
Citation: Jayawardana, P.A.D.N.;

Obaid, H.; Yesilyurt, T.; Tan, B.;

Lohan, E.S. Machine-Learning-Based

LOS Detection for 5G Signals with

Applications in Airport

Environments. Sensors 2023, 23, 1470.

https://doi.org/10.3390/s23031470

Academic Editor: Zahir M. Hussain

Received: 29 November 2022

Revised: 19 January 2023

Accepted: 21 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Machine-Learning-Based LOS Detection for 5G Signals with
Applications in Airport Environments
Palihawadana A. D. Nirmal Jayawardana , Hadeel Obaid , Taylan Yesilyurt , Bo Tan and Elena Simona Lohan *

Electrical Engineering Unit, Tampere University, 33720 Tampere, Finland
* Correspondence: elena-simona.lohan@tuni.fi

Abstract: The operational costs of the advanced Air Traffic Management (ATM) solutions are often
prohibitive in low- and medium-sized airports. Therefore, new and complementary solutions are
currently under research in order to take advantage of existing infrastructure and offer low-cost
alternatives. The 5G signals are particularly attractive in an ATM context due to their promising
potential in wireless positioning and sensing via Time-of-Arrival (ToA) and Angle-of-Arrival (AoA)
algorithms. However, ToA and AoA methods are known to be highly sensitive to the presence of
multipath and Non-Line-of-Sight (NLOS) scenarios. Yet, LOS detection in the context of 5G signals
has been poorly addressed in the literature so far, to the best of the Authors’ knowledge. This paper
focuses on LOS/NLOS detection methods for 5G signals by using both statistical/model-driven and
data-driven/machine learning (ML) approaches and three challenging channel model classes widely
used in 5G: namely Tapped Delay Line (TDL), Clustered Delay Line (CDL) and Winner II channel
models. We show that, with simulated data, the ML-based detection can reach between 80% and 98%
detection accuracy for TDL, CDL and Winner II channel models and that TDL is the most challenging
in terms of LOS detection capabilities, as its richness of features is the lowest compared to CDL and
Winner II channels. We also validate the findings through in-lab measurements with 5G signals and
Yagi and 3D-vector antenna and show that measurement-based detection probabilities can reach
99–100% with a sufficient amount of training data and XGBoost or Random Forest classifiers.

Keywords: 5G signals; Air Traffic Management (ATM); airport areas; Line of Sight (LOS) detection;
Non Line of Sight (NLOS); Sounding Reference Signals (SRS); Positioning Reference Signals (PRS)

1. Introduction and Motivation

In many practical wireless applications involving positioning, communications, or
sensing tasks, it is essential to identify the exact position of a User Equipment (UE). Ac-
curate position information can serve multiple purposes, such as location-based beam-
forming, UE/aircraft tracking to help various dispatcher management operations, and
position-based collision detection. The estimation of the position through wireless signals
is generally complicated in a real network due to the possible obstructions of the Line
of Sight (LOS) path and the predominantly Non Line of Sight (NLOS) propagation as a
result of reflections and diffractions from many obstacles encountered throughout the
propagation path from the base station to the UE. Therefore, the determination of the
existence of a direct LOS path is a fundamental necessity as a starting point in many of the
positioning-based studies encountered in the literature.

A recent application area of the Fifth generation of cellular communications (5G)-
based positioning and sensing has been in the field of Air Traffic Management (ATM)
in small-sized and medium-sized airports [1–4]. Typical ATM solutions for large-sized
airports with heavy traffic rely on Advanced Surface Movement Guidance and Control Sys-
tems (A-SMGCS), including Multilateration (MLAT) and Surface Movements Radar (SMR)
solutions. However, A-SMGCS solutions have prohibitive costs for smaller-sized airports.
At the same time, the air traffic growth also puts the secondary airports under pressure for
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greater capacity and increased safety. Therefore, low-cost surveillance solutions developed
outside the ATM domain and relying on existing infrastructures, such as 5G networks have
gained particular attention over the last few years, in particular in EU/SESAR-funded
projects such as Emphasis [5], DroC2om [6], or NewSense [2,3]. Nevertheless, there are still
very few studies focusing on 5G-based positioning and sensing for ATM applications, as
most 5G-based solutions so far have been dedicated to improved wireless communications
tasks [5,6]. The research work on 5G applications for positioning, tracking, and/or LOS
detection for ATM applications is still in the incipient phase, and there is still a literature
gap with respect to suitable LOS detection solutions based on 5G signals; our paper aims
to fill in this research gap.

To emphasize the usefulness and motivation of 5G-based LOS detection in an ATM
context, we start with an example of a target scenario where LOS detection algorithms
would be beneficial; this is depicted in Figure 1: a small- or medium-sized airport area
equipped with fixed or mobile 5G base stations (e.g., some installed in the terminal, some
installed on-board the aircraft) and aiming at using 5G signals as complementary solu-
tions to perform ATM-related tasks. Our previous work in [2] explained how 5G-based
positioning and sensing could be potentially fused to enhance surveillance in the small-
and-medium sized airports; the accuracy of 5G-based positioning and sensing can benefit
and be increased if additional information about LOS/NLOS scenarios is available at the
receiver. As shown in Figure 1, an LOS scenario means a direct, non-obstructed signal
propagation between the transmitter and the receiver. In contrast, an NLOS scenario means
an indirect signal propagation due to various obstacles in the signal paths (e.g., scatterers,
reflectors, etc.). An example illustrating an NLOS path due to scattering caused by an
object in the environment while the LOS path is obstructed by other obstacles is shown in
Figure 1.

The main research questions addressed by our paper are: how to perform LOS detec-
tion based on 5G Uplink (UL) or Downlink (DL) signals and which feature-extractors and
classifier algorithms are the most suitable when dealing with 5G signals. An additional re-
search question is which channel models, from three consecrated 5G channel models in the
literature (namely Tapped Delay Line (TDL), Clustered Delay Line (CDL), and WINNER
II) are the most challenging in terms of LOS detection.

Figure 1. Example of an application area of the studied research question about LOS detection with
5G New Radio (NR). The continuous green line illustrates a LOS signal, the piece-wise continuous
magenta line illustrates a NLOS signal, and the dashed blue line illustrates a signal that will be
blocked before reaching the receiver.

The novelty of our paper stems from four main aspects: (i) addressing the LOS
detection problem in the context of 5G NR, which has been rather poorly addressed so
far; (ii) comparing multiple Machine Learning (ML) methods in three realistic channel
environments (namely TDL, CDL, and Winner II channel models, under LOS and NLOS
conditions); (iii) comparing multiple time- and frequency-domain features and selecting
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the best feature to characterize 5G LOS/NLOS behaviour; and (iv) validating the findings
with in-lab 5G measurements.

The rest of the paper is organized as follows: Section 2 gives a state-of-the-art overview
of LOS detection solutions with wireless signals, paying special attention to the prior
and scarce work of LOS detection with cellular and 5G signals. Section 3 presents the
adopted signal and channel model. Section 4 is dedicated to the methodology adopted
in our research, including also a brief overview of the selected ML approaches. Section 5
presents the simulation-based results with three channel types and Section 6 shows the
measurement-based results with measurement data collected in our Tampere University
laboratory. Last but not least, Section 7 presents the conclusions and the main take-away
points of our research.

2. State-of-the-Art in LOS Detection

There are several approaches used in scientific research for the detection and separation
of the LOS and NLOS propagation paths, which can be mainly categorized into the two
classes as mentioned below:

• Model-driven category, where a statistical model followed by thresholding can be
used to separate between LOS and NLOS scenarios, e.g., [7–11].

• Data-driven category, where some form of training data for LOS and NLOS cases is
available to train some models via feature extraction, followed by some ML classifier
stage, e.g., [9,12–19].

The main focus of our paper is on the second above-mentioned category, which,
based on literature studies, has been generally found to give more accurate classification
results than the first category. Nevertheless, this paper also considers thresholding-based
approaches as benchmark cases.

Concerning the model-driven category, the following statistical features and systems
have been analyzed in the literature so far: Channel Impulse Response (CIR) kurtosis with
the Fourth generation of cellular communications (4G) signals in [7], the Rician factor of the
envelope of the received signal in [8,11], or entropy of CIR based on WiFi signals in [10].

With respect to the data-driven category, the following features, ML methods, and sys-
tems have been analyzed so far in the literature: Neural Networks (NN) and random forest
using uplink reference signal beam-power measurements in 5G and outdoor measurement
data in [12] (the focus in there was on positioning accuracy and no LOS detection metric
was provided); Convolutional Neural Networks (CNN) applied on raw CIR data of Ultra
Wide-Band (UWB) signals in [13] and applied on 5G signals in [19]; various ML methods
such as Artificial Neural Networks (ANN), random forest, Support Vector Machines (SVM)
were used with Vehicle-to-Vehicle (V2V) signals [14] and random-forest-based classifiers
were found to give the best accuracy among the studied methods when trained with ex-
tracted temporal features of the received power; SVM used with various temporal features
of the UWB received signal, including the kurtosis of its envelope [16]; SVM used with
WiFi data and again, various temporal features (kurtosis, skewness, etc.) in [17]; SVM with
entropy and kurtosis features and UWB signals in [18], etc.

Both model-driven and data-driven approaches were studied in [9] for WiFi signals
and Received Signal Strength (RSS) measurements; threshold-based statistical models were
compared with NN models for LOS detection; the NN features included standard deviation
of the RSS, as well as kurtosis, skewness, hyper-skewness, and Rician factors. NN showed
slightly better LOS detection accuracies than threshold-based algorithms reaching 90%
classification accuracy or higher.

A summary of the main classification methods and features used so far for LOS
detection in various wireless systems is shown in Table 1. The few methods studied so far
in the context of 5G are given in underlined citations [12,19].

The work in [7] focused on CIR-based LOS/NLOS statistical analysis in 4G signals
with kurtosis time-domain feature and thresholding, yet no detection probabilities were
investigated and the threshold choice was not studied. The authors in [9] addressed the
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LOS detection problem with WiFi signals and reported approximately an 85–90% LOS
classification accuracy. In [10] the LOS, detection problem is addressed with UWB signal
measurements. The work in [11] focuses on LOS detection with narrowband signals and
Uniform Circular Array antennas and reported detection accuracies range between 73% and
99% with 100 samples/scenario and indoor measurement data. The authors in [12,19] are
among the few others who addressed LOS detection with 5G signals and their results are
included as comparative benchmarks in Section 6.3. In [13], NLOS, channel classification
with CNN is addressed in the context of UWB signals and classification accuracies range
between 82.5% and 87.4%. The authors in [17] focus on WiFi signals and reach an LOS
detection accuracy of about 95%, while in [18], the focus is on UWB signals. The work
in [14] addresses the LOS detection problem with V2V signals and it is also included as
a benchmark in our Section 6.3. Table 1 summarizes the state-of-the-art review on LOS
detection algorithms.

As seen in Table 1, LOS detection in the context of 5G signals has been poorly addressed
in the literature so far; the vast majority of studies concentrated on UWB [10,13,18] and
WiFi [9,20] signals. Furthermore, the vast majority of studies applied some form of ML
(e.g., neural networks, random forest, support vector machines, etc.) for classification tasks.
Our paper aims at solving the yet poorly addressed research issue of the LOS-detection
problem in uplink and downlink 5G signals by implementing a comprehensive pool of
ML-based approaches (some of them, such as XGBoost, not yet studied in the literature in
this context) and by also looking at the thresholding algorithms taken as benchmarks. In
addition, various time-domain and frequency-domain features are selected based on 5G
correlation functions with Positioning Reference Signals (PRS) and Sounding Reference
Signals (SRS) signals in DL and UL configurations, respectively.

Table 1. Feature-algorithm combinations used in the literature for LOS detection in various wireless
systems; those also analyzed in a 5G context are shown underlined. N/A = not available.

Feature vs. Algorithm Raw Data Kurtosis Skewness/ Rician Factor Entropy(CIR, Power, . . . ) Hyper-Skewness

Thresholding [9] [7] [20] [11] [10]

ML: NN/ANN/CNN [13], [19] [9,14] [9,14] [9,14] N/A
ML: random forest [12] [14] [14] [14] N/A
ML: SVM and N/A [14,17,18] [14,17] [14,17] [18]variants

3. Signal Model

The 5G signal is an Orthogonal Frequency Division Multiplexing (OFDM) signal. We
adopt here the most generic model of an Multiple Input Multiple Output (MIMO) system,
with Ntx antenna elements at the transmitter side and Nrx antenna elements at the receiver
side; Single Input Multiple Output (SIMO), Multiple Input Single Output (MISO), and
Single Input Single Output (SISO) systems are obviously particular cases of MIMO for
Ntx = 1 or Nrx = 1 or Ntx = Nrx = 1.

The received 5G signal ra2(t) at the a2-th antenna element of the receiver, a2 = 1, . . . , Nrx
can be modelled according to Equation (1) [21]:

ra2(t) =
N−1

∑
n=0

Nsc−1

∑
s=0

Ntx

∑
a1=1

xn,s,a1,a2 e+j2π n
T tg(t− nTs)⊗ ha1,a2(t) + η(t) (1)

where ⊗ is the convolution operator, N is the number of considered OFDM symbols, Nsc is
the number of OFDM sub-carriers, xn,s,a1,a2 is the n-th modulated symbol corresponding to
the s-th subcarrier, transmitted from a1-th transmit antenna, a1 = 1, . . . , Ntx and received
by the a2-th antenna, and belonging to a complex modulation alphabet, e.g., M-Quadrature
Amplitude Modulation (QAM) modulation, T = 1

∆ fsc
is the symbol interval (before the
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guard interval) defined according to the sub-carrier spacing ∆ fsc, g(·) is the transmitter
pulse shape, and Ts = T + TGI is the symbol duration after adding the Guard Interval
(GI) TGI .

In Equation (1), the multipath fading channel is modelled by the CIR ha1,a2(t) cor-
responding to the wireless channel path between the a1-th transmitter antenna element
and a2-th receiver antenna element. The factor η(t) models the Additive White Gaussian
Noise (AWGN) over the channel.

If we assume that the obstacle sizes are much larger than the antenna-element spacing,
then an LOS condition can be defined as the situation where all ha1,a2(t) CIRs are in the LOS
condition, and an NLOS condition when all ha1,a2(t) CIRs are in NLOS condition. Three
different multipath channel models were adopted, as explained later in Section 4.2.

An example of CIR model with L channel paths for TDL channels is given in Equation (2):

ha1,a2(t) =
L

∑
l=1

α
(a1,a2)
l (t)δ(t− τ

(a1,a2)
l (t)) (2)

where α
(a1,a2)
l (t) is the complex coefficient of the l-th channel path between antenna ele-

ments a1 (at transmitter) and a2 (at receiver), and τ
(a1,a2)
l (t) is the l-th channel path delay

between antenna elements a1 and a2. When there are no phase changes between the same
path but different antenna elements, τ

(a1,a2)
l (t) = τl(t).

The Time of Arrival (ToA)-based positioning is typically based on the correlation
between a reference signal (here SRS or PRS) with the received signal ra2(t) [4,22,23].
Examples of correlation outputs under various wireless channel models are provided in
Section 4.2. The Angle of Arrival (AoA)-based positioning is typically based on super-
resolution approaches such as MUltiple SIgnal Classification (MUSIC), Estimation of Signal
Parameters via Rotational Invariance Techniques (ESPRIT), Minimum Variance Distortion-
less Response (MVDR), etc. [4,22–24].

The presence of NLOS in the wireless channel path deteriorates both the ToA and AoA
estimates if the NLOS paths cannot be detected and eliminated from the final positioning
solution [24,25]. Recent research in [26] has also proposed ways to harness information
from NLOS paths in order to enhance the UE position and orientation information. An
accurate detection of LOS/NLOS scenarios would also serve in extracting NLOS specific
information that could be used to improve ToA and AoA-based estimation algorithms.

LOS/NLOS detection problem is basically a binary hypothesis testing problem, testing
hypothesis H0 (LOS is absent or, equivalently, we have an NLOS condition) versus the
alternate hypothesisH1 (LOS is present). Details on the threshold-based (i.e., model-driven)
and ML-based (i.e, data-driven) are further given in Sections 4.3 and 4.4, respectively.

4. Materials and Methods
4.1. Overall Methodology

Figure 2 reflects the overall methodology adopted in our paper: first, a Matlab-based
5G-simulator has been developed, as described in the next sub-section, comprised of a 5G
base station, a fading multipath channel model (CDL, TDL, or WINNER II, based on user
choice) and AWGN channel. The received signal through multipath fading LOS and NLOS
profiles was further analyzed through feature extractors and ML algorithms, as well as via
thresholding. A part of the generated data was used for training and the remaining part
was used for validation and testing. As a second step, the LOS detection algorithms were
also validated with measurement data, as described in Section 6. As seen in Figure 2, first
a pre-processing stage based on extracting features is employed; the statistical features are
extracted based on the available data and they are fed as inputs to the test and training
stages. As shown later, we first investigated five possible statistical features, namely time-
and frequency-based correlations, kurtosis, skewness, and Teager-Kaiser energy; then,
based on these results, we have selected the best among all tested features and feature
combinations and the subsequent results are based on time-based correlation feature only. It
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is to be noted that, if the configuration of the data fed into the machine learning algorithms
is the same (e.g., the same used feature combination, Signal to Noise Ratio (SNR) or SNR
ranges, etc.), it is not required to repeat the training process.

Figure 2. Flowchart of the applied simulation-based and measurement-based methodology.

4.2. Matlab-Based Developed 5G Simulator

According to [27], three main types of 5G reference signals can be used for positioning,
with one of them for UL positioning and two of them for DL positioning, namely: SRS (UL),
Channel Status Information Reference Signal (CSI-RS) (DL), and PRS (DL). Furthermore,
according to our team’s previous work in NewSense EU-funded project on 5G-based
positioning [3], it has been observed that PRS-based positioning results are better than
CSI-RS-based positioning for both ToA and AoA-based positioning. Therefore, without
loss of generality in this paper we only focus on PRS 5G signals for DL and on SRS 5G
signals for UL. 5G software simulator is designed to simulate secondary airport localization
scenarios as realistically as possible by using 5G signal transmissions modelled according
to the standards specified in 3GPP releases and realistic channel models. The simulator
consists of four main blocks, as shown in Figure 3.

Figure 3. Our 5G simulator software structure.

In this realistic simulator, a variety of parameters can be configured. The parameters
can be divided into three categories:

• UE Parameters: UE parameters are the simulation parameters related to the transmis-
sions from the UE to the base station, such as UE position in the coordinate system,
UE antenna type (Uniform Linear Array (ULA) antennas were used in the simulations
and 3D vector antenna (3DVA) antenna was used in the measurements [2,3]), antenna
array length (or size), etc. In UL transmission scenarios, UE transmits SRS signals
as positioning reference signals. All the configuration parameters of this signal type
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are also considered as UE parameters in this simulator. These parameters define the
allocation of the signals in the resource grid, the modulation of the signals and the
UL transmission power. As they do not affect the LOS detection results, they are not
described in detail here and they follow 3GPP specifications.

• Base Station (BS) Parameters: BS parameters are the simulation parameters related
to the transmissions from the BS and processing of received signals. Some of the
BS parameters are the BS position, BS antenna type (ULA antennas were used in
the simulations and 3DVA antenna was used in the measurements [2,3]), etc. In a
DL transmission scenario, the BS transmits PRS and CSI-RS as positioning reference
signals. Our previous studies in [2,3] showed that PRS-based positioning estimators
are more accurate than CSI-RS-based positioning estimators, therefore we only focus
on PRS reference signals in here for DL scenarios.

• Channel parameters: three multipath fading channel models have been implemented
and tested: two of them were based on 3GPP specifications, namely TDL and CDL [28]
and one was based on the well-known Winner II channel models [29–31]. Some of
these parameters are TDL/CDL power-delay profiles, channel delay spread, WINNER
II channel propagation scenario, LOS/NLOS flag, etc. Five different TDL channel
models, as defined in [28], are used. Two of these models (TDL-D and TDL-E) are used
for LOS transmission scenarios and three of these models (TDL-A, TDL-B, and TDL-
C) are used for NLOS transmission scenarios. In the simulations, the delay spread
parameter is set as 200 ns according to the measurements on small airports in [32].
CDL channels, also described in 3GPP [28] are very similar to TDL channels with the
main difference being that, in CDL models, the taps are replaced by clusters. The
same five profiles (A-E) as for TDL are also available for CDL channels. Winner II
is a channel developed to model a comprehensive range of mobile communication
scenarios from short range to wide area [30]. It is possible to simulate spatially defined
multiuser MIMO wireless systems. Winner II channel model supports frequencies
up to 6 GHz (in our simulations 3.5 GHz was used), bandwidths up to 100 MHz
(in the simulations, mostly 9.36 MHz bandwidth was used), 12 indoor and outdoor
propagation scenarios, LOS and NLOS propagation, and support for large antenna
arrays (we used maximum 4× 8 antenna arrays).

The Matlab-based simulator was initially built in Matlab R2021a version, starting from
the 5G Toolbox and Communications Toolbox in Matlab from MathWorks and WINNER
II Channel adds-on. Later on, it was tested also with newer Matlab versions R2022a and
R2022b. An in-house simulator was developed to support the three above-mentioned 5G
reference signals.

The LOS detection relied on the correlation between the incoming signal and the
reference positioning signals. Examples of these time-domain correlations are shown in
Figure 4 for TDL (left-hand plots) and CDL (right-hand plots) and for two LOS (upper
plots) and two NLOS (lower plots) scenarios. Examples based on Winner II channels are
shown in Figure 5 for LOS (left-hand plot) and NLOS (right-hand plot) scenarios. In each
of these plots, ten different random realizations of signals and channels were considered.
Examples based on measurement data are given in Section 6.
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(a)

(b)

Figure 4. Examples of correlation outputs for PRS signals with various (a) TDL and (b) CDL channels;
10 random realizations/channel at fixed SNR of 0 dB. Each of the sub-plots corresponds to one of the
A to E variants in TDL and CDL. Blue curves are for LOS channels and red curves for NLOS channels.

(a) (b)

Figure 5. Examples of correlation outputs for PRS signals with WINNER II (a) LOS and (b) NLOS
channels; 10 random realizations/channel at fixed SNR of 0 dB.



Sensors 2023, 23, 1470 9 of 22

4.3. Thresholding-Based Benchmark

As previously explained, LOS/NLOS detection is basically a binary hypothesis testing
problem. In a model-driven category (i.e., threshold-based), the binary hypothesis testing
is based on a decision statistic T , derived from the time or frequency characteristics of the
signal and a threshold γ:

i f T ≥ γ→ choose H1 (3)

i f T < γ→ choose H0 (4)

In our model-driven analysis (used as a benchmark), by analogy with Global Nav-
igation Satellite Systems (GNSS) [33], we built T as the ratio between the maximum
time-correlation peak and the next local maximum, and the γ threshold was set to 2.3 for
simulation-based data and to 10.5 for measurement-based data. The threshold for the ratio
between the maximum peak and the next maximum outside the main lobe for LOS and N,

channels was selected empirically such as to obtain the best possible detection accuracy
for each set of data. By this, it is possible to indicate the highest detection accuracy that
could be obtained using the conventional threshold detection algorithms for each scenario.
Nevertheless, even under this optimal choice of the threshold, the ML-based approaches
gave better performance than the threshold-based approaches.

4.4. ML-Based LOS Detection

In a data-driven approach (i.e., based on ML), first the relevant features are selected
from the received signal, then the model is trained via various ML algorithms, and then
the LOS detection is performed with the trained model.

Based on the literature searches as well as on the results presented in Table 1, three ML-
based algorithms have been selected for further analysis with simulation and measurement
data and they are described in the following subsections. We would like to mention that
additional ML-based tests were done with other NN/ML-based algorithms, but only the
three most promising ones were selected for further investigation, due to limited time
constraints; the three selected ones are described in the following subsections and they are:
XGBoost, Random Forest (RF), and SVM. The choice of RF and SVM has been motivated
by the literature findings that we summarized in Table 1, while the choice of XGBoost was
motivated by our previous classification work with a different type of data [34], where
XGBoost proved to give the most promising results as a classifier.

4.4.1. Extreme Gradient Boosting (XGBoost) Classifier

XGBoost is a gradient boosting algorithm available in Matlab R2022a (Matlab com-
mand “fitcensemble”). This algorithm can be used to generate an ensemble of learners for
classification [35].

XGBoost (the Matlab version) employs different aggregation methods according to
the type and dimensions of the classification problem. Because LOS detection is a binary-
classification problem with two classes, the “AdaBoostM1” aggregation method, which is
optimized for such classification, was used in here.

XGBoost method has previously proven very good results with other data types used
in our research, such as loneliness data [34], but it has not been used so far, to the best of
the Authors’ knowledge, in the context of LOS detection with 5G signals. In the context of
5G, the XGBoost algorithm has been used so far mainly for security purposes, such as for
detecting the Distributed Denial of Service attacks [36] or for antenna optimization [37].

4.4.2. Random Forest Classifier

The RF classifier was implemented via Matlab “fitensemble” used in conjunction with
the bagging aggregation method “bag”.

As the first step in the bootstrap aggregation (bagging) ensemble-learning method, it is
required to generate many bootstrap replicas of the original data set, which would contain
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a random selection of the predictors within each replica. These bootstrap replicas will
operate on a randomly selected number of observations. Some of the selected observations
will have multiple copies of those included in a single bootstrap replica. The decision trees
will be grown on these replicas, with the classification decision of each tree being made
only by a randomly selected number of predictors. After the classification is completed by
each tree, the final classification decision will be obtained by a majority vote in favour of
one of the classes.

The RF method has been previously used for LOS detection in [12,14]. In [12], the LOS,
detection is briefly addressed with 5G signals and it will be the basis of our benchmark com-
parisons in Section 6.3. The work in [14] focuses on LOS detection in V2V communications
and no specifics from 5G positioning reference signals are used.

4.4.3. Support Vector Machines (SVM)

The objective of SVM-type classifiers is to find the optimum hyperplanes between the
subjective classes as the decision boundaries, in order to classify the different observation
samples accurately. Thus, the SVM algorithm is mostly suitable for binary classifications
and it would select the hyperplane that maximizes the margin between the two classes.
The detection of LOS/NLOS condition of 5G wireless channels falls into the standard
category of binary classification for which the SVM algorithms are defined, and thus
they are an obvious selection. The fitcsvm algorithm was chosen by us in Matlab for
binary classifications. In SVM classifications, the scenarios which involve multiple classes
are reduced into a sequence of binary classification problems. In scenarios where the
classification cannot be solved by linear segregation of the predictors of the observation
data, these features could be transformed by utilizing a different kernel function such as
the Gaussian kernel (fine, medium, coarse) or the polynomial kernels (quadratic, cubic).
These kernel functions would map the data samples into a higher dimensional vector
space which could make it easier to segregate and categorize the data. By selecting a
suitable kernel function, it is possible to handle also nonlinear classification problems using
SVM. The selection of the suitable kernel function, and the kernel scale depends on the
number of predictors and on the characteristics of the observation data samples such as the
amount and the dissimilarity; in our case, we chose the best kernel in an empirical manner,
testing with the available data. Table 2 specifies the kernel scale of different Gaussian SVM
kernel functions with respect to the number of predictors p as well as the subtle differences
between the three kernel functions that we used in our data analysis.’

Table 2. Comparison of three SVM Gaussian kernels used in our studies

Kernel Function Recommended Kernel Scale Model Description

Fine Gaussian SVM
√

p/4 Very detailed distinctions be-
tween the classes. Could cause
overfitting of the model if used
erroneously

Medium Gaussian SVM
√

p Medium level distinctions be-
tween the classes.

Coarse Gaussian SVM 4
√

p Coarse distinctions between the
classes. Could cause underfitting
of the model if used erroneously.

An example of how the detection probabilities are computed is illustrated in Figure 6.
The final detection probability is taken as the average over the diagonal values of the
confusion matrices, which show which is the probability to classify a class (LOS or NLOS)
into its own (correct) category (diagonal values) or in the opposite category (anti-diagonal
values). The examples shown in Figure 6 were obtained with a DL 5G configuration, using
PRS reference signals and TDL wireless channels.
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(a) (b)

(c)

Figure 6. Examples of confusion matrices for (a) medium Gaussian SVM, (b) XGBoost and (c) Random
Forest methods.

5. Simulation-Based Results
5.1. Simulation Parameters

The Matlab-based simulator was run with the main parameters listed in Table 3. We
recall that NRB is number of the resource blocks, the Nscprb is the number of sub-carriers
per resource block, and ∆ fsc is the sub-carrier spacing.

Table 3. Simulation parameters.

Parameter Value Justification

Carrier frequency fc 3.5 GHz Typical cmWave 5G frequency
band [38–42]

Sampling rate 130 MHz

Selected high enough to allow
the extraction of relevant fea-
tures, yet low enough to allow
feasible simulation times

Sub-carrier spacing ∆ fsc 15 kHz According to 5G specs [27]

Number of resource
blocks NRB

52 According to 5G specs [27] for
SRS and PRS

Number of sub-carrier
per resource blocks
Nscprb

12 According to 5G specs [27]
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Table 3. Cont.

Parameter Value Justification

Bandwidth BW 9.36 MHz Computed from BW = NRB ∗
Nscprb ∗ ∆ fsc

Base station ULA array
length 8 Typical base-station array

length value [12,14,43]

UE ULA array length 4 Typical UE array length
value [19]

Maximum tx-rx distance 3500 m
Based on small-sized Muret air-
port area studied by us previ-
ously in [2,3]

Reference signal Downlink PRS or uplink SRS

The third possible position-
ing reference signal, downlink
CSI-RS has been discarded as
giving worse result than PRS,
based on our previous stud-
ies [2,3]

Number of subcarriers 8192

This is also the FFT length at
the receiver; it must be high
enough for large fs; similar val-
ues can be found, for example
in [44]

Number of processed
frames per random it-
eration (each frame has
10 ms)

1
Chosen for moderate simula-
tion times; can be increased
without loss of generality

Time- correlation win-
dow length 100 samples

Chosen for moderate simula-
tion times; can be increases
without loss of generality

Number of Monte Carlo
runs per LOS or NLOS
scenario

between 500 and 50,000; value 1000
was used for most of the tests (if not
specified otherwise), after studying
the impact of the number of itera-
tions

Chosen empirically, as ex-
plained here

TDL channel types
TDL-A (NLOS), TDL-B (NLOS),
TDL-C (NLOS), TDL-D (LOS), and
TDL-E (LOS)

TDL has been used before for
5G studies [39]

CDL channel types
CDL-A (NLOS), CDL-B (NLOS),
CDL-C (NLOS), CDL-D (LOS), and
CDL-E (LOS)

CDL has been used before for
5G studies [45]

Winner II channel types 11 C2 (Urban macro-cell) LOS and
NLOS

Winner II has been used before
for 5G studies [41]

SNR range Uniform distribution between
−20 dB and 0 dB

Typical nominal values for 5G
SNR [43]

First, the impact of the choice of various features was studied with TDL and CDL
channels and PRS signals and the results are shown in Section 5.2. Due to the significant
higher amount of time to generate Winner II channels and to test them with various features,
and based on the fact that the same conclusions were drawn from TDL and CDL channels,
the Winner II channels were not considered in Section 5.2, but only in Section 5.3.
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5.2. Feature Selection

The first step in our analysis has been to test which feature or combinations of features
give the most promising LOS detection results. For this scope, five features have been
selected, based on prior literature studies as shown in Table 1:

• Time correlation—this is the most straightforward feature and has been illustrated, for
example in Figure 4;

• Fourier transform of the time correlation, as a representative of frequency-domain
characteristics;

• Kurtosis;
• Skewness: typically, skewness is higher for NLOS channels than for LOS channels;
• Teager-Kaiser transform (TK)—this transform was selected based on our previous

work on feature identification in a GNSS context [46].

For a fair comparison, only the SVM algorithm has been used in this first stage.
Furthermore, since the Winner II simulator is very slow, we only focused on TDL and
CDL models. The results in both TDL and CDL channels consistently pointed out the
same conclusion that a single feature based on time correlation gives the best results. The
results are shown in Table 4. The best results, according to the number of features are
emphasized in bold-faced letters and they correspond to a single feature, namely time-
based correlations. Few other combinations, also including time-based correlations are
also achieving the maximum accuracy, but combining many features has proved to be
sub-optimal in our case, most likely due to several effects: (i) some features, such as
kurtosis and skewness, give very poor results when being used alone, so it is expected that
they also deteriorate (even if slightly) the results when used in combination with other
features; (ii) many of these features have string correlations between them. Thus, putting
them together, it is intuitively not likely to enhance the results much (if at all). From now
on, we will focus only on single-feature approaches, using the time-based correlations of
100 samples window size as the features to be input to ML classifiers.

Table 4. Impact of feature selection on the detection accuracy. PRS signals, average results for SNR
uniformly distributed between−20 dB and 0 dB. Highest values are emphasized in bold-faced letters.

Features TDL Channel CDL Channel

1 feature: time-based correlation 82% 89 %

1 feature: FFT of time-based correlation 76% 83 %

1 feature: kurtosis 69% 69 %

1 feature: skewness 67% 67 %

1 feature: TK 78% 79%

2 combined features: time correl + FFT 80 % 87 %

2 combined features: time correl + kurtosis 82% 87%

2 combined features: time correl + skewness 77% 83 %

2 combined features: time correl + TK 82% 87%

2 combined features: FFT +kurtosis 78 % 83 %

2 combined features: FFT + skewness 77 % 83 %

2 combined features: FFT + TK 78 % 84 %

2 combined features: kurtosis + skewness 78 % 78%

2 combined features: kurtosis + TK 79 % 79 %

2 combined features: skewness + TK 79% 79 %

3 combined features: time + FFT + kurtosis 80% 87 %

3 combined features: time + FFT + skewness 80% 87%
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Table 4. Cont.

Features TDL Channel CDL Channel

3 combined features: time + FFT + TK 81% 87%

3 combined features: time + kurtosis + skewness 82% 89 %

3 combined features: time + kurtosis + TK 82% 87%

3 combined features: time + skewness + TK 82% 87%

3 combined features: FFT + skewness + kurtosis 78% 83%

3 combined features: FFT + kurtosis +TK 79% 84%

3 combined features: FFT + skewness +TK 79% 84%

3 combined features: kurtosis + skewness +TK 79% 79%

4 combined features: time + FFT + kurtosis+ skewness 81% 87%

4 combined features: time + FFT + kurtosis+ TK 81% 87%

4 combined features: time + kurtosis+ skewness+ TK 82% 87%

4 combined features: FFT + kurtosis+ skewness+ TK 79 % 84%

All 5 combined features: time + FFT + kurtosis + skewness
+ TK 81% 87%

5.3. ML Algorithm Selection

After the initial small-scale tests when some of the ML algorithms were discarded as
not having enough performance, we have selected three ML-based algorithms for detailed
investigation, namely XGBoost, Random Forest and an SVM implementation.

The results are shown in Table 5. Both XGBoost and SVM classifiers work very
well with various channel profiles and various reference signals; the random-forest-based
estimator is slightly worse than XGBoost and SVM ones. The best LOS classification results
are achieved with the most complex channel model, namely the Winner II channel model,
as this complexity basically means that Winner II is the channel model richest in features
among the considered ones. The performance in TDL and CDL channels is also according
to the richness of features (or complexity); better results are achieved for the more complex
model among the two, namely for CDL model. Furthermore, as seen in Table 4, the data-
driven ML-based LOS detection outperforms the model-driven threshold-based detection
with up to 28%.

Table 5. LOS detection accuracy ([%]) with simulated data, using three ML approaches and a
benchmark threshold-based approach. Bold-faced numbers show the best results per channel type.

Algorithm & Channel Type TDL Channel and
PRS Signal

TDL Channel and
SRS Signal

CDL Channel and
PRS Signal

CDL Channel and
SRS Signal

Winner II Channel
and PRS Signal

Winner II Channel
and SRS Signal

XGBoost 80% 78% 88% 86% 98% 97%

Random Forest 79% 78% 87% 85% 98% 96 %

Medium Gaussian SVM 82% 80% 89% 86% 98 % 96 %

Threshold-based 67% 64% 66% 61% 75% 72%

5.4. SNR Impact

The SNR impact has been tested next and the results for CDL and TDL channels
and PRS signals are shown for reference in Table 6. The average values from the last
column in Table 6 were not computed by averaging the data in the other columns, but by
generating 5G data at a variable SNR, both in the training and test data and computing the
LOS detection accuracy under this variable/unknown SNR scenario. As the mean over
the individual SNRs is close to the LOS detection accuracy when variable SNR is used
in the training and test data, from now on we will show only the results with variable
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SNR when simulation-based data is used. These results, as seen in Table 6 are indeed also
representatives for fixed SNR scenarios, yet a variable SNR assumption is more realistic, as
the wireless channels are seldom operating at constant SNR.

Table 6. Example of the SNR impact on the LOS detection accuracy ([%]) with simulated data.

Channel Model and
Signal Type ML Algorithm SNR = 0 dB SNR =−0 dB SNR = −10 dB SNR = −15 dB SNR = −20 dB Variable SNR from 0 dB to−25 dB

CDL, PRS Medium Gaussian SVM 100% 100% 96% 83% 61% 90%

CDL, PRS XGBoost 100% 99% 97% 82% 58% 89%

CDL, PRS RF 100% 100% 96% 82% 60% 87%

TDL, PRS Medium Gaussian SVM 100% 99% 89% 60% 52% 82%

TDL, PRS XGBoost 100% 99% 89% 58% 54% 80%

TDL, PRS RF 100% 99% 88% 60% 56% 79%

5.5. Sample Size Impact

Since the number of training samples has a direct effect on complexity, one question is
how to choose a good number of training samples. Table 7 shows the impact of increasing
the overall number of training samples for TDL channels with PRS signals using the time-
based correlation feature. Here, we used 5 5G base stations, with three of them under NLOS
conditions (with various NLOS channel models) and two of them under LOS conditions,
again under two LOS channel models, as there are five types of TDL channel modes, namely
TDL-A to TDL-E. This means that n samples from Table 7 are equivalent with n/5 samples
per base station or channel model; e.g., a training dataset of 2500 samples meant that we
generated 500 samples per each of the five TDL channel models (TDL-A to TDL-E).

Table 7. Example of the impact of the number of training samples on the LOS detection accuracy
([%]) with simulated data; TDL channels; PRS signals; variable SNR between −20 dB and 0 dB.

ML Algorithm n = 500 n = 2500 n = 5000 n = 10, 000 n= 25, 000 n = 50, 000

Medium Gaussian SVM 78% 80% 82% 82% 83% 83%

XGBoost 78% 80% 80% 79% 79% 79%

RF 75% 76% 79% 79% 79% 79%

From Table 7, we see that with 1000 samples/channel (i.e., n = 5000, the fluctuations
in the LOS detection accuracy are already less than 1%; with an increased number of
training samples, both the complexity and the simulation times are increasing. For a
good tradeoff between the samples size and simulation times, we chose in what follows
1000 samples/channel; also, in order to have a balanced number of LOS and NLOS channels,
we only used four out of the five available TDL and CDL channels, with two of them under
LOS condition and the other two under NLOS condition. This gave us n = 4000 for CDL
and TDL channels. For Winner II channels, as there was only one LOS and NLOS channel
model, we used a total of n = 1600 samples, meaning 800 samples/channel; this slightly
smaller number was chosen for the sake of reasonable simulation times, as the simulations
with Winner II channels are significantly slower than those under CDL and TDL channels.
The choice of the sample size is many times application and channel-dependent, not only
algorithm dependent; for example, the same ML algorithm may show different sensitivity
for different data. Additional discussions on how to set the size of the training data set can
be found, for example, in [47].

6. Measurement-Based Results
6.1. Measurement Setup

The in-lab measurements for LOS and NLOS were done using National Instruments
Universal Software Radio Peripheral (USRP), as illustrated in the setup in Figure 7. Three
USRPs (two NI USRP-2954R and one NI USRP-2953R) were set in a synchronized setup
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using an OctoClock CDA-2990 from National Instruments. One USRP was used as a
transmitter (TX) and the other two were used as receiver channels (RXs); two USRPs were
needed as the receiver antenna had 4 ports and each USRP had 2 ports only. One PC was
connected to all three USRPs, using one CPS-8910 and one PCIe adapter. LabVIEW 2021
was used as the software which provided the graphical user interface to and from the
USRPs. An 3DVA with eight ports was used as a receiving antenna, among which four
ports were connected to the two receiver USRPs (and four ports remained unused, as the
four channels were enough for our studies). The justification for using an 3DVA can be
found in our previous work in [2]. A Yagi antenna with 5 dBi antenna gain and a frequency
range between 700 MHz and 6 GHz was used as a transmitter. The measurements were
done at 2.1 GHz carrier frequency. Five different SRS 5G signals with different configuration
parameters were used for LOS and NLOS scenarios. For each SRS 5G signal, the I/Q data
was collected from the four-ports of the 3DVA in both LOS and NLOS scenarios.

(a)

(b)

Figure 7. (a) LOS and (b) NLOS in-lab setup with 5G SRS signals, Yagi antenna at the transmitter
and 3DVA at the receiver.

Examples of correlation outputs for ten measurements in LOS and ten measurements
in NLOS scenarios with SRS 5G signals are shown in Figure 8.
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Figure 8. Examples of correlation outputs for SRS signals with measurement data; (left): LOS
scenarios; (right): NLOS scenarios.

6.2. LOS Detection Results with Measurement Data

The LOS detection results with measurement data are shown in Table 8. In total,
100 measurements per LOS/NLOS scenarios were conducted and they have been split
into x% training data and (100− x)% test data, with x values between 80% and 10%, as
shown in Table 8. As expected, the more training data we have, the better the results.
Nevertheless, the results were consistently good even with 10% training data for XGBoost
and SVM algorithms. The Random Forest algorithm proved highly sensitive to the amount
of available training data (i.e., highly deteriorating in performance when the amount of
training data decreased). Therefore, RF is not a promising algorithm in the context of LOS
detection unless a large amount of training data is available.

Table 8. LOS detection accuracy ([%]) with measurement data and ML approaches; threshold based-
approaches are taken as a benchmark.

Algorithm 80% Training + Validation—
20% Testing

50% Training + Validation—
50% Testing

20% Training + Validation—
80% Testing

10% Training + Validation—
90% Testing

XGBoost 99% 99% 97% 94%

Random Forest 100% 95% 65% 55%

Medium Gaussian SVM 96% 92% 92% 91%

Threshold-based 72% 72% 72% 72%

6.3. Benchmark Results from Literature

As already mentioned in our introduction and state-of-the-art review, to the best
of our knowledge there are still very few published studies about LOS detection with
5G signals. This section compares our findings with the limited work reported in the
literature so far. Nevertheless, LOS detection has been studied in the literature so far
with various other wireless signals, such as UWB or WiFi. Table 9 shows five selected
comparative results reported in the literature so far, with two of them also studied in
a 5G context. As seen in Table 9, our obtained results are similar to or slightly better
than those reported in the literature so far. It is to be noticed that all the comparative
results we found on LOS detection are based on measurement data; we could not find any
comparative benchmarks for LOS detection relying on simulated data with TDL, CDL or
Winner II channels, therefore our paper gives a more comprehensive view of LOS detection
algorithms than what exists in the literature so far, by addressing both simulation-based
and measurement-based experiments.
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Table 9. Comparison with other results from the literature about LOS detection with 5G signals.

Reference Reported Results Comparative Notes

[12]
Up to 88% NLOS detection probability with
5G measurement data at 15 GHz carrier fre-
quency

The work in [12] focuses on positioning, not on LOS de-
tection and the measurement conditions are different from
ours, thus a direct comparison is hard to make. With our
measurement-based results, we got a minimum of 94% de-
tection probability with XGboost, even with only 10% of
training data

[14]

Between 91% and 99% LOS detection accu-
racy with V2V measurement data at 5.9 GHz
carrier frequency and about 50–50% split be-
tween training and testing data

The measurements in [14] included several scenarios and
the achieved LOS detection accuracy varied according to
the scenario; their maximum achieved LOS detection accu-
racy of 99% is comparable with our best achieved accuracy
with 50–50% data split, as seen in Table 8.

[19] Between 91.5% and 93.3% LOS detection accu-
racy with indoor 5G measurements at 3.5 GHz

These measurements are the closest to our measurements
in terms of carrier frequency and indoor scenario, yet the
percentages of training and testing data are not given in
[19] for a direct comparison. Our measurement-based
maximum detection probabilities ranged between 94%
and 100% for training data between 10% and 80% and thus
are outperforming the values reported in [19].

[9] Between 85% and 90% LOS detection accuracy
with measured WiFi signals

The results in [9] are not exactly comparable with our work
as they use different types of signals (WiFi and not 5G) but
their reported maximum accuracies are below what we ob-
tained with our measurement data and close to what we
obtained with our simulation-based data.

[11]
between 82.5% and 87.4% LOS detection ac-
curacy with measurements performed with
UWB signals and SVM and CNN classifiers

Our SVM-based accuracies reach 82%, 89%, 96% and 98%
with TDL, CDL, Winner II channels and 5G measurements,
respectively, so they are very promising also when com-
pared with UWB results.

6.4. Complexity Considerations

In terms of complexity, clearly, the threshold-based approaches are less complex than
ML approaches as they do not require complex operations and heavy training databases,
yet they do not reach the performance needed for LOS detection in applications such as
ATM. Among the considered ML approaches, it is generally understood that the XGboost
approach has the lowest complexity, followed by RF, and the SVM is the most complex
among the three. In terms of stability, the XGboost is also known to be more stable than
SVM [48]. Complexity numbers are shown in Table 10 [49], where n is the number of
training samples (e.g., in our case n = 4000 for TDL and CDL and n = 1600 for Winner II
simulations), p is the number of features (e.g., in our case 101 for time correlation features),
nt is the number of trees, which is an intrinsic parameter of the model, and nsv is the
number of support vectors, which is also an intrinsic parameter of the model.

Table 10. Complexity of the considered ML approaches.

Algorithms Training Prediction/Testing

XGBoost (typically lowest complexity) O(npnt) O(pnt)

RF O(n2 pnt) O(pnt)

SVM (typically highest complexity) O(n2 p + n3) O(pnsv)

Based on our results, XGboost has shown the best tradeoff between accuracy and
complexity and it is the recommended one, as discussed in the next section.

7. Conclusions

This paper analyzed and compared ML-based LOS/NLOS detection mechanisms
with 5G signals and scenarios. First, the most suitable feature-extraction transform to be
used with ML was found to be based on the time correlations between the 5G received
signal and the reference positioning codes, namely PRS in DL configurations and SRS in
UL configurations. Secondly, among the investigated ML approaches, the XGBoost and
the SVM with medium Gaussian kernels gave the best results with both simulated and
measurement-based data. By taking into account also the complexity and stability of the
algorithms, we recommend XGBoost with time-domain features as the main LOS detection
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algorithms with 5G signals. The simulations relied on three well-known channel models
for 5G signals: TDL, TDL, and Winner II channels. The TDL is the ’simplest’ one, in the
sense that it has a lower amount of features compared to CDL and Winner II, in terms of
antenna-array characteristics, of the channel propagation, and of the clustering profiles. In
order to obtain a good diversity of the results, we used ULA antenna array models in the
simulations and a 3DVA antenna for measurements and both gave consistent results. Due
to their simplicity, it was shown that TDL channels are the most challenging in terms of LOS
detection, with detection accuracy slightly worse than for CDL and Winner II channels.

The detection accuracies based on ML went as high as 98% for simulation-based data
and 100% for measurement data. The studied ML approaches showed significantly better
performance (up to 28% better) than the threshold-based approaches. The better accuracy
in the measurement-based data than in the simulated-based data is explained by the higher
SNR in the measurement data (i.e., SNR greater than 10 dB, due to measurements and
calibration conditions), while the simulation-based results were given as the average values
over a variable SNR, ranging between −20 dB and 0 dB.

The in-lab measurement datawas also made available in open access at [50,51]. Further
research will focus on integrating the LOS detection blocks into the 5G-based airport
surveillance solutions in order to improve their positioning and sensing performance.
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Abbreviations
3DVA 3-dimensional vector antenna
5G Fifth generation of cellular communications
4G Fourth generation of cellular communications
ANN Artificial Neural Networks
AoA Angle of Arrival
ASMGCS Advanced Surface Movement Guidance and Control Systems
ATM Air Traffic Management
AWGN Additive White Gaussian Noise
BS Base Station
CDL Clustered Delay Line
CIR Channel Impulse Response
CNN Convolutional Neural Networks
CSIRS Channel Status Information Reference Signal
DL Downlink
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
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FFT Fast Fourier Transform
GI Guard Interval
GNSS Global Navigation Satellite Systems
LOS Line of Sight
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
ML Machine Learning
MLAT Multilateration
MUSIC MUltiple SIgnal Classification
MVDR Minimum Variance Distortion-less Response
NLOS Non Line of Sight
NN Neural Networks
NR New Radio
OFDM Orthogonal Frequency Division Multiplexing
PRS Positioning Reference Signals
QAM Quadrature Amplitude Modulation
RF Random Forest
RSS Received Signal Strength
SIMO Single Input Multiple Output
SISO Single Input Single Output
SMR Surface Movements Radar
SNR Signal to Noise Ratio
SRS Sounding Reference Signals
SVM Support Vector Machines
ToA Time of Arrival
TDL Tapped Delay Line
TK Teager-Kaiser transform
UE User Equipment
UL Uplink
ULA Uniform Linear Array
UWB Ultra Wide-Band
V2V Vehicle-to-Vehicle
USRP Universal Software Radio Peripheral
3DVA 3D vector antenna
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