(

= J Tampere University

Juho Kylvdja

INVESTIGATION OF POSITS AND IEEE-754
FLOATING POINTS

In hardware implementations of addition and multiplication
operations

Master's Thesis

Tampere University

Examiners: Prof. Karri Palovuori
Prof. Jukka Vanhala

April 2023

ABSTRACT

Juho Kylvaja: Investigation of posits and IEEE-754 floating points
Master’s Thesis

Tampere University

Master's degree Programme in Electrical Engrineering

April 2023

This thesis aims to investigate a relatively new alternative presentation for floating-point
arithmetic the type-3 UNUM, posit for a replacement of the widely used IEEE 754 floating-point
standard. The thesis's main focus is on arithmetic operations of addition and multiplication. First,
literature check of posit and IEEE 754 floating-point standards formats, special cases, overflow
and underflow operations, and rounding methods are conducted. Then the arithmetic
implementation steps of posit and IEEE 754 addition and multiplication operations on hardware
are shown. In addition, the tools used to analyze the chosen designs and the designed testbench
flow for behavioral verification of the designs is described. Finally, the results were examined,
followed by the conclusion.

The thesis concludes that posits could replace the currently widely used IEEE 754 standard
due to having better accuracy around one and betier dynamic range with 8, 16 and 32-bit
numbers. However, the synthesis results show that FPU achieves better area, delay and power
scores than the posit designs chosen in this thesis. Furthermore, implementing compatible
processors for posits would require lots of work and time. Overall, posits have great potential to
replace the |IEEE 754 standard. It is interesting to see how future studies on posits will affect the
future of floating-point arithmetic in hardware.

Keywords: UNUM, posit, arithmetic, IEEE 754, floating-point

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIVISTELMA

Juho Kylvaja: Investigation of posits and IEEE-754 floating points
Diplomityd

Tampereen yliopisto

Sahkatekniikan diplomi-insindari tutkinto-ohjelma

Huhtikuu 2023

Tamén tutkielman tarkoituksena on tutkia suhteellisen uutta vaihtoehtoista esitystapaa
liukulukuaritmeettiselle laskennalle, tyypin 3 UNUM:ia, joka voisi korvata laajalti kaytetyn IEEE
754 -liukulukustandardin. Ty8n p&&paino on yhteenlaskun ja kertolaskun aritmeettisissa
operaaticissa. Ensin tarkastellaan kirjallisuutta posit- ja IEEE 754 -liukulukustandardien
formaateista, erikoistapauksista, yli- ja alivuoto-operaativista seka pydristysmenetelmista. Sen
jalkeen esitetaan posit- ja IEEE 754 -liukulukujen yhteen- ja kertolaskuoperaatioiden aritmeettiset
toteutusvaiheet jarjestelmapiireissa. Lisaksi kuvataan tydkalut, joita kdyletaan valittujpn mallien
analysointiin, sek& testipankki vuo, jota on kiytetty verificimaan mallien funktionaalisuus. Lopuksi
tarkastellaan tuloksia, minka jdlkeen esitetdan johtopaatdkset.

Tutkielmassa todetaan, etté posit voisi korvata nykyisin laajalti kdytetyn IEEE 754 -standardin,
koska sen tarkkuus on parempi l&hell& yht& seka sen dynaaminen alue on parempi 8-, 16- ja
32-bittisilld luvuilla. Synteesitulokset osoittavat kuitenkin, ettd IEEE 754 liukulukuyksikks
saavuttaa paremmat pinta-ala-, viive- ja tehonkulutustulokset kuin tassa tutkielmassa valitut
posit-mallit. Liséksi yhteensopivien prosessoreiden toleuttaminen posit-malleille vaatisi paljon
tydta ja aikaa. Kaiken kaikkiaan posit-standardilla on suuri potentiaali korvata IEEE 754
-standardi. On mielenkiintoista nahd&, miten posit-malleja ja standardia koskevat tulevat
tutkimukset vaikutiavat jarjestelmapiirien liukulukuaritmetiikan tulevaisuuteen.

Avainsanat: UNUM, posit, aritmetiika, IEEE 754, liukuluku

Taman julkaisun alkuperdisyys on tarkastettu Turnitin OriginalityCheck -ochjelmalla.

PREFACE

This thesis was done for Nordic Semiconductor Finland Oy. | want to thank everyone
involved from Nordic: M.Sc Svein Henninen, M.Sc Alexander Skavnes and M.Sc Tommi
Raikkénen. In addition, | want to thank examiners from the University of Tampere Prof.
Karri Palovuori and Prof. Jukka Vanhala.

Finally, | want to thank my family and friends for their support.
Tampere, 24th April 2023

Juho Kylvaja

CONTENTS
1. INTRODUCTION 1
2. POSIT AND IEEE 754-2008 FLOATING POINTS 2
21 Type3posits L Lo Lo 2
22 IEEE754-2008o e 5
23 Overflow andunderflow 6
24 Specialcases00 Lo 6
25 Rounding. oo 7
3. |EEE 754 HARDWARE ARITHMETIC 9
34 Addition L L L Lo oo 9
3.2 Multiplication, 11
4. POSIT HARDWARE ARITHMETIC 13
4.1 Conversion fromposittoarealnumber 13
4.2 Extracting information from a positnumber 14
43 Additioncore L. L 0oL o e 15
4.4 Multiplicationcore 15
45 Constructingapositnumber L. 15
5. ARITHMETIC ACCURACY ESTIMATION 17
5.1 Addition and subtraction L. 19
5.2 Multiplication 20
6. TESTING ENVIRONMENTSANDTOOLS 23
6.1 Testbenchflow in simulations 23
6.2 ASIGsynthesiso Lo, 25
6.3 FPGA synthesis andplace &route. 25
64 Poweranalysis. 26
65 LEC. L Lo s e 26
66 LINT.o 27
7. RESULTS OF ANALYSIS AND BEHAVIORAL VERIFICATION. 28
7.1 Behavioral verification of chosen arithmeticunits 28
7.2 Comparison of addition hardware metrics 30
721 ASIC. Lo L 30
722 FPGA Lo e a2
723 Power oo e e e e e e 32
7.3 Comparison of multiplication hardwaremetrics 36

731 ASIC. Lo 37

732 FPGA
733 Power
8. CONGCLUSION

REFERENCES

ABBREVIATIONS
ASIC Application specific integrated circuit
CG-NN Convolution neural network
DUT Design under test
EDA Electronic design automation
FPGA Field-programmable gate array
FPU Floating-point unit
IEEE Institute of Electrical and Electronics Engineers
LEC Logic equivalence check
LOD Leading one detector
LSB Least significant bit
LUT Lookup table
LZD Leading zero detector
MSB Most significant bit
MUX Multiplexer
RTL Register transfer level
SAIF Spatial Archive and Interchange Format
SoC System on a chip
UNUM Universal number

vi

1. INTRODUCTION

Computer systems produce real numbers encoded as binary and they have their finite
limit in digital system hardware. Different computer systems need to produce similar
results from floating-point operations, thus a standard is needed. The most used
standard in computer architecture is the IEEE-754 floating-point format. The first
IEEE-754 standard was made in 1985 and newer revisions have been made since.
Currently the widely used standard is IEEE-754-2008. However, could there be a better
alternative standard for floating-point arithmetic in computer architectures?

This thesis will investigate this question by comparing the before mentioned
|EEE-754-2008 floating-point standard to type-3 UNUMs also known as posits. Posits
were introduced in 2017 by John Gustafson and it has supposed benefits over the
|IEEE-754 standard by having higher precision and better dynamic range with same
bitwidths. This thesis investigates and analyzes these differences and architecture
designs using analysis tools used in a system-on-chip design. The thesis aims to get
results from two different posit designs and compare achieved results from the tools to
corresponding |IEEE-754 floating-point units results. The chosen arithmetic operation
units were addition and multiplication.

First posits and IEEE-754 standard formats, special cases and rounding methods are
introduced in chapter 2. Then, their corresponding hardware architecture designs are
shown for addition and multiplication operations in chapters 3 and 4. In chapter & posit
accuracy compared to |EEE-754 floating-points is examined from related works by John
Gustafson. In chapter 6 the tools used for analysis, and the designed testbench flow for
the behavioral verification for design units are introduced. In chapter 7 the results from
the different analysis tools and behavioral verification are shown and compared. Finally,
conclusion is formed in chapter 8.

2. POSIT AND IEEE 754-2008 FLOATING POINTS

Floating-point arithmetic is a fundamental aspect of computing. In this chapter two
different ways of presenting floating-point arithmetic posits and IEEE-754-2008
standards are described. In addition to presenting their formats and number systems,
their associated special cases are covered when invalid or special operations are
performed. Furthermore, the overflow and underflow section will showcase when
numbers get extremely small or large and how the standards perform in these
conditions. Finally, possible rounding methods are introduced and their effect on the final
rounded result.

2.1 Type-3 posits

Posits consist of four fields: sign bit, regime, exponent and fraction. The sign bit is the
MSB, and determines whether the posit value is positive (0) or negative (1). After sign bit
comes the regime bit/bits. The first regime bit determines the regime sign and also the
termination bit. The termination bit is the first bit with the opposite value of the regime
sign bit. The regime field consists of consecutive regime sign bits terminated by the
termination bit. After the termination bit there are exponent bits. Exponent bit field length
is up-to beforehand determined es bits. If the exponent bit size es is two, the next two
bits after termination bit determine the exponent value. The rest of the bits are reserved
for fraction bits. [1] [2]

sign regime exponent fraction
T T T T T T T T T T T 11

olooo110111011101
N N N N N I NN AN NN NN S B
Figure 2.1. Four bit fields of 16-bits type-3 posit with es=3.

An example of a 16-bit posit field is shown in figure 2.1. From the figure 2.1 it can be
determined that the sign bit is "0", the regime bits are "000", the exponent bits are "101"
and finally, the fraction bits are "1101 1101". Notice that the termination bit "1" with the

brown color is not part of any of the fields. Regime value is determined by the run-length
of the regime bits and by the regime sign bit. If the regime sign bit is 0, the regime value
k will be determined by k = -mwhere m is the run-length of regime bits. If the regime
sign bit is 1, the regime value k will be determined by k = m-1. Regime value k is also
used to indicate the scale factor of so-called useed* value, where useed = 22", The
useed is used to determine the maximum and minimum values of N-bit posit. In addition
useed is used to calculate the real value of posit.

Exponent value e is an unsigned integer and is determined by the value of the es bits
and has the scaling effect of 2° to the real value of posit. [1, 2] How different bit fields
affect the real value of posit are later shown in cp. 4.1 in formula 4.1. Because of the
nature of regime bits varying in length, there can be posit values that do not have
exponent or fraction bits. An illustrative examples of such situations are shown below
with 8-bit posit when exponent size is es = 1. Different fields are separated with dash.

0—1111111

In the first example the posit value consist of the sign bit 0 and seven bit regime field
"1111111". Because the posit is 8-bit in length there are no exponent or fraction bits in
the posit value left after regime bits. Below is an example of 8-bit posit with exponent bits
when es = 1.

0-1111-0-1

Now the posit consist of the sign bit 0, four regime bits "1111", termination bit 0 and
exponent bit 1. In this example the regime bit field is terminated by the termination bit 0
and there are still bits left. In this example the exponent bit size is up-to one bit (es = 1)
so the next bit after termination bit is the exponent field. Similar way the fraction bits
would appear if the regime field would be only three bits long and exponent size would
again be es = 1. More examples of how regime can affect other fields sizes are shown
in cp. 4.1. Posit number system can be visualized by a circle.

=
[=]
(=
{
?, o Y
o My
™ . A
I+
8
110--10s-1 14010-5+10
A < b1
y x
Ay o
v § <
'R
+
*
)

Figure 2.2. Type-3 posit 3-bit number system with es = 1.

Type-3 posit's 3-bit number system is shown in figure 2.2. On the right side of the circle
are positive reals and on the left side are negative reals. Posit values always increase to
infinity on the right side and decrease to -infinity on the left side. Zero is always on the
bottom part of the circle. Infinity and -infinity in type-3 posits are both represented by 1
followed by only zeros. The value zero is represented by 0 followed by only zeros. From
figure 2.2 can also be noticed that -1 is always located in the leftmost place on the circle
and 1 on the rightmost place. One feature of the posit number system is that the opposite
values are on opposite sides of the circle. In addition to posits having the feature of
opposite numbers on opposite sides, posits have the feature of being reciprocal. In the
posit number system, every real value has its reciprocal value on the circle.

In figure 2.2 useed value is 4 since 22" = 4 if this example posit system of 3-bits would
be turned to 4-bit system, only zero would be added at the LSB of every posit on the
circle. In figure 2.2 the maximum real value maxpos is 4 and the minimum real minpos is
1/4. Maxpos value can be determined by mazpos = useed™ 2, where nis the number of
posit bits. Minpos can be determined by minpos = useed®—". When increasing the
number of bits the new maxpos and minpos can be determined using useed

newM azpos = marpos x useed and newMinpos = minpos/useed. When converting
4-bit posit to a 5-bit posit, new values are inserted halfway on existing posit values. Posit
bit amount n can range from 2 to n and the number of exponents bits can be n — 2.
Currently, the standard for posits is to use 0 exponent bits for 8-bit posits, 1 exponent bit

for 16-bit posits and 2 exponent bits for 32-bit posit. [1, 2]

2.2 |EEE 754-2008

The |IEEE 754-2008 floating-point standard consists of three fields: sign bit, exponent
and significand. Similarly, as in posits, the sign bit is the MSB and determines the sign of
the value. If the sign bit is 1, the value is negative; if the sign bit is 0, the value is positive.
The main difference between posit and |IEEE floating-point bit fields is that the exponent
and significand field lengths are determined beforehand in IEEE 754 floating-points
unlike in posit where the exponent and fraction bit field lengths can vary due to regime
bits. [3, 4] In the figure below, the floating-point bit fields are illustrated.

1 bit MSE wbits LSE MSB t = p—1 bits LSB
S E T
(sign)| (biased exponent) (trailing significand field)

Figure 2.3. IEEE 754-2008 floating-point bit fields. [4]

In the figure 2.3 the floating-point bit fields are shown, the MSB S is the sign bit, the E is
the biased exponent and T is the significand field. The biased exponent in the floating
point standard is defined to be E' = ¢ + bias, where the e is the exponent value and bias
is 2%~1 — 1 where w is the exponent field width. The bias value is also the maximum
value of the exponent field and the minimum exponent value can be computed from the
maximum value by emin = 1 — emaz. The width of the significand fieldist =p —1
where p is the chosen precision. The value of the significand field T is computed from
the significand bits [3, 4]. The real value of floating-pointwhen 1 < E < 2% — 2can be
computed from

(—1)5 x 2B-Ha2 o (1 4 217 x T) (2.1)

Suppose the £' = 0 and T' £ 0 the real value of floating-point is computed similarly as
above, except the exponent E' — bias is replaced by the minimum exponent value emin.
Floating-point values have corresponding opposite values but unlike posits
floating-points do not have a reciprocal value associated with every value.

Floating-point format specifies more special values than posits do. In posits, there are
only -Infinity and Infinity specified by the same binary format where the sign bit is 1 and
others are all zeroes. In floating-point standard special values are:

« Two infinities +Infinity and -Infinity
+ Two Kkinds of NaN (not-a-number) quiet NaN gNalN and signaling NaN sNaN

+ Two Kinds of zero values +0 and -0

the |IEEE 754 standard specifies that 32-bit numbers should have 8 exponent bits and
16-bit numbers should have 5 exponent bits. Standard does not specify bit sizes for
under 16 bits so with the bit width of 8 used in this thesis 3 exponent bits have been
used. [3, 4]

2.3 Overflow and underflow

In posits, underflow or overflow do not occur but in IEEE 754-2008 there are a few rules
associated with overflow and underflow. [2, 1] In the IEEE 754-2008 standard overflow is
specified so that if the result value after rounding exceeds the largest possible finite
number, and the exponent field overflows, will the result value be set according to what
rounding format is used:

+ roundTiesToEven and roundTiesToAway in default sets result to infinite based on

the intermediate results sign.

» roundTowardsZero in default sets result to formats largest finite number based on
the sign of intermediate result.

» roundTowardNegative in defaults sets positive overflows to formats largest finite

number and negative overflows to -infinity.

» roundTowardPositive in defaults sets negative overflow to formats largest finite
number and negative overflow to +infinity.

In the case of overflow, the overflow flag will also be raised with the inexact flag.
Underflow in floating-point standard occurs when a number is a small non-zero value.
Underflow can be detected either before rounding or after rounding. Underflow before
rounding occurs when the exponent range is between +2™ or —2°™"_ After rounding
underflow is detected when non-zero values exponent range and precision range lie
between +2°™" or —2™"_ Underflow is handled by always returning a rounded result
which can be one of three things: zero, subnormal or between +2™" or —25™"_ [4, 3]

2.4 Special cases

In the posit standard there are only three special cases: infinity, zero and NaN for invalid
operations such as root of a negative number. [1] In the IEEE 754 floating-points,
multiple exception cases are associated with arithmetic and status flags. Floating-point
arithmetic throws exception NaN in IEEE 754-2008 standard when performing invalid
operations such as adding infinities, dividing by zero or trying to get the square root of a
negative number. As specified earlier, there are two kinds of NaNs gNaN and sNal.
sNaNs can be used for example as a uninitialized variables that do not appear in default

operational mode. sNaNs signals exception when they are operands. gNaNs are used
for debugging by enabling and disabling traps.

Traps are different invalid operations. If the trap is disabled and invalid operations for that
given trap occur, result will be gNaN. [3] gNaN and sNaN binary encodings can vary by
different processor architectures, but the IEEE 754 standard specifies binary to present
gNaN and sNaN when E' = bias and T' # 0. In |IEEE 754 standard there are two kinds
of zeros +0 and -0. They are encoded in binary by all exponent and fraction fields zero.
The sign of the zero value is again determined by the sign bit. In |IEEE 754 standard
there are two Kinds of infinities as well: +infinity and -infinite. Infinite is encoded in binary
by having all the exponent bits as 1 and all the fraction bits as 0. The sign bit again
determines the sign of infinity. In the IEEE 754 floating-point standard there are also
numbers called subnormal numbers which are numbers that are non-zero but smaller
than the format's smallest normal number. In addition, one special case in the IEEE 754
floating-point standard is the inexact flag that is raised when the result is not the exact.
[4] In posit standard there are no flags.

2.5 Rounding

Floating-point arithmetic has different rounding methods due to the nature of
floating-point operation results only sometimes being exactly presentable in
floating-point systems. [3] In the IEEE 754-2008 standard there are four different
rounding methods specified:

« round toward negative
= round toward positive
* round toward zero

* round-to-nearest

The first three rounding algorithms work similarly as in overflow and underflow situations
described in cp. 2.4. If round towards negative is used, number is rounded towards a
smaller number or equal to the value before rounding. Rounding towards positive
produces a larger or equal number to non-rounded value. In floating-point standard
these rounding operations can produce +infinite or -infinite. Round toward zero has the
same functionality as round toward negative but does not produce -infinity as an answer.
[3, 4]

Default rounding used in floating-point arithmetic as well as in posits is the
round-to-nearest method [3, 2, 1]. The round-to-nearest method has two options:
roundTiesToEven (round to nearest even) or round TiesToAway. In roundTiesToEven
number is rounded to the value closest to the intermediate result. If the intermediate

result is equally close to two different numbers, the one with integral significand bit being
even is chosen. roundTiesToAway works similarly as roundTiesToEven but when two
numbers are equally close to the intermediate result, one that is further from zero is
chosen as the result. [4] In the table 2.1 below different rounding method functionality is
shown with example values.

Table 2.1. Different rounding methods and their impact on real value

Rounding method 115 125 -115 -125

to nearest, ties to even 120 120 -120 -12.0

to nearest, ties away fromzero [12.0 13.0 -12.0 -12.0

toward 0 11.0 120 -11.0 -12.0

toward negative (-infinite) 11.0 120 -120 -13.0

toward positive (+infinite) 120 13.0 -11.0 -120

In this thesis the chosen rounding method for floating-point units is round-to-nearest,
because posits use that rounding method.

3. |EEE 754 HARDWARE ARITHMETIC

The |IEEE 754 standard is a widely used standard for representing floating-point
numbers. In computer systems and in arithmetic operations, addition and multiplication
are one of the most important operations to be performed. This chapter describes steps
for performing addition and multiplication in the IEEE 754 standard. Furthermore,
dual-path hardware implementation designs for addition and multiplication are examined.

3.1 Addition

The basic implementation of the addition algorithm for floating-points can be described
well in steps. First, the inputs’ x and y exponent fields are compared to ensure that

er = ey if this does not hold true the inputs are swapped. Then the smaller input's
significand will be aligned by right-shifting it by the exponent difference of e, — e,. After
significand alignment, the significand will be either added or subtracted according to the
sign bits of the inputs. Simple XOR logic can determine the operation with the input sign
bits as follows s, & s,. If the result significand is negative, then negation will be
performed. After these steps result of sum is achieved. This result is then normalized in
two cases. [3]

« Garry out in the significand addition

» Cancellation in the significand addition

If the carry out in the significand addition occurs, the result significand will be
right-shifted by one digit and the result exponent will be incremented unless the result
exponent equals £,,,4.. In that case, overflow is signaled. If cancellation occurs, the
number of leading zeros will be determined and the result significand is then left-shifted
by the number of leading zeros, and the same number will be subtracted from the result
exponent. If, after performing these steps the results exponent is smaller than e,;,, the
exponent will be set to e,,,;,, and the result significand will be left-shifted by e, — e,,,;,.-
After normalization, rounding and exception handling will be performed. Possible
exceptions in addition operation are invalid operation, overflow, underflow and inexact.
[3] Below in figure 3.1 the hardware implementation of dual-path floating-point
addition/subtraction is shown.

10

x y

||

exp. difference / swap

€y Ity L r';"_,r' +/—= Er — Ey

Ebllt shift I my Shlﬁ

frpll

A2p+ 2
ime — my| % M j
I+ 1 — +/- sticky

= LZCJ'IIShlﬂ £, p+ 14 aqlr 5
| prenorm (2-bit shift) |

ose path

C

rounding,normalization
and exception handling

Figure 3.1. a dual-path floating-point addition hardware implementation. [3]

This dual-path hardware implementation works in steps similarly as mentioned before.
First, input exponents are compared and possibly swapped. Then, from inputs, the
extracted information, the exponent and the significand fields are transmitted to
according places. The exponent difference calculation determines the amount of shifting
on the smaller input on the 'far path’. After the shifting operation, the aligned and larger
inputs significand is added or subtracted. Then the intermediate result with possible
carry out together with least significand bits of the significand sum and the g guard bit, r
round bit and s sticky bit will be inputted to prenorm. In prenorm the following action is
decided by the two leading bits. If carry out has occurred (MSB=1), the result exponent
will be setto e, = e, + 1 and new sticky bit s’ will be computed using the guard, the
round and sticky bit from the previous step by s' = g V r Vv s. If the leading bits are "01",
the result significand is obtained by removing the leading zero from the MSB, and guard
bit is concatenated to the LSB and the result exponent will be set to the exponent of the
larger input and s' = r V s. If leading bits are "00", the result exponent will be set to

e, — 1and s = s. After prenorm the result exponent, significand and sticky bit from the

11

tar-path will be transmitted to the multiplexer before final procedures.

The 'close path’ is for cases where the exponent difference between inputs is at most 1
and cancellation occurs. In the close path, the subtraction of the significands will always
be performed. If the resulting significand is a negative, negation of the significand will be
done. LZC (leading zero detector) and shifting will be done for the cancellation case as
mentioned before. Multiplexer then chooses which of the two paths results are chosen
as the intermediate result before rounding. Finally, normalization and error handling
phase is performed. [3]

3.2 Multiplication

Multiplication in floating-points is more simple than addition. Multiplication result of the
inputs x and y is achieved by the product of the significands m, and m, multiplied by the
base 3 which is 2 for binary number system and 10 for decimal number system. The

power of (3 is the exponent sums e, and e, as follows [3]:

MM, X 5=+ (3.1)

From the formula above, the computation of the multiplication result can be divided into
two parts: one for mantissa multiplication and the other for exponent sum. Below in
figure 3.2 such an implementation is illustrated. [3]

12

ext+b e, +b Lm, Lm,

b | h—l 1 ><

¥
oy

rounding
logic

mnc

= mode

q}"’:
[+q -+ o

no,

or= incrementer

4;,—1

.+ b .

Figure 3.2. Multiplication of floating-points. [3]

On the left side of the figure 3.2 occurs exponent computation and on the right side
mantissa multiplication and rounding. Exponent computation is quite a straightforward
operation of adding x and y inputs exponents together with bias b. After the exponent
sum, the bias is subtracted from the result of addition and in the case of the carry bit,
one is subtracted. These two computations in this given implementation example occur
parallely and both computations are transmitted to a multiplexer controlled by OR-port
from the mantissa multiplication side. On the multiplication side the signficands m, and
m,, are first multiplied and the sticky bit is used for rounding and can be obtained from
that operation directly. After rounding, final normalization will be performed and if there is
a carry-out the exponent result with the added one is chosen from the exponent
computation side. Possible exceptions in multiplication are invalid the operation,
overflow, underflow, and inexact [3]

13

4. POSIT HARDWARE ARITHMETIC

Posits have been recently developed as an alternative to traditional floating-point
arithmetic. In this chapter, the steps for performing addition and multiplication operations
are described. Posit hardware implementation usually consists of three parts: decoding
the posit, operational core and encoding the posit. In posit decoding, the different bit
fields are separated for the operational core. In the operational core, the wanted
operation is performed and finally in the encoding part different parts are decoded to
achieve the final posit result. Furthermore, the conversion from posit to a real value
formula is shown with examples.

4.1 Cornversion from posit to a real number

To better understand how different parts of the posit format affect the corresponding real
value of the posit number, conversion from posit to the real formula is presented. The

posit number real value can be achieved by the following formula

s x (22°Nk 28 f (4.1)

where s is the sign bit value, es exponent bit amount, e exponent value, k regime value
and f fraction value. The fraction field also includes hidden bit 1. If the posit value is
negative, a 2's complement of the posit value will be taken. After possible 2's
complement posit fields and their values will be decoded from the posit. [5, 6, 7] Few
examples of 8-bit posit conversion to a real value are shown below with a two different
number of exponent bits es. Fields are separated with a dash.

ES=2
10001111 — ¢ — 01110001 — 0—1110—00—1 — — (23")?42%(14-(1.0/2)) = —384

00001111 — 0 — 0001 — 11 — 1 — +(29)=2 % 22 x (1 4 (1.0/2)) = 0.0029296875

ES=3

00000111 — 0 — 00001 — 11 — +(2%)~% % 26 % (1 + 0.0) = 1.4001210~%

14

11101011 — 2'c — 00010101 — 0 — 001 — 010 — 1 —
—(2)72 %22 % (1 + (1.0/2)) = —0.0000915527

In the first example the sign bit is one; thus the 2's complement must be taken. After 2's
complement the value is "0111 0001" next the regime, the exponent and the fraction bits
need to be determined. The first regime bit is 1 after the sign bit. The regime field
consists of consecutive bits of first regime bit and is then terminated by the termination
bit. The termination bit is the opposite value of the regime bit. From the example value
"0111 0001", the regime is the "111" after the sign bit "0" terminated by the "0" thus the
run length is 3. The value k can be computed from run length minus 1 since the regime
sign bit is 1, k=RunLength-1=3-1=2. If the regime sign bit would have been 0, the k
value would be just the run length of consecutive zeros. Next, the exponent bits and their
corresponding values are determined. The es value is two, thus there can be up-to two
exponent bits. Exponent bits appear after termination bit. In this example the next two
bits are "00" thus, the corresponding exponent value e is 0. The rest of the bits are
fraction bits. The only bit left is the fraction bit 1. The calculation shows that the fraction
value is calculated by adding the hidden one bit to the fraction value divided by 275
where fBits is the amount of fraction bits. [5, 6, 7]

4.2 Extracting information from a posit number

In posits the information extracting part is always done first. This part is also one of the
main differences between |EEE standard floating-points and posits in their hardware
implementations. In posits, first the special cases of zero and infinity are checked. After
that, the sign bit is taken from the MSB place: if the sign bit is one, then the 2's
complement will be taken from the rest of the posit value - except the sign bit part. After
the possible 2's complement the regime sign bit is determined from the next bit of the
MSB. Regime sign bit is then used to determine the run length of the regime using a
leading one detector, leading zero detector or parametrizable detector. In these
detectors, the number of consecutive regime sign bits is computed. If the regime sign bit
is 1 the run length of the regime is the number of consecutive bits minus one. If the
regime sign bit is 0, the run length value is the number of consecutive bits. After the
regime field is achieved the posit value is left-shifted by the run length value to determine
the exponent and fraction bits. The MSB after shifting is the first exponent bit. The
number of exponent bits is known. Thus, the exponent bits can be computed from the
MSB to the right by the number of available exponent bits. Finally, rest of the bits, if any
are left, are fraction bits. [8, 5, 6]

15

4.3 Addition core

Posit addition core works very similarly as depicted in IEEE 754 floating points in cp 3.1
after decoding of input posit operands into corresponding parts sign, regime, exponent
and fraction is performed. First, the operation is computed from the sign bits by
xor-operation. In addition, special cases of infinity and zero are checked if not already
done in the decoding part. Then scaling factors are computed by concatenating input
operands’ regime and exponent bits and comparing the absolute values of inputs. After
larger and smaller operands are found, the offset is used to right-shift the smaller
operands’ fraction bits. The offset is computed by subtracting the scaling factors and
taking the absolute value of the result. Next, fraction bits are either subtracted or added
depending on the operation. Then possible overflow is checked and the normalization of
fraction bits will be performed by inserting the intermediate fraction bit value to LZD
where the number of leading zeros once again shifts fraction bits and then the scaling
factor will be adjusted by adding larger scaling factors fraction bits with possible overflow
bit and subtracting the leading zero count from normalization LZD. [8, 5]

4.4 Multiplication core

The posit multiplication core is much simpler than addition. First, special cases are
checked and scaling factors are constructed similarly as in addition core by
concatenating regime and exponent bits from the decoder. After that, multiplication
operation of fraction bits is performed, the possible overflow is checked, and the
multiplication fraction result is normalized. Finally, the scaling factors are added together
with the overflow bit value, which can be either 0 for no overflow or 1 for the overflow

case. [5]

4.5 Constructing a posit number

Posit numbers after the core operation are usually transmitted to a new algorithm that
encodes the parts produced in the core operation back to the final posit value. First, the
exponent bits and regime bits are extracted from the adjusted scaling factor and the
regime sign bit is determined from the MSB of the regime. If the regime bit is 1, the
absolute value of the regime is taken and one is subtracted from the regime value.
Exponent and normalized fraction are concatenated and then shifted by the regime
value. After that, rounding bits LSB, G, R and S are determined from the shifted
intermediate value. LSB is the bit that is the final bit of n-value posit but after the LSB
there are still more bits for the rounding purpose. After LSB, in the given order is G
guard, R round and rest of the bits are sticky bits S and the value of the sticky bit is
computed by bitwise or-operation for the rest of the bit array. The rounding value is then

16

computed from these rounding bits as follows:

Round = G A(LSBV RV S) (4.2)

Finally, the posit value is constructed by concatenating the result sign bit with the
intermediate result and adding a rounding bit. [8, 5]

17

5. ARITHMETIC ACCURACY ESTIMATION

There are a few direct studies on accuracy differences between posits and the |EEE-754
floats. Supposedly, posits are more precise and have a higher dynamic range than floats
of the same bit width. Even smaller bit width posits can provide more precise results
than larger bit width floats. [9] In some machine learning examples using C-NN, 16-bit
posits have produced more precise results than 32-bit floats and even better efficiency
[10]. Fewer bits needed in computations would reduce the amount of needed memory.
The reason for better accuracy in posits is that fewer bits are reserved for the exponent
and thus, more is left for fraction bits. For example, in 16-bit floats there are 5 bits
reserved for the exponent and 10 for fraction bits. In 16-bit posits on the other hand, only
one bit is reserved for the exponent, and the fraction bits can thus be up to 12 bits. The
difference in the number of fraction bits increases when using 32-bit posits and floats
[11]. In the 32-bit numbers floats have 8 exponent bits and thus 23 bits for fraction. In
32-bit posits there are only 2 exponent bits; thus, the fraction bits can be up to 27 bits. In
addition to the fraction bit amount, the amount of special cases in posits is only two,
leading to more number representation with the same amount of bits compared to floats
where there are multiple different special cases [10].

The amount of fraction bits varies in posit numbers due to regime bits. Regime bits are
used to scale the values with exponent bits and get posits to have tapered accuracy. [2]
Tapered accuracy means that the accuracy of posits will decrease towards maximum
and minimum values but be more accurate around zero where most of the computations
in general occurs. [11, 2]

In addition to better accuracy, posits have better dynamic range than floats, at least from
8 to 32 bits. Dynamic range can be calculated using the smallest positive finite value and
the largest positive finite value. The formula for the dynamic range is

logio(mazpos /minpos) (5.1)

where maxpos is the largest positive finite value and minpos the smallest positive finite
value. If dynamic range for 8-bit posits and floats would be calculated using one
exponent bit for posits and using so-called quarter-precision floats where there are 4
exponent bits, would the dynamic range of floats be 5.1 decades and for posits 7.2

18

decades. Posits thus have 2 decades better dynamic range compared to floats in

quarter-precision example. The table below lists dynamic ranges of floats and posits for
bit widths from 8 to 256. Even though floats do not have an 8-bit standard, for
comparison purposes floats with 3 exponent bits are used.

Table 5.1. Dynamic ranges of floats and posits with different bit widths [2]

Size, | IEEE Float Approx. IEEE Float Posit Approx. Posit
Bits | Exp. Size Dynamic Range es Value Dynamic Range
8 3 1.56 % 10~2 to 15.5 0 1.52 % 102 to 64
16 5 6% 1075 to 7 % 104 1 4%107% 0 3 % 103
32 8 1%10~% to 3 % 10%8 3 6% 1077 to 2 % 107
64 1 5% 1073 to 2 % 10%08 4 2 % 10729 to 4 % 1029
128 15 6 % 1074966 o 1 % 104932 7 1 % 1074355 to 1 4 109555
256 19 2 % 1077884 g 2 4 107913 10 2 % 10775297 19 3 5 1075296

From the table 5.1, posits have noticeably better dynamic range compared to floats in 8,
16 and 32 bits. After that, the difference decreases slightly. The posit dynamic range
could be made larger using more exponent bits, but the accuracy aspect would then

worsen. Accuracy is determined in posits and floats using decimal accuracy. Decimal

accuracy determines how many decimals the floating-point values are accurate to the

correct answer. Decimal accuracy is calculated in decals by the following formula in posit

and float-like rounding systems

—logio(|logio(x/y)])

(5.2)

where x is the correct value and y the computed value. Decimal accuracy for a given

8-bit example is shown in figure 5.1 below.

Decimal accuracy

10§

(11 3

Posils

Floats

|‘4: logatx)

Figure 5.1. Posit and IEEE-754 floating point decimal accuracy illustrated [2]

19

From fig. 5.1, the decimal accuracy of posits is better near the middle, and floats have a
slightly better accuracy outside the middle. The figure also shows the nature of tapered
accuracy in posits towards the minimum and maximum area. In floats, on the other
hand, decimal accuracy drops directly down when numbers get towards maximum due
to many different NaN representations near maximum value. Towards minimum, floats
also decrease in accuracy due to the gradual overflow of floats. In tapered accuracy,
smaller term computation suffers loss in precision but in these given situation the
mantissa bits would anyway be shifted out. Therefore posits are more efficient than IEEE
floats, since IEEE floats do extra computation with the mantissa bits that would be
shifted out in the end anyways [11].[2]

5.1 Addition and subtraction

Posits and floats can both operate addition and subtraction with the same
implementation, so in the given example addition with negative input operands is used to
perform subtraction. This same 8-bit example of posits and floats can be illustrated on
the following two figures to see which parts produce exact, inexacts, overflows,
underflows and NaN's in 8-bit all exhaustive addition test. In addition to special cases,
the decimal loss is illustrated. In the fig. 5.2 below the computations of all exhaustive
inputs addition tests for floats and posits are shown.

Addition Closure [=Exact, ll=Inexact, [ll=0Overtlow, [[=NaM
Floats Posits

e al
e il

IEro

—maxreal
migixreal

—mercread TET0 manredi —maxreil TEro mrreal

Figure 5.2. Posit and IEEE-754 floating point complete closure plot for 8-bit all exhaustive
test in addition/subtraction [2]

The figure shows that overflow occurs in floats in maximum negative real and in
maximum positive real areas. In posits overflow does not occur. Diagonally from

maximum positive real to other operands maximum positive real occurs all the exact
answers in both posits and floats. In posits the exact answer diagonal is larger at
different points. Noticeably, floats have NaN rectangle rounding the closure plot; this
illustrates that floats have NaN operation all around the exhaustive closure plot, when
compared to posits where there are no NaN's. Below in fig. 5.3 the decimal loss and
percentage of different output flags are shown..

Decimal
loss

Floats Posits L J_ T
18.5% exact I | I 25015 cxact
o I | E—
inexact - . P
10 6% MNa (.00 153% NaN
0.635% overflow |

0% underflow

Posits

Losses,
DENENND 2o 30000 SO0 SO0 E&00a sorted

Figure 5.3. Posit and IEEE-754 floating point decimal loss for 8-bit all exhaustive test in
addition/subtraction [2]

The figure shows that the floats decimal loss seems to overflow to infinity when the
losses sorted amount increases and the posits on the other hand seem to gap to 0.3.
The figure shows that the decimal loss of posits is significantly less than in floats. Also,
the exact answer percentage is over 7% higher than in floats. Furthermore, the amount
of NaN's in floats is over 10% which is inefficient compared to zero NaM operation of
posits.

5.2 Multiplication

The same 8-bit exhaustive test was also done for multiplication. Similarly, the closure
plot and the decimal accuracy figures and the output flag percentage are shown below.

21

Multiplication Closure [ll=Exact, [ll=Inexact, [ll=0verflow, [ll=Underflow, [=MNaN
Floats Posits

mireal
mcreal

(g

(gl

e redl

o redn!

merxreal Zero maxreal maxreal e maxreal

Figure 5.4. Posit and IEEE-754 floating point closure plot for 8-bit all exhaustive test in
multiplication [2]

From the figure 5.4 Can be seen the same NaN rectangle on the border of floats as in
addition. Also, there are a lot more overflow cases in the corners. Furthermore, now
there are underflows as well. Underflows appear in the middle - except in the direct
center there is the effect of gradual underflow. In posits there are again no major
overflow, underflow and NaN cases. Two NaN points cannot be directly identified from
the graph but they occur from in finity x zero and —in finity x zerooperations.
Below the percentages and decimal loss graph is shown.

Decimal
luoss
. o 5
Floats Posits | T
22 3% exact [N | B 1 3.0¢% exact i
1% | S
mexact mexact

10.7% NaN 0.00305% NaN 020
12.5% overflow [l w15k
3.34% underflow | 10

Floats

ot
- Posils Losses,
i VOOEEE SO0 W0 600 40000 SO0 B G0 sorted

Figure 5.5. Posit and IEEE-754 floating point decimal loss for 8-bit all exhaustive test in
multiplication [2]

From the figure 5.5 can be seen that the exact percentage is now in favor of floats.
However, there are also a 12.5% of overflow, 3.34% of underflow, and 10.7 9% of NaN's.
In total, in floats there are no usable results for over 25% of the computed answers. On
the other hand, in posits almost all the cases produce a usable result. Decimal loss is

also again in favor of posits. Floats again overflow to infinite and posits gap to 3.6
decades. This rounding error happens in the worst possible case of marpos x maxpos.

23

6. TESTING ENVIRONMENTS AND TOOLS

Verification is a big part of the system-on-chip design flow, and the time consumed to
verification increases as designs get bigger and more complex. Different tools in a
system on a chip design flow are used to detect problems early in designs. This chapter
shows the implemented testbench for behavioral verification of chosen designs and the
design flow. In addition, ASIC and FPGA synthesis are described and the difference
between them. Furthermore, the importance of power analysis tools and use case in the
thesis is described. Also, a brief introduction to static verification and two tools used in
the thesis LINT and LEC are presented.

6.1 Testbench flow in simulations

Testbench used in the thesis was implemented to test the addition and multiplication
units of floats and posits. Bit widths tested were 8, 16 and 32-bits. For 8-bit numbers all
exhaustive test was used meaning all possible input combinations, negative and positive
were covered. For 16-bit and 32-bit numbers similar all exhaustive tests would require
much time and memory space. Thus, for these two bit widths, it was decided to use
random 500K test cases to save time and still try to cover a good amount of possible

cases.

First, the inputs were generated for all three used bit widths. For the 8-bit case python
script was used to generate all the different 8-bit values and write them to a two different
text files for x and y inputs. For 16-bit and 32-bit the same python generator was used to
generate random values, including special cases. Then the correct values needed to be
generated to compare them to the results from the tested designs. The softposit library
was used for generating correct results for posits, and for correct floats, softfloat library
was used [12, 13]. The posit library does not accept posit values as input for addition or
multiplication, so the generated input bits needed to be converted to real values before

using them as a parameter in the addition and multiplication functions.

Converting of bits to their corresponding posit real value was done by first using the
extracting algorithm for posits to extract the bit fields from the posit. Then these
extracted values were inserted into a formula 4.1. Python script then converted all the
bits used in the testing to their corresponding real value. Similarly floats were converted

24

to their corresponding real value using the formula 2.1. These real values were then
again written to a two input text files.

Then these real values were read from the text files and inserted into the corresponding
python libraries to get the correct result for comparison purposes. The correct results
were then again written to a new text file. After that the testbench was implemented so
that different designs are instantiated on the top-level and the wanted design can be
chosen with an integer parameter. The testbench worked by reading the inputs from the
generated input text files, and results were then computed using the computation unit.
After that, computed values were subtracted from the correct result produced by the
python libraries. If the result was zero the computed value was correct, and if not result
was incorrect. Below in the fig. 6.1 the created top-level of the implemented testbench is
shown with the needed parameters.

Correct result
text file

DESIGM {1-5)

FloPoco
B-bit (1)

In:tu:lx . . FloPoco
:'“’ e 16-bit (2)
¥ FloPoco

32-bit (3) Result

COmparison difference text

Inputy X block file
rextfiie | TR -

Temp_Z_5

FPU
X-bit (5)

TOP-level testbench

Figure 6.1. Testbench flow

From the figure, five different DUT instances are selected via 5-1 MUX with
corresponding design parameters. All the instances get their data x and y from the input
text files. Datapaths in the figure are shown with thicker arrows and logical signals with a
thinner arrows. From the figure can be seen the needed parameters: the number of bits
nBits, the exponent bit amount es, the FPU exponent width expWidth and the significand
width of FPU sigWidth. The tempZ is the temporary result inserted to the MUX and
which is then selected as the final result z. The final result is then compared to the
correct result from a correct result text file. The difference between the two results is
then rewritten to the result difference text file. The same top-level design was done to
adder and multiplication separately. In addition, simulation tools were used to identify if

25

there were problems with implementing the testbench design or with the design itself.

6.2 ASIC synthesis

ASIC (Application Specific Integrated Circuit) synthesis or logic synthesis is one of the
steps in the design flow in SoCs (System-On-Chips). In ASIC synthesis, the RTL design
is converted into a technology-specific gate-level netlist. Successful gate-level netlist has
the same logical operation as the RTL but can also be implemented on the SoC. The
synthesis is performed by EDA (Electronic Design Automation) tool. EDA tool takes as
an input the RTL design, design constraints and the technology libraries and proceeds to
create similar logic as in the RTL given and optimize the synthesized design according to
the design specific constraints and technology libraries. Design constraints are, for
example, related to timing and what specifications need to be met from the synthesized
design. Technology libraries are used to optimize the design area and delay further. [14]

In synthesis phase the EDA tools examine the design for things such redundant logic,
clock speed and timing constraints. This same examination occurs in FPGA synthesis as
well. [15] In this thesis the timing constraints of the design were chosen so that timing
violations did not occur. Also two different ASIC synthesis were performed for each
design. One with the fastest possible clock speed without timing violations reported by
the EDA and one with the slowest clock speed in its corresponding bit width to better
compare the areas and power between designs. In the thesis, every design was
successfully synthesized and area, delay and power were achieved from all the designs.

6.3 FPGA synthesis and place & route

FPGA (Field-Programmable Gate Array) is a chip where unlike in ASIC the internal logic
can be changed after manufacturing. FPGA consists of three configurable components:
the logic blocks, the routing elements and the input/outputs blocks. The logic blocks
have the wanted logic of the system and routing elements connect the logic to /0. Most
of the FPGA logic blocks consist of LUTs (Look-up tables). LUTs are components that
with specific input combinations produce beforehand computed answers. LUTs reduce
computation power but require area to store input combinations and outputs. [16, 17] In
addition to LUTs the logic blocks contain flip-flops to allow for combinational
(non-clocked) or synchronous (clocked) designs.

ASIC chips are a cost-efficient way of manufacturing chips in large amounts but require
significant capital to start the production. [17] To reduce the risk of incorrect design,
FPGAs are a good way to prototype the design and verify the physical design before
starting the production of the ASIC chip. The synthesis in FPGAs works similarly to the
ASIC synthesis except the resources available are slightly different than in ASIC and

depend on the target FPGA used. In this thesis the target FPGA used for synthesis and
place & route is Xilinx Kintex-7k325tfbg676-1

FPGA synthesis results are not accurate until the resources are placed and routing
elements are routed [15]. Due to this reason, place & route was also run for the FPGA
analysis. Place & route operation in this thesis was done only by the EDA automation
tool within constraints given to it. Further optimization could be achieved by continuing
the place & route analysis. In the thesis, number of LUTs and delay was achieved for all
the designs except for the FPU multiplier. The reason for this is unclear but it could be
that the tool used in the place and route operation did not support the FPU design from
another vendor.

6.4 Power analysis

Power analysis is an essential factor when designing a chip. Low power usage increases
battery life if the device is powered by a battery. In addition, low power usage reduces
the chip's temperature and thus the chip's reliability is better. [18] The needed amount of
power in chips is increasing because more transistors are added to the chips to increase
performance. In addition to this, the leakage powers of chips are increasing due to every
generation’s lowering threshold voltages of transistors. Leakage power means power
when the system is in the off state. In addition to leakage power, the total power usage
consists of activity power and switching power. [18]

In this thesis, the power analysis is done using a power analyzing tool that with given
constraints produces a SAIF file and power related reports. SAIF file is ASCI| format to
store the switching activity of the design [18]. This SAIF file is then used in a wave tool to
examine the wavetorm of the power on the design. All exhaustive tests for 8-bit posits
and floating-points are illustrated in the waveform to see how different input
combinations consume power. Only FloPoCo posit design was used to compare to the
floating-point unit [8].

6.5 LEC

LEC (Logic Equivalence Check) is one of the technologies of static verification tools
used in SoC development. Static verification tools mathematically tests different inputs
for signal to show possible problems within the design. This is different to simulations
since simulations require input set vector and testbench. In static verification the used
tool generates the inputs. Static verification tools thus save time from designing the
testbench and in addition static verification tools can cover corner cases that
testbenches do not. Best coverage nevertheless is achieved by the combination of both.
[19]

27

The underlying idea in using LEC in verification is to prove that two versions of the design
are functionally equivalent [19]. This thesis uses the LEC to verify that the synthesized
designs are functionally equivalent to the corresponding RTL design. In the thesis, all
the designs passed were equivalent to their design description. LEC runs are generally
more useful in bigger designs [19]. The designs used in the thesis are relatively small

6.6 LINT

Lint, in addition to LEC, is a static verification tool used in SoC development. Lint helps
speed up the verification flow when developing larger or smaller designs by running the
tool while the design is done without needing a testbench. In lint tocls, EDA will check
RTL design for violations set by rulesets given to the tool. The rulesets can be about
unconnected input/outputs, existing loops for example combinational loops, bit-width
mismatches on operation etc. [20]

Lint also understands design structures well and for more complicated designs,
schematics created by the tool can be viewed to verify that the design looks like
supposed to. Also, the schematic view can be used to fix bugs/problems. [20] In this
thesis designs were checked before synthesis for violations with the lint tool. No issues

were found in any of the chosen designs.

28

7. RESULTS OF ANALYSIS AND BEHAVIORAL
VERIFICATION

In this chapter, testbench ran results for every design, their synthesis results, and power
analysis are shown. Area, delay and power are important factors when designing
hardware implementations. Thus, these are the main factors examined in this thesis.
Behavioral verification results show if the designs have the correct functionality of the
standard. This chapter shows that FPU has better area, delay and power results than
the chosen posit designs. Furthermore, the FPU produces no errors with the input
vectors used. In posit designs, FloPoCo is better at following the posit standard
functionality and synthesis scores than PaCoGen.

7.1 Behavioral verification of chosen arithmetic units

In this thesis two different posit design and one FPU design was chosen for comparison.
Chosen posit designs were FloPoCo ad PaCoGen [8, 6]. They are different in that the
PaCo(Gen is a parametrizable design where the parameters are amount of bits and
exponent bit size and FloPoCo is not parametrizable and has its own leading zero
detector unit which also performs shifting [8]. These posits designs were chosen due to
already made studies between them and since they are both open-source [21, 22]. The
chosen FPU design is from a known vendor. First, to ensure correct results from
analysis tools, all the designs were tested with testbench flow described in cp 6.1 and
the results of that test are shown in a table 7.1 below.

Table 7.1. Design specific error amounts

Design | Size, Bits | Adder Error Amount | Multiplication Error Amount
8,0 1 0

FloPoCo 164 o o

(€] ’
32,2 0 0
8,0 X X

PaCoGen

6] 16,1 47 670 442
32,2 16 425 0
8,3 0 0

FPU 16,5 0 0
32,8 0 0

From the table 7.1 above, FloPoco has 1 error in all exhaustive test case for 8-bit
numbers, and PaCoGen does not support 0 exponent bits. Thus, results are not
achievable from 8-bit PaCoGen. In 16-bit tests, even though using 500k randomized test
inputs like described in cp. 6.1, PaCoGen produces almost 50k errors with an adder unit
and FloPoCo zero. In 16-bit multiplication the error amount is far less 442 but compared
to FloPoCo where the error amount is again zero, it can be determined that there are
many error combinations in PaCoGen algorithm. In the 32-bit test PaCoGen adder has
with the given 500k tests cases fewer errors than in the PaCoGen 16-bit adder. In 32-bit
adder unit PaCoGen produces 16 425 errors compared to FloPoCo zero errors. On the
other hand, in multiplication units with 32-bit numbers PaColen does not produce an
error with the given test cases. FPU unit does not produce errors with the test cases

used.

The testbench’s error definition is that, if the computed answer from the design unit
differs even one-bit from the reference values created by the posit python library [12] or
float library [13] is the answer incorrect thus error. All the errors from the table were
one-bit off from the value generated by the python libraries. The one-bit error occurred
randomly in the result values, so there where no specific position for the error bit. The
first idea was to check for flaws with the rounding algorithm because the rounding
algorithm adds one-bit to the intermediate value to achieve to final result. However,
further investigation showed that the problem is outside the rounding method. The
problem seems to occur with some specific input values, but further investigation of this
behavior was not continued in the thesis. Nevertheless, the algorithms still need
development to perform computation perfectly according to the posit standard. The
one-bit difference can be huge in some cases for example the sign of the answer can

30

change.

It is also noticeable that the coverage is incomplete with random test cases for 16-bit and
32-bit cases, so it is possible that in not covered input combinations lies more errors.
Because of this the error amounts gotten from the testbench, are not all the errors that
can be produced for 16-bit and 32-bit cases, but for 8-bit all the possible input cases are
covered. The multiplier results are better because of the simpler design compared to
addition.

7.2 Comparison of addition hardware metrics

This chapter shows the ASIC and FPGA synthesis results of addition operation in two
posit implementations and one FPU for bit widths of 8, 16 and 32. The results show that
area and power increase significantly when the number of bits increases and that FPU
achieves better scores than posit designs. However, posit designs have better dynamic
range and thus present more numbers with the same bit widths than |IEEE 754 floats.
Furthermore, the power analysis tool results are shown for FloPoCo and FPU in all
exhaustive 8-bit test.

7.2.1 ASIC

Below in table 7.2 is shown the optimized adder results for all the designs. Optimized
results mean that the clock constraint was decided by trying the fastest clock speed

without timing violation slack.

Table 7.2. ASIC synthesis results for optimised adder design units.

Adders | Size, Bits (I, es) | Area (um?) | Delay (ns) | Power (ui¥)
8.0 324 1.10 118
FloPoCo
16,1 867 1.41 214
(8]
32,2 1779 1.83 328
B0 X X X
PaCoGen
[E] 16,1 1111 1.51 227
32,2 2525 1.78 424
83 148 1.11 60
FPU 16,5 826 1.43 205
32,8 1096 0.95 380

31

From the table, the area score between 8-bit posit FloPoCo and FPU seems to be
almost half in FPU compared to posit and in addition to area the power score is half in
FPU compared to posit. In 16-bit designs best area, delay and power score is in FPU but
the area score is still over five times the 8-bit area. The area increase from 8-bit to 16-bit
design is quite siginicant in FPU design. When comparing posit designs FloPoCo seems
to have quite a noficeable better area and a better delay score than PaCoGen. In power
values the difference on the other hand is not that big. In 32-bit bit designs again, the
best area and delay score is with FPU design, but now a slightly better power score is in
FloPoCo. It is worth noticing that the FPU design delay score is much better with 32-bit
numbers when compared to any other design FPU design delay. The reason for this is
not clear. In posit designs area and power score is much better with FloPoCo but the
delay is slightly better with PaCoGen. Below in table 7.3 non-optimized ASIC synthesis
results are shown. Non-optimized synthesis results mean that the delay is chosen with
the same bit-width designs by finding which designs have the slowest clock speed and
using that found value with every design. The reason for this is to compare design
metrics better.

Table 7.3. ASIC synthesis results for non-optimised adder design units.

Adders | Size, Bits (I, es) | Area (um?) | Delay (ns) | Power (ui¥)
8,0 332 1.11 119

FloPoCo

i8] 16,1 708 1.51 173
32,2 1779 1.83 328
8,0 X X X

PaCoGen

6] 16,1 1111 1.51 227
32,2 2356 1.83 392
8,3 148 1.11 61

FPU 16,5 324 1.51 82
32,8 699 1.83 137

From the table 7.3 can be seen quite similar results as in the optimized table 7.2 except
that with bigger delay values the area scores get better. This can be best seen in the
FPU design. The reason for the area score to get better with a bigger delay is that the
synthesis tool does not try to optimize the design according to the delay and tries to

optimize the area more.

32

7.2.2 FPGA

From the table 7.4 below the FPGA synthesis results after automated place & route
operation for multiplier designs can be seen. The chosen values were achieved by trying
clock constraints so that timing violation slack did not occur.

Table 7.4. FPGA synthesis results for adders.

Adders | Size, Bits (N,es) | Area, LUT | Delay (ns)
8,0 150 101
FloPoCo 16,1 376 16.6
8] : :
32,2 904 22.6
8,0 X X
PaCoGen 16,1 533 16.6
[6] - :
32,2 1151 22.6
8,3 118 8.2
FPU 16,5 244 115
32,8 547 16.6

From the table 7.4 can be seen that the FPU design again has a better area and delay
scores compared to the posit designs. In posit designs FloPoCo again has a slight
advantage over PaCoGen design in terms of area. In delays the designs do not have
differences.

7.2.3 Power

The power analysis tool results of adder designs for posit and FPU are shown in this
section. The results are from an 8-bit all exhaustive test where all the possible
combinations of inputs and outputs are tested. Below is the table 7.5, the results for posit
adder are shown separately for register and combinational power groups. Also, their
internal, switching, leakage and total power are shown. In addition to that the percentage

of the total power in register and combinational power groups are shown.

Table 7.5. Power analysis results for posit adder.

33

Posit Adder [8] | Internal Power | Switching Power | Leakage Power | Total Power | %
Power Group (uW) (uW) (uW) (uW)
Register 224 109 69 402 37
Combinational 36 11 651 698 63
Reg + Comb 260 120 720 1100 100

From the table 7.5 can be seen that power consumption occurs mainly in the
combinational power group. All the designs in the thesis are entirely combinationals but
their inputs and outputs are registered in flip-flops for the purpose of getting delay
results. Most of the combinational power is consumed in leakage power. In the register
power group internal and switching powers consume the most power. In the figure 7.1

below waveform of one of the power spikes of the posit design is illustrated to see how

different input changes affect the power.

34

\
s e

Figure 7.1. Power graphs of 8-bit all exhaustive test in posit standard.

From the figure 7.1 can be seen the input x and y values and their produced output z
value and the power needed for that computation in the red graph. In this figure the
power spike occurs due to many input bits transitions simultaneously seen by the blue
arrows. The change in data value bits corresponds to more computation power. The
value of this peak in the design is 42,5 pW . Similarly, the FPU adder results from the
power analysis tool are shown in the table below.

Table 7.6. Power analysis results for FPU adder.

35

FPU Adder Internal Power | Switching Power | Leakage Power | Total Power | %
Power Group (#W) (uW) (W) (uW)
Register 0 0 5 51 12
Combinational 79 100 187 367 88
Reg + Comb 79 100 238 418 100

From the table 7.6 can be seen that the registers’ internal and switching power appears
to be zero and in combinational again the leakage power is the biggest power consumer.
The total power of the FPU is less than in posits; this could be because IEEE-754 has so
many special cases and thus, there is less computation for actual answers. From the
figure 7.2 below power peak of the FPU adder is shown similarly as in the posit adder.

36

a1 W= TE TR T TR T A TR T [Ta TelTE 31 YEE!
+ [T5]TE 31 Y2

(o G 1]
(5 RN}
e [=[7:0]
lerl (R = | 7]
fed [= 5]
florf [= (5]
Eod IR = (3]
[BB = |2
[er IR = 1]
o (R = (0]

Figure 7.2. Power graphs of zero case in 8-bit IEEE-754 floating-point standard.

From the figure 7.2 can be seen that the peak occurs similarly as in posits when many
input values change simultaneously. The power peak value in the figure is 8,54 uW.

7.3 Comparison of multiplication hardware metrics

In this chapter, the resulis for two different posit designs and one FPU design are shown
in multiplication. Synthesis results again show that the FPU achieves better results in
synthesis than posits. Furthermore, FloPoCo outmaiches PaCoGen. The area scores
are slightly lower in 8 and 16-bit cases in posits but rise significantly when bit width
increases to 32 bits. Also, the power analysis tool shows that multiplication uses less
power than addition.

37

7.3.1 ASIC

Below similarly as in adders the optimized design results of ASIC synthesis in multipliers
are shown in the table 7.7. The definition of optimized is similar to adders. Optimized
designs were found by trying different clock speeds and those values that were fastest

without timing viclations were chosen for each design.

Table 7.7. ASIC synthesis results for optimised multiplier design units.

Multipliers | Size, Bits (IV, es) | Area (pm?) | Delay (ns) | Power (uW)

8,0 385 0.90 150

FloPoCo

[EI] 16,1 1032 1.26 332
32,2 3118 1.55 867
8,0 X X X

PaCoGen

[E] 16,1 1279 1.38 354
32,2 3478 1.64 856
83 236 053 165

FPU 16,5 583 077 288
328 1727 094 744

Similarly to adders, the FPU design in the 8-bit case has a better area and delay score
than the 8-bit posit FloPoCo design. Compared to optimized results in adders in table
7.2 the area scores are smaller and delay scores are noticeably better in both FPU and
FloPoCo. Better scores are due to the simplicity of the multiplier design compared to the
adder design. Conversely, the power score is slightly better in 8-bit FloPoCo posit
design. In 16-bit designs again the best area and delay score is with FPU and also the
power score is better. In 16-bit posit designs FloPoCo has a better area, delay and
power score than PaCoGen. In 32-bit designs again best area, delay and power score is
with FPU. The area scores are significantly higher in 32-bit cases in posits compared to
their 16-bit implementation. The difference is almost triple in both FloPoCo and in
PaCoGen. Below in table 7.8 the non-optimized synthesis results are shown for
multiplier designs, as in cp.7.2 with adder designs.

38

Table 7.8. ASIC synthesis results for non-optimised multiplier design units.

Multipliers | Size, Bits (N, es) | Area (um?) | Delay (ns) | Power (uW¥)

8,0 385 0.9 150

FloPoCo

[EI] 16,1 827 1.38 245
32,2 2710 1.64 733
8.0 X X X

PaCoGen

[E] 16,1 1280 1.38 354
32,2 3478 1.64 856
83 144 0.9 68

FPU 16,5 468 1.38 131
328 1482 1.64 ar7

A similar analysis can be made from the non-optimized table 7.8. FPU has the best area
and power scores in the different bit-width designs. The same thing can also be noticed
in that the area scores of posit designs increase significantly with the 32-bit design.

7.3.2 FPGA

From the table 7.9 below the FPGA synthesis results after automated place & route
operation for multiplier designs can be seen. The chosen values were achieved by trying
clock constraints so that timing violation slack did not occur. The FPU design unit
multiplier results were not achievable because the FPGA synthesis tool did not support
the FPU design.

39

Table 7.9. FPGA synthesis results for multipliers.

Multipliers | Size, Bits (V, es) | Area, LUT | Delay (ns)
8,0 100 10.0
FloPoCo 16,1 210 14.0
(8] ’ '
32,2 543 21.2
8,0 X X
PaCoGen 16,1 231 14.0
[6] ’ '
32,2 544 21.2
8,3 X X
FPU 16,5 X X
32,8 X X

From the table 7.9, FloPoco has a slightly better area score than PaCoGen in 16-bit
design and the area scores in 32-bit design are almost exact. In delay scores the
difference was so slight that they have also been chosen to be exact when generating
the synthesis. From these results, the designs are similar regarding area and delay in
FPGA implementation.

7.3.3 Power

In this section the power analysis tool results for multiplier design are shown similarly as
in adder. Below in the table 7.10 and 7.11 internal, switching, leakage and total power for
register and combinational power groups are shown. The power waveform peaks of the

multipliers were similar to in the adder design, so they are not illustrated in this section to

save space.
Table 7.10. Power analysis results for posit multiplier.
Posit Multiplier [8] | Internal Power | Switching Power | Leakage Power | Total Power | %
Power Group (uW) (W) (uW) (uW)
Register 135 122 53 310 45
Combinational 2 0 T 379 E5
Reg + Comb 137 122 430 689 100

Table 7.11. Power analysis results for FPU multiplier.

FPU Multiplier | Internal Power | Switching Power | Leakage Power | Total Power | %
Power Group (#W) (uW) (W) (uW)
Register 183 83 30 306 71
Combinational 44 9 75 128 28
Reg + Comb 237 a2 105 434 100

From the table 7.10 can be seen the posit multiplier power analysis tool results. Most
power again is consumed in the combinational power group in leakage power. The part
of register power is higher in multiplier than an adder. The total power is less as well in

multiplier compared to an adder. In the table 7.11 the results for the FPU multiplier can
be seen. The register power is 71% of the whole design and the total power is less than
in the posit multiplier.

41

8. CONCLUSION

In chapter 2 the type-3 unum posit and IEEE 754-2008 floating-point standards were
presented. Posit consists of four bit fields: sign, regime, exponent and fraction. The
IEEE 754-2008 floating-point consists of three fields: sign, exponent and fraction. The
main difference in the formats lies in the fourth field of posits the regime field. The
regime field like described in cp. 2.1 can vary in length. The regime field consists of
consecutive bits of the first bit after the sign bit terminated by the termination bit which is
the opposite bit of the first regime bit. Because the regime field varies in length, there
are sometimes no exponent or fraction bits, unlike in IEEE 754 where the number of
exponents and fraction bits are fixed. In posits, only parameter value besides bit length
is how many bits at most are reserved for the exponent bits. In addition to the number
systems and formats, special cases were also introduced. In |IEEE 754 there are many
special cases compared to posits. IEEE 754 special cases are: gNaN, sNaN, +0, -0,
+infinity and -infinity. In addition to these special cases, IEEE 754 has subnormal
numbers that are less than the standard’s minimum value but are not zero. In posits
there are only two special cases, infinity and zero but there is also NaN for illegal
operations. Furthermore, operations on overflow and underflow situations were
introduced for IEEE 754 floating-point. In posits overflow or underflow do not occur.
Finally, in chapter 2 different rounding method functionalities for floating-points were
shown. Posits use the round-to-nearest even rounding method and in this thesis chosen

FPU performed round to nearest even as well.

In chapters 3 and 4 steps for performing addition and multiplication with IEEE 754 and
posits were shown. Posit and IEEE 754 perform addition and multiplication in a primarily
similar way. The main difference is that posits require sequential logic on encoding the
bit fields due to the varying length nature of the regime field. The operational core works
primarily similarly in both of the standards. Rounding logic is also slightly different than
in IEEE 754 and the rounding formula was shown in 4.2. In addition to the hardware
implementation description the formula for conversion of posit to real value was shown in
4.1. The reason for this was to illustrate how different bit fields affect the posit real value.
Similarly, for floats formula for conversion of IEEE floating-point to real value was shown
in2.1.

In chapter 5 accuracy results of Gustafson studies comparing |IEEE 754 floats to posits

42

were examined. In addition, different ways of calculating accuracy and precision were
shown with formulas. Furthermore, dynamic ranges of floats and posits were shown with
different bit widths in table 5.1. From Gustafson, studies can be determined that posits
have better decimal accuracy near 0 and due to tapered accuracy, the accuracy
decreases towards minimum and maximum values. |EEE 754 floats have steady
accuracy for larger area but the accuracy near zero, where most of the computation
occurs is less than with posits. In IEEE 754 floats, accuracy suddenly drops toward
maximum values. The table 5.1 also showed that posits have significantly better dynamic
range compared to floats in 8, 16 and 32-bit cases. After that with the used exponent
sizes the difference in dynamic range decreases slightly in favor of floats. In addition and
multiplication studies in chapters 5.1 and 5.2 can also be seen that the floats have a
significant amount of not presentable numbers in addition and multiplication compared to
posits such as NaN, overflow and underflow. Because of this the posits are more reliable
in producing a number after computations than floats that produce invalid numbers.

In chapter 6 the designed flow of testbench and how input vectors were created was
described in addition to what tools were used and why for analyzing the posit and FPU
designs. Finally, the tools' results were described in chapter 7. In chapter 7 showed that
from the testbench runs PaCoGen produced a significant number of errors in addition
operation and multiplication runs with the used input vectors compared to FloPoCo posit
design. The chosen FPU did not produce any errors in the testbench runs. Furthermore,
from the ASIC and FPGA synthesis metrics, the FloPoGo design outperforms PaCoGen
in metrics considering area, delay and power. In addition, PaCoGen cannot perform
calculations with 0 exponent bits. However, the FPU design outperformed FloPoCo in
the same metrics. In addition to the synthesis results power analysis was done for alll
exhaustive 8-bit test using the FloPoCo posit design and the FPU design. The power
analysis shows what consumes the most power from internal, switching and leakage
power and their total power value. Also, from the figures 7.1 and 7.2 can be seen that
simultanecus change in signals produce spiked in the waveforms.

In this thesis the goal was to investigate and compare |EEE 754 floating-point standard
to posit type-3 unum posit standard in addition and multiplication operations and to
determine if posit would be a good replacement for widely used IEEE 754 floating-points.
This goal was reached and the conclusion is that posit has the potential to replace floats
due to having better accuracy around one and dynamic range than floating-points.
However, the synthesis results show that the FPU design has a significantly smaller area
and better delay and power scores than any of the designs used in the analysis.
Furthermore, the replacement would be difficult because many processors would need
to be compatible for posit arithmetic. Future investigation should concern more on how
to get posit designs more efficient and further analysis in accuracy compared to floats.
Overall, type-3 unums represent an exciting new development in computer arithmetic,

and they have the potential to revolutionize the way we perform calculations in
floating-point arithmetic.

REFERENCES

[1]

[2]

3]

[4]

5]

[6]

8]

0]

[10]

[11]
[12]
[13]

[14]

John Gustatson. Notebook on posit. Aug. 2017. URL:
hitps//posithub.org/docs/Posits4.pdf.

John Gustatson and |. Yonemoto. “Beating Floating Point at its Own Game: Posit
Arithmetic”. In: Supercomputing Frontiers and Innovations 4 (June 2017),

pp. 71-86.

Jean-Michel. Muller. Handbook of Floating-Point Arithmetic. 1st ed. 2010. Boston,
MA: Birkhauser Boston, 2010.

“IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (2008).
Rohit Chaurasiya et al. “Parameterized Posit Arithmetic Hardware Generator”. In:
2018 IEEE 36th International Conference on Computer Design (ICCD). 2018,
pp. 334-341.

Manish Kumar Jaiswal and Hayden K.-H. So. “PACoGen: A Hardware Posit
Arithmetic Core Generator”. In: IEEE Access 7 (2019), pp. 74586-74601.
Manish Kumar Jaiswal and Hayden K.-H. So. “Architecture Generator for Type-3
Unum Posit Adder/Subtractor”. In: Proceedings - IEEE International Symposium
on Circuits and Systems. Vol. 2018-. 2018.

Raul Murillo, Alberto A. Del Barrio, and Guillermo Botella. “Customized Posit
Adders and Multipliers using the FloPoCo Core Generator”. In: 2020 |IEEE
International Symposium on Circuits and Systems (ISCAS). 2020, pp. 1-5.
Alapati Madhu Sravya, N. Swetha, and Asisa Kumar Panigrahy. “Hardware Posit
Numeration System primarily based on Arithmetic Operations”. In: 2022 3rd
International Conference for Emerging Technology (INCET). 2022, pp. 1-8.
Stefan Dan Ciocirlan et al. “The Accuracy and Efficiency of Posit Arithmetic”. In:
2021 IEEE 39th International Conference on Computer Design (ICCD). 2021,
pp. 83-87.

Florent de Dinechin et al. “Posits: The Good, the Bad and the Ugly”. In:
CoNGA'19. Singapore, Singapore: Association for Computing Machinery, 2019.
Cerlane Leong. SoftPosit-Python. 2020. URL:
https://gitlab.com/cerlane/SoftPosit- Python/-/tree/master/softposit.

Berkeley. Berkeley Softfloat 3. 2020. URL:

https:/gitlab.com/qemu- project/berkeley- softfloat-3.

Weng Fook Lee. Verilog Coding for Logic Synthesis. 1st edition. Wiley
Interscience Imprint, 2003.

https://posithub.org/docs/Posits4.pdf
https://gitlab.com/cerlane/SoftPosit-Python/-/tree/master/softposit
https://gitlab.com/qemu-project/berkeley-softfloat-3

[15]
[16]
[17]
[18]

[19]

[20]

[21]
[22]

45

Gina Smith. FPGAs 101: Everything You Need to Know to Get Started. Elsevier
Science & Technology, 2010. 1sBN: 1856177068.

Eduardo Augusto. Bezerra. Synthesizable VHDL Design for FPGAs. 1sted. 2014.
Springer Intemational Publishing, 2014.

Peter Wilson. Design Recipes for FPGAs: Using Verilog and VHDL. Oxford:
Elsevier Science, 2015.

Rakesh Chadha and J Bhasker. An ASIC Low Power Primer: Analysis, Techniques
and Specification. 1. Aufl. Springer-Verlag, 2013.

Ashok B Mehta. “Static Verification (Formal-Based Technologies)”. In: ASIC/SoC
Functional Design Verification. Springer International Publishing AG, 2017,

pp. 193-220.

“Increasing designer productivity at the RT level”. In: Electronic Engineering (Feb.
2001), p. 22.

RaulMurillo. Flo-Posit. 2022. URL: https//github.com/RaulMurillo/Flo-Posit.
manish-kj. PACoGen. 2019. URL: https://github.com/manish-kj/PACoGen.

https://github.com/RaulMurillo/Flo-Posit
https://github.com/manish-kj/PACoGen

	INTRODUCTION
	POSIT AND IEEE 754-2008 FLOATING POINTS
	Type-3 posits
	IEEE 754-2008
	Overflow and underflow
	Special cases
	Rounding

	IEEE 754 HARDWARE ARITHMETIC
	Addition
	Multiplication

	POSIT HARDWARE ARITHMETIC
	Conversion from posit to a real number
	Extracting information from a posit number
	Addition core
	Multiplication core
	Constructing a posit number

	ARITHMETIC ACCURACY ESTIMATION
	Addition and subtraction
	Multiplication

	TESTING ENVIRONMENTS AND TOOLS
	Testbench flow in simulations
	ASIC synthesis
	FPGA synthesis and place & route
	Power analysis
	LEC
	LINT

	RESULTS OF ANALYSIS AND BEHAVIORAL VERIFICATION
	Behavioral verification of chosen arithmetic units
	Comparison of addition hardware metrics
	ASIC
	FPGA
	Power

	Comparison of multiplication hardware metrics
	ASIC
	FPGA
	Power

	CONCLUSION
	REFERENCES

