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ABSTRACT

Video is an important format of information. Humans use videos for a variety of

purposes such as entertainment, education, communication, information sharing,

and capturing memories. To this date, humankind accumulated a colossal amount

of video material online which is freely available. Manual processing at this scale is

simply impossible. To this end, many research efforts have been dedicated to the

automatic processing of video content.

At the same time, human perception of the world is multi-modal. A human uses

multiple senses to understand the environment and objects, and their interactions.

When watching a video, we perceive the content via both audio and visual modalities,

and removing one of these modalities results in less immersive experience. Similarly,

if information in both modalities does not correspond, it may create a sense of disso-

nance. Therefore, joint modelling of multiple modalities (such as audio, visual, and

text) within one model is an active research area.

In the last decade, the fields of automatic video understanding and multi-modal

modelling have seen exceptional progress due to the ubiquitous success of deep learn-

ing models and, more recently, transformer-based architectures in particular. Our

work draws on these advances and pushes the state-of-the-art of multi-modal video

understanding forward.

Applications of automatic multi-modal video processing are broad and exciting!

For instance, the content-based textual description of a video (video captioning) may

allow a visually- or auditory-impaired person to understand the content and, thus,

engage in brighter social interactions. However, prior work in video content de-

scription relies on the visual input alone, missing vital information only available in

the audio stream.

To this end, we proposed two novel multi-modal transformer models that encode

audio and visual interactions simultaneously. More specifically, first, we introduced a

late-fusion multi-modal transformer that is highly modular and allows the processing
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of an arbitrary set of modalities. Second, an efficient bi-modal transformer was pre-

sented to encode audio-visual cues starting from the lower network layers allowing

more rich audio-visual features and stronger performance as a result.

Another application is the automatic visually-guided sound generation that might

help professional sound (foley) designers who spend hours searching a database for

relevant audio for a movie scene. Previous approaches for automatic conditional

audio generation support only one class (e. g. “dog barking”), while real-life appli-

cations may require generation for hundreds of data classes and one would need to

train one model for every data class which can be infeasible.

To bridge this gap, we introduced a novel two-stage model that, first, efficiently

encodes audio as a set of codebook vectors (i. e. trains to make “building blocks”)

and, then, learns to sample these audio vectors given visual inputs to make a relevant

audio track for this visual input. Moreover, we studied the automatic evaluation

of the conditional audio generation model and proposed metrics that measure both

quality and relevance of the generated samples.

Finally, as video editing is becoming more common among non-professionals due

to the increased popularity of such services as YouTube, automatic assistance dur-

ing video editing grows in demand, e. g. off-sync detection between audio and visual

tracks. Prior work in audio-visual synchronization was devoted to solving the task

on lip-syncing datasets with “dense” signals, such as interviews and presentations.

In such videos, synchronization cues occur “densely” across time, and it is enough

to process just a few tens of a second to synchronize the tracks. In contrast, open-

domain videos mostly have only “sparse” cues that occur just once in a seconds-long

video clip (e. g. “chopping wood”).

To address this, we: a) proposed a novel dataset with “sparse” sounds; b) designed

a model which can efficiently encode seconds-long audio-visual tracks in a small set of

“learnable selectors” that is, then, used for synchronization. In addition, we explored

the temporal artefacts that common audio and video compression algorithms leave

in data streams. To prevent a model from learning to rely on these artefacts, we

introduced a list of recommendations on how to mitigate them.

This thesis provides the details of the proposed methodologies as well as a compre-

hensive overview of advances in relevant fields of multi-modal video understanding.

In addition, we provide a discussion of potential research directions that can bring

significant contributions to the field.
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1 INTRODUCTION

Nowadays, video data is omnipresent online. Television is being replaced with

streaming services such as YouTube and Netflix. In addition, people generate count-

less hours of video content and share it publicly. Such a large amount of video content

is impossible for a human to analyze. Therefore, this problem opens many opportu-

nities for data-driven approaches dedicated to the automatic extraction of important

information from a video or generating new content.

Human perception of the world is multi-modal. When a person decides how

good is an apple, they tend to consider its taste, smell, visual appearance, and how

firm it is [21]. In addition, entertainment has also become multi-modal, e. g. gaming

consoles that are relying on audio and visual senses, today also have haptic motors

in controllers. Similarly, we use multiple senses when another person tells us some-

thing, i. e. we not only listen but also follow the facial features and gestures that help

us understand what is being told. Thus, in order to design a better model for video

understanding, the input should be multi-modal.

Besides the biological plausibility of a multi-modal model, the motivation comes

from a practical perspective. Given more hints or cues about the task, it is easier to

answer it correctly. An additional modality provides with more information about

the same event or an object. Conveniently, sometimes collecting an extra modality

for a dataset does not bring additional costs, e. g. a collection of videos often naturally

contains an audio track beside the RGB track. Therefore, it is beneficial to use more

modalities when a practitioner targets the model’s performance.

Apart from building better video representations with multiple modalities, cer-

tain applications require an ability to translate the content from one modality to

another. Among others, a routine job of foley designers who currently spend hours

creating or searching a database for relevant sounds to a movie scene. Along with, a

visually impaired who may benefit from a textual description of a video online. Ac-

cordingly, multi-modal video understanding is a wide and important research area.
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Building a model to solve multi-modal video understanding tasks is associated

with addressing a broad range of challenges that are common among these and many

other video understanding tasks. In particular, one needs to decide on how multiple

modalities interact or are fused within a model given their distinct machine repre-

sentation, i. e. audio is a two-dimensional signal, RGB stream is four-dimensional,

and text has a single dimension. Most importantly, the video stream also includes

the time dimension which should be efficiently encoded and processed. Moreover,

video processing is often associated with a substantial computation burden and the

presence of other modalities aggravates this issue even more.

This thesis introduces a variety of multi-modal architectures suited for video un-

derstanding tasks. Inspired by the wide success of the transformer architecture in nat-

ural language processing due to its ability to model long sequences, the transformer

forms the basis of the proposed approaches. We tailor and generalize the architec-

ture to address the challenges of multi-modal video understanding tasks. With these

developments, we push the state-of-the-art in multi-modal video understanding.

1.1 Scope

This thesis aims to outline and expand the field of multi-modal video understanding.

First of all,modality is defined as a type of data. In this thesis, the primary focus is on

vision (or RGB sequence), audio, and text modalities. Thus, amulti-modal model is a

system that learns using data frommultiple modalities. Secondly, video understanding

is a general term that groups together a variety of tasks that a computer is expected to

solve with video data. The terms video understanding and video content understanding

will be used interchangeably throughout the thesis. Note that a cross-modal task is

considered to be a special case of multi-modal tasks. To sum up, the content of this

thesis is related to the topics at the intersection of multi-modal data-intensive models

and video understanding tasks.

In this work, we extend the advances in multi-modal video understanding by mak-

ing contributions in the fields of dense video captioning, video-guided audio gener-

ation, and audio-visual synchronization. Meanwhile, the rest of the related topics

in multi-modal video content understanding tasks are comprehensively outlined in

the background chapter. More specifically, we aim to address the following research

questions in this thesis.

16



1. What is the effect of other modalities on a performance of a dense video cap-

tioning model? (see Publications I and II)

2. Could autoregressive visually-guided sampling of latent codebook codes make

open-domain audio generation possible? (see Publication III)

3. How to evaluate the performance of a conditional spectrogram-based genera-

tive model? (see Publication III)

4. Could trainable query vectors effectively encode the input feature sequences

for audio-visual synchronization? (see Publication IV)

5. Do common RGB and audio compression algorithms leave temporal artefacts

and how to detect them? (see Publication IV)

1.2 Summary of articles

In this thesis, we present our contributions to three major applications of multi-

modal video understanding. Specifically, dense video captioning (Publications I and

II), visually-guided audio generation (Publication III), and audio-visual synchroniza-

tion (Publication IV).

Given a video, dense video captioning requires a model to, first, generate a set of

temporal event boundaries and, then, make a textual description of each event. Al-

though a human uses audio and visual senses to perceive video content, the majority

of prior approaches in this area relied on visual modality alone. To this end, we ex-

plored the use of multiple modalities in Publication I. In particular, we contributed a

novel transformer-based architecture which allows employing an arbitrary number

of input modalities (MDVC), i. e. audio, visual, and speech in a form of a text, and

achieved the state-of-the-art results on a popular benchmark.

In Publication II, we make further progress by addressing the shortcomings of

MDVC and improve its performance. Specifically, despite beingmodular, theMDVC

architecture is redundant. It lacks low-level multi-modal interactions and relies on

visual-only event proposal generation. To address this, we generalize the transformer

architecture for bi-modal inputs (audio and vision), and design a novel multi-modal

event proposal generator. Although the bi-modal transformer (BMT) operates on

only two modalities and has less parameters, it outperforms MDVC.

Video-guided audio generation was explored in Publication III. Most of the prior

works focused on generating audio for narrow domains of videos, while open-domain
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approaches required training one model per data class. To this end, we introduce a

two-stage approach that factorizes the task into two sub-tasks. First, a set of spec-

trogram “building blocks” (codebook) is trained as a part of an autoencoder (Spec-

trogram VQGAN). Second, a transformer is trained to sample these “blocks” au-

toregressively while being prompted with video cues. In addition, novel fidelity and

relevance metrics for the automatic evaluation of conditional spectrogram-based au-

dio synthesis has been designed. The presented approach allows for building a model

which supports the generation of a large variety of classes, has fewer parameters, and

is more than 1000 times faster than the prior state-of-the-art model.

An audio-visual synchronization model is required to predict if the audio and

visual tracks are out-of-sync temporally and how to fix it. In Publication IV, we

worked with videos that have “sparse” synchronization signals. For instance, a video

of a talking face has a “dense” synchronization signal while a video with a dog that

barks only once during a 10-second clip is an example of a “sparse” synchronization

signal. In the latter case, a model needs to process the whole video clip to catch

the synchronization signal. This is challenging for today’s sequence-modelling ap-

proaches (a transformer) as the length of the audio-visual input tends to be quite long.

To this end, we proposed a model, called SparseSync, that learns a small set of query

vectors. These vectors effectively encode useful synchronization cues. This signifi-

cantly reduces the input length of the synchronization transformer. The proposed

approach outperforms the previous state-of-the-art by a large margin. In this work,

we also introduced a novel dataset with videos that have sparse synchronization cues.

1.3 Outline

Chapter 2 contains background formulti-modal video understanding research. Chap-

ter 3 summarizes the contributions to dense video captioning that were outlined in

Publications I and II. The contributions of Publication III to the video-guided audio

generation field are presented in Chapter 4. Next, the findings in audio-visual syn-

chronization from Publication IV are in Chapter 5. Finally, Chapter 6 concludes.
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2 BACKGROUND

The interest in multi-modal architectures and their applications for video under-

standing has emerged several decades ago. Earlier attempts were dedicated to audio-

visual speech recognition, video retrieval, human interaction during group meetings,

and audio-visual emotion recognition. The model training was done on top of pre-

extracted features that were, in turn, domain-specific and hand-crafted. Clearly, there

was a potential for end-to-end approaches that would make feature extraction more

efficient, and deep learning methods quickly became natural candidates for this.

The success of deep neural architectures in data modelling is often attributed to

the successful application of convolutional neural networks (CNNs) to the ImageNet

image classification challenge [22] in 2012 [23] and onwards [24, 25]. Inspired by

the success of CNNs in image classification, the research has quickly spread to other

sub-areas of computer vision, such as action recognition [26], object detection [27],

and optical flow estimation [28] and many other tasks. Shortly after, other fields

have begun a transition to deep learning architectures, including language [29] and

audio processing [17]. Research in multi-modal learning was also influenced by deep

learning. The transition to deep learning led to the improvement of model perfor-

mance across the field and allowed tackling more challenging applications in video

understanding, such as video captioning, cross-modal generation, and audio-visual

synchronization to name a few.

The input data in many tasks of multi-modal video understanding form a se-

quence, such as the RGB stream, audio waveform, or a piece of text. Therefore, the

field was highly influenced by the advances in natural language processing (NLP). In

recent years, one of the most prominent advances in NLP, and deep learning in gen-

eral, was Transformer which was introduced for language translation by Vaswani

et al. [4] in 2017. Considering that the input encoding in a transformer is non-

recurrent, it allowed for learning long-term dependencies, which were somewhat

impaired with a recurrent neural net (RNN) due to the sequential encoding of data
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in a hidden state.

The first application of the transformer beyond the NLP field was demonstrated

for video captioning by [30] in 2018. More specifically, the visual track in a video

may be considered a sequence of frame-wise features that can be quite long coupled

with a strong performance on the translation task, the transformer was a promis-

ing candidate for video captioning (video-to-text translation). This work in video

captioning, as well as the adaptation of the transformer’s encoder in language repre-

sentation learning (BERT) by [1] in 2019, inspired remarkable advances in learning

joint visual-linguistic representations that were useful for vision and language down-

stream tasks [31–36]. By 2020, the transformer became a popular architecture for

sequential data.

In early 2021, the transformer was successfully applied to several multi-modal

image understanding tasks. Specifically, text-based object detection and segmenta-

tion (MDETR) [37] which was inspired by the very first adaptation of a trans-

former for an image processing problem displayed for object detection and segmen-

tation (DETR) in [3]. This was followed by the text-conditioned image generation

(CogView) [38] that was motivated by the success of conditional image generation

based on depth, a low-res image, or segmentation mask (VQGAN [39]) as well

as text-conditioned image generation in DALL-E [40]. Although the transformer

played a significant role in the final performance of these models, the visual features

were still extracted by a CNNwhich meant that the transformer operated on feature

representations rather than on raw input data.

At that time, the end-to-end transformer-only backbones started to appear in

the literature and attract a lot of attention. Even though the Vision Transformer

(ViT) [41], was not the first deep convolution-free image recognition model (see

Zhao et al. [42]), it was undeniably a milestone work and remains to be the most

popular development to this end. ViT has been adapted to many uni-modal settings

of multimedia processing, such as action recognition [43], audio classification [44],

and point cloud processing [45]. Shortly after, the transformer was generalized to

tackle a large variety of uni-modal tasks using raw input data including the above as

well as optical flow and playing StarCraft II (Perceiver [46, 47]). ViT was also used in

the multi-modal setting such as audio-visual action recognition (MBT) [48], speech

recognition (Whisper) [49], and, very notably, for building multi-modal foundation
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models1 image-text (CLIP and Flamingo) [2, 51], audio-text [52], and other input

modalities (PolyViT and Florence) [53, 54].

In this chapter, we present a background of the research areas that inspired this

work. The chapter consists of three sections. It starts with an outline of earlier works

in multi-modal machine learning and video content understanding (Section 2.1).

Next, Section 2.2 provides a deep dive into the methodology of a variety of re-

search areas in multi-modal video understanding that was brought by deep learning.

More specifically, the advances in video captioning (2.2.1) and paragraph video cap-

tioning (2.2.2), visual question answering (2.2.3), video retrieval (2.2.4), and video

moment retrieval (2.2.5) are introduced to provide a conceptual foundation for dense

video captioning which is extensively explored later in this thesis. Similarly, advances

in textually-guided video generation (2.2.6) are presented to contextualize the con-

tributions of this thesis to visually-guided audio generation. After, the efforts in

multi-modal action recognition (2.2.7) are summarized to motivate the design of the

two-stream audio-visual synchronization architecture that is presented later. The sec-

tion concludes with current arts in building multi-modal foundation models (2.2.8)

which flooded the deep learning literature and, perhaps, would become standard

practice in near future. Finally, Section 2.3 presents Transformer architecture in

detail as it forms the basis for the methodology that this thesis contributes.

2.1 Earlier work in multi-modal video understanding

2.1.1 Multi-modal machine learning

Although a deep neural architecture de facto became the standard approach for tack-

ling multiple modalities, the interest towards the multi-modal approach sparked long

before the deep learning era (2012–) and was emerging in several areas [55].

First, inspired by the McGurk effect [56]2, the use of audio and visual modalities

has been shown to benefit a speech recognition model [57] (a neural network!) in

1989 and [58–61] (a hidden Markov model, an HMM). Second, as the internet and

1The term “foundation models” was coined in [50] to refer to a model that was pre-trained (often

via self-supervision) with large-scale data and fine-tuned for downstream tasks.
2The auditory illusion that occurs when a person sees an incongruent visual speech signal. For

instance, if lips visually pronounce fa-fa-fa but the original audio sounds as da-da-da, a person will per-
ceive fa instead of da. Similarly, as lips move to produce ba, the original audio (da) will be mistakingly
perceived as ba.
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digital technologies were growing in popularity in the early 2000s, multi-modal the

research was also dedicated to video content retrieval, indexing [62], and summa-

rization [63, 64]. In particular, audio-visual rule-based models [65–67], along with

a vector-quantized codebook [68, 69], or with additional text modality and linear

models [70], or, later, HMMs [63, 64, 71–73]. Third, in the 2000s, audio-visual

signals were of particular interest in the human interaction community due to the

popularity of the annual Multi-modal Interaction Workshop [74], and audio-visual

datasets such as AMI Meeting Corpus [75]. A common approach was the support-

vector machine (SVM) on hand-crafted features [76–78] and HMMs [79, 80].

Fourth, coupled with the advances in multi-modal human interaction and a grow-

ing interest towards the Paul Ekman’s theory of universal emotions [81, 82], the re-

search has been conducted in the area of multi-modal sentiment recognition. Many

promising emotion recognition datasets were introduced such as [83–86], includ-

ing the emotional conversation dataset SEMAINE [87], and an annual audio-visual

emotion recognition challenge [88]. Similar to other machine learning models at

that time (the 2010s), the approaches relied on SVM [88–92], conditional random

fields (CRFs) [91], HMMs [86, 93] and long short-term memory (LSTM [94]) [92]

(see more details in [95]).

Fifth, another direction of multi-modal research was dedicated to visual-language

applications such as image captioning [96, 97]. In particular, image captioning was

tackled as a retrieval task, i. e. by computing similarities between sentence and visual

features [98–100]; or as generation, i. e. by modelling objects, their attributes, and

spatial relationship between them in CRFs followed by an HMM language model

that fills in a template [101, 102] or picking the best caption among all propos-

als using Google N-gram frequencies [103], or filtering the proposals with a set of

manually-crafted constraints in the Integer Linear Programming setting [104], or

making a syntactic tree [105, 106].

2.1.2 Video understanding

The field of video understanding has flourished recently due to the advances that deep

learning methodologies brought to the picture. The new data-driven approaches al-

lowed reaching decent performance on previously unimaginable tasks such as video

captioning, question answering, and generation, to name a few. In contrast, earlier

works were dedicated to much more modest applications. One of the most explored
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areas was action recognition and the tasks from the TRECVID workshop3 that sup-

plied many large high-quality datasets covering multiple research areas including shot

boundary detection, audio-visual learning, and video retrieval among others [55].

This section covers milestone ideas in early video content understanding.

The requirements for an action recognition model were outlined in the late 1970s

by Marr and Nishihara [107]. In particular, the representation should: a) be easy to

compute; b) support a large number of classes; c) be unique from any point of view;

and d) be similar, but not the same, between two objects of the same class. However,

the earliest attempts at action representation were as modest as representing a walking

person on a video with a 3D model of connected cylinders corresponding to the

person’s parts (WALKER) [108]. In 1994, following the idea of a 3D model of the

body, Rohr [109] tackled pedestrian recognition with a Kalman filter.

Nonetheless, building volumetric action models from videos was a tedious and

expensive procedure. For this reason, the following research was mostly focused on

extracting action representations instead [110]. These models can be classified into

two types based on the level of representation: holistic (object shape, its movements

and structure) and local (descriptor features from points of interest).

The earliest work that employed holistic representation was done by Polana and

Nelson [111] who classified actions based on periodicity in optical flow using Fourier

transform. Later works were strongly influenced by Bobick and Davis [112] who

proposed to represent motion depicted with multiple frames in a single image as a

changing silhouette, which was extended to volumes later in [113, 114]. However,

with these representations, it was difficult to model variations in object appearance,

point of view, and changing details within object silhouettes (e. g. clapping) [110,

115, 116].

Since the middle of the 2000s, video representations were mostly built at the local

level. Earlier works relied on the local descriptors extracted from cuboids that were

outlined by an interest point detectors [115, 117] and tracking trajectories [116,

118]. Before training a classifier (e. g. an SVM), the extracted local features might

have varying sizes per video and, thus, can be aggregated via, for example, a bag-of-

visual-words (BoV) aka. a codebook [115, 119, 120] or sparse coding [121, 122]. A

comprehensive analysis of prior work on human behaviour on videos can be found

in the survey by Borges et al. [123].

3trecvid.nist.gov/index.html
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Others explored shot boundary detection on a video, i. e. a sequence of frames

produced by a single camera. Earlier works in automatic shot boundary detections

relied on colour histograms, edge change ratio, edge contrast, and standard devia-

tion of pixel intensities [124]. Multiple methods followed a classification approach

for boundary detection: rule-based [125] and statistical [126] methods. The shot

boundary detection field benefited strongly from the annual TRECVID workshop.

In particular, finite state automata (FSA) was used by Zheng et al. [127] to solve the

task. Yuan et al. [128] relied on the graph partition model and an SVM classifier.

The information-based approaches were also employed, e. g. by modeling entropy of

RGB pixels in [129] and also using Speeded Up Robust Features (SURF) in [130].

Others tackled the problem with methods based on linear algebra, e. g. QR [131]

and eigenvalue [132] decomposition methods. The Singular Value Decomposition

(SVD) was used by Lu and Shi [133] to reduce the dimension of features to speed up

boundary detection. A survey of many other approaches, including deep learning

techniques, one may find in Abdulhussain et al. [134].

Text-to-video retrieval is another important area of video understanding research.

The problem was initially approached by simplifying the problem into text-to-text

search which can be achieved by reusing the corresponding subtitles, which might

reflect the video content for some applications [135]. However, using raw text to

query videos was a challenging task and, instead, many works focused on retrieving

videos given a set of “concepts”. The concepts included, but were not limited to,

colour, texture, shape, local descriptors, and temporal features. Smith et al. [136]

tackled image-to-video retrieval using these features extracted from an image tomatch

them to those of keyframes from videos. While Snoek et al. [137] proposed to query

videos directly with certain concepts. More information on concept-based video

retrieval can be found in [138].

Another research direction in video content understanding was video captioning.

Earliest works in describing video content with text are dated back to the early

2000s and “fill-in-templates” was a common approach back then. In general, this

approach could be described as follows. First, a visual object or action detector

extracts information about a subject, a verb/action, and an object. Second, a model

attempts to fill in pre-defined templates [139–144]. Sometimes, the resulting caption

was filtered according to linguistic data from a database database [143] or to the

similarity of the proposed caption to the training samples [144].
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2.2 Multi-modal video content understanding with deep learning

Prior to the deep learning era, modality information was encoded with manually-

crafted features that were specific for each domain. For instance, textual features were

commonly computed with variants of a bag of words (BoW) such as term frequency-

inverse document frequency (or tf-idf). A similar technique was adapted for calcu-

lating features from an image using the scale-invariant feature transform (SIFT) [55,

145–147], or a bag of “visual” words. In the case of audio, common features were

Mel-frequency cepstral coefficients (MFCCs), energy and spectral characteristics,

and zero crossing rate [148]. These feature extraction algorithms were replaced with

a trained feature extractor that encodes information into dense vector representa-

tions which allows stronger performance in solving downstream tasks. This section

focuses on applications of deep learning to multi-modal video understanding.

2.2.1 Video captioning

Video captioning is a natural extension of image captioning. It benchmarks the

model’s “understanding” of a video from its ability of it to generate a text description

(a caption4) of video content. Overall, the problem can be viewed as a sequence-to-

sequence task (“video-to-text”) and, therefore, the proposed approaches draw on the

successful attempts in sequence-to-sequence learning and architectural elements from

the fields of activity recognition and natural language processing.

Pioneering works Prior to the “deep learning era” video captioning models were

mostly rule-based [139–144]. Nowadays, video captioning architectures follow the

encoder-decoder design which was proposed in Rohrbach et al. [149] and Donahue

et al. [150] inspired by machine translation. Early attempts to apply deep learning

methods to video captioning involved encoding video frames with a 2D convnet, fol-

lowed by aggregation via temporal average pooling, which is then used as an input

to an LSTM that decodes a caption word-by-word (see Venugopalan et al. [151]).

Since averaging temporal representations could potentially wipe out important tem-

poral structures, Yao et al. [152] suggested to use a weighted average of 3D convnet

features where the weights are determined via an attention mechanism. The idea

of attention was adapted by Song et al. [153] who suggested adjusting it to ignore

4Not to be confused with “closed captioning” (CC) which is often referred to as subtitles.
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non-visual words to make generated captions more relevant to visual cues. In the

follow-up work, Venugopalan et al. [154] suggested to use a shared LSTM for both

temporal encoding of RGB/flow frames and generating a caption. Xu et al. [155]

relied on VLAD [18] to obtain better representation of the spatial features.

Semantic “tags” Meanwhile, other works explored the potential to bridge visual

and linguistic modality by learning or extracting sematic “tags”. In particular, Rohrbach

et al. [156] explored the possibility of pre-training 2DCNN feature extractor to clas-

sify actions (verbs), places, and objects and reuse the output of such feature extractor

to generate a caption. A more explicit connection between visual and linguistic con-

cepts was made via semantic tags or object labels extracted from image and action

“visual words” in numerous of works [157–161]. Others suggested using part-of-

speech (POS) tags learned from captions to condition the decoding LSTM [162] or

a mixture model [163]. While Zhang et al. [164] simplified caption generation by

retrieving linguistic hints from a text database.

Finer spatial features Several works were dedicated to improving visual represen-

tation with region-of-interest features. Specifically, Li et al. [165] and Yan et al.

[166] used region and frame level features aggregated with an attention module. In-

spired by image detection, Yang et al. [167] used region-based (local) features along

with the whole-frame (global) while Ma et al. [168] used attention modules to fuse

local and global features across time. Similarly, local and global features were used

in Wu et al. [169] who suggested extracting local features of a CNN following a

trajectory which has promising visualization properties. Object interactions were

also modelled with a graph in other works [170–172].

Extra memory blocks To utilize the limited LSTM memory more efficiently, Pan

et al. [173] suggested having a two-staged LSTM: one for sub-clips (local), another to

summarize the representation of each sub-clip (global). Baraldi et al. [174] suggested

detecting a segment for the corresponding caption and encoding (“remembering”)

only the content of this segment. While Wang et al. [175] and Pei et al. [176]

suggested having an explicitly designed shared visual-linguistic memory block.

Better training objectives Other works focused on designing a better objective to

improve model performance. In particular, Pan et al. [177] used both 2D and 3D
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convnet features (mean pooled) to prime an LSTM and improved coherence of cap-

tioning and training speed with coherence and relevance losses. Wang et al. [178]

added a reconstruction loss (representation-caption-representation) to improve the

training dynamics of the captioning model. Liu et al. [179] employed a reconstruc-

tion loss that reconstructs visual input features in an autoencoder, and a ranking loss

ensures similarity between extracted features and the caption. Elements of Reinforce-

ment Learning (RL) were also employed for video captioning. [180–182] adapted

an RL objective to directly optimize the captioning quality metric (CIDEr [183]).

An interesting application of RL was suggested by Chen et al. [182] who proposed

using an additional reward for the “diversity” of selected frames as a majority of the

frames are redundant (6–8 frames per video was found to be enough).

Other modalities Other approaches employed multi-modal features. Ramanishka

et al. [184] (2016) generalized the encoder-decoder architecture presented in [151]

(see above) to tackle multiple modalities such as audio, action recognition label as

well as motion (3D CNN) and object recognition (2D CNN). With a slight archi-

tectural variation, this idea was explored in Jin et al. [185] (2016) who also included

subtitles. Chen et al. [186] proposed to learn audio-visual topics via textual supervi-

sion to improve captioning performance. Audio was employed by Xu et al. [187],

Wang et al. [188], and Hori et al. [189] who used attention to fuse audio and visual

information, while Hao et al. [190] also used audio modality and relied on shared

weights of LSTM to fuse multi-modal input data.

Attention and transformers Recently, architectural elements of the transformer [4]

started to appear in video captioning. Chen et al. [191] was one of the first works to

use the encoder-decoder transformer for video captioning. Following this work, Pan

et al. [171] used the transformer specifically for caption decoding Zheng et al. [192]

used transformer to encode local object-level features and connect them to syntax-

guided queries (as “object queries” in DETR [3]5). If previous video features were

extracted with a pre-trained and fixed feature extractor, Lin et al. [193] suggested

relying on a trainable transformer to extract features and solve the issue of long input

sequences via learning a sparse attention mask. More recent works were dedicated to

large-scale transformer pre-training on video-text datasets which is, then, fine-tuned

for video captioning, besides many other relevant applications (see page 37).

5Interestingly, DETR [3] was published half a year after Zheng et al. [192].
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Datasets To train a video captioning model, one needs a collection of video-text

pairs. Specifically, MSVD [194], MSR-VTT [195], and, more recently, VATEX [196]

were among the popular ones, but many other datasets were used as well [197–199].

2.2.2 Video paragraph captioning

Describing a video, that is tens of seconds long, with a single sentence might not be

enough because most of the videos contain multiple distinct events. To this end, the

video captioning task branched out to captioning with a paragraph that consists of

multiple coherent sentences [200]. This idea was followed in Yu et al. [201] who

approached it with two RNNmodels: a “local” which operates words and keeps the

sentence state and “global” that works with sentences and keeps the paragraph state.

Gella et al. [202] used the last-step hidden state of an LSTM from the previous cap-

tion to prime another LSTM for the current caption in order to preserve coherence

within a paragraph. RL objectives were used to a penalty on sentence and paragraph

levels in Xiong et al. [203] who also suggested using temporal annotation to improve

coherence and concise as in dense video captioning (see p. 47). Similarly, Song et al.

[204] used a sentence-level penalty in the RL loss. To combat the redundancy in

generated captions, Park et al. [205] introduced a set of discriminators specific for

certain tasks, e. g. relevance, diversity, and coherence.

Transformers were also used for paragraph video captioning. In particular, object

interactions have been modelled with self-attention and, then, used by a language

decoder by Zhou et al. [206]. Lei et al. [207] and Song et al. [204] enhanced

a transformer with a memory module that helps to encode previously generated

caption words within a paragraph. Meanwhile, DETR-like queries [3] were used to

pick useful visual cues via cross-attention modules by Wang et al. [208].

2.2.3 Visual question answering

Visual Question Answering (VQA) is another important area of multi-modal re-

search. Answering a question given an image was naturally extended to videos (or

VideoQA) meaning that earlier deep learning VideoQA methods were heavily influ-

enced by advances in VQA. Thus, we start with a brief outline of works in VQA.

VQA datasets The goal of a visual question-answering model is to pick (multi-

choice) or generate a correct answer given an image-question pair. The interest in
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this area has been sparked by the emergence of several datasets, such as COCO-

QA [209], a larger-scale VQA v. 1.0/2.0 [210, 211], VizWiz-VQA [212], abstract

reasoning datasets, such as CLEVR [213] and the artificial-scenes part of the VQA

dataset [210].

Common VQA approaches The earlier deep neural approaches to VQA involved

extracting a text embedding from a question with an RNN and an image embedding

with a CNNor a region-based Bottom-Up and Top-DownAttention (BUTD) [214].

The extracted text and visual features were often fused with a bilinear pooling [215]

in [216, 217], a variant of the Tucker decomposition [218] (MUTAN) in [219–221],

a dynamic module network [222] in [223, 224], a graph neural network [221, 225,

226], or simply with feature multiplication [227–230]. Since text processing is an

essential part of a VQA system, transformers started to appear early for this task and

brought significant improvement to the results [32, 231–233].

Common VideoQA approaches VideoQA was pioneered by Tapaswi et al. [234].

If an image for VQA was encoded with a variant of a 2D CNN, for VideoQA one

should also take care of the time dimension. To this end, it was common to apply

a 3D CNN or an RNN on frame-wise (RGB and optical flow) features that were

extracted with a 2D CNN. To fuse encoded video and text modalities, approaches

relied on attention [235–242], a relation model or feature multiplication [243] and

concatenation [244, 245]. A few works employed a concept of memory to account

for longer-term dependencies in input sequences [238, 239], while graph neural net-

works were used for fine-grained modelling of the scene [242, 244, 246–251].

Transformers in VideoQA Similar to video captioning and other research areas,

transformers brought a substantial gain in performance here as well [246, 250, 252–

257] partially due to the large-scale pre-training as discussed later on p. 37.

VideoQA datasets Nearly every publication in VideoQA was accompanied by a

new dataset [234–237, 243, 253, 258–266]. Recently, audio-visual datasets [252,

267, 268] and approaches [252, 267–269] started to appear in the literature. Yet,

only a few became commonly used to benchmark proposed models. Specifically,

TGIF-QA [235], MSVD-QA, and MSRVTT-QA [236] which are based on video

captioning datasets TGIF [270], MSVD [194], andMSRVTT [195]. However, these

29



datasets were automatically annotated using the available captions, which appears to

be the most crucial issue in this field.

2.2.4 Text to video retrieval

The abundance of video data online inspired many attempts for text-based retrieval.

On a high level, a text-to-video retrieval model should be efficient in embedding

a query (text) and database objects (videos) into a common space where relevant

text-video pairs are closer to each other than irrelevant pairs. This section covers

milestone works in video-text retrieval with deep learning methods.

Textual representation With the emergence of large-scale datasets and deep learn-

ing, the representations of the text and videos became neural and trainable. Specifi-

cally, the text query was often vectorized as word2vec [271] or GloVe [6] and aggre-

gated with an RNN in [272–277], by NetVLAD [278] in [279], by a Gaussian mix-

ture model [280], or by mean pooled word2vec vectors [276, 281], semantic graph

and attention [277], skip thought vectors [282] in [283], directly in a GRU [284,

285], and, most recently, by BERT [1, 286, 287] in [288–290] and other transformer

architectures [291, 292].

Visual representation The video representation was formed frame-wise with an

image recognition backbone (2D CNN) [272–276, 283, 285, 286], often coupled

with an action recognition model (3D CNN) [277, 279–281, 284, 288, 291, 292]

or a spatial-temporal graph [290]. In earlier works representation was aggregated by

a temporal pyramid scheme [272], average/max pooling [273, 274, 276, 279–281,

283, 284, 287, 290, 291], RNN [274–276, 285], and attention [275]. More recently,

transformers became a popular choice for this end [286, 288, 289, 292, 293].

Training objectives The models are trained with max-margin ranking loss [273–

277, 279, 280, 283–285, 288–291]. However, other objectives were also used such

as the mean squared error loss [281], Euclidean distance [272], a variant of InfoNCE

loss [294] in [286, 287, 295, 296], or a combination of max-margin, cluster [297],

and cycle consistency losses [298] in [292]. Sometimes, video captioning loss is used

to facilitate training [295, 296].
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Inference metrics During inference, the similarity between the video and text em-

beddings are usually computed with a certain similarity metric, e. g. cosine similar-

ity [276, 280, 281, 284–287, 289–291, 295, 296], Euclidean distance [272, 273,

283], an MLP [274, 275], and dot-product [279, 288].

Datasets The most common datasets for training text-to-video retrieval models

are MSVD [194], MSR-VTT [195], LSMDC [299], DiDeMo [273], ActivityNet

Captions [198], and VATEX [196], yet many others are available as well [197, 199,

270, 300, 301]. Nonetheless, recent developments in large-scale video-linguistic pre-

training are strongly influenced by HowTo100M [302] due to its size (see page 37).

Recent developments A few notable ideas have recently appeared in the litera-

ture. For instance, other descriptors (aka. “experts”) are being involved to improve

performance, e. g. audio, motion (inc. optical flow), speech-to-text, optical character

recognition (OCR), and face tracks [275, 279, 288, 289, 291, 293]. Others [277,

289, 295] argued against feature aggregation and propose to switch from global (video

to sentence) to local (a chunk of words to chunks of video features) alignment. Alter-

natively, the problem of video-to-text retrieval can be re-formulated from “sentence

to clip” to “paragraph to combination of clips (a video)” retrieval [286, 292, 297].

The idea of a dual encoder that embeds video and text features into a common met-

ric space was challenged in [303, 304] who suggested shifting towards multi-modal

fusion with a transformer attention which was expected to be more capable. Re-

cently, transformer-only approaches started to appear in the literature [295, 296,

305]. Also, a new chapter of multi-modal retrieval was opened with the availability

of large-scale pre-training (such as HowTo100M [302]) and transformer which is

discussed on page 37.

2.2.5 Video moment retrieval

The task of video moment retrieval requires a model to localize a specific segment

within a video that is described by a text query. This task is also known as “natu-

ral language video localization” (NLVL). The problem of video moment retrieval

bridges video retrieval and action detection. Specifically, for the video retrieval task,

one would index a database of videos but, for video moment retrieval, the search is

conducted within one video and the model is expected to localize the event described
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by a sentence or paragraph query. Similarly, if for the action detection, the query is

discrete label space, for a video moment retrieval it is an arbitrary piece of text.

Fixed proposals Initial attempts in video moment retrieval were relying on query-

independent temporal proposals, which allowed utilizing advances in video retrieval.

In particular, [273, 306–312] suggested splitting a video into a set of equal segments

and running the search on them. However, this requires checking each segment

regardless of its relevance to the query. As well as, the resulting temporal boundaries

are inflexible.

Anchor-based proposal generation Many attempts have been made to make pro-

posals more flexible. One direction of such efforts is “anchor”-based methods. For

instance, Chen et al. [311] proposed to model frame-word mapping via an LSTM

and multi-scale proposal candidates. Xu et al. [313] enhanced an action proposal

model (R-C3D [314]) with an attention mechanism that uses text hints from the

text query and a captioning loss was used. Chen et al. [312] to model cross-modal

interactions with attention and gating modules. A fine-grained approach to mod-

elling query semantics was suggested by Yuan et al. [315]. Wang et al. [316, 317]

explored the idea of both coarse- and fine-grained cross-modal interaction and Gao et

al. [318] focused on inference speed. Zhang et al. [319] used a graph convolutional

network (GCN) [320] to iteratively adjust candidate event representations. In the

meantime, Ge et al. [321], showed a way of accounting for activity concepts in visual

and language cues to improve proposal generation. Mithun et al. [322] tackled the

task in a weakly supervised way which might be beneficial as the human annotation

of clip-query pairs is tedious. Instead of considering each clip-query pair individu-

ally, Zhang et al. [323] outlined a way of accounting for the relationship between

multiple queries that a video might have. Zeng et al. [324] used a graph to model

object-word interactions. Despite being simple and straightforward, anchor-based

methods still reach strong performance [325].

Towards finer proposal boundaries Another class of approaches regress the tem-

poral segment boundaries instead of using predefined proposals. This approach was

pioneered by Yuan et al. [326] who used cross-modal attention followed by an MLP

to determine the segment boundaries. Chen et al. [327], similar to [321], used joint

learning of activity and word concepts. Ghosh et al. [328] used LSTM outputs to
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predict the segment boundaries. Zhang et al. [329] proposed to formalize the task as

a span-based question-answering problem. Reinforcement learning (RL) setting was

used in multiple works to iteratively refine the temporal segment boundaries [330–

332] and spatial regions [333]. Using annotations more “densely” was explored by

Lu et al. [334] who added a binary classification head for each frame whether it

belongs to the ground truth segment. Similarly, Zeng et al. [335] made a model

to predict the distance to the start/end points from each frame. Also, fine-grained

multi-modal interactions have been explored in many works. For instance, Mun et

al. [336] considered the text query as a set of multiple semantic phrases, while Chen

and Jiang [337] built a bi-partite graph between visual objects and words. Chen et al.

[338] suggested using audio and motion that were ignored before, as well as a way

to model inter-modality interactions. Yang et al. [339] and Nan et al. [340] drew

attention to spurious correlations of the datasets and suggested using causal interven-

tions. Zhao et al. [341] used cascading to refine boundary prediction at different

scales of visual-textual features.

Multi-modal fusion and prediction The query and visual representations were

often fused by concatenation, dot product, or addition that was followed by either

an MLP [306, 315, 318, 321, 327, 330, 331, 335, 336], attention [309, 315, 322,

338, 340–344], CNN [323], or a graph [324]. While Liu et al. [307, 312, 329, 334]

relied on attention mechanisms between two modalities, as well as a cross-modal

gating mechanism coupled with a GRU [312] and [311, 313, 328] fused visual and

text modalities in an LSTM.

Transformers Similar to contemporary works in other areas, elements of the trans-

former architecture started to appear in the literature. For instance, Zhang et al.

[343] used the transformer encoder for modelling long-term dependencies in a video

along with a syntactic GCN for the text. Lin et al. [345] used two transformers for

making proposal candidates, re-rank them based on how much information was lost

after masking query words. Liu et al. [346] suggested capturing query representation

on word-, phrase-, and sentence levels and to model visual-linguistic interactions in

a graph with transformer attention. [347–350] employed transformer’s cross-modal

attention to fuse visual-linguistic features for finer cross-modal integration while

Wang et al. [344] relied on the transformer encoder to model the temporal interac-

tions of multi-modal features. In contrast, Zhang et al. [351] modeled visual-textual
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interactions jointly in a concatenated sequence passed to a transformer encoder (as in

VideoBERT [31]). Similarly, the transformer was used in Liu et al. [352] who also

adapted linguistic dependency parsing [353] for visual data. Wang et al. [354] used

a transformer to fuse visual-linguistic features and additionally suggested avoiding

penalising semantically similar moments within a batch during contrastive training.

While DETR-like approach [3] was used by Lei et al. [301].

Textual representation The processing of a text query, by and large, resembles the

one that is used in video retrieval. For instance, Skip-thought vectors [306, 309, 310,

321, 327, 330, 331], word2vec [306, 313, 324], GloVe [273, 306, 308, 309, 311,

312, 315, 317, 319, 321, 323, 326–329, 334, 335, 337, 338, 340–344, 346–350,

352, 354] vectors often encoded with an RNN or mean pooled. In recent work, text

encoding is done mainly with variants of a transformer [351].

Visual representation Similarly, the visual representation was encoded with con-

temporary (often pre-trained for image or action recognition) feature extractors. In

particular, 2D [273, 308, 309, 311, 318, 322, 323, 327, 331, 335, 338, 341, 342,

349, 350] and 3D [273, 306, 308–313, 315, 317–319, 321–324, 326, 328–330,

334–336, 338, 340–344, 346–349, 351, 352, 354] CNNs.

Datasets The use of the datasets is remarkably consistent among the works. Specif-

ically, the most common datasets are video captioning datasets with temporal anno-

tations for events. In particular, TACoS [200], Charades-STA [306], ActivityNet

Captions [198], and, but less often, DiDeMo [273].

2.2.6 Text-guided video generation

One of the applications that were barely imaginable before the deep learning era

was video generation. Many works in video generation focused on predicting future

frames given a few ground truth frames (a prime) [355–369] while others explored

unconditional video generation [358, 361, 368–374]. In an attempt to guide the

generation, recent research has been dedicated to text-conditioned video generation.

Pioneering works Earlier works in text-conditional video generation focused on

simple scenes, i. e.moving digits (MNIST) [355], side views of a walking person, top-

view cooking videos (subsets of [194, 375]), and scenes from a popular cartoon [376].
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In particular, Mittal et al. [377] generated a frame sequence using a text-conditioned

LSTM which acts as a decoder part of a variational autoencoder (VAE) during infer-

ence. Li et al. [378] suggested combining a conditional VAE, which augments the la-

tent vector with RNN text features, and generative adversarial networks (GAN) [5]

that generates a set of images given a text-based motion-augmented input vector. Pan

et al. [379] also employed a combination of an RNN and a GAN, yet with three

discriminators to criticize relevance to the input text as well as the temporal and spa-

tial coherence of the generated video. Whereas, Liu et al. [380] reduced the “VAE

blurriness” and GAN’s training instability with an LSTM that takes in linguistic fea-

tures that were optimized during training to match the visual features extracted from

a real video coupled with a cycle-consistency loss [381]. An alternative approach was

suggested by Gupta et al. [376] who generated scenes of a popular cartoon (“Flint-

stones”), using a template-based approach: first, the model breaks down the input

text to compose a scene-character template, then, it retrieves the character and scene

background that have the closest embeddings from a database. Although the results

were promising, generating open-domain videos remained to be a challenge.

Approaches with conditional autoregressive sampler Recent works have been

inspired by the striking results of two concurrent works: VQGAN [39] and DALL-

E [40]. Both are based on training in a two-staged model which intuitively can be

described as “first, make a set of (visual) building blocks; second, learn to arrange

these blocks given a (textual) prompt”. More specifically, first, a vector-quantized

variational autoencoder (VQVAE) [19] is trained to encode an image to a quantized

representation consisting of codes from a learnable codebook and decode this repre-

sentation back to the original image as closely as possible; and, second, an autoregres-

sive model (e. g. a transformer [4]) is trained to sample the quantized representation

from the codebook given a text token sequence. During inference, the sampled quan-

tized representation can be reconstructed into an image using the decoder part of the

pre-trained autoencoder (first stage). One could reuse the image-based autoencoder

codebook (first stage) and train the autoregressive sampler (second stage) to generate

multiple frames consecutively. Examples of this approach are GODIVA and, later,

NÜWA (Wu et al. [382, 383]). As well as, CogVideo (Hong et al. [384]), which

relies on a “frozen” CogView-2 (Ding et al. [385]), also used text-to-image model

with a progressive resolution that improves the generation speed, resolution, and

the quality of samples compared to earlier works. Nonetheless, this image-based ap-

35



proach leads to poor temporal modelling. Phenaki (Villegas et al. [386]) addresses

it by keeping a track of the first and a few most recent frames. The 3D version of

VQGAN was proposed by Yan et al. [368] for video generation was later adapted

and improved by Ge et al. [387] for textually-guided video generation.

Diffusion models Even more recent advances were sparked by impressive results

of diffusion models in text-to-image generation, e. g.ADM [388], GLIDE [389], and

DALL-E 2 [390]. A diffusion image generation model can be described as follows.

Since, an image (step 0) can be transformed into Gaussian noise (step T ) after adding

a small amount of noise at every step t ∈ [0, T ], a model (e. g. U-Net [391]) can be
trained to reverse (denoise) a tth step given a pair of images at steps t and t − 1 as

well as the original image as a reference. During sampling, the model inputs noise

and applies T consecutive denoising steps. To “guide” sampling, e. g. with a data

class or text, the denoising step is conditioned on gradients from an independently

trained noisy-image classifier [388] (classifier guided diffusion) or from CLIP [7].

To get rid of the additional pre-trained model, one may train a conditional diffusion

model by randomly replacing the condition embeddings with zeros (classifier-free

guidance [392]). Rombach et al. [12] suggested to “diffuse” in the latent space instead

of the pixel space to reduce the cost of training (aka. latent diffusion model (LDM)

or Stable Diffusion). The image-based diffusion model with classifier-free guidance

was adapted for the video domain by Ho et al. [358] (VDM). While, Singer et al.

[393] (“Make-a-Video”) and Ho et al. [394] (“Imagen Video”) pre-trained a small-

resolution text-image diffusion model and used a sequence of independently trained

interpolation and spatio-temporal super-resolution blocks.

Datasets Textually-guided video generation requires a large dataset with video-text

pairs. Since the field is still heavily under development (most of these works has been

released in 2022), the selection of datasets amongworks is diverse. HowTo100M [302],

MSR-VTT [195], TGIF [235], VATEX [196], WebVid [395], MUGEN [396] were

among those, yet it is also common to rely on internal private datasets [394].

2.2.7 Multi-modal action recognition

Activity recognition is considered to be the main research area in video content un-

derstanding. A model that was pre-trained for action recognition often forms the
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basis for other video understanding problems that require strong video representa-

tions. Multi-modal research in activity recognition was mostly dedicated to employ-

ing auditory cues from an audio track that is naturally present in a video file.

In earlier works, the visual track was encoded with a variant of a 2D or 3DCNN,

which formed the main contribution of a paper. In turn, the 1D audio waveform

is processed with Short-Term Fourier Transform (STFT) that extracts a spectro-

gram (image-like 2D representation), which is sometimes followed by a log-Mel-

scale transform. The spectrogram is encoded by a 2D CNN that resembles an image

recognition model. It is also common to employ optical flow frames or a skeleton

(pose) to improve performance. The modalities are often fused with concatenation

[397–404], but some other exotic fusion strategies exist, e. g. lateral connections (ad-

dition) along the visual network [405], adaptive fusion of sub-network outputs based

on a data class [406, 407], attention [408, 409], transformer [410–413], or neural ar-

chitecture search (NAS) [414]. Recently, transformer-only multi-modal backbones

started to appear in the literature [48, 415].

Interestingly, even though a stronger performance is expected, adding othermodal-

ities (e. g. audio) to a model leads to the decline in model performance [404, 405].

This phenomenon was attributed to the overfitting that occurs at different rates for

visual and audio sub-networks. To mitigate this, re-weighting of losses based on

overfitting dynamics is proposed in [404] and modality-dropout in [405].

Although most of the activity recognition datasets were mainly designed for vi-

sual recognition, these are still being used for multi-modal training. Specifically,

HMDB [416], UCF101 [417], Kinetics [418], and EPIC-KITCHENS [419, 420].

2.2.8 Multi-modal video foundation models and applications

Conventional wisdom has it that a deep learning model benefits from large-scale pre-

training when it comes to its performance and generalization capabilities. When a

practitioner attempts an image classification problem, a common practice is to use

a model that was pre-trained on a large-scale general-purpose dataset, such as Ima-

geNet [22], and fine-tune it on the target, often small-scaled, dataset. Following this

practice, one might expect not only stronger performance but also faster conver-

gence, compared to training the same model from scratch.

Unlike image classification, other supervised learning tasks might require more

effort during annotation, such as video question answering. For this reason, a high-
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quality large-scale dataset might not be available. Thus, a large body of recent

work in video understanding has been dedicated to multi-modal (often visual-text)

pre-training on the datasets that are noisy but easy to collect at a large scale (e. g.

HowTo100M [302]). It turns out that pre-training a model to solve a learning prob-

lem that is only useful for the sake of pre-training, e. g. to contrast between positive

and negative video-text pairs, allows learning useful representation for desired (down-

stream) tasks. Hence, these are called “foundation models” [50].

Besides substantial gains in performance after fine-tuning on down-stream tasks,

foundation models have strong zero-shot capabilities6 on tasks with text labels. More

specifically, a model that was pre-trained contrastively on video-text pairs can be

used to compare an embedding of a video clip to the embedding of each class label

of an “unseen” dataset. This can be achieved by simply re-formatting class labels

as captions by filling a template like “a video clip of data_class”. Since a model

was pre-trained to score video-text correspondence, designing this straightforward

“communication device” to the model allows applying it to “unseen” datasets making

it an exciting step towards building a general-purpose model.

Pre-training modalities and applications When it comes to the video-text foun-

dation models, the pre-training is often done with two modalities: vision (an RGB

stream) and text [31, 35, 421–439]. Notably, the possibility of reusing paired image-

text data during pre-training has been explored in a variety of works [425, 427, 428,

430, 432, 433, 440], while others also employed the audio modality [435, 441–444].

Once the model is pre-trained on this data, it has the potential to be applied with and

without fine-tuning on a many down-stream tasks such as text-video retrieval [35,

421–427, 429, 431–435, 437–439, 441, 442, 445], action recognition [31, 423,

427–429, 434, 435, 438, 441, 442, 444], video captioning [31, 422, 424, 425, 427,

431, 438], action segmentation [426, 431, 434, 445], video question answering [35,

421, 422, 427, 431–433, 436, 437, 439, 443, 445], action localization [434, 445], vi-

sual common sense reasoning [443], and action anticipation [443, 444]. An attempt

to unify the evaluation procedure of foundation models on multiple down-stream

tasks, Li et al. [446] (VALUE) suggested relying on a suite of 11 down-stream video

understanding datasets across 3 tasks (text-to-video retrieval, video question answer-

ing, and video captioning).

6Zero-shot performance is referred to here in a broader sense (as in CLIP [2]), i. e. performance of
a model on “unseen” datasets/tasks instead of performance on “unseen” classes of a dataset.
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Architectures The idea of large-scale pre-training and fine-tuning on other tasks

is not novel. However, the multi-task evaluation setting certainly gained popularity

after the success of transformers, such as BERT [1], GPT [7–9], and CLIP [2].

Although earlier models were 2D/3DCNNs [35, 421, 435], most of the foundation

models are transformers nowadays [31, 35, 422–425, 427, 428, 431–433, 436, 437,

439, 442–445].

Datasets Research in large-scale video-text pre-training was strongly influenced by

How-To-100M [302], a dataset of 100M+ “how-to” YouTube videos paired with

subtitles extracted by an automatic speech recognition system (ASR). Recently, other

suitable datasets started to appear in the literature, i. e.WebVid [395], YT-Temporal-

180M [436], as well as internal databases [31].

2.3 Transformer architecture

Transformer architecture [4] is one of the most prominent ideas in the past few years.

Its non-autoregressive nature and attention mechanism allow long-term dependence

modelling and parallelisation capabilities. First, it took by storm natural language

processing (NLP) community as a German-English translation model [4], context-

aware text representation model (BERT) [1], and language model (GPT) [7–9].

Shortly after, it started to appear in the computer vision community, e. g. image clas-

sification (SAN, ViT, Swin) [41, 42, 447], object detection (DETR) [3], and image

generation (TransGAN) [448] as well as action recognition (TimeSformer, ViViT,

MBT) [43, 48, 449]. The transformer has been applied in other areas, such as audio

classification (AST) [44] and reinforcement learning (Decision Transformer) [450].

This section defines the vanilla transformer architecture as outlined by Vaswani

et al. [4]. Although encoder-only versions are more common nowadays (BERT,

ViT, GPT), defining the transformer in its original form for language translation is

beneficial for several reasons. First, the architecture has been remarkably consistent

and was adapted with minimal changes for other tasks making it a general frame-

work while the rest are special cases of it. Second, the concept of “softening the

dictionary look-up” with queries-keys-values attention is more intuitive for language

translation. Third, the cross-modal potential of a transformer is easier to appreciate.
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Tokenization for text The process of tokenization allows us to build an “interface”

between raw data and the model. The transformer was designed to tackle sequence-

to-sequence modelling and language translation in particular. Therefore, text tok-

enization is defined next. For the sake of simplicity, the following explanation relies

on word-level tokenization7. A token is a piece of input data. For instance, “A cat

is riding a bike.” can be tokenized as “a”, “cat”, ..., “bike”, “.” word to-

kens. Once the tokenization has been applied across the whole dataset, a vocabulary

is built as the token-to-index mapping, meaning that each word is replaced with a

unique integer. Now, these tokens can be embedded into d-dimensional space with

a fully connected layer. This process and the output vector are called embedding.

For the tth token of the sentence that has it index in the vocabulary (vocab), a token

embedding (xembt ) is calculated as a dot-product between by a matrix with trainable

parametersW ∈ R |vocab |×d and a one-hot vector with identity at the index it:

xembt = OneHot(it , |vocab|)W (2.1)

It is equivalent to picking the tth row of W and that the matrix W holds embed-

dings for each word from the vocabulary. Thus, in practice, the operation in Equa-

tion (2.1) is implemented as an index look-up to W as it is more computationally

efficient than the dot-product. Ultimately, the transformer inputs a sequence of to-

ken embeddings extracted from each word in a sentence.

Architecture overview As shown in Figure 2.1, the encoder-decoder Transformer

has three major blocks: encoder, decoder, and generator. For the German-to-English

translation, the encoder makes a representation of a sentence in German:

z = Encoder(x), (2.2)

where x = (x1, x2, . . . , x |x | ) ∈ R |x |×d is a input sequence of token embeddings with
dimension d from German words and z = (z1, z2, . . . , z |x | ) ∈ R |x |×d is the encoder
output which has the same length. The decoder uses the outputs of the encoder z

as well as embeddings of previously generated tokens (up to t) of the target English

7However, other types of text tokenization are available, e. g. as characters, and word pieces [451,
452] (as in BERT or GPT) that are commonly used today and serve as a controllable middle ground

between word- and character-level tokenization.
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Figure 2.1 Transformer architecture. An example of translating “A cat is riding a bike” from German
to English is shown. The model consists of three blocks: an Encoder, Decoder, and Gen-
erator. Both the encoder and decoder have L layers. The input token embeddings are
summed with positional embeddings (1, 2, . . .). Each sub-layer of encoder and decoder
layers has a layer normalization (“LNorm”) and residual connection around it.

sentence y≤t = (y1, y2, . . . , yt) ∈ Rt×d to output g≤t = (g1, g2, . . . , gt) ∈ Rt×d:

g≤t = Decoder(y≤t , z). (2.3)

This output of the decoder (gt) is used by the generator to produce the probability

distribution for the next token (t + 1) from the pre-defined English vocabulary:

pt+1 = Generator(gt). (2.4)

Dot-product attention The concept of scaled dot-product attention is defined with

queries (Q), keys (K), and values (V ) abstractions:

Attention(Q,K, V ) = Softmaxrow
(
QKT

√
d

)
V, (2.5)

where Q,K, V are sequences of d-dimensional vectors and the Softmax is applied

row-wise. Notice, K and V must be of the same length and the output of the at-

tention operation has the same size as Q. Intuitively, a value vector at position i is

re-weighted with wights determined by the softmaxed dot-product between the query

vector at position i and each row of keys. The scaling by 1/
√
d is applied to keep the

softmax gradients within the non-zero region [4]. The attention mechanism allows

accessing information at a specific position from every position of the input sequence.
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Whereas, an RNN cell updates its hidden state at each position which leads to poor

temporal modelling as information from distant positions might vanish.

Multi-headed attention Let’s assume that the multi-headed attention has H (e. g. 8

or 16) heads. Havingmultiple heads allows the block to learnmultiple representation

sub-spaces of a smaller size in parallel by splitting the input dimensions (dq) into H

chunks of size din = dq/H [4]. The multi-headed attention (MHA) is defined as

headh(q, k, v) = Attention(qWq

h
, kWk

h , vW
v
h ) for all h ∈ [1, H] (2.6)

MHA(q, k, v) = [
head1(q, k, v), . . . , headH (q, k, v)

]
W out, (2.7)

where q, k, and v are sequences of dq, dk and dv-dimensional vectors, W
∗
h
∈ Rd∗×din

and W out ∈ Rdin ·H×dq are trainable parameters, and [] is a concatenation operator
across the first dimension and Note that the size of the MHA(q, k, v) output corre-
sponds to the size of q. For simplicity, it is often assumed that dq = dk = dv = d.

Position-wise feed-forward network The feed-forward network (FFN) follows a

multi-headed attention layer in each encoder and decoder layer. It is sometimes called

position-wise fully-connected network. The architecture of the network is as simple as

a 2-layer MLP that is applied at each position of the input sequence, i. e. the weights

are shared across all positions:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (2.8)

where x is a d-dimensional input vector, ReLU is a rectified linear unit non-linearity,

and W1 ∈ Rd×4d, W2 ∈ R4d×d and biases b1, b2 are weights to be trained. Although
the motivation behind FFN was not discussed in the original paper, yet it is evident

that the FFN adds trainable parameters and, thus, increases model capacity.

Encoder The encoder is a stack of L (e. g. 6) encoder layers. Given an input se-

quence of token embeddings, it makes a representation of it which the decoder uses as

context later. The output from an encoder layer is used as the input to the next layer:

Each encoder layer l consists of two sub-layers: multi-headed self-attention (MHA)

and position-wise feed-forward network (FFN). Inputs to each sub-layer are normal-

ized with layer normalization (LNorm) [13] and have a residual connection [453]:
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zl = LNorm(zl) (2.9)

rl = zl +MHA(zl, zl, zl) (2.10)

rl = LNorm(rl) (2.11)

zl+1 = rl + FFN(rl), (2.12)

where zl ∈ R |x |×d is the input sequence to the layer l as well as z0 = x and zL = z.

Since all inputs to MHA are the same, it is called self -attention. The self-attention

allows an element at each output position to build complex relationships with tokens

at any position of the input sequence, including the element in its position.

Decoder Similar to the encoder, the decoder is a stack of L decoder layers. It inputs

embeddings of the previously generated tokens (g0≤t = y≤t) and the output from the

last encoder layer (z). A decoder layer consists of three sub-layers: multi-headed self-

attention, multi-headed encoder-decoder attention (MHA), and position-wise fully-

connected network (FFN). Similar to each encoder layer, layer normalization and

the residual connection is used in each sub-layer:

gl≤t = LNorm(gl≤t) (2.13)

bl≤t = gl≤t +MHA(gl≤t , gl≤t , gl≤t) (2.14)

b
l

≤t = LNorm(bl≤t) (2.15)

ul≤t = bl≤t +MHA(bl≤t , z, z) (2.16)

ul≤t = LNorm(ul≤t) (2.17)

gl+1≤t = ul≤t + FFN(ul≤t), (2.18)

where gl≤t ∈ Rt×d is an input sequence to the layer l and z ∈ R |x |×d are the encoder
outputs. Note that the sequence of the encoded German tokens z is at the places of

keys (K) and values (V ) in the Equation (2.16), and the embeddings of the English

tokens at that sub-layer serve as queries (Q). It allows each element of the English

embedding sequence (b
l

≤t) to have access to every position of the encoded German
sentence z. This query-context (English-German) routing mechanism has a strong

potential for cross-modal research.
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Generator The output from the last decoder layer (gL≤t = g≤t) is used in the gener-
ator that models the probability distribution of the next word of the English trans-

lation across the pre-defined vocabulary. Typically, it is defined as a fully connected

layer with softmax applied on the last element of the decoder output (gt):

pt+1 = Softmax(gtWG + bG), (2.19)

where WG ∈ Rd×|vocab | and biases bG ∈ R |vocab | are trainable parameters. The next
token can be sampled from a multinomial distribution with the weights pt+1.

Where to start and when to stop? The role of special tokens During inference,

the transformer does not have previously generated tokens. A common technique to

this end is to have a special token prepended to each target sequence during training

with a starting token (<START>). It is added to the vocabulary along with other

tokens during the tokenization process. Therefore, during inference, to predict the

first word of the target sentence, the transformer inputs the embeddings from the

source sequence (German) in the encoder and the embedding of the start token from

the target sequence in the decoder. Similarly, the ending token (<END>) is appended

to the end of the target sequence and added to the vocabulary. This allows the model

to learn to “signal” when to stop sampling.

Positional encoding The transformer does not have a “sense” of order in an input

sequence. In other words, it is position-invariant, i. e. if the input sequence is be

randomly permuted the output will be intact8. For this reason, positional encoding

is added to the input sequence. Originally (Vaswani et al. ), the positional encoding

was defined as alternating cosine and sine functions with varying frequencies:

PE(t, i) =
⎧⎪⎪⎨⎪⎪⎩
sin

(
t

100002i/d

)
if i is even

cos
(

t
100002i/d

)
if i is odd ,

(2.20)

where t is an index of the token in the input sequence and capped with the longest

sequence in the training set and i ∈ [1, d] is an index from latent dimension. In prac-

8It is easy to see when inspecting the attention mechanism (Equation (2.5)). Attention is defined as

a set of dot products between sequences. The dot-product is a sum of element-wise multiplications, in

which each pair of elements can be swapped with another pair (equivalent to switching the position of

the input sequence) without changing the result of the dot-product. Hence, the positional invariance.
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tice, positional encoding is represented as a 2D matrix with d columns pre-calculated

beforehand. Nowadays, however, the sine/cosine positional encoding is rarely used

and was replaced with trainable parameters.

Objective If the transformer is trained to predict the next word, cross-entropy loss is

used. Label smoothing [454] is also commonly used to avoid the model being overly

“confident” in its predictions because the ground truth may be noisy or, in the case

of text modelling, words may have synonyms. Also, during training, the sequence

of “previously generated” tokens is replaced with ground truth tokens, which is also

known as teacher forcing to avoid error accumulation. To combat overfitting, the

dropout [455] is used across the architecture.

Masking Another important detail that one should take care of during training

is token masking. Notice that the forward pass computes predictions for the next

token for each position of the input sequence. Therefore, one may plug in the whole

ground truth sentence, run a forward pass just once and compare the outputs to the

ground truth. However, since the self-attention mechanism allows the decoder to

attend to all positions, including next positions, the model might cheat by simply

taking the ground truth from the t+ 1 position when making a prediction at position
t. To avoid this, masking with −∞ is applied to theQKT values such that the position

that are higher than t have a zero weight and cannot route their information after

applying the softmax in Equation (2.5). The masking is applied by replacing the

values of QKT that are above and to the right of the diagonal elements with −∞.

Making batches Similar to other networks, during training inputs to a transformer

are batched together. In general, the inputs might have different lengths (sentences

have a different number of words). To this end, padding tokens (<PAD>) are used

to extend shorter sequences to match the longest sequence within the batch. The

padding tokens should be masked out as described above.

Tokenization for other types of data So far, the concept of token embeddings

was shown in the text data. Recently, the transformer was adapted for many other

tasks, including computer vision. Considering the structured nature of the text,

tokenization is rather straightforward and can be done on the word, character, or

word-chunk levels. When it comes to image input, more insides are needed. The
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most well-known approach is to split an image into 16 × 16 px patches and embed

them into a d-dimensional representation using a fully connected layer as suggested

in ViT [41]. However, it was not the first attempt to “tokenize” visual data. In par-

ticular, the features extracted from each video frame were used as tokens for video

captioning by Zhou et al. [30]. Also, a 2D feature map that was pre-extracted with a

2D CNN can be used as in DETR [3]. Another approach to visual tokenization is a

VQVAEwhich encodes and, then, quantizes the representation with tokens/embed-

dings from the discrete codebook (VQGAN, DALL-E) [19, 39]. These approaches

might also be straight-forwardly generalized into the 3D video data, to 1D audio

waveforms (Jukebox [456]), and 2D audio spectrograms (AST [44]). In contrast to

all previous visual and audio tokenization methods, Perceiver (Jaegle et al. [46, 47])

treats a raw data value (of a pixel or a waveform) as a token.

Known limitations Although the transformer has a theoretical capability of mod-

elling within-sequence interaction of arbitrary-long sequences, it quickly becomes

infeasible in practice when the input sequence grows in size. Notice that if the input

length is t, the shape of QKT in Equation (2.5) is t × t which means the (GPU)

memory footprint grows quadratically with respect to the input length. However,

this issue might be temporal as better hardware is being actively developed. Another

problem with the transformer architecture is the weak performance on small-scale

datasets. It was experimentally shown that the transformer start to “shine” when it

is trained on large-scale datasets and benefits more from larger pre-training compared

to more traditional approaches that still outperform the transformer on smaller-scale

datasets [41]. Therefore, the transformer architecture might not completely replace

the old technologies (e. g. CNNs), at least in the current state.
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3 MULTI-MODAL DENSE VIDEO CAPTIONING

Video captioning requires a video understanding model to produce a textual descrip-

tion of the video content (see relevant work on page 25). By default, the description

consists of a single sentence which might not be enough for a seconds-long video

clip. One way of addressing this problem would be to use multiple sentences that

convey a coherent description which is called paragraph video captioning (see prior

work on page 28). Another way of approaching it is to assume that a video consists

of multiple events, e. g. a cooking video, in which a cook starts by making dough,

then make the filling, and finally, put it in the oven. Therefore, a natural approach

would be to, first, detect events temporally and, then, make a textual description for

each detected event. This task is called dense video captioning.

Prior works in dense video captioning focused mainly on the visual modality

alone and ignore potentially crucial cues from an audio track. For example, knock-

ing on the door from the opposite side might be invisible on the visual track but

processing the audio track might facilitate a better understanding of this scene. Be-

sides audio, speech might also provide useful cues for a captioning model because

sometimes a narrator reacts to a scene in a certain way or partially verbalizes the

content of the events. At the same time, the transformer architecture, which was

originally designed for translation, fits well into the video captioning framework as

one may formulate the problem as a translation from video to text.

This chapter introduces two novel ways of how the transformer architecture

could be generalized into the multi-modal setting to tackle the dense video captioning

task more efficiently. In particular, Section 3.1 presents the related work on dense

video captioning. In Section 3.2 a new multi-modal framework for dense video

captioning is introduced which is followed by our newer development of a novel

generalized transformer for bi-modal input in Section 3.3. Finally, the discussion

regarding potential directions for future research is presented in Section 3.5.
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3.1 Related work

Inspired by the dense image captioning [457], Krishna et al. [198] suggested exploring

captioning videos in a similar way. In particular, they used Deep Action Proposals

(DAPs) network [458] to predict the temporal event boundaries, and an LSTM to

caption the video clip that was outlined by an event boundary. Besides the proposed

architecture, the ActivityNet Captions dataset was released to the public which in-

spired many follow-up works in dense video captioning. In most of these works the

design of an event proposal generation module was inspired by the advances in action

proposal generation. Specifically, Wang et al. [459] made use of wider context in the

Single-stream Temporal Action (SST) proposal generation network [460] and a dy-

namic gating mechanism to control the influence of the context. Meanwhile, Zhou

et al. [30] put forward the transformer architecture with a variant of ProcNets [199]

that generates event proposals. Duan et al. [461] proposed an approach to address-

ing the problem of expensive annotation that dense video captioning requires and

studied the idea of weakly-supervision with a cycle-consistency loss [381] given a set

of captions with temporal annotation.

The loss values have only a weak correlation with the resulting captioningmetrics.

For this reason, others explored the optimization of these non-differentiable metrics

directly. with reinforcement learning (RL) objectives as it was initially outlined for

image captioning [462]. This idea was adapted for dense video captioning by Li

et al. [463] who also suggested relying on a variant of the Single Shot Detector

(SSD) [464] for proposal generation. In the meantime, Xiong et al. [203] explored

sentence and paragraph-level rewards to improve coherence in video captioning with

an LSTM model and used Structured Segment Networks [465] as an event proposal

module. The idea of multi-level rewards to improve story-telling was studied byMun

et al. [466] who combined the SST proposal generation network (as in [459]) with

a Pointer Network [467] to filter generated proposals.

Only a few works have explored the use of other modalities for dense video cap-

tioning. In particular, Rahman et al. [468] generalized the weakly-supervised ap-

proach of Duan et al. (as outlined above) by adding the audio modality and relied

on the Tucker decomposition to fuse audio and visual. Although weak supervision

brings its benefits, the performance was substantially lower compared to supervised

models. While Shi et al. [469] tackled captioning of cooking videos with additional
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speech transcripts. The transcripts were encoded with BERT and fused with visual

representations in an LSTM module, followed by another LSTM network that gen-

erates a caption. Although the proposed method reached strong performance, it was

applied to the instructional (cooking) videos where transcription has a strong corre-

lation with the captions (see the HowTo100M dataset). In this work, we propose

two new approaches that address these issues.

3.2 Multi-modal transformer for dense video captioning (MDVC)

The framework consists of two major parts: the event localization module and the

multi-modal dense video captioning module as outlined in Figure 3.1. We refer to

the proposed framework as MDVC. Specifically, we will rely on Bidirectional Single-

stream Temporal Action proposal network (Bi-SST) [459] to generate event proposals.

The Bi-SST operates on 3D convolutional network features that are, then, encoded

by a recurrent neural network. The outputs of the recurrent net are used to predict

the most appropriate proposal anchor along with a confidence score. Once proposals

have been selected for a video, each of them is captioned with a transformer-based

model. We rely on multiple modalities to extract important information from video

content: audio, speech in a form of subtitles, and vision. The outputs of individual

feature transformers are concatenated and passed to the generator that predicts the

next caption word. The captioning is done autoregressively, i. e. word-by-word.

Event localization module

The goal of the event localization module is to make a set of potential temporal

regions for important events on a video. Here we rely on the Bi-directional Single

Stream Temporal action proposal net (Bi-SST) [459] considering its strong perfor-

mance. The input to Bi-SST is a sequence of features extracted by a 3D convnet

features (C3D [470]). The features are extracted from non-overlapping stacks of 16

RGB frames with a stride of 64 frames. Principal Component Analysis (PCA) is

used to reduce the dimensionality of each feature vector from 4096 to 500.

These extracted features are passed to a bi-directional LSTM [94] which per-

forms two passes: forward and backward (reversed in time). During the forward

pass, the LSTM holds the information about the current visual feature and all visual

features from previous states (past). Using this accumulated information, the net-
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Figure 3.1 Overview of the Multi-modal Dense Video Captioning model (MDVC). It takes in features
from audio (blue), speech (red), and visual (green) modalities that correspond to a certain
temporal proposal. Each sequence of features is processed in a corresponding feature
transformer as well as the previously generated caption words (yellow). The output of the
transformers is concatenated and used in the generator to predict the next caption word.

work makes a prediction (confidence) of how relevant to each of the 128 pre-defined

event anchors1 at each temporal position of a feature t. During the forward pass,

an LSTM encodes the input visual features step-by-step from the beginning of the

video till the end. Since the model encoded only past information (< t) by a step t,

the temporal ends of the anchor proposals are made to end at t. Similarly, during

the backward pass, the LSTM iterates from the end of the video towards its begin-

ning and holds a hidden state accumulating future cues (> t). Therefore, a second

set of anchor-confidence pairs is formed but now all starting from step t since no

earlier information (< t) has been processed. The final set of proposals, i. e. triplets

(start, end, confidence), is picked according to the confidence score and manually se-

lected threshold.

1Similar the procedure for object detection [464, 471], the event anchors are pre-calculated with

the K-Means algorithm which clusters ground truth temporal boundaries.
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Captioning module

The task of the dense video captioning module is to produce a textual description of

the clip content that is bounded by an event proposal. Prior works mainly rely

on visual-only modality to perform captioning. We argue that other modalities

such as audio and speech transcripts may provide useful cues to a model which im-

proves captioning performance. Considering this hypothesis and the previous suc-

cess of the transformer architecture, we propose to tackle captioning with a stack

of transformer-based encode-decoder architectures that jointly learn to extract rele-

vant information from multi-modal feature sequences and use it to predict the next

caption word, see Figure 3.1 for details.

In this work, we rely on multi-modal input features that are extracted as follows.

VGGish [17] is used to extract a 128-d audio features from approximately 1 sec-

ond of audio. The speech transcripts (subtitles) have been obtained using automatic

speech recognition (ASR) tool available on YouTube API2. The subtitle words are

embedded into 512-d space with a trainable embedding as described in Section 2.3

on page 40. The visual frames are processed along with optical flow frames in a

Two-stream Inflated 3D convnet (I3D) [11] which produces 1024-d feature vectors

for approximately 1 second of the original visual stream.

Once the sequences of features are obtained for each modality, they are passed to

the corresponding feature transformer along with the token embeddings from pre-

viously generated captioning words. The architecture of the feature transformer is

similar to the vanilla encoder-decoder transformer architecture which was outlined

in Section 2.3 except for the generator. The latent dimension of the feature trans-

former, including the dimension of the caption token embedding table resembles the

dimensionality of the input features, i. e. 128 for audio, 512 for speech, and 1024

for visual modalities. To generate the next caption word, the generator uses the last

element from each sequence and concatenates these elements along the latent dimen-

sion, and passes it to the fully-connected layer followed by a softmax which will

output the probability distribution over the training vocabulary (≈10k words). The
captioning model is trained in a similar way to the translating transformer with a

cross-entropy loss with label smoothing as described in Section 2.3.

2https://developers.google.com/youtube/v3/docs/captions
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3.3 Better use of audio-visual cues with bi-modal transformer (BMT)

Although MDVC (Section 3.2) yields strong results compared to prior works, it

has a few drawbacks. In particular, despite being straightforward, some parts of

the captioning architecture are redundant, e. g. each feature transformer has to learn

an individual text embedding module in the decoder. Another issue that could po-

tentially impair the model performance is the lack of interaction between multiple

modalities. In fact, MDVC relies on the late fusion to make a decision on the next

caption word. Even though this could be beneficial for the sake of modularity, e. g.

by reusing the feature transformers separately, fusing the features at the very end

might prevent the model from learning low-level multi-modal interactions. Finally,

the proposal generation hinges on visual information alone, yet other modalities

might provide useful cues for the start and end of the events.

Therefore, we present a novel approach for dense video captioning that addresses

these issues. We call it BMT which stands for “Bi-modal Transformer”. The pro-

posed model outperforms MDVC by a substantial margin while being smaller in size

and using only audio and visual modalities. In addition, the multi-modal features are

fused early which allows the model to effectively encode multi-modal information

and use it not only for captioning but also for proposal generation.

Framework overview

The Bi-modal Transformer (BMT) is a general-purpose architecture for sequential

bi-modal inputs. We rely on BMT to perform both event proposal generation and

captioning. More specifically, the BMT is an encoder-decoder transformer which,

during captioning, inputs a (trimmed) sequence of audio features (extracted by VG-

Gish [17] in our case) and a (trimmed) sequence of visual features (I3D [11]) as it is

shown on Figure 3.2.

The sequences of audio and visual features are passed through a stack of L bi-modal

encoder layers. Compared to the original transformer encoder, it has a novel block

which we refer to as Bi-modal Multi-headed Attention. This block allows modelling

interactions between modalities early on. The outputs of the bi-modal encoder are

passed to the bi-modal attention blocks in bi-modal decoder layers. These outputs

are used as the context (keys and values) for the encoded sequence of caption word

embeddings (with GloVe [6]) from the previously generated caption words. The
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Figure 3.2 Overview of Bi-modal Transformer (BMT). It inputs features from audio (blue) and visual
(yellow) modalities that correspond to a certain temporal proposal, the rest of the streams
is discarded. The L-layer bi-modal encoder (bottom) inputs audio and visual features and
outputs bi-modal representations. The encoder representations are used as a context
in the L-layer bi-modal decoder (top) that also takes in the previously generated caption
words (red). The output of the bi-modal decoder is passed to the generator which predicts
the next caption word. Layer normalization layers and residual connections are omitted for
clarity.

outputs of the bi-modal attention blocks inside of the decoder layer are fused in the

Bridgemodule. The last bi-modal decoder layer outputs representations that are used

in Generator which produces the next caption word.

As shown in Figure 3.3, to generate proposals that were used to trim the input

features, we rely on the bi-modal encoder and the novel multi-headed proposal gen-

eration module that relies on the multi-modal output of the encoder. The proposal

generator uses multiple heads with unique temporal perceptive fields to predict the

offsets to a pre-defined set of event anchors inspired by the success of YOLOv3 [20]

in object detection. The predicted proposals are finally sorted for confidence.

The proposed model is trained in two stages. First, we train a captioning module

on ground truth event proposals. Second, we reuse the pre-trained blocks of the

captioning model to initialize parts of the proposal generation model which is trained

next. We found that doing this in the reversed order as described is beneficial for the

final performance. Therefore, in this section, we begin with the captioning module

and continue with the event localization module.
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Captioning module

As shown in Figure 3.2, the bi-modal encoder inputs sequences of audio (A) and visual

(V ) features that were trimmed according to proposal boundaries and outputs vision-

guided audio features Av and audio-guided visual features Va. The bi-modal decoder

inputs these features along with the previously generated caption words (c1, c2, . . . , ct)

and makes representation that is, finally, used in the generator to produce the next

caption word (ct+1). We omit the proposal index from our notation for clarity.

Bi-modal encoder The encoder consists of L layers and inputs the trimmed audio

(A ∈ RTa×da) and visual (V ∈ RTv×dv) features. Compared to the original trans-
former’ encoder layer [4], the bi-modal encoder has not two but three sub-layers:

multi-headed self-attention,multi-headed bi-modal attention (new), and position-wise

feed-forward network. The self-attention block and feed-forward network are sim-

ilar to those of the vanilla transformer as defined in Section 2.3. Compared to the

self-attention, the multi-head bi-modal attention for 2D inputs x, y is defined as

SelfAtt(x) = MultiHeadAtt(x, x, x), (3.1)

BiModalAtt(x, y) = MultiHeadAtt(x, y, y). (3.2)

Then, given A0
fc
= A and V 0

fc
= V , the lth bi-modal encoder layer is defined by

Al
self

= SelfAtt
(
Al−1
fc

)
, V l

self
= SelfAtt

(
Vl−1
fc

)
, (3.3)

Al
bm

= BiModalAtt
(
Al
self

, V l
self

)
, V l

bm
= BiModalAtt

(
Vl
self

, Al
self

)
, (3.4)

Al
fc
= FeedForwardNet

(
Al
bm

)
, V l

fc
= FeedForwardNet

(
Vl
bm

)
, (3.5)

All blocks have unique trainable parameters, i. e. not shared. The last bi-modal en-

coder layer outputs vision-guided audio features AL
fc

= Av and audio-guided visual

features VL
fc
= Va. Both sets of features are passed to the bi-modal decoder.

Bi-modal decoder The decoder consists of L layers and inputs token embedding

from previously generated caption words Ct = (c1, c2, . . . , ct) ∈ Rt×dc along with
vision-guided audio features Av ∈ RTa×da and audio-guided visual features Va ∈
RTv×dv . Compared to the vanilla transformer which has three sub-layers in a decoder
layer, the bi-modal decoder consists of four sub-layers: multi-headed self-attention,

54



bi-modal multi-headed attention (new), bridge connection (new), and position-wise

feed-forward net. Except for the bridge connection sub-layer, other sub-layers are

defined in the bi-modal encoder layer. The bridge connection is defined as follows:

Bridge(x, y) = ReLU
([x, y]Wb + b

)
, (3.6)

where x, y can be arbitrary 2D-inputs (∈ Rt×dc), [·, ·] is the concatenation operation
across the second dimension, and Wb ∈ R2dc×dc and b are trainable weights. Given

caption embeddings S0
fc
= Ct and outputs from the bi-modal encoder Va, Av, the l

th

bi-modal decoder layer is defined as:

Sl
self

= SelfAtt
(
Sl−1
fc

)
, (3.7)

SlA = BiModalAtt
(
Sl
self

, Av
)
, SlV = BiModalAtt

(
Sl
self

, Va
)
, (3.8)

Sl
bm

= Bridge
(
SlA, S

l
V

)
, (3.9)

Sl
fc
= FeedForwardNet

(
Sl
bm

)
. (3.10)

The outputs of the last layer of the bi-modal decoder (SL
fc
) are used in the generator

that predicts the next caption word.

Generator The generator inputs caption features SL
fc
from the bi-modal decoder.

The architecture of the generator is similar to the original transformer. In particular,

is a fully-connected layer followed by the softmax which outputs the probabilities

for the next caption word from the vocabulary.

Event proposal generation module

The goal of the event proposal generator is to make a set of temporal proposals

that could potentially outline events in a video. In this work, we introduce a novel

proposal generator which contains two sets of proposal heads that make predictions

for the two bi-modal encoder’s output streams as it is shown in Figure 3.3. Each

proposal head makes offset predictions for each 1D temporal anchor as it is done

in object detection but in 2D. The head makes such predictions at every position.

Finally, the predictions from every position, anchor, head, and modality are gathered

and sorted by confidence.
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Figure 3.3 Overview of the Bi-modal Multi-headed Event Proposal Generator. It takes in features
from audio (blue) and visual (yellow) modalities from a full video. The L-layer bi-modal
encoder (top) inputs audio and visual features and outputs bi-modal representations. This
two-stream output is used in the two stacks of proposal generation heads (middle): Kv

for the visual and Ka for the audio stream. Each proposal head (bottom) has a unique
temporal receptive field k. A head makes predictions for each of |Ψ| anchors at every
position (shown at the position t∗).

Proposal generation head As shown in Figure 3.3 (bottom), a proposal head in-

puts a sequence of features that come from the bi-modal encoder (Av ∈ RTa×da and
Va ∈ RTv×dv). The head makes predictions at each position on the interval [1, Ta/v]
and for each temporal anchor. The design of the head is partially inspired by the

detection layer of the You Look Only Once v3 (YOLOv3) object detector [20] and

consist of three 1D convolutional layers. The first layer has the kernel size of k

features which is unique to each proposal head and varies greatly to accommodate

the diversity of event durations across the dataset. The second and third conv layers

have a kernel size of 1. The ReLU activation and dropout are used for each conv
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layer. For each temporal anchor, a head outputs a triplet (c, l, o). These values can
be transformed into the centre of the temporal bounding box, its temporal length,

and prediction confidence as follows:

center = p + σ (c); length = anchor · exp (l); confidence = σ (o), (3.11)

where σ is a sigmoid function. We omit the anchor index for clarity.

Bi-modal multi-headed proposal generator The proposal generator makes predic-

tions from two sets of proposal heads. We use Ka for audio and Kv for visual streams.

Therefore, in total, the proposal generator outputs Ta · Ka · |Ψa | + Tv · Kv · |Ψv | pre-
diction triplets. During inference, the proposal list is sorted by the confidence score.

Making temporal proposals and picking kernel sizes The sets of anchors for audio

and visual streams are picked with a K-Means algorithm which clusters ground truth

temporal event annotations. The numbers of clusters for audio and visual streams

are picked to balance the number of predicted proposals per stream, such that Ta ·
|Ψa | = Tv · |Ψv |, assuming that the numbers of proposal heads per stream are equal

(Ka = Kv). The kernel size values (k’s) for proposal heads are also determined by

K-Means clustering to maximize the chance of having a higher overlap between the

kernel’s perceptive field and a potential event duration. For implementation details,

a reader is referred to Publication II.

3.4 Experiments and results

In this section, we present the experimentation setting and results for MDVC (Sec-

tion 3.2) and BMT (Section 3.3) compared to the prior state-of-the-art approaches.

Dataset ActivityNet Captions [198] is used as a dataset for experimentations. This

dataset consists of ≈20k YouTube videos with human-generated dense temporal an-
notations and corresponding captions. Videos are 2 minutes long on average and

annotated with approximately 4 localized captions that have around 14 words. We

follow the “official” split of the dataset, i. e. 2:1:1 for training, validation, and testing.

The validation videos are annotated twice. For MDVC, the speech transcripts are

obtained from the YouTube ASR system and we found that around a third of all
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videos have at least one speech segment. At the time of development (early 2019),

we could obtain approximately 90% of the ≈20k videos from YouTube, the other

10% of videos are no longer available to the public.

Metrics To put the performance of our model into the appropriate context, we fol-

low the same evaluation metrics as in prior works. Specifically, we use BLEU@3,4

[472] and METEOR [473] machine translation metrics. The METEOR is used

as the main metric since it is considered to correlate the most with human judge-

ment. The dense video captioning performance is evaluated as follows. If a generated

proposal overlaps with the ground truth more than a threshold value of temporal

Intersection-over-Union (tIoU), the captioning metric is calculated and, otherwise,

zero is recorded. The metric for a video is calculated by averaging metrics for each

tIoU threshold in the list ([0.3, 0.5, 0.7, 0.9]). Then, metrics are calculated across all
videos in the dataset and averaged. Since the validation dataset has two sets of an-

notations, we take an average of the two metrics. The top 100 proposals are picked

according to confidence as the preferred candidates. For more details on the evalua-

tion procedure, a reader is referred to Publications I and II.

Results: dense video captioning In this chapter, we introduced two novel frame-

works for dense video captioning called MDVC and BMT. In Table 3.1, we show the

comparison to prior work across two settings: captioning with ground truth (GT)

and generated (learned) proposals. As it is shown in Table 3.1, MDVC and BMT

outperform all prior non-RL methods on METEOR when captioning learned pro-

posals3. Moreover, BMT reaches the highest BLEU@3,4 scores among all methods

in the learned proposal setting. When it comes to the performance on ground truth

(GT) proposals, our models perform strongly and outperform most of the methods

except for [30] on BLEU@3,4 while being on par in terms of METEOR. We also

highlight that our models were trained on 90% of videos that were available to prior

works because the other 10% are no longer available on YouTube. When comparing

MDVC against its descendant BMT, we observed several benefits of BMT. In par-

ticular, although BMT has a smaller capacity (59M vs 179M parameters) and does

3The evaluation of a video captioning model is challenging and METEOR (or BLEU) is only a

proxy for how good a caption is. Therefore, direct optimization of METEOR using a reinforcement

learning (RL) objective might not necessarily result in a better caption. For instance, the method

proposed by Li et al. [463] noticeably boosts METEOR when an RL objective is used but other

metrics remain intact.

58



With GT Proposals Learned Proposals

RL B@3↑ B@4↑ M↑ B@3↑ B@4↑ M↑

Li et al. [463] yes 4.55 1.62 10.33 2.27 0.73 6.93

Xiong et al. [203] yes – – – 2.84 1.24 7.08

Mun et al. [466] yes 4.41 1.28 13.07 2.94 0.93 8.82

Krishna et al. [198] no 4.09 1.60 8.88 1.90 0.71 5.69

Li et al. [463] no 4.51 1.71 9.31 2.05 0.74 6.14

Zhou et al. [30] no 5.76 2.71 11.16 2.91 1.44 6.91

Wang et al. [459] no – – 10.89 2.27 1.13 6.10

Mun et al. [466] no – – – – – 6.92

Rahman et al. [468]∗ no 3.04 1.46 7.23 1.85 0.90 4.93

MDVC (Ours)∗ no 4.52 1.98 11.07 2.53 1.01 7.46

BMT (Ours)∗ no 4.63 1.99 10.90 3.84 1.88 8.44

Table 3.1 Dense video captioning results of the proposed MDVC and BMT compared to prior work
across two settings: captioning ground truth (GT) and predicted proposals (learned). The
performance is reported on both validation sets of ActivityNet Captions. Metrics are
BLEU@3,4 (B@3,4) and METEOR (M). Additionally, we report the methods that rely on
a reinforcement learning (with RL) objective which boosts METEOR.
(∗) — smaller training dataset due to the missing videos (see § Dataset for details).

not rely on speech modality, it performs on par when ground truth proposals are

captioned. Also, the newly introduced audio-visual proposal generator allows for

significantly stronger performance in the setting with generated proposals compared

to MDVC. We invite a reader to inspect qualitative results in Publications I and II.

Results: event proposal generation Table 3.2 shows the results of the compari-

son between the novel bi-modal multi-headed event proposal module and prior work

methods. Since MDVC relies on the proposal generator of Wang et al. [459], we

omit it from the table. According to the results, our method significantly outper-

forms other approaches, despite being trained on fewer videos.

Ablation: effect of other modalities In this experiment (Table 3.3), we show the

importance of multi-modal cues for dense video captioning by comparing the per-

formance of ablated models that rely on a subset of selected modalities. Accord-
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F1↑

Xiong et al. [203] 33.01

Wang et al. [459] 50.40

Zhou et al. [30] 53.31

Mun et al. [466] 56.56

BMT (Ours)∗ 60.27

Table 3.2 Event proposal generation results of the bi-modal
multi-headed event proposal generator module
compared with the performance of proposal genera-
tors in prior work in dense video captioning. The re-
sults are reported on validation sets of ActivityNet-
Captions. The metric is the F1-score which is the
harmonic mean of the precision and recall.
(∗) — smaller training dataset due to the missing
videos (see § Dataset for details).

ing to the results, adding more modalities benefits a dense video captioning model.

Notably, audio-only models perform significantly worse compared to vision-only

models. Since MDVC relies on a visual-only proposal generation module, we can-

not evaluate the influence of the multi-modal setup on the learned proposal settings.

However, the positive effect of using audio-visual cues is clearly visible for BMT.

3.5 Discussion

Related work: new developments Publications I and II were published in 2020

and the field of dense video captioning has expanded in multiple directions. In par-

ticular, Wang et al. [474] explored the semantic and temporal relationships between

event proposals to improve the coherence of captioning further. While Suin and

Rajagopalan [475] focused on reducing the computation cost of a dense video cap-

tioning system. The idea of not relying on temporal annotations (weak supervision)

when training a dense video captioning model ([461, 468]) was further developed by

Chen et al. [476] who suggested a more efficient method of the captioner-localizer

interaction. In the meantime, Deng et al. [477] also proposed to switch from the

conventional “localize-then-describe” into making a paragraph of sentences (draft)

for the whole video and, then, ground temporally each sentence, followed by a re-

finement module that relies on an RL objective. Wang et al. [208] and Choi et al.

[478] explored the query-based approach inspired by an object detector DETR [3]

which allowed training event localization and captioning in a single-stage model.

Future research: better datasets It appears that most of the prior arts focused on

designing a novel architecture, yet it is not the bottleneck place at the moment. Al-

though the field of dense video captioning has experienced many great developments
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Ground Truth Learned

Proposals Proposals

Input Modality BLEU@4↑ METEOR↑ BLEU@4↑ METEOR↑

MDVC

Audio 1.13 8.79 – –

Visual 1.77 10.58 1.07 7.31

Audio + Visual 1.90 10.83 – –

Audio + Visual + Speech 1.98 11.09 – –

BMT

Audio 1.14 8.81 1.15 6.98

Visual 1.66 10.29 1.30 7.47

Audio + Visual 1.99 10.90 1.88 8.44

Table 3.3 The effect of other modalities on performance on the dense video captioning task. The re-
sults are reported on ActivityNet Captions validation sets and across two proposed models.

across the years due to the novel architectural elements, there are other directions

for future research to be explored.

First and foremost is the absence of a large-scale video dataset with temporal

and textual annotations which one could use to train (or fine-tune) a model and

exploit multi-modal interactions. Previous approaches rely on either ActivityNet

Captions [198], which is an open-domain dataset but small in size (10k training

videos), or YouCookII [199], which is a narrow-domain smaller-scale cooking video

dataset (1.4k training videos). For instructional videos (including cooking videos),

one could explore the potential of the scale of the HowTo100M dataset [302] and

the ways of combating the temporal and semantic noisiness of the annotations.

One of the interesting directions to solve the problem of expensive data anno-

tation was weak supervision [461, 468, 476], i. e. training a dense video captioning

system on a video captioning dataset without temporal annotations. Nonetheless,

it appears that the future of (dense) video captioning, as well as many other tasks

in video content understanding, is to become one of the tasks of large-scale pre-

training of a foundation model as discussed in Section 2.2.8. Therefore, it might

be more beneficial to build a large-scale high-quality multi-modal video dataset for
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general-purpose pre-training rather than investing efforts into developing a down-

stream task-specific video dataset to push the field forward.

Future research: better evaluation Currently, the evaluation of dense video cap-

tioning, and video captioning in general, is far from perfect. Although METEOR

and BLEU@K are the best candidates at this stage, they have a weak correlation with

human judgement. This could be another application of a foundation model that was

pre-trained contrastively on video-text pairs. Similar to the CLIP-based image cap-

tioning metric, one could rely on the video-text similarity of such a model to develop

more reliable metrics. Another benefit of making a better suite of evaluation metrics

is associated with the availability of the RL-based approaches [203, 463, 466, 477]

which might significantly improve captioning performance.
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4 VISUALLY-GUIDED SOUND GENERATION FOR

OPEN-DOMAIN VIDEOS

Generation of relevant audio for a video clip requires a video understanding model

to relate visual and audio cues. Solving the visually-guided sound generation could

potentially help the sound (foley1) designers to create suitable sounds for the visual

scene which often requires a substantial amount of time spent searching relevant

databases of sounds or manual work.

Prior arts in visually-guided audio generation focused primarily on generating

sounds for specific domains, such as musical instruments or a handful of classes. Yet,

the generated samples were short, of low quality, and required several GPU minutes

to sample a second of the target audio. Moreover, one needed to train one model per

class, which quickly becomes infeasible in an attempt to cover “in the wild” videos

as it might require training dozens or even hundreds of such models. In this work,

we addressed these issues by relying on a two-stage training approach. In particular,

during the first stage, the model effectively compresses the training audio dataset

into a set of representative vectors (a spectrogram codebook). These vectors can be

sampled given a video cue during the second stage. In addition, we introduced a novel

suite of evaluation metrics for conditional spectrogram generation.

In this chapter, we present a novel framework for a visually-guided sound gener-

ation that supports many classes in a single model. Related work is outlined next. In

Section 4.2, the design of the architecture and the training process is described. The

experimentation setup as well as the results are presented in Section 4.4. Section 4.5

provides a discussion regarding the follow-up works and future research directions.

1Sound effects in filmmaking that are manually created.
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4.1 Related work

Generation of instrumentmusic with visual cues Most of the prior arts in visually-

guided sound generation focused on the generation of instrumental music. The work

ofOwens et al. [479] sparked the interest towards visually indicated audio by present-

ing a novel dataset of hitting and scratching sounds emitted by a drumstick (“Greatest

Hits”) as well as a CNN followed by an LSTM as a generative model. Chen et al.

[480] explored the generation of single instrument audio given an image and and vice-

versa. To achieve this, Chen et al. relied on two generative adversarial nets (GANs)

as well as the URMP dataset [481]. To improve the performance of the GAN-based

approach, Hao et al. [482] used the cross-modal cycle-consistency [483] while Tan et

al. [484] embellished it with a transformer’s self-attention. Prediction of Midi given

a top view on hands playing the piano was investigated by Su et al. [485]. Kurmi et al.

[486] explored the joint generation of short audio and visual tracks simultaneously.

Although these works show promising results in generating instrument music, the

generated samples are quite short (∼1 second), span a narrow domain and represent

staged scenarios.

In contrast, we propose a model that generates 10-second audio clips and supports

the generation of relevant sounds to open-domain videos.

Generation of open-domain sounds based on visual cues Although visually-guided

audio generation is a relatively new field, a few interesting approaches have been de-

veloped over the last few years. In particular, Chen et al. [487] relied on a small

subset of AudioSet [488] and suggested learning a residual to a class-representative

spectrogram (average). To improve the quality (fidelity) and relevance of generated

audio, Zhou et al. [483] focused on training one model per data class using a hierar-

chical RNN to generate a waveform. In addition to the novel architecture, Zhou et

al. introduced a new 10-class dataset (VEGAS) which is based on AudioSet. While

Chen et al. [16] explored the influence of invisible background audio on training

and suggested using bottlenecked ground truth audio representation as well as vi-

sual input to improve training dynamics of the LSTM-GAN-based sound generation

model. Besides the new approach for training, they introduced an improved version

of the VEGAS dataset, called VAS. Although the results were promising, this setting

quickly becomes impractical once a dataset contains tens or, even, hundreds of data

classes because one is required to train one model for each class. Another issue is the

64



sampling speed which takes minutes to generate one second of the audio.

In this work, we introduce a novel approach for the visually-guided sound gener-

ation that supports many data classes in a single model, and the generation requires

less time than it takes to play the generated audio on a single GPU. Furthermore,

our model significantly outperforms the state-of-the-art in terms of sample quality

while being on par in terms of relevance to the visual input.

Metrics for automatic evaluation of audio generation Evaluation of machine-

generated content is a challenging task. Inspired by the image generation metrics

that are based on the dataset distribution, a variant of FID [489] was adapted to

evaluate a music enhancement model in [490] and a text-to-speech model in [491].

The proposed methodology, however, operates on small windows of one second

and might miss long-term coherence. A metric measuring similarity of two speech

segments was introduced in a form of a perceptual loss by Manocha et al. [492] who

suggested to collect human opinions on the similarity and train a classifier on such

data. The main drawback of this approach is the significant budget requirement

that one may need to overcome to collect a training set of human judgements for

large-scale open-domain datasets.

In this work, we designed a suite of metrics to evaluate not only the quality

(fidelity) but also the relevance of open-domain long (10-second) samples.

4.2 Codebook-based conditional sampling (Spectrogram VQGAN)

Our goal in this work is to design and train a model which is capable of sampling

high-fidelity audio given visual cues. Moreover, the model is expected to be capable of

supporting open-domain visual inputs and producing seconds-long samples in a mat-

ter of seconds. Instead of generating audio samples on the spectrogram-pixel level or

waveform values, we suggest “factorizing” the problem into two sub-problems that

can intuitively be described as follows. First, a set of “building spectrogram blocks”

is trained as an autoencoder with a codebook. Second, an autoregressive model is

trained to sample these building blocks given a visual prompt (a condition). In this

section, we define both stages in detail and outline the behaviour of the model during

inference. The overview of the training for both stages is illustrated in Figure 4.1.
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Figure 4.1 Training pipeline of the visually-guided autoregressive codebook-based conditional sam-
pler. During Stage I, an autoencoder with a discrete bottleneck is trained on spectrograms.
In particular, an input log mel-spectrogram is encoded into a small-scale representation by
a codebook encoder (e. g. a CNN). Next, this representation is quantized by picking the
closest codebook entry for each element. Then, the quantized representation is decoded
via the codebook decoder to reconstruct the spectrogram. The autoencoder is trained to
ensure the similarity between the input and output spectrograms. During Stage II, a sam-
pler (e. g. transformer) is trained to sample codebook codes in an autoregressive manner,
given a sequence of video frames and previously generated codebook indices. The ground
truth for the training of the transformer is provided by the codebook indices of the quan-
tized representation of the corresponding ground truth audio spectrogram.
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Stage I: Training a spectrogram codebook

The overview of Stage I is outlined in Figure 4.1 (left). Considering that the trans-

former is the state-of-the-art architecture for autoregressive modelling, we rely on

it to perform sampling during Stage II. However, considering the quadratic com-

plexity of the transformer with respect to the input sequence length, sampling raw

spectrogram pixels or waveform values is impractical. Therefore, drawing on success

of VQGAN [39] in high-resolution image synthesis, we encode an input spectro-

gram into a small-scale vector-quantized representation which allows a transformer

to model long-term dependencies during Stage II and keeps the memory footprint

manageable.

SpectrogramVector-QuantizedVariational Autoencoder (SpectrogramVQVAE)

The goal of Spectrogram VQVAE is to minimize the reconstruction error between

an input spectrogram and its reconstruction from a small-scale quantized represen-

tation. For efficiency, we operate on log mel-spectrograms. Therefore, given a ∼10-
second frequency-time spectrogram x ∈ RF×T (e. g. 80×848) the codebook encoder E
produces a small resolution representation ẑ = E(x) ∈ RF ′×T ′×nz (e. g. 5× 53× 1024).

Then, each element of ẑ is replaced with the closest element from the codebook

Z = {zk}Kk=1 ∈ RK×nz with K codes (e. g. K = 1024). This quantization step q is

defined as

q(ẑ) :=
(
argmin
zk∈Z

����ẑft − zk
���� for all (f, t) in (F ′ × T ′)

)
, (4.1)

yielding the quantized representation zq = q(ẑ) ∈ RF ′×T ′×nz . Finally, zq is decoded
by the codebook decoder D into a reconstructed spectrogram: x̂ = D(zq). Notice
that the quantization step is not differentiable. To work around it, a straight-through

estimator is employed. The training objective of VQVAE is defined as follows

Lreconstruction =
����x − x̂

���� (4.2)

Lcodebook =
����ẑ − stop[zq]����22 + β

����stop[ẑ] − zq
����2
2

(4.3)

LVQVAE = Lreconstruction + Lcodebook (4.4)

where stop is an operation that does not affect the forward pass but stops the gradient

from propagating during the backward pass and β is a hyper-parameter (e. g. 0.25).
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Spectrogram VQGAN and spectrogram-based perceptual loss One of the lim-

itations of a VQVAE is the large bottleneck size (F ′ × T ′) which makes the gen-
eration of longer sequences difficult for a transformer. As it was shown in [39],

reducing the bottleneck resolution, e. g. to 1/16, yields blurred reconstructions. To
reduce the resolution of the bottleneck, [39] suggested adding two losses to VQVAE,

which are adversarial (PatchGAN) [493] and perceptual (LPIPS) [494] losses. Since

LPIPS was originally designed for image generation and relies on a pre-trained Im-

ageNet classifier (VGG-16 [24]), we had to adapt it for spectrogram inputs. First,

we explored available models for spectrogram-based classification in the literature.

We found that the closest architecture to VGG-16 for spectrogram classification is

VGGish [17] (equivalent to the capacity of VGG-9). However, the short time span

(less than 1 second) and, thus, poor temporal modelling might prevent distinguishing

fake and real spectrograms, which is essential for our purpose as our model generates

10-second samples. To this end, we pre-train a variant of VGG-16 on a large-scale

open-domain dataset (VGGSound [495]). We call this network VGGish-ish and use

it as a backbone for the perceptual loss (LPAPS2). With these two losses, the total

training loss for Spectrogram VQGAN is defined by:

LPatchGAN = logD(x) + log (1 −D(x̂)) (4.5)

LLPAPS =
∑
s

1

F sT s

����x̂s − xs
����2
2

(4.6)

LSpecVQGAN = LVQVAE + LPatchGAN + LLPAPS, (4.7)

where D is the discriminator network that is applied to patches of spectrograms

instead of whole spectrograms, as it is done for images in [493], and x̂s, xs ∈ RF s×Ts×Cs

are fake and real feature maps obtained at the sth scale of VGGish-ish.

Stage II: Conditional autoregressive spectrogram sampler

Once the Stage I model was trained to reliably reconstruct an input spectrogram, we

could proceed with Stage II. The goal behind Stage II is to train a model to sample in-

dices to the codebook given a set of encoded visual cues. Provided that the codebook

decoder could reliably reconstruct a spectrogram from a quantized representation,

it is now possible to model spectrogram synthesis on the representation level instead

2Unlike LPIPS [494], we do not fine-tune it on human perceptual similarity judgements.
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of raw spectrogram pixels (or waveform values), which also allows us to rely on a

transformer as the input sequence is significantly shorter now. The ground truth for

training is formed by the codebook encoder which provides a quantized representa-

tion of the spectrogram that corresponds to the stream of visual cues that prime the

sampling. The training pipeline for Stage II is depicted in Figure 4.1 (right).

Architecture Inspired by success in autoregressive image generation [39, 496], our

sampler is a typical encoder-only transformer that is similar to GPT-2 [8] (L = 24 lay-

ers, H = 12 heads, d = 1024 hidden units, ∼310M trainable parameters). The trans-

former inputs sequences of embedded tokens from video frames and codebook in-

dices. The visual tokens are extracted by a frame-wise feature extractor (e. g. ResNet

[453]) and form a sequence F = {fi}Ni=1 ∈ RN×dr which is embedded into the d-

dimensional space by applying a linear projection layer. The codebook indices are

embedded in the same way as the text tokens (see page 40) forming a sequence of

token embeddings s≤t = (s1, s2, . . . , st) where t = F ′ ·T ′ −1 during training. The trans-
former inputs the sequence of frame-wise features (F ) concatenated with the embed-

ded codebook indices (s≤t). Similar to the training procedure for a transformer (see
page 45), during training, ground truth codebook tokens are used as previously gen-

erated tokens (aka. teacher forcing) and masking is applied to prevent the attention

mechanism from peeking at the next tokens. Also, we highlight the importance of

following the column-major order of unflattening the 2D sequence of ground truth

tokens, as shown in Figure 4.1 (right), instead of the row-major (or raster) order.

Inference: Generating new audio given visual cues

Once the Spectrogram VQGAN and the codebook-based sampler are trained, one

may generate new audio that is relevant to the content of an RGB stream. As it is

shown in Figure 4.2, the model samples indices to the codebook in an autoregressive

manner given a sequence of visual features and embeddings of previously generated

codebook indices. The process begins with only the visual sequence as the input

that is used to predict the first index. Then, the first predicted index is appended

to the input sequence which is now used to predict the second index and so on.

Once the desired length is achieved, the visual tokens are discarded and each of the

sampled codebook indices is replaced with a codebook entry making the quantized

representation which can be decoded by the codebook decoder to obtain a novel
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Figure 4.2 The pipeline of generating new audio that is
relevant to the input visual cues. The trans-
former (Stage II) samples codebook indices in
an autoregressive manner. To predict the first
codebook index, it inputs only visual features.
Then, the embedding of the predicted index is
appended to the input sequence and passed to
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desired length is reached. Next, each predicted
index is used to look up the codebook to obtain
a quantized representation. The representation
is decoded into a spectrogram via the codebook
decoder (Stage I) and transformed into a wave-
form by a spectrogram vocoder.

spectrogram. The generated spectrogram is vocoded to the corresponding waveform.

Spectrogram vocoder The goal of the spectrogram vocoder is to transform a spec-

trogram into a waveform. We considered a few candidates for the job. In particu-

lar, the Griffin-Lim algorithm [497], WaveNet [498], and a GAN-based network.

Griffin-Lim is fast to compute on a CPU but reconstruction results are poor. The

reconstruction with WaveNet produces high-quality results but it is prohibitively

slow, even on a GPU. As a trade-off, in this work, we rely on MelGAN [499] which

we pre-trained on a large-scale open-domain audio dataset (VGGSound [495]) from

scratch. Although MelGAN was originally designed for speech audio, we found

that it performs well even when trained on open-domain videos while taking only a

fraction of a second to vocode a 10-second spectrogram on a GPU.
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4.3 Automatic metrics for spectrogram-based audio generation

Evaluating generated content is a challenging task. A common way of perform-

ing an evaluation is through a human study. However, there are limitations to this

approach. First, considering the fast-paced experimentation cycle of a deep learning

project, conducting a human study might become the bottleneck. Second, the results

of such a study are hard to reproduce which makes it difficult to compare baselines.

Thus, every follow-up work in a research area should run an additional comparison

with all prior works in the same setting to fairly compare the methods. Third, it is an

expensive procedure and might constitute an unbreachable barrier for newcomers.

Therefore, in this work, we concentrate on designing automatic metrics for the eval-

uation of generated audio spectrograms. We aim to evaluate both perceptual quality

(fidelity) and relevance to the visual cues.

Fidelity To design metrics for fidelity, we draw on the advances in the evaluation

of image generation that rely on a pre-trained classifier. Specifically, Inception Score

(IS) [500] assumes that meaningful samples are expected to have low entropy in

conditional label distribution (classifier’s predictions) produced by InceptionV3 [454]

that was pre-trained on ImageNet. Nowadays, the IS metric was mostly replaced by

Frèchet Inception Distance (FID) [489]. Unlike IS, FID uses ground truth data as a

reference and measures the difference between InceptionV3’s pre-classification layer

features of real and fake samples. Inspired by these efforts, in this work, we employ

FID to measure the fidelity of the generated spectrogram features. To this end, we

pre-trained a version of Inception for audio spectrogram classification on a large-scale

open-domain audio dataset (VGGSound). We refer to this network as Melception.

Relevance We measure relevance per video as the distance between the distribu-

tions produced by the audio spectrogram classifier (Melception) for fake and ground

truth spectrograms. The ground truth spectrogram is obtained from the audio track

which corresponds to the input visual cues that are used to generate the fake spectro-

gram. The distance between the distributions is computed as a KL-divergence. The

final metric is obtained by taking an average of the individual metrics for each video

on the whole dataset. We call this metric Melception-based KL-divergence (MKL).
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4.4 Experiments and results

Datasets In this work, we employ two datasets. First, a small-scale human-curated

dataset calledVAS [16]. It contains around 12.5k videos from 8 classes such as drum,

baby, sneeze, fireworks, hammer etc. The videos are 6.7 seconds long on average. The

train/validation/test splits are made following the prior work [16] for a fair com-

parison. Second, a large-scale automatically annotated open-domain dataset called

VGGSound [495]. The dataset contains more than 200k videos from YouTube from

309 data classes. Since some videos were no longer available, we could obtain only

∼190k videos. We rely on the original train/test split but additionally hold out a
validation subset of the training set for development such that the class frequency

matches the test set. This split is used during the training of all models, i. e. Stages I

and II, VGGish-ish, MelGAN, and Melception. As far as we are aware, VGGSound

has never been used for sound generation. See more details in Publication III.

Metrics As it was outlined in Section 4.3, we employ Melception-based FID for

evaluation of the quality (fidelity) of the generated audio spectrograms. WhileMelception-

based KL-divergence (MKL) is used to measure the relevance of the samples to the

visual input. We average the per-video MKL across the whole evaluation dataset.

Results: spectrogram reconstruction (Stage I) Considering that multiple parts

from Spectrogram VQGAN are going to be used during training of the visually-

guided sampler and during inference, it is essential to ensure that the autoencoder is

well-trained and reaches strong reconstruction performance. Note, the performance

of the Stage II model will be upper-bounded by the performance of the Stage I model.

Based on the quantitative results in Table 4.1, wemake several observations. First,

Spectrogram VQGAN reaches near-ideal performance in terms of fidelity (FID) and

relevance when it is trained and evaluated on the VGGSound dataset. Second, the

reconstruction quality of the VAS-pretrained model is weaker than the VGGSound-

pretrained codebook when evaluated on the VAS dataset. This is the consequence of

a) VAS having less (10x) training data; b) the VAS codebook is smaller3 (K = 256

vs 1024 codes); c) the diversity of classes in VGGSound covers the diversity of VAS.

Similar conclusions can be drawn from the qualitative results shown in Figures 4.3

and 4.4. Specifically, the model that was trained on VGGSound produces recon-

3In experiments with a larger codebook, the model failed to use the available capacity and collapsed.
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Trained on Evaluated on FID↓ MKL↓

VGGSound VGGSound 1.0 0.8

VGGSound VAS 3.2 0.7

VAS VAS 6.0 1.0

Table 4.1 Reconstruction performance of Spectrogram VQGAN (Stage I) in a quantitative study on
VAS and VGGSound datasets. Metrics are Melception-based FID and MKL metrics.

opening or closing drawers (VGGSound) 

whale calling (VGGSound)

Figure 4.3 Qualitative results of spectrogram reconstruction with Spectrogram VQGAN (Stage I): ex-
amples from VGGSound. Spectrograms: ground truth (top) and reconstructed with the
Spectrogram VQGAN pre-trained on VGGSound (bottom).

drum (VAS) 

baby (VAS) 

Figure 4.4 Qualitative results of spectrogram reconstruction with Spectrogram VQGAN (Stage I): ex-
amples from VAS. Spectrograms: ground truth (top), reconstructed with the Spectrogram
VQGAN pre-trained on VGGSound (middle) or pre-trained on VAS (bottom).
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Generated Sample Class (VGGSound):
Ours

people sobbing 0.84
baby crying 0.15

people babbling 0.00

baby
– VAS
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eg
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et
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s
RegNet

people sobbing 0.67
 baby crying 0.27
 cat growling 0.01

Generated Sample Class (VGGSound):
Ours

playing bass drum 0.46
playing drum kit 0.34
playing cymbal 0.12

drum
– VAS

R
eg

N
et

O
ur

s

RegNet
playing cymbal 0.31

playing snare drum 0.29
playing bass drum 0.14

Figure 4.5 Qualitative comparison of our approach to the state-of-the-art baseline model [16] per-
forming visually-guided audio generation on the VAS dataset.

structions that are close to the ground truth. In addition, the reconstruction of

the VGGSound-pre-trained model generalizes well on the VAS dataset, i. e. the re-

constructions are close to the input, without fine-tuning on VAS. Similar to the

quantitative results, the reconstructions obtained with the VAS-pre-trained code-

book tend to be of a lower quality than those that are produced by the model with

the VGGSound-pre-trained codebook.

Results: visually-guided audio generation In quantitative experiments, we com-

pare the performance of the proposed model on two datasets across multiple settings.

First, to put the metric values into context, we additionally report the perfor-

mance of a model that was trained without visual cues. It acts as a baseline for

relevance (MKL). The results in Table 4.2 show the importance of visual cues in

generating relevant sounds which is visible when comparing MKL values to the set-

ting without visual features on VAS and VGGSound datasets, yet the gap is smaller

in the later case due to the larger number of classes in VGGSound.

Second, for a fair comparison to the baseline (discussed later), we also include

the results with BN-Inception frame-wise features (RGB + optical flow) besides the
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Evaluation dataset: VAS (8 classes)

Model Codebook Input features Params↓ FID↓ MKL↓ �↓

Ours VGGSound — 379M 33.7 9.6 8

Ours VAS — 377M 28.7 9.2 8

Ours VGGSound ResNet-50 379M 20.8 6.2 12

Ours VAS ResNet-50 377M 22.6 5.8 12

Ours VGGSound BN-Inception 379M 20.5 6.0 12

Ours VAS BN-Inception 377M 25.4 5.9 12

RegNet [16] — BN-Inception 8 × 105M 78.8 5.7 1500

Ours VGGSound BN-Incept. + cls 379M 20.2 5.7 12

Ours VAS BN-Incept. + cls 377M 24.9 5.5 12

Evaluation dataset: VGGSound (309 classes)

Model Codebook Input features Params↓ FID↓ MKL↓ �↓

Ours VGGSound — 379M 13.5 9.7 8

Ours VGGSound ResNet-50 379M 10.5 6.9 12

Ours VGGSound BN-Inception 379M 9.6 6.8 12

Table 4.2 Comparison of visually-guided sound generation models across two datasets: VAS (top)
and VGGSound (bottom). The evaluation performance of the proposed codebook code
sampler (Stage II) is shown with VAS- and VGGSound-pretrained codebooks and two sets
of features: ResNet-50 (RGB) and BN-Inception (RGB + optical flow). The performance
of the model without visual cues is also reported. The number of trainable parameters
(Params) is reported in millions. Fidelity and relevance are measured with Melception-
based FID and MKL (averaged across the dataset) metrics. We also compare the sampling
speed in seconds (�). Notice that the baseline architecture was trained for each class
separately, while our model supports all 8 VAS classes at once.

LVQVAE LPatchGAN LLPAPS FID↓ MKL↓

� 130.4 9.6

� � 1.4 1.1

� � � 1.0 0.8

Table 4.3 The effect of adding PatchGAN and perceptual losses during training of Spectrogram VQ-
GAN. The results are measured with two Melception-based metrics FID and MKL and re-
ported on the test set of VGGSound.
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ResNet-50 (RGB only). For this experiment, we use 212 frames extracted at 21.5

fps from 10-second videos. We observe that, despite the absence of optical flow cues,

ResNet-50 features are on par with BN-Inception features in fidelity and relevance on

both datasets. In addition, the benefits of using ResNet-50 instead of BN-Inception

include the availability of open-source implementations and ease of use.

Third, we compare the results using different codebooks as the building blocks for

the sampler. Interestingly, the model that samples from the VGGSound-pre-trained

codebook reaches strong performance on the VAS dataset which suggests that the

resulting codebook codes that are used for sampling appear to be general enough to

maintain comparable performance when applied to another dataset.

Fourth, we additionally append the class token to the input sequence of visual

features to provide an explicit signal to hint to the model which class of the generated

sample is expected. This is done to compare to the baseline approach (RegNet [16])

which trains one model per data class. Although this is still a more challenging setting

compared to the baseline, our model significantly outperforms it in terms of fidelity

(FID) while being on par in terms of relevance (MKL). Moreover, generation takes

more than 100x less time to generate a 10-second video and the total number of

parameters is substantially smaller considering that our model supports all classes

while the baseline requires training one model per class.

The qualitative comparison to the baseline (RegNet [16]) is depicted in Figure 4.5.

Although it might be difficult to convey and appreciate the generated sample in the

paper format, yet the difference is quite drastic even by visual inspection of the spec-

trograms. Specifically, the samples produced by the baseline are noticeably more

blurred and noisy. To provide more evidence, we include the audio classification re-

sults of theMelception network that was trained on ground truth audio spectrograms

on the VGGSound dataset. To conclude, our model generates less blurred and less

noisy (higher fidelity) spectrograms which are also relevant to the video data class.

Ablation: effect of additional loss terms for reconstruction In Table 4.5, we

show the importance of including adversarial and perceptual losses into the training

objective of Spectrogram VQGAN during Stage I (see page 67). This conclusion is

consistent with [39]. For more ablation experiments, qualitative results, and a variety

of applications of the proposed model a reader is referred to the Publication III

(especially to the supplementary material).
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4.5 Discussion

Related work: new developments Publication III was published in late 2021 and a

few exciting developments appeared in the literature ever since. In particular, Ghose

and Prevost [501] focused on building a GAN-based model that generates visually

aligned (synchronized) audio samples given the visual features. Hayes et al. [396]

also used the two-stage approach (3D VQVAE and a transformer) to generate audio

given video or text and introduced a new large-scale dataset collected from a game

engine. Choi et al. [502] outlined the design of a foley sound synthesis challenge

which might guide the future efforts towards building a better visually-guided sound

generation model and more unified evaluation techniques. In the meantime, a similar

codebook-based sampling approach was explored by Sheffer andAdi [503] who relied

on VQVAE-2 [504] and CLIP [2] visual features. Cui et al. [505] suggested guiding

the acoustic characteristics of the generated audio given a reference audio sample

along with video frames.

Future research: better datasets In this work, we relied on the small-scale VAS

and large-scale VGGSound datasets. Although the audio-visual correspondence is

strong in VAS, it is a rather small dataset with as few as 8 data classes and those are

not covered by samples well, e. g. there are only about 300 videos for some classes. In

the case of VGGSound, it is substantially larger but the audio-visual correspondence

is quite poor due to the automatic nature of annotations. In fact, the content of the

audio track does correspond to the data class in most of the videos that we observed,

yet the visual track often does not depict the content of the audio. Therefore, the

new bigger dataset with stronger audio-visual correspondence would certainly not

only improve the results of visually-guided sound generation but also positively in-

fluence the video understanding community. One of the developments towards this

direction is the ACAV100M dataset [506], which aims to extend the VGGSound

dataset (by 100+ times). Unfortunately, most of the videos in this dataset contain

speech (85+%) and it significantly limits its application to general-purpose tasks.

Future research: audio-visual alignment While working on Spectrogram VQ-

GAN, we noticed that the generated audio samples are rarely synchronized tempo-

rally with visual content. We attribute it to the quality of the VGGSound dataset

which is relatively noisy. More specifically, as we found in Publication IV, audio-
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visual synchronization is possible for a small portion of the videos due to the lack

of strong correspondence between the streams. Besides, VGGSound includes classes

which are difficult to synchronize, e. g. helicopter, cat purring, bee buzzing, etc. There-

fore, we, once again, encourage the development of a large-scale open-domain audio-

visual video dataset. Another reason behind the lack of synchronization is the video

feature extractor. In particular, we rely on pre-trained (and frozen during train-

ing) ResNet-50 which does not encode any temporal interaction between frames.

Thus, experiments with 3D convnets that are fine-tuned during training should be

performed in future works to facilitate development in this direction.

Future research: an even better spectrogram codebook In this work, we man-

aged to train a strong autoencoder called Spectrogram VQGAN on the VGGSound

dataset. Nonetheless, we noticed that the difference between the original and re-

construction of speech and music is noticeable when comparing both side-by-side.

Therefore, we believe that one could try to train an even better codebook, e. g. on

the large-scale the LAION Audio dataset [507], which is a combination of higher-

quality audio data compared to the YouTube-based VGGSound dataset. Notice that,

in order to train a codebook, only a large-scale open-domain audio dataset is required.

Future research: latent diffusion model instead of autoregressive sampler We

rely on the two-stage approach for spectrogram generation. First, the codebook is

trained by an autoencoder. Second, the transformer is trained to autoregressively

sample codebook codes to produce the bottleneck representation of a new spectro-

gram. As it was shown for image generation in [12], condition-guided latent diffu-

sion model could replace the transformer in the second stage. This should allow to

train a better conditional spectrogram generation model and drastically improve the

results.
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5 AUDIO-VISUAL SYNCHRONIZATION WITH

SPARSE SIGNALS

Given audio and visual video tracks, that are potentially out of sync, an audio-visual

synchronization model is expected to predict the temporal offset between the tracks.

Solutions to the audio-visual synchronization task could expand the functionality of

video editing software, i. e. by notifying an editor if the tracks are out of sync.

We differentiate “sparse” and “dense” synchronization signals. For instance, a

video of a talking person (e. g. a presentation) has “dense” synchronization signals

in the time since at each second of a video it is possible to tell if audio and visual

tracks are in-sync. Whereas, a video of a dog that barks once in a ten-second video

clip exhibits a “sparse” synchronization signal, and a model needs to process the

whole video to synchronize it which makes it a challenge for recent deep-learning

models. Besides the sparseness in time, we also specify the sparseness in space. For

example, the cropped video of a talking person is “dense” in space (and time).

Previous works in audio-visual video synchronization focused primarily on videos

with “dense” synchronization cues such as recordings of cropped talking faces. How-

ever, open-domain videos can have synchronization cues that are sparse in both time

and space. To bridge this gap, we explore the synchronization of videos with sparse

signals and introduce a novel multi-modal transformer-based architecture that allows

us to effectively process longer videos. Moreover, we introduce a new video dataset

with “in the wild” videos with sparse synchronization signals, called VGGSound-

Sparse. In addition, we found that common video compression algorithms leak tem-

poral artefacts that a synchronization model could use to learn a shortcut.

This chapter begins with the related work section (5.1) which is followed by the

description of the proposed network in Section 5.2. Next, Section 5.3 presents the

ways of detecting and preventing temporal artefacts in the video data. Then, the

experimentation pipeline and results are presented in Section 5.4. While Section 5.5

discusses future research directions.
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5.1 Related work

Audio-visual synchronization of face tracks Earlier work in audio-visual synchro-

nization focused on the synchronization of face tracks rather than open-domain

videos. Prior to the deep learning era, methods relied on hand-crafted features as in

Hershey andMovellan [508] and in Slaney and Covell [509]. Deep learning certainly

moved the progress in audio-visual synchronization forward as well. In particular,

Chung and Zisserman [510] focused on the synchronization of lip movements and

a two-stream CNN architecture (SyncNet) that was trained contrastively by pool-

ing apart embeddings from both streams, while Chung et al. [511] improved this

approach with a multi-way classification among multiple negatives. Halperin et al.

[512] explored audio-visual alignment of a re-dubbed visual scene, which is a more

general case of solving synchronization, and used Dynamic Time Wraping [513] to

this end. Khosravan et al. [514] showed that spatio-temporal attention improves the

synchronization performance. Kim et al. [515] suggested classifying the audio-visual

embedding similarity matrix as an image to determine the offset. Meanwhile, Kadan-

dale et al. [516] used multiple transformer’s decoders to determine if audio and visual

streams are in-sync. Although these methods reach promising performance, the main

focus is the synchronization of talking faces rather than “in the wild” videos.

Audio-visual synchronization of open-domain videos Others explored the syn-

chronization of open-domain videos. More specifically, a handful of data classes

was used in Casanovas et al. [517] who investigated audio-visual synchronization of

streams from multiple cameras. While, more recently, Chen et al. [518] introduced

a novel general-purpose dataset of 160 classes and proposed a new transformer-based

method for audio-visual synchronization. In contrast to these methods, we focus

on videos with sparse sync signals, which is more challenging compared to previous

approaches.

Shortcut training with temporal artefacts The negative influence of artefacts was

brought to attention in the seminal work of Doersch et al. [519] in the self-supervised

setting. The potential impact of temporal artefacts located in black regions of a video

frame was explored with respect to predicting if the video frames are reversed or not

(aka. “arrow-of-time”) by Wei et al. [520]. Another piece of evidence was reported

by Arandjelović et al. [521] who noticed the difference in performance with MPEG-
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Figure 5.1 The overview of the audio-visual synchronization model: SparseSync. The model inputs
audio and visual streams that are potentially out of sync. First, an audio waveform is en-
coded into a spectrogram. Then, audio features are extracted from the spectrogram with
a variant of ResNet-18. Next, a small set of trainable selector vectors (bottom) is passed
to the Feature Selector module along with full-length audio features. Feature Selector ef-
fectively picks useful cues from audio features via cross-attention modules, and outputs
refined selector vectors. Similarly, the RGB stream is encoded into spatio-temporal fea-
tures via the S3D network and passed to the corresponding Feature Selector module that
outputs another set of refined selectors. Both sets of selectors form an input to the trans-
former after concatenation with auxiliary tokens for class (C) and modality separation (M).
The outputs of the Synchronization Transformer are used to predict a temporal offset. The
behaviour of SparseSync during training is shown in dashed lines. For visualization pur-
poses, we zoom in on the content of RGB frames.

encoded videos when trained for audio-visual correspondence. In contrast, this work

investigates methods of detecting temporal artefacts in videos as well as provides

suggestions that help to avoid them.

5.2 Audio-visual synchronization with sparse signals (SparseSync)

Given audio and visual tracks, the goal of the synchronization model is to predict if

the tracks are in-sync and, if not, what is the size of the offset between the tracks. As

it was discussed before, “in the wild” videos may be difficult to synchronize as these

may contain sparse (rare) synchronization signals. In order to maximize the chance

of having the sparse synchronization signal within the trimmed sequence of frames,

the trim should be long (e. g. 5 seconds). Nonetheless, long input sequences pose a se-

vere obstacle for transformer-based architectures that are state-of-the-art approaches
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for sequence modelling currently. In this work, we introduce a novel transformer-

based model, called SparseSync, which allows the processing of long input videos.

It is achieved with trainable selectors which effectively encode useful cues from long

sequences of audio and visual features. After encoding with selectors, audio and vi-

sual features form an input to the transformer which is now of a manageable length.

Finally, the transformer makes a prediction regarding the potential temporal offset

between audio and visual input streams. The overview of the architecture is depicted

in Figure 5.1 and the details of the approach are described next.

Feature extraction The model inputs an audio spectrogram A ∈ RF×Ta×1 extracted
from a waveform (16kHz) and a sequence of Tv RGB frames V ∈ RTv×H×W×3 ex-
tracted at 25 fps. The audio and spatio-temporal visual features are extracted as

a = Ea(A), v = Ev(V ), (5.1)

where a ∈ Rf ×ta×da are audio features and v ∈ Rtv×h×w×dv are visual features and Ea/v
are feature extractors. More specifically, we used a variant of ResNet-18 [453] as the

audio feature extractor, which was pre-trained on audio classification on the VG-

GSound dataset [495]. The visual features are extracted with the S3D network [15]

that was pre-trained on Kinetics-400 [418]. In our experiments, the spatio-temporal

features performed better compared to frame-wise 2D features. The outputs of the

pre-classification layers are used as the final features. Features are mapped to the

common dimension d (e. g. 512) from da and dv, respectivelly. During training, we

fine-tune the weights of feature extractors along with the rest of the architecture.

Feature Selectors The extracted features are flattened in two sequences of token

embeddings a
 ∈ Rf ·ta×da and v
 ∈ Rtv ·h·w×dv . Notice that audio-visual synchroniza-
tion requires higher visual fps to perform the synchronization than other tasks (e. g.

action recognition) which makes the problem even more challenging. Thus, these

sequences may easily contain hundreds of elements for seconds-long inputs which

might be unattainable for a transformer due to the quadratic complexity of the atten-

tion mechanism. To this end, inspired by works like DETR [3] and Perceiver [46],

we propose to have a small set of trainable query vectors, which we call selectors

(qa/v). The selectors are used in corresponding Feature Selector modules and effec-
tively encode useful features for synchronization from the features. The design of
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the Feature Selector is similar to the transformer decoder [4] (and also defined in

Section 2.3). Similar to other transformer architectures, we add positional encod-

ing (PE∗) to modality feature sequences and selectors. The Feature Selectors (Fa/v)
output two sequence of refined selectors (q̂a/v) for audio and visual modalities:

q̂a = Fa
(
a
 + PEa, qa + PEqa

)
, q̂v = Fv

(
v
 + PEv, qv + PEqv

)
, (5.2)

where qa, q̂a, qv, q̂v ∈ Rk×d and k is the number of trainable selectors which we keep

being small and equal for bothmodalities (e. g. 16). The design of the Feature Selector

allows encoding useful cues from modality features in k vectors (i. e. k � f · ta and
k � tv · h ·w) which casts the complexity of the transformer to be linear with respect
to the input length because k is fixed.

Synchronization Transformer The architecture of Synchronization Transformer

(S) is similar to the transformer encoder (as defined in Section 2.3). The outputs of

Feature Selectors (q̂a/v) are used in the transformer. More specifically, encoded selec-
tors are concatenated with the typical classification token (<CLS> or C in Figure 5.1)

and modality separation token (<MOD> or M)

Δ̂ = S
( [
CLS; q̂a; MOD; q̂v

] )
. (5.3)

To avoid notation overload, the Equation 5.3 omits the fully connected layer with

softmax that is applied to the first element of the output sequence to predict the

temporal offset Δ̂ between audio and visual tracks.

Training SparseSync Assuming that the audio and visual tracks of the majority

of web videos are in-sync, we artificially create the temporal offset (Δ) between the

tracks. The offset amount is picked randomly from the grid of offsets from −2 to +2
seconds with 0.2 seconds step, including the “no offset” class (0.0 seconds). There-

fore, the offset prediction is formulated as a 21-way classification task. We train the

model with a typical cross-entropy loss to predict the offset class. All weights, except

for feature extractors, are initialized from scratch. Other training and implementa-

tion details are available in Publication IV (especially the supplementary material).
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Video (e.g. 100 RGB frames at 10 fps)

0.0 10.02.0 (class #20) 7.0

class s #20

Loss Model

Random 5-sec clip

– temporal artefacts
Codec Acc@1 Acc@5

MPEG-4 Part 2 (mpeg4) 27.2 77.1

MPEG-4 Part 10 (H.264) 2.5 11.9

ProRes 2.7 13.4

AAC @ 44100Hz 86.7 100.0

AAC @ 22050Hz 23.0 74.3

AAC @ 16000Hz 6.3 19.3

Lossless @ 22050Hz 2.9 14.6

Table 5.1 Training to detect temporal artefacts. Left : the crop start-time prediction training procedure
that allows to detect temporal artefacts in the data. The start of the crop is quantized to the
grid of 50 classes with the step size of 0.1 second, i. e. one frame. Right : the evaluation
results obtained after training a model to predict the start of the temporal crop. The results
are reported across several RGB and audio encoding algorithms and with two accuracy
metrics (top 1 and 5). The desired performance is 2 and 10 %.

5.3 Preventing temporal artefact leakage

Common video and audio codec algorithms leave temporal artefacts in the data

streams that a model could use to solve the synchronization or correspondence task.

In this section, we show a simple way of detecting temporal leakage, discuss its origin,

and provide a few recommendations on how to mitigate it.

Detecting artefact leakage

In this work, we developed a simple method that may reveal if a stream exhibits

temporal artefacts. More specifically, we train a model to predict the start time of

the input segment. Of course, training such a model should not be possible without

temporal cues in the data, but this is not what happens. The training procedure is

schematically shown in Table 5.1 (left).

RGB stream In this experiment, we compare several visual codecs. Specifically,

MPEG-4 Part 2 (aka. mpeg4) and MPEG-4 Part 10 (aka. H.264 or AVC) are com-

mon video codecs that rely on temporal frame predictions (inter-frame codecs). We

also experiment with ProRes codec which encodes frames independently (intra-frame

codec), and should not leak any temporal artefacts into the stream. Therefore, we
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download the dataset of ProRes videos (MJPEG-AoT [520]) and transcode the videos

into either mpeg4 or H.264. We cut the videos into 10-second clips and use random

5-second trims as inputs. The comparison is shown in Table 5.1 (right, top). In

particular, we observe that only MPEG-4 Part 2 exhibits temporal artefacts as the

accuracy of classifying the start of the start time of the crop is substantially higher

than the ones of H.264 and ProRes, even though the videos have the same content.

Although the performance of the latter two was slightly higher than the desired

accuracy values (2 and 10%), we believe it is negligible.

Audio stream We conduct a similar experiment for the extremely common audio

codec, i. e.Advanced Audio Codec (AAC). The results are shown in Table 5.1 (right,

bottom). For this experiment, we generate a tensor of Gaussian noise in a form of

a 10-second waveform and save it to the disk lossless as an audio file with a specified

sampling rate (16–44.1kHz). Then, we transcode the waveform file into AAC and

use it as the input from which we randomly crop a 5-second clip similar to the

experiments with RGB codecs. According to the results, all experiments with AAC

as the input showed evidence of artefact leakage which can be observed by higher

values of predicting the start time of a crop compared to the experiment with lossless

data. However, the lower the sampling rate, the lower (better) the results.

Mitigating the impact of temporal leakage

RGB stream: use H.264 (AVC) instead of MPEG-4 Part 2 As it was shown

empirically in Table 5.1, we were able to train a model to predict the start-time

of the visual stream trim if it was encoded as MPEG-4 Part 2. We attribute this

to the strict key-frame allocation pattern. For instance, I-frame1 is allocated every

12th frame while H.264 has a more complex key-frame prediction pattern which

depends strongly on the content of the frame and, therefore, it is hard for a model

to learn it. Similarly, the model fails to learn to perform this task on the dataset with

ProRes encoding in which every frame is independently encoded. The most obvious

solution would be to transcode all MPEG-4 Part 2 into H.264 but transcoding does

not remove the artefacts. Then, ideally, one would rely on ProRes when building

1I-frames is a reference frame that is encoded independently from other frames in the video. In a

sequence of, for example, 12 frames, the rest of the 11 frames (P-frames) re-use the content of the I-

frame for compression purposes. The illustration of this effect is shown in the supplementary material

to Publication IV.
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a dataset, yet it is rarely possible as YouTube, which is a common source for most

of the large-scale general-purpose video understanding datasets, does not broadcast

ProRes. Therefore, we recommend avoiding MPEG-4 Part 2 in favour of H.264

(AVC).

Audio stream: reduce the sampling rate Similar to the visual stream, the audio

stream also contains temporal artefacts if encoded with Advanced Audio Coding

(AAC). Although the nature of temporal artefacts in the audio stream is unknown,

we hypothesise that it might be due to the same reasons as for the visual stream with

MPEG-4 Part 2 coding algorithm. Since AAC is an extremely common codec for

any video dataset with audio tracks, it might be challenging to avoid the artefacts

completely. Therefore, considering that the severity of the artefacts depends on the

sampling rate (see Table 5.1), we recommend avoiding high audio sampling rates and

stick to the lowest rate that is acceptable for the researcher’s needs.

5.4 Experiments and results

Dense in time dataset We consider two variations of the “dense in time” dataset:

“dense in time and in space” and “dense in time but sparse in space”. To this end, two

variations of Lip Reading Sentences 3 (LRS3) dataset [14] are used for experimenta-

tions: face-cropped (“dense in space”) and full-scene videos (“sparse in space”). We

obtain the original videos of LRS3 from YouTube. The obtained RGB streams are

encoded in H.264 and resampled at 25 fps, while the audio stream is encoded in AAC

and resampled 16kHz sampling rate. We use the pretrain subset and filter out the

videos that are shorter than 9 seconds for consistency with the VGGSound-Sparse

dataset. We split the data into 80/10/10% as train/validation/test sets. Ultimately,

we end up with ∼58k video clips from ∼5k videos. The model inputs 5-second clips
randomly cropped out of the original videos.

Sparse in time dataset In this work, we present a novel dataset which contains

videos with sparse synchronization signal. This dataset is built upon the VGGSound

dataset [495] which is a collection of 200k+ ten-second YouTube clips spanning 309

data classes. Our dataset is a curated subset of VGGSound and collected by man-

ual inspection of 5–15 randomly picked videos for each of 309 classes and anno-

tated whether audio-visual synchronization cues are sparse in time. As a result, 12
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data classes were selected or 7.1k videos in total. This new dataset is referred to as

VGGSound-Sparse. We rely on the same train-test split as in VGGSound. Since the

original VGGSound dataset is noisy due to the automatic annotation, we additionally

inspect 20 videos per a selected sparse class and observed that ∼70% of all videos are

“synchronizable”. Similar to the “dense in time” setting, the models input random

5-second segments of original videos. For the full list of data classes see Table 5.3.

Problem setting and metrics Compared to most of the prior work which solves

the sync/out-of-sync classification problem (two classes), our setting requires a model

to predict the actual amount of offset which makes it more difficult. We formulate

the synchronization problem as a 21-way classification task. During training, we

pick an offset class (offset value) with equal probabilities from the grid of 21 offsets

from –2 to +2 seconds with a step size of 0.2 seconds. The design of the offset grid

is inspired by the results of the ITU Radiocommunication Assembly that conducted

a subjective evaluation of the thresholds of acceptability for the delay between audio

and visual tracks. In particular, it was found that the thresholds are –185ms to

+90ms [522]. For this reason, we track the metrics with ±1 class temporal tolerance
(±0.2 seconds). Considering the balanced distribution of classes, we rely on accuracy
in the following experiments.

Results: audio-visual synchronization We compare the proposed model (Spars-

eSync) to the state-of-the-art baseline by Chen et al. [518] (AVST). Similar to our

approach, AVST is a transformer-based model. In particular, it uses audio features as

queries to the visual features as context. This, however, scales poorly with the input

length compared to our approach. We enhanced the baseline architecture to be suit-

able for predicting 21 classes instead of two classes (in-sync/out-of-sync) and using

5-second video clips at 25 fps instead of 5 fps. For the “sparse in time and space”

setting we pre-train the architectures on the LRS3 (full-scene) dataset.

Table 5.2 presents the comparison of both methods performing audio-visual syn-

chronization on three datasets with varying degrees of sparseness. According to

the results, our model strongly outperforms the baseline by a large margin across

all datasets. Therefore, we conclude that the proposed model achieves strong per-

formance on both the less challenging “dense in time” datasets as well as on the

“sparse in time and space” dataset. Additionally, the performance per data class on

the VGGSound-Sparse dataset is reported in Table 5.3.
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Dense-dense: LRS3 (face crop)

Model Accuracy±1 cls↑

AVST [518] 89.8

Ours 95.6

Dense-sparse: LRS3 (full-scene)

Model Accuracy±1 cls↑

AVST [518] 83.1

Ours 96.9

Sparse-sparse: VGGSound-Sparse

Model Accuracy±1 cls↑

AVST [518] 29.3

Ours 44.3

Table 5.2 Results of comparison between the state-
of-the-art baseline [518] and SparseSync
(Ours) on the audio-visual synchronization
task across three settings. First, the results
of the “dense in time and space” are reported
on the LRS3 (face crop) dataset. Second, the
LRS3 (full-scene) dataset is used for “dense
in time and sparse in space”. Third, the
novel VGGSound-Sparse dataset for “sparse
in time and space” setting. The evaluation is
conducted on the test subsets of the datasets.
The performance is measured with accuracy
across 21 offset classes with ±1 temporal
class tolerance (±0.2 seconds).

Data class Accuracy±1 cls↑

playing badminton 53.6

striking bowling 52.3

chopping wood 50.9

hammering nails 49.0

people sneezing 46.6

playing tennis 46.0

ice cracking 44.5

skateboarding 40.8

people eating crisps 38.7

people eating apple 34.6

dog barking 32.5

lions roaring 30.0

Table 5.3 The performance of Spars-
eSync per data class of
VGGSound-Sparse. The
metric is accuracy which is
measured across 21 offset
classes with ±1 temporal class
tolerance (±0.2 seconds). The
average weighted performance
is 44.3 %.

Pre-trained Fine-tune

on LRS3 Feature With

(full-scene) Extractors Selectors Accuracy±1 cls↑

� � � 12.1

� � � 33.5

� � � 40.1

� � � 44.3

Table 5.4 Ablation study SparseSync.
The results are reported
on the VGGSound-Sparse
dataset. The performance
is measured with accuracy
across 21 offset classes
with ±1 temporal class tol-
erance ±0.2 sec.
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Ablation: effect of pre-training, selectors, and gradients for feature extractors

In Table 5.4, we report the results of a few ablation experiments for the introduced

the SparseSync model on the “sparse in time and space” setting and highlight the fol-

lowing observations. First, we look at the effect of pre-training on a simpler dataset,

i. e. LRS3 (full-scene) or the “dense in time and sparse in space” dataset. The results

suggest that pre-training is absolutely essential as the performance drops to the near-

random level (12%). Second, allowing gradients to update the weights of the audio

and RGB feature extractors brings substantial gains compared to training with frozen

feature extractors (33.5 vs. 44.3%). Third, the addition of the selectors compared re-

sults in a small improvement in the performance due to the increased capacity of the

model. The architecture of the model without selectors is a transformer encoder that

inputs concatenated sequences of audio and visual features. Notice that the model

with selectors not only performs strongly but also has linear complexity with respect

to the input length due to the fixed number of trainable selector vectors. Further

ablation studies, including the visualization of attention maps and experiments with

longer inputs, are discussed in Publication IV.

5.5 Discussion

Future research: further exploration of temporal artefacts This work investi-

gates the problem of temporal artefacts in video data. We presented a straightfor-

ward method of detecting these artefacts, i. e. by training a classifier for start-time

prediction. We believe these artefacts are caused by the codec algorithms which use

temporal encoding. For the RGB stream, switching to H.264 codec solves the prob-

lem and having the dataset in this codec is attainable. While, in the case of Advance

Audio Codec (AAC), this issue needs more exploration as most of the datasets and

sources for video data encode audio in AAC. So far, we noticed that by decreasing

the sampling rate of the audio coding one could reduce the impact of artefacts yet not

completely. Notice, transcoding from one codec to another (e. g. MPEG-4 Part 2 to

H.264) does not remove artefacts from the data streams and, thus, the issue requires

more caution.

Future research: “sparse in time but dense in space” setting In this work, we

explored three out of four possible settings in terms of the synchronization signal

density. Specifically, we looked at “dense in time and space” and “dense in time but
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sparse in space” settings with the variants of the LRS3 dataset. Also “sparse in time

and space” setting was benchmarked with the newly proposed VGGSound-Sparse

dataset. Nonetheless, “sparse in time but dense in space” was left uninvestigated.

Although exploring this setting might be interesting, it is challenging to construct

an open-domain dataset as one might need to rely on a pre-trained object detector

which limits the applicability to the object detector classes.

Future research: larger audio-visual dataset Similar to other applications that

were discussed in this thesis, the task of audio-visual synchronization should benefit

from training on a large-scale audio-visual dataset. Although VGGSound is certainly

a good effort to this end, the dataset is rather noisy due to the automatic annotation

and, thus, audio-visual correspondence is weak in many cases. More specifically, after

manual inspection, it was noticed that the majority of inspected videos had an audio

track which corresponded to the annotation data class, yet the visual indicationmight

be missing. On top of it, some classes are hard to synchronize, e. g. running electric

fan, train whistling, or wind chime. Therefore, efforts in creating a new large-scale

general-purpose audio-visual dataset are highly encouraged.

90



6 CONCLUSION

This thesis advances the state-of-the-art of multi-modal video understanding. In par-

ticular, it proposes inventions that push further the performance of dense video cap-

tioning, video-guided audio generation, and audio-visual synchronization. As well

as, it provides a comprehensive review of the earlier and recent arts in the field. The

posed research questions were thoroughly investigated in this work.

In particular, the effect of additional modalities, such as speech and audio, on

the performance of a video understanding model which is a crucial research prob-

lem. We explore this question in the context of dense video captioning. To this

end, Sections 3.2 and 3.3 introduce two novel multi-modal transformer-based ar-

chitectures that effectively encode the multi-modal cues. Both models demonstrate

strong performance gains in comparison to uni-modal approaches and outperformed

state-of-the-art (see Section 3.4). We believe that building a better model for video

captioning has an opportunity to help the visually impaired engage in brighter social

interactions online.

Next, we outlined a new approach that makes possible the generation of sounds

that are relevant to the content of an open-domain video clip. Specifically, we pro-

posed to factorize the task into two sub-problems (Section 4.2). First, the spectro-

gram autoencoder with the latent codebook is trained. Second, an autoregressive

model is trained to pick the codes from the codebook while being conditioned on

visual cues. This two-staged approach not only allows for audio generation for open-

domain videos in a single model but also produces higher-quality samples while being

more than two orders of magnitude faster than the state-of-the-art. On top of this, we

introduced a suite of spectrogram-based automatic evaluation metrics (Section 4.3).

These metrics mitigate the need for expensive and tedious human evaluation, and

speed up the development cycle of a sound generation model. The advances in a con-

ditional sound generation find their applications in foley (sound) design for movies

and digital art.
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In addition, we proposed a new and effective approach to encoding long audio-

visual input sequences. In particular, a small set of trainable vectors are used as

“queries” to the sequence of input features (Section 5.2). We demonstrated the ef-

ficiency of this approach to the audio-visual synchronization of videos with sparse

synchronization signals. These videos are often many seconds long and the use of

state-of-the-art architectures (transformer) requires a substantial GPUmemory foot-

print. Moreover, we discovered that common video and audio compression algo-

rithms leave temporal artefacts in data streams which may allow the synchronization

model to learn a shortcut (Section 5.3). To this end, we outlined a simple way of

detecting them, i. e. training to predict the temporal crop start-time, as well as listed

the recommendations on how to avoid them. Solutions for out-of-sync detection

could be implemented in video editing software, which grows in demand as video

editing is becoming more common among non-professionals.

Although the field of multi-modal video understanding experienced great progress

in the last decade, there is still a long road ahead. Currently, the main issue in

the area is the lack of large-scale open-domain datasets with strong audio-visual or

visual-linguistic correspondence. Constructing such datasets would certainly move

the state-of-the-art further. In connection with the previous, recent progress in the

development of foundation models hints towards exploiting strong cross-modal cor-

respondence in training a general-purpose base model that solves a variety of down-

stream tasks and lessens the need for task-specific architectural design.
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Abstract

Dense video captioning is a task of localizing interest-
ing events from an untrimmed video and producing tex-
tual description (captions) for each localized event. Most
of the previous works in dense video captioning are solely
based on visual information and completely ignore the au-
dio track. However, audio, and speech, in particular, are vi-
tal cues for a human observer in understanding an environ-
ment. In this paper, we present a new dense video caption-
ing approach that is able to utilize any number of modalities
for event description. Specifically, we show how audio and
speech modalities may improve a dense video captioning
model. We apply automatic speech recognition (ASR) sys-
tem to obtain a temporally aligned textual description of the
speech (similar to subtitles) and treat it as a separate input
alongside video frames and the corresponding audio track.
We formulate the captioning task as a machine translation
problem and utilize recently proposed Transformer archi-
tecture to convert multi-modal input data into textual de-
scriptions. We demonstrate the performance of our model
on ActivityNet Captions dataset. The ablation studies in-
dicate a considerable contribution from audio and speech
components suggesting that these modalities contain sub-
stantial complementary information to video frames. Fur-
thermore, we provide an in-depth analysis of the ActivityNet
Caption results by leveraging the category tags obtained
from original YouTube videos. Code is publicly available:
github.com/v-iashin/MDVC.

1. Introduction

The substantial amount of freely available video material
has brought up the need for automatic methods to summa-
rize and compactly represent the essential content. One ap-
proach would be to produce a short video skim containing
the most important video segments as proposed in the video
summarization task [25]. Alternatively, the video content
could be described using natural language sentences. Such
an approach can lead to a very compact and intuitive rep-
resentation and is typically referred to as video captioning

Figure 1. Example video with ground truth captions and predic-
tions of Multi-modal Dense Video Captioning module (MDVC).
It may account for any number of modalities, i.e. audio or speech.

in the literature [58]. However, producing a single descrip-
tion for an entire video might be impractical for long uncon-
strained footage. Instead, dense video captioning [24] aims,
first, at temporally localizing events and, then, at producing
natural language description for each of them. Fig. 1 illus-
trates dense video captions for an example video sequence.

Most recent works in dense video captioning formulate
the captioning problem as a machine translation task, where
the input is a set of features extracted from the video stream
and the output is a natural language sentence. Thus, the cap-
tioning methods can be leveraged by recent developments in
machine translation field, such as Transformer model [45].
The main idea in the transformer is to utilise self-attention
mechanism to model long-term dependencies in a sequence.
We follow the recent work [59] and adopt the transformer
architecture in our dense video captioning model.

The vast majority of previous works are generating cap-
tions purely based on visual information [59, 48, 26, 28, 53,
30, 54]. However, almost all videos include an audio track,
which could provide vital cues for video understanding. In
particular, what is being said by people in the video, might
make a crucial difference to the content description. For in-
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stance, in a scene when someone knocks the door from an
opposite side, we only see the door but the audio helps us
to understand that somebody is behind it and wants to enter.
Therefore, it is impossible for a model to make a useful cap-
tion for it. Also, other types of videos as instruction videos,
sport videos, or video lectures could be challenging for a
captioning model.

In contrast, we build our model to utilize video frames,
raw audio signal, and the speech content in the caption gen-
eration process. To this end, we deploy automatic speech
recognition (ASR) system [1] to extract time-aligned cap-
tions of what is being said (similar to subtitles) and em-
ploy it alongside with video and audio representations in
the transformer model.

The proposed model is assessed using the challenging
ActivityNet Captions [24] benchmark dataset, where we ob-
tain competitive results to the current state-of-the-art. The
subsequent ablation studies indicate a substantial contri-
bution from audio and speech signals. Moreover, we re-
trieve and perform breakdown analysis by utilizing previ-
ously unused video category tags provided with the original
YouTube videos [2]. The program code of our model and
the evaluation approach will be made publicly available.

2. Related Work

2.1. Video Captioning

Early works in video captioning applied rule-based mod-
els [22, 31, 7], where the idea was to identify a set of video
objects and use them to fill predefined templates to generate
a sentence. Later, the need for sentence templates was omit-
ted by casting the captioning problem as a machine trans-
lation task [37]. Following the success of neural models
in translation systems [42], similar methods became widely
popular in video captioning [57, 46, 47, 58, 5, 38, 18, 9, 52].
The rationale behind this approach is to train two Recurrent
Neural Networks (RNNs) in an encoder-decoder fashion.
Specifically, an encoder inputs a set of video features, ac-
cumulates its hidden state, which is passed to a decoder for
producing a caption.

To further improve the performance of the caption-
ing model, several methods have been proposed, includ-
ing shared memory between visual and textual domains
[49, 34], spatial and temporal attention [56], reinforce-
ment learning [50], semantic tags [11, 32], other modalities
[55, 19, 51, 13], and by producing a paragraph instead of
one sentence [36, 58].

2.2. Dense Video Captioning

Inspired by the idea of the dense image captioning task
[20], Krishna et al. [24] introduced a problem of dense
video captioning and released a new dataset called Activ-
ityNet Captions which leveraged the research in the field

[59, 48, 26, 28, 53, 30, 35, 54]. In particular, [48] adopted
the idea of the context-awareness [24] and generalized the
temporal event proposal module to utilize both past and fu-
ture contexts as well as an attentive fusion to differentiate
captions from highly overlapping events. Meanwhile, the
concept of Single Shot Detector (SSD) [27] was also used
to generate event proposals and reward maximization for
better captioning in [26].

In order to mitigate the intrinsic difficulties of RNNs to
model long-term dependencies in a sequence, Zhou et al.
[59] tailored the recent idea of Transformer [45] for dense
video captioning. In [28] the authors noticed that the cap-
tioning may benefit from interactions between objects in
a video and developed recurrent higher-order interaction
module to model these interactions. Xiong et al. [53] no-
ticed that many previous models produced redundant cap-
tions, and proposed to generate captions in a progressive
manner, conditioned on the previous caption while applying
paragraph- and sentence-level rewards. Similarly, a “bird-
view” correction and two-level reward maximization for a
more coherent story-telling have been employed in [30].

Since the human annotation of a video with tempo-
ral boundaries and captions for each of them can be la-
borious, several attempts have been made to address this
issue [10, 29]. Specifically, [10] employed the idea of
cycle-consistency to translate a set of captions to a set of
temporal events without any paired annotation, while [29]
automatically-collected dataset of an unparalleled-scale ex-
ploiting the structure of instructional videos.

The most similar work to our captioning model is [59]
that also utilizes a version of the Transformer [45] archi-
tecture. However, their model is designed solely for visual
features. Instead, we believe that dense video captioning
may benefit from information from other modalities.

2.3. Multi-modal Dense Video Captioning

A few attempts has been made to include additional cues
like audio and speech [35, 16, 39] for dense video cap-
tioning task. Rahman et al. [35] utilized the idea of cycle-
consistency [10] to build a model with visual and audio in-
puts. However, due to weak supervision, the system did
not reach high performance. Hessel et al. [16] and Shi et
al. [39] employ a transformer architecture [45] to encode
both video frames and speech segments to generate captions
for instructional (cooking) videos. Yet, the high results on
a dataset which is restricted to instructional video appear to
be not evidential as the speech and the captions are already
very close to each other in such videos [29].

In contrast to the mentioned multi-modal dense video
captioning methods: (1) we present the importance of
the speech and audio modalities on a domain-free dataset,
(2) propose a multi-modal dense video captioning module
(MDVC) which can be scaled to any number of modalities.
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Figure 2. The proposed Multi-modal Dense Video Captioning (MDVC) framework. Given an input consisting of several modalities, namely,
audio, speech, and visual, internal representations are produced by a corresponding feature transformer (middle). Then, the features are
fused in the multi-modal generator (right) that outputs the distribution over the vocabulary.

3. Proposed Framework

In this section, we briefly outline the workflow of our
method referred to as Multi-modal Dense Video Captioning
(MDVC) which is shown in Fig. 2. The goal of our method
is to temporally localize events on a video and to produce a
textual description for each of them. To this end, we apply
a two-stage approach.

Firstly, we obtain the temporal event locations. For this
task, we employ the Bidirectional Single-Stream Temporal
action proposals network (Bi-SST) proposed in [48]. Bi-
SST applies 3D Convolution network (C3D) [44] to video
frames and extracts features that are passed to subsequent
bi-directional LSTM [17] network. The LSTM accumu-
lates visual cues over time and predicts confidence scores
for each location to be start/end point of an event. Finally,
a set of event proposals (start/end times) is obtained and
passed to the second stage for caption generation.

Secondly, we generate the captions given a proposal. To
produce inputs from audio, visual, and speech modalities,
we use Inflated 3D convolutions (I3D) [6] for visual and
VGGish network [15] for audio modalities. For speech rep-
resentation as a text, we employ an external ASR system
[1]. To represent the text into a numerical form, we use
a similar text embedding which is used for caption encod-
ing. The features are, then, fed to individual transformer
models along with the words of a caption from the previous
time steps. The output of the transformer is passed into a
generator which fuses the outputs from all modalities and
estimates a probability distribution over the word vocabu-
lary. After sampling the next word, the process is repeated
until a special end token is obtained. Fig. 1 illustrates an
example modality and the corresponding event captions.

3.1. Temporal Event Localization Module

An event localization module is dedicated to generating
a set of temporal regions which might contain an event. To
achieve this, we employ pre-trained Bidirectional Single-
Stream Temporal action proposals network (Bi-SST) pro-
posed in [48] as it has is been shown to reach good perfor-
mance in the proposal generation task.

Bi-SST inputs a sequence of T RGB frames from a video
V = (x1, x2, . . . , xF ) and extracts a set of 4096-d features
V ′ = (f1, f2, . . . , fT ) by applying a 3D Convolution net-
work (C3D) on non-overlapping segments of size 16 with a
stride of 64 frames. To reduce the feature dimension, only
500 principal components were selected using PCA.

To account for the video context, events are proposed
during forward and backward passes on a video sequence
V ′, and, then, the resulting scores are fused together to ob-
tain the final proposal set. Specifically, during the forward
pass, LSTM is used to accumulate the visual clues from the
“past” context at each position t which is treated as an end-
ing point and produce confidence scores for each proposal.

Afterwards, a similar procedure is performed during the
backward pass where the features V ′ are used in a reversed
order. This empowers the model to have a sense of the “fu-
ture” context in a video. In contrast to the forward pass,
each position is treated as a starting point of the proposal.
Finally, the confidence scores from both passes are fused by
multiplication of corresponding scores for each proposal at
each time step, and, then, filtered according to a predefined
threshold.

Finally, we obtain a set of NV event proposals for cap-
tion generation PV = {pj = (startj , endj , scorej)}NV

j=1.
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Figure 3. The proposed feature transformation architecture that consists of an encoder (bottom part) and a decoder (top part). The encoder
inputs pre-processed and position-encoded features from I3D (in case of the visual modality), and outputs an internal representation. The
decoder, in turn, is conditioned on both position-encoded caption that is generated so far and the output of the encoder. Finally, the decoder
outputs its internal representation.

3.2. Captioning Module

In this section we explain the captioning based for an
example modality, namely, visual. Given a video V and
a set of proposals PV from the event localization mod-
ule, the task of the captioning module is to provide a cap-
tion for each proposal in PV . In order to extract features
from a video V , we employ I3D network [6] pre-trained on
the Kinetics dataset which produces 1024-d features. The
gap between the extracted features and the generated cap-
tions is filled with Transformer [45] architecture which was
proven to effectively encode and decode the information in
a sequence-to-sequence setting.

3.2.1 Feature Transformer

As shown in Fig. 3, Feature Transformer architecture
mainly consists of three blocks: an encoder, decoder, and
generator. The encoder inputs a set of extracted features
vj = (v1, v2, . . . , vTj

) temporally corresponding to a pro-
posal pj from PV and maps it to a sequence of internal
representations zj = (z1, z2, . . . , zTj

). The decoder is
conditioned on the output of the encoder zj and the em-
bedding ej�t = (e1, e2, . . . , et) of the words in a caption
wj

�t = (w1, w2, . . . , wt). It produces the representation
gj
�t = (g1, g2, . . . , gt) which, in turn, is used by the gener-

ator to model a distribution over a vocabulary for the next
word p(wt+1|gj

�t). The next word is selected greedily by
obtaining the word with the highest probability until a spe-
cial ending token is sampled. The captioning is initialized
with a starting token. Both are added to the vocabulary.

Before providing an overview of the encoder, decoder,
and generator, we presenting the notion of multi-headed at-
tention that acts as an essential part of the decoder and en-
coder blocks. The concept of the multi-head attention, in
turn, heavily relies on dot-product attention which we de-
scribe next.

Dot-product Attention The idea of the multi-headed at-
tention rests on the scaled dot-product attention which cal-
culates the weighted sum of values. The weights are ob-
tained by applying the softmax function on the dot-product
of each pair of rows of queries and keys scaled by 1√

Dk
. The

scaling is done to prevent the softmax function from being
in the small gradient regions [45]. Formally the scaled dot-
product attention can be represented as follows

Attention(Q,K, V ) = softmax

(
QKT

√
Dk

)
V, (1)

where Q,K, V are queries, keys, and values, respectively.

Multi-headed Attention The multi-headed attention
block is used once in each encoder layer and twice in each
decoder layer. The block consists of H heads that allows to
cooperatively account for information from several repre-
sentations sub-spaces at every position while preserving the
same computation complexity [45]. In a transformer with
dimension DT , each head is defined in the following way

headh(q, k, v) = Attention(qW q
h , kW

k
h , vW

v
h ), (2)

where q, k, v are matrices which have DT columns and the
number of rows depending on the position of the multi-
headed block, yet with the same number of rows for k
and v to make the calculation in (1) to be feasible. The
W q

h ,W
k
h ,W

v
h ∈ R

DT×Dk are trainable projection matrices
that map q, k, v from DT into Dk = DT

H , asserting DT is
a multiple of H . The multi-head attention, in turn, is the
concatenation of all attention heads mapped back into DT

by trainable parameter matrix W o ∈ R
Dk·H×DT :

MultiHead(q, k, v) =

⎡
⎣ head1(q, k, v)

. . .
headH(q, k, v)

⎤
⎦W o. (3)
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Encoder The encoder consists of L layers. The first layer
inputs a set of features vj and outputs an internal represen-
tation zj1 ∈ R

Tj×DT while each of the next layers treats
the output of a previous layer as its input. Each encoder
layer l consist of two sub-layers: multi-headed attention
and position-wise fully connected network which are ex-
plained later in this section. The input to both sub-layers are
normalized using layer normalization [3], each sub-layer is
surrounded by a residual connection [14] (see Fig. 3). For-
mally, the l-th encoder layer has the following definition

zjl = LayerNorm(zjl ) (4)

rjl = zjl + MultiHead(zjl , z
j
l , z

j
l ) (5)

rjl = LayerNorm(rjl ) (6)

zjl+1 = rjl + FCN(rjl ), (7)

where FCN is the position-wise fully connected network.
Note, the multi-headed attention has identical queries, keys,
and values (zjl ). Such multi-headed attention block is also
referred to as self -multi-headed attention. It enables an en-
coder layer l to account for the information from all states
from the previous layer zjl−1. This property contrasts with
the idea of RNN which accumulates only the information
from the past positions.

Decoder Similarly to the encoder, the decoder has L lay-
ers. At a position t, the decoder inputs a set of embedded
words ej�t with the output of the encoder zj and sends the
output to the next layer which is conditioned on this output
and, again, the encoder output zj . Eventually, the decoder
producing its internal representation gj

�t ∈ R
t×DT . The

decoder block is similar to the encoder but has an additional
sub-layer that applies multi-headed attention on the encoder
output and the output of its previous sub-layer. The decoder
employs the layer normalization and residual connections
at all three sub-layers in the same fashion as the encoder.
Specifically, the l-th decoder layer has the following form:

gj
l = LayerNorm(gj

l,�t) (8)

bj
l = gj

l,�t + MultiHead(gj
l ,g

j
l ,g

j
l ) (9)

b
j

l = LayerNorm(bj
l ) (10)

uj
l = gj

l,�t + MultiHead(b
j

l , z
j , zj) (11)

uj
l = LayerNorm(uj

l ) (12)

gj
l+1,�t = uj

l + FCN(uj
l ), (13)

where zj is the encoder output. Note, similarly to the en-
coder, (9) is a self-multi-headed attention function while
the second multi-headed attention block attends on both
the encoder and decoder and is also referred to as encoder-
decoder attention. This block enables each layer of the de-
coder to attend all state of the encoder’s output zj .

Position-wise Fully-Connected Network The fully con-
nected network is used in each layer of the encoder and the
decoder. It is a simple two-layer neural network that inputs
x with the output of the multi-head attention block, and,
then, projects each row (or position) of the input x from
DT space onto DP , (DP > DT ) and back, formally:

FCN(x) = ReLU(xW1 + b1)W2 + b2, (14)

where W1 ∈ R
DT×DP , W2 ∈ R

DP×DT , and biases b1, b2
are trainable parameters, ReLU is a rectified linear unit.

Generator At the position t, the generator consumes the
output of the decoder gj

�t and produces a distribution over
the vocabulary of words p(wt+1|gj

�t). To obtain the dis-
tribution, the generator applies the softmax function of the
output of a fully connected layer with a weight matrix
WG ∈ R

DT×DV where DV is a vocabulary size. The word
with the highest probability is selected as the next one.

Input Embedding and Positional Encoding Since the
representation of textual data is usually sparse due to a large
vocabulary, the dimension of the input of a neural language
model is reduced with an embedding into a dimension of a
different size, namely DT . Also, following [45], we multi-
ply the embedding weights by

√
DT . The position encoding

is required to allow the transformer to have a sense of the or-
der in an input sequence. We adopt the approach proposed
for a transformer architecture, i.e. we add the output of the
combination of sine and cosine functions to the embedded
input sequence [45].

3.2.2 Multi-modal Dense Video Captioning

In this section, we present the multi-modal dense video cap-
tioning module which, utilises visual, audio, and speech
modalities. See Fig. 3 for a schematic representation of the
module.

For the sake of speech representation sj =
(s1, s2, . . . , sT s

j
), we use the text embedding of size

512-d that is similar to the one which is employed in the
embedding of a caption wj

�t. To account for the audio
information, given a proposal pj we extract a set of features
aj = (a1, a2, . . . , aTa

j
) applying the 128-d embedding

layer of the pre-trained VGGish network [15] on an audio
track. While the visual features vj = (v1, v2, . . . vTv

j
)

are encoded with 1024-d vectors by Inflated 3D (I3D)
convolutional network [6].

To fuse the features, we create an encoder and a decoder
for each modality with dimensions corresponding to the size
of the extracted features. The outputs from all decoders are
fused inside of the generator, and the distribution of a next
word wt+1 is formed.
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In our experimentation, we found that a simple two-
layer fully-connected network applied of a matrix of con-
catenated features performs the best with the ReLU activa-
tion after the first layer and the softmax after the second
one. Each layer of the network has a matrix of trainable
weights: WF1

∈ R
DF×DV and WF2

∈ R
DV ×DV with

DF = 512 + 128 + 1024 and DV is a vocabulary size.

3.3. Model Training

As the training is conducted using mini-batches of size
28, the features in one modality must be of the same length
so the features could be stacked into a tensor. In this regard,
we pad the features and the embedded captions to match the
size of the longest sample.

The model is trained by optimizing the Kullback–Leibler
divergence loss which measures the “distance” between the
ground truth and predicted distributions and averages the
values for all words in a batch ignoring the masked tokens.

Since many words in the English language may have sev-
eral synonyms or human annotation may contain mistakes,
we undergo the model to be less certain about the predic-
tions and apply Label Smoothing [43] with the smoothing
parameter γ on the ground truth labels to mitigate this. In
particular, the ground truth distribution over the vocabulary
of size DV , which is usually represented as one-hot encod-
ing vector, the identity is replaced with probability 1 − γ
while the rest of the values are filled with γ

DV −1 .
During training, we exploit the teacher forcing technique

which uses the ground truth sequence up to position t as
the input to predict the next word instead of using the se-
quence of predictions. As we input the whole ground truth
sequence at once and predicting the next words at each po-
sition, we need to prevent the transformer from peeping for
the information from the next positions as it attends to all
positions of the input. To mitigate this, we apply mask-
ing inside of the self-multi-headed attention block in the
decoder for each position higher than t− 1, following [45].

The details on the feature extraction and other implemen-
tation details are available in the supplementary materials.

4. Experiments

4.1. Dataset

We perform our experiments using ActivityNet Captions
dataset [24] that is considered as the standard benchmark for
dense video captioning task. The dataset contains approxi-
mately 20k videos from YouTube and split into 50/25/25 %
parts for training, validation, and testing, respectively. Each
video, on average, contains 3.65 temporally localized cap-
tions, around 13.65 words each, and two minutes long. In
addition, each video in the validation set is annotated twice
by different annotators. We report all results using the vali-
dation set (no ground truth is provided for the test set).

Method
GT Proposals Learned Proposals

B@3 B@4 M B@3 B@4 M

Seen full dataset
Krishna et al. [24] 4.09 1.60 8.88 1.90 0.71 5.69
Wang et al. [48] – – 10.89 2.55 1.31 5.86
Zhou et al. [59] 5.76 2.71 11.16 2.42 1.15 4.98
Li et al. [26] 4.55 1.62 10.33 2.27 0.73 6.93

Seen part of the dataset
Rahman et al. [35] 3.04 1.46 7.23 1.85 0.90 4.93
MDVC 4.12 1.81 10.09 2.31 0.92 6.80
MDVC, no missings 5.83 2.86 11.72 2.60 1.07 7.31

Table 1. The results of the dense video captioning task on the
ActivityNet Captions validation sets in terms of BLEU–3,4 (B@3,
B@4) and METEOR (M). The related methods are compared with
the proposed approach (MDVC) in two settings: on the full vali-
dation dataset and a part of it with the videos with all modalities
present for a fair comparison (“no missings”). Methods are ad-
ditionally split into the ones which “saw” all training videos and
another ones which trained on partially available data. The results
are presented for both ground truth (GT) and learned proposals.

The dataset itself is distributed as a collection of links
to YouTube videos, some of which are no longer available.
Authors provide pre-computed C3D features and frames at
5fps, but these are not suitable for our experiments. At the
time of writing, we found 9,167 (out of 10,009) training and
4,483 (out of 4,917) validation videos which is, roughly,
91 % of the dataset. Out of these 2,798 training and 1,374
validation videos (approx. 28 %) contain at least one speech
segment. The speech content was obtained from the closed
captions (CC) provided by the YouTube ASR system which
can be though as subtitles.

4.2. Metrics

We are evaluating the performance of our model using
BLEU@N [33] and METEOR [8]. We regard the METEOR
as our primary metric as it has been shown to be highly cor-
related with human judgement in a situation with a limited
number of references (only one, in our case).

We employ the official evaluation script provided in [23].
Thus, the metrics are calculated if a proposed event and
a ground truth location of a caption overlaps more than a
specified temporal Intersection over Union (tIoU) and zero
otherwise. All metric values are averaged for every video,
and, then, for every threshold tIoU in [0.3, 0.5, 0.7, 0.9]. On
the validation, we average the resulting scores for both val-
idation sets. For the learned proposal setting, we report our
results on at most 100 proposals per video.

Notably, up to early 2017, the evaluation code had an is-
sue which previously overestimated the performance of the
algorithms in the learned proposal setting [30]. Therefore,
we report the results using the new evaluation code.
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Model Params. Metric
(×106) B@4 M

Feature Transf. (random) 42 0.88 7.16
Bi-GRU 55 1.44 9.47
Feature Transformer 42 1.84 9.62

Table 2. Comparison of the Feature Transformer and the Bi-
directional GRU (Bi-GRU) architectures in terms of BLEU-4
(B@4), METEOR (M), and a number of model parameters. The
input to all models is visual modality (I3D). The results indicate
the superior performance of the Feature Transformer on all met-
rics. Additionally, we report the random input baseline which acts
as a lower performance bound. The best results are highlighted.

4.3. Comparison with Baseline Methods

We compare our method with five related approaches,
namely Krishna et al. [24], Wang et al. [48], Zhou et al.
[59], Li et al. [26], and Rahman et al. [35]. We take the per-
formance values from the original papers, except for [26],
and [59], which are taken from [30] due to the evaluation
issue (see Sec. 4.2).

The lack of access to the full ActivityNet Captions
dataset makes strictly fair comparison difficult as we have
less training and validation videos. Nevertheless, we
present our results in two set-ups: 1) full validation set with
random input features for missing entries, and 2) videos
with all three modalities present (video, audio, and speech).
The first one is chosen to indicate the lower bound of our
performance with the full dataset. Whereas, the second one
(referred to as “no missings”) concentrates on the multi-
modal setup, which is the main contribution of our work.

The obtained results are presented in Tab. 1. Our method
(MDVC) achieves comparable or better performance, even
though we have access to smaller training set and 9% of the
validation videos are missing (replaced with random input
features). Furthermore, if all three modalities are present,
our method outperforms all baseline approaches in the case
of both GT and learned proposals. Notably, we outperform
[59] which is also based on the transformer architecture and
account for the optical flow. This shows the superior perfor-
mance of our captioning module which, yet, trained on the
smaller amount of data.

4.4. Ablation Studies

In this section, we perform an ablation analysis high-
lighting the effect of different design choices of our method.
For all experiments, we use the full unfiltered ActivityNet
Captions validation set with ground truth event proposals.

Firstly, we assess the selection of the model architec-
ture. To this end, we implemented a version of our method
where the transformer was replaced by Bidirectional Recur-
rent Neural Network with Gated Recurrent Units with atten-

Modality Fusion Params. Metric
V A S (×106) B@4 M

� – 42 1.61 9.64
� – 5 1.03 8.01

� � Average probs. 46 1.68 9.71
� � Concat. + 2 FC 149 1.73 9.87
� No, 2 FC 145 1.62 9.69
� � � Concat. + 2 FC 179 1.81 10.09

Table 3. The performance of the proposed MDVC framework
with different input modalities (V-visual, A-audio, S-speech) and
feature fusion approaches: probability averaging and concatena-
tion of two fully-connected layers (Concat. + 2 FC). Also, we re-
port the comparison between audio-visual MDVC with visual-only
MDVC with similar model capacities (2 FC).

tion (Bi-GRU), proposed in [4]. To distil the effect of the
change in architecture, the results are shown for visual-only
models. Both Bi-GRU and the transformer input I3D fea-
tures extracted from 64 RGB and optical flow frames (the
final model inputs 24 frames). Finally, we set a lower bound
for the feature performance by training a transformer model
with random video features. Tab. 2 shows the comparison.
To conclude, we observe that the feature transformer-based
model is not only uses less parameters but also achieves bet-
ter performance in dense video captioning task. Moreover,
both method clearly surpasses the random baseline.

Secondly, we evaluate the contribution of different
modalities in our framework. Tab. 3 contains the results
for different modality configurations as well as for two fea-
ture fusion approaches. Specifically, averaging of the output
probabilities and concatenation of the outputs of all modali-
ties and applying two fully connected (FC) layers on top.
We observe that audio-only model has the worst perfor-
mance, followed by the visual only model, and the com-
bination of these two. Moreover, the concatenation and FC
layers result in better performance than averaging. To fur-
ther assess if the performance gain is due to the additional
modalities or to the extra capacity in the FC layers, we
trained a visual-only model with two additional FC layers.
The results indicate that such configuration performs worse
than any bi-modal setup. Overall, we conclude that the fi-
nal model with all three modalities performs best among
all tested set-ups, which highlights the importance of multi-
modal setting in dense video captioning task.

Fig. 4 shows a qualitative comparison between different
models in our ablation study. Moreover, we provide the
corresponding captions from the best performing baseline
method (Zhuo et al. [59]). We noticed the following pat-
tern: the audio-modality produces coherent sentences and
captures the concepts of speaking in the video. However,
there are clear mistakes in the caption content. In con-
trast, the model with all three modalities manages to capture
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Figure 4. The qualitative captioning results for an example video from the ActivityNet Captions validation set. In the video, the speaker
describes the advantages of rafting on this particular river and their club. Occasionally, people are shown rapturously speaking about how
fun it is. Models that account for audio modality tend to grasp the details of the speaking on the scene while the visual-only models fail at
this. We invite the reader to watch the example YouTube video for a better impression (xs5imfBbWmw).
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Figure 5. The results are split for category and version of MDVC.
The number of samples per category is given in parenthesis. The
METEOR axis is cut up to the random performance level (7.16).

the man who speaks to the camera which is also present in
the ground truth. Both visual-only MDVC and Zhuo et al.
struggle to describe the audio details.

Finally, to test whether our model improves the perfor-
mance in general rather than in a specific video category, we
report the comparison of the different versions of MDVC
per category. To this end, we retrieve the category labels
from the YouTubeAPI [2] (US region) for every available

ActivityNet Captions validation video. These labels are
given by the user when uploading the video and roughly
represent the video content type. The comparison is shown
in Fig. 5. The results imply a consistent gain in performance
within each category except for categories: “Film & Anima-
tion” and “Travel & Events” which might be explained by
the lack of correspondence between visual and audio tracks.
Specifically, the video might be accompanied by music, e.g.
promotion of a resort. Also, “Film & Animation” contains
cartoon-like movies which might have a realistic soundtrack
while the visual track is goofy.

5. Conclusion

The use of different modalities in computer vision is still
an underrepresented topic and, we believe, deserves more
attention. In this work, we introduced a multi-modal dense
video captioning module (MDVC) and shown the impor-
tance of the audio and speech modalities for dense video
captioning task. Specifically, MDVC is based on the trans-
former architecture which encodes the feature representa-
tion of each modality for a specific event proposal and pro-
duces a caption using the information from these modalities.
The experimentation, conducted employing the ActivityNet
Captions dataset, shows the superior performance of a cap-
tioning module to the visual-only models in the existing lit-
erature. Extensive ablation study verifies this conclusion.
We believe that our results firmly indicate that future works
in video captioning should utilize a multi-modal input.
Acknowledgments Funding for this research was provided by the
Academy of Finland projects 327910 & 324346. The authors acknowl-
edge CSC — IT Center for Science, Finland, for computational resources.
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Abstract

Dense video captioning aims to localize and describe important events in untrimmed
videos. Existing methods mainly tackle this task by exploiting only visual features, while
completely neglecting the audio track. Only a few prior works have utilized both modali-
ties, yet they show poor results or demonstrate the importance on a dataset with a specific
domain. In this paper, we introduce Bi-modal Transformer which generalizes the Trans-
former architecture for a bi-modal input. We show the effectiveness of the proposed
model with audio and visual modalities on the dense video captioning task, yet the mod-
ule is capable of digesting any two modalities in a sequence-to-sequence task. We also
show that the pre-trained bi-modal encoder as a part of the bi-modal transformer can be
used as a feature extractor for a simple proposal generation module. The performance
is demonstrated on a challenging ActivityNet Captions dataset where our model achieves
outstanding performance. The code is available: v-iashin.github.io/bmt

1 Introduction

Current video sharing platforms contain a large amount of video material. The ability to gen-
erate descriptions of this content would be highly valuable for many tasks, such as content-
based retrieval or recommendation [25, 44]. Moreover, they would enable visually-impaired
people to consume video material and improve their quality of life [38].

This kind of video descriptions are usually provided as natural language sentences or
captions, a compact and intuitive format and, most importantly, can be digested by humans.
Early works [46, 47, 56, 58] described the video content with only one sentence, which might
be too “sparse” for long videos – one might try to think up a relatively short sentence which
describes the whole film. To mitigate this issue, [20] proposed dense video captioning which
requires a model to, first, localize “events”, and, then, to produce one-sentence description
for each of them instead of generating one caption for the entire film (see Fig. 1).

The task is usually formulated as a sequence-to-sequence (video to caption) task. There-
fore, the progress in the field is significantly influenced by advances in machine translation.
Hence, many models rely on an encoder-decoder architecture which consists of two recur-
rent neural networks (RNNs) or, recently-proposed Transformer-like model [45]. An event

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Example video with the predictions of our model alongside the ground truth.

localization module usually utilizes an RNN structure which first encodes the input to pro-
duce a hidden representation and, then, makes predictions using this representation.

Considering the natural co-occurrence of visual and audio tracks in a video and the fact
that human perception is multi-modal, recent advances in deep learning practice audio-visual
training [24, 27, 59, 63, 64]. Yet, most of the existing works on dense video captioning em-
ploy only visual inputs. In this work, we address this issue by introducing a novel bi-modal
transformer with the multi-headed proposal generator. Our captioning module is inspired
by the transformer architecture and, more precisely, how the attention module fuses the in-
formation from both sequences. While an efficient object detector YOLO [35] inspires the
design of each proposal head in the bi-modal multi-headed proposal generator.

The proposed method effectively utilizes audio and visual cues. We demonstrate the per-
formance of our model on the challenging open-domain ActivityNet Captions dataset [20].
The results show the state-of-the-art performance of our bi-modal dense video captioning
module as well as our bi-modal proposal generator on BLEU@3–4 and F1 metrics.

2 Related Work

The dense video captioning task requires a model to, first, localize events within a video and,
then, to produce a textual one-sentence description of what is happening during the event.
The dense video captioning task branches out from the video captioning which task is to
caption a video without localizing the event. The video captioning field evolved from hand-
crafted rule models [6, 19, 21] to encoder-decoder architectures [46, 47, 56, 58] inspired by
advances in machine translation [39]. Later, the captioning models were further enhanced
by semantic tagging [11, 28], reinforcement learning [51], attention [55], extended memory
[31, 50], and other modalities [13, 16, 52, 54].

2.1 Dense Video Captioning

The task of dense video captioning, as well as a test-bed, ActivityNet Captions dataset, were
introduced by Krishna et al. [20] who utilized the idea of the Deep Action Proposals network
[10] to generate event proposals and an LSTM network to encode the context and generate
captions. The idea of context-awareness was further developed in [49] who employed a
bi-directional variant of Single-Stream Temporal Action proposal network (SST) [3] which
makes better use of the video context, an LSTM network with attentive fusion and context
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gating was used to generate context-aware captions. Zhou et al. [62] adapted Transformer
architecture [45] to tackle the task and used transformer encoder’s output as input to a mod-
ification of ProcNets [61] to generate proposals.

Recently, the idea of reinforcement learning was found to be beneficial for image cap-
tioning (Self-critical Sequence Training (SCST)) [37] and, hence, applied in dense video
captioning as well. More precisely, the SCST was used in a captioning module to optimize
the non-differentiable target metric, e.g. METEOR [7]. Specifically, Li et al. [22] integrated
the reward system and enriched Single-Shot-Detector-like structure [23] with descriptive-
ness regression for proposal generation. Similarly, Xiong et al. [53] used an LSTM network
trained with the sentence- and paragraph-level rewards for maintaining coherent and concise
story-telling, while the event proposal module was adopted from Structured Segment Net-
works [60]. Mun et al. [26] further developed the idea of coherent captioning by observing
the overall context and optimizing two-level rewards, an SST module is used for proposal
generation, and a Pointer Network [48] to distill proposal candidates.

Another direction of research relies on weak supervision which is designed to mitigate
the problem of laborious annotation of the datasets. To this end, Duan et al. [9] proposed
an autoencoder architecture which generates proposals and, then, captions them while being
supervised only with a set of non-localized captions in a cycle-consistency manner. However,
the results appeared to be far from the supervised methods.

2.2 Multi-modal Dense Video Captioning

It is natural to assume that, besides visual information, a video understanding system might
benefit from the cues contained in other modalities like audio [33], speech (subtitles) [40],
or both [17]. Specifically, Rahman et al. [33] were the first to include audio modality into
the dense video captioning set up. They borrowed the idea of cycle-consistency from [9] and
employed multi-modal Tucker decomposition [2] to combine information from both modali-
ties and pass it to a GRU-based [5] caption decoder. However, since the model is trained in a
weakly supervised setting, the results do not reach the performance of the supervised models.

Shi et al. [40] proposed to utilize the corresponding speech along with frame features
to further improve captioning performance on cooking videos. They suggested employing a
transformer’s encoder to encode video frames and subtitle embeddings produced by a pre-
trained BERT model [8]. Next, an LSTM generates proposals, and the other two LSTMs
were used for the encoder-decoder captioning module. Despite the significant gains in cap-
tioning performance, we believe these findings are not conclusive as instructional videos is
an ill-suited domain to show the benefits of the speech modality for a captioning task since
subtitles alone can be a very accurate proxy for captions in such videos (see [25]).

In contrast, Iashin et al. [17] showed the importance of the speech modality on a free-
domain dataset. They proposed to train three transformers for each modality individually and
fuse features by concatenation before predicting the next caption word while borrowing the
proposal generator from [49]. However, the suggested approach for feature fusion is rather
straightforward and inefficient. Moreover, the adopted proposal generator is based solely on
video features which contrasts with the idea of the dense video captioning task.

Our method is mostly similar to [17], yet we show significantly better results on the task
while utilizing only visual and audio cues. Besides, our proposal generator does employ
both modalities and significantly outperforms the state-of-the-art. Furthermore, we present a
single model which utilizes bi-modal encoder for both: the proposal generator and captioning
module, making it an elegant approach for the dense video captioning task.
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Figure 2: The design of Bi-modal Transformer with Multi-headed Proposal Generator. The proposed
model inputs features extracted by VGGish, I3D, and GloVe pre-trained models (bottom left). Then,
the bi-modal encoder with N layers processes the audio and visual features and passes its bi-modal
representation to the proposal generator (top). After, the generated proposals are used to clip the input
features (left). The clipped features are passed through the encoder again. The output of the encoder,
then, is used at every layer (N) of the bi-modal decoder (bottom). The decoder attends to the bi-modal
encoder’s representation as well as the previous caption words and produces its internal representation
of the context. This representation is passed to the generator (right) to generate the next word. Residual
connections are removed for clarity. Best viewed in color.

3 Our Framework

Our approach consists of two parts: the bi-modal transformer and multi-headed proposal
generator (see Fig. 2). The model expects the input to be a set of continuous features
stacked together in a sequence. To represent a visual stream, we use a pre-trained Inflated 3D
(I3D) network [4] while for the audio stream we employ pre-trained VGGish [15], the tokens
(roughly, words) are embedded with pre-trained GloVe [32] (see Sec. 6.2 for implementation
details). Also, since the transformer is permutation invariant it has no sense of recurrence.
Thus, the order of features within a sequence is preserved by adding the positional encoding
to the output of the embedding layers. Following [45], we use cosine and sine functions.

Next, the audio and visual sequences, are passed through the transformer’s bi-modal
N-layered encoder to produce bi-modal sequence representations utilizing novel bi-modal
multi-headed attention blocks to fuse the features from both sequences. Then, the novel
proposal generator utilizes these features to generate proposals and their confidence scores.
After, a pre-defined number of most confident proposals are selected to clip the input feature
sequences. Next, the clipped features are processed with the encoder to re-represent the
features considering only the features which are left after clipping.

The bi-modal encoder’s representation is used at every layer in the bi-modal decoder.
Concretely, the encoder’s outputs are passed to the corresponding bi-modal attention blocks
in the decoder layer along with the representation of the previously generated caption words.
The last-layer representation of the decoder is used in the generator where the next caption
word is produced. To avoid an empty input to the decoder in the beginning, a special start-
token is used. The caption is generated word-by-word until a special end-token is sampled.

This section, first, presents the design of the captioning module (Sec. 3.1) and, second,
the proposal generator (Sec. 3.2) while the training procedure is explained in Sec. 3.3.
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3.1 Captioning Module

The task of dense video captioning requires to produce a caption for each proposal. There-
fore, bi-modal encoder inputs audio A and visual V feature sequences which temporally
correspond to the proposal and outputs two sequences: audio-attended visual features V a

and visual-attended audio features Av. These features are used by the bi-modal decoder
which attends to these features and the previous caption words (c1, c2, . . . , ct). Finally, the
bi-modal decoder outputs the representation which is employed to model a distribution of
the next caption word (ct+1) over the vocabulary. The proposal index is omitted for clarity.

Bi-modal Encoder In contrast to the encoder in [45], our bi-modal encoder inputs two
streams: audio (A ∈ RTa×da) and visual (V ∈ RTv×dv) features corresponding to the proposal.
Then, the features are passed in a stack of N encoder layers. Instead of two, each layer has
three sub-layers: self-attention, bi-modal attention (new), and position-wise fully-connected
layers. Specifically, given Afc

0 = A and V fc
0 =V , an nth encoder layer is defined as

Aself
n = MultiHeadAttention(Afc

n−1,A
fc
n−1,A

fc
n−1), // audio self-attention (1)

V self
n = MultiHeadAttention(V fc

n−1,V
fc
n−1,V

fc
n−1), // visual self-attention (2)

Amm
n = MultiHeadAttention(Aself

n ,V self
n ,V self

n ), // visual-attended audio feats. (3)

V mm
n = MultiHeadAttention(V self

n ,Aself
n ,Aself

n ), // audio-attended visual feats. (4)

Afc
n = TwoFullyConnected(Amm

n ), // RTa×da ← RTa×4da ← RTa×da (5)

V fc
n = TwoFullyConnected(V mm

n ), // RTv×dv ← RTv×4dv ← RTv×dv (6)

where all sub-layers have distinct sets of trainable weights and mostly resemble the blocks of
Transformer [45], yet we allow the dimension of the weights in multi-headed attention in (3)
& (4) to be different for both modalities because we expect them to have a different size. We
define the multi-headed attention in Sec. 6.1. The encoder outputs visual-attended audio fea-
tures (Av = Afc

N ) and audio-attended visual features (V a =V fc
N ), which are used the decoder.

Bi-modal Decoder The bi-modal decoder inputs the previous sequence of caption words
Ct = (c1, c2, . . . , ct) ∈ Rt×dc and, opposed to the original Transformer’s decoder [45], ours
gets the output from the bi-modal encoder (Av ∈ RTa×da ,V a ∈ RTv×dv). Thus, instead of
three, it has four sub-layers: self-attention, bi-modal encoder-decoder attention (new), bridge
(new), & position-wise fully-connected layers. For Cfc

0 =Ct , an nth decoder layer is defined as

Cself
n = MultiHeadAttention(Cfc

n−1,C
fc
n−1,C

fc
n−1), // caption self-attention (7)

CAv

n = MultiHeadAttention(Cself
n ,Av,Av), // audio-visual attended prev. caps. (8)

CV a

n = MultiHeadAttention(Cself
n ,V a,V a), // visual-audio attended prev. caps. (9)

Cmm
n = OneFullyConnected

(
[CAv

n ,CV a

n ]
)
, // Rt×dc ← Rt×2dc ; [·, ·] — concat. (10)

Cfc
n = TwoFullyConnected(Cmm

n ), // Rt×dc ← Rt×4dc ← Rt×dc (11)

where, as in the encoder, trainable weights have distinct dimensions depending on a modality
and are not shared across sub-layers. The decoder outputs caption features (Cav

t =Cfc
N ).

Generator The purpose of the generator is to model the distribution for the next caption
word ct+1 given the output of the decoder Cav

t ∈ Rt×dc . Therefore, the generator is, usually,
a fully-connected layer with the softmax activation which maps the caption features of size
dc into a dimension corresponding to the size of the vocabulary in the training set.
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Residual Connection Following the original Transformer architecture, we employ the
residual connection [14] surrounding each sub-layer of the encoder and decoder except for
the bridge layer since in- and out-dimensions are different. Additionally, we adopt Layer
Normalization [1] before applying a sub-layer: x+ sub-layer

(
LayerNorm(x)

)
.

Dropout We also regularize our model with dropout [41] which is applied: a) before
adding the residual in the residual connection, b) before the activation in the bridge layer, c)
on outputs of the positional encoding, d) between layers in the position-wise fully-connected
network, and e) after the softmax operation in the scaled dot-product attention (see Sec. 6.1).

3.2 Event Proposal Generation Module

The proposal generator generates a set of proposals for a given video. It consists of two
blocks: a bi-modal encoder and bi-modal multi-headed proposal generator (not related to
multi-headed attention). The bi-modal encoder in this module inputs the whole sequence
opposed to the bi-modal encoder in the captioning module, which inputs a sequence of fea-
tures corresponding to a proposal. Specifically, it inputs both: visual-attended audio features
Av ∈ RTa×da and audio-attended visual features V a ∈ RTv×dv . Since the sequence lengths
(Ta, Tv) might be distinct, the fusion of predictions cannot be done at each time-step. To this
end, we propose the module which makes predictions for each modality at every timestamp
individually forming a common pool of cross-modal predictions (see Fig. 3).

Proposal Generation Head The proposal generation head inputs a sequence of T features,
and makes predictions at each timestamp on the interval [1, T ], and for every prior segment
length anchor in the set Ψ. The design of the proposal generation head is partly inspired by
YOLO object detector [34, 35, 36]. Specifically, it is a fully-convolutional network which,
in our case, consists of only three layers. Opposed to YOLO, we preserve the sequence
length across all layers using padding and identity stride. Moreover, YOLO utilizes predic-
tions from three different scales to predict different-scale objects. Hence, only three sizes of
receptive fields are used. Instead, our model makes predictions at a single scale while con-
trolling the receptive field with a kernel size k which is distinct in each proposal generation
head. More precisely, the 1st convolutional layer has a kernel size k while in the 2nd and the
3rd the kernel size is 1. The layers are separated with ReLU activations and dropout.

Predictions Temporal boundaries and confidence for a proposal are obtained using three
values which were predicted by the proposal generation head: a location of a segment center
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σ(c) relative to a position p in the sequence while σ(·) is a sigmoid function which bounds
the values into [0, 1] interval, a coefficient exp(l) for an anchor, and objectness score σ(o)

center = p+σ(c); length = anchor · exp(l); confidence = σ(o). (12)

The prediction of the center and length are in grid-cells (not in seconds). To obtain seconds,
both are multiplied by a cell size which corresponds to a temporal span of the feature.

Bi-modal Multi-headed Proposal Generator The common pool of predictions is formed
with predictions made by each of the proposal generation heads. Specifically, our model has
Ka and Kv heads for audio and visual modalities with distinct sets of kernel sizes. Overall,
our model generates

(
Ta ·Ka · |Ψa|+Tv ·Kv · |Ψv|

)
proposals. For the final predictions, we

select top-100 proposals out of the common pool based on the confidence score.

Segment Length Priors & Kernel Sizes To select a set of anchors, we use K-Means clus-
tering algorithm with the Euclidean distance metric, as opposed to intersection over the
union in YOLO. Due to granularity of feature extractors, feature lengths (Ta, Tv) might not
necessarily equal. Thus, we obtain distinct numbers of anchors for audio and visual modal-
ities

(|Ψa|, |Ψv|
)

to keep Ta · |Ψa| close to Tv · |Ψv| to balance the impact of each modality
to the common pool of predictions. Similarly, the kernel sizes are determined by K-Means.
We motivate it with an expectation that the receptive field will correspond to an event with a
higher probability. We scale the resulting cluster centroids (in secs) by the feature time span
to obtain values in grid-cell coordinates. Next, we round the values to the next odd integer
for more elegant padding. Again, to preserve the balance in the share of predictions from
each modality, we obtain an equal number of kernel sizes Ka = Kv both modalities.

3.3 Training Procedure

Our model is trained in two stages: first, the captioning module is trained with ground truth
proposals and, then, the proposal generator is trained using the pre-trained bi-modal encoder
from the captioning model. Similar to [45] and [17], we optimize KL-divergence loss and
apply Label Smoothing [43] to force a model to be less confident about predictions anticipat-
ing noisy annotations. Also, masking is used to ignore padding and prevent the model from
attending to the next positions in the ground truth caption. During training of the event pro-
posal generation module, all proposal generation heads for each modality are trained simul-
taneously summing up losses from all heads and both modalities. Each head uses YOLO-like
loss: MSE for the localization losses (no square root) and cross-entropy for (no)objectness
losses. The NMS is avoided for efficiency and to preserve the possibility of dense events.
For the implementation details, a reader is referred to supplementary material (Sec. 6.3).

4 Experiments

We employ ActivityNet Captions dataset [20], which consists of 100k temporally localized
sentences for 20k YouTube videos. The dataset is split into 50/25/25 % parts for training,
validation, and testing. The validation set of videos is annotated by two different annotators.
We report the results on the validation subsets as ground truth is not available for the testing
set. Since the dataset is distributed as a set of links to YouTube videos, it is not possible to
collect the whole dataset as some videos became unavailable. The authors also provide C3D
features which are not suitable for our experimentation as they are missing audio informa-
tion. In total, we had 91 % of the videos. We omit the unavailable videos from the validation



8 IASHIN, RAHTU: A BETTER USE OF AUDIO-VISUAL CUES

Full Dataset GT Proposals Learned Proposals

RL was Available B@3 B@4 M B@3 B@4 M

Li et al. [22] yes yes 4.55 1.62 10.33 2.27 0.73 6.93
Xiong et al. [53] yes yes – – – 2.84 1.24 7.08
Mun et al. [26] yes yes 4.41 1.28 13.07 2.94 0.93 8.82

Krishna et al. [20] no yes 4.09 1.60 8.88 1.90 0.71 5.69
Li et al. [22] no yes 4.51 1.71 9.31 2.05 0.74 6.14
Zhou et al. [62] no yes 5.76 2.71 11.16 2.91 1.44 6.91
Wang et al. [49] no yes – – 10.89 2.27 1.13 6.10
Mun et al. [26] no yes – – – – – 6.92

Iashin et al. [17] no no 4.52 1.98 11.07 2.53 1.01 7.46
Rahman et al. [33] no no 3.04 1.46 7.23 1.85 0.90 4.93
Ours no no 4.63 1.99 10.90 3.84 1.88 8.44

Table 1: Comparison with state-of-the-art results on the dense video captioning task. The
results are reported on the validation subset of ActivityNet Captions in both settings: cap-
tioning ground truth (GT) and learned proposals on BLEU@3–4 (B@3–4) and METEOR
(M) metrics. For a fair comparison on METEOR, we additionally report the results of mod-
els without the reward (METEOR) maximization (RL) and indicate whether full dataset was
available for training. The best and the 2nd best results are highlighted.

sets. We compared the results of other methods on the 91 % and 100 % of videos in Sec. 6.4.1
and observed similar performance suggesting the videos to be missing completely at random.

To evaluate the event proposal generation module we employ precision, recall, and
mainly rely on F1-score (harmonic mean of precision and recall). While METEOR [7]
and BLEU@3–4 [29] were used for captioning as they are highly correlated with human
judgement. All metrics are averaged for every video and temporal Intersection over Union
thresholds: [0.3,0.5,0.7,0.9]. As it has been noted in [26], the original evaluation script had
a critical issue which resulted in an incorrect evaluation of previous models. Therefore, we
re-implement [49, 62] and compare with the results obtained with the corrected script.

4.1 Comparison to the State-of-the-art

We present the comparison between the bi-modal transformer with multi-headed proposal
generator (Ours) and other methods in the existing literature [17, 20, 22, 26, 33, 49, 53, 62]
on the dense video captioning task. The results of the comparison for captioning both ground
truth (GT) and learned proposals are shown in Tab. 1. Since evaluating captioning is still
challenging and METEOR is probably the best among other options, yet it only provides
a proxy for how good a caption is. Therefore we believe that the direct optimization of
METEOR using a reinforcement learning technique (RL) might not necessarily result in a
better caption. To this end, we also include the results of [22, 26] without the RL module.
Moreover, we obtained the results of [17] on the same subset of videos as we have since they
additionally removed the videos with no speech modality from the evaluation.

According to the results, in the learned proposals setup, our dense video captioning
model outperforms all of the models, which have no reward maximization on METEOR
(no RL) while being on par when captioning ground truth proposals. Notably, our model has
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Full Dataset

was Available Prec. Rec. F1

Xiong et al. [53] yes 51.41 24.31 33.01
Wang et al. [49] yes 44.80 57.60 50.40
Zhou et al. [62] yes 38.57 86.33 53.31
Mun et al. [26] yes 57.57 55.58 56.56

Ours no 48.23 80.31 60.27

Table 2: Comparison with state-of-
the-art proposal generation meth-
ods on dense video captioning task.
Results are reported on the valida-
tion set of ActivityNet Captions.
Metrics: Precision, Recall, & F1-
measure. The top-2 is highlighted.

the highest BLEU metrics in the learned proposal setup yet lies far away from [62] when cap-
tioning ground truth proposals on BLEU and performs on par with this model on METEOR.

Comparing to the RL methods, our model still outperforms them on BLEU metrics in
both setups but loses in METEOR due to the absence of reward-maximization module. We
draw the attention of a reader to the performance of [22] with and without the RL module —
METEOR has dropped significantly yet other metrics remained on the same level.

Interestingly, we also outperform [17] who also use the transformer in multi-modal setup
yet has more parameters (149M vs 51M). We note again that the results are not fair to neither
of [17, 33] and ours since models have been trained on fewer videos.

Next, we compare our bi-modal multi-headed proposal generation module with other
proposal generation modules from other dense video captioning models. The results for
[62] and [49] are reported for 100 proposals per video. The results of the comparison are
presented in Tab. 2. Despite our model being trained on fewer videos, our proposal genera-
tion model achieves state-of-the-art performance on the F1 metric. Specifically, our model
provides impressive ground truth segment coverage while being accurate in its predictions.

4.2 Ablation Study

In this section, we show how the training procedure and modality impact the final results.
The results are presented in Tab. 3 for both settings: captioning ground truth (performance
of the captioning module) and leaned proposal (full dense video captioning model).

Training Procedures Our final model is trained in the following way. First, we train
the captioning model on the ground truth proposal. Second, we freeze the weights on the
encoder and train the proposal generator using the frozen encoder. The final results are
obtained by captioning the proposals obtained from the trained proposal generator. Hence,
the acronym “Cap → Prop” which reads as: “the proposal generator is trained using the pre-
trained encoder from the captioning module”. We compare this training procedure to other
two methods: a) when both captioning and proposal generator modules are trained separately
and b) when, first, the proposal module is trained and, then, the captioning module uses the
pre-trained encoder with frozen weights during training. This is the opposite of the training
procedure used for the final model, thus, abbreviated to “Prop → Cap”.

Different Sets of Modalities The final model uses both audio and visual modalities to
make predictions. We compare the performance of a bi-modal model with uni-modal ones.
Specifically, for uni-modal settings, we employ the uni-modal transformer architecture sim-
ilar to one in [17]. The difference between the hyper-parameters used for the final model
and the uni-modal transformer is in the input dimension. For the uni-modal transformer, we
follow the original paper where the input is first embedded into Dq dimension (see (14)) and
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Training GT Proposals Learned proposals

Procedure Modality B@3 B@4 M B@3 B@4 M

Separately
Audio 2.85 1.14 8.81 2.50 1.11 6.89
Visual 3.77 1.66 10.29 2.94 1.36 7.69
Bi-modal 4.62 1.99 10.89 3.47 1.65 8.05

Prop → Cap
Audio 2.59 0.99 8.81 2.23 0.93 6.88
Visual 3.62 1.56 10.16 3.08 1.45 7.81
Bi-modal 4.10 1.78 10.48 3.07 1.47 7.67

Cap → Prop
Audio 2.85 1.14 8.81 2.58 1.15 6.98
Visual 3.77 1.66 10.29 2.85 1.30 7.47
Bi-modal 4.62 1.99 10.89 3.84 1.88 8.44

Table 3: The impact of training procedures and input modalities. We compare the training
procedure of the final model when the proposal generator uses the pre-trained encoder on
the captioning task (“Cap → Prop”) to an opposite scenario (“Prop → Cap”), and the situ-
ation when both of them are trained separately. The results are shown on validation sets of
ActivityNet Captions when captioning ground truth (GT) and learned proposals.

remains the same everywhere later. We select 1024 for visual-only and 128 for audio-only
transformers; the size of the pre-trained GloVe is projected with a FC layer to match the size.

Results We report every combination of the settings in Tab. 3. Specifically, we observed
that the captioning module does not benefit from the pre-training for the proposal generation
(“Prop → Cap” vs “Cap → Prop” & “Separate”). The results of the learned proposal setting
show the importance of the pre-training but only in the “Cap → Prop” setting. Overall, we
claim that the captioning training does not benefit from utilizing the pre-trained proposal
generator’s encoder and, even, performs worse with it. While, the proposal generator ends
up with better performance if pre-trained captioning module’s encoder is used.

The comparison of the cross-modal performance shows that using both modalities (audio
and visual) gives the best result in nearly all cases in both settings. However, it is shown
that the audio modality is the weakest among the three implying that visual modality might
contain a stronger signal for video understanding. Nevertheless, the gap between the visual-
only and bi-modal case is consistent in all settings. This suggests that the audio still provides
essential cues for dense video captioning. More ablations studies can be found in Sec. 6.4.

5 Conclusion

We believe that the handling of multiple modalities is under-explored in the computer vision
community. In this paper, we present a novel bi-modal transformer with a bi-modal multi-
headed proposal generation module showing how audio might facilitate the performance
of dense video captioning. We perform our experimentation on the ActivityNet Captions
dataset and achieve state-of-the-art results on F1 and BLEU metrics. The the ablation study
results show that the proposed model provides an effective and elegant way of fusing audio
and visual features while outperforming the uni-modal configurations in all settings.
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Figure 1: A single model supports the generation of visually guided, high-fidelity sounds for
multiple classes from an open-domain dataset faster than the time it will take to play it.

Abstract

Recent advances in visually-induced audio generation are based on sampling short,
low-fidelity, and one-class sounds. Moreover, sampling 1 second of audio from the state-
of-the-art model takes minutes on a high-end GPU. In this work, we propose a single
model capable of generating visually relevant, high-fidelity sounds prompted with a set
of frames from open-domain videos in less time than it takes to play it on a single GPU.

We train a transformer to sample a new spectrogram from the pre-trained spectrogram
codebook given the set of video features. The codebook is obtained using a variant
of VQGAN trained to produce a compact sampling space with a novel spectrogram-
based perceptual loss. The generated spectrogram is transformed into a waveform using
a window-based GAN that significantly speeds up generation. Considering the lack of
metrics for automatic evaluation of generated spectrograms, we also build a family of
metrics called FID and MKL. These metrics are based on a novel sound classifier, called
Melception, and designed to evaluate the fidelity and relevance of open-domain samples.

Both qualitative and quantitative studies are conducted on small- and large-scale
datasets to evaluate the fidelity and relevance of generated samples. We also compare our
model to the state-of-the-art and observe a substantial improvement in quality, size, and
computation time. Code, demo, and samples: v-iashin.github.io/SpecVQGAN

1 Introduction

A user-controlled sound generation has many applications for e.g. movie and music pro-
duction. Currently, foley designers are required to search through large databases of sound
effects to find a suitable sound for a scene. A less painstaking approach would be to auto-

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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matically generate a novel and relevant sound, given a few visual cues. Recent advances in
deep learning brought to light many promising models for user-controlled content synthesis.

Previous works have proposed models to controllably generate e.g. images [13, 17, 35,
41, 44, 46, 50, 52, 64, 66, 67], videos [6, 12, 25, 34, 38, 42, 59, 60, 60, 63], and audios
[1, 9, 15, 22, 24, 43, 57, 58], or separate sounds [18, 19, 69, 70, 74]. However, most of the
audio works are music-related, and only a few attempts have been made to generate visually
guided audio in an open domain setup [11, 73]. These methods rely on a one-model-per-class
approach, which can be prohibitively expensive to scale to hundreds of classes.

Our goal in this paper is to build a single model that is capable of generating sounds
conditioned on visual input from multiple classes with a restricted time budget. To address
this, we propose to learn a prior in a form of the Vector Quantized Variational Autoencoder
(VQVAE) codebook [61] and operate on spectrograms for efficiency. To shrink the sampling
space more aggressively, we draw on advances in controlled image generation [17] relying on
a variant of VQVAE with adversarial loss and introduce a novel spectrogram perceptual loss.

Such an approach allows us to reliably reconstruct a high-fidelity spectrogram from a
smaller representation resolution. We, thus, can train a transformer on a shorter sequence to
sample from the codebook and autoregressively construct a high-fidelity spectrogram while
being conditioned on the visual cues. Finally, we vocode the spectrogram into a waveform
using a variant of MelGAN [32] suitable for open-domain applications.

Human evaluation of content generation models is an expensive and tedious procedure.
In the image generation field, this problem is bypassed with the automatic evaluation of
fidelity using a family of metrics based on an ImageNet-pretrained [14] Inception model [56]
e.g. Inception Score [53], Fréchet- [27] and Kernel Inception Distance [4] (FID & KID). The
automatic evaluation of a sound generation model, however, remains an open question.

FID was adapted to assess fidelity of the generated audio in [30]. This metric is designed
for very short sounds (<1 second) and, therefore, has limited applicability for long audio as
it may miss long-term cues. Another challenge in the visually guided sound generation is to
reliably estimate the relevance of produced samples. To mitigate both problems, we propose
a family of metrics for fidelity and relevance evaluation based on a novel architecture called
Melception, trained as a classifier on VGGSound [7], a large-scale open-domain dataset.

The main contributions of this work are: (1) a novel efficient approach for multi-class vi-
sually guided sound synthesis that relies on a transformer trained to sample from a codebook-
based prior; (2) a new perceptual loss for spectrogram synthesis, called LPAPS. The loss
relies on a novel general-purpose sound classifier, referred to as VGGish-ish, and helps VQ-
VAE to learn reconstruction of higher-fidelity spectrograms from small-scale representa-
tions; (3) a novel set of metrics suitable for automatic evaluation of the fidelity and relevance
of spectrogram synthesis, called Melception-based FID and MKL. We show the effectiveness
of our approach in comparison with prior work and provide an extensive ablation study on
small- and large-scale datasets (VAS and VGGSound) for visually guided sound synthesis.

2 Related Work

Codebook-based Content Generation The use of condensed prior information in a form
of a codebook has been shown to effectively reduce the sampling space of generative al-
gorithms. The initial idea was proposed in the seminal work [61] (VQVAE) and further
improved in [51] (VQVAE-2). Applications of VQVAE for content generation include im-
ages [51, 61], audio [15, 37, 61, 71], and videos [49, 65]. Recently, it was found to be
beneficial to train a transformer to sample from the codebook given a rich condition e.g.
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text [16, 50], low-resolution image, semantic, edge, and depth-maps [17]. Our method, in
contrast, is conditioned on a sequence of video frames and generates spectrograms.

Automatic Evaluation of Audio Synthesis While still being an open research question,
few promising ideas have been proposed for the automatic evaluation of audio synthesis.
Specifically, Kilgour et al. [30] adapted FID [27] to evaluate the fidelity of music enhance-
ment algorithms. Unfortunately, the proposed method operates on 1-second windows and,
therefore, does not utilize long-term cues. A similar approach was shown on a text-to-speech
task in [5]. Alternatively, a model trained on human judgments has been employed as a per-
ceptual loss during training [39]. However, collecting training material for a large-scale
dataset poses significant budget requirements. In this paper, we propose a set of metrics de-
signed to measure both the fidelity and relevance of prolonged open-domain spectrograms.

Instrument Music Generation With Visual Cues Generating short music audios became
a testbed for many cross-modal generation algorithms. Owens et al. [45] pioneered the
task by collecting a dataset of short videos containing hitting/scratching drumsticks against
objects and used a combination of AlexNet [31] and LSTM [28] as a baseline. Chen et al. [9]
focused on the generation of an image from the audio and vice-versa for single-instrument
performance videos from the URMP dataset [36] using two Generative Adversarial Nets
(GAN) [21] while Hao et al. [24] improved the performance of the GAN with cross-modal
cycle-consistency [72]. Furthermore, Tan et al. [57] incorporated self-attention [62] into the
GAN architecture and Su et al. [55] proposed to generate a piano sound by vocoding Midi
predicted from a video. Recently, Kurmi et al. [33] brought a generation of short (1s) musical
videos into the picture. These methods, however, focus on short (∼1 second) music videos
recorded in a controlled setting while our model operates on open-domain 10-second videos.

Open-domain Audio Generation Based on Visual Cues The generation of audio given a
set of open-domain visual cues is a novel and challenging task. The first attempt to solve the
task was published by Chen et al. [8] who proposed to employ a subset of AudioSet [20] to
train a model to learn a residual to an average spectrogram for a video class. However, more
relevant and higher-fidelity results were obtained by training a separate model for each video
class. Namely, Zhou et al. [73] trained a separate SampleRNN [40] to generate a waveform
for each of the 10 classes in the proposed dataset (VEGAS). Current state-of-the-art results
in the generation of relevant and high-fidelity sounds for a video were shown by Chen et al.
[11] (RegNet). They noticed the negative impact of “unseen” background sound on training
dynamics and introduced a ground-truth-based regularizer and an enhanced version of the
VEGAS dataset (VAS). While producing the most appealing results, the models are trained
for each data class and the sampling speed is slow limiting the applicability of the model. In
this paper, we propose a model that is capable of generating visually relevant sounds from
videos of multiple classes in a time that is less than it takes to play the sound.

3 Framework

We aim to generate visually relevant and high-fidelity sounds. The main challenge is to
design a model that handles videos of multiple categories and operates in real-time. Thus,
we train a transformer to autoregressively compose a concise codebook representation of a
spectrogram primed with a small set of frame-wise features obtained from a video (Sec. 3.2).
The representation is then used in the pretrained codebook decoder to produce a spectrogram
as outlined in Sec. 3.1. Finally, a waveform is reconstructed from the spectrogram using a
pretrained vocoder as defined in Sec. 3.3. An overview of the architecture is shown in Fig. 2.
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Figure 2: Vision-based Conditional Cross-modal Autoregressive Sampler. A transformer
autoregressively samples the next codebook index given a sequence of visual features along
with previously generated codebook indices. Once sampling is done, a sequence of generated
indices is used to look up a pretrained codebook. Next, a pretrained codebook decoder is used
to decode a spectrogram from a codebook representation. Finally, the generated spectrogram
is turned into a waveform using a pretrained general-purpose spectrogram vocoder.

3.1 Perceptually-rich Spectrogram Codebook

The transformer requires the input to be represented as a sequence. A direct operation on
wave samples or raw spectrogram pixels, however, quickly becomes intractable due to the
quadratic nature of the dot-product attention. Alternatively, one could apply an encoder such
as VQVAE [61] but the quantized bottleneck representation would be still infeasibly large.
Our approach draws on VQGAN [17], an efficient autoencoder that allows decoding an
image from a smaller-size representation than of VQVAE. To bridge the gap between image
and audio signals, we operate on spectrograms and propose a new perceptual loss (LPAPS).

Spectrogram VQVAE Vector-Quantized Variational Autoencoder (VQVAE) [61] is trained
to approximate an input using a compressed intermediate representation, retrieved from a
discrete codebook. Our adaption of VQVAE, Spectrogram VQVAE, inputs a spectrogram
x ∈ RF×T and outputs a reconstructed version of it x̂ ∈ RF×T . First, the input x is encoded
into a small-scale representation ẑ = E(x) ∈ RF ′×T ′×nz where nz is the dimension of the
codebook entries and F ′ × T ′ is a reduced frequency and time dimension. Next, the el-
ements of the encoded representation ẑ are mapped onto the closest items in a codebook
Z = {zk}K

k=1 ⊂ Rnz , forming a quantized representation zq ∈ RF ′×T ′×nz :

zq = q(ẑ) :=
(

argmin
zk∈Z

||ẑ f t − zk|| for all ( f, t) in (F ′ ×T ′)
)
. (1)

Since (1) is non-differentiable, we approximate the gradient by a straight-through estimator
[2]. The reconstructed spectrogram x̂ is subsequently decoded from the codebook represen-
tation as x̂ = G(zq) = G(q(E(x))). The full VQVAE objective is defined by

LVQVAE =
∣∣∣∣x− x̂

∣∣∣∣︸ ︷︷ ︸
recons loss

+
∣∣∣∣E(x)− sg[zq]

∣∣∣∣2
2 +β

∣∣∣∣sg[E(x)]− zq

∣∣∣∣2
2︸ ︷︷ ︸

codebook loss

(2)

where sg is the stop-gradient operation that acts as an identity during the forward pass but
has zero gradient at the backward pass.

The resolution of the intermediate codebook representation (F ′ ×T ′) produced by VQ-
VAE remains to be too large for a transformer to operate on. However, more suitable down-
sampling rates, e.g. 1/16 of the input size, lead to poor reconstructions as shown in [17].
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Figure 3: Training Perceptually-Rich Spectrogram Codebook. A spectrogram is passed
through a 2D codebook encoder that effectively shrinks the spectrogram. Next, each element
of a small-scale encoded representation is mapped to its closest neighbor from the codebook.
A 2D codebook decoder is then used to reconstruct the input spectrogram. The training of
the model is guided by codebook, reconstruction, adversarial, and LPAPS losses.

Spectrogram VQGAN and LPAPS VQGAN [17] is a version of VQVAE, extended with
a patch-based adversarial loss [29] and perceptual loss (LPIPS) [68], that help to preserve the
reconstruction quality when upsampled from a smaller-scale representation. Since the per-
ceptual loss, used in the original VQGAN, relies on the ImageNet [14] pretrained VGG-16
[54], it is unreasonable to expect decent performance on sound spectrograms. Therefore, we
introduce a novel way of guiding spectrogram-based audio synthesis, referred to as Learned
Perceptual Audio Patch Similarity (LPAPS).

The closest relative of VGG-16 in audio classification is VGGish [26], which has the
same capacity as VGG-9. However, we cannot directly build LPAPS on the pretrained VG-
Gish or its architecture, since VGGish digests spectrograms with a rather short time span
(<1 second), while our application requires operating on spectrograms spanning up to 10
seconds. Moreover, the lack of depth and, therefore, downsampling operations prevents the
model from extracting larger-scale features that could be useful in separating real and fake
spectrograms. To address this, we train a variant of the VGG-16 architecture on the VG-
GSound dataset [7]. We refer to the obtained model as VGGish-ish.

Fig. 3 shows the training procedure for Spectrogram VQGAN with the final loss:

LSpecVQGAN = LVQVAE + logD(x)+ log(1−D(x̂))︸ ︷︷ ︸
patch-based adversarial loss

+∑
s

1
FsT s ||xs − x̂s||22︸ ︷︷ ︸

LPAPS loss

, (3)

where D is a patch-based discriminator and xs, x̂s ∈RFs×T s×Cs
are features from real and fake

spectrograms extracted at the sth scale of VGGish-ish.

3.2 Vision-based Conditional Cross-modal Autoregressive Sampler

The sampler (transformer) is trained to sample a sequence of the codebook indices given a
set of visual features. These should match the indices formed by the codebook encoder for
the original audio. The conditional prediction of the next token can be formulated as a ma-
chine translation task and modeled by the vanilla Encoder-Decoder transformer architecture
[62]. Alternatively, the problem can be defined in terms of language modeling, that is often
approached with a Decoder-only transformer such as GPT [47]. In this paper, we employ a
variant of GPT-2 [48] inspired by its success in autoregressive image synthesis [10, 17].

As outlined in Fig. 2, the sampling starts with the extraction of a sequence of features
F̂ = { f̂i}N

i=1 ⊂RDr+Do formed from a stack of RGB and optical flow frames F = { f r
i , f o

i }N
i=1.
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The sequence of features F̂ is obtained by applying a frame-wise feature extractor H that
consists of two pretrained models (for RGB and flow modalities) such that F̂ =H(F). Given
a sequence of previously generated codebook indices ŝ< j = (ŝ1, ŝ2, . . . , ŝ j−1) along with the
features F̂ , an autoregressive step for the transformer M is defined by

p
(
s j|ŝ< j, F̂

)
= M

(
[F̂ : ŝ< j]

)
, (4)

where [:] is a stacking operation and p
(
s j|ŝ< j, F̂

) ∈ [0,1]nz is a probability distribution over
all codebook indices. The next codebook index ŝ j is sampled from the multinomial distri-
bution with weights provided by p. The sampling is initialized at j = 1 and primed only
with the input features F̂ . Once j = F ′ ·T ′, the sampling stops. The sequence of predicted
codebook indices Ŝ = {ŝ j}F ′·T ′

j=1 is used to lookup the codebook Z so that, after unflattening,
the codebook representation ẑq ∈ RF ′×T ′×nz is formed. The transformer is trained with a
typical cross-entropy loss, comparing the predicted codebook indices to those obtained from
the ground truth spectrogram. Finally, given the codebook representation ẑq, we decode a
spectrogram x̂F using the decoder G pretrained during the codebook training stage (Sec. 3.1).

We note the importance of unflattening the sequence into a 2D form in a column-major
way, precisely as shown in the middle part of Fig. 2, opposed to the row-major approach used
for image synthesis [10, 17]. Employing the row-major unflatteting during training restricts
model applications as it would correspond to reconstructing the lower frequencies given the
higher ones. Specifically, we found that a model trained this way produces poor samples
when prompted with a few seconds of real audio.

3.3 Spectrogram Vocoder

During the final stage, a waveform ŵ is reconstructed from the decoded spectrogram using
the pretrained vocoder V . Natural candidates for such vocoding are the Griffin-Lim algo-
rithm [23] and WaveNet (used in prior work [11]). The Griffin-Lim procedure is fast, easy
to implement, and it handles the diversity of an open-domain dataset. However, it produces
low-fidelity results when operating on mel-spectrograms. In contrast, WaveNet provides
high-quality results but remains to be relatively slow on test-time (25 mins per 10-sec sam-
ple on a GPU). For these reasons, we employ MelGAN [32] that is a non-autoregressive
approach to reconstruct a waveform and, therefore, takes only 2 secs per sample on a CPU,
while still achieving decent quality. Since MelGAN is originally trained for speech or music
data, the pretrained models cannot be used in our open-domain scenario. Therefore, we train
a MelGAN on the open-domain dataset (VGGSound).

3.4 Automatic Quality Assessment of Spectrogram-based Synthesis

Fidelity Our goal is to automatically evaluate both the fidelity and relevance of the gen-
erated samples. In the image generation domain, ImageNet pretrained InceptionV3 [56] is
often used to form an opinion on the fidelity of the generated samples. Specifically, Incep-
tion Score [53] hypotheses low entropy in conditional label distribution and high entropy
on a marginal probability distribution for high-fidelity and diverse samples. More consistent
evaluation results were achieved by computing Fréchet Distance between the distributions of
pre-classification layer’s features of InceptionV3 between fake and real samples (FID) [27].
Considering the domain gap between spectrograms and RGB images, we adapt the Inception
architecture for a spectrogram input size and train the model on the VGGSound dataset.
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Trained on Evaluated on FID↓ MKL↓

VGGSound VGGSound 1.0 0.8
VGGSound VAS 3.2 0.7
VAS VAS 6.0 1.0

Playing Jembe (VGGSound) Ambulance Siren (VGGSound)

Dog (VAS) Baby (VAS) Gun (VAS) Cough (VAS)

Table 1: Spectrogram VQGAN shows strong reconstruction ability on hold-out sets

of VGGSound and VAS. Metrics are Melception-based FID and mean MKL. On the top-
right: ground truth reconstruction results for two classes are shown for a model trained on
VGGSound. The bottom triplets show a comparison of VGGSound-trained and VAS-trained
models on four classes from VAS. Adobe Reader can be used to listen for reconstructions.

Relevance Since Inception Score and FID metrics rely on dataset-level distributions, they
are not suitable to assess the conditional content synthesis. To this end, we propose a metric,
called MKL, that individually compares the distances between output distributions of fake
and real audio associated with a condition (e.g. frames from a video). As the distance mea-
sure, we rely on KL-divergence and use the Melception classifier to build the distributions.

4 Experiments

VGGSound and VAS Datasets VAS dataset [11] consists of 12.5k ∼6.73-second clips
for 8 classes: Dog, Fireworks, Drum, Baby, Gun, Sneeze, Cough, Hammer. We follow the
same train-test splitting procedure as [11] for a fair comparison. VGGSound dataset [7]
consists of ∼200k+ 10-second clips from YouTube spanning 309 classes with audio-visual
correspondence. The classes can be grouped as people, sports, nature, home, tools, vehicles,
music, etc. VGGSound is substantially larger, but less curated than VAS due to the automatic
collecting procedure. We managed to download ∼190k clips from the dataset as some of the
videos were removed from YouTube. Our split is similar to the original with the exception
that the train part is further split into train and validation. The validation split is formed to
match the same number of videos per class as in the test set. As a result, we have 156.5k
clips in the train, 19.1k in the validation, and 14.5k in the test sets. This splitting strategy is
used across all training procedures including Melception, MelGAN, and VGGish-ish. To the
best of our knowledge, we are the first to use the VGGSound dataset for sound synthesis.

Metrics The proposed model is evaluated in quantitative and qualitative studies. In quan-
titative evaluation, we rely on Melception-based metrics, namely MKL (averaged across the
dataset) and FID for relevance and fidelity evaluation (as defined in Sec. 3.4).

Details We extract log mel-spectrograms of size 80× 848 and 212 visual features with
dimension Dr =Do = 1024 from ∼9.8-second videos before training. The codebook encoder
and decoder are generic 2D Conv stacks with two extra attention layers before ẑ and after
zq. The downsampling and upsampling operations are parametrized. The variant of GPT-2
has 24 layers. Visual features and codebook indices are embedded to match the transformer
dimension (1024). Training requires at least one 12GB GPU. See more in the supplementary.
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Generated Sample Class (VGGSound):
   dog barking 0.79

    dog bow-wow 0.17
    cap gun shooting 0.03

    fox barking 0.01

Generated Sample Class (VGGSound):
       female speech, woman speaking 0.99

    child speech, kid speaking 0.00
    people whispering 0.00

    eating with cutlery 0.00

female 
speech, 
woman 
speaking 
– VGGSound

dog
– VAS

Generated Sample Class (VGGSound):
       fireworks banging 0.96

    lighting firecrackers 0.04
    skateboarding 0.00

    machine gun shooting 0.00

fireworks
– VAS

Trained on 
VAS

to sample from 
VGGSound 

codebook

Trained on 
VGGSound

to sample from 
VGGSound 

codebook

Trained on 
VAS

to sample from 
VAS

codebook

Figure 4: Samples produced by conditional cross-modal sampler are relevant and have

high fidelity. The top row shows results of a model trained on VGGSound to sample from a
VGGSound codebook (“from VGGSound for VGGSound”), the middle is “from VGGSound
for VAS”, the bottom is: “from VAS to VAS”. An “opinion” of Melception is on the right.

4.1 Results

Reconstruction with Spectrogram VQGAN When compared to ground truth spectro-
grams, the reconstructions are expected to have high fidelity (low FID) and to be relevant
(low mean MKL). Tab. 1 contains quantitative and qualitative results produced by our Spec-
trogram VQGAN (Sec. 3.1). The results imply high fidelity and relevance on a variety of
classes from both VGGSound (test) and VAS (validation) datasets. Notably, the performance
of the VGGSound-pretrained codebook is better than of the VAS-pretrained codebook even
when applied on the VAS validation set due to larger and more diverse data seen during
training. The implementation details and more examples are provided in the Supplementary.
Moreover, in Tab. 2 we show the results of the ablation study on the impact of losses on
reconstruction quality. In particular, the absence of the adversarial loss results in signifi-
cant blurriness (which agrees with the findings in [17]) in reconstructed spectrograms and
expected substantial downgrade in metrics.
Visually-Guided Sound Generation We benchmark the visually-guided sound generation
qualitatively and quantitatively using three different settings: a) trained the transformer on
VGGSound to sample from the VGGSound codebook, b) trained on VAS with the VGGSound
codebook, and c) trained on VAS with the VAS codebook. Fig. 4 shows a few examples
obtained with different settings along with the “opinion” of the Melception classifier on the
generated sample label and in Tab. 3, we compare a different number of priming features
including sampling without a condition (No Feats), which can be seen as the upper-bound
on the relevance metric (mean MKL). The quantitative results are provided for two sets of
ImageNet-pretrained features: BN-Inception (RGB + flow) and ResNet-50 (RGB).
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GAN LPAPS FID↓ MKL↓

130.4 9.6
� 1.4 1.1
� � 1.0 0.8

Table 2: Adversarial and
perceptual losses improve
reconstruction results on
the VGGSound test set.

Condition FID↓ MKL↓ FID↓ MKL↓ FID↓ MKL↓ �↓

No Feats 13.5 9.7 33.7 9.6 28.7 9.2 7.7

R
es

N
et 1 Feat 11.5 7.3 26.5 6.7 25.1 6.3 7.7

5 Feats 11.3 7.0 22.3 6.5 20.9 6.1 7.9
212 Feats 10.5 6.9 20.8 6.2 22.6 5.8 11.8

In
ce

pt
io

n 1 Feat 8.6 7.7 38.6 7.3 25.1 6.6 7.7
5 Feats 9.4 7.0 29.1 6.9 24.8 6.2 7.9

212 Feats 9.6 6.8 20.5 6.0 25.4 5.9 11.8

Codebook VGGSound VGGSound VAS
Sampling for VGGSound VAS VAS

Setting (a) (b) (c)

Table 3: The number of features is an important

factor for relevance and sampling speed on both

datasets. Fidelity and relevance are measured by
FID and mean MKL, speed is in seconds to gener-
ate a ∼10-second audio sample.

Ground Truth OursRegNet

ba
by

 (V
A

S)
gu

n 
(V

A
S)

Params FID↓ MKL↓ �↓

Ours (b) 379M 20.5 6.0 12
Ours (c) 377M 25.4 5.9 12

RegNet [11] 8×105M 78.8 5.7 1500
Ours (b) + cls 379M 20.2 5.7 12
Ours (c) + cls 377M 24.9 5.5 12

Table 4: Compared to state-of-the-

art, our model generates higher fi-

delity samples faster and with sim-

ilar relevance w/ and w/o providing

the class label. RegNet size is multi-
plied by the num. of classes in VAS.

We observe that: 1) In general, the more features from a corresponding video are used,
the better the result in terms of relevance. However, there is a trade-off imposed by the sam-
pling speed which decreases with the size of the conditioning. 2) A large gap (log-scale) in
mean MKL between visual and “empty” conditioning suggests the importance of visual con-
ditioning in producing relevant samples. 3) When the sampler and codebook are trained on
the same dataset—settings (a) and (c)—the fidelity remains on a similar level if visual con-
ditioning is used. This suggests that it is easier for the model to learn “features-codebook”
(visual-audio) correspondence even from just a few features. However, if trained on different
datasets (b), the sampler benefits from more visual information. 4) Both BN-Inception and
ResNet-50 features achieve comparable performance, with BN-Inception being slightly bet-
ter on VGGSound and with longer conditioning in each setting. Notably, the ResNet-50 fea-
tures are RGB-only which significantly eases practical applications. We attribute the small
difference between the RGB+flow features and RGB-only features to the fact that ResNet-
50 is a stronger architecture than BN-Inception on the ImageNet benchmark [3]. See the
technical details, more examples, ablations, and human studies in Supplementary Material.

Comparison with the state-of-the-art In Tab. 4, we compare our model to RegNet [11],
which is currently the strongest baseline in generating relevant sounds for a visual sequence.
For a fair comparison, we employ the same data preprocessing for audio and visual features
as in RegNet [11]. We use the settings (b) & (c) (see Tab. 3) with 212 features in the condi-
tion, which is similar to the RegNet input. Since RegNet limits the sampling space explicitly
by training a separate model for each class, it is difficult to fairly compare relevance with our
model that is trained on all classes. To mitigate this to some extent, we include a class label
into the transformer conditioning sequence allowing the model to learn to separate parameter
subspaces for all 8 classes. The results suggest that our model produces higher quality spec-
trograms than RegNet, which is also supported by the lower FID scores. Moreover, RegNet
uses two times more parameters. See more examples in the Supplementary Material.
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4.2 Qualitative Analysis of the Model Properties

We conduct a human study by single-handedly inspecting over 2k samples for test-set videos
of the VGGSound dataset. Despite the biasedness of the study, we believe that the results are
worth reporting. The samples are drawn for a random class and using the model trained on
the VGGSound dataset with the VGGSound codebook (the setting (a), 5 Feats, see Sec. 4.1).
We divide our observations into three parts: general properties of the model, problems

with data preprocessing, and dataset-related issues (see supplementary).
General Properties of the Model The proposed model supports multiple classes and, es-
pecially with some patience budget, generates relevant audio for the majority of classes in the
VGGSound. The mistakes are not rare, but they are often associated with a poor audio-visual
correspondence in the video or because the model generates a sound of another musical in-
strument instead of the specific one (e.g., violin instead of cello – both are string instruments).
However, the generation of a sample that belongs to a completely different class group is a
rare event, e.g., for a bird singing video the model will not generate an audio appropriate for
indoor sports activities. We also observed, for classes such as zebra braying, cat purring,
pig oinking, bee, wasp, etc. buzzing, cattle mooing, alarm clock ringing, the model struggles
to produce a relevant sample possibly due to the unobservable source of the signal (e.g., the
flies are flying around the camera pointed to a tree and the flies are never captured but heard).

The model may confuse visually similar sounds, e.g., people whistling, singing, talking,
whispering, burping, etc. Also, if a video shows a close-up of hands, e.g., machine sewing,
the model may generate a sound of keyboard typing or computer mouse clicking. We also
found that an ASMR setup (Autonomous Sensory Meridian Response) enforces the model
to produce clean sounds similar to ASMR but often of a different class. The model struggles
to differentiate different types of birds (e.g., swallow chickadee, pheasant, etc) or hitting
instruments (e.g., bongo, timbales, timpani, steelpan, etc), yet it tends to produce the sounds
of a similar class from, e.g., another bird or instrument. These properties are expected from
a model trained on a relatively noisy dataset with a vague separation between classes.
Data Preprocessing Issues After transformation into the mel-scale spectrogram, the au-
dio signal loses the phase and a range of essential frequencies to differentiate sounds from
some classes. For instance, by transforming the waveform into mel-scale spectrogram and
back, we observed that the sound of cat caterwauling became indiscernible from person sob-
bing, crying, or dog howling classes. Although the speech segments are recognizable, the
words are indecipherable. To this end, the model can be trained directly on top of the STFT
spectrograms at the cost of efficiency during sampling, however.

5 Conclusion
We introduced a new efficient approach for multi-class visually-guided sound generation,
which operates on spectrograms and relies on a prior in a form of a codebook representa-
tion. To train the prior, we proposed a new perceptual loss (LPAPS) which is based on a
general-purpose classifier (VGGish-ish). This loss allows the model to learn to reconstruct
higher-fidelity spectrograms from a small-scale representation. In addition, a novel auto-
matic evaluation procedure is outlined to estimate both fidelity and relevance of generated
spectrograms with a new family of metrics based on the Melception classifier. Our experi-
ments on small- and large-scale datasets show the power and efficiency of our model in both
quantitative and qualitative studies compared to the state-of-the-art.
Acknowledgments Funding for this research was provided by the Academy of Finland projects 327910
& 324346. We also acknowledge CSC – IT Center for Science, Finland, for computational resources.
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Abstract

The objective of this paper is audio-visual synchronisation of general videos ‘in the
wild’. For such videos, the events that may be harnessed for synchronisation cues may be
spatially small and may occur only infrequently during a many seconds-long video clip,
i.e. the synchronisation signal is ‘sparse in space and time’. This contrasts with the case
of synchronising videos of talking heads, where audio-visual correspondence is dense in
both time and space.

We make four contributions: (i) in order to handle longer temporal sequences re-
quired for sparse synchronisation signals, we design a multi-modal transformer model
that employs ‘selectors’ to distil the long audio and visual streams into small sequences
that are then used to predict the temporal offset between streams. (ii) We identify arte-
facts that can arise from the compression codecs used for audio and video and can be used
by audio-visual models in training to artificially solve the synchronisation task. (iii) We
curate a dataset with only sparse in time and space synchronisation signals; and (iv) the
effectiveness of the proposed model is shown on both dense and sparse datasets quanti-
tatively and qualitatively. Project page: v-iashin.github.io/SparseSync

1 Introduction

Audio-visual synchronisation is the task of determining the temporal offset between the au-
dio (sound) and visual (image) streams in a video. In recent literature, this task has been
explored by exploiting strong correlations between the audio and visual streams, e.g. in hu-
man speech [2, 8, 10] and playing instruments [3, 23], to provide a training signal for deep
neural networks. In such scenarios, effective signals for synchronisation can be discovered
between the lip or body movements and audio at almost every second. Despite the tremen-
dous success achieved by these methods, for the most part, existing models are still limited
to specialised domains, and not directly applicable to general (non-face, non-music) classes.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Sparse in Space and TimeDense in Space and Time

Out of Sync

In Sync

Time

Figure 1: Audio-visual synchronisation requires a model to relate changes in the visual and
audio streams. Open-domain videos often have a small visual indication, i.e. sparse in space.
Moreover, cues may be intermittent and scattered, i.e. sparse across time, e.g. a lion only
roars once during a video clip. This differs from a tight face crop of a speaker where cues
are dense in space and time.

Our goal in this paper is to develop the next-generation audio-visual (AV) synchroniser.
Rather than focusing on a specialised domain, such as human speech, we explore architec-
tures for AV synchronisation for videos of general thematic content, e.g. daily videos [6, 20,
22] and live sports [13]. A solution for this task would be extremely useful for a number of
applications that improve a user’s viewing experience – in order to avoid or at least automat-
ically detect AV synchronisation offsets. Applications such as video conferencing, television
broadcasts, and video editing, are currently largely done by ‘off-line’ measurements or heavy
manual processing [11, 26, 28].

However, upgrading the existing audio-visual synchronisation systems to general videos
is not straightforward, due to the following challenges: (i), in general videos, the synchro-
nisation signal is often sparse and instantaneous in time, (a lion roaring or a tennis volley),
rather than dense in time (a recorded monologue); (ii), objects that emit sounds can vary in
size or appear in the distance making their presence on the frame small or sparse in space (a
ball being hit in tennis), whereas synchronisation of a talking-head video may rely on visual
cues from the localised mouth region, i.e. dense in space; (iii), some sound sources do not
have a useful visual signal for synchronisation, e.g. stationary sounds (a car engine or electric
trimmer), ambient sounds (wind, water, crowds, or traffic), and off-screen distractors (com-
mentary track or advertisements); (iv), video encoding algorithms compress unperceived
redundancy of a signal, this, however, can introduce artefacts that may lead to a trivial solu-
tion when training for audio-visual synchronisation; lastly, (v) due to its challenging nature,
a public benchmark to measure progress has not yet been established.

In this paper, (i) we introduce a novel multi-modal transformer architecture, SparseSe-

lector, that can digest long videos with linear scaling complexity with respect to the num-
ber of input tokens, and predict the temporal offset between the audio and visual streams.
We achieve this by using a set of learnable queries to select informative signals from the
‘sparse’ video events across a wide time span. (ii) We show that for specific common au-
dio and visual coding standards, a model can detect compression artefacts during training.
We present a few simple indicators to determine if a model has learnt using these artefacts,
as well as suggest several ways to mitigate the problem. Specifically, for the RGB stream,
we recommend avoiding the MPEG-4 Part 2 codec, as well as reducing the sampling rate
for audio. (iii) Additionally, to measure the progress of audio-visual synchronisation on
general thematic content, we curate a subset of VGGSound with ‘sparse’ audio-visual corre-
spondence called VGGSound-Sparse. We validate the effectiveness of the new model with
thorough experiments on the existing lip reading benchmark (LRS3) and natural videos from
VGGSound-Sparse and demonstrate state-of-the-art performance.
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2 Related Work

Audio-visual synchronisation. During the pre-deep-learning era, the audio-visual human
face synchronisation models relied on manually crafted features and statistical models [16,
27]. With the advent of deep learning, [9] introduced a two-stream architecture that was
trained in a self-supervised manner using a binary contrastive loss. Later improvements were
brought by multi-way contrastive training [10], and Dynamic Time Warping [24] used by
[14]. Khosravan et al. [20] demonstrated the benefits of spatio-temporal attention and Kim et
al. [21] employed a cross-modal embedding matrix to predict the offset for synchronisation.
The progress was followed by [18] who introduced an architecture called VocaLiST with
three transformer decoders [29]: two that cross-attend individual modalities and a third that
fuses the outputs of the first two. These methods achieve impressive performance but focus
on human speech rather than open-domain videos.

Although audio-visual synchronisation of general classes is a novel task, a few promising
attempts have been made. In particular, Casanovas et al. [5] studied a handful of different
scenes captured from a set of cameras. More recently, Chen et al. [7] adapted the trans-
former architecture and used a subset of VGGSound [6] covering 160 classes. In contrast
to prior work, we focus on more challenging classes that have ‘sparse’ rather than ‘dense’
synchronisation signals.

Video coding artefacts. Since the early work of Doersch et al. on self-supervision [12], it
has been known that network training can find shortcuts. Similarly, shortcuts due to video
editing and coding artefacts have been noted in Wei et al. [30] and Arandjelović et al. [3].
In particular, [30] tackled the arrow-of-time in videos and studied artificial cues caused by
black regions on video frames. While [3] noticed a slight impact of MPEG-encoding on
audio-visual correspondence training and attributed it to the way negative samples are picked
with respect to the start time of a positive sample. In this work, we study the ways to easily
spot that the data contains artificial signals, as well as provide a few recommendations on
how to prevent leaking such artefacts into data.

3 SparseSelector: an Audio-visual Synchronisation Model

In this section, we describe our audio-visual synchronisation model, where the audio-visual
correspondence may only be available at sparse events in the ‘in the wild’ videos. This
requires the model to handle longer video clips so that there is a high probability that a
synchronisation event will occur. To this end, we propose SparseSelector, a transformer-
based architecture that enables the processing of long videos with linear complexity with
respect to the duration of a video clip. It achieves this by ‘compressing’ the audio and visual
input tokens into two small sets of learnable selectors. These selectors form an input to a
transformer which predicts the temporal offset between the audio and visual streams.

Architecture overview. The overview of the model is shown in Fig. 2. Given an audio
spectrogram A ∈ R

Ha×Wa×1 (Ha, Wa are frequency and time dimensions) and a stack of
RGB frames V ∈ R

Tv×Hv×Wv×3, the audio-visual synchronisation model outputs the offset Δ
between audio (A) and visual (V) streams:

Δ = ΦSync

(
ΦA-Sel

(
ΦA-Feat(A)

)
, ΦV-Sel

(
ΦV-Feat(V)

))
. (1)
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Audio Feature
Extractor

Feature
Selector

Visual Features

Audio-visual Synchronisation TransformerLinear

Feature
Selector

CLS MOD

Visual Feature
Extractor

Selectors Selectors

Audio Features
Offset

Loss

Audio Spectrogram RGB Frames

SparseSelector

Figure 2: An overview of SparseSelector. The input is a spectrogram of the audio waveform
and RGB frames from the video stream. These are passed through corresponding feature ex-
tractors, and the resulting features are refined with trainable selectors that ‘pick’ useful cues
for synchronisation. As a result, the synchronisation transformer operates on substantially
shorter sequences than the original input. The visual and audio selector queries are con-
catenated with classification (CLS) and separation tokens (MOD) as input to the transformer.
Finally, the CLS token of the transformer output is used to predict the audio offset using a
linear classification head. RGB frames are zoomed-in for visualisation purposes. The model
is trained by off-setting the audio spectrogram. Dashed lines illustrate train-time behaviour.

First, audio and visual streams are independently encoded in feature extraction modules
ΦA/V-Feat. Next, trainable selectors are passed to Feature Selectors (ΦA/V-Sel) along with the
encoded features where they ‘summarise’ informative signals from the features that contain
‘sparse’ information across time and space. Finally, the selectors are used in Synchronisation
Transformer (ΦSync) to predict the temporal offset Δ between audio and visual streams.

Feature encoding. Audio & visual inputs are encoded in spatio-temporal feature extractors:

a = ΦA-Feat(A) ∈ R
ha×wa×da , v = ΦV-Feat(V) ∈ R

tv×hv×wv×dv , (2)

where t, h, w, and d denote time, height, width and channel dimensions, respectively. For
the audio backbone, we use a variant of ResNet18 [15], which we pre-train on VGGSound
[6] for sound classification. As for the visual backbone, we adopt S3D [31] pre-trained for
action recognition on Kinetics 400 [19]. Although the setting allows employing any visual
recognition network, we found that training a synchronisation model with a frame-wise fea-
ture extractor was significantly more difficult.

Feature Selectors. To utilize sparsely occurring synchronisation cues, the model should be
able to handle longer input sequences. Moreover, accurate synchronisation requires a higher
visual frame rate than other video understanding tasks (e.g. action recognition), which further
increases the input size. For this reason, drawing on the idea of trainable queries [4, 17, 32],
we propose to use a small number of trainable ‘selectors’ that learn to attend to the most
useful modality features for synchronisation and, thus, reducing sequence length.

The architecture of the Feature Selector is similar to the transformer decoder [29]. Specif-
ically, we start by flattening audio and visual features into sequences a ∈ R

hawa×da and
v ∈ R

tvhvwv×dv . After adding trainable positional encoding (PE∗) for each dimension, train-
able selectors and modality features are passed to the separate Feature Selectors as follows:

q̂a = ΦA-Sel(a+PEa,qa +PEqa), q̂v = ΦV-Sel(v+PEv,qv +PEqv), (3)

where qa, q̂a ∈ R
ka×d and qv, q̂v ∈ R

kv×d while ka/v are the numbers of selectors.
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Note that the selectors provide a ‘short summary’ of the context features through the
cross-attention mechanism while making the memory footprint more manageable. The re-
duced memory requirement is a consequence of (a) casting the complexity from quadratic to
linear w.r.t. the input length, and (b) setting kv 
 tv ·hv ·wv and ka 
 ha ·wa. The number of
selectors (kv or ka) can be conveniently tweaked according to the memory budget.

Audio-visual synchronisation transformer. To fuse the audio-visual cues from individual
selectors, we adopt the standard transformer encoder layers to jointly process them, and to
predict the offset, i.e. relative temporal shift between audio and visual streams, as follows:

Δ̂ = ΦSync([CLS; qv; MOD; qa]) (4)

Here we concatenate the visual-audio selectors with two learnable special tokens, namely the
classification token [CLS], and the modality token [MOD] that separates the two modalities.
The offset prediction is obtained by applying a linear prediction head on the first token of
the output sequence (omitted from Eq. (1) and (4) for clarity).

Training procedure. We assume that the majority of videos in the public datasets are syn-
chronised to a good extent. With this assumption, we can artificially create temporal offsets
between audio and visual streams from a video. We formulate the audio-visual synchroni-
sation as a classification task onto a set of offsets from a pre-defined temporal grid space
as [−2.0,−1.8, . . . , 0.0,+0.2, . . . ,+2.0] sec. The step size is motivated by the ±0.2 sec
human tolerance, where the ITU performed strictly controlled tests with expert viewers and
found that the threshold for acceptability is −0.19sec to +0.1sec [25]. To train the model,
we employ the cross-entropy loss. For our experiments, we randomly trim a 5-sec segment
out of 9 seconds such that both audio and visual streams are within the 9-second clip to make
inputs of the same size and avoid padding that could hint if the input is off-sync.

4 Avoiding Temporal Artefacts

In this section, we describe our discovery of trivial solutions for training audio-visual syn-
chronisation, that is, the model is able to exploit the video compression artefacts, to infer the
time stamp for the specific video clip. Additionally, we also detail a suite of techniques that
allows us to probe the artefacts and provide some practical suggestions to avoid them.

4.1 Identifying Temporal Artefact Leakage

We present two ways of identifying the temporal artefact leakage. In particular, training to
predict the start time of a temporal crop (discussed next) and tracking metrics with temporal
tolerance (discussed in the supplementary material).

Training to predict a video clip’s time stamp. A synchronisation model should rely
solely on temporal positions of conceptual cues instead of, what we call, temporal artefacts.
To check if data is polluted with artefacts, we suggest training a model to predict the start
time of a random trim of an available video clip as shown in Tab. 1, left. Of course, it should
not be possible to determine the start time of the trim in the original clip from the trim itself,
and a network trained for this task should achieve only chance performance. However, for
some audio and video codecs, the performance is far higher indicating artefact leakage.

The start-time classifier is a simple feature extractor (ResNet18). It is trained on three
variations of the MJPEG-AoT dataset [30] obtained from the Vimeo streaming service: orig-
inal ProRes videos, and ProRes videos transcoded into either MPEG-4 Pt. 2 (aka.mpeg4)
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Flatten

Linear

Spatial AvgPool

Random 5-second trim

Loss

class #20

0.0 2.0 sec → class is #20 

Feature Extractor 50 x 7 x 7 x D

50 x 1 x 1 x D

50 * D

50

10-second clip (100 RGB frames at 10 fps)

Codec Acc@1 Acc@5

MPEG-4 Part 2 (mpeg4) 27.2 77.1
MPEG-4 Part 10 (H.264) 2.5 11.9
ProRes 2.7 13.4

AAC @ 44100Hz 86.7 100.0
AAC @ 22050Hz 23.0 74.3
AAC @ 16000Hz 6.3 19.3
Lossless @ 22050Hz 2.9 14.6

Table 1: Commonly used coding standards may leak temporal artefacts – it is easy to

test. Left: a simple architecture trained to classify the start of a trim from a 10s clip to a pre-
defined 0.1 sec-step grid (here for RGB). Right: Accuracy comparison for RGB and audio
stream codecs predicting the start of an RGB or audio trim. Metrics are accuracy at 1 and
5 on 50 classes. Chance performance is 2 and 10 %. The higher accuracies indicate that an
artefact is being used – see text for discussion.

or MPEG-4 Pt. 10 (aka. H.264). Note, frames in ProRes are compressed independently from
others. If the visual stream of the video is encoded using mpeg4, the model trained to predict
the start of the trim can do it significantly beyond a chance performance (Tab. 1, top-right).

Similarly, Advanced Audio Coding (AAC) might also leak temporal cues to the audio
signal (Tab. 1, bottom-right). Since it is challenging to find a large set of videos with lossless
audio compression, we used audio of randomly generated noise with a specified sampling
rate and saved it to a disk losslessly (PCM) to obtain the performance with lossless compres-
sion. To obtain results on AAC, we transcoded these files to AAC with ffmpeg.

4.2 Preventing Temporal Artefact Leakage

Avoiding MPEG-4 Part 2 in favour of H.264. The algorithm that selects key-frames in
MPEG-4 Part 2 (mpeg4) is less flexible than the one of H.264. In particular, ffmpeg, which
is commonly used in practice, by default, encodes key frames every 12 frames. This means
that each of the following 11 frames is merely a residual of the key frame and it is noticeable
on the RGB stream (as we show in the supplementary). Such a temporal regularity can be
picked up by a model and used to solve the task relying mostly on these artefacts. In contrast,
each frame encoded by H.264 can reference up to 16 key-frames, which can be allocated
more sparsely and their presence depends heavily on the scene rather than a rather strict
interval as in MPEG-4 Pt. 2. This benefit is apparent when training a model to predict the start
of a trim (see Tab. 1, top-right). A potential solution would be to avoid inter-frame codecs
(mpeg4 and H.264) in favor of an intra-frame codec (e.g. MJPEG, ProRes). However, this
is a strong requirement for research datasets because it requires avoiding YouTube which
stores videos compressed with inter-frame codecs (H.264 or VP9, according to view count).

Reducing audio sampling rate. There is a substantial difference in the model’s ability to
predict the start of a trim depending on the sampling rate of the audio track (Fig. 1, bottom-
right). While the reason behind the temporal artefacts in AAC is unknown, we recommend
avoiding higher sampling rates. In our experiments, we rely on a 16kHz sampling rate as it
provides a reasonable trade-off between audio quality and the start prediction performance.
Ultimately one would want to have a dataset with lossless audio tracks yet, again, it is a
strong requirement for a dataset as it is commonly used by YouTube.
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5 Experiments

Dense in time dataset. The dataset is Lip Reading Sentences (LRS3) [1] which is obtained
from TED talks for many speakers. We use two variations of the dataset. The first employs
strict rectangular face crop coordinates that are extended to make a square (‘dense in time
and space’). The second variation consists of full-frame videos without cropping (‘spatially
sparse and temporally dense’). The raw videos are obtained from YouTube with RGB (25fps,
H.264) and audio (16kHz, AAC) streams and referred to as ‘LRS3-H264’ and ‘LRS3-H264
(“No face crop”)’. We utilise the pretrain subset and split video ids into 8:1:1 parts for
train, validation, and test sets. Only videos longer than 9 sec are used to unify it with the
sparse dataset (discussed next). In total, we use ∼58k clips from ∼4.8k videos.

Sparse in time dataset. The dataset uses VGGSound [6] which consists of 10s clips col-
lected from YouTube for 309 sound classes. A subset of ‘temporally sparse’ classes is se-
lected using the following procedure: 5–15 videos are randomly picked from each of the
309 VGGSound classes, and manually annotated as to whether audio-visual cues are only
sparsely available. After this procedure, 12 classes are selected (∼4 %) or 6.5k and 0.6k
videos in the train and test sets, respectively (for class names see Fig. 3). Next, the second
round of manual verification of a different subset of 20 videos from each class determines
if it is feasible to align the sound based on the visual content. It is observed that ∼70 % of
these video clips are synchronisable. We refer to this dataset as VGGSound-Sparse.

Baseline. Drawing on architectural details proposed in [7], we design a baseline as a trans-
former decoder that uses audio features as queries and visual features as context (keys and
values) to predict the offset. The audio features are pooled across the spectrogram frequency
dimension and trained from scratch. Apart from that, the feature extractors resemble ours.

Offset grid. We define the synchronisation task as classifying the offset on a 21-class grid
ranging from −2 to +2 seconds with the 0.2-sec step size, as explained in Sec. 3. This can
be regarded as a more challenging variant of the sync/off-sync task that prior work solves.
We also experiment with a simpler setting with only 3 offset classes [−1, 0, +1], that test if
a model could predict if one track either lags, is in sync, or is ahead of the other one.

Metrics. Considering the human off-sync perception tolerance, in our experiments, we
mainly report the Top-1 Accuracy with a ±1 class of temporal tolerance (as described in
Sec. 4.1). Note, that the training loss does not account for this tolerance. In the supplemen-
tary section, we additionally provide performance on accuracy without tolerance.

5.1 Results

Dense in time and space. Tab. 2 shows the comparison between the baseline and proposed
architecture. As the task becomes more difficult (more sparse data or finer offset grid),
we observe a larger gap between our model and the baseline. In particular, the baseline
performs strongly on LRS3 (dense in time and space) in the setting with just three classes
(98.4 %). However, once the task gets more challenging, i.e. when training on finer offset
shifts (21 class, 0.2 sec apart), the baseline performance deteriorates significantly (∼89.8 %).
In contrast, the proposed model performs strongly even in the setting with finer offsets. This
suggests that the proposed model is better suited for more challenging data tasks.
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Dense-Dense Dense-Sparse Sparse-Sparse

LRS3 (Face crop) LRS3 (W/o face crop) VGGSound-Sparse
3 cls 21 cls 3 cls 21 cls 3 cls� 21 cls

AVSTdec 98.4 89.8 95.8 83.1 52.2 29.3
Ours 96.4 95.6 95.5 96.9 60.3 44.3

Table 2: The proposed model handles the increasing complexity of the setting and

dataset better than the baseline while reaching a strong performance compared to the

oracle. ‘Dense-Dense’ refers to the face-cropped speech videos (LRS3), ‘Dense-Sparse’ for
spatially-sparse LRS3 (‘No face crop’), ‘Sparse-Sparse’ is reported on VGGSound-Sparse
which is sparse in time and space, e.g. lion roars once during a clip. The synchronisation
performance is measured in two settings: the 3-class with (−1, 0, +1) offsets given 5-sec
clips, and 21 classes of offsets from −2.0 to +2.0 sec with 0.2-sec step size. The latter set-
ting allows ±1 temporal class tolerance (±0.2 sec). �: oracle performance is 70 %.

Figure 3: Performance per data and offset class on VGGSound-Sparse (test).

Dense in time and sparse in space. A similar effect is observed on the dataset that is
dense in time and sparse in space, i.e. LRS3 (No face crop). As both architectures drop their
performance slightly on the 3-class setting after switching to a more difficult dataset, the drop
is more significant for the baseline than for our model. Moreover, the baseline performance
drops substantially in the 21-class setting (>6 %), while our model performs strong.

Sparse in time and space. Finally, the experiments on the VGGSound-Sparse reveal an
even larger difference between the baseline method and our final model. For this experi-
ment, we add additional data augmentation to mitigate overfitting. In particular, our model
significantly outperforms the baseline showing the benefit of selectors on a more challenging
dataset and setting. Ultimately, our model reaches 60 % in the 3-class setting which is close
to the oracle performance (∼70 %: a human performance on 240 randomly picked videos),
while achieving 44 % in the 21-class setting. We report performance per class in Fig. 3.

5.2 Ablation Study

In Tab. 3 we provide results for an ablation study. The results are reported on the VGGSound-
Sparse dataset with 21 offset classes. More results are provided in the supplementary.

Feature selectors. The architecture with feature selectors outperforms the vanilla trans-
former showing the effectiveness of selectors in ‘compressing’ signals from the audio and
visual features. Also, Fig. 4 shows a memory footprint comparison of the two, omitting the
memory consumed by feature extractors that are the same. It is evident that memory demand
grows rapidly with the input duration making it impossible to work with longer sequences
and the transformer that inputs concatenated audio and visual streams.
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Sync Model Pre-trained Unfrozen
pre-trained Feature Feature

Selectors on LRS3 Extractors Extractors Accuracy21

� � � � 40.1
� � � � 12.1
� � � � 29.6
� � � � 33.5
� � � � 44.3

Table 3: Results of the ablation study. The experi-
ments are conducted on VGGSound-Sparse with 21 off-
set classes. Metric is Accuracy with ±1 class tolerance.

Figure 4: Working with longer se-
quences quickly becomes infeasi-
ble without selectors.

Chopping Wood Playing Badminton Dog Barking Skateboarding Lion Roaring

VGGSound-SparseLRS3 (No Face Crop)

Figure 5: Visual feature selectors focus on specific parts of the sparse signal that is

useful for synchronisation. Examples are from the hold-out set of LRS3 (‘No face crop’)
and VGGSound-Sparse. Attention is captured from a selector to a visual or spectrogram
feature token from a head within one of the layers. Attention values are min-max scaled.

Pre-training on dense signals. Pre-training a model on LRS3 (‘No face crop’) is an es-
sential part of the training procedure on VGGSound-Sparse: 44.3 vs. 12.1 (near chance
performance). For this reason, we also pre-train the baseline architecture (see Tab. 2).

Pre-trained feature extractors. The initialisation of audio and visual feature extractors
with pre-trained weights has a strong positive effect on model performance. To initialise our
feature extractors, we use weights of S3D pre-trained on Kinetics 400 for action recognition
and ResNet18 pre-trained sound classification on VGGSound. The initialisation not only
improves the final performance (43.3 vs. 33.5 %) but also significantly speeds up training.
We attribute this improvement to the fact that such initialisation allows the model to ‘skip’
learning of the generic low-layer features and focus on training for synchronisation.

Frozen feature extractors during training. Allowing the gradients to reach raw data pix-
els is useful for audio-visual synchronisation as it makes the model sensitive to the smallest
variations in the signal which is useful for synchronisation. In particular, having feature ex-
tractors to be trainable significantly boosts the performance from 34 to above 43 %, and the
difference is even more pronounced on LRS3 (‘No face crop‘) – see supplementary material.

Attention visualisation. Fig. 5 shows examples from LRS3-H.264 (‘No Face Crop’) and
VGGSound-Sparse. Specifically, the attention exhibits spatial locality as the selectors learned
to attend to the features extracted from the mouth region as expected from a model trained on
a speech dataset. For a more challenging and diverse dataset, VGGSound-Sparse, the model
highlights important parts of the visual and audio streams. In particular, the model accounts
for the hit of the second badminton player who is far away in the background or attends to
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Length VGGSound-Sparse
(sec.) 3 classes 21 classes

2 55.6 —
3 59.4 36.8
4 60.8 43.0
5 60.3 44.3
6 61.2 45.6
7 62.9 46.5

Table 4: Synchronisation accuracy improves with input

length. We report results on two settings: with 3 offset
classes (−1, 0, +1 sec) and 21 classes (±2.0 sec grid with
0.2-sec step size). The results are reported on the test subset
and accuracy is used as the metric. The accuracy for the 21-
class setting is reported with ±1 class tolerance. We use the
same input lengths for pre-training, fine-tuning, and testing.

the axe during the chop, or the roaring mouth of the lion, yet these occur just once per video
clip. Similarly, audio feature selectors point to specific parts of the spectrogram when the
change occurs. More examples are provided in the supplementary material.

Input length. As the sparse synchronisation cues occur only occasionally within a video
clip, processing shorter temporal crops decrease the chance of having sufficient cues for
synchronisation, which, in turn, should decrease the performance. In Tab. 4, we show how
performance varies with respect to the duration of input video clips. The results on the 3
and 21 offset classes illustrate the upward trend in model performance as the input duration
extends. Note that the longer the inputs, the less unseen training data the model processes at
each epoch. Specifically, a 10-second clip may be split into non-overlapping 3-second clips,
which is not possible with clips longer than 5 seconds. Thus, this effect may undermine the
current performance.

6 Conclusion

In this work, we study ‘in the wild’ videos that often have a synchronisation signal that
is sparse in time. This requires a model to efficiently process longer input sequences as
these synchronisation cues occur only rarely. To this end, we designed a transformer-based
synchronisation model that has linear complexity with respect to the input length. This was
made possible by using a small set of learnable ‘selectors’ that summarise long audio and
visual features that are employed to solve the synchronisation task. To evaluate models in
this challenging setup, we curate a dataset with only sparse events and train it on 5-second
long clips. Finally, we discovered that compression artefacts caused by audio and video
codecs might pose a threat to training for synchronisation, yet, as we show, these artefacts
are easily identifiable and could be avoided to a certain extent.

Limitations. First, considering the complicated input-output relationship in the proposed
model, it is challenging to determine which part of the input signal influences the output.
Second, in this work, we considered signals that are ‘dense in time and space’, ‘dense in time
but sparse in space’, and ‘sparse in time and space’. However, there is another interesting
setting ‘sparse in time but dense in space’ yet it is not clear how to design such a dataset
without making it ‘too artificial’. Third, despite showing strong performance on the proposed
dataset, VGGSound-Sparse, there is still room for improvement.
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projects 327910 and 324346, EPSRC Programme Grant VisualAI EP/T028572/1, and a
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