next generation [55] [Ch 1]. Therefore, a binary vector with a length equal to the 

number of all available features is created. 1 in the vector means that the corresponding 

feature is selected, and 0 means that it’s not selected to be used in the classifier. As an 

analogy, the binary vector can be called a chromosome. The genetic algorithm starts 

with a population of randomly generated chromosomes, each consisting of a specific 

combination of selected features. Then each chromosome is tested on the classifier. The 

chromosomes that provide the best results for the classifier are selected for reproduction, 

which is determined by the fitness function [56]. As with parental individuals, respectively, 

2 of the selected chromosomes are recombined in a crossover process, where a cross-

over point defines which parent contributes which feature settings to the offspring. To 

prevent premature convergence, it rarely occurs that some of the feature selections 

within the offspring can switch from off to on or from on to off. This is called a mutation 

[56]. When the algorithm doesn’t improve the performance of the offspring anymore, the 

optimization can be terminated. 

In a publication from Qiao Li et al., a genetic algorithm was combined with SVM to detect 

VF and VT rhythms [47]. The features were ranked by the number of times they were 

selected during the optimization with the genetic algorithm. The most frequently chosen 

features were then used for classification with SVM. Training and testing were performed 

on public ECG databases: the Creighton University Tachyarrhythmia Database (CUDB), 

the MIT-BIH Arrhythmia Database (MITDB), the MIT-BIH Malignant Ventricular Arrhyth-

mia Database (VFDB), and the American Heart Association Database (AHADB). The 

classifier reached a validation accuracy of 96.3% on distinguishing VF and VT from other 

rhythms, obtained from fivefold cross-validation.  

Sequential Forward Feature Selection (SFFS) 

SFFS defines a basic method to select an optimized set from the entire feature set. First, 

each feature is evaluated by a common classifier (e.g. k-nearest neighbor algorithm). 

Then, the features are ranked by performance. Gradually, the feature with the highest 

score is removed from the entire feature set and added to the optimal feature subset. If 

the model’s performance improves, the last added feature remains in the subset, other-
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wise, it is removed. The procedure continues until a stopping criterion is met (e.g. maxi-

mum number of features in the subset). Hai et al. used SFFS and k-nearest neighbor on 

data from CUDB and VFDB with rhythms annotated as VF, VT, non-VF, ventricular flut-

ter, and normal sinus rhythm. The model reached 96.7% sensitivity and 99.7% specificity 

[57].     

Another approach to feature selection utilizes the intrinsic feature selection capability of 

certain classification algorithms, such as regularized logistic regression. The feature 

ranks are expressed by the magnitude of the regression coefficients after the training 

phase. More relevant features are related to larger values of the regression coefficient, 

which gives those features a higher influence on the decision-making within the classifier. 

The least important features were then iteratively eliminated. The classification perfor-

mance for each feature subset was then evaluated, and the best subset was chosen. By 

focusing on VF detection and utilizing public data from CUDB, VFDB, and a subset of 10 

recordings from AHADB, the method reached a sensitivity of 96.6% and a specificity of 

98.8%  [48]. 

2.3.2 Classification of ECG data with Convolutional Neural Net-
works 

Before the approach to explain convolutional neural networks (CNNs) in more detail 

(Section 2.4) and why they might be the right choice for the classification of shockable 

conditions from ECG data, a few works applying the method should be mentioned. The 

works have in common that they utilize labeled data containing shockable conditions 

from different ECG databases, which are introduced in Section 3.1. The ECG recordings 

are split into labeled segments, which are used to train CNNs.   

The works can be divided into 2 groups regarding the dimensionality of the network and 

the input data fed into it. The first group refers to 1D CNNs. Here, the input format for the 

net is a 1-dimensional vector representing the amplitude of an ECG channel over time. 

Acharya et al use 2 s segments derived from MITDB, CUDB, and VFDB. The data are 

used for training 11-layer 1D CNNs. The models are evaluated in 10-fold cross-validation 

and reach an accuracy of 0.932 with a sensitivity for shockable rhythms of 0.953 and a 

specificity for non-shockable rhythms of 0.910 [58]. Another work by Nguyen et al. de-

ployed 8 s segments from CUDB and VFDB on 13-layer 1D CNNs [59]. The 5-fold cross-

validation reaches an accuracy of 0.993 with a sensitivity of 0.971 and a specificity of 

0.994. The validation metrics are explained in Section 3.5. 

Lai et al., on the other hand, used 2D CNNs. By applying wavelet transform to one-

channel ECG recordings, spectrograms are generated and segmented to serve as 2-
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dimensional input data for the CNN (see Section 3.2.3). In a 10-fold cross-validation with 

3 s segments from AHADB, CUDB, MITDB, and VFDB, the accuracy is 0.988 with a 

sensitivity of 0.951 and a specificity of 0.994 [51].   

2.4 Convolutional Neural Networks (CNNs) 

Convolutional neural networks were first introduced in 1989 by LeCun [60]. The work 

applied backpropagation and automated feature detection with a neural network to clas-

sify handwritten zip code digits. With the increase in computational capacities and the 

extensive availability of training data, CNNs are nowadays often the most effective 

choice for tasks such as image recognition, computer vision, audio, and natural language 

processing. The secret behind the success of CNNs is based on their flexibility and free-

dom of choice when it comes to adapting to specific problems.   

As described in Section 2.2.4 traditional detection algorithms incorporate static rules and 

features derived from analytical research. Throughout scientific studies, certain proper-

ties of objects are derived that allow a qualitative distinction between the observed ob-

jects. These qualities or characteristics are then shaped into mathematical constructs 

that can be applied to similar objects in order to classify them algorithmically. This hand-

made feature extraction is often tedious, and it might miss relevant aspects of objects 

that haven’t been included in the scientific study but that might occur in use cases. When 

we humans identify an object by looking at it, we don’t apply the same analytical ap-

proach. We wouldn’t count certain lines or calculate the orientation of lines in a conscious 

manner. We use a system that is rather dynamic and adjustable, by design it is capable 

of learning advanced skills from scratch. For the example of visual recognition, we use 

our visual cortex, which inspired the development of CNNs [61]. Through our experience 

of the world, we define the matrix of neural connections within the visual cortex. Depend-

ing on the learned configuration of each neuron, a signal is either transmitted further or 

blocked. The neurons in the, so to speak, input layer of the visual cortex are only locally 

receptive regarding the visual field that comes through the eye. It means that the input 

neurons are specialized on a specific region of the incoming image, and they only react 

to signals coming from that specific region. Furthermore, the first layers in the visual 

cortex become specialized in reacting to simple, basal structures such as line orienta-

tions. Some neurons react only on horizontal lines, others on vertical lines, and so on. 

The layers that come next react to certain combinations of the lower-level neurons and 

are able to respond to more complex patterns. The deeper the layers within the net, the 

more complex the recognized structures are. It starts by recognizing simple lines and 
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develops further by combining them to form components and eventually complete ob-

jects [62,63].   

As shown in Figure 10, a CNN consists of two main parts. The first part contains convo-

lutional and pooling layers to learn relevant features from the input. The second part is a 

fully connected neural network that processes the features and concludes with a classi-

fication as its output. In the fully connected part, the features from the convolutional part 

are combined through several layers of neurons, where various combinations of features 

result in certain votes. The strongest votes eventually determine the class decision of 

the net at its output layer.   

 

Figure 10: Structure of a Convolutional Neural Network [64] 

2.4.1  Feature extraction in CNNs     

Convolution 

The convolutional block of a CNN is designed to extract the characteristic pieces of an 

object as features. As an example, a CNN should classify handwritten X-letters on im-

ages. What makes the task complicated for a computer is that each handwritten X-letter 

can vary in its shape, scale, position, rotation, shifting, and line thickness. Therefore, the 

digital pixel representations of the X-letter images differ as well. To simplify things, the 

input images have a 9x9 pixel dimension, and the images are binary, meaning 1 for white 

pixels and -1 for black pixels (Figure 11).  
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Figure 11: Classification of handwritten X-letter representations with a CNN [65] 

Though all images show the same symbol, their pixel representations are rather varied. 

A literal match between them, which means to map each pixel value from a reference 

image to its corresponding pixel value in the sample image, can only result in an ac-

ceptable classifier if the sample is compared to a very large number of possible cases in 

how the X-letter could be written. This is not a very sophisticated way of teaching a com-

puter to classify objects, and considering larger amounts of information, it would require 

enormous computational effort. Similar to the visual cortex, the CNN approach focuses 

on extracting simple patterns or basal features such as line orientations within the first 

layers of the net. This is realized by convolution, as shown in Figure 12. In this example, 

a small filter kernel of 3x3 pixels is piecewise mapped on the X-letter image. The kernel 

has a diagonal pattern, with ones from the top left to the bottom right. It is meant to detect 

diagonal lines with the same or similar orientation in the input image. The mapping starts 

at the top left corner of the input image and goes incrementally to the right, then line by 

line down until the image is completely convoluted.   

 

Figure 12: Convolution with diagonal line filter kernel [65] 
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When the filter kernel is mapped onto the input image, each pixel value of the image is 

multiplied by its corresponding pixel value in the filter kernel, as illustrated in steps 1 and 

2 in Figure 12. Then in step 3, the products from each pixel are summed up and divided 

by the total number of pixels in the filter kernel. In this example, the filter kernel and the 

3x3 patch on the input image are a perfect match. This equals 1 as the result of the 

convolution, and it is likewise the maximum number that can be achieved. In image sec-

tions where the filter kernel doesn’t find good matches, the convolution results in lower 

values. Step 4 assembles the results of each convolutional step as a filtered map of the 

input image. In this case, the diagonal lines from left to right are emphasized, while the 

rest of the original image becomes blurry.  

 

Figure 13: Convolutional mapping with different filter kernels [65] 

Depending on the nature of the filter kernel, different aspects of the input image can be 

emphasized (Figure 13). A convolutional layer in the CNN applies a variety of filters to 

the input image, resulting in a stack of filtered images as the output of the convolutional 

layer. Each convoluted output image can emphasize different structures of the original 

input image, such as horizontal or vertical edges. 

As explained earlier, the success of CNNs is due to their ability to fit and solve a variety 

of real problems with high accuracy and in a relatively short time. The key features 

needed to solve the problem (e.g., to make accurate object classification) are not imple-

mented based on previous knowledge. The network learns the relevant features by itself 

by working with large amounts of labeled training data. All filter kernel values in each 
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convolutional layer are adjustable parameters. Before training, the kernel values are ran-

domly initialized. During the training process, the network optimizes the kernel values 

iteratively until no better solution for the given problem can be found.   

Activation 

In the next step, the Rectified Linear Unit Function (ReLU) is applied elementwise on the 

convoluted pixels. ReLU simply outputs 0 if its input is 0 or lower, otherwise, the input 

value is preserved. The ReLU layers enable the network to build nonlinear models, which 

are often required when creating abstractions and predictions of a world with nonlinear 

relations. If the filter kernel contains negative values or parameters, it might result in a 

negative value after the convolution. No matter what the negative result might be, ReLU 

ensures that every negative value is processed as a 0 in the upcoming layers. As an 

activation function that introduces nonlinearity in the network, ReLU is one of several 

options, such as the logistic function (Sigmoid) and hyperbolic tangent (Tanh). In 2012, 

a CNN project called AlexNet implemented the ReLU activation (among other novelties) 

and outperformed all previous approaches on the ImageNet dataset. Since then, ReLU 

has become the dominant activation function used after the convolution. ReLU is com-

putationally cheaper. Unlike the other functions, it doesn’t require exponential calculation 

[66]. Another advantage of ReLU is that it passes real 0 values instead of approxima-

tions, which reduces noise and simplifies the model [67] [p. 507]. For positive input val-

ues, ReLU simply passes them and doesn’t show convergence for higher input values, 

which reduces vanishing gradients [68].  

Subsampling 

Subsampling aims to shrink the input dimensions for computational efficiency while pre-

serving the relevant information regarding the extracted features. Originally, this was 

done by computing the average of every pixel block of a certain dimension (e.g., 2x2 

pixels). Currently, max pooling has become more common [67] [p. 335]. In this operation, 

the filtered images serve as input. From a block of fixed size, for example 2x2 pixels, 

only the maximum value is preserved in the output of this layer. While average pooling 

preserves features in a smoother representation, max pooling retains the most prominent 

values from the feature map. The pooling window slides with a fixed step size along the 

input image, resulting in a feature map of decreased size (Figure 14). The shrunk image 

preserves the features detected by the convolutional layer and discards secondary infor-

mation. In this way, the computational demand for following layers is reduced, and sec-
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ondly, the feature detection becomes less dependent on the feature position in the orig-

inal image. By reducing the number of parameters with pooling layers, the net becomes 

more robust against overfitting on training data [69] [p. 601].     

 

Figure 14: Max and Average pooling operation in CNNs [65] 

    

The arrangement of convolutional layers, ReLU layers, and pooling layers can be re-

peated several times. The deeper the layers within the net, the more complex the learned 

features become. As in the visual cortex, the first layers in the CNN start by extracting 

simple features such as edges and bright spots. The following convolutional layers com-

bine low level features with textures. While the convolutional filters search for larger and 

more sophisticated patterns, which further leads to parts and eventually objects that are 

abstracted in the deepest convolutional layers of the net [70].  
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Figure 15: Feature visualization of convolutional layers (from left - first layers to 
right - deeper layers) in GoogLeNet (CNN) trained on the ImageNet dataset [71] 

To better understand CNNs and make them easier to interpret, several approaches are 

focusing on feature visualization [72]. Figure 15 shows feature visualizations of certain 

channels (feature maps) in different convolutional layers of GoogLeNet CNN, from low-

level features on the left side to high-level features on the right side. GoogLeNet was 

trained on the ImageNet dataset. It has 22 layers and can classify 1000 object catego-

ries. To visualize the features at a certain channel in a particular convolutional layer, an 

image of random pixel values is fed into the network. The activation of the neurons at 

the location of interest is monitored. A neuron in the convolutional part of the CNN refers 

to a unit that processes a single convolution, with a receptive field equal to the size of 

the filter kernel. Then, by applying gradient ascent backwards through the net, the pixel 

values of the input image are gradually adjusted in a way that maximizes the activation 

of the neurons of interest. During a loop of up to 2048 steps, the random noise image 

becomes a visual representation of the neurons behavior as illustrated in Figure 16 [71].        

 

Figure 16: Feature visualization in CNN from random noise to a representation of 
maximizing particular neuron activation [71]  

Flatten 

The final step in the convolutional part of the CNN is to flatten the stacked feature maps 

from the last pooling layer into a single list, which is referred to as the feature vector. 

This one-dimensional feature representation serves as the input layer for the fully con-

nected part of the CNN.   
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2.4.2 Fully connected layers in CNNs – Multilayer perceptrons 

A multilayer perceptron is an artificial neural network where each neuron is connected to 

all other neurons in the previous and in the next layer. The artificial neuron (in context 

with artificial intelligence, also called just neuron) is the building block of an artificial neu-

ral network. The components of a neuron are represented in Figure 17. Artificial neural 

networks are organized in layers, where each layer consists of a certain number of neu-

rons and one bias neuron. The input of a neuron are the incoming signals described as 

numerical values. In a fully connected network, each neuron’s output from the previous 

layer provides one of the input signals xn to the current neuron. Each input signal is 

multiplied by a weight parameter, which can be a positive or negative number, or 0. 

Weights determine the impact of an input signal on the behavior of the neuron.  

 

Figure 17: Components of an artificial neuron [73] 

The multiplications of input signals and weights are summed up to a single value. Fur-

ther, a bias term is added. The bias term is simply a constant of 1 multiplied by another 

weight parameter. The bias term is likewise independent from input signals, and by add-

ing it to the summation of weighted input signals, it provides the neuron with the ability 

to shift its output, similar to a constant added to a linear function that lifts the restriction 

of the function to be bond to the origin (0, 0). The shifting ability of the neuron makes the 

neural network more flexible to fit various data [74]. 

The sum of all multiplications (weights times input signal) plus the bias term is then 

passed to the activation function of the neuron. Higher weights mean that the corre-

sponding input signals have a stronger positive influence on the neuron’s decision to get 

activated and fire to the next layer. On the other hand, negative weights have an inhibit-

ing effect on the neuron. Weights close to 0 silence the influence of the input signal on 

the neuron’s activation.  
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Activation functions in artificial neural networks 

After the weighted sum of the neurons input signals is computed, the resulting value is 

forwarded to the activation function. The activation function determines if the neuron is 

going to pass the signal further to the next layer and, if so, with what value it is going to 

fire. There are other important aspects that need to be considered when implementing 

activation functions in a neural network: The activation function should emphasize the 

model's ability to adjust to a variety of problems and enhance classification performance. 

Further, the activation function needs to be designed in a way that enables the network 

to learn so that an optimization algorithm can optimize the weights by gradually tweaking 

them over several iterations.  

In 2 dimensions, a problem is linearly solvable if the object classes are separable by 

straight lines in the 2-dimensional space. But many problems require curved lines to 

separate the classes effectively. To solve problems such as object classification, where 

the classes are not linearly separable, it is necessary to implement nonlinear behavior in 

the model to achieve good performance [75] [p. 72]. This can be realized through non-

linear activation functions. Figure 18 illustrates the behaviors of the most common acti-

vation functions used in CNN architectures, excluding the step function [69] [p 380]. The 

x-axis represents the weighted sum of the inputs, whereas the y-axis refers to the neu-

rons output. The step function was one of the first activation functions used in the per-

ceptron by Frank Rosenblatt in 1957 [76]. It gives a binary output of 1 or -1, depending 

on whether the input value is positive or negative. But when it comes to defining strate-

gies that enable the network to learn the weights, the step function becomes insufficient. 

When optimizing weights to increase performance, it is desirable to adjust them in small 

steps and evaluate the impact on the network output iteratively. This becomes problem-

atic with an activation function that is binary and doesn’t have gradients. Another problem 

is that the step function is not differentiable at 0, and the derivative elsewhere is 0. Up-

dating the weights using backpropagation with gradient descent doesn’t work with the 

step function.  
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Figure 18: Nonlinear activation functions used in artificial neural networks [69] [p 
380] 

The most common activation functions in deep learning and CNNs are the Rectified Lin-

ear Unit Function (ReLU), the Sigmoid function, and the Tanh function. Except for the 

output layer, it is common to use the same activation function for all neurons within a 

block of a neural network. As mentioned in Section 2.4.1, the Sigmoid function and the 

Tanh function have the disadvantage of requiring exponential calculation, which makes 

the model computationally more expensive [66]. Another issue with Sigmoid and Tanh 

is their convergent behavior towards higher positive and negative values, which dimin-

ishes the gradients for those values. A significant change in the input value might result 

in an unsignificant change in the output of the activation function. When the learning 

approach of the neural network is based on gradients, this can slow down or even inhibit 

the learning process since the weights are adjusted by the magnitude of the gradients. 

This is also called the vanishing gradient problem  [77]. The fixed ranges for Sigmoid [0, 

1] and Tanh [-1, 1] allow the neuron to output a decisive probability, which is a desirable 

property for classification problems. When using ReLU, this problem can be solved by 

implementing a normalized exponential function, such as Softmax, in the final output 

layer of the network. Softmax is a logistic function such as Sigmoid and usually has Eu-

ler’s number as the exponential base, resulting in an S-shaped curve around the y-axis.  
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Architecture of multilayer perceptrons and CNNs 

Figure 19 illustrates the structure of multilayer perceptrons. The feature vector, derived 

from the convolutional block of the net, serves as the input layer for the multilayer per-

ceptron. From the input layer, each feature value is directly forwarded to each neuron in 

the first hidden layer. That means that each neuron in the hidden layer receives every 

feature value from the input layer plus the bias. Each feature value and the bias are 

multiplied by a weight, specifically for each neuron. The products are summed up and 

passed to the activation function (e.g., ReLU). Consequently, the output of each neuron 

in the first hidden layer is forwarded to every neuron in the second hidden layer, and so 

on. The last layer is responsible for the final prediction and is defined as the output layer. 

For a classification problem, the output layer has as many output neurons as the given 

problem has classes. For a binary classification problem, like shockable or non-shocka-

ble heart rhythms, the output layer has 2 neurons. With a different activation function, 

such as Softmax, each output neuron gives a probability for its allocated class. Softmax 

also ensures that all probabilities from the output layer sum up to 1. The neuron with the 

strongest vote decides the class prediction of the model. 
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Figure 19: Architecture of a multilayer perceptrons  [69,78] 

Choosing an appropriate size of the CNN (including the convolutional block and the mul-

tilayer perceptron part) depends on the given problem and its complexity. For now, there 

is no analytical approach to calculating the architecture of a CNN, regarding the number 

of layers and the number of neurons per layer, to achieve good performance on a certain 

problem [79]. The continuous increase of computational resources allows us to build and 
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train more and more complex networks. History shows that deeper and more complex 

models tend to perform better on a variety of problems [67] [p. 197].  

Since 2010, the ImageNet Large Scale Visual Recognition Challenge has been an an-

nual contest where various models compete in the object detection of images with 1000 

classes. The dataset used in the competition contains 1.5 million images with an average 

of 1000 manually annotated images per class [80]. Between 2011 and 2022, the predic-

tion accuracy has climbed from 50.9% to 91%. The top-five accuracy, meaning that the 

correct class is under the top-five probabilities predicted by the model, has improved 

from 73.8% to 99%. As a comparison, humans reach a top-five accuracy of 94.9% on 

the ImageNet dataset [81]. The novelties in the architecture that helped boost the per-

formance and that endured in later, even better performing models can be considered 

when designing CNNs. The number of parameters (weights) increased from a few mil-

lions to several billions [81]. CNNs tended to become deeper. The likelihood of overfitting 

increased accordingly. Overfitting was counteracted with regularization, dropouts, and 

augmented input data. The filter kernel sizes in the convolutional layers became smaller, 

often to sizes such as 3x3 pixels within the first convolutional layers.  

The increasing depth of CNNs caused problems with vanishing or exploding gradients, 

causing CNNs to lose accuracy after reaching a certain level of depth. The mechanism 

is explained in more detail in the following Sections about backpropagation and vanish-

ing gradients (see Section 2.4.3). The problem was countered by the introduction of re-

sidual CNNs.    

 

Figure 20: Residual block in neural networks [82] 
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The residual block is implemented as a shortcut, skipping one or several layers in the 

CNN. The input of a certain layer is passed around this layer and added to the output 

before reaching the activation function (Figure 20). The skip connection allowed to effi-

ciently train deep CNNs with up to several hundreds of layers, which enabled the CNNs 

to identify more complex structures and increase performance further [82].  

   

2.4.3 How CNNs learn – Gradient descent with backpropagation 

Cost function 

The learning process in a CNN can be described as an optimization problem. Before the 

training starts, all weights and kernel parameters are initialized with random values within 

a given margin. When the CNN is fed with training data, e.g., labeled objects on images, 

it makes a prediction of the input image according to the initial weight setting. Depending 

on the number of classes to be considered and on the logistic activation function in the 

output layer, the CNN will give probabilities for each output neuron or class. The neuron 

with the highest value defines the prediction. After predicting a series of input images, 

an error rate of the network's performance can be evaluated. The error is based on the 

cost function, which compares the true label of the input image to its predicted label. This 

is achieved by calculating a metric distance between the predicted probabilities and the 

true labels. In that sense, the cost or loss function depends on all weights in the model, 

so each weight adjustment can reflect on the output of the cost function. The task for the 

learning algorithm is to adjust the weights so the cost function gets minimized. The most 

common cost function used for classification problems in CNNs is the cross-entropy loss 

[67] [p 175]. In the cross-entropy loss, the true label is multiplied with the logarithm of the 

predicted label probability. Eventually, the multiplications are summed up over all output 

neurons, resulting in the loss value as illustrated in the example in Figure 21. 
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Figure 21: Cross-entropy loss example with 4 output neurons, where T are the true 
labels and S the predicted probabilities [83] 

After a batch of training samples is forwarded through the CNN, the average of the cross-

entropy loss function is computed. The average loss serves as a starting point for ad-

justing the weights using the learning algorithm. 

Gradient descent  

The backpropagation training algorithm is based on gradient descent, which is a model-

fitting approach that iteratively optimizes the weights for the training dataset by minimiz-

ing the cost function. Updating the weights is realized by the error gradient, which defines 

the direction and magnitude of the weight adjustment. The gradient is calculated by the 

partial derivative of the loss function, which gives the slope of the function for the specific 

input setting. In a 2-dimensional space, if the slope is negative, the weight should be 

increased to move towards the minimum to the right. If the slope is positive, the weight 

should be diminished. This goes incrementally until the gradient converges at the mini-

mum (Figure 22).  
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Figure 22: Gradient descent [84] 

The actual number of dimensions equals the number of weights in the model. The learn-

ing rate hyperparameter determines the size of the incremental step. If the learning rate 

is too small, the optimization might get stuck in a local minimum, plus the number of 

iterations is increased, which results in a longer computation. On the other hand, if the 

learning rate is too high, the algorithm might diverge and fail to settle at a minimum. One 

approach to this problem is to start with a rather large step size for the learning rate. This 

ensures that the algorithm has good chances of jumping out of local minima. For further 

iterations, the learning rate is then gradually reduced, which allows the algorithm to con-

verge [69] [pp. 175-185].  

 

Backpropagation 

Since the output of the cost function is dependent on all weights and biases within the 

model, which for a CNN can easily reach millions or even billions of parameters, it needs 

an algorithm to efficiently tweak those parameters to minimize the output of the cost 

function. The forward pass of a CNN is the regular way for the model to compute its 

predictions, starting from the input layer all the way down to the output layer. The back-

propagation algorithm starts at the output layer by doing a backward pass. Considering 

an example where only one output neuron is present, backpropagation looks at the cost 

function (or the difference between the true label and the predicted probability) and aims 

to determine how strong the influences of each activation from the previous layer are on 

the prediction of the output layer. In other words, the "brighter" a neuron fires in the pre-

vious layer, the more influential is a weight adjustment for this neuron towards the next 



39 
 

layer. Further backwards, the influence or gradient of this neuron in the previous layer 

depends again on the activations in the layer before, and so on. The backpropagation 

algorithm determines the gradients for every connection in the network by applying the 

chain rule. Updating a specific weight w in the model is realized by multiplying the gradi-

ent at this weight with the learning rate Epsilon and then subtracting the term from the 

weight w: 

𝑤 ∶= 𝑤 −  𝜖
𝜕𝐶

𝜕𝑤
 

1 

The gradient is defined as the partial derivative of the cost function C over the weight of 

interest [85]. All the weights and biases between the cost function (output layer) and the 

weight of interest at a certain layer in the net need to be considered when computing the 

gradient. This is computed by applying the chain rule, which will be further explained with 

a simplified example as illustrated in Figure 23. The variables w and b stand for weight 

and bias. z is the computed neuron value before entering the activation function. a is the 

activation value after passing the activation function. z is calculated as follows: 

𝑧 = (∑ 𝑤𝑖 × 𝑎𝑖) + 𝑏

𝑛

𝑖=1

 

2 

w are the weights and a are the activation values from the previous layer. 

 

Figure 23: Simple 4-layer neural network with 4 inputs, 2 hidden layers, and 1 out-
put [86] 
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To get the gradient for weight w22, the algorithm needs to backpropagate from the cost 

function backwards to w22 by applying the chain rule to unnest the partial derivative of 

the cost function over w22, as visualized in Figure 24: 

 

Figure 24: Visual representation of the backpropagation algorithm in a neural net-
work [86] 

 

The superscripted numbers indicate the corresponding layer. With the chain rule, the 

gradient for w22 is calculated as the derivative of the cost function as follows: 

  

 

3 

The above description of backpropagation applies only to a single input sample. In the 

real use case, a whole batch of input samples is considered before adjusting the weights. 

After a sample is forwarded through the network, the cost function is calculated. Then 

the backpropagation algorithm calculates a gradient for each parameter (weights and 

biases) in the model. This represents a suggestion on how the parameters should 

change to make a slightly better prediction for the current input sample. The extent to 

which the parameters change depends on the learning rate. The batch size of input sam-

ples defines how many gradients are computed before the weights are adjusted. If the 

batch size is, for example, 32, then the algorithm will calculate 32 suggestions (gradients) 

for each parameter in the network. Eventually, the 32 gradients are averaged, resulting 

in the final gradient that defines the adjustment of the weight. Following the development 

of the cost function, the learning algorithm continues until no further improvement in min-

imizing the cost function is registered for a certain number of batch iterations.      
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Considering that the gradients need to be calculated for every parameter and for each 

training sample when millions or even billions of parameters are present and hundreds 

of thousands of training samples, then backpropagation becomes a computationally ex-

pensive endeavor. The historical jump of halving the error rate in object detection on 

images, which was achieved by AlexNet in 2012, could be realized because the back-

propagation was computed by GPUs (graphics processing units) [66]. GPUs have chips 

that are optimized for calculating rather simple tasks compared to a CPU (central pro-

cessing unit). But the main advantage of the GPU is that it has a lot of those chips com-

puting in parallel. 

Vanishing/Exploding gradients problem 

As mentioned in Section 2.4.2, an increase in layer depth and the use of backpropagation 

can lead to vanishing gradients in the front layers when training neural networks. Small 

gradients close to 0 imply that the regarding weights don’t really change when they’re 

updated. This is caused by the chain rule that multiplies partial derivatives and activa-

tions backwards from the output layer. Several small multipliers in the equation are likely 

to cause a result close to 0, which prevents the weights from actually updating their val-

ues and prevents the model from learning. The effect significantly increases with the 

degree of deepness and when using saturating activation functions such as the Sigmoid 

function. The Sigmoid function squeezes its input value space into a much smaller value 

space between 0 and 1. It also saturates on both ends, which causes the derivatives 

there to get close to 0. The problem can be countered by using non-saturating activation 

functions such as ReLU and by implementing residual blocks in the network  [77]. On 

the other hand, if several large derivatives appear in the backpropagation chain, they 

can cause very large gradients in the frontal layers, which is referred to as exploding 

gradients. Exploding gradients lead to an unstable training process and prevent the 

model from learning effectively. Gradient clipping introduces a solution against exploding 

gradients by checking and limiting the gradient values during the backpropagation [87].  

Normalization and Batch Normalization 

Normalization of input data increases learning speed and model performance by balanc-

ing the value range of the input data, which makes the model more robust against varying 

input data and improves generalization. For CNNs, the pixel values of the input data are 

commonly normalized between 0 and 1. Another approach is standardization scaling. It 

is implemented by subtracting the mean value of the data from the input value and divid-

ing the result by the standard deviation of the data [75] [p. 260]. 
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Batch normalization follows a similar approach, but instead of normalizing the input data, 

it aims to normalize the values in the hidden layers of the network. In other words, batch 

normalization reduces the amount by which hidden layer units shift around when con-

fronted with alternating distributions of input values from previous layers. This provides 

an advantage to the next hidden layer in that the distribution of input data on which it has 

to learn is reduced. Overall, deeper layers become more robust against shifting input 

data and provide them with a more stable foundation for their learning process. Batch 

normalization is applied to the current batch of training data and can be implemented by 

applying standardization scaling. 
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3. METHODS AND MATERIALS 

3.1 ECG Databases 

Various detection algorithms for shockable rhythms have been developed utilizing public 

databases for cardiac arrhythmias. The most prominent databases used in this field of 

research are the MIT-BIH Arrhythmia Database (MITDB), the Creighton University Ven-

tricular Tachycardia Database (CUDB), the MIT-BIH Ventricular Arrhythmia Database 

(VFDB), and the American Heart Association Database (AHADB) [41–44,47–53,58,88–

91]. These four databases are also utilized for this work. ECG signals have been ob-

tained from cardiac monitoring, with 2 channels for AHADB, MITDB, and VFDB, and 1 

channel for CUDB [92].   The databases were implemented to provide developers of 

detection algorithms with standard arrhythmia datasets to evaluate, compare, and repro-

duce algorithms from different research groups [93,94]. Due to the expensive and tedious 

process of manually annotating ECG waveforms and the exclusion of recordings with 

cardiopulmonary resuscitation artifacts, the databases contain less than 200 recordings 

in total [95]. Even so, the datasets are valued as reliable sources for algorithm develop-

ment. The data were selected to represent the spectrum of variability in ECG rhythms 

and waveform morphology and also include uncommon but clinically important arrhyth-

mias. Further, the databases consider a wide range of patient age groups and include 

inpatients as well as outpatients [93,94].     

Table 1. content overview of the accessed data from 4 arrhythmia databases  

Data-
base 

Recordings 
Sampling 
frequency 

(Hz) 

Duration 
(min) 

Shockable con-
ditions 

MITDB 48 360 30 VT, VFL 

CUDB 35 250 8 VF, VT 

VFDB 22 250 30 VF, VT, VFL 

AHADB 20 250 30 VF-VFL 

 

Table 1 gives an overview of the acquired data from the medical databases. In summary, 

125 recordings have been processed. Originally, the AHADB contained 80 recordings, 

of which only the sets including shockable conditions were utilized in this work. 

For the AHADB, only the last 30 mins of the 3-hour recordings were considered because 

only those intervals are properly annotated for the supervised learning approach. The 
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last column in Table 1 contains the shockable conditions that were found in each data-

base. AHADB doesn’t make a distinction between VF and VFL conditions, instead, the 

conditions are annotated as VF-VFL. Therefore, the class of shockable conditions con-

tains 4 subclasses: VT, VF, VFL, and VF-VFL.  

3.2 Pre-Processing 

The pre-processing includes all measures for preparing the ECG data to be processed 

by CNNs. Figure 25 illustrates the consecutive steps that are applied to the raw ECG 

data. The final dataset management and the conversion to image format are realized 

with Python. All other steps are implemented in MATLAB. The program code is provided 

in the appendix (Section 6). The main script of the pre-processing steps can be followed 

on Figure 44-Figure 45. 

 

Figure 25: Pre-processing workflow from ECG raw data to trainable spectrogram 
representations for CNNs 

 

The quality and quantity of training data are crucial for the learning success of CNNs. 

The best model is going to perform poorly when it’s trained with insufficient, low-quality 

data. Therefore, gathering and preparing data is important and often the bottleneck in 

machine learning applications. In general, it can be said that the more comprehensive 

the training data is regarding the real-world situation, the better the chances are for the 
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model to perform well in real-world use cases. For the model to learn all the relevant 

patterns that represent the properties of objects belonging to one class and not another, 

it is only possible if the training data covers those properties.  

For classification, it is important that each class has enough prevalence in the training 

data to have a sufficient impact on adjusting the weights in the network during the learn-

ing process. Ideally, the classes are balanced. This means that in a binary classification, 

the data would consist of 50% samples for each class. Often, this is not the case. Re-

garding the detection of shockable heart rhythms, it is to be assumed that the dataset 

will be unbalanced. Shockable conditions occur very rarely, and that they are recorded 

is even rarer, which is partially compensated by the fact that the databases utilized in 

this work are specialized on arrhythmias. It is not only important to aim for balanced 

classes, but it’s likewise crucial to provide enough samples that capture the variety within 

a class. The different shockable conditions, namely VT, VF, and VFL, should be aimed 

at having a balanced distribution within the class of shockable rhythms. Balanced distri-

butions are not always within reach when preparing the data, but one goal of the pre-

processing is to avoid that the gaps between the classes and between different object 

categories within a class become too big, which would have negative effects on the 

learning process of the model. This problem is tackled by thorough dataset management 

and the augmentation of certain parts of the data.  

Another aspect of the pre-processing is to clean the data from noise and artifacts to 

support the model in focusing on relevant features of the data. CNNs are designed to 

work properly on digital image representations. Therefore, the conversion from ECG 

waveforms to spectrograms is realized by applying wavelet transformation. Further, the 

spectrograms are segmented into consecutive samples of 3 s length. The segment la-

beling is organized in a way that not only provides a label for supervised learning but 

additionally provides a data frame that breaks down all the annotations that are contained 

in a segment.                        

3.2.1 Query ECG data from medical databases 

3 of the 4 databases, namely MITDB, CUDB, and VFDB, are accessible via HTTP on 

Physionet servers. The WaveForm DataBase (WFDB) toolbox for MATLAB provides 

functions to automatically query and download the ECG data as well as attached meta 

data [96]. The rdsamp() function fetches the ECG data as a waveform converted into a 

data frame with a column for the time stamp in s and 1 or 2 columns for voltage in mV. 

The CUDB contains single-channel recordings. For the other databases, the second col-

umn corresponds to the upper ECG channel, whereas the third column belongs to the 
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lower ECG channel. The upper channels consistently refer to a modified limb lead II 

(MLII), where the electrodes are placed on the chest as in standard ambulatory ECG 

recording. The lower channels vary between V1, V2, V3, V4, and V5 [93]. Since the 

upper channels provide more consistency in electrode positioning and the positioning is 

relatively close to an AED use case, the lower channels were discarded from further 

processing. Additionally, previous works regarding the automated detection of shockable 

rhythms have used the upper channels as well, which supports the comparability of the 

different approaches [49,51,58,97]. 

AHADB access is restricted and not accessible with the WFDB toolbox. The license for 

the AHADB was obtained, and the data was provided in CSV files, representing the ECG 

signal in waveform with the first column as the upper ECG channel in mV, the second 

column as the lower ECG channel in mV, and the third column for the annotation label 

in between quotes.  

3.2.2 Resampling, denoising and filtering 

As pointed out in Table 1 (Section 3.1), CUDB, VFDB, and AHADB provide data with a 

sampling frequency of 250 Hz, whereas MITDB data is sampled at 360 Hz. For further 

processing, the ECG time series and the annotations are resampled to a uniform sam-

pling frequency of 250 Hz.  

The filtering of the raw signals is based on previous research that carried out the detec-

tion of shockable rhythms obtained from ECG signals [47,90,98]. The filtering is exem-

plarily illustrated on a 3 s ECG segment in the waveform in Figure 26. 
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Figure 26: 3 s ECG segment in waveform before and after filtering; source: VFDB 
recording 614 from sample 90001 to 90750 

Baseline drifting refers to low-frequency artifacts caused by breathing, movement, and 

charged electrodes [99]. The residual baseline drifting is suppressed by applying 

MATLAB's default high-pass filter from the signal processing toolbox with a 1 Hz cutoff 

frequency. The value for filter steepness is 0.85, which sets the transition width of the 

filter to 15% of the passband frequency. Muscle noise is reduced by a second-order 

Butterworth low-pass filter at a 30 Hz cutoff. The normalized cutoff frequency is calcu-

lated by dividing the cutoff frequency by half the sampling frequency. The transfer func-

tion coefficients are computed by MATLAB's butter() function from the signal processing 

toolbox. The filtering is realized by applying the filter() function with the transfer function 

coefficients and the output signal from the high-pass filter as its arguments. Since the 

amplitude response of the second-order Butterworth filter is relatively smooth, an addi-

tional notch filter is implemented at 50 Hz to cancel powerline interferences. The code 

for querying the data, resampling, and filtering can be found in Figure 46 in Section 6. 
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3.2.3 ECG as spectrogram representation by Wavelet Trans-
form 

The wavelet transform is an algorithm that is utilized to decompose signals, which are 

not stationary, into a spectrum of frequencies over short time intervals. So far, the ECG 

segments are represented as a discretized signal of voltage amplitude over time (as 

visualized in Figure 26). The wavelet transform allows one to visualize signal features in 

frequency and time domains parallelly. Therefore, the segments can be converted into 

an image representation that presents the signal information in an appropriate way for 

the CNN to learn the characteristic patterns of specific heart rhythms. 

The wavelet transformation generates a spectrogram representation of the ECG signal. 

The information units of the spectrogram are defined as small boxes containing 3 dimen-

sions. The horizontal dimension represents the time resolution, whereas the vertical di-

mension stands for the frequency resolution. The pixel intensity represents the amplitude 

of a certain frequency range in a certain time interval. The spectrogram arranges the 

information units in 2-dimensional space with time on the horizontal axis and frequency 

on the vertical axis. Low frequencies appear at the bottom and high frequencies at the 

top. The time domain proceeds from left to right. Figure 27 to Figure 29 show examples 

of transformed ECG segments for normal heart rhythm, VT, and VFL.  

 

Figure 27: ECG signal and its Spectrogram representation from a normal heart 
rhythm episode in VFDB recording 614 from sample 90001 to 90750 
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Figure 28: ECG signal and its Spectrogram representation from a VT episode in 
VFDB recording 602 from sample 350158 to 350907 

 
Figure 29: ECG signal and its Spectrogram representation from a VFL episode in 

VFDB recording 609 from sample 255650 to 256399 
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The wavelet transform is based on the Fourier transform, which decomposes functions 

into a series of cosine and sine functions by applying Euler´s formula. The standard Fou-

rier transform can determine the frequency components in the signal, but it doesn’t pro-

vide information on the time at which a particular frequency occurred. To analyze non-

stationary signals, the short-time Fourier transform was developed [100]. A sliding win-

dow function extracts the frequencies of the signal over a defined time interval with a 

fixed time-frequency resolution. The short-time Fourier transform doesn’t consider Hei-

senberg’s uncertainty principle, which states that a particle's position and momentum are 

not entirely determinable. This means that for windows with shorter time intervals, the 

time resolution increases, but likewise the frequency resolution decreases. For windows 

with wider time intervals, the frequency resolution increases, but the certainty of when a 

certain frequency occurred diminishes. The wavelet transform encounters this problem 

by defining a mother wavelet from which different window functions are dilated or com-

pressed. In that manner, high frequencies are captured with shrunken wavelets to 

achieve high time resolution. Respectively, slowly changing low frequencies are resolved 

by expanded wavelets with regard to the mother wavelet.  

The wavelet transform is applied by utilizing MATLAB’s continuous 1-D wavelet trans-

form. The chosen mother wavelet is Morse. With the property of being exactly analytic, 

Morse wavelets avoid interference and artifacts in the time-frequency plane, which in-

creases the accuracy of amplitude and phase estimates. Morse wavelets have been 

proven to be quite useful for time-varying spectrum estimation on biosignals. In order to 

train classifiers to distinguish cardiac conditions based on localized events of short du-

ration, the Morse wavelet allows to generate suitable signal representations and is ad-

justable in refining localization in frequency and time [101].     

The number of octaves is set to 5. The number of voices per octave is set to 20 and 

defines the number of wavelet filters applied per octave. The number of voices per octave 

and the number of octaves affect the scaling of the wavelet. The parameters are propor-

tional to the time domain window and inversely proportional to the frequency domain 

window, and therefore are set to a balanced tradeoff between the two domains. The time 

bandwidth product is set to 50. The wavelet parameter settings are derived from Lai et 

al. and have been proven to generate spectrograms suitable for ECG data analysis with 

2D CNNs [51]. When having a working CNN model, it might be interesting to experiment 

with different wavelets and parameter settings and evaluate their effect on the model’s 

performance. This is not carried out since it exceeds the scope of this work. It defines 

the time bandwidth of the Morse wavelet and can range between 3 and 120. Higher 
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values generate wavelets with larger spreads in time, whereas lower values generate 

wavelets with larger spreads in frequency.   

The spectrograms are segmented into samples of 3 s. Eventually, the segments are 

stored as grayscale images (pixel values ranging from 0 to 255) in portable network 

graphics (PNG) format with a size of 100x100 pixels. The file conversion is realized with 

the cv2 library in Python.  

3.2.4 Annotations 

This part describes how the medical annotations for the ECG data are extracted and 

processed to be mapped on the spectrogram segments. Table 2 gives an overview of all 

annotations and their medical explanations occurring in the processed ECG data. The 

shockable conditions are listed in the lower part of the table. During the pre-processing, 

the labels VF and VFIB are combined into VF since they represent the same condition. 

The MATLAB code can be found on Figure 47 in the appendix.  
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Table 2. List of cardiac annotations corresponding to the ECG data extracted from 
MITDB, CUDB, VFDB, and AHADB 

Class Annotation Explanation 

Not 
Shockable 

AB Atrial bigemy 

AF Atrial fibrillation 

AFIB Atrial fibrillation 

AFL Atrial flutter 

ASYS asystole 

B Ventricular bigeminy 

BI first degree heart block 

BII 2° heart block 

HGEA high grade ventricular activity 

IVR Idioventricular rhythm 

N Normal beat 

ND not defined (AHADB) 

NOD Nodal (A-V junctional) rhythm 

NOISE noise 

NSR Normal sinus rhythm 

P Paced rhythm 

PM pacemaker (paced rhythm) 

PREX Pre-excitation (WPW) 

SBR Sinus bradycardia 

SVTA Supraventricular tachyarrhythmia 

T Ventricular trigeminy 

VER Ventricular escape rhythm 

Shockable 

VF Ventricular fibrillation 

VFIB Ventricular fibrillation 

VFL Ventricular flutter 

VF-VFL Ventricular fibrillation or flutter 

VT Ventricular tachycardia 

 

For MITDB, CUDB, and VFDB, the rdann() function from the WFDB toolbox is used to 

query the annotations, which are then transformed into tables. The AHADB provides the 

annotations as a column next to the ECG waveform data, where each sample of the 

recording is already labeled. The annotation tables for the other databases include time 

stamps and sample numbers of starting or changing events. The following examples are 

derived from MITDB’s recording 207. Figure 30 shows an extract from the annotation 

table. Annotations marked as “[]” are replaced by VFLS for a beginning ventricular flutter 

and VFLE for an ending ventricular flutter episode. The sample numbers are resampled 

from 360 Hz to 250 Hz in order to match the resampled ECG data.   
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Figure 30: Cleaned and resampled extract from MITDBs recording 207 annotation 
table 

In the next step, a sample label vector is created, which maps the episode annotations 

to each of the 450000 ECG samples per recording. The "sampleNumber" column in the 

annotation table serves as an index range to define the label ranges for event episodes 

in the sample label vector. Undefined samples are marked as "ND". 

A previous study on the detection of shockable rhythms with CNNs experimented with 

segment lengths of 3, 5, 8, and 10 seconds. The approach with 3 s segments achieved 

the most promising results.[51] The pre-processing revealed that even shorter segments 

of 3 s can contain several subsegments with different annotations. Since the CNNs are 

trained based on the most dominant annotation within a segment, this work favors the 

use of 3 s segments to support the learning process of the models. In a real-world use 

case, the detection algorithm can be implemented in such a way that it needs to detect 

a certain number of consecutive shockable events before it advises defibrillation.  

According to the segment length of 3 s, the samples and their corresponding labels are 

aggregated. One segment consists of 750 samples (3 times the sampling frequency) and 

can contain several annotations. To support further analysis after testing the CNN mod-

els, the content of each segment should remain traceable. Therefore, the occurrences 

of all annotations within a segment are counted, and their proportion is calculated. The 

segment is assigned the label that gets the majority vote. Consequently, a segment table 

is created that includes the segment ID followed by the 4 labels with the highest preva-

lence in the segment and their proportions marked as confidence values. The labels and 
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confidence values within the segment are sorted in descending order. The segment ID 

contains information about the database, the file and segment numbers, the segment 

length, the majority label, and the majority label confidence. Shows an extract from the 

segment table. 

 

Figure 31: Extract of the segment table derived from MITDBs recording 207 

 

3.2.5 Augmentation 

Table 3 summarizes the number of segments that could be obtained from processing 

the annotations. To support the learning process, a threshold for the majority label is 

implemented. Segments with a majority label below a 60% proportion of the segment are 

excluded from further processing. Some segments from VFDB are labeled NOISE and 

ASYS. These samples, representing distorted ECG signals and flatline signals, are re-

moved as well. Eventually, the dataset provides 59469 segments of 3 s length. 86.86% 

of the segments are labeled as non-shockable (NShr). The subsets in the shockable 

conditions show that VFL is represented by only 0.42% of the data, VT by 3.03%, VF by 

3.42%, and VF-VFL by 6.32%. The annotation process reveals that the numbers of 

shockable and non-shockable samples are quite imbalanced.  
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Table 3. Summary of segments derived from arrhythmia databases with NShr for 
non-shockable and Shr for shockable conditions; if indicated with Thr>=0.6, all samples 
with a vote for the majority label smaller than 0.6 are discarded; *: in VFDB, segments 
with a majority vote for NOISE and ASYS are discarded   

Database Segments NShr 
Shr 

VF VT VFL VF-VFL Total 

MITDB 28848        

MITDB (Thr>=0.6)  28594 28497  51 46  97 
AHADB 12000        

AHADB 
(Thr>=0.6) 

 11993 8234    3759 3759 

CUDB 5915        

CUDB (Thr>=0.6)  5882 4632 1241 9   1250 
VFDB 15400        

VFDB (Thr>=0.6)*   13000 10289 769 1741 201   2711 

Total 62163 59469 51652 2010 1801 247 3759 7817 

Proportion 
  100.00% 86.86% 3.38% 3.03% 0.42% 6.32% 13.14% 

 

As described earlier, it is important to aim for a relatively balanced dataset to support the 

training process of the CNNs. Therefore, two strategies to enrich the subsets of shocka-

ble conditions are applied as a form of dataset augmentation. The first strategy focuses 

on deriving segments around the borders of shockable episodes. In addition to generat-

ing shockable labeled samples, the CNNs will receive more training data around episode 

borders. In a way, the models are more challenged to learn features that are relevant 

around episode borders to detect the right condition. The second strategy derives seg-

ments along shockable episodes.  

The code for the first augmentation strategy can be found in Figure 48 in the appendix. 

First, a table is created that contains the sample numbers for the start and end of each 

shockable rhythm episode. Then, a shifting segment window with a 1/10 step size of the 

segment length is implemented. When reaching the starting point of a shockable epi-

sode, the shifting segment window moves backward 10 times with the set step size of 

75 samples. When reaching the endpoint of a shockable episode, the shifting segment 

window starts 1 segment length before the endpoint and moves 10 times forward from 

there, again with the same step size of 75 samples. Consequently, for each border region 

of a shockable condition, the algorithm creates 10 augmented border segments. The 

augmented border segments are stored in the border augmentation table (Figure 32), 

which includes the segment ID (containing database, file number, segment number, seg-

ment length, label, label confidence, aug, start/end, Position), the type, the position, start-

ing and ending sample number, and the 4 most prevalent labels of the segment and their 
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confidence values. The type indicates if the segment was derived from the beginning or 

end of a shockable episode. The position is given by an integer between -9 and +9, with 

negative numbers indicating going backwards and positive numbers indicating going for-

ward.  

 

Figure 32: Extract of the border augmentation table from MITDBs recording 207 

  

The second augmentation approach looks for starting points of shockable episodes and 

measures the length of the episode. If the shockable condition exceeds 1 segment 

length, a shifting segment window is applied at the starting point of the episode. The 

shifting window moves forward with a step size of 1/10 of the 3 s segment length (75 

samples) while capturing segments along the shockable episode. When the window 

reaches the end of the episode, the process is terminated. An episode augmentation 

table is generated similar to the border augmentation table as illustrated in Figure 32. 

The code for the augmentation along shockable episodes can be followed on Figure 49 

in the appendix. 

Eventually, two selection criteria are applied. First, a threshold (Thr>=0.6) is applied that 

excludes augmented segments with a majority label proportion of less than 60%, ensur-

ing that a segment fed to and evaluated by the CNN primarily belongs to either the shock-

able or the not shockable class. Second, all augmented segments that overlap below 75 

samples with other augmented or original segments are excluded from further pro-

cessing. This means that the final dataset includes only segments with non-overlapping 

areas of at least 10%.  
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Table 4 summarizes the number of augmented segments for each of the arrhythmia da-

tabases as well as the aggregation of augmented segments. Throughout the augmenta-

tion process a total number of 2527 augmented segments around shockable episode 

borders and 74036 augmented segments along shockable episodes are generated. 

Without augmentation only 7817 shockable segments are present in the dataset. In the 

next Section, the segments, originals, and augmentations, are used to generate bal-

anced datasets for training, validation, and testing of the CNN models.   

Table 4. Summary of shockable segments derived from arrhythmia databases in-
cluding augmented segments around shockable episode borders and along shockable 
episodes; Thr>=0.6, all samples with a vote for the majority label smaller than 0.6 are 
discarded 

Database 
Shr segments 

VF VT VFL VF-VFL Total 

MITDB (Thr>=0.6)  51 46  97 

Border augmentation  278 54   

Episode augmentation  319 410   

AHADB (Thr>=0.6)    3759 3759 

Border augmentation    124  

Episode augmentation    37412  

CUDB (Thr>=0.6) 1241 9   1250 

Border augmentation 358 54    

Episode augmentation 12154 49    

VFDB (Thr>=0.6) 769 1741 201  2711 

Border augmentation 77 978 604   

Episode augmentation 5536 16593 1563     

Total without augmented 2010 1801 247 3759 7817 

Total augmented border 435 1310 658 124 2527 

Total augmented episode 17690 16961 1973 37412 74036 

 

3.2.6 Dataset management and storing 

The final step of the pre-processing in MATLAB is to create spectrogram segments de-

rived from the annotation table, the border augmentation table, and the episode aug-

mentation table. The tables include the start and end points of each segment, which are 

used to index the cutting points for the spectrogram segments. All the described seg-

ments are cropped from the spectrogram representations for each of the ECG recordings 

and stored as matrices in mat file format. The MATLAB code can be followed on Figure 

50 in the appendix.   
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Creating balanced datasets for training, validation, and testing is realized with Python. 

The code can be followed on Figure 51. In total, 60340 segments are randomly selected 

from the subsets of shockable and non-shockable segments as listed in Table 5.  

Table 5. Balanced dataset (bottom part) derived from dataset with augmented seg-
ments (top part as in Table 4); Thr>=0.6, all samples with a vote for the majority label 
smaller than 0.6 are discarded 

Database NShr 
Shr segments 

Total 
VF VT VFL VF-VFL 

MITDB (Thr>=0.6) 28497  51 46  28594 

Border augmentation   278 54  332 

Episode augmentation   319 410  729 

AHADB (Thr>=0.6) 8234    3759 11993 

Border augmentation     124 124 

Episode augmentation     37412 37412 

CUDB (Thr>=0.6) 4632 1241 9   5882 

Border augmentation  358 54   412 

Episode augmentation  12154 49   12203 

VFDB (Thr>=0.6) 10289 769 1741 201  13000 

Border augmentation  77 978 604  1659 

Episode augmentation   5536 16593 1563   23692 

Total 51652 20135 20072 2878 41295 136032 

Balanced dataset 

MITDB (Thr>=0.6) 10000 *  51 46  10097 

Border augmentation   278 54  332 

Episode augmentation   319 410  729 

AHADB (Thr>=0.6) 8234    3759 11993 

Border augmentation     124 124 

Episode augmentation     4000 * 4000 

CUDB (Thr>=0.6) 4632 1241 9   5882 

Border augmentation  358 54   412 

Episode augmentation  3000 * 49   3049 

VFDB (Thr>=0.6) 10289 769 1741 201  13000 

Border augmentation  77 978 604  1659 

Episode augmentation   2500 * 5000 * 1563   9063 

Total 33155 7945 8479 2878 7883 60340 

Proportion 54.95% 13.17% 14.05% 4.77% 13.06% 100.00% 

Train (70%) 23209 5562 5935 2015 5518 42239 

Validation/Test (15% each) 4973 1192 1272 432 1182 9051 

* Reduced number of segments randomly chosen from regarding subsets of NShr seg-
ments and augmented Shr segments  
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From the 28497 non-shockable segments in the MITDB dataset, 10000 are randomly 

selected for the final dataset. All other non-shockable segments from the other data-

bases are kept entirely, which sums up to 33155 non-shockable segments in total and 

accounts for 54.95% of the final dataset. For shockable segments, several subsets of 

augmentations along shockable episodes are narrowed down. Regarding VF conditions, 

the 12154 segments from CUDB are reduced to 3000, and from the 5536 segments from 

VFDB, 2500 remain. In total, the VF segments make up 13.17% of the final dataset. The 

VT segments from VFDB are reduced from 16593 to 5000 segments, which equates to 

14.05% of VT segments in the final set. All VFL segments, including augmented ones, 

are kept, which accounts for 4.77% of the total. The VF-VFL segments, which are only 

present in the AHADB, are narrowed down as well. From 37412 augmentation segments 

along shockable episodes, 4000 are randomly selected. Therefore, VF-VFL segments 

account for 13.06% of the final dataset. Combined, the shockable segments in the bal-

anced dataset reach 45.05% of all segments.  

The balanced subsets are chosen randomly but equally distributed among the training, 

validation, and test sets. The training set consists of 42239 segments, which equals 70% 

of the balanced dataset. Test- and validation set contain 9051 segments each, which 

contributes 15% for each set to the balanced dataset. The algorithm that creates the final 

datasets implements a random seed number that remains the same for the segment 

selection throughout the whole procedure. The random seed is changed when generat-

ing several balanced datasets for cross-validation purposes.     

3.3 CNN Models 

Two main model architectures are considered and examined for this work. The conven-

tional approach, where the convolutional block is followed by a block of dense layers, 

and the residual CNN (both concepts are explained in Section 2.4). The aim is to max-

imize the model's accuracy in distinguishing between shockable and non-shockable 

heart rhythms, regardless of the extent of model complexity and computational demand. 

The approach follows and examines the assumption that deeper CNNs provide a higher 

degree of flexibility in adapting to the problem and therefore are more competitive in 

solving it.      

4 conventional CNN architectures are implemented, starting at relatively low-level model 

complexity, which is incrementally enhanced by adding convolutional layers, increasing 

the number of convolutional filters, and adding dense layers.  
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The residual CNN models (ResNets) are introduced to increase the depth of the net and 

likewise avoid the problem of vanishing gradients by allowing input data to bypass layers. 

In that sense, the learning ability of the network is preserved by residual blocks, which 

can lead to a better performance in solving the problem. The ResNets consist of 3 stages, 

each including several residual blocks. The depth of each stage is defined by the number 

of residual blocks, which vary from 6 to 96. The structure of the residual block is illus-

trated in Figure 33. It is derived from Kaiming He’s second publication on ResNets, which 

introduced improvements to the residual block [82].    

 

Figure 33: Residual block in ResNet 2 architecture with layers containing batch nor-
malization, ReLu activation and convolution 
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The residual block consists of 3 convolutional layers. Each layer begins with batch nor-

malization followed by activation with ReLu. The shortcut connection bypasses the 3 

convolutional layers and adds the input of the residual block to its output. The first and 

third convolutional layers of the block have a kernel size of 1x1 and are implemented to 

control the dimensionality of the output of the residual block. This regards the number of 

feature maps, which is controlled by the number of convolutional filters and by the stride 

parameter, which influences the size of the feature map. A stride parameter set to 2 

downsamples the input to half its size and then works as a pooling layer. Since the 1x1 

kernel contains a weight that is multiplied with the layer input, the 1x1 convolutional layer 

serves as a feature refinement before the data enters the next layer. The middle layer of 

the residual block has a 3x3 filter kernel and therefore actually performs the convolution 

in the block.  

Figure 34 sketches a blueprint of the ResNet architecture. The number of residual blocks 

within a stage is variable and indicated from 1-n. 
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Figure 34: ResNet architecture with 3 stages and n residual blocks at each stage 
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Before the input enters the first stage of the ResNet, the data is convoluted in a 3x3 

convolutional layer with 16 filters applied. In contradiction to the residual block, batch 

normalization and ReLu activation are performed after the convolution. When the data is 

forwarded to the first residual block of each stage, the feature maps are down sampled 

to half size by setting stride equal to 2. Before exiting the first residual block, the 3. con-

volutional layer (1x1) doubles the number of feature maps. In the first stage, the feature 

maps are quadrupled. To match the changing dimensionality within the first residual 

blocks, the input data entering the shortcut connection goes through a 1x1 convolutional 

layer that adjusts the number and size of the feature maps. All the following residual 

blocks within each stage preserve the dimensionality of the feature maps. By initializing 

the filter size at 16, the first stage produces 64 feature maps, the second, 128 maps, and 

the third, 256 maps.    

All models are realized using the TensorFlow Keras library in Python. Regardless of the 

applied model, the greyscale spectrogram segments are rescaled to a range between 0 

and 1 as described in Section 2.4.3, which is realized by applying Keras rescaling layer.   

Likewise applied in all models is ReLu as the activation function of choice. The reasons 

for this are described in Section 2.4.2. Excepted are the classifying output layers. The 

activation functions in the output layer are identity for the conventional CNNs and sigmoid 

for the ResNets. Since ReLu is used, the weights in all models are initialized with the He 

initialization. With this method, the weights are randomly initialized from a Gaussian dis-

tribution. Then, regarding the current layer in the network, the weights are scaled with 

respect to the number of inputs from the previous layer. This is realized by multiplying 

the random value by the square root of 2 over the number of inputs from the previous 

layer. The specialty of He initialization is the value 2 within the square root, which is used 

instead of 1 to calculate the standard deviation. Taking the number of inputs from the 

previous layer into account when initializing weights proved to result in better-performing 

models with a faster learning process [69] [p 437].        

To avoid frequent shifting between Chapters, the specific model configurations are de-

scribed along with the model performances in the results and discussion part (see Sec-

tion 4).   

3.4 Hyperparameters in CNNs 

Depending on the model architecture and the chosen optimization algorithms, the per-

formance of a model depends on the setting of adjustable hyperparameters. This in-

cludes learning rate, momentum, regularization, batch size, number of epochs, and 
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weight initialization. The individual hyperparameter setting for each model is presented 

in the results part (see Section 4.1) a long with the model performances.      

3.4.1 Optimization algorithm and learning rate 

The optimization algorithm used for the CNN models is Adam, which is derived from 

adaptive moment estimation. Adam is based on stochastic gradient descent and is widely 

used in deep learning applications. It combines the concepts of momentum optimization 

and RMSProp (root mean squared propagation), which both provide Adam with an adap-

tive learning rate. The adaptive learning rate comes from taking the behavior of weights 

during previous iterations into account.    

Regarding regular gradient descent (see Section 2.4.3), updating weights depends on 

the learning rate and the current gradient. For small local gradients, the process goes 

slowly. As for the inertia moment in physics, the current state of an object in motion and 

how this state can be changed depend on its momentum, or the amount of kinetic energy 

it has accumulated. Analogously, the momentum optimization considers the size of pre-

vious gradients, which, so to speak, adjust the velocity of the system and define the 

momentum vector m. The momentum vector is also influenced by the learning rate and 

the hyperparameter β, which is called the momentum. Momentum optimization can be 

described as follows: 

𝑚 ∶= 𝛽𝑚 −  𝜖
𝜕𝐶

𝜕𝑤
 

4 

𝑤 ≔ 𝑤 + 𝑚 

5 

First, the momentum vector is updated by multiplying β and subtracting the current gra-

dient multiplied by the learning rate ϵ. Eventually, the momentum vector is added to the 

previous weights, defining the new weight values. The hyperparameter β can be set be-

tween 0 and 1. It regulates how strong previous gradients influences are. If β is set to 0 

the method is the same as for regular gradient descent. 

For all CNN models, β is set to 0.9, which is widely used as default for most CNN appli-

cations. Compared to regular gradient descent, momentum optimization allows faster 

computation and efficiently escaping local optima [69] [p. 461].          

RMSProp adapts the learning by implementing an exponential decay of the influence of 

previous gradients on the learning rate. The weightage of previous gradients on updating 
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the weights falls exponentially the farther the gradients are from the current step. In con-

trast to the original RMSProp algorithm, Adam computes an exponentially decaying av-

erage of previous gradients rather than a sum. The hyperparameter β2 is set to 0.999, 

which is the default value that serves well for most applications [69] [p. 467]. 

Since the ability of the Adam algorithm to adjust the step size of updating weights based 

on previous gradients, the learning rate for all conventional CNN models is set to 0.001.  

For the deeper ResNet approaches, the learning rate is either fixed, with values between 

0.0001 and 0.00001, or scheduled. The scheduled setting starts with a relatively large 

learning rate of 0.01 and incrementally decreases to 0.0005 with respect to the number 

of training epochs. Higher learning rates aim to accelerate the training process in the 

beginning and should prevent the model from getting stuck in local minima. During later 

epochs, the learning rate is decreased to fine-tune the weights.   

3.4.2   Batch size 

The batch size defines the number of training samples that are used to calculate the 

average gradient during backpropagation for each weight and bias in the network before 

updating the weights. The content of the training samples within the batch has a direct 

influence on the weight adjustment. For example, if one label (object type) is too domi-

nant in the batch, the optimization drives towards this label without considering other 

labels when adjusting the weights. Therefore, the training data should be shuffled toward 

a uniform distribution when considering balanced label sets). 

The batch size influences the speed and stability of the learning process. The more train-

ing samples are used to update the weights, or so to speak, the larger the batch size, 

the more accurate the estimation will be, and therefore the weight adjustment will be 

more likely to improve the model's performance. On the other hand, the larger the batch 

size, the greater the computational effort required to train the network, as more predic-

tions must be made before calculating the estimate and updating the weights. Smaller 

batch sizes tend to produce noisy estimates, meaning that many updates with quite dif-

ferent error gradients are produced. This provides a regularizing effect and lowers the 

generalization error, which can lead to more robustness in the model and a faster learn-

ing rate [67] [p. 278]. Further, smaller batch sizes ensure that the batch data fits into 

memory, especially when using a GPU for training. Batch sizes are usually chosen be-

tween 1 and a few hundreds. Across a wide range of experiments with deep neural net-

works, it has been confirmed that batch sizes of 32 or smaller achieve the best training 

stability and generalization performance for a given computational cost [102]. 
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Figure 35: learning curves of different batch sizes of a MLP with 1 hidden layer and 
50 neurons on sklearn.make_blobs() dataset (blue lines = training data, orange lines = 

test data [103] 

Figure 35 illustrates the influence of the batch size by plotting learning curves based on 

different batch sizes. Learning curves show classification accuracy on training and test 

data over a certain number of epochs. Learning curves reveal insights on the perfor-

mance of the learning process in terms of learning speed, accuracy, and the noise of 

weight updates. Train and test data are generated with scikit-learn’s make_blobs() func-

tion to randomly create 1000 points of 3 classes in 2D space. The dataset is equally 

divided into 500 training samples and 500 test samples. The neural network consists of 

one hidden layer with 50 neurons. The neurons are activated with ReLU, and the weights 

are initialized randomly with the Keras He uniform function [103]. The learning curves 

indicate that the network learns faster with smaller batch sizes, but the learning process 

tends to imply higher variances in classification accuracy. The larger batch sizes result 

in slower learning progress but lead to a stable convergence of classification accuracy 

later on in the training process. As mentioned earlier, a batch size of 32 seems to be a 

good trade-off between stability, convergence, and computational workload, and is like-

wise the dominant batch size setting for the models in this work.  
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3.4.3 Regularization 

Regularization is implemented to counter the process of overfitting the model function to 

the training data, which might result in poor model performance when confronted with 

unseen test data. In other words, regularization aims for good generalization perfor-

mance on real-world test data. Figure 36 illustrates the problem of a function that aims 

to correctly classify every outlier in the training set.  

 

Figure 36: 2 Functions separating datapoints: green line resembles overfitting 
model, while black line resembles regularized model [104]  

The applied regularization methods are L2 regularization and dropout for the conven-

tional CNN models. Additionally, gradient value clipping is introduced for the ResNet 

models.     

L2 regularization or Ridge regression adds a penalty term to the cost function (intro-

duced in Section 2.4.3). The penalty term consists of the sum of squared weights, which 

is scaled by the hyperparameter λ. In that sense, higher values of λ mean a stronger 

influence of the penalty term on the cost function and therefore on the process of updat-

ing the weights with gradient descent.   

L2 regularization is implemented in all ResNet models, with λ set to 0.0001. Regarding 

the conventional CNNs, l2 regularization occurs in model CNN4 with λ set to 0.001. 

Another regularization method which is applied to the conventional CNN models is drop-

out. A defined share of the neurons is randomly and temporarily excluded from the train-

ing. The hyperparameter p determines the probability at which a neuron is dropped. p 
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can take values between 0 and 1. Temporary exclusion means that a dropout state lasts 

only for one training step, which is defined by the batch size. For the following batch, a 

new configuration of dropped-out neurons is randomly calculated, and so on. When the 

training is completed and the model is validated, all neurons are active.  

Dropout is used in models CNN2, CNN3, CNN3BN, and CNN4 with values of p between 

0.2 and 0.28. On which layers dropout is applied is discussed in the results part (Section 

4.1). 

Max-norm regularization is used in CNN3, CNN3BN, and CNN4. It reduces overfitting 

by constraining the l2 norm of the weight matrix to be smaller or equal to a certain value, 

which is defined as the max-norm hyperparameter. Regarding this rule, the weights are 

rescaled if needed. Smaller values of the max-norm hyperparameter increase the effect 

of regularization on the model [69] [p. 486].   

For deeper nets, such as the ResNet models, gradient value clipping is introduced. 

The hyperparameter clipvalue defines a threshold at which gradients are truncated. 

Every gradient exceeding the threshold is clipped to the value of the threshold. This reg-

ularizing method stabilizes the model and counters the problem of exploding gradients. 

Clipvalue is applied to the ResNet models and is set to values between 0.5 and 0.6.  

3.4.4 Epochs 

The number of epochs determines the number of iterations in which the whole training 

set is looped through the model. By implementing EarlyStopping from tensor-

flow.keras.callbacks, the training process stops when no sufficient improvement in the 

accuracy metric is recognized over a certain number of iterations. The two parameters 

to be considered are min_delta and patience. Min_delta is set to 0.0001 and patience is 

set to 15. The training stops when the accuracy doesn’t improve by 0.0001 points within 

15 epochs.   

3.5 Model evaluation 

The model’s performances are evaluated on test data sets by the metrics accuracy, 

specificity, sensitivity or recall, precision, and AUC score (area under the receiver oper-

ating characteristic curve). These metrics are based on 4 fundamental classification 

scales: 

True Positives (TP) – is the number of correctly classified shockable segments. 

False Positives (FP) – refers to the number of segments that are non-shockable but 

falsely predicted as shockable.    
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True Negatives (TN) – is the number of correctly classified non-shockable segments. 

False Negatives (FN) – refers to the number of segments that are shockable but wrongly 

classified as non-shockable. 

Accuracy is defined as the ratio of all correctly predicted segments over all predicted 

values of the test set. 

Specificity is the ratio of the correctly predicted non-shockable segments over all non-

shockable segments: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

6 

Sensitivity or Recall is the ratio of correctly predicted shockable segments over all 

shockable segments: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

7 

Precision is the ratio of correctly predicted shockable segments over all as shockable 

predicted segments: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

8 

The AUC score is based on the ROC curve (receiver operating characteristic curve), 

which plots the false positive rate or the probability of false alarm over the sensitivity or 

probability of detection at varying classification thresholds. Regarding a binary classifi-

cation, the classification threshold determines at what probability (a value between 0 and 

1) the model classifies samples as positive. Additionally, the model classifies probabili-

ties below the threshold as negative. As the threshold is decreased, the model gets more 

sensitive for positive samples (e.g., shockable rhythms), but likewise, it becomes more 

prone to raise false alarm. The ROC curve captures the variance between sensitivity and 

false alarms while changing the classification threshold (Figure 37).    
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Figure 37: Receiver operating characteristic curve as a measure of classification 
performance 

The number of thresholds is set to 200, and likewise the default value of the tensor-

flow.keras.metrics.AUC function. The integral under the ROC curve represents the AUC 

score. The higher the ROC curve, and therefore the closer the AUC score is to 1, the 

better the performance of the classifier.   

The trained models were saved utilizing the save attribute of the Model module from 

tensorflow.keras.models. The model histories were stored as dictionaries in JSON for-

mat. All cross-validation models were additionally saved in h5 format. Unfortunately, only 

models saved in h5 format could be utilized to calculate other evaluation metrics than 

accuracy. Setting up fresh virtual environments with updated TensorFlow versions didn’t 

solve the problem.     
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4. RESULTS AND DISCUSSION 

This chapter discusses the following aspects of the implemented CNNs and the contexts 

between those aspects: model configurations, training processes, validation perfor-

mances, and input dataset quality. The study contains conventional CNNs and residual 

neural networks, both with varying complexity and different hyperparameter settings. At 

first, the conventional CNNs are reviewed, followed by the residual neural networks. The 

balanced datasets described in Section 3.2.6 are applied to both approaches. Subse-

quently, the best-performing model is deployed in 5-fold cross-validation. Therefore, the 

algorithm that generates the balanced datasets is applied with 5 different random seeds 

to generate 5 balanced datasets for cross-validation.  

The goal of the chosen CNN configurations and hyperparameter settings is not to find 

the optimal solution for the given dataset in a comprehensive, methodological way. This 

work rather aims to experiment exemplarily with the in previous chapters discussed 

methods in order to apply a broader range of different techniques considering limited 

work resources. To determine the underlying effects of varying combinations of hyperpa-

rameters, it would be a more thorough approach to change only one parameter at a time 

and reach for a more comprehensive approach. It might also be reasonable to utilize 

optimization algorithms to find the best-fitting CNN architectures and hyperparameter 

settings for the given datasets.  

Due to the data augmentation described in Section 3.2.5 the datasets contain segments 

with up to 90% overlap. The dataset algorithm distributes the data, regularized and ran-

domly, into training and validation sets. This means that the validation set might contain 

segments that overlap with segments in the training set. To examine if the best-perform-

ing model reaches similar accuracies with non-overlapping and strictly unknown test 

data, a leave-one-subject-out cross-validation is carried out exemplarily with 3 record-

ings from the databases as test sets. The recordings are chosen randomly, with the only 

constraints being that they must be from different databases and contain different shock-

able conditions.  

Conclusively, misclassified data from the best-performing model is analyzed and com-

pared with the entire test set in order to find significant distinctions. 
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4.1 Conventional CNN models for the detection of shockable 
heart rhythms 

The first models to be tested on predicting shockable cardiac rhythms are conventional 

CNNs, as described in Section 2.4. All conventional models share a range of equally set 

hyperparameters, which are summarized in Table 6. 

Table 6. Common hyperparameter setting for CNN models from Table 7 

Hyperparameter Choice 

Activation ReLU 

Activation Output layer Linear 

Pooling Max pooling 

Batch size 32 

Learning rate 0.001 

Optimizer Adam 

Loss function 
Sparse Categorical Cross 

Entropy 

 

The pixel values of the input data are normalized to values between 0 and 1 by applying 

tensorflow.keras.layers.experimental.preprocessing.Rescaling. All models use ReLu as 

the activation function, except the classification layer, which passes the output linearly. 

The reasons for this are discussed in Section 2.4.2. To reduce dimensionality after con-

volutional layers, max pooling is applied with a pooling window of 2x2 and stride set to 

2. The learning rate remains fixed at 0.001, which is compensated by deploying Adam 

as an optimization algorithm, which provides learning rate adaptation as described in 

Section 3.4.1. The utilized loss function for all models is sparse categorical cross-en-

tropy, as pointed out in Section 2.4.3. Sparse is chosen since the classes are encoded 

as integers. As indicated in Section 3.4.2, the batch size is set to 32 for all models.   

Overall, 4 different architectures, named CNN1 through CNN4, are implemented with 

rising model complexity. The layer structures, varying hyperparameters, and accuracy 

metrics are shown in Table 7. 
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Table 7. Summary of best performing CNN models with common hyperparameters 
from Table 6 with nf = number of filters, ks = kernel size, ps = pooling size, str = strides 

  CNN1 CNN2 CNN3 CNN3BN CNN4 

Conv2D (nf,ks) 32, 3 32, 3 32,3 32, 3 32,3 

Maxpooling (ps,str) 2, 2 2, 2 2, 2 2, 2 2, 2 

Conv2D 32, 3 32, 3 32, 3 32, 3 64, 3 

Maxpooling 2, 2 2, 2 2, 2 2, 2 2, 2 

Conv2D 32, 3 64, 5 64, 5 64, 5 64, 5 

Dropout (D) / Max-norm (M) - - D 0.28 M 4 D 0.2, M 4 

Maxpooling 2, 2 2, 2 2, 2 2, 2 2, 2 

Conv2D - 64, 5 128, 5 128, 5 128, 5 

Dropout (D) / Max-norm (M) - - D 0.28 M 4 D 0.2, M 4 

Maxpooling - 2, 2 2, 2 2, 2 2, 2 

Dense (outputs) 128 128 256 256 512 

Dropout (D) / Max-norm (M) - D 0.2 D 0.28 M 4 D 0.2, M 4 

Dense 2 64 128 128 256 

Dropout (D) / Max-norm (M) - D 0.2 D 0.28 M 4 D 0.2, M 4 

Dense - 2 2 2 128 

Dropout (D) / Max-norm (M) - - - - D 0.2, M 4 

Dense - - - - 2 

Parameters 428802 204578 430242 432802 753346 

L2 regularization 0 0 0 0 0.001 

Acc. Test set 0.974 0.972 0.976 0.977 0.965 

 

The CNN1 approach consists of 3 convolutional layers with constant filter numbers of 32 

and kernel sizes of 3x3. One fully connected hidden layer with 128 output neurons and 

a binary output layer with 2 neurons for classification are implemented. CNN1 doesn’t 

contain regularization methods. It reaches an accuracy of 0.974 on the test set. No errors 

are assumed, the first approach suggests that the combination of machine learning meth-

ods and data preprocessing works quite well for the detection of shockable rhythms in 

the utilized databases. 

CNN2 consists of 4 convolutional layers, whereby the third and fourth convolutional lay-

ers have 64 filters with a kernel size of 5x5. The net continues with 2 hidden dense layers 

of 128 and 64 output neurons. A dropout of 0.2 is deployed on the hidden dense layers. 

The model reaches an accuracy of 0.972 on the test set, which is slightly worse than 

CNN1.  

CNN3 and CNN3B share the same model architecture, with differences regarding regu-

larization and batch normalization. The models have 4 convolutional layers, starting with 

32 filters and a kernel size of 3x3 on the first and second layer, respectively. The third 
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convolutional layer has 64 filters and a kernel size of 5x5, followed by the fourth convo-

lutional layer with 128 filters and a kernel size of 5x5. Two hidden dense layers are at-

tached with 256 and 128 output neurons. CNN3 applies a dropout of 0.28 from the third 

convolutional layer up to the last hidden dense layer. In contrast, CNN3BN applies a 

max-norm regularization of 4 on the equivalent layers. Additionally, CNN3BN implements 

batch-normalization after each layer except for the output layer. Regarding the convolu-

tional layers, batch normalization is applied after the pooling layers. CNN3BN achieved 

an accuracy of 0.977, which is slightly better than CNN3s 0.976.     

The learning curves for accuracy and loss are exemplarily shown for CNN3BN in Figure 

38 and Figure 39. 

 

Figure 38: CNN3BN Learning curves for accuracy metric on training and validation 
sets 
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Figure 39: CNN3BN Learning curves for loss metric on training and validation sets 

It can be observed that the model fits well to training and validation data by reaching 

accuracy values above 0.9 already after the first epochs. This indicates that the signifi-

cant patterns, which enable the network to distinguish between shockable and non-

shockable segments, are rather prevalent and repetitive over the entire dataset. There-

fore, it can be concluded that the given problem is quite suitable for convolutional neural 

networks. Further, the learning curves for training and validation sets stay tightly together 

over the training process. This indicates that the training set is well balanced and repre-

sents enough variety to prepare the net for the validation set. Additionally, from the learn-

ing curves, it can be suggested that the hyperparameter settings are balanced and pre-

vent the model from over- or underfitting the data.      

CNN4 contains 4 convolutional layers, starting with 32 filters and a kernel size of 3x3 in 

the first layer. The second and third layers have 64 filters, whereby the second layer has 

a kernel size of 3x3 and the third layer of 5x5. The fourth convolutional layer has 128 

filters and a kernel size of 5x5. Further, the model includes 3 hidden dense layers with 

512, 256, and 128 output neurons. From all the conventional CNNs shown, CNN4 ap-

plies the highest grade of regularization. It combines l2 regularization, dropout, and max-

norm regularization. L2 regularization of 0.001 is deployed on each layer (except the 

output layer). Dropout and max-norm regularization start at the third convolutional layer 
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and continue up to the last hidden dense layer. Dropout is set to 0.2 and max-norm 

regularization to 4. CNN4 reached an accuracy of 0.965 on the test set.  

Though CNN4 comes with increased model complexity, it couldn’t improve the results of 

CNN3B. It might be that the combination of the 3 regularization methods prevented the 

model from reaching a better fit. CNN3B remains the best-performing model for the con-

ventional approach. As mentioned earlier, it seems quite probable that a more compre-

hensive determination of parameters can lead to better fitting models, as shown by an 

accuracy of 0.988 in the detection of shockable rhythms with conventional CNNs by Lai 

et al. [51].  Instead, this work continues to introduce residual neural networks for solving 

the problem.  

4.2 Residual Neural Networks 

The residual neural networks are implemented as described in Section 3.3. In contrast 

to the conventional CNNs, the ResNet models allow for an increase in the number of 

layers and likewise suppress the problem of vanishing gradients. In total, 6 ResNet mod-

els of varying complexity are trained and tested. Table 8 summarizes the common hy-

perparameter settings for all ResNet approaches. 

Table 8. Common hyperparameter setting for ResNet models from Table 9 

Hyperparameter Choice 

Activation ReLU 

Activation Output layer Sigmoid 

Kernel initializer  He normal 

Pooling average (pool size = 8) 

Batch size 32 

L2 regularization 0.0001 

Optimizer Adam 

Loss function Sparse Categorical Cross Entropy 

Again, the input data are normalized to values between 0 and 1 by applying tensor-

flow.keras.layers.experimental.preprocessing.Rescaling. The applied activation function 

is ReLU except for the output layer, which applies Sigmoid. Each convolutional layer 

deploys L2 regularization set to 0.0001. Adam optimization is utilized to minimize the 

models cost functions, which are defined with sparse categorical cross entropy. The 

batch size is set to 32, and the weights are initialized with He initialization as described 

in Section 3.3. Before flattening and entering the output layer, the dimensionality is re-

duced by average pooling with a pool size of 8x8. 
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The number of implemented residual blocks in each model along with the accuracy met-

rics for the test set are shown in Table 9.    

Table 9. Summary of best performing ResNet models with common hyperparame-
ters from Table 8; *spectrogram segments with mean pixel values below 2 are ex-
cluded from the dataset 

  ResNet1 ResNet2 ResNet3 ResNet4 ResNet5 ResNet6 

Depth 56 110 110 218 866 866 

Residual blocks 6 12 12 24 96 96 

Conv layers 18 36 36 72 288 288 

Learning rate scheduled scheduled 0.0001 0.0001 0.00001 0.00005 

Clip value 0 0 0.5 0.5 0.6 0.5 

Acc Test set 0.966 0.971 0.982 0.983 0.981 0.986 

Acc excluding 
low pixel seg-
ments * 

          0.989 

 

ResNet1 consists of 6 residual blocks, which results in 18 convolutional layers and a 

depth of 56. The learning rate incrementally decreases as described in Table 10. Res-

Net1 reaches an accuracy of 0.966 on the test set.  

Table 10. Learning rate schedule for ResNet1 and ResNet2 in Table 9  

Learning rate schedule 

initial 0.01 

> 1 epoch 0.01 

> 10 epochs 0.001 

> 40 epochs 0.0005 

ResNet2 uses the same learning rate scheme as ResNet1, but increases complexity by 

doubling the residual blocks to 12. Therefore, the number of convolutional layers goes 

up to 36 and the total number of layers to 110. The accuracy on the test set jumps to 

0.971.  

The following approaches apply a fixed learning rate and value clipping to stabilize the 

learning process (see Section 3.4.3). ResNet3 has the same architecture as ResNet2. 

In contrast, ResNet3 implements a steady learning rate of 0.0001 and applies a clip value 

of 0.5. The accuracy on the test set can be improved to 0.982.  

ResNet4 keeps the learning rate and clip value settings from ResNet3, but doubles the 

number of residual blocks to 24, which results in a depth of 218 with 72 convolutional 

layers. The accuracy reaches 0.983, which is a slight improvement over ResNet3. 

ResNet5 comes with 96 residual blocks, which is the deepest approach implemented in 

this series. ResNet5 has a total of 866 layers, including 288 convolutional layers. The 
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learning rate is decreased to 0.00001, and the clip value is set to 0.6. The model reaches 

an accuracy of 0.981 and is therefore no improvement over the previous approaches.  

The final model ResNet6 uses the same complexity as ResNet5, but increases the learn-

ing rate to 0.00005 and sets the clip value back to 0.5. ResNet6 reaches an accuracy of 

0.986 on the test set and is therefore the best-performing model.  

When analyzing the misclassified data, it appears that segments with very low mean 

pixel intensities are significantly more prevalent. These segments presumably contain 

very little pattern information for the network to deal with, since they seem to be techni-

cally flatline segments but are annotated differently. More insights on this are given in 

Section 4.5. When excluding segments with mean pixel values below 2 from the test set, 

the accuracy of ResNet6 improves to 0.989.    

4.3 5-fold cross-validation 

The architecture and hyperparameter settings from the best-performing model, ResNet6 

are now utilized to perform a 5-fold cross-validation. The datasets are generated with the 

script for balanced datasets, which is described in Section 3.2.6.  5 datasets, containing 

subsets for training, validation, and testing, are determined by implementing 5 random 

seeds from 1 to 5 within the algorithm. Each dataset is applied to train and test a ResNet 

model, whereas each approach is named from k1 to k5. The in Section 3.5 described 

metrics accuracy, sensitivity, specificity, precision, and ROC AUC are calculated for each 

model and summarized in Table 11.     

Table 11. 5-fold cross-validation based on ResNet 6 model architecture 

ResNet 6 k1 k2 k3 k4 k5 Average 

Accuracy 0.989 0.986 0.986 0.988 0.987 0.987 

Sensitivity 0.996 0.99 0.988 0.997 0.989 0.992 

Specificity 0.982 0.988 0.984 0.984 0.984 0.984 

Precision 0.980 0.982 0.981 0.979 0.983 0.981 

ROC AUC 0.997 0.998 0.998 0.998 0.997 0.998 

On average, the model reaches an accuracy of 0.987 on the test sets. The sensitivity for 

shockable rhythms stands at 0.992 with a precision of 0.981. Non-shockable segments 

are detected with a specificity of 0.984. The AUC score reaches 0.998.  

Table 12 compares some performance metrics of the cross-validation with other works 

that utilize CNNs to detect shockable heart rhythms. The previous approaches are intro-

duced in Section 2.3.2.  
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Table 12. Comparison of CNN based methods for the detection of shockable cardiac 
rhythms (Acc.=accuracy, Se.=sensitivity, Sp.=specificity) 

Reference Databases  
Input di-
mension-

ality 

seg-
ment 
length 

in s  

k-fold 
cross-vali-

dation 
Acc. Se. Sp. 

Acharya et al 
2017 [58] 

 CUDB, MITDB, 
VFDB 

1D 2 k = 10 0.932 0.953 0.910 

Nguyen et al 
2018 [59] 

CUDB, VFDB 1D 8 k =  5 0.993 0.971 0.994 

Lai et al 2020 
[51] 

AHADB,  CUDB, 
MITDB, VFDB 

2D 3 k = 10 0.988 0.951 0.994 

This work 
AHADB,  CUDB, 
MITDB, VFDB 

2D 3 k = 5 0.987 0.992 0.984 

 

With their 1D CNN model, Nguyen et al. reach an accuracy of 0.993 on 8 s segments 

derived from CUDB and VFDB. The work of Nguyen et al. discarded parts of the data by 

stating: “The artifacts, noise, asystole, transition rhythms, slow VT of intermediate 

rhythms with rate under 150 beats per minute, and peak-to-peak amplitude under 200 

μV of VF rhythms are removed”.[59] Lai et al. and this work extend the considered data-

bases by adding AHADB and MITDB and reach similar accuracies of 0.988 and 0.987. 

Both works process 3 s segments. Whereas this work experiments with conventional 

CNNs and ResNets, Lai et al. focus on conventional CNNs [51].  The sensitivity for 

shockable segments stands at 0.992 in this work, compared to 0.951 for Lai et al. This 

might be caused by the preprocessing steps focusing on generating balanced datasets 

for training the models (see Section 3.2). Due to data augmentation, the training data are 

enriched with shockable segments, especially around episode borders, where the anno-

tation changes. Another difference might be that this work discarded segments where 

the majority class (shockable or not shockable) made up less than 60% of the segment. 

Lai et al. left out segments with “extreme artifacts” or with peak-to-peak amplitudes below 

150 μV [51]. The augmentation process in this work produces segments with overlaps in 

the datasets, which stands in contrast to the other works mentioned in Table 12. There-

fore, a leave-one-subject-out cross-validation is carried out to evaluate the impact of 

overlapping segments on the model’s performance. 

4.4 Leave-one-subject-out cross-validation 

To evaluate if the model architecture achieves similar results when it is ensured that no 

overlapping segments cross training and test sets, whole recordings are excluded from 
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training and preserved for testing. The leave-one-subject-out cross-validation is only car-

ried out exemplarily by applying 3 folds. A more comprehensive approach would be de-

sirable but would exceeds the scope of this work. The left-out recordings are chosen 

randomly, with the constraints that each subject must come from a different database 

and contain a different shockable condition.  

Recording 207 from MITDB contains VFL episodes. Recording 420 from VFDB includes 

VT episodes. Since CUDB recordings are only 8 mins long instead of 30 mins, recordings 

1, 3, and 4 from CUDB are combined into one validation set. Therefore, the number of 

segments in training and validation sets maintains roughly the same. Table 13 summa-

rizes the validation metrics of the 3 trained ResNet6 models in leave-one-subject-out 

cross-validation. 

Table 13. 3-fold leave-one-subject-out cross-validation on ResNet6 model architec-
ture 

Test Set MITDB 207 VFDB 420 CUDB 1&3&4 Average 

Accuracy 0.984 0.992 0.977 0.984 

Sensitivity 0.970 0.984 0.997 0.984 

Specificity 0.991 1.000 0.948 0.980 

Precision 0.994 1.000 0.959 0.984 

ROC AUC 0.999 1.000 0.993 0.997 

 

With an average accuracy of 0.984 and a sensitivity for shockable rhythms of 0.984, the 

metrics are similar to the 5-fold cross-validation. To profoundly validate the results, leave-

one-subject-out cross-validation should be performed with more than 3 subjects in a fu-

ture approach. Nevertheless, the results indicate that the problem of overlapping seg-

ments within the balanced datasets doesn’t cause the models to produce false or unre-

alistic validation metrics.  

4.5 Misclassified data analysis 

In the following, the analysis aims to formulate hypotheses that try to give explanations 

why parts of the test data were misclassified by the trained models. The analysis is car-

ried out on the test set used for the ResNet6 approach in Section 4.2, where 1.37% of 

the test data were falsely classified. Common problems that lead to misclassification of 

test data are overfitting the model with training data or discrepancies between training 

sets and test sets. Those incompatibilities can be caused by imbalanced data sets or by 

a training set that is simply too limited to prepare the net properly for unknown test data. 

The last point is countered by generating a balanced dataset.  
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Label distribution and border segments 

In the context of this work an episode within an ECG recording is defined as a section 

with a single annotation or label. Segments around episode borders are likely to contain 

several labels. The proportion of segments containing at least 2 labels is 4.73% within 

the test set. This is already elevated due to the border augmentation during the creation 

of the balanced dataset. One reason to enrich border segments in the datasets is to 

provide the model with more samples containing several cardiac rhythms during the 

training process in order to produce a more robust classifier. Even though border seg-

ments are more prevalent during training, it seems challenging for the model to classify 

all border segments correctly. Figure 40 reveals that 11.29% of the falsely classified 

segments are indeed border segments. Therefore, the set of misclassified segments 

contains more than double the share of border segments compared to the test set.   

 

Figure 40: Comparison of the proportions of border segments within ResNet6 test 
set and in by ResNet6 misclassified segments from the test set 

Another possibility to analyze the model’s performance is to count the appearances of 

all annotations throughout the test set and compare the distribution to the set of misclas-

sified segments. The label distributions for the test set and the set of misclassified labels 

are visualized in Figure 41. Table 2 in Section 3.2.4 gives an overview of all cardiac 

annotations used in the databases.  
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Figure 41: Comparison of label distributions of Resnet6 test set and its misclassified 
segments 
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Since the set of misclassified segments is rather small (124 segments compared to the 

test set containing almost 9000 segments), analyzing the label distributions would be 

more robust if multiple sets of misclassified segments derived from several test sets were 

considered. This extends the scope of this work, but it can be done in future analyses. 

Nevertheless, two aspects of the label distributions are worth mentioning. The majority 

of misclassified segments are with 51.6% annotated as “not defined” (ND). This is a quite 

elevated proportion compared to the 21.1% in the label distribution of the test set. The 

second noticeable aspect refers to a shockable condition. 17.7% of misclassified seg-

ments are labeled as VF-VFL. The share of VF-VFL in the test set is only 13.2%. The 

difference might not occur as crucially, but the shares regarding other shockable seg-

ments are all significantly lower in the set of misclassified segments than in the test set.     

 

Mean value analysis 

In order to find more hints as to why some of the data were misclassified, the mean and 

median pixel values for all spectrogram segments were calculated and distributed as 

illustrated in Figure 42. 

 

Figure 42: Histograms of mean pixel values for validation set and for misclassified 
spectrograms  
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By comparing the histograms of mean pixel values, it appears that low pixel intensities 

between 0 and 2 appear more frequently in the set of misclassified segments: 

 

validation data set: 

p(mean_val [0 1]) = 0.005601 

p(mean_val [1 2]) = 0.01748 

p(mean_val[0 2]) = 0.02308 

 

misclassified segments: 

p(mean_f[0 1]) = 0.05645 

p(mean_f[1 2]) = 0.05645 

p(mean_f[0 2]) = 0.1129 

 

When looking at the ECG signals for these low mean value segments, it is noticeable 

that the amplitude ranges (amp_max_mV and amp_min_mV) are quite narrow around 

0, as shown in the extract of Figure 43. It seems reasonable to assume that there is a 

correlation between low pixel intensity mean values, low amplitude ranges in the ECG 

signal, and misclassification by the net. If there is almost nothing to be seen in the signal 

or the spectrogram, the net can’t find characteristic features and patterns for the true 

label, though the segment might originate from an episode that is annotated as having a 

particular rhythm, including shockable ones. By excluding segments with mean pixel val-

ues below 2, the accuracy of ResNet6 improves from 0.986 to 0.989. 

 

Figure 43: draft -> extract of misclassified segments sorted by mean pixel values in 
ascending order 

 

ID start xEnd label_1 label_2 conf_1 conf_2 class amp_max_mVamp_min_mVmean median

ahadb_8110_segment_513_VF-VFL_1_3s 384001 384750 VF-VFL 1 0 shr 0.04 -0.05 0.3447 0

ahadb_8110_aug_724_VF-VFL_1_3s_episode_1 387741 388490 VF-VFL 1 0 shr 0.06 -0.11 0.5179 0

ahadb_8002_segment_585_ND_1_3s 438001 438750 ND 1 0 nshr 0.07 -0.06 0.772 0

ahadb_8107_segment_368_ND_1_3s 275251 276000 ND 1 0 nshr 0.11 -0.1 0.854 1

ahadb_8008_aug_4685_VF-VFL_1_3s_episode_1 447151 447900 VF-VFL 1 0 shr 0.25 -0.09 0.9383 0

ahadb_8104_segment_555_ND_1_3s 415501 416250 ND 1 0 nshr 0.28 -0.43 0.9444 1

cudb_28_segment_135_ND_1_3s 100501 101250 ND 1 0 nshr 0.19 -0.13 0.9654 0

ahadb_8102_segment_600_ND_0.88533_3s 449251 450000 ND VF-VFL 0.885333 0.114667 nshr 0.11 -0.07 1.0316 1

ahadb_8109_segment_263_ND_1_3s 196501 197250 ND 1 0 nshr 0.2 -0.17 1.2054 1

cudb_28_segment_92_ND_1_3s 68251 69000 ND 1 0 nshr 0.11 -0.12 1.4709 1

cudb_28_segment_121_ND_1_3s 90001 90750 ND 1 0 nshr 0.24 -0.15 1.5199 1

cudb_28_segment_113_ND_1_3s 84001 84750 ND 1 0 nshr 0.2 -0.13 1.7597 1

cudb_35_segment_58_ND_1_3s 42751 43500 ND 1 0 nshr 0.19 -0.17 1.7746 1

cudb_35_segment_86_ND_1_3s 63751 64500 ND 1 0 nshr 0.2 -0.25 1.847 1

ahadb_8007_segment_600_VF-VFL_1_3s 449251 450000 VF-VFL 1 0 shr 0.22 -0.15 2.0415 1
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5. CONCLUSION 

This work tries to sensitize readers to the relevance of the assessment of cardiac ar-

rhythmias, especially shockable cardiac arrhythmias. Regarding the application of defib-

rillation, it is shown that the rapid and precise determination of shockable cardiac condi-

tions is crucial in saving lives. Detection algorithms for shockable conditions in commer-

cially available defibrillation devices reach sensitivities of approximately 90% and speci-

ficities of around 95% (see Section 2.2.4). Since there is room to improve and due to the 

rise of automated feature detection in machine learning, this work experiments with the 

deployment of convolutional neural networks for the classification of shockable cardiac 

conditions. Four databases (AHADB, CUDB, MITDB, and VFDB) are exploited and pro-

cessed to optimize CNN training with balanced datasets of ECG spectrogram segments. 

The wavelet transform is applied to convert 1-channel ECG recordings to 2-dimensional 

spectrogram representations.  

Conventional CNN models experimenting with various hyperparameter settings demon-

strate that the detection of shockable conditions works well with the chosen approach by 

reaching accuracies between 97% and 98% on the given data. The approach with resid-

ual neural networks reaches 98.7% on average in the cross-validation. Besides training 

and testing models with balanced datasets leave-one-subject-out cross-validation shows 

that the approach works likewise well when ensured that entire ECG recordings make 

up the test sets without any interference with training sets. The leave-one-subject-out 

cross-validation, which was exemplarily carried out on 3 recordings, reaches an accu-

racy of 98.4% and indicates a similar performance level of the network as for validation 

with the balanced datasets.    

It is worth mentioning that the model settings are not optimized for maximizing perfor-

mance but rather applied exemplarily to draw a more comprehensive picture of different 

strategies. Even so, the models already achieve remarkable results. Future examina-

tions might focus more on optimizing certain hyperparameter settings to maximize the 

model's performance. Another aspect of future approaches is balancing model perfor-

mance with the computational demand for the device. The deeper and more complex 

the neural network is, the higher its demand for computational power. When it comes to 

commercial deployment, it needs to be ensured that the chosen model works well with 

the device’s hardware and resource limitations. An interesting approach could be to im-

plement the model to TensorFlow Lite, which is a platform that is optimized for deploying 
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models on mobile devices. The effects on model performance and computational de-

mand could be evaluated and compared to this work. When developing a balanced 

model between classification performance and resource demands, it might be appropri-

ate to continue the leave-one-subject-out cross-validation over the entire set of 125 ECG 

recordings to obtain a more robust picture of the model's performance.  

There are other limitations that should be examined in future work. It should be experi-

mented with different wavelets and parameter settings throughout the wavelet transform 

as well as with different image representations of the spectrograms regarding size, com-

pression, grayscale, and color. Other preprocessing steps, such as filtering, might be 

altered too. One or more CNN models can serve as references to evaluate the effects of 

adjustments in the preprocessing.   

The threshold that a segment needs to consist of more than 60% of the majority class 

could be removed. On the contrary, to enhance comparability with AED performance 

testing, the models could be tested also on segments that contain only one heart rhythm 

[11]. It is probable and could be shown in future work that the models perform better on 

segments containing only one rhythm.  

It might also be beneficial to analyze the datasets more thoroughly for events such as 

artifacts and flatlines, which then gives the opportunity to examine misclassified data in 

the context of these events. 

Though many research approaches to developing detection algorithms for cardiac con-

ditions use the same databases as the ones being processed in this work, either partially 

or entirely, on the one hand, it makes the research easier to compare with each other. 

On the other hand, it seems that a data pool of ECG recordings derived from only 125 

individuals must heavily underrepresent the entirety of real-world situations with billions 

of potential patients. Therefore, it seems that the field of automated ECG analysis would 

massively profit from larger databases that would provide a more comprehensive picture 

of reality.  

Besides aiming for the improvement of commercial defibrillation devices, this work 

should be seen as an inspiration for the potential of machine learning in deploying auto-

mated feature detection in ECG analysis. The methods explored in this work and beyond 

are not restricted to the detection of shockable cardiac conditions. The technique is ra-

ther flexible and can be applied to other areas regarding the classification of ECG data. 

It is also thinkable to utilize automated feature detection over various fields in healthcare 

and to discover cross-links between patterns in ECG data and other health-related fields 

than cardiology, such as neurology, psychiatry, epigenetics, or something else. 
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Automated classification methods for ECG data, such as those in this work, can also be 

used to generate a more comprehensive clinical database to boost research in the field. 

When it comes to certain cardiac conditions that can be classified by algorithms with an 

equal degree of accuracy as medical professionals, these algorithms can be used to 

automatically annotate ECG data by deriving soft labels from unsupervised learning. In 

an iterative process, potential soft labels are cross-checked by medical experts and 

might become hard labels for automated annotation. In this way, resources can be 

saved. Further, the generated database can be utilized to improve the classification al-

gorithms, which again boosts the automated annotation. 

 

.               
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6. APPENDIX 

clc; 

clear all; 

close all;  

 

%% PREPROCESSING 

 

%Annotation classes: 

%+ = rhythm change 

%" = comment annotation 

%A = Atrial premature beat 

%F = Fusion of ventricular and normal beat 

%V = Premature ventricular contraction 

%N = Normal beat 

%~ = Change in signal quality 

 

%Shockable rhythm: VT (ventr. tachycardia), 

%VF ventr. fibrill.), VFL (ventric. flutter) 

% GENERAL PARAMETERS 

wavelet = 'morse';% wavelet type 

seg_length = 3;%segemnt length in s 

fs = 250;% uniform sampling frequency 

 

drive_path = 'E:\shr_detection\'; 

%database = 'cudb'; 

database = 'mitdb'; 

%database = 'vfdb'; 

%database = 'ahadb'; 

 

if strcmp(database, 'mitdb')     

   % MITDB 

   %Dataset 1: MIT-BIH arrhythmia 

   %mitdb/100 - 124, 200-234 

    f = 360;% Sampling frequency from database 

    db_id = 1000;% database index for metadata 

    file_names = readmatrix('mitdb_files.csv'); 

end 

 

if strcmp(database, 'cudb') 

   % CUDB 

   % Creighton university ventricular 

   % tachyarrhythmia db (CUDB)     

    f = 250;% Sampling frequency from database 

    db_id = 2000;% database index for metadata 
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    file_names = readmatrix('cudb_files.csv'); 

end 

 

if strcmp(database, 'vfdb') 

   % MIT-BIH malignant ventricular arrhythmia (VFDB) 

   % vfdb/418-430, 602-615 (some ids missing from between) 

    f = 250;% Sampling frequency from database 

    db_id = 3000;% database index for metadata 

    file_names = readmatrix('vfdb_filenames.csv'); 

end 

 

if strcmp(database, 'ahadb') 

   % AHA Database (not public) 

    aha_path = 'E:\shr_detection\AHA_database\AHA Text Data\'; 

    f = 250; 

    db_id=40000; 

    file_names = readmatrix('ahadb_filenames.csv'); 

end 

 

Figure 44: Pre-processing main script in MATLAB part 1 

% Initialize tables 

[segment_tbl_all, aug_border_tbl_all, aug_episode_tbl_all, ... 

    episode_tbl_all, episode_VFLS_tbl_all] = deal(table()); 

 

tic 

for j=1:length(file_names) 

    id = file_names(j); 

   % PREPROCESSING 

    if strcmp(database, 'ahadb') 

        [data, signal_bw, channel_up, file_name, total_sample_number] = ... 

            preprocess_aha(aha_path, database, id, f, fs); 

    else 

        [data, signal_bw, channel_up, file_name, total_sample_number] = ... 

            preprocess(drive_path, database, id, f, fs); 

    end 

 

   % WAVELET TRANSFORM 

    wav_name = "morse"; 

    [wt,frequencies] = cwt(signal_bw, wav_name, fs, 'VoicesPerOctave', 20, 'NumOctaves', 5, 

'TimeBandwidth',50); 

 

   % ANNOTATION AND AUGMENTATION 

   %Find events/labels in Annotation frame  

   % typeMnemonic (non-beat annotations  

   % "[" Start of ventricular flutter/fibrillation 

   % "]" End of ventricular flutter/fibrillation 

   % "+" rhythm change 
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   % auxinfo (Beat annotation) 

   % Shockable rhythms: 

   % "(VFL" Ventricular flutter 

   % "(VT" Ventricular tachycardia 

   % "VFLS" Start of VFL/VF 

   % "VFLE" End of VFL/VF 

    if strcmp(database, 'ahadb') 

        [ann_table, segment_table, ann_table_events, sample_labels, file_length] = ... 

            annotate_aha(data, fs, seg_length, database, id); 

         

    else 

        [ann_table, segment_table, ann_table_events, sample_labels, file_length] = ... 

            annotate(file_name, f, fs, channel_up, seg_length, database, id); 

    end 

 

   % AUGMENTATION AROUND EPISODE BORDERS 

    [aug_border_table, episode_table, episode_VFLS_table] = ... 

        augment_border(ann_table_events, ... 

        database, id, seg_length, fs, sample_labels, file_length); 

 

   % AUGMENTATION ALONG EPISODES 

    aug_episode_table = augment_episodes(episode_table, ... 

        database, id, seg_length, fs); 

     

 

   % CONCATENATE SEGMENT TABLES AND AUGMENTATION TABLES 

    segment_tbl_all = vertcat(segment_tbl_all, segment_table); 

    aug_border_tbl_all = vertcat(aug_border_tbl_all, aug_border_table); 

    aug_episode_tbl_all = vertcat(aug_episode_tbl_all, aug_episode_table); 

    episode_tbl_all = vertcat(episode_tbl_all, episode_table); 

    episode_VFLS_tbl_all = vertcat(episode_VFLS_tbl_all, episode_VFLS_table); 

     

   % SEGMENTATION 

   % STANDARD SEGMENTS 

    for i=1:height(segment_table) 

       wt_segment = abs(wt(:, segment_table.start(i):segment_table.end(i))); 

       file_path = strcat(drive_path,'segments\',string(seg_length),'s\', ... 

           database,'\data\standard\',string(segment_table.ID(i)),'.mat'); 

       save(file_path, 'wt_segment'); 

    end 

 

   % AUGMENTED BORDER SEGMENTS 

    if height(aug_border_table)>0 

        for i=1:height(aug_border_table) 

            wt_aug_border = abs(wt(:, aug_border_table.start(i):... 

                aug_border_table.end(i))); 

            file_path = strcat(drive_path,'segments\',string(seg_length),'s\', ... 

                database,'\data\augmented_border\', ... 

                string(aug_border_table.ID(i)),'.mat'); 
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            save(file_path, 'wt_aug_border');        

        end 

    end 

 

   % AUGMENTED EPISODE SEGMENTS 

    if height(aug_episode_table)>0 

        for i=1:height(aug_episode_table) 

            wt_aug_episode = abs(wt(:, aug_episode_table.start(i):... 

                aug_episode_table.end(i))); 

            file_path = strcat(drive_path,'segments\',string(seg_length),'s\', ... 

                database,'\data\augmented_episode\', ... 

                string(aug_episode_table.ID(i)),'.mat'); 

            save(file_path, 'wt_aug_episode');              

        end 

    end 

    disp(j); 

end 

toc 

 

Figure 45: Pre-processing main script in MATLAB part 2 

 

function [data, signal_bw, channel_up, file_name, total_sample_number] = ... 

    preprocess(drive_path, database, id, f, fs) 

   % CHECK FOR FILE ON DRIVE OR LOAD FILE FROM DATABASE 

   % path for external ssd 

    if strcmp(database,'cudb') 

       if id<10 

           m_file_name = strcat(drive_path, 'raw_data\', ... 

               database,'_cu0',num2str(id),'.mat'); 

           file_name = strcat(database ,'/cu0', num2str(id)); 

       else 

           m_file_name = strcat(drive_path, 'raw_data\', ... 

                database,'_cu',num2str(id),'.mat'); 

           file_name = strcat(database ,'/cu', num2str(id)); 

       end     

    else 

        m_file_name = strcat(drive_path, 'raw_data\',database, ... 

            '_',num2str(id),'.mat'); 

        file_name = strcat(database ,'/', num2str(id)); 

    end 

     

    if isfile(m_file_name) 

        load(m_file_name); 

    else 

 

       % Read signal file from WFDB database 

        data = rdsamp(file_name,'phys',true);% return all signals of  

       % filename in physical units 
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       % write data matrix to m file 

        save(m_file_name, 'data'); 

    end 

     

   % RESAMPLE TO 250 Hz 

    channel_up = resample(data(:,2), fs, f); 

    total_sample_number = length(channel_up); 

   %channel_low = resample(data(:,3), fs, f); 

    time = (1:length(channel_up)).' / fs; 

     

   % LINEAR INTERPOLATION OF MISSING SIGNAL VALUES 

    channel_up = fillmissing(channel_up, 'linear'); 

   %channel_low = fillmissing(channel_low, 'linear'); 

     

   % DENOISING  

   % VF and Tachycardia Classification using a machine learning approach  

   % (Li, Rajagopalan, and Clifford 2014) 

   % - 250 Hz sampling frequency 

   % - Highpass 1 Hz cut-off 

   % - Second order 30 Hz Butterworth low-pass filter 

   % - 50 Hz notch filter 

     

    fc = 30; 

   % - Highpass 1 Hz cut-off 

    signal_hp = highpass(channel_up, 1, fs); 

 

   % - Second order 30 Hz Butterworth low-pass filter 

    [a,b] = butter(2, fc/(fs/2)); 

    signal_bw = filter(a,b, signal_hp); 

 

   % title_1 = 'Filtered signal'; 

   % title_2 = 'raw signal'; 

   % testplot(signal_bw, channel_up, time, start, end_, title_1,  

   % title_2, 3); 

end 

 

Figure 46: MATLAB function for querying databases, resampling, and filtering 

 

function [ann_table, segment_table, ann_table_events, sample_labels, file_length] = ... 

    annotate(file_name, f, fs, channel_up, seg_length, database, id) 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   %% ANNOTATION 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

    annotation = rdann(file_name,'atr'); 

    ann_table_compl = struct2table(annotation);%Format into table 

    ann_table = ann_table_compl(:,[1,2,3,7]);%reduce to relevant columns 
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   %Find events/labels in Annotation frame  

   % typeMnemonic (non-beat annotations  

   % "[" Start of ventricular flutter/fibrillation 

   % "]" End of ventricular flutter/fibrillation 

   % "+" rhythm change 

    bool_change = ann_table.typeMnemonic == "+"; 

    bool_vfl_start = ann_table.typeMnemonic == "["; 

    bool_vfl_end = ann_table.typeMnemonic == "]"; 

    bool_lab = bool_change + bool_vfl_start + bool_vfl_end; 

    ann_event_idx = find(bool_lab); 

    ann_table_events = ann_table(ann_event_idx,:); 

     

   % CLEAN ANNOTATION LABEL NAMES 

 

   % auxinfo (Beat annotation) 

   % Shockable rhythms: 

   % "(VFL" Ventricular flutter 

   % "(VT" Ventricular tachycardia 

   % "VFLS" Start of VFL 

   % "VFLE" End of VFL 

     

   % CUDB only considers VF episodes in typeMnemonic column with: 

   % "[" Start of ventricular flutter/fibrillation 

   % "]" End of ventricular flutter/fibrillation 

    if strcmp(database,'cudb') 

       % replace "[" with "VF" 

        ann_table_events.auxInfo(ismember(ann_table_events.typeMnemonic, "[")) = cellstr("VF"); 

       % replace "]" with "VF" 

        ann_table_events.auxInfo(ismember(ann_table_events.typeMnemonic, "]")) = cellstr("VF"); 

    else 

       % replace "[" with "VFLS" for start of VFL 

        ann_table_events.auxInfo(ismember(ann_table_events.typeMnemonic, "[")) = cell-

str("VFLS"); 

       % replace "]" with "VLSE" for end of VFL 

        ann_table_events.auxInfo(ismember(ann_table_events.typeMnemonic, "]")) = cell-

str("VFLE"); 

    end 

   % remove "(" from Annotation labels 

    ann_labels = string(ann_table_events.auxInfo); 

    ann_labels = replace(ann_labels, "(", ""); 

    ann_table_events.auxInfo = ann_labels; 

     

   % RESAMPLE ANNOTATION TABLE TO UNIFORM SAMPLING FREQUENCY fs=250 

   % Unified total sample number = 450000 

    q = fs/f;% resampling factor 

   % Resample sampling number: 

    ann_table_events.sampleNumber = round(ann_table_events.sampleNumber * q); 

   % Resample time: 
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    ann_table_events.timeInSeconds = ann_table_events.timeInSeconds * q; 

     

   % CREATE SAMPLE LABEL VECTOR 

    file_length = floor(length(channel_up)/fs) * fs; 

    sample_numbers = [1:file_length]'; 

   % mark undefined samples as ND 

    sample_labels = repmat({'ND'},file_length,1); 

     

    if strcmp(database,'cudb') 

        for i=1:height(ann_table_events) 

            if ~strcmp(ann_table_events.typeMnemonic(i), ']')  

                if i == height(ann_table_events) 

                   episode_start = ann_table_events.sampleNumber(i); 

                   episode_end = file_length; 

                   sample_labels(episode_start:episode_end) = cellstr(ann_table_events.aux-

Info(i)); 

                else 

                    episode_start = ann_table_events.sampleNumber(i); 

                    episode_end = ann_table_events.sampleNumber(i+1)-1; 

                    sample_labels(episode_start:episode_end) = cellstr(ann_table_events.aux-

Info(i));  

                end 

            end 

        end 

    else 

        for i=1:height(ann_table_events) 

            if i == height(ann_table_events) 

               episode_start = ann_table_events.sampleNumber(i); 

               episode_end = file_length; 

               sample_labels(episode_start:episode_end) = cellstr(ann_table_events.auxInfo(i)); 

            else 

                episode_start = ann_table_events.sampleNumber(i); 

                episode_end = ann_table_events.sampleNumber(i+1)-1; 

                sample_labels(episode_start:episode_end) = cellstr(ann_table_events.auxInfo(i));  

            end 

        end 

    end 

     

   % CREATE SEGMENT TABLE WITH LABEL AND LABEL CONFIDENCE  

    segment_sample_numbers = seg_length * fs;% Number of samples per segment 

    nrows = floor(file_length / segment_sample_numbers);% Number of rows in segment table 

 

   % Initialize Segment labels and their confidence values 

    segment_first_labels = repmat({''},nrows,1); 

    first_label_confidence = zeros(nrows,1); 

 

    segment_second_labels = segment_first_labels;  

    second_label_confidence = first_label_confidence; 
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    segment_third_labels = segment_first_labels;  

    third_label_confidence = first_label_confidence; 

 

    segment_fourth_labels = segment_first_labels;  

    fourth_label_confidence = first_label_confidence; 

 

   % Initialize segment IDs, start, and end 

    ID = repmat({''},nrows,1); 

    segment_end = 0; 

    [start, end_] = deal(zeros(nrows,1)); 

     

    for i=0:(nrows-1) 

        if file_length - segment_end >= 750 

            segment_start = segment_sample_numbers * i + 1; 

            segment_end = segment_sample_numbers * (i+1); 

            segment = sample_labels(segment_start : segment_end); 

            start(i+1) = segment_start; 

            end_(i+1) = segment_end; 

           % count unique strings  

           % unique_strings as a vector of unique elements in segment and idx_c as an  

           % index vector referring to the index in unique_strings for each sample in segment 

            [label, idx_a, idx_c] = unique(segment); 

           % count repeating indices in idx_c and create a Count table in descending 

           % order  

            counts = accumarray(idx_c, 1); 

            count_table = table(label, counts); 

            count_table = sortrows(count_table,'counts', 'descend'); 

           % retreive the label with majority vote from count_table and calculate 

           % label confidence 

            segment_first_labels(i+1) = count_table.label(1); 

            first_label_confidence(i+1) = count_table.counts(1) / segment_sample_numbers; 

 

           % Check for second label in segment 

            if length(count_table.label)>=2 

                segment_second_labels(i+1) = count_table.label(2); 

                second_label_confidence(i+1) = count_table.counts(2) / segment_sample_numbers; 

            end 

           % Check for third label in segment 

            if length(count_table.label)>=3 

                segment_third_labels(i+1) = count_table.label(3); 

                third_label_confidence(i+1) = count_table.counts(3) / segment_sample_numbers; 

            end 

           % Check for fourth label in segment 

            if length(count_table.label)>=4 

                segment_fourth_labels(i+1) = count_table.label(4); 

                fourth_label_confidence(i+1) = count_table.counts(4) / segment_sample_numbers; 

            end   

 

           % Define segment ID containing database, file number, segment number, 
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           % segment length, label, label confidence 

 

            segment_ID = strcat(database ,'_', num2str(id),'_segment_', num2str(i+1),'_',... 

                string(count_table.label(1)), '_', string(first_label_confidence(i+1)),... 

                '_', num2str(seg_length),'s'); 

            ID(i+1) = {segment_ID}; 

        end 

    end  

    segment_table = table(ID, start, end_, ... 

                    segment_first_labels, segment_second_labels, ... 

                    segment_third_labels, segment_fourth_labels, ... 

                    first_label_confidence, second_label_confidence, ... 

                    third_label_confidence, fourth_label_confidence); 

    segment_table.Properties.VariableNames = {'ID' 'start' 'end' ... 

            'label_1' 'label_2' 'label_3' 'label_4' 'conf_1' ... 

            'conf_2' 'conf_3' 'conf_4'}; 

 

end 

 

Figure 47: MATLAB annotation function 

 

function [aug_border_table, episode_table, episode_VFLS_table] = ... 

    augment_border(ann_table_events, ... 

    database, id, seg_length, fs, sample_labels, file_length) 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   %% AUGMENTATION AROUND EPISODE BORDERS 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    if strcmp(database, 'ahadb') 

       % CREATE EPISODE TABLE 

        [aug_label, episode_id] = deal({}); 

        [ep_start, ep_end] = deal([]); 

        k=1; 

 

        for i=1:height(ann_table_events) 

            if string(ann_table_events.label(i)) == '['... 

                    && ann_table_events.sample_number(i) < file_length  

                ep_start(k) = ann_table_events.sample_number(i); 

                if i<height(ann_table_events) 

                    ep_end(k) = ann_table_events.sample_number(i+1); 

                else 

                    ep_end(k) = file_length; 

                end 

                aug_label(k) = {'VF-VFL'}; 

                episode_id(k) = {strcat(database,'_', string(id),'_ep_',num2str(k))}; 

                k = k+1; 

            end 

        end 
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        episode_table = table(episode_id', aug_label', ep_start', ep_end'); 

        episode_table.Properties.VariableNames = {'episode_id', 'aug_label', ... 

            'ep_start', 'ep_end'}; 

 

        episode_VFLS_table = episode_table; 

    else 

       % Filter ann_table_events by VT and VFL 

       % assuming that VFLS and VFLE are always short and therefore not considered 

       % to be determined later in Python 

        table_filter = {'VT' 'VFL' 'VF'}'; 

        table_filter_idx = ismember(ann_table_events.auxInfo, table_filter); 

        ann_table_shr = ann_table_events(table_filter_idx,:); 

 

        [aug_label, episode_id] = deal({}); 

       %ep_start = zeros(height(ann_table_vfls),1); 

       %ep_end = zeros(height(ann_table_vfls),1); 

        [ep_start, ep_end] = deal([]); 

        k=1; 

        if strcmp(database, 'cudb') 

            for i=1:height(ann_table_events) 

                if (ann_table_events.auxInfo(i) == 'VT' || ann_table_events.auxInfo(i) == 'VFL' 

... 

                        || string(ann_table_events.typeMnemonic(i)) == '[')... 

                        && ann_table_events.sampleNumber(i) < file_length  

                    ep_start(k) = ann_table_events.sampleNumber(i); 

                    if i<height(ann_table_events) 

                        ep_end(k) = ann_table_events.sampleNumber(i+1); 

                    else 

                        ep_end(k) = file_length; 

                    end 

                    aug_label(k) = {ann_table_events.auxInfo(i)}; 

                    episode_id(k) = {strcat(database,'_', string(id),'_ep_',num2str(k))}; 

                    k = k+1; 

                end 

            end 

        else 

            for i=1:height(ann_table_events) 

                if (ann_table_events.auxInfo(i) == 'VT' || ann_table_events.auxInfo(i) == 'VFL' 

... 

                        || ann_table_events.auxInfo(i) == 'VF')... 

                        && ann_table_events.sampleNumber(i) < file_length  

                    ep_start(k) = ann_table_events.sampleNumber(i); 

                    if i<height(ann_table_events) 

                        ep_end(k) = ann_table_events.sampleNumber(i+1); 

                    else 

                        ep_end(k) = file_length; 

                    end 

                    aug_label(k) = {ann_table_events.auxInfo(i)}; 

                    episode_id(k) = {strcat(database,'_', string(id),'_ep_',num2str(k))}; 
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                    k = k+1; 

                end 

            end 

        end 

        episode_table = table(episode_id', aug_label', ep_start', ep_end'); 

        episode_table.Properties.VariableNames = {'episode_id', 'aug_label', ... 

            'ep_start', 'ep_end'}; 

 

       %% 

       % CREATE EPISODE TABLE INCLUDING VFLS AND VFLE 

        table_filter = {'VT' 'VFL' 'VF' 'VFLS' 'VFLE'}'; 

        table_filter_idx = ismember(ann_table_events.auxInfo, table_filter); 

        ann_table_vfls = ann_table_events(table_filter_idx,:); 

 

       %aug_label = repmat({''},height(ann_table_vfls),1); 

       %episode_id = repmat({''},height(ann_table_vfls),1); 

        [aug_label, episode_id] = deal({}); 

       %ep_start = zeros(height(ann_table_vfls),1); 

       %ep_end = zeros(height(ann_table_vfls),1); 

        [ep_start, ep_end] = deal([]); 

        k=1; 

        if strcmp(database, 'cudb') 

            for i=1:height(ann_table_events) 

                if (ann_table_events.auxInfo(i) == 'VT' || ann_table_events.auxInfo(i) == 'VFL' 

... 

                        || string(ann_table_events.typeMnemonic(i)) == '[' ... 

                        || ann_table_events.auxInfo(i) == 'VFLS' ... 

                        || ann_table_events.auxInfo(i) == 'VFLE')... 

                        && ann_table_events.sampleNumber(i) < file_length  

                    ep_start(k) = ann_table_events.sampleNumber(i); 

                    if i<height(ann_table_events) 

                        ep_end(k) = ann_table_events.sampleNumber(i+1); 

                    else 

                        ep_end(k) = file_length; 

                    end 

                    aug_label(k) = {ann_table_events.auxInfo(i)}; 

                    episode_id(k) = {strcat(database,'_', string(id),'_ep_',num2str(k))}; 

                    k = k+1; 

                end 

            end 

        else 

            for i=1:height(ann_table_events) 

                if (ann_table_events.auxInfo(i) == 'VT' || ann_table_events.auxInfo(i) == 'VFL' 

... 

                        || ann_table_events.auxInfo(i) == 'VF' ... 

                        || ann_table_events.auxInfo(i) == 'VFLS' ... 

                        || ann_table_events.auxInfo(i) == 'VFLE')... 

                        && ann_table_events.sampleNumber(i) < file_length  

                    ep_start(k) = ann_table_events.sampleNumber(i); 
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                    if i<height(ann_table_events) 

                        ep_end(k) = ann_table_events.sampleNumber(i+1); 

                    else 

                        ep_end(k) = file_length; 

                    end 

                    aug_label(k) = {ann_table_events.auxInfo(i)}; 

                    episode_id(k) = {strcat(database,'_', string(id),'_ep_',num2str(k))}; 

                    k = k+1; 

                end 

            end 

        end 

        episode_VFLS_table = table(episode_id', aug_label', ep_start', ep_end'); 

        episode_VFLS_table.Properties.VariableNames = {'episode_id', 'aug_label', ... 

            'ep_start', 'ep_end'}; 

    end 

   %% 

   % CREATE AUGMENTATION TABLE  

    segment_sample_numbers = seg_length * fs;% Number of samples per segment 

    step_size = round(segment_sample_numbers / 10); 

    [type, aug_label] = deal({}); 

    [position, sample_start, sample_end] = deal([]); 

    idx_aug_tbl = 1; 

 

    for i=1:height(episode_table) 

        if episode_table.ep_start(i) >= 2*segment_sample_numbers 

            for j=0:9 

                aug_label(idx_aug_tbl) = episode_table.aug_label(i); 

                type(idx_aug_tbl) = {'start'}; 

                position(idx_aug_tbl) = -j; 

                sample_start(idx_aug_tbl) = episode_table.ep_start(i) - j*step_size; 

                sample_end(idx_aug_tbl) = episode_table.ep_start(i) - j*step_size + segment_sam-

ple_numbers - 1; 

                idx_aug_tbl = idx_aug_tbl + 1; 

            end 

        end 

 

        if episode_table.ep_end(i) >= 2*segment_sample_numbers && ... 

                episode_table.ep_end(i) + segment_sample_numbers <= ... 

                file_length 

            for j=0:9 

                aug_label(idx_aug_tbl) = episode_table.aug_label(i); 

                type(idx_aug_tbl) = {'end'}; 

                position(idx_aug_tbl) = j; 

                sample_start(idx_aug_tbl) = episode_table.ep_end(i) + j*step_size - segment_sam-

ple_numbers + 1; 

                sample_end(idx_aug_tbl) = episode_table.ep_end(i) + j*step_size; 

                idx_aug_tbl = idx_aug_tbl + 1; 

            end 

        end 
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    end 

 

    aug_table = table(aug_label', type', position', sample_start', sample_end'); 

    aug_table.Properties.VariableNames = {'aug_label', 'type', 'position', 'start', 'end'}; 

 

   %% 

   % Add ID, labels, and label confidences to augmentation table 

    [ID, label_1, label_2, label_3, label_4] = deal(repmat({''},height(aug_table),1)); 

    [conf_aug_label, conf_1, conf_2, conf_3, conf_4] = deal(zeros(height(aug_table),1)); 

 

    for i=1:height(aug_table) 

        segment_start = aug_table.start(i); 

        segment_end = aug_table.end(i); 

        segment = sample_labels(segment_start : segment_end); 

       % count unique strings  

       % unique_strings as a vector of unique elements in segment and idx_c as an  

       % index vector referring to the index in unique_strings for each sample in segment 

        [label, idx_a, idx_c] = unique(segment); 

       % count repeating indices in idx_c and create a Count table in descending 

       % order  

        counts = accumarray(idx_c, 1); 

        count_table = table(label, counts); 

        count_table = sortrows(count_table,'counts', 'descend'); 

 

       % Calculate confidence value for the segment label 

        idx_conf = ismember(count_table.label, string(aug_label(i))); 

        conf_label = count_table.counts(idx_conf) / segment_sample_numbers; 

        conf_aug_label(i) = conf_label; 

 

       % Create ID containing database, file number, segment number,  

       % segment length, label, label confidence, aug, start/end, Position 

        segment_ID = strcat(database ,'_', num2str(id), '_augborder_', num2str(i),'_',... 

            string(aug_label(i)), '_', string(conf_label), '_',... 

            num2str(seg_length),'s_',string(type(i)), '_', string(position(i))); 

        ID(i) = {segment_ID}; 

 

       % retreive the label with majority vote from count_table and calculate 

       % label confidence 

        label_1(i) = count_table.label(1); 

        conf_1(i) = count_table.counts(1) / segment_sample_numbers; 

 

       % Check for second label in segment 

        if length(count_table.label)>=2 

            label_2(i) = count_table.label(2); 

            conf_2(i) = count_table.counts(2) / segment_sample_numbers; 

        end 

       % Check for third label in segment 

        if length(count_table.label)>=3 

            label_3(i) = count_table.label(3); 
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            conf_3(i) = count_table.counts(3) / segment_sample_numbers; 

        end 

       % Check for fourth label in segment 

        if length(count_table.label)>=4 

            label_4(i) = count_table.label(4); 

            conf_4(i) = count_table.counts(4) / segment_sample_numbers; 

        end     

    end 

 

    aug_border_table = table(ID, aug_label', conf_aug_label, type', ... 

        position', sample_start', sample_end', ... 

        label_1, label_2, label_3, label_4, conf_1, conf_2, conf_3, conf_4); 

    aug_border_table.Properties.VariableNames = {'ID', 'aug_label', ... 

        'conf_aug_label', 'type', 'position', 'start', 'end', ... 

        'label_1', 'label_2', 'label_3', 'label_4', 'conf_1', 'conf_2', 'conf_3', 'conf_4'}; 

end 

 

Figure 48: MATLAB augmentation function around episode borders with shockable 
conditions 

 

function aug_episode_table = augment_episodes(episode_table, ... 

    database, id, seg_length, fs) 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   %% AUGMENTATION ALONG EPISODES 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    [aug_label_ep, ID] = deal({}); 

    [sample_start_ep, sample_end_ep, conf_aug_label] = deal([]); 

    idx_aug_tbl = 1; 

    segment_sample_numbers = seg_length * fs;% Number of samples per segment 

    step_size = round(segment_sample_numbers / 10); 

 

    for i=1:height(episode_table) 

        if (episode_table.ep_end(i) - episode_table.ep_start(i)) >= segment_sample_numbers 

            steps = floor((episode_table.ep_end(i) - episode_table.ep_start(i) ... 

                - segment_sample_numbers) / step_size); 

            for j=0:(steps-1) 

                aug_label_ep(idx_aug_tbl) = episode_table.aug_label(i); 

                conf_aug_label(idx_aug_tbl) = 1; 

                sample_start_ep(idx_aug_tbl) = episode_table.ep_start(i) + j*step_size; 

                sample_end_ep(idx_aug_tbl) = episode_table.ep_start(i) ... 

                    + j*step_size + segment_sample_numbers-1; 

                segment_ID = strcat(database ,'_', num2str(id),'_aug_', ... 

                    num2str(idx_aug_tbl),'_', string(episode_table.aug_label(i)), ... 

                    '_1_', num2str(seg_length),'s_episode_', num2str(i)); 

                ID(idx_aug_tbl) = {segment_ID}; 

                idx_aug_tbl = idx_aug_tbl + 1; 

            end 

        end 

    end 
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    aug_episode_table = table(ID', aug_label_ep', conf_aug_label', ... 

        sample_start_ep', sample_end_ep'); 

    aug_episode_table.Properties.VariableNames = {'ID', 'aug_label', ... 

        'conf_aug_label', 'start', 'end'}; 

end 

 

Figure 49: MATLAB augmentation function along shockable episodes with 300 ms 
step size  

 

 

%% SEGMENTATION 

 

seg_ind = 1:(seg_length*250):length(wt);%250 samples per second 

label_vector=[]; 

fignames={}; 

 

for i=1:(length(seg_ind)-1) 

%for i=1:2 

     

    segment = abs(wt(:,seg_ind(i):(seg_ind(i+1)-1))); 

   %Save the block as image 

    figname = strcat(img_path,'/',database,'_',num2str(id),'_',num2str(i),'.jpeg'); 

    fignames{i}=figname; 

    imwrite(segment,figname) 

    label_vector(i)=sum(labels(seg_ind(i):(seg_ind(i+1)-1)))/(f); 

end 

 

for i=1:(length(seg_ind)-1) 

    label_vector(i)=sum(labels(seg_ind(i):(seg_ind(i+1)-1)))/(f); 

end 

 

labeled_data=label_vector'; 

Figure 50: MATLAB segmentation and storing of spectrograms 

 

import pandas as pd 

import os 

 

############################################################################### 

#%%LOAD CSV LABEL FILES INTO DFS 

############################################################################### 

 

databases = ['mitdb', 'cudb', 'vfdb', 'ahadb'] 

seg_length_str = '3s' 

seg_length = 3 

df_list = ['_episode_df', '_episode_VFLS_df', '_segment_df',  

           '_aug_border_df', '_aug_episode_df'] 

fs = 250 # sampling frequency 
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for database in databases: 

     

    #table_folder = f'E:\shr_detection\segments\{seg_length_str!s}\{database!s}\labels' 

    wd = os.getcwd() 

    table_folder = f'{wd!s}\{seg_length_str!s}\{database!s}\labels' 

    file_list = [f'\{database!s}_episode_tbl.csv', f'\{database!s}_episode_VFLS_tbl.csv', 

                 f'\{database!s}_segment_tbl.csv', f'\{database!s}_aug_border_tbl.csv', 

                 f'\{database!s}_aug_episode_tbl.csv'] 

    for file, df in zip(file_list, df_list): 

         

        df_name = f'{database!s}{df!s}' 

        file_name = f'{table_folder!s}{file!s}' 

        globals()[df_name] = pd.read_csv(file_name) 

 

############################################################################### 

#%% CREATE LABEL DFS 

############################################################################### 

thr = 0.6 #threshold 

raw_df_list = ['_segment_df', '_aug_border_df', '_aug_episode_df'] 

 

for db in databases: 

    df_seg = globals()[f'{db!s}_segment_df'][['ID', 'label_1',  

                                                  'conf_1', 'start', 'end']] 

    df_seg.rename(columns={'label_1':'label', 'conf_1':'conf'}, inplace=True) 

    df_seg = df_seg[df_seg['conf'] >= thr] 

    globals()[f'{db!s}_seg'] = df_seg 

     

    df_border = globals()[f'{db!s}_aug_border_df'][['ID', 'aug_label', 'conf_aug_label',  

                                    'start', 'end']] 

    df_border.rename(columns={'aug_label':'label', 'conf_aug_label':'conf'},  

                        inplace=True) 

    df_border = df_border[df_border['conf'] >= thr] 

    globals()[f'{db!s}_border'] = df_border 

     

    df_ep = globals()[f'{db!s}_aug_episode_df'] 

    df_ep.rename(columns={'aug_label':'label', 'conf_aug_label':'conf'},  

                    inplace=True) 

    df_ep = df_ep[df_ep['conf'] >= thr] 

    globals()[f'{db!s}_ep'] = df_ep 

#%% OVERWRITE VFIB LABELS IN VFDB WITH VF (208 in total) 

vfdb_seg.loc[vfdb_seg['label'] == 'VFIB', 'label'] = 'VF' 

 

#%% DISCARD NOISE AND ASYSTOLIC SEGMENTS FROM VFDB 

vfdb_seg = vfdb_seg[vfdb_seg['label'] != 'NOISE'] 

vfdb_seg = vfdb_seg[vfdb_seg['label'] != 'ASYS'] 

#test_counts = test['label'].value_counts() 

#%% 

un_lab_mitdb_seg = mitdb_seg['label'].value_counts() 

un_lab_mitdb_border = mitdb_border['label'].value_counts() 
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un_lab_mitdb_ep = mitdb_ep['label'].value_counts() 

 

un_lab_ahadb_seg = ahadb_seg['label'].value_counts() 

un_lab_ahadb_border = ahadb_border['label'].value_counts() 

un_lab_ahadb_ep = ahadb_ep['label'].value_counts() 

 

un_lab_cudb_seg = cudb_seg['label'].value_counts() 

un_lab_cudb_border = cudb_border['label'].value_counts() 

un_lab_cudb_ep = cudb_ep['label'].value_counts() 

 

un_lab_vfdb_seg = vfdb_seg['label'].value_counts() 

un_lab_vfdb_border = vfdb_border['label'].value_counts() 

un_lab_vfdb_ep = vfdb_ep['label'].value_counts() 

 

#%%  

# ORGANIZE MITDB SEGMENTS 

# take all shr mitdb segments, reduce nshr from 28594 to 10000 

# seperate shr from nshr  

mitdb_seg_shr = mitdb_seg[(mitdb_seg['label'] == 'VT') | 

                          (mitdb_seg['label'] == 'VFL')] 

mitdb_seg_nshr = mitdb_seg[(mitdb_seg['label'] != 'VT') & 

                          (mitdb_seg['label'] != 'VFL')] 

# randomly choose 10000 nshr segments 

mitdb_seg_nshr_r = mitdb_seg_nshr.sample(n=10000, random_state=1) 

 

mitdb_conc = pd.concat([mitdb_seg_shr, mitdb_border, mitdb_ep,  

                        mitdb_seg_nshr_r]) 

# ORGANIZE AHADB SEGMENTS 

# in segments 3759 shr and 8234 nshr -> use all  

# 124 border segments -> use all 

# augmented episodes 37412 -> all of the same class VF-VFL 

# -> reduce augmented shr episodes to 4000 

ahadb_ep_r = ahadb_ep.sample(n=4000, random_state=1) 

ahadb_conc = pd.concat([ahadb_ep_r, ahadb_border, ahadb_seg]) 

 

# ORGANIZE CUDB SEGMENTS 

# in segments 1250 shr and 4632 nshr -> use all 

# 412 border segments -> use all 

# augmented episodes 12203 -> 12154 VF and 54 VT -> keep all VT and 3000 VF 

# randomly chosen segments 

cudb_ep_VT = cudb_ep[cudb_ep['label'] == 'VT'] 

cudb_ep_VF = cudb_ep[cudb_ep['label'] == 'VF'] 

cudb_ep_r = cudb_ep_VF.sample(n=3000, random_state=1) 

cudb_conc = pd.concat([cudb_ep_VT, cudb_ep_r, cudb_border, cudb_seg])  

 

# ORGANIZE VFDB SEGMENTS 

# in segments 2503 shr and 12763 nshr -> use all 

# 1659 border segments -> use all 

# augmented episodes 23692 -> 5536 VF, 16593 VT and 1563 VFL  
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# -> keep 2500 VF, 5000 VT and all VFL 

vfdb_ep_VF = vfdb_ep[vfdb_ep['label'] == 'VF'] 

vfdb_ep_VT = vfdb_ep[vfdb_ep['label'] == 'VT'] 

vfdb_ep_VFL = vfdb_ep[vfdb_ep['label'] == 'VFL'] 

vfdb_ep_VF_r = vfdb_ep_VF.sample(n=2500, random_state=1) 

vfdb_ep_VT_r = vfdb_ep_VT.sample(n=5000, random_state=1) 

vfdb_conc = pd.concat([vfdb_ep_VF_r, vfdb_ep_VT_r, vfdb_ep_VFL,  

                       vfdb_border, vfdb_seg]) 

 

#%% CREATE CLASS MATRICES FOR WHOLE DATASET  

#MITDB 

s_mitdb_VT = mitdb_seg_shr[mitdb_seg_shr['label'] == 'VT'] 

s_mitdb_VFL = mitdb_seg_shr[mitdb_seg_shr['label'] == 'VFL'] 

s_mitdb_nshr = mitdb_seg_nshr_r.sample(n=10000, random_state=1) 

s_mitdb_border_VT = mitdb_border[mitdb_border['label'] == 'VT'] 

s_mitdb_border_VFL = mitdb_border[mitdb_border['label'] == 'VFL'] 

s_mitdb_ep_VT = mitdb_ep[mitdb_ep['label'] == 'VT'] 

s_mitdb_ep_VFL = mitdb_ep[mitdb_ep['label'] == 'VFL'] 

s_mitdb = pd.concat([s_mitdb_VT, s_mitdb_VFL, s_mitdb_nshr, s_mitdb_border_VT, 

                     s_mitdb_border_VFL, s_mitdb_ep_VT, s_mitdb_ep_VFL]) 

#AHADB 

s_ahadb_seg_shr = ahadb_seg[ahadb_seg['label'] == 'VF-VFL'] 

s_ahadb_border_shr = ahadb_border[ahadb_border['label'] == 'VF-VFL'] 

s_ahadb_ep_shr = ahadb_ep[ahadb_ep['label'] == 'VF-VFL'].sample(n=4000,  

                                                                random_state=1) 

s_ahadb_seg_nshr = ahadb_seg[ahadb_seg['label'] != 'VF-VFL'] 

s_ahadb = pd.concat([s_ahadb_seg_shr, s_ahadb_border_shr, s_ahadb_ep_shr,  

                     s_ahadb_seg_nshr]) 

#CUDB 

s_cudb_seg_VF = cudb_seg[cudb_seg['label'] == 'VF'] 

s_cudb_seg_VT = cudb_seg[cudb_seg['label'] == 'VT'] 

s_cudb_nshr = cudb_seg[(cudb_seg['label']!='VF') & (cudb_seg['label']!='VT')] 

s_cudb_border_VF = cudb_border[cudb_border['label'] == 'VF'] 

s_cudb_border_VT = cudb_border[cudb_border['label'] == 'VT'] 

s_cudb_ep_VF = cudb_ep[cudb_ep['label'] == 'VF'].sample(n=3000,  

                                                           random_state=1) 

s_cudb_ep_VT = cudb_ep[cudb_ep['label'] == 'VT'] 

s_cudb = pd.concat([s_cudb_seg_VF, s_cudb_seg_VT, s_cudb_border_VF,  

                    s_cudb_border_VT, s_cudb_ep_VF, s_cudb_ep_VT,  

                    s_cudb_nshr]) 

#VFDB 

s_vfdb_seg_VF = vfdb_seg[vfdb_seg['label'] == 'VF'] 

s_vfdb_seg_VT = vfdb_seg[vfdb_seg['label'] == 'VT'] 

s_vfdb_seg_VFL = vfdb_seg[vfdb_seg['label'] == 'VFL'] 

s_vfdb_nshr = vfdb_seg[(vfdb_seg['label'] != 'VF') & (vfdb_seg['label'] != 'VT') & 

                       (vfdb_seg['label'] != 'VFL')] 

s_vfdb_border_VF = vfdb_border[vfdb_border['label'] == 'VF'] 

s_vfdb_border_VT = vfdb_border[vfdb_border['label'] == 'VT'] 
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s_vfdb_border_VFL = vfdb_border[vfdb_border['label'] == 

'VFL']                                                           

s_vfdb_ep_VF = vfdb_ep_VF.sample(n=2500, random_state=1) 

s_vfdb_ep_VT = vfdb_ep_VT.sample(n=5000, random_state=1) 

s_vfdb_ep_VFL = vfdb_ep_VFL 

s_vfdb = pd.concat([s_vfdb_seg_VF, s_vfdb_seg_VT, s_vfdb_seg_VFL,  

                   s_vfdb_nshr, s_vfdb_border_VF, s_vfdb_border_VT,  

                   s_vfdb_border_VFL, s_vfdb_ep_VF, s_vfdb_ep_VT,  

                   s_vfdb_ep_VFL]) 

s_df = pd.concat([s_mitdb, s_ahadb, s_cudb, s_vfdb]) 

s_df = s_df.sample(frac=1, random_state=1) 

 

#%% 

# add classes: nshr = 0, VF = 1, VT = 2, VFL = 3, VF-VFL = 4 

s_df['class'] = 0 

def classFunc(lab): 

    if lab == 'VF': 

        return 1 

    elif lab == 'VT': 

        return 2 

    elif lab == 'VFL': 

        return 3 

    elif lab == 'VF-VFL': 

        return 4 

    else: 

        return 0 

     

s_df['class'] = s_df['label'].apply(classFunc) 

#%% STORE TO CSV 

path = os.getcwd() 

file = 'labels_discard.csv' 

s_df.to_csv(f'{path!s}\{file!s}', index=False) 

 

#%% CREATE LABEL MATRICES SEPERATELY FOR TRAIN AND FOR TEST SETS 

frac = 0.15 

val = 15/85 

rnd_st = 1 

#MITDB 

test_s_mitdb_nshr = s_mitdb_nshr.sample(frac=frac, random_state=rnd_st) 

train_s_mitdb_nshr = s_mitdb_nshr[~s_mitdb_nshr['ID'].isin(test_s_mitdb_nshr['ID'])] 

val_s_mitdb_nshr = train_s_mitdb_nshr.sample(frac=val, random_state=rnd_st) 

train_s_mitdb_nshr = train_s_mitdb_nshr[~train_s_mitdb_nshr['ID'].isin(val_s_mitdb_nshr['ID'])] 

 

test_s_mitdb_VT = s_mitdb_VT.sample(frac=frac, random_state=rnd_st) 

train_s_mitdb_VT = s_mitdb_VT[~s_mitdb_VT['ID'].isin(test_s_mitdb_VT['ID'])] 

val_s_mitdb_VT = train_s_mitdb_VT.sample(frac=val, random_state=rnd_st) 

train_s_mitdb_VT = train_s_mitdb_VT[~train_s_mitdb_VT['ID'].isin(val_s_mitdb_VT['ID'])] 

 

test_s_mitdb_VFL = s_mitdb_VFL.sample(frac=frac, random_state=rnd_st) 
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train_s_mitdb_VFL = s_mitdb_VFL[~s_mitdb_VFL['ID'].isin(test_s_mitdb_VFL['ID'])] 

val_s_mitdb_VFL = train_s_mitdb_VFL.sample(frac=val, random_state=rnd_st) 

train_s_mitdb_VFL = train_s_mitdb_VFL[~train_s_mitdb_VFL['ID'].isin(val_s_mitdb_VFL['ID'])] 

 

test_s_mitdb_border_VT = s_mitdb_border_VT.sample(frac=frac, random_state=rnd_st) 

train_s_mitdb_border_VT = s_mitdb_border_VT[~s_mitdb_border_VT['ID'].isin(test_s_mitdb_bor-

der_VT['ID'])] 

val_s_mitdb_border_VT = train_s_mitdb_border_VT.sample(frac=val, random_state=rnd_st) 

train_s_mitdb_border_VT = train_s_mitdb_border_VT[~train_s_mitdb_bor-

der_VT['ID'].isin(val_s_mitdb_border_VT['ID'])] 

 

test_s_mitdb_border_VFL = s_mitdb_border_VFL.sample(frac=frac, random_state=rnd_st) 

train_s_mitdb_border_VFL = s_mitdb_border_VFL[~s_mitdb_border_VFL['ID'].isin(test_s_mitdb_bor-

der_VFL['ID'])] 

val_s_mitdb_border_VFL = train_s_mitdb_border_VFL.sample(frac=val, random_state=rnd_st) 

train_s_mitdb_border_VFL = train_s_mitdb_border_VFL[~train_s_mitdb_bor-

der_VFL['ID'].isin(val_s_mitdb_border_VFL['ID'])] 

 

test_s_mitdb_ep_VT = s_mitdb_ep_VT.sample(frac=frac, random_state=rnd_st) 

train_s_mitdb_ep_VT = s_mitdb_ep_VT[~s_mitdb_ep_VT['ID'].isin(test_s_mitdb_ep_VT['ID'])] 

val_s_mitdb_ep_VT = train_s_mitdb_ep_VT.sample(frac=val, random_state=rnd_st) 

train_s_mitdb_ep_VT = 

train_s_mitdb_ep_VT[~train_s_mitdb_ep_VT['ID'].isin(val_s_mitdb_ep_VT['ID'])] 

 

test_s_mitdb_ep_VFL = s_mitdb_ep_VFL.sample(frac=frac, random_state=rnd_st) 

train_s_mitdb_ep_VFL = s_mitdb_ep_VFL[~s_mitdb_ep_VFL['ID'].isin(test_s_mitdb_ep_VFL['ID'])] 

val_s_mitdb_ep_VFL = train_s_mitdb_ep_VFL.sample(frac=val, random_state=rnd_st) 

train_s_mitdb_ep_VFL = 

train_s_mitdb_ep_VFL[~train_s_mitdb_ep_VFL['ID'].isin(val_s_mitdb_ep_VFL['ID'])] 

 

#AHADB 

test_s_ahadb_nshr = s_ahadb_seg_nshr.sample(frac=frac, random_state=rnd_st) 

train_s_ahadb_nshr = s_ahadb_seg_nshr[~s_ahadb_seg_nshr['ID'].isin(test_s_ahadb_nshr['ID'])] 

val_s_ahadb_nshr = train_s_ahadb_nshr.sample(frac=val, random_state=rnd_st) 

train_s_ahadb_nshr = train_s_ahadb_nshr[~train_s_ahadb_nshr['ID'].isin(val_s_ahadb_nshr['ID'])] 

 

test_s_ahadb_seg_shr = s_ahadb_seg_shr.sample(frac=frac, random_state=rnd_st) 

train_s_ahadb_seg_shr = s_ahadb_seg_shr[~s_ahadb_seg_shr['ID'].isin(test_s_ahadb_seg_shr['ID'])] 

val_s_ahadb_seg_shr = train_s_ahadb_seg_shr.sample(frac=val, random_state=rnd_st) 

train_s_ahadb_seg_shr = 

train_s_ahadb_seg_shr[~train_s_ahadb_seg_shr['ID'].isin(val_s_ahadb_seg_shr['ID'])] 

 

test_s_ahadb_ep_shr = s_ahadb_ep_shr.sample(frac=frac, random_state=rnd_st) 

train_s_ahadb_ep_shr = s_ahadb_ep_shr[~s_ahadb_ep_shr['ID'].isin(test_s_ahadb_ep_shr['ID'])] 

val_s_ahadb_ep_shr = train_s_ahadb_ep_shr.sample(frac=val, random_state=rnd_st) 

train_s_ahadb_ep_shr = 

train_s_ahadb_ep_shr[~train_s_ahadb_ep_shr['ID'].isin(val_s_ahadb_ep_shr['ID'])] 

 

test_s_ahadb_border_shr = s_ahadb_border_shr.sample(frac=frac, random_state=rnd_st) 
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train_s_ahadb_border_shr = s_ahadb_border_shr[~s_ahadb_border_shr['ID'].isin(test_s_ahadb_bor-

der_shr['ID'])] 

val_s_ahadb_border_shr = train_s_ahadb_border_shr.sample(frac=val, random_state=rnd_st) 

train_s_ahadb_border_shr = train_s_ahadb_border_shr[~train_s_ahadb_bor-

der_shr['ID'].isin(val_s_ahadb_border_shr['ID'])] 

 

#CUDB 

test_s_cudb_nshr = s_cudb_nshr.sample(frac=frac, random_state=rnd_st) 

train_s_cudb_nshr = s_cudb_nshr[~s_cudb_nshr['ID'].isin(test_s_cudb_nshr['ID'])] 

val_s_cudb_nshr = train_s_cudb_nshr.sample(frac=val, random_state=rnd_st) 

train_s_cudb_nshr = train_s_cudb_nshr[~train_s_cudb_nshr['ID'].isin(val_s_cudb_nshr['ID'])] 

 

test_s_cudb_seg_VT = s_cudb_seg_VT.sample(frac=frac, random_state=rnd_st) 

train_s_cudb_seg_VT = s_cudb_seg_VT[~s_cudb_seg_VT['ID'].isin(test_s_cudb_seg_VT['ID'])] 

val_s_cudb_seg_VT = train_s_cudb_seg_VT.sample(frac=val, random_state=rnd_st) 

train_s_cudb_seg_VT = 

train_s_cudb_seg_VT[~train_s_cudb_seg_VT['ID'].isin(val_s_cudb_seg_VT['ID'])] 

 

test_s_cudb_seg_VF = s_cudb_seg_VF.sample(frac=frac, random_state=rnd_st) 

train_s_cudb_seg_VF = s_cudb_seg_VF[~s_cudb_seg_VF['ID'].isin(test_s_cudb_seg_VF['ID'])] 

val_s_cudb_seg_VF = train_s_cudb_seg_VF.sample(frac=val, random_state=rnd_st) 

train_s_cudb_seg_VF = 

train_s_cudb_seg_VF[~train_s_cudb_seg_VF['ID'].isin(val_s_cudb_seg_VF['ID'])] 

 

test_s_cudb_border_VT = s_cudb_border_VT.sample(frac=frac, random_state=rnd_st) 

train_s_cudb_border_VT = s_cudb_border_VT[~s_cudb_border_VT['ID'].isin(test_s_cudb_bor-

der_VT['ID'])] 

val_s_cudb_border_VT = train_s_cudb_border_VT.sample(frac=val, random_state=rnd_st) 

train_s_cudb_border_VT = train_s_cudb_border_VT[~train_s_cudb_bor-

der_VT['ID'].isin(val_s_cudb_border_VT['ID'])] 

 

test_s_cudb_border_VF = s_cudb_border_VF.sample(frac=frac, random_state=rnd_st) 

train_s_cudb_border_VF = s_cudb_border_VF[~s_cudb_border_VF['ID'].isin(test_s_cudb_bor-

der_VF['ID'])] 

val_s_cudb_border_VF = train_s_cudb_border_VF.sample(frac=val, random_state=rnd_st) 

train_s_cudb_border_VF = train_s_cudb_border_VF[~train_s_cudb_bor-

der_VF['ID'].isin(val_s_cudb_border_VF['ID'])] 

 

test_s_cudb_ep_VT = s_cudb_ep_VT.sample(frac=frac, random_state=rnd_st) 

train_s_cudb_ep_VT = s_cudb_ep_VT[~s_cudb_ep_VT['ID'].isin(test_s_cudb_ep_VT['ID'])] 

val_s_cudb_ep_VT = train_s_cudb_ep_VT.sample(frac=val, random_state=rnd_st) 

train_s_cudb_ep_VT = train_s_cudb_ep_VT[~train_s_cudb_ep_VT['ID'].isin(val_s_cudb_ep_VT['ID'])] 

 

test_s_cudb_ep_VF = s_cudb_ep_VF.sample(frac=frac, random_state=rnd_st) 

train_s_cudb_ep_VF = s_cudb_ep_VF[~s_cudb_ep_VF['ID'].isin(test_s_cudb_ep_VF['ID'])] 

val_s_cudb_ep_VF = train_s_cudb_ep_VF.sample(frac=val, random_state=rnd_st) 

train_s_cudb_ep_VF = train_s_cudb_ep_VF[~train_s_cudb_ep_VF['ID'].isin(val_s_cudb_ep_VF['ID'])] 

 

#VFDB 
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test_s_vfdb_nshr = s_vfdb_nshr.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_nshr = s_vfdb_nshr[~s_vfdb_nshr['ID'].isin(test_s_vfdb_nshr['ID'])] 

val_s_vfdb_nshr = train_s_vfdb_nshr.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_nshr = train_s_vfdb_nshr[~train_s_vfdb_nshr['ID'].isin(val_s_vfdb_nshr['ID'])] 

 

test_s_vfdb_seg_VT = s_vfdb_seg_VT.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_seg_VT = s_vfdb_seg_VT[~s_vfdb_seg_VT['ID'].isin(test_s_vfdb_seg_VT['ID'])] 

val_s_vfdb_seg_VT = train_s_vfdb_seg_VT.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_seg_VT = 

train_s_vfdb_seg_VT[~train_s_vfdb_seg_VT['ID'].isin(val_s_vfdb_seg_VT['ID'])] 

 

test_s_vfdb_seg_VF = s_vfdb_seg_VF.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_seg_VF = s_vfdb_seg_VF[~s_vfdb_seg_VF['ID'].isin(test_s_vfdb_seg_VF['ID'])] 

val_s_vfdb_seg_VF = train_s_vfdb_seg_VF.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_seg_VF = 

train_s_vfdb_seg_VF[~train_s_vfdb_seg_VF['ID'].isin(val_s_vfdb_seg_VF['ID'])] 

 

test_s_vfdb_seg_VFL = s_vfdb_seg_VFL.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_seg_VFL = s_vfdb_seg_VFL[~s_vfdb_seg_VFL['ID'].isin(test_s_vfdb_seg_VFL['ID'])] 

val_s_vfdb_seg_VFL = train_s_vfdb_seg_VFL.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_seg_VFL = 

train_s_vfdb_seg_VFL[~train_s_vfdb_seg_VFL['ID'].isin(val_s_vfdb_seg_VFL['ID'])] 

 

test_s_vfdb_border_VT = s_vfdb_border_VT.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_border_VT = s_vfdb_border_VT[~s_vfdb_border_VT['ID'].isin(test_s_vfdb_bor-

der_VT['ID'])] 

val_s_vfdb_border_VT = train_s_vfdb_border_VT.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_border_VT = train_s_vfdb_border_VT[~train_s_vfdb_bor-

der_VT['ID'].isin(val_s_vfdb_border_VT['ID'])] 

 

test_s_vfdb_border_VF = s_vfdb_border_VF.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_border_VF = s_vfdb_border_VF[~s_vfdb_border_VF['ID'].isin(test_s_vfdb_bor-

der_VF['ID'])] 

val_s_vfdb_border_VF = train_s_vfdb_border_VF.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_border_VF = train_s_vfdb_border_VF[~train_s_vfdb_bor-

der_VF['ID'].isin(val_s_vfdb_border_VF['ID'])] 

 

test_s_vfdb_border_VFL = s_vfdb_border_VFL.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_border_VFL = s_vfdb_border_VFL[~s_vfdb_border_VFL['ID'].isin(test_s_vfdb_bor-

der_VFL['ID'])] 

val_s_vfdb_border_VFL = train_s_vfdb_border_VFL.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_border_VFL = train_s_vfdb_border_VFL[~train_s_vfdb_bor-

der_VFL['ID'].isin(val_s_vfdb_border_VFL['ID'])] 

 

test_s_vfdb_ep_VT = s_vfdb_ep_VT.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_ep_VT = s_vfdb_ep_VT[~s_vfdb_ep_VT['ID'].isin(test_s_vfdb_ep_VT['ID'])] 

val_s_vfdb_ep_VT = train_s_vfdb_ep_VT.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_ep_VT = train_s_vfdb_ep_VT[~train_s_vfdb_ep_VT['ID'].isin(val_s_vfdb_ep_VT['ID'])] 
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test_s_vfdb_ep_VF = s_vfdb_ep_VF.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_ep_VF = s_vfdb_ep_VF[~s_vfdb_ep_VF['ID'].isin(test_s_vfdb_ep_VF['ID'])] 

val_s_vfdb_ep_VF = train_s_vfdb_ep_VF.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_ep_VF = train_s_vfdb_ep_VF[~train_s_vfdb_ep_VF['ID'].isin(val_s_vfdb_ep_VF['ID'])] 

 

test_s_vfdb_ep_VFL = s_vfdb_ep_VFL.sample(frac=frac, random_state=rnd_st) 

train_s_vfdb_ep_VFL = s_vfdb_ep_VFL[~s_vfdb_ep_VFL['ID'].isin(test_s_vfdb_ep_VFL['ID'])] 

val_s_vfdb_ep_VFL = train_s_vfdb_ep_VFL.sample(frac=val, random_state=rnd_st) 

train_s_vfdb_ep_VFL = 

train_s_vfdb_ep_VFL[~train_s_vfdb_ep_VFL['ID'].isin(val_s_vfdb_ep_VFL['ID'])] 

 

#CONCAT 

train_s_VF = pd.concat([train_s_cudb_border_VF, train_s_cudb_ep_VF,  

                        train_s_cudb_seg_VF,  

                        train_s_vfdb_border_VF, train_s_vfdb_ep_VF,  

                        train_s_vfdb_seg_VF]) 

train_s_VF['class'] = train_s_VF['label'].apply(classFunc) 

 

test_s_VF = pd.concat([test_s_cudb_border_VF, test_s_cudb_ep_VF,  

                        test_s_cudb_seg_VF,  

                        test_s_vfdb_border_VF, test_s_vfdb_ep_VF,  

                        test_s_vfdb_seg_VF]) 

test_s_VF['class'] = test_s_VF['label'].apply(classFunc) 

 

val_s_VF = pd.concat([val_s_cudb_border_VF, val_s_cudb_ep_VF,  

                        val_s_cudb_seg_VF,  

                        val_s_vfdb_border_VF, val_s_vfdb_ep_VF,  

                        val_s_vfdb_seg_VF]) 

val_s_VF['class'] = val_s_VF['label'].apply(classFunc) 

 

train_s_VT = pd.concat([train_s_cudb_border_VT, train_s_cudb_ep_VT,  

                        train_s_cudb_seg_VT, 

                        train_s_mitdb_VT, train_s_mitdb_border_VT, 

                        train_s_mitdb_ep_VT, 

                        train_s_vfdb_border_VT, train_s_vfdb_ep_VT,  

                        train_s_vfdb_seg_VT]) 

train_s_VT['class'] = train_s_VT['label'].apply(classFunc) 

 

test_s_VT = pd.concat([test_s_cudb_border_VT, test_s_cudb_ep_VT,  

                        test_s_cudb_seg_VT, 

                        test_s_mitdb_VT, test_s_mitdb_border_VT, 

                        test_s_mitdb_ep_VT, 

                        test_s_vfdb_border_VT, test_s_vfdb_ep_VT,  

                        test_s_vfdb_seg_VT]) 

test_s_VT['class'] = test_s_VT['label'].apply(classFunc) 

 

val_s_VT = pd.concat([val_s_cudb_border_VT, val_s_cudb_ep_VT,  

                        val_s_cudb_seg_VT, 
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                        val_s_mitdb_VT, val_s_mitdb_border_VT, 

                        val_s_mitdb_ep_VT, 

                        val_s_vfdb_border_VT, val_s_vfdb_ep_VT,  

                        val_s_vfdb_seg_VT]) 

val_s_VT['class'] = val_s_VT['label'].apply(classFunc) 

 

train_s_VFL = pd.concat([train_s_mitdb_VFL, train_s_mitdb_border_VFL,  

                         train_s_mitdb_ep_VFL,  

                         train_s_vfdb_border_VFL, train_s_vfdb_ep_VFL,  

                         train_s_vfdb_seg_VFL]) 

train_s_VFL['class'] = train_s_VFL['label'].apply(classFunc) 

 

test_s_VFL = pd.concat([test_s_mitdb_VFL, test_s_mitdb_border_VFL,  

                         test_s_mitdb_ep_VFL,  

                         test_s_vfdb_border_VFL, test_s_vfdb_ep_VFL,  

                         test_s_vfdb_seg_VFL]) 

test_s_VFL['class'] = test_s_VFL['label'].apply(classFunc) 

 

val_s_VFL = pd.concat([val_s_mitdb_VFL, val_s_mitdb_border_VFL,  

                         val_s_mitdb_ep_VFL,  

                         val_s_vfdb_border_VFL, val_s_vfdb_ep_VFL,  

                         val_s_vfdb_seg_VFL]) 

val_s_VFL['class'] = val_s_VFL['label'].apply(classFunc) 

 

train_s_VFVFL = pd.concat([train_s_ahadb_border_shr, train_s_ahadb_ep_shr,  

                            train_s_ahadb_seg_shr]) 

train_s_VFVFL['class'] = train_s_VFVFL['label'].apply(classFunc) 

 

test_s_VFVFL = pd.concat([test_s_ahadb_border_shr, test_s_ahadb_ep_shr,  

                            test_s_ahadb_seg_shr]) 

test_s_VFVFL['class'] = test_s_VFVFL['label'].apply(classFunc) 

 

val_s_VFVFL = pd.concat([val_s_ahadb_border_shr, val_s_ahadb_ep_shr,  

                            val_s_ahadb_seg_shr]) 

val_s_VFVFL['class'] = val_s_VFVFL['label'].apply(classFunc) 

 

train_s_nshr = pd.concat([train_s_ahadb_nshr, train_s_cudb_nshr,  

                          train_s_mitdb_nshr, train_s_vfdb_nshr]) 

train_s_nshr['class'] = train_s_nshr['label'].apply(classFunc) 

 

test_s_nshr = pd.concat([test_s_ahadb_nshr, test_s_cudb_nshr,  

                          test_s_mitdb_nshr, test_s_vfdb_nshr]) 

test_s_nshr['class'] = test_s_nshr['label'].apply(classFunc) 

 

val_s_nshr = pd.concat([val_s_ahadb_nshr, val_s_cudb_nshr,  

                          val_s_mitdb_nshr, val_s_vfdb_nshr]) 
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val_s_nshr['class'] = val_s_nshr['label'].apply(classFunc) 

 

#%% STORE TRAIN, TEST AND VALIDATION MATRICES 

 

path = os.getcwd() 

folder = 'labels_dis' 

train_s_VF.to_csv(f'{path!s}\{folder!s}\\train_VF.csv', index=False) 

train_s_VT.to_csv(f'{path!s}\{folder!s}\\train_VT.csv', index=False) 

train_s_VFL.to_csv(f'{path!s}\{folder!s}\\train_VFL.csv', index=False) 

train_s_VFVFL.to_csv(f'{path!s}\{folder!s}\\train_VFVFL.csv', index=False) 

train_s_nshr.to_csv(f'{path!s}\{folder!s}\\train_nshr.csv', index=False) 

 

test_s_VF.to_csv(f'{path!s}\{folder!s}\\test_VF.csv', index=False) 

test_s_VT.to_csv(f'{path!s}\{folder!s}\\test_VT.csv', index=False) 

test_s_VFL.to_csv(f'{path!s}\{folder!s}\\test_VFL.csv', index=False) 

test_s_VFVFL.to_csv(f'{path!s}\{folder!s}\\test_VFVFL.csv', index=False) 

test_s_nshr.to_csv(f'{path!s}\{folder!s}\\test_nshr.csv', index=False) 

 

val_s_VF.to_csv(f'{path!s}\{folder!s}\\val_VF.csv', index=False) 

val_s_VT.to_csv(f'{path!s}\{folder!s}\\val_VT.csv', index=False) 

val_s_VFL.to_csv(f'{path!s}\{folder!s}\\val_VFL.csv', index=False) 

val_s_VFVFL.to_csv(f'{path!s}\{folder!s}\\val_VFVFL.csv', index=False) 

val_s_nshr.to_csv(f'{path!s}\{folder!s}\\val_nshr.csv', index=False) 

 

Figure 51: Python script for dataset management  


