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OTTERS: a powerful TWAS framework lever-
aging summary-level reference data

Qile Dai1,2, Geyu Zhou3, Hongyu Zhao 3,4, Urmo Võsa 5, Lude Franke 6,7,
Alexis Battle 8, Alexander Teumer 9, Terho Lehtimäki 10,
Olli T. Raitakari11,12,13, Tõnu Esko5, eQTLGen Consortium*,
Michael P. Epstein 2 & Jingjing Yang 2

Most existing TWAS tools require individual-level eQTL reference data and
thus are not applicable to summary-level reference eQTL datasets. The
development of TWAS methods that can harness summary-level reference
data is valuable to enable TWAS in broader settings and enhance power due to
increased reference sample size. Thus, we develop a TWAS framework called
OTTERS (Omnibus Transcriptome Test using Expression Reference Summary
data) that adapts multiple polygenic risk score (PRS) methods to estimate
eQTL weights from summary-level eQTL reference data and conducts an
omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool
by both simulations and application studies.

Transcriptome-wide association study (TWAS) is a valuable analysis
strategy for identifying genes that influence complex traits and dis-
eases through genetic regulation of gene expression1–5. Researchers
have successfully deployed TWAS analyses to identify risk genes for
complex human diseases, including Alzheimer’s disease6–8, breast
cancer9–11, ovarian cancer12,13, and cardiovascular disease14,15. A typical
TWAS consists of two separate stages. In Stage I, TWAS acquires
individual-level genetic and expression data from relevant tissues
available in a reference dataset like the Genotype-Tissue Expression
(GTEx) project16,17 or the North American Brain Expression
Consortium18, and trains multivariable regression models on the
referencedata treating gene expression as outcomeandSNPgenotype
data (typically cis-SNPs nearby the test gene) as predictors to deter-
mine genetically regulated expression (GReX). After Stage I that uses
the GReX regressionmodels to estimate effect sizes of SNP predictors

that, in the broad sense, are effect sizes of expression quantitative trait
loci (eQTLs), Stage II of TWAS proceeds by using these trained eQTL
effect sizes to imputeGReXwithin an independentGWASof a complex
human disease or trait. One can then test for association between the
imputed GReX and phenotype, which is equivalent to a gene-based
association test taking these eQTL effect sizes as corresponding test
SNP weights19–21.

For Stage I of TWAS, a variety of training tools exist for fitting
GReX regression models using reference expression and genetic data,
including PrediXcan19, FUSION20, and TIGAR22. While thesemethods all
employ different techniques for model fitting, they all require
individual-level reference expression and genetic data to estimate
eQTL effect sizes for TWAS. Therefore, these methods cannot be
applied to emerging reference summary-level eQTL results such as
those generated by the eQTLGen23 and CommonMind24 consortia,
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which provide eQTL effect sizes and p values relating individual SNPs
to gene expression. The development of TWAS methods that can uti-
lize such summary-level reference data is valuable to permit the
applicability of the technique to broader analysis settings. Moreover,
as TWAS power increases with increasing reference sample size25,
TWAS using summary-level reference datasets can lead to enhanced
performance compared to using individual-level reference datasets
since the sample sizes of the former often are considerably larger than
the latter. For example, the sample size of the summary-based eQTL-
Gen reference sample is 31,684 for blood, whereas the sample size of
the individual-level GTEx V6 reference is only 338 for the same tissue.
Consequently, TWAS analysis leveraging the summary-based eQTLGen
dataset as a reference can likely provide insights into the genetic
regulation of complex human traits.

In this work, we propose a framework that can use summary-level
reference data to train GReX regression models required for Stage I of
TWAS analysis. Our method is motivated by a variety of published
polygenic risk score (PRS)methods26–31 that canpredict phenotype in a
test dataset using summary-level SNP effect size estimates andp values
based on single SNP tests from an independent reference GWAS. We
can adapt these PRS methods for TWAS since eQTL effect sizes are
essentially SNP effect sizes resulting from a reference “GWAS” of gene
expression. Thus, our predicted GReX in Stage II of TWAS is analogous
to the PRS constructed based on training GWAS summary statistics of
single SNP-trait association. Here, we adapt four representative
summary-data-based PRS methods—p value thresholding with linkage
disequilibrium (LD) clumping (P+T)26, frequentist LASSO32 regression-
based method lassosum27, nonparametric Bayesian Dirichlet Process
Regression (DPR) model-based33 method SDPR29, and Bayesian multi-
variable regression model-based method with continuous shrinkage
(CS) priors PRS-CS28 for TWAS analysis. We apply each of these PRS
methods to first train eQTL effect sizes based on a multivariable
regression model from summary-level reference eQTL data (Stage I),
and subsequently use these eQTL effect sizes (i.e., eQTL weights) to
impute GReX and then test GReX-trait association in an independent
test GWAS (Stage II).

As we will show, the PRS method with optimal performance for
TWAS depends on the underlying genetic architecture for gene
expression. Since the genetic architecture of expression is unknown
apriori, wemaximize the performance of TWAS over different possible
architectures by proposing a TWAS framework called OTTERS
(Omnibus Transcriptome Test using Expression Reference Summary
data). OTTERS first constructs individual TWAS tests and p values
using eQTL weights trained by each of the PRS techniques outlined

above, and then calculates an omnibus test p value using the aggre-
gated Cauchy association test34 (ACAT-O) with all individual TWAS p
values (Fig. 1). OTTERS is applicable to both summary-level and
individual-level test GWAS data within Stage II TWAS analysis.

In subsequent sections, we first describe how to use the PRS
methods on summary-level reference eQTL data in Stage I TWAS, and
then describe how we can use the resulting eQTL weights to perform
Stage II TWAS using OTTERS. We then evaluate the performance of
individual PRS methods and OTTERS using simulated expression and
real genetic data based on patterns observed in real datasets. Inter-
estingly, when we assume individual-level reference data are available,
we observe that OTTERS outperforms the popular FUSION20 approach
across all simulation settings considered. Many of the individual PRS
methods also outperform FUSION in these settings. We then apply
OTTERS to blood eQTL summary-level data (n = 31,684) from the
eQTLGen consortium23 and GWAS summary data of cardiovascular
disease from the UK Biobank (UKBB)35. By comparing OTTERS results
to those of FUSION20 using individual-level GTEx reference data of
whole blood tissue, we demonstrate that OTTERS using large
summary-level reference datasets and multiple gene expression
imputation models can successfully reveal potential risk genes missed
by FUSION based on smaller individual-level reference datasets and
only one model. Finally, we conclude with a discussion.

Results
Method overview
For the standard two-stage TWAS approach, Stage I estimates a GReX
imputationmodel using individual-level expression and genotype data
available from a reference dataset, and then Stage II uses the eQTL
effect sizes from Stage I to impute gene expression (GReX) in an
independent GWAS and test for association between GReX and phe-
notype. GReX for test samples can be imputed from individual-level
genotype data and eQTL effect size estimates. When individual-level
GWASdata are not available, one can instead use summary-level GWAS
data for TWAS by applying the TWAS Z-score statistics proposed by
FUSION20 and S-PrediXcan36 (see details in Methods).

Since eQTL summary data are analogous to GWAS summary data
where gene expression represents the phenotype, we can follow the
idea from PRS methods to estimate the eQTL effect sizes based on a
multivariable regression model using only marginal least squared
effect estimates and p values (based on a single variant test) from the
eQTL summary data as well as a reference LD panel from samples of
the same ancestry26–29. Although all PRS methods are applicable to
TWAS Stage I, we only consider four representative methods—P+T26,

Fig. 1 | OTTERS framework.OTTERS estimates cis-eQTL weights from eQTL summary data and reference LD panel using four imputationmodels (Stage I), and conducts
ACAT-O test to combine gene-based association test p values from individual methods with individual/summary-level test GWAS data (Stage II).
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Frequentist lassosum27, Nonparametric Bayesian SDPR29, BayesianPRS-
CS28 (see details in Methods).

As shown in Fig. 1, OTTERS first trains GReX imputation models
per gene g using P+T, lassosum, SDPR, and PRS-CS methods that each
infers cis-eQTL weights using cis-eQTL summary data and an external
LD reference panel of the same ancestry (Stage I). Once we derive cis-
eQTL weights for each training method, we can impute the respective
GReX using that method and perform the respective gene-based
association analysis in the test GWAS dataset. We thus derive a set of
TWAS p values for gene g, one per trainingmethod. We then use these
TWAS p values to create an omnibus test using the ACAT-O34 approach
that employs a Cauchy distribution for inference (see details in Sup-
plementary Methods). We refer to the p value derived from ACAT-O
test as the OTTERS p value. The ACAT-O34 approach has been widely
used in hypothesis testing to combinemultiple testingmethods for the
same hypothesis37–39, which has been shown as an effective approach
to leverage different test methods to increase the power while still
managing to control for type I error. Adding TWAS p values based on
additional PRS methods to the ACAT-O test can possibly improve the
power further at the cost of additional computation.

Simulation study
We used real genotype data from 1894 whole-genome sequencing
(WGS) samples from the Religious Orders Study and Rush Memory
and Aging Project (ROS/MAP) cohort40,41 and Mount Sinai Brain
Bank (MSBB) study42 for simulation. We divided 14,772 genes into
five groups according to gene length, and randomly selected 100
genes from each group (500 genes in total). We randomly split
samples into 568 training (30%) and 1326 testing samples (70%) to
mimic a relatively small sample size in the real reference panel for
training gene expression imputation models. From the real geno-
type data, we simulated six scenarios with two different proportions
of causal cis-eQTL, pcausal = 0:001,0:01ð Þ, as well as three different
proportions of gene expression variance explained by causal
eQTL, h2

e = 0:01,0:05,0:1ð Þ:
We generated gene expression of gene g (eg) using the multi-

variable regression model eg =Xgw+ ϵg , where Xg represents the
standardized genotype matrix of the randomly selected causal

eQTL of gene g, ϵg ∼Nð0,ð1� h2
e ÞIÞ. We generated the eQTL effect

sizes w from Nð0,1Þ and then re-scaled these effects to ensure that

the expression variance explained by all causal variants is h2
e . We

generated 10 replicates of gene expression per scenario. For each
simulated gene expression, we then generated 10 sets of GWAS Z-
scores to perform a total of 50,000 TWAS simulations. We gener-
ated the GWAS Z-scores from a multivariate normal distribution

with Z∼MVN Σgw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ngwash

2
p

q
,Σg

� �
38, wherew is the true causal eQTL

effect sizes, Σg is the correlation matrix of the standardized geno-
type Xg from test samples, ngwas is the assumed GWAS sample size,

and h2
p denotes the amount of phenotypic variance explained by

simulated GReX=Xgw (see Methods). We set h2
p =0:025. To cali-

brate power, we considered ngwas = (200K, 300K, 400K, 500K) for

scenarios with h2
e = 0.01, ngwas = (25K, 50K, 75K, 100K) for scenarios

with h2
e =0:05, and ngwas = (10K, 20K, 30K, 40K) for scenarios

with h2
e =0:1.

In Stage I of our TWAS analysis, we applied P+T (0.001), P+T
(0.05), lassosum,SDPR, andPRS-CSmethods to estimate eQTLweights
using eQTL summary data and the reference LD of training samples. In
Stage II of the TWAS, we used the estimated eQTL weights and the
simulated GWAS Z-scores to conduct a gene-based association test. In
addition to gene-based association tests based on eQTL weights per
training method, we further constructed the corresponding OTTERS
p values. We evaluated the performance of the training methods with
test samples, comparing test R2 that was the squared Pearson corre-
lation coefficient between imputed GReX and simulated gene expres-
sion. We evaluated TWAS power given by the proportion of 50,000
repeated simulations with TWAS p value <2:5 × 10�6 (genome-wide
significance threshold adjusting for testing 20K independent genes).

As shown in Fig. 2, we demonstrated that the Stage I training
method with optimal test R2 and TWAS power depended on the
underlying genetic architecture of gene expression (pcausal) as well as
gene expression heritability (h2

e). In situations where true cis-eQTLs
were sparse (pcausal = 0.001) and the gene expression heritability was
small (h2

e = 0.01), P+T (0.05) method performed the best with the
highest TWAS power among all individual methods. When gene
expression heritability is low (h2

e = 0.01), the power of P+T (0.001) and
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Fig. 2 | Test R2 (A) and TWAS power (B) comparison in simulation studies.
Various scenarios with proportions of true causal cis-eQTL pcausal = 0:001,0:01ð Þ
and gene expression heritability h2

e = 0:01,0:05,0:1ð Þ were considered in the simu-
lation studies. Distribution of test R2 in 5000 simulations per method per scenario
was presented using box-plot (A). The median was shown as a black bar. The lower
and upper hinges corresponded to the 25th and 75th percentiles. Whiskers

extended from the hinge to the value no further than 1.5 of the interquartile range.
Data beyond the end of the whiskers were plotted individually. The GWAS sample
size in the x-axis of panelBwas chosenwith respect to h2

e values. The proportion of
phenotype variance explained by gene expression (h2

p) was set to be 0.025. TWAS
was conducted using simulated GWAS Z-scores.
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lassosum methods were shown as the lowest. When gene expression
heritability increased (h2

e = 0.05 or 0.1) within this sparse eQTLmodel,
P+T (0.001) and PRS-CSwere generally the optimalmethods. For a less
sparse model with pcausal = 0.01, SDPR and PRS-CS generally per-
formed best among the individual methods. Relative to individual
methods, we found that combining the TWAS p values based on the
four PRS training methods together for analysis in our OTTERS fra-
mework obtained the highest power across all scenarios.

To evaluate the type I error of the individual PRS methods along
with OTTERS, we picked one simulated replicate per gene from the
scenariowithh2

e =0:1 andpcausal =0:001, simulated 2 × 103 phenotypes
from Nð0,1Þ, and permuted the eQTL weights for TWAS to perform a
total of 106 null simulations. OTTERS was shown well calibrated in the
tails of the distribution as shown by quantile-quantile (Q-Q) plots of
TWAS p values in Supplementary Fig. S1. We also observed that
OTTERS had well-controlled type I error for stringent significance
levels between 10�4 and 2:5 × 10�6 (Supplementary Table S1), which
are typically utilized in TWAS. For more modest significance thresh-
olds (α = 10�2), we noted that OTTERS had a slightly inflated type I
error rate. This modest inflation is consistent with the findings of the
original ACAT-O work, which showed that the Cauchy-distribution-
based approximation that ACAT-O employs might not be accurate for
larger p values when the correlation among tests is strong34. This
suggests that modest OTTERS p values may be interpreted with
caution.

We also compared the performance of our individual PRS training
methods to those of FUSION, assuming individual-level reference data
were available for the lattermethod to train GReXmodels. As shown in
Fig. 2A, we interestingly observed that our training methods yielded
similar or improved test R2 compared to FUSION in this situation, with
SDPR and PRS-CS outperforming FUSION across all simulation set-
tings. Comparing TWAS power, we found that OTTERS outperformed
FUSION by a considerable margin in our simulations (Fig. 2B). These
simulation results suggest that, while we developed OTTERS based on
PRS training methods to handle summary-level reference data,
OTTERS can still improve TWASpowerwhen individual-level reference
data are available. This is likely because OTTERS accounts for multiple
possible models of genetic architectures of gene expression assumed
by the different PRS training methods.

GReX imputation accuracy in GTEx V8 blood samples
To evaluate the imputation accuracy of P+T (0.001), P+T (0.05), las-
sosum, SDPR, and PRS-CS methods in real data, we applied these
training methods to summary-level eQTL reference data from the
eQTLGen consortium23 with n = 31,684 blood samples, to train GReX
imputationmodels for 16,699 genes. For test data, we downloaded the
transcriptomic data of 315 blood tissue samples that are inGTExV8but
were not part of GTEx V6 (as GTEx V6 samples contributed to the
reference eQTLGen consortium summarydata). For these 315 samples,
we compared imputed GReX to observed expression levels. We con-
sidered trained imputation models with test R2 >0:01 as “valid” mod-
els, as suggested by previous TWAS methods20,43. We also compared
the imputation accuracy of these five training models to those using
FUSIONbasedon a smaller individual-level trainingdataset (individual-
level GTEx V6 reference dataset; see Methods). For such models, we
compared the test R2 for genes that had test R2>0:01 by at least one
training method.

We observed that PRS-CS obtained the most “valid” GReX impu-
tation models with test R2 > 0.01. Among 16,699 tested genes, PRS-CS
obtained “valid” GReX imputationmodels for 10,337 genes, compared
to 9816 genes by P+T (0.001) (5.0% less valid genes than PRS-CS), 9662
genes by P+T (0.05) (6.5% less), 8718 genes by lassosum (15.7% less),
9670 genes by SDPR (6.5% less), and 4704 genes by FUSION (54.5%
less) (Table 1). Among the “valid”GReX imputationmodels obtainedby
eachmethod, the ones trained by PRS-CS have the highestmedian test

R2. The P+T (0.001) method obtained the second most “valid” GReX
imputation models with the second largest median test R2, as com-
pared to P+T (0.05), lassosum, and SDPR (Table 1). We note that the
performance of PRS-CS method was not sensitive to the global-
shrinkage parameter (Supplementary Fig. S2).

By comparing test R2 per “valid” GReX imputation model by PRS-
CS versus the othermethods (Fig. 3), we observed that PRS-CS had the
best overall performance for imputing GReX as it provided the most
“valid” models with higher GReX imputation accuracy compared to
P+T methods, lassosum, SDPR, and FUSION. Comparing the test R2

among the other four training methods, we observed that these two
P+T methods obtained similar test R2 per “valid” model. Meanwhile,
the test R2 per valid model varied widely among the P+T methods,
lassosum, and SDPR (Supplementary Fig. S3), suggesting that none of
these four were optimal across all genes and their performance likely
depended on the underlying unknown genetic architecture. These
results are consistent with our simulation results.

TWAS of cardiovascular disease
Using the eQTL weights trained by P+T (0.001), P+T (0.05), lassosum,
SDPR, and PRS-CS methods with the eQTLGen23 reference data and
reference LD from GTEx V8 WGS samples44, we applied our OTTERS
framework to the summary-level GWAS data of Cardiovascular Disease
from UKBB (n = 459,324, case fraction =0.319)35 (see Methods). We
performed TWAS of cardiovascular disease for 16,678 genes. First, for
each gene, we obtained TWAS p values per individual training method
(P+T (0.001), P+T (0.05), lassosum, SDPR, and PRS-CS). Second, we
performed genomic control45 for TWAS test statistics generated under
each specific training model, by scaling all test statistics to ensure that
the median test p value equals to 0.5. Last, we only considered genes
with test GReX R2>0:01 by at least one PRS training method in addi-
tional GTEx V8 samples in the follow-up ACAT-O test. We combined
the adjusted p values across all five training models using ACAT-O to
obtain our OTTERS test statistics and p values. Genes with OTTERS p
values < 2:998× 10�6 (Bonferroni corrected significance level) were
identified as significant TWAS genes for cardiovascular risk.

In total, we identified40 significantTWASgenes byusingOTTERS.
To identify independently significant TWAS genes, we calculated the
R2 (squared Pearson correlation) between the GReX predicted by PRS-
CS for each pair of genes. For a pair of genes with the predicted GReX
R2>0:5, we only kept the gene with the smaller TWAS p value as the
independently significant gene. OTTERS obtained 38 independently
significant TWAS genes (Table 2 and Fig. 3B), compared to 17 inde-
pendently significant genes by P+T (0.001), 11 by P+T (0.05), 10 by
lassosum, 41 by SDPR, and 12 by PRS-CS. Among these 38 independent
TWAS risk genes identified by OTTERS, gene RP11-378A13.1 (OTTERS
p value = 9:78× 10�9) was not within 1MBof any knownGWAS risk loci
with genomic-control corrected p value < 5 × 10�8 in the UKBB
summary-level GWAS data. This gene RP11-378A13.1was also identified
to be a significant TWAS risk gene in blood tissue for systolic blood
pressure, high cholesterol, and cardiovascular disease by FUSION1.

We compared our OTTERS results with the TWAS results shown
on TWAS hub (see Data availability) obtained by FUSION using the
same UKBB GWAS summary data of cardiovascular disease but using a
smaller individual-level reference expression dataset from GTEx V6
(whole blood tissue, n = 338). Of the 38 independent genes that
OTTERS identified from TWAS with eQTLGen reference data of whole
blood, FUSION only identified 8 of these genes (CLCN6, PSRC1, RP11-
378A13.1, CAMK1D, SIDT2, MTHFSD, NTN5, OPRL1) when using the GTEx
V6 reference data of the same tissue. FUSION did identify 13 additional
OTTERS genes (NPPA, CPEB4, NT5C2, TNNT3, C11orf49, CSK, FES,
MBTPS1, ACE, MRI1, HAUS8, RPL28, CTSZ), when considering all avail-
able tissue types in GTEx V6 reference data. These genes were identi-
fiedby FUSIONwhen considering theGTExV6 referencedata of artery,
thyroid, adipose visceral, nerve tibial tissues, etc. For example, the
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most significant gene FES (OTTERS p value = 2:87 × 10�32) was identi-
fied by FUSION using GTEx reference data of artery tibial, thyroid, and
adipose visceral omentum tissues, and was also identified as a TWAS
risk gene for high blood pressure, which is strongly related to cardi-
ovascular disease46.

Our OTTERS method also identified 17 genes (LINC01093, SER-
PINB6, CARMIL1, ZSCAN12P1, HCG4P7, HCG4P3, HLA-S, PSPHP1, LPL,
PTP4A3, SLCO3A1, RALBP1, SULT2B1, EDN3, ZBTB46, FAM3B, MX1) that
were not detected by FUSION using GTEx V6 data, where EDN3
(Endothelin 3, a member of the endothelin family) was shown to be
active in the cardiovascular system and play an important role in the
maintenance of blood pressure or generation of hypertension47.

By comparing OTTERS results with the ones obtained by indivi-
dual methods (Table 2, Fig. 4 and Supplementary Fig. S4), we found
that all individual methods contributed to the OTTERS results. For
example, the gene LINC01093 was only identified by lassosum, while
genes CPEB4, SIDT2, and ACE were only detected by PRS-CS and SDPR
and the gene EDN3 was only identified by the P+T methods. To better
understand the differences among individual methods, we plotted the
eQTL weights estimated by P+T (0.001), P+T (0.05), lassosum, SDPR,
and PRS-CS for three example genes thatwere only detected by one or
two individual methods (Supplementary Figs. S5–S7). For these genes,
we plotted the eQTL weights produced by each method with such
weights color coded with respect to �log10(GWAS p values) from the
UKBB GWAS summary statistics and shape coded with respect to the

direction ofUKBBGWAS Z-score statistics. Generally, significant TWAS
p values would be obtained by methods that obtained eQTL weights
with relatively large magnitudes for SNPs with relatively more sig-
nificant GWAS p values.

In Supplementary Fig. S5, we showed the eQTL weights for gene
SIDT2, which was a significant risk gene identified by both PRS-CS and
SDPR, and had p values < 10�4 by other methods. Compared to las-
sosum, SDPR hadmore significant GWAS SNPs colocalized with eQTLs
having relatively large weights in the test region, and PRS-CS hadmore
non-significant GWAS SNPs colocalized with eQTLs having zero
weights. Compared to the P+T methods, SDPR and PRS-CS based on a
multivariate regression model modeled LD among all test SNPs, and
thus estimated eQTL weights leading to significant TWAS findings. In
Supplementary Fig. S6, we provided the results of gene EDN3, which
wasonly identified by P+Tmethods (p values ≤9:15 × 10�8). Compared
to P+T methods, SDPR (p value = 5:9× 10�3) and PRS-CS (p value =
0:0158) had fewer significant GWAS SNPs colocalized with eQTLs that
had relatively largeweights in the test region,while lassosum (p value =
8:6× 10�6) assigned relatively large weights to more non-significant
GWAS SNPs. In Supplementary Fig. S7, we provided results for gene
LINC01093, whichwas only identified by lassosum. For this gene, SDPR
and PRS-CS estimated near-zero weights for most test SNPs with sig-
nificant GWAS p values in the test region. Most significant GWAS SNPs
did not have eQTL test p values < 0.001 or 0.05, and were thus filtered
out by P+T methods. lassosum was the only method that produced

Table 1 | Test R2 in n = 315 whole blood tissue samples from GTEx V8

P+T (0.001) P+T (0.05) lassosum SDPR PRS-CS FUSIONb

No. of genes with R2 > 0.01 9816 9662 8718 9670 10,337 4704

Median R2a 0.0440 0.0430 0.0416 0.0418 0.0517 0.0367
aMedian R2 among genes with test R2>0:01 per method.
bFUSION was trained on GTEx V6 blood samples, while all other training methods were trained using eQTLGen summary statistics (n = 31,684) and reference LD from GTEx V8 samples.
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relatively large eQTL weights that colocalized with GWAS-
significant SNPs.

These results were consistent with our simulation study results,
demonstrating that the performance of different individual methods
depended on the underlying genetic architecture. We do note that
there were a handful of genes identified by an individual method that
were not significant using OTTERS (Supplementary Table S2). None-
theless, the omnibus test borrows strength across all individual
methods, thus generally achieving higher TWAS power and identifying
the group of most robust TWAS risk genes.

By examining the Q-Q plots of TWAS p values, we observed
moderate inflation for all methods (Supplementary Fig. S8). Such

inflation in TWAS results is not uncommon48–50, which could be due to
similar inflation in the GWAS summary data and not distinguishing the
pleiotropy and mediation effects for considered gene expression and
phenotype of interest51 (Supplementary Fig. S9). We also observed a
notable inflation in the GWAS p values of cardiovascular disease from
UKBB (Supplementary Fig. S9), as we estimated the LD score
regression52 intercept to be 1.1 from the GWAS summary data.

We did not consider directly comparing to FUSION in our above
TWAS analyses of cardiovascular disease since we used the summary-
level reference data eQTLGen. However, to assess the performance of
OTTERS and FUSION in a real study where individual-level reference
data are available, we performed an additional TWAS analysis of

Table 2 | Independent TWAS risk genes of cardiovascular disease identified by OTTERS

CHROM ID OTTERS P+T (0.001) P+T (0.05) lassosum SDPR PRS-CS

1 CLCN6a 5.75E–15 4.94E–09 5.40E–08 8.77E–09 1.19E–15 1.43E–09

1 NPPAb 4.32E–08 1.55E–08 2.14E–07 – – 6.71E–06

1 PSRC1a 8.37E–20 5.68E–08 8.46E–07 6.26E–11 1.67E–20 1.41E–12

2 RP11-378A13.1a 9.78E–09 3.97E–02 4.98E–02 1.62E–05 1.96E–09 1.15E–04

4 LINC01093c 2.57E–09 9.85E–02 5.31E–02 5.13E–10 1.08E–02 2.41E–02

5 CPEB4b 3.05E–14 1.26E–02 2.05E–02 2.70E–05 6.05E–15 1.60E–07

6 SERPINB6c 1.47E–07 2.12E–01 2.24E–01 7.56E–03 2.95E–08 7.53E–04

6 CARMIL1c 9.23E–09 5.34E–03 3.41E–03 4.15E–03 1.85E–09 1.72E–03

6 ZSCAN12P1c 1.84E–08 6.00E–01 5.75E–01 4.62E–01 3.67E–09 3.10E–01

6 HCG4P7c 8.93E–50 3.70E–01 3.69E–01 2.30E–01 1.79E–50 7.26E–01

6 HCG4P3c 5.33E–20 4.20E–01 4.05E–01 5.03E–04 1.07E–20 2.42E–03

6 HLA-Sc 4.57E–07 7.13E–01 7.31E–01 3.02E–01 9.14E–08 2.33E–01

7 PSPHP1c 1.21E–09 2.17E–01 2.26E–01 9.65E–03 2.43E–10 1.10E–01

8 LPLc 5.73E–07 1.78E–03 3.26E–03 4.44E–02 1.15E–07 1.05E–04

8 PTP4A3c 1.28E–06 8.13E–02 8.33E–02 6.23E–05 2.58E–07 1.67E–03

10 CAMK1Da 2.51E–09 3.83E–02 4.97E–02 1.23E–03 5.03E–10 4.97E–05

10 NT5C2b 1.21E–07 1.69E–06 2.92E–06 1.64E–05 3.15E–07 2.69E–08

11 TNNT3b 1.67E–10 1.09E–06 3.33E–06 2.03E–09 3.40E–11 4.01E–07

11 C11orf49b 2.28E–06 8.55E–07 1.78E–06 5.44E–05 – 2.93E–04

11 SIDT2a 7.26E–09 6.14E–05 1.33E–04 3.66E–05 1.46E–09 3.81E–07

15 CSKb 2.30E–09 1.70E–07 2.15E–06 7.41E–10 2.80E–09 2.17E–09

15 FESb 2.87E–32 4.78E–08 1.23E–06 9.13E–24 5.75E–33 1.94E–15

15 SLCO3A1c 3.78E–08 1.85E–02 3.15E–02 4.65E–05 7.57E–09 1.14E–03

16 MBTPS1b 5.80E–08 2.62E–01 3.05E–01 9.15E–04 1.16E–08 2.34E–03

16 MTHFSDa 4.65E–07 5.16E–02 5.94E–02 1.65E–02 9.30E–08 3.20E–03

17 ACEb 9.42E–07 4.93E–06 1.03E–05 4.23E–06 9.66E–07 2.68E–07

18 RALBP1c 1.40E–06 1.48E–01 1.54E–01 2.12E–04 2.81E–07 5.55E–03

19 MRI1b 8.38E–09 8.34E–03 1.60E–02 7.79E–03 1.68E–09 2.65E–03

19 HAUS8b 1.60E–07 4.41E–08 1.38E–07 1.67E–06 1.42E–06 3.29E–05

19 SULT2B1c 2.32E–06 7.73E–07 – – 2.97E–02 1.10E–02

19 NTN5a 9.03E–10 2.75E–08 1.16E–07 6.23E–06 1.85E–10 9.73E–09

19 RPL28b 3.76E–07 7.33E–02 1.16E–01 6.64E–03 7.52E–08 4.23E–03

20 CTSZb 3.32E–09 2.57E–02 1.99E–02 3.40E–09 8.25E–10 1.04E–01

20 EDN3c 1.29E–07 3.61E–08 9.15E–08 8.60E–06 5.90E–03 1.58E–02

20 ZBTB46c 1.07E–06 2.83E–07 8.35E–06 – 1.81E–03 1.27E–05

20 OPRL1a 5.84E–07 3.44E–07 2.69E–06 1.85E–03 5.51E–05 1.90E–07

21 FAM3Bc 1.08E–10 2.28E–02 2.58E–02 8.07E–06 2.17E–11 1.04E–05

21 MX1c 6.04E–22 4.36E–01 3.83E–01 3.16E–07 1.21E–22 1.24E–03

Reference eQTL summarydata fromeQTLGenconsortiumandGWAS summarydata fromUKBBwere used. ThecorrespondingTWASp values by5 individual PRSmethodsandOTTERSare shown in
the tablewith significantp values < 2:998× 10�6 (Bonferroni corrected significance level) in bold, and those forgeneswith testGReXR2 ≤0.01 are shownas adash.p valueswere thegenomic-control
corrected p values from the Z-score test from TWAS (two-sided).
aRisk gene of UKBB cardiovascular disease in TWAS-hub identified using GTEx whole blood tissue.
bRisk genes of UKBB cardiovascular disease in TWAS-hub identified using other GTEx tissue types.
cRisk gene of UKBB cardiovascular disease not in TWAS-hub.

Article https://doi.org/10.1038/s41467-023-36862-w

Nature Communications |         (2023) 14:1271 6



cardiovasculardisease in theUKBiobankusing theGTExV8data of 574
whole blood samples as the reference data.We trainedOTTERS Stage I
using cis-eQTL summary statistics obtained from these 574 GTEx V8
whole blood samples and reference LD from GTEx V8 WGS samples,
and trained FUSION models using individual-level genotype data and
gene expression data of the same 574 whole blood samples.

We tested TWAS association for 19,653 genes and identified genes
with TWAS p values < 2:53× 10�6 (Bonferroni corrected significance
level) as significant TWAS genes. Training R2>0:01 was used to select
“valid” GReX imputation models for TWAS (Supplementary Fig. S10).
To identify independently significant TWAS genes, we calculated the
trainingR2 between theGReXpredictedby lassosum for of eachpair of
genes, since lassosum had the best training R2 (Supplementary
Fig. S10). For a pair of genes with the predicted GReX R2 > 0.5, we only
kept the gene with the smaller TWAS p value as the independently
significant gene. As a result, OTTERS obtained 34 independently sig-
nificant TWAS genes, while FUSION identified 21 independently sig-
nificant TWAS genes (Supplementary Fig. S11). A total of 14 genes were
identified by both FUSION and OTTERS (Supplementary Table S3).

These results demonstrate the advantages of OTTERS for using
multiple PRS training methods to account for the unknown genetic
architecture of gene expression, which is consistent in our simulation
results. These results also showed the advantage of using eQTL sum-
mary data with a larger training sample size, as more independently
significant TWAS genes were identified by using the eQTLGen sum-
mary reference data (38 vs. 34), even with a more stringent rule (test
instead of training R2>0:01) applied to select test genes with “valid”
GReX imputation models.

Computational time
The computational time per gene of different PRS methods depends
on the number of test variants considered for the target gene. Thus, we
calculated the computational time andmemory usage for four groups
of genes whose test variants were <2000, between 2000 and 3000,
between 3000 and 4000, and >4000, respectively. Among all tested
genes in our real studies, the median number of test variants per gene
is 3152, and the proportion of genes in each group is 10.3%, 33.4%,
34.5%, and 21.8%, respectively. For each group, we randomly selected
ten genes on Chromosome 4 to evaluate the average computational

time and memory usage per gene. We benchmarked the computa-
tional timeandmemory usage of eachmethodonone Intel(R) Xeon(R)
processor (2.10 GHz). The evaluation was based on 1000 MCMC
iterations for SDPR and PRS-CS (default) without parallel computation
(Supplementary Table S4). We showed that P+T and lassosum were
computationally more efficient than SDPR and PRS-CS, whose speeds
were impeded by the need of MCMC iterations. Between the two
Bayesian methods, SDPR implemented in C++ uses significantly less
time and memory than PRS-CS implemented in Python.

Discussion
Our OTTERS framework represents an omnibus TWAS tool that can
leverage summary-level expression and genotype results from a
reference sample, thereby robustly expanding the use of TWAS into
more settings. To this end, we adapted and evaluatedfive different PRS
methods assuming different underlying genetic models, including the
relatively simple method P+T26 with two different p value thresholds
(0.001 and 0.05), the frequentist method lassosum27, as well as the
Bayesian methods PRS-CS28 and SDPR29 within our omnibus test for
optimal inference. We note that additional PRS methods such as
MegaPRS30 or PUMAS31 could also be implemented as additional
OTTERS Stage I training methods. Higher TWAS power might be
obtained by adding more PRS methods in OTTERS Stage I, with addi-
tional computation cost. We also note that the existing SMR-HEIDI53

method, which uses summary-level data fromGWAS and eQTL studies
to test for possible causal genetic effects of a trait of interest that were
mediated through gene expression, could also be used as an alter-
native method besides TWAS. However, the SMR method generally
restricts eQTL for consideration, excluding those where the eQTL
p values larger than a certain threshold, e.g., 0.05.

In simulation studies, we demonstrated that the performance of
each of these five PRS methods depended substantially on the
underlying genetic architecture for gene expression, with P+T meth-
ods generally performing better for sparse architecture, whereas the
Bayesian methods performing better for denser architecture. Conse-
quently, since the genetic architecture of gene expression is unknown
apriori, we believe this justifies the use of the omnibus TWAS test
implemented inOTTERS for practical use, as this test had near-optimal
performance across all simulation scenarios considered. While we
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developed our methods with summary-level reference data in mind,
we note that our prediction methods and OTTERS perform well (in
terms of imputation accuracy and power) relative to existing TWAS
methods like FUSION when individual-level reference data are
available.

In our real data application using UKBB GWAS summary-level
data, we compared OTTERS TWAS results using reference eQTL
summary data from eQTLGen consortium to FUSION TWAS results
using a substantially smaller individual-level reference dataset from
GTEx V6. OTTERS identified 13 significant TWAS risk genes that were
missed by FUSION using individual-level GTEx V6 reference data of
blood tissue, suggesting that the use of larger reference datasets like
eQTLGen in TWAS can provide additional findings. Interestingly, the
genes missed by FUSION were instead detected using individual-level
GTEx referencedata of other tissue types that aremore directly related
to cardiovascular disease. By comparing OTTERS to FUSION when the
same individual-level GTEx V8 reference data of whole blood samples
were used, we still observed that OTTERS identified more risk genes
than FUSION, which we believe is due to the former method
accounting for the unknown genetic architecture of gene expression
by using multiple regression methods to train GReX imputation
models. These applied results were consistent with our simulation
results.

Among all individual methods, P+T is the most computationally
efficient method. The Bayesian methods SDPR and PRS-CS require
more computation time than the frequentist method lassosum as the
former set of methods require a large number of MCMC iterations for
model fit. By comparing the performance of these five methods in
terms of the imputation accuracy and TWAS power in simulations and
real applications,we conclude that noneof thesemethodswasoptimal
across different genetic architectures. We found that all methods
provided distinct and considerable contributions to the final OTTERS
TWAS results. These results demonstrate the benefits of OTTERS in
practice, since OTTERS can combine the strength of these individual
methods to achieve optimal performance.

To enable the use of OTTERS by the public, we provide an inte-
grated tool (seeCodeAvailability) to (1) TrainGReX imputationmodels
(i.e., estimate eQTL weights in Stage I) using eQTL summary data by
P+T, lassosum, SDPR, and PRS-CS; (2) Conduct TWAS (i.e., testing
gene-trait association in Stage II) using both individual-level and
summary-level GWAS data with the estimated eQTL weights; and (3)
Apply ACAT-O to aggregate the TWASp values from individual training
methods. Since the existing tools for P+T, lassosum, SDPR, and PRS-CS
were originally developed for PRS calculations, we adapted and opti-
mized them for training GReX imputation models in our OTTERS tool.
For example, we integrate TABIX54 and PLINK55 tools in OTTERS to
extract input data per target gene more efficiently. We also enable
parallel computation in OTTERS for training GReX imputation models
and testing gene-trait association of multiple genes.

The OTTERS framework does have its limitations. First, training
GReX imputation models by all individual methods on average cost
~20min for all five training models per gene, which might be compu-
tationally challenging for studying eQTL summary data of multiple
tissue types and for ~20K genome-wide genes. Users might consider
prioritizing P+T (0.001), lassosum, and SDPR training methods, as
these three provide complementary results in our studies. Second, the
currently available eQTL summary statistics are mainly derived from
individuals of European descent. Our OTTERS trained GReX imputa-
tionsmodel based on these eQTL summary statistics, and the resulting
imputed GReX could consequently have attenuated cross-population
predictive performance56. This might limit the transferability of our
TWAS results across populations. Third, our OTTERS cannot provide
the direction of the identified gene-phenotype associations, which
should be referred to as the sign of the TWAS Z-score statistic per
training method. Last, even though the method applies to integrate

both cis- and trans- eQTL with GWAS data, the computation time and
availability of summary-level trans-eQTL reference data are still the
main obstacles. Our current OTTERS tool only considers cis-eQTL
effects. Extension of OTTERS to enable cross-population TWAS and
incorporation of trans-eQTL effects is part of our ongoing research but
is out of the scope of this work.

Our OTTERS framework using large-scale eQTL summary data has
the potential to identify more significant TWAS risk genes than stan-
dard TWAS tools that use smaller individual-level reference tran-
scriptomic data and use only a single regression method for training
GReX imputation models. This tool provides the opportunity to
leverage not only available public eQTL summary data of various tis-
sues for conducting TWAS of complex traits and diseases, but also the
emerging summary-level data of other types of molecular QTL such as
splicing QTLs, methylation QTLs, metabolomics QTLs, and protein
QTLs. For example, OTTERS could be applied to perform proteome-
wide association studies using summary-level reference data
of genetic-protein relationships such as those reported by the SCAL-
LOP consortium57, and epigenome-wide association studies using
summary-level reference data of methylation-phenotype relationships
reported by Genetics of DNA Methylation Consortium (GoDMC) (see
Data availability). OTTERSwould bemost useful for broad researchers
who only have access to summary-level QTL reference data and
summary-level GWAS data. The feasibility of integrating summary-
level molecular QTL data and GWAS data makes our OTTERS tool
valuable for wide application in current multi-omics studies of com-
plex traits and diseases.

Methods
Traditional two-stage TWAS analysis
Stage I of TWAS estimates a GReX imputation model using individual-
level expression and genotype data available from a reference dataset.
Consider the followingGReX imputationmodel from n individuals and
m SNPs (multivariable regression model assuming linear additive
genetic effects) within the reference dataset:

eg =Xgw+ ϵg ,ϵg ∼N 0,σ2
ϵ I

� �
: ð1Þ

Here, eg is a vector representing gene expression levels of gene g,
Xg is an n×m matrix of genotype data of SNP predictors proximal or
within gene g, w is a vector of genetic effect sizes (referred to as a
broad sense of eQTL effect sizes), and ϵg is the error term. Here, we
consider only cis-SNPs within 1 MB of the flanking 5’ and 3’ ends as
genotype predictors that are codedwithinXg

19,20,22. Once we configure
the model in Eq. (1), we can employ methods like PrediXcan, FUSION,
and TIGAR to fit the model and obtain estimates of eQTL effect
sizes (ŵ).

Stage II of TWAS uses the eQTL effect sizes (ŵ) from Stage I to
impute gene expression (GReX) in an independentGWAS and then test
for association between GReX and phenotype. Given individual-level
GWAS data with genotype data Xnew and eQTL effect sizes (ŵ) from
Stage I, the GReX for Xnew can be imputed by dGReX=Xnewŵ. The
follow-up TWAS would test the association between dGReX and phe-
notype y based on a generalized linear regression model, which is
equivalent to a gene-based association test taking ŵ as test SNP
weights. When individual-level GWAS data are not available, one can
apply FUSION and S-PrediXcan test statistics to summary-level GWAS
data as follows:

Zg,FUSION =

PJ
j = 1ðŵjZ jÞffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ0Vŵ

p ,Zg, S�PrediXcan =

PJ
j = 1ðŵj σ̂jZ j

Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ0Vŵ

p ð2Þ

where Zj is the single variant Z-score test statistic in GWAS for the jth
SNP, j = 1, . . . , J, for all test SNPs that have both eQTL weights with
respect to the test gene g and GWAS Z-scores; σ̂j is the genotype
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standard deviation of the jth SNP; and V denotes the genotype cor-
relation matrix in FUSION Z-score statistic and genotype covariance
matrix in S-PrediXcanZ-score statistic of the test SNPs. In particular, σ̂j

andV can be approximated from a reference panel with genotype data
of samples of the same ancestry such as those available from the 1000
Genomes Project58. If ŵ are standardized effect sizes estimated
assuming standardized genotype Xg and gene expression eg in
Eq. (1), FUSION and S-PrediXcan Z-score statistics are equivalent13.
Otherwise, the S-PrediXcan Z-score should be applied to avoid false-
positive inflation.

TWAS Stage I analysis using summary-level reference data
We now consider a variation of TWAS Stage I to estimate cis-eQTL
effect sizes ŵ based on a multivariable regressionmodel (Eq. (1)) from
summary-level reference data. We assume that the summary-level
reference data provide information on the association between a sin-
gle genetic variant j (j = 1, . . . ,m) and expression of gene g. This infor-
mation generally consists of effect size estimates (ewj ,j = 1, . . . ,m) and
p values derived from the following single variant regression models:

eg =xjwj + ϵj,ϵj ∼N 0,σ2
ϵj
I

� �
, j = 1, . . . ,m: ð3Þ

Here,xj is ann× 1 vector of genotypedata for genetic variant j, and ϵj is
the error term. Since eQTL summary data are analogous to GWAS
summary data where gene expression represents the phenotype, we
can estimate the eQTL effect sizes ŵ using marginal least squared
effect estimates (ewj, j = 1, . . . ,m) and p values from the QTL summary
data as well as reference LD information of the same ancestry26–29.
Although all PRS methods apply to the TWAS Stage I framework, we
only consider four representative methods as follows:

P+T: the P+T method selects eQTL weights by LD clumping and
p value Thresholding26. Given threshold PT for p values and threshold
RT for LD R2, we first exclude SNPs with marginal p values from eQTL
summary data greater than PT or strongly correlated (LD R2 greater
than RT ) with another SNP having a more significant marginal p value
(or Z-score statistic value). For the remaining selected test SNPs, we
usemarginal standardized eQTL effect sizes from eQTL summary data
as eQTL weights for TWAS in Stage II. We considered RT =0:99 and
PT = ð0:001,0:05Þ in this paper and implemented the P+T method
using PLINK 1.955 (see Code availability). We denote the P+T method
with PT equal to 0.001 and 0.05 as P+T (0.001) and P+T (0.05),
respectively.

Frequentist lassosum: with standardized eg and Xg , we can show
that the marginal least squared eQTL effect size estimates from the
single variant regression model (Eq. (3)) is ew=XT

geg=n and that the LD
correlation matrix is R=XT

gXg=n. That is,

XT
geg =new andXT

gXg =nR: ð4Þ

By approximating nR by nRsðRs = 1� sð ÞRr + sIÞ with a tuning
parameter 0<s<1, a reference LD correlation matrix Rr from an
external panel such as one from the 1000 Genomes Project58, and an
identity matrix IÞ in the LASSO32 penalized loss function, the frequen-
tist lassosum method27 can tune the LASSO penalty parameter and s
using a pseudovalidation approach and then solve for eQTL effect size
estimates ŵ by minimizing the approximated LASSO loss function
requiring no individual-level data (see details in Supplementary
Methods).

Bayesian SDPR: Bayesian DPR method33 as implemented in
TIGAR22 estimates ŵ for the underlyingmultivariable regressionmodel
in Eq. (1) by assuming a normal prior Nð0,σ2

wÞ for wj and a Dirichlet
process prior59DPðH,αÞ for σ2

w with base distribution H and con-
centration parameter α. SDPR29 assumes the same DPR model but can
be applied to estimate the eQTL effect sizes ŵ using only eQTL sum-
mary data (see details in Supplementary Methods).

Bayesian PRS-CS: the PRS-CS method28 assumes the following
normal prior for wj and non-informative scale-invariant Jeffreys prior
on the residual variance σ2

ϵ in Eq. (1):

wj ∼N 0,
σ2
ϵ

n
ψj

� �
,p σ2

ϵ

� � / σ2
ϵ ,ψj ∼Gamma a,δj

� �
,δj ∼Gamma b,ϕð Þ,

where local shrinkage parameter ψj has an independent gamma-
gamma prior and ϕ is a global-shrinkage parameter controlling the
overall sparsity ofw. PRS-CS sets hyper parameters a= 1 and b = 1/2 to
ensure the prior density of wj to have a sharp peak around zero to
shrink small effect sizes of potentially false eQTL towards zero, as well
as heavy, Cauchy-like tails which assert little influence on eQTLs with
larger effects. Posterior estimates ŵ will be obtained from eQTL
summary data (i.e., marginal effect size estimates ew and p values) and
reference LD correlation matrix R by Gibbs Sampler (see details in
Supplementary Methods). We set ϕ as the square of the proportion of
causal variants in the simulation and as 10�4 per gene in the real data
application.

OTTERS framework
As shown in Fig. 1, OTTERS first trains GReX imputation models per
gene g using P+T, lassosum, SDPR, and PRS-CS methods that each
infers cis-eQTLs weights using cis-eQTL summary data and an external
LD reference panel of similar ancestry (Stage I). Once we derive cis-
eQTLsweights for each trainingmethod, we can impute the respective
GReX using that method and perform the respective gene-based
association analysis in the test GWAS dataset using the formulas given
in Eq. (2) (Stage II). We thus derive a set of TWAS p values for gene g;
one p value for each trainingmodel thatwe applied.We then use these
TWAS p values to create an omnibus test using the ACAT-O34 approach
that employs a Cauchy distribution for inference (see details in Sup-
plementary Methods). We refer to the p value derived from ACAT-O
test as the OTTERS p value.

Marginal eQTL effect sizes
In practice of training GReX imputation models using reference eQTL
summary data, the marginal standardized eQTL effect sizes were
approximated by ewj ≈Zj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medianðng,jÞ

q
, where Zj denotes the corre-

sponding eQTL Z-score statistic value by single variant test and
medianðng,jÞ denotes the median sample size of all cis-eQTLs for the
target gene g. The median cis-eQTL sample size per gene was also
taken as the sample size value required by lassosum, SDPR, and PRS-CS
methods, for robust performance. Since summary eQTL datasets (e.g.,
eQTLGen) were generally obtained by meta-analysis of multiple
cohorts, the sample size per test SNP could vary across all cis-eQTLs of
the test gene. The median cis-eQTL sample size ensures a robust per-
formance for applying those eQTL summary data-based methods.

LD clumping
We performed LD clumping with RT = 0.99 for all individual methods
in both simulation and real studies. Using PRS-CS as an example, we
also showed that LD clumping does not affect the GReX imputation
accuracy compared to no clumping in real data testing (Supplemen-
tary Fig. S12).

LD blocks for lassosum, PRS-CS, and SDPR
LD blocks were determined externally by ldetect60 for lassosum and
PRS-CS, while internally for SDPR, which ensures that SNPs in one LD
block do not have nonignorable correlation (R2 > 0.1) with SNPs in
other blocks.

Simulate GWAS Z-score
Given gene expression eg simulated from the multivariate regression
model eg =Xgw+ ϵg with standardized genotype matrix Xg and
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ϵg ∼N 0, ð1� h2
e ÞI

�
, we assumeGWAS phenotype data of ngwas samples

are simulated from the following linear regression model

y=hp Xgw
� �

+ ϵp, ϵp ∼N 0,Ið Þ:

Conditioning on true genetic effect sizes, the GWAS Z-score test
statistics of all test SNPs will follow a multivariate normal distribution,

MVN Σgw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ngwash

2
p

q
,Σg

� �
, where Σg is the correlation matrix of the

standardized genotype Xg from test samples, and h2
p denotes the

amount of phenotypic variance explained by simulated GReX=Xgw
38.

Thus, for a given GWAS sample size, we can generate GWAS Z-score
statistic values from this multivariate normal distribution.

FUSION using individual-level reference data
To train GReX imputation models by FUSION with individual-level
reference data, we trained Best Linear Unbiased Predictor model61,
Elastic-net regression62, LASSO regression32, and single best eQTL
model as implemented in the FUSION tool (see Code availability).
Default settings were used to train GReX imputation models by
FUSION in our simulation and real studies. LASSO regression was
performed only for genes with positively estimated expression herit-
ability. The eQTL weights of the best-trained GReX imputation model
will be used to conduct TWAS by FUSION.

GTEx V8 dataset
GTEx V8 dataset (dbGaP phs000424.v8.p2) contains comprehensive
profiling of WGS genotype data and RNA-sequencing (RNA-seq) tran-
scriptomic data across 54 human tissue types of 838 donors. The GTEx
V8WGS genotype data of all samples were used to construct reference
LD in our studies. The GTEx V6 RNA-seq data of whole blood samples
were used to train GReX imputation models by FUSION, and the GTEx
V8RNA-seq data of additional whole bloodsamples (n = 315)were used
to test GReX imputation accuracy in our studies. GTEx V8 RNA-seq
data of all whole blood samples (n = 574) were also used as reference
data for comparing the performance of OTTERS and FUSION.

eQTLGen consortium dataset
The eQTLGen consortium23 dataset was generated based on meta-
analysis across 37 individual cohorts (n = 31,684) including GTEx V6 as
a sub-cohort. eQTLGen samples consist of 25,482 blood (80.4%) and
6202 peripheral blood mononuclear cell (19.6%) samples. We con-
sidered SNPs with minor allele frequency > 0.01, Hardy–Weinberg
p value > 0.0001, call rate > 0.95, genotype imputation r2 > 0.5 and
observed in at least two cohorts23.Weonly considered cis-eQTL (within
±1MB around gene transcription start sites) with a test sample size >
3000. As a result, we used cis-eQTL summary data of 16,699 genes
from eQTLGen to train GReX imputation models for use in OTTERS in
this study.

UK Biobank GWAS data of cardiovascular disease
Summary-level GWAS data of Cardiovascular Disease from UKBB
(n = 459,324, case fraction =0.319)35 were generated by BOLT-LMM
based on the Bayesian linear mixed model per SNP63 with assessment
centered, sex, age, and squared age as covariates. Although BOLT-
LMMwas derived based on a quantitative traitmodel, it can be applied
to analyze case–control traits and has a well-controlled false-positive
rate when the trait is sufficiently balanced with a case fraction ≥10%
and samples are of the same ancestry. The tested dichotomous car-
diovascular disease phenotype includes a list of sub-phenotypes:
hypertension, heart/cardiac problem, peripheral vascular disease,
venous thromboembolic disease, stroke, transient ischemic attack
(tia), subdural hemorrhage/hematoma, cerebral aneurysm, high cho-
lesterol, and other venous/lymphatic diseases.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
ROS/MAP/MSBBWGSdata used in our simulation studies are available
through Synapse with data access application (https://www.synapse.
org/#!Synapse:syn10901595). The eQTLGen consortium data are
available from the consortium portal website (https://www.eqtlgen.
org). UK Biobank summary-level GWAS data are available through the
Alkes Group (https://alkesgroup.broadinstitute.org/UKBB). Individual-
level GTEx reference data are available through dbGap (Accession
phs000424.v8.p2). SummaryeQTLdata of blood tissue inGTEx cohort
are available from GTEx Portal (https://console.cloud.google.com/
storage/browser/gtex-resources/GTEx_Analysis_v8_QTLs/GTEx_
Analysis_v8_eQTL_all_associations). Significant genes from TWAS-hub
are available from http://twas-hub.org. The summary eQTL weights of
blood tissue generatedbyOTTERS (fromeQTLGendata) and summary
TWAS results generated by OTTERS for cardiovascular disease (from
UK Biobank data) are available from Synapse (https://doi.org/10.7303/
syn51009573).

Code availability
Source code for OTTERS is available from https://github.com/
daiqile96/OTTERS. All scripts used to generate intermediate or final
data and figures are available from GitHub page https://github.com/
daiqile96/OTTERS_paper and available in Zenodo with the identifier
https://doi.org/10.5281/zenodo.7566827. Source code for ACAT is
available from https://github.com/yaowuliu/ACAT. Source code for
FUSION is available from http://gusevlab.org/projects/fusion. Source
code for lassosum is available from https://github.com/tshmak/
lassosum. Source code for PRS-CS is available from https://github.
com/getian107/PRScs. Source code for SDPR is available from https://
github.com/eldronzhou/SDPR. Plink version 1.9 is used and available at
https://www.cog-genomics.org/plink/.
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