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Abstract
Building physical simulation software rely on assumptions regarding the local equilibria
in materials’ pore systems, which may be unjustified for certain materials. While local
hygrothermal non-equilibrium has still been in focus in some previous studies, it has
been unclear how significant factor it may be when modeling real structures. In case of
wood, the non-equilibrium is related to the slowness of intrusion of water molecules
into the hygroscopic cell walls. Including local non-equilibrium in macroscopic model
requires separate variables for pore air vapor and adsorbed moisture, and modeling the
local mass transfer between pore air and adsorbed moisture requires effective material
parameters, whose experimental determination is not straightforward. Commercially
available sorption balances can be used to record data, which can be used in the para-
meter estimation. In this type of problem of parameter estimation from time-dependent
data the mathematical challenge is to find global optimum from different solutions,
which yield similar values for objective function. This difficulty can be overcome by using
statistical inversion approach, which we applied in studying low-density woodfibre mate-
rial (LDF). Dynamic sorption parameters were finally applied in numerical analysis of a
laboratory test assembly. Based on the results, our conclusion is that the slowness of
sorption is obvious in small LDF sample, which is exposed to changing humidity, but
with the studied material the sorption seem to happen fast enough so that local non-
equilibrium may have only slight effects in modeling of real structures.
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Introduction

Long-term moisture-induced deterioration of materials and structures in buildings
is possible even when they are built with careful workmanship, if the envelope sys-
tems are ill-designed. Poor indoor air quality and its adverse effects on health is an
ongoing topic and concern in Finland, and especially the occurrence of molds in
structures is considered by many as a wide-ranging problem within building stock.
While considered as an ecological choice, organic materials such as wood, wood-
based boards, and cellulose insulation materials are however typically more suscep-
tible to act as a platform for mold growth than inorganic building materials
(Ojanen et al., 2010). Designing durable structures, where wood and wood-based
materials (and possibly other organic building materials) are used, requires thus
more pronounced attention and carefulness. While being more susceptible to biolo-
gical damages, fibrous wood-based materials have usually high hygroscopic moist-
ure capacity, which makes their moisture-physical behavior intriguing when used
in structures such as exterior walls where the surrounding hygrothermal conditions
change constantly. One example of typical and significant application of permeable
organic material in envelope structures is the sheathing layer in light-weight exter-
ior walls, where chemically treated or untreated wood fiberboard is often used as
the protective rigid layer against effects of wind on thermal insulation layer. Light-
density wood fiberboards (LDF) are typically thermally insulating to certain
degree and have small vapor diffusion resistance factor, which are both in general
beneficial properties for the sheathing purpose. Large thermal resistance in sheath-
ing helps keeping the conditions behind the sheathing warmer and less humid.
Small vapor diffusion resistance is favorable since it allows possible excess moist-
ure to dry out through the sheathing from the insulation layer within which the
load-bearing wood frame is also located (Vinha, 2007). Experimental results show
that hygroscopic sheathing layer can thus act as a buffer, which can attenuate the
dynamic changes of RH in insulation layer if properly protected from rain (Vinha
and Käkelä, 2000).

Because of the wood-based materials’ sensitivity to biological deterioration,
structures with wooden materials should undergo reliable hygrothermal analysis
before they are constructed. Numerical modeling may allow evaluation of long-
term durability of different structural options in reasonable time, but validation
studies of the available simulation software has shown also problems in the simula-
tion of certain type of structures, where wood-based materials are in significant
role (Laukkarinen and Vinha, 2011). In general, several factors are known to cause
discrepancy between hygrothermal simulation results and reality. Perhaps the most
obvious cause of error is the inaccuracies in the material properties, which was
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studied by Yamamoto and Takada (2022). Also, because numerical simulation
consists of vast number of details related to for example, numerical methods, dis-
cretization and treatment of tabulated nonlinear material properties, the choice of
simulation program has also certain effect on the results (Defo et al., 2022).
However, lesser attention is often paid to the fact that the simulation of combined
heat and moisture transfer in building physical examinations rely typically on local
equilibrium assumption, which allows using only one variable to determine the
local state of water in the material. This may yield inaccurate results in dynamic
situations where there are for example, diurnally cyclical changes in surrounding
temperature and humidity conditions. In this type situation the relative humidity
inside wood-based porous material may have larger diurnal changes than what
simulation predicts. The reason may be in local non-equilibrium: with local equili-
brium assumption a change of relative humidity in certain point means also a
change in adsorbed moisture, which means that both the transfer of water between
adsorbed moisture and pore air humidity at local level and between the pores in
macroscopic scale must happen very fast. If local non-equilibrium is allowed in the
simulation model, local relative humidity may have rapid changes without immedi-
ate changes in adsorbed moisture. While in non-equilibrium, non-zero local rate of
sorption (exchange of water between pore air humidity and adsorbed moisture
kg=(m3s)) must take place. Modeling of the rate of sorption can be done with
slightly different approaches as is discussed in the next section. In this paper we
apply relatively simple models for taking into account the local non-equilibrium
and show a mathematical method for determination of the required effective mate-
rial parameters for LDF sheathing board using sorption balance (also called
dynamic sorption analyzer). Non-equilibrium models are finally applied in new
numerical analyses of old laboratory test of exterior wall type, which was exposed
to dynamically changing temperature and humidity conditions and which has
shown in previous studies to be challenging to model with accurate results.

Background: Moisture storage and sorption in wood

The hygroscopic properties of wood—that is, the ability to adsorb water molecules
from humid air—are caused by the hydrophilic functional groups in the main
ingredients of wood, which are cellulose, hemi-celluloses, and lignin (Wiemann,
2010). In organic chemistry the term functional groups refers to the parts of mole-
cules, which are responsible for the specific behavior when other compounds inter-
act with them. Significant moisture storage in wood even in relatively low vapor
pressure is explained by the process of water attaching to hydroxyl groups in cellu-
lose, hemi-celluloses, and lignin by forming hydrogen bonds (Rowell, 2013). When
the moisture content increases enough, all the hydroxyl groups are eventually occu-
pied by water. After that point (the so called fiber saturation point, FSP) the
increase of moisture content means that liquid water is present in the lumina (the
tubular cavities of tree cells) (Skaar, 1988). The liquid water is sometimes referred
to as free water and the water adsorbed by the cellulose and hemi-cellulose is
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referred to as bound water. For common species the FSP is usually reported to be
around moisture content 25%–30% by weight (Rowell, 2013). According to the
NMR spectroscopy technique based measurements of Telkki et al. (2013) the FSP
of Scots pine and Norway spruce is clearly above 30% by weight. According to
gravimetric sorption measurements presented in Engelund et al. (2010), equili-
brium moisture content (EMC) of untreated pine at 90% RH is under 25% by
weight in both desorption and adsorption curves. Because vast majority—roughly
90%—of trees in Finland are either Scots pines or Norway spruces (Metla, 2012),
and because the studied LDF is a by-product from several different processes of
Finnish wood processing industry, we assume that the LDF consists mainly of pine
and spruce and therefore no liquid water is present below 90% RH. In this work
we carried out experiments clearly below 90% RH, where the adsorbed moisture is
bound water and can be thus released (i.e. desorbed) or adsorbed more slowly than
free water, which means that the effects of local non-equilibrium are pronounced
at humidities lower than FSP.

Materials and methods

If the local equilibrium is assumed in the simulation model, the conservation of
water—both the water vapor and the adsorbed moisture—can be expressed in sin-
gle equation by utilizing the following identity (Künzel, 1995):

∂w
∂t
= j(u) ∂u

∂t
ð1Þ

The differential moisture capacity j(u) is defined as the derivative of sorption iso-
therm function with respect to relative humidity u. The assumption can be inter-
preted as that the local rate of sorption is always as fast as needed for holding the
equilibrium between vapor and adsorbed moisture regardless of the possibly chang-
ing temperature and humidity. However, in case of wood, local exchange of water
between bound water and pore air humidity may be considerably slow process.
Especially at relatively low temperatures—such as in the room temperature ranges
or lower—the movement of moisture inside cell walls has only small contribution
in the total, bulk moisture transfer (Skaar, 1988). When using vapor concentration
as potential for vapor diffusion, the stagnant air in lumina has diffusion coefficient
around 2:5 � 10�5m2=s, but much smaller value, 8:43 � 10�8m2=s, was used for cell
walls in the cellular level modeling of moisture transfer in the study of Absetz
(1999). In addition to the slowness of cell wall diffusion, other mechanisms have
also effect on the sorption kinetics inside wood and actually no current theoretical
model can explain the sorption process in wood satisfactorily (Thybring et al.,
2019). However, it is now understandable that dynamic change in the lumen air
humidity may cause temporary local non-equilibrium between lumen air vapor and
moisture in the cell walls, because during the settling into new equilibrium the
water from lumen’s vapor has to fill evenly the cell walls by slowly diffusing inside
them.

402 Journal of Building Physics 46(4)



In macroscopic modeling the non-equilibrium can be taken into account with
slightly different mathematical approaches and with varying levels of complexity.
Our approach in this paper is to divide the local moisture capacity into finite num-
ber of interconnected moisture storage nodes, which yields mathematically a rela-
tively simple model for building physical simulation. We refer to as parallel or
serial models which were applied in this study and where the nodes are arranged
either in parallel or in serial. These models are illustrated in Figure 1. Equations
for conservation of water are shown in Table 1 (n =water vapour concentration in

pore air (kg=m3), C0 =open porosity ( � ), weq =equilibrium moisture content
(kg=m3) and wi =moisture at node i (kg=m3)). The k- and a-parameters are
effective material parameters: the rate of sorption coefficients (k) describe the trans-
fer of water between pore air and internal nodes, and a-parameters are the fractions
describing the distribution of moisture capacity between different nodes. For a-
parameters must hold: ai = 0:::1 and Sai = 1. Total moisture content, which can
be measured for example, by gravimetric method, is computed by w = Sai � wi.
Our approach is a relatively simple way of modeling dynamic sorption, and the
serial model used in this study has resemblance to the model used by Håkansson
(1998). Other possible and interesting approaches are for example the model used
by Korjenic and Bednar (2011), where fibers of MDF-material (medium density
fiberboard) were assumed to be perfectly cylindrical and the fibers were discretized
in finite number of ring segments with uniform diffusivity. Rather different mathe-
matical approach was presented by Challansonnex et al. (2019) where the delay in
the change of moisture content is modeled in fiberboard by using convolution of
so-called memory function. Moreover, when modeling unprocessed wood, in addi-
tion to the local rate of sorption the cell wall diffusion can be taken into account to
improve the accuracy of models (Krabbenhøft, 2004). Empirical evidence also sug-
gests that dynamic effects in the balance between adsorbed moisture and pore air
vapor may be a relevant issue even in many cement-based materials (Janssen et al.,
2016; Saeidpour and Wadsö, 2015). Because direct measurement of local rate of
sorption inside porous material is at least very difficult if not entirely impossible,
the effective sorption-related parameters must be estimated by time-dependent
model fitting approach, which in simplified terms means that the modeling errors
against measurement data are minimized by searching optimal model parameters,
which in this case are material parameters. This can be done either by a suitable
global optimization method (as was done by Challansonnex et al. (2019)) or by a
statistical inversion technique, which we utilize in this paper.

A sorption balance (also called dynamic vapor sorption analyzer (DVS)) manu-
factured by Surface Measurement Systems Ltd. was used (model: DVS 1
Adventure) to obtain empirical data for the dynamic sorption behavior of LDF-
material. Purpose of such DVS-devices is to record gravimetric data with highly
accurate microbalance during hygrothermally dynamic processes, where the sorp-
tion rate in a small sample changes. Such devices are also suitable for the study of
wood and wood-based materials (Naderi et al., 2016). Sample is held in a weighing
pan, which is located in a chamber, where air flows around it (200 cm3=min) and
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Figure 1. Left, top: Illustration of the wooden strands inside a differential sized representative
elementary volume of LDF. Right, top: Illustration of the interpretation of parallel and serial
dynamic sorption models with three internal nodes. Bottom: Illustration of the mathematical
connections in parallel (left) and serial (right) models.

Table 1. Equations for conservation of water vapor and adsorbed moisture in parallel and serial
dynamic sorption models with n internal nodes.

C0
∂n
∂t = �r � gdiff � _mn

Parallel: Serial:

_mn =
Pn
i = 1

ki � weqðuÞ � wi

� � _mn = k1 � weq(u)� w1

� �

ai
∂wi

∂t = ki � weq(u)� wi

� �
a1

∂w1

∂t
= k1 � weq(u)� w1

� �
a2

∂w2

∂t
= k1 � w1 � w2ð Þ � k3 � w3 � w2ð Þ

an�1
∂wn�1

∂t
= kn�2 � wn�2 � wn�1ð Þ � kn � wn � wn�1ð Þ

an
∂wn

∂t
= kn � wn�1 � wnð Þ
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the air temperature and humidity are controlled accurately. In this study we used
constant temperature (20 8C) and subjected small LDF sample (mass roughly
30mg, size 53 53 5mm) to different step changes in relative humidity. Two
photographs of the material are shown in Figure 2 (cube-shaped block in the left
photo is larger than what was used in the DVS-tests). Illustration of the DVS ana-
lyzer’s system schematic and photographs of the equipment are shown in Figure 3.

Figure 2. Left: A block (approximately 1 cm3 of LDF on a small microscope plate. Right:
Photograph of the material through low magnification optical microscope.

Figure 3. Left: Microbalance and the sample and reference chambers inside the equipment’s
incubator. Right: Sample in a weighing pan in the sample chamber, hanging from the microbalance.
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Average density of the material is 280 kg=m3 as reported by the manufacturer.
As can be seen from the photographs, LDF consists of thin and tortuous wood
strands, whose average thickness is difficult to estimate. However, since they are
clearly visible with naked eye the strands are much thicker than single tracheids,
whose average diameter in Baltic pines is around 30 mm (Irbe et al., 2013). Because
of the thinness and tortuosity of the fibers and the slowness of diffusion in wood
cell walls, vapor diffusion in LDF pore air is the only included mechanism for bulk
moisture transfer in the models. Parallel and serial models containing 1–3 nodes
tested in this study are interpreted as moisture-physical systems, where the fibers
are discretized either as finite number of proportions of fibers with certain effective
diameters (parallel model) or as finite levels or depths to which the molecules are
adsorbed inside the fibers (serial model, see Figure 1).

Parameter estimation

DVS test procedure started by keeping the sample in 0% RH conditions for 12 h
to determine the dry mass. Before the test, sample was held for several months in a
climate room where temperature and humidity were held almost constant (20 8C,
50% RH). After the initial dry period in the DVS-test, the EMCs (weq) at 50%,
60%, and 70% RH were determined with 12h steps. After the 70% RH step the
sample was kept again in 50% RH for 12h before the actual dynamic test, which
had three phases where the sample was subjected to different 15min step-changes
between the values 50%, 60%, and 70% RH:

� Phase 1: Step-changes between 50% RH and 60% RH
� Phase 2: Step-changes between 50% RH and 70% RH
� Phase 3: Step-changes from 60% RH to 70% RH, back to 60% RH, to 50%

RH and back to 60% RH

Data logging interval in the DVS was 10 s.
The parameter estimation in least-squares sense is fundamentally based on the

numerously repeated evaluation of the objective function for which we would like to
find global minimum and corresponding argument:

F(x)=
Pl

i= 1

Yi � mi(x)½ �2 ð2Þ

where

� F(x) = Objective function; Sum of the squared discrepancies between mea-
surements and numerical results.

� x = Vector containing the material parameters, which determine the compu-
tational solution.

� Yi = Measured value of the sample mass at time i.
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� mi(x) = Corresponding computed value at time i.
� l = Number of measurements (time-steps).

Evaluation of the objective function requires computation of the solution for the
time-dependent problem, where the mass of the sample inside DVS evolves during
the test. Equations shown in Table 1 form a system of partial differential equations
(PDE), which can be solved numerically. However, numerical solving of such
PDE-problem with spatial gradiants is heavy task even for small and simple mate-
rial sample, if tens or even hundreds of thousands of solutions are required to be
obtained in reasonable time for different parameter sets. Therefore, it is necessary
to simplify the problem by assuming that the diffusion of water vapor inside the
sample is very fast and that the sample behaves like a pointlike object.
Mathematical problem reduces thus to an initial value problem governed by a set
of ordinary differential equations (ODE), where the time-dependent relative
humidity u inside pores is given and only moisture contents wi need to be solved.
All the ODE-solutions were computed by using Python-library Scipy’s (version
1.2.1) function scipy.integrate.solve_ivp with LSODA-algorithm (Jones et al.,
2001).

Straightforward approach would be to use some robust optimization method to
find parameter set, which minimizes the objective function. The parameter estima-
tion was first attempted by using different population-based derivative-free global
optimization methods. Results of these attempts are not elaborated here, but we
note that the tried algorithms stuck repeatedly at different local minima, which is
problematic and unsatisfactory result. This issue had to be dealt with and the solu-
tion was to change the mathematical point of view. Instead of seeking the abso-
lutely best fit, we can seek for the most probable parameter set in light of
measurements and a priori knowledge by approximating the posterior probability
density defined by the Bayes’ rule:

p(xjY )}p(Y jx) � ppr(x) ð3Þ

where

� p(xjY ) = posterior distribution, that is,, probability density function (PDF)
for the parameters x given that we have realized measurements
Y = ½Y1, Y2, :::, Yl�T

� p(Y jx) = likelihood for the measurements Y given that the parameters are x
� ppr(x) = prior PDF of parameters x

In this study we used a simple Gaussian likelihood model, which resembles the
least-squares objective function:

p(Y jx)= exp � 1
Z

Pl

i= 1

Yi � mi(x)½ �2
� �

ð4Þ
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Z is a variance parameter whose meaning and correct value is discussed later in the
paper. The used prior function, ppr(x), was unity, since we didn’t have much before-
hand knowledge even about the order of the magnitude of the parameters. This
parameter estimation method is nevertheless based on Bayesian inference of the
measurement data since we hard-coded some a priori knowledge of the parameters
in the sampling algorithm: The parameters must be non-zero and positive.

Approximation or ‘‘drawing’’ of the posterior probability p(xjY ) was done by
using following random walk implementation of Metropolis-Hastings algorithm,
which belongs to Markov Chain Monte Carlo methods (MCMC) and is applicable
when we cannot compute directly the posterior values, but we can compute values
proportional to it (Kaipio and Somersalo, 2005; Liu, 2008):

� Pick a start point for x and calculate f (x) (in this case: p(Y jx)).
� Draw a random candidate for a new point, x0= x+ e, where e is drawn ran-

domly from N (0, gI). Variance g is chosen by user and it controls the ‘‘range
of exploration’’.

� Draw random u from uniform density, U (½0, 1�).
� Compute the ratio: a= f (x0)=f (x).
� If a.u, accept the x0 as new x, store it and go to step 2 (or terminate itera-

tions, if desired amount of accepted steps have been obtained). If a\u, reject
x0 and go back to step 2.

Here, in principle, x= ½k1, k2, :::, kn, a1, a2, :::an�. Based on preliminary numerical
experiments we saw that for example, for 1-node model the best fitting value for k1

is near exp (� 6)’0:0025 1=s. We used logarithmically scaled parameter space for
k-parameters and constrained the search within region of interest (ROI):
k�i = ½3:::15� where k�i = � ln (ki). The random walk was thus carried out by using:
x= ½k�1 , k�2 , :::, k�n , a1, a2, :::an�. The ROI prior was implemented in the algorithm by
not allowing the algorithm to propose improper values (random candidates outside
of ROI were rejected in the step 2 until a proper candidate was proposed at ran-
dom). Because of the constraint for a-parameters (see Table 1), writing a suitable
proposal function for random candidates for ai required also special attention.
New acceptable but randomly proposed value for a= ½a1, a2, :::, an� can be gener-
ated by generating first n� 1 random values between 0 and 1. These values are
sorted and a�dir is then defined as the spans between 0, 1 and the randomly generated
values. This guarantees that the sum of the elements of a�dir is 1. a�dir is generated
twice every step and we define the direction for new a as adir = a�dir, 1 � a�dir, 2 which
guarantees that the sum of the elements of adir is 0. New values for a-parameters are
then generated by normalizing the length of the direction vector adir and multiplying
it with random distance D drawn from N(0, g) and adding to the previous a:

a0= a+D � adir

jadirj2
ð5Þ

Equation (4) is a Gaussian probability density for variables which are indepen-
dent and identically distributed. In our case, it is obvious that the variables
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(measured and numerically solved masses of the sample) for different time-steps
are not independent and some complex covariance structure exists over the whole
time span under inspection. Application of Gaussian likelihood is thus, strictly
speaking, theoretically unjustified, but because of the overwhelming complexity
related to the cumulativeness of the variables, theoretically exact likelihood model
is very difficult to derive. However, in this type of time-dependent inverse problem
the Gaussian likelihood model may produce useful results and it has been previ-
ously used successfully in similar time-dependent parameter estimation problems
for differential equations in the studies of for example, chemical reaction rates and
systems biology as presented in Girolami (2008) and Pullen and Morris (2014).

The results from parameter estimation implemented in Python were finally used
in new FEM-simulations of previously performed laboratory work originally
reported in Vinha (2007) and analyzed further in Laukkarinen and Vinha (2011).
The structure consisted of following layers from inside to out:

� Gypsum board, 13mm
� Bituminous paper
� Cellulose-insulation, 173mm
� LDF-board (sheathing), 25mm

Strong dynamic sorption behavior in local non-equilibria in the sheathing has been
previously speculated as one possible cause for the poor agreement between numer-
ical results and relative humidity measurements (Vaisala HMP233) from the inter-
face between LDF-board and thermal insulation layer. Due to lack of space the
numerous details related to the modeling of the structure cannot be elaborated here
in all details. Structure was modeled as 1D-geometry in Comsol Multiphysics with
85 quadratic elements and using 900 s as maximum limit for the time-steps. The
dynamic sorption models were applied by using Coefficient form PDE module for
the sheathing domain (dynamic models) and the built-in Building Materials -mod-
ule for the rest of the domains. Same material properties and boundary conditions
were used as in Laukkarinen and Vinha (2011), except the liquid water transport in
the sheathing was neglected. In Figure 4 is shown illustration of the building physi-
cal research equipment (left) and the time-dependent conditions in the test program
used in the laboratory test.

Results

For the 2- and 3-nodes models the random walk sampling was carried out more
than once using the information obtained from the first sampling as a new prior
knowledge in the later samplings, which are referred to as refined samplings. By
samples in this context we mean the points visited by the random walk and by sam-
pling the random walk process of collecting enough samples to draw the distribu-
tion. Results for 1-node model parameter samples are shown in Figure 5. Examples
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of the results from initial independent samplings of 2-nodes serial model are shown
in Figures 6 and 7. Figures show normalized histograms of the visited points in the
parameter space by the random walks, and they are interpreted as the approxima-
tions of marginal probability density functions of the studied parameters, that is,
posterior probabilities for individual parameters when other parameters related to
the same model are not known.

Maximum value of the marginal density is defined as the maximum a posterior
estimate (MAP) of the parameter (shown with red vertical line in the later figures)
and ‘‘center of gravity’’ of the marginal density is the conditional mean estimate
(CM, shown with black vertical line in the later figures). Although the marginal

Figure 4. Left: Illustration of the building physical research equipment (Vinha, 2007). Right:
Time-dependent temperature and humidity conditions used in the building physical equipment
test program.

Figure 5. Normalized marginal density for 1-node model parameter. MAP estimate for k1 =
0.001967 1/s (k�1= 6.23).
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densities have distinctive shapes, the approximation contains some saw-edgedness
due to numerical imperfections, which are inherently related to Monte Carlo meth-
ods. However, the final results and related histograms were visually judged to be
smooth enough in order to apply the meaningful computations of MAP and CM
estimates. MAP estimates were assessed by fitting 10-degree polynomial to the mar-
ginal densities and solving maximum value from the polynomial fit. This can be
seen in for example, Figure 5 where the red vertical line (MAP estimate) does not
pass through the visibly highest peak in the distribution.

There are no unambiguous rule for which estimate is better in general in
inverse problem solutions (Kaipio and Somersalo, 2005). All the random walks

Figure 6. Normalized marginal densities for 2-nodes serial model parameters (Initial sampling,
example 1).

Figure 7. Normalized marginal densities for 2-nodes serial model parameters (Initial sampling,
example 2).
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presented in this paper were computed independently five times in parallel and
the resulting distributions were inspected visually. Because of the lack of space
we cannot show all the results, but by comparing Figures 6 and 7 we can see that
the random walker obviously reached similar distributions with 100,000 itera-
tions. The used range of exploration parameter for the log-scaled k�-parameters
was g = 1:0 and for a-parameters g = 0:1. These parameters were determined by
doing preliminary computational experiments with the random walks and were
chosen so that the accept/reject-rate (AR) in the Metropolis-Hastings algorithm
would be 0.25...0.35, which is a rule of thumb for suitable AR so that the random
walk steps are large enough to cover the whole search space, but not too large so
that possibly complex regions in the search space will be also studied densely
(Kaipio and Somersalo, 2005).

Realized AR-rates in all the initial samplings were 27.5% on average (from
25.9% to 29.5%), but in the refined samplings, using same range of exploration -
parameters they were typically much higher, over 50% in some cases. A standard
procedure in the random walk implementations is to throw away certain number
of first iterations, since they do not likely represent well the final stationary distribu-
tion (Liu, 2008). First 5000 accepted steps were rejected as the ‘‘burn-in sequence’’.
This means that the histograms for marginal densities in the initial samplings are
drawn from approximately 20,000–25,000 accepted steps. Total number of steps
before algorithm termination was 100,000.

Value used for the variance parameter Z was 1.0 in all computations. If the vari-
ables in equation (4) were truly independent and identically distributed, the value
of Z should be equal to 2 � s2, where s is the standard deviation of the measure-
ment error. In this case, the measurement error of the DVS-analyzer’s balance is in
the order of magnitude of micrograms (the values in the objective function is milli-
grams). Smaller values for Z were tried, but it was seen quickly that the random
walker cannot get practically any acceptable proposal steps, if there is such small
value for Z in the likelihood function. We interpret this finding so, that when using
Gaussian likelihood model for time-dependent objective function, the variance
parameter Z requires similar trial-and-error experimenting like when choosing suit-
able range of exploration-parameters for the random walk sampling.

In Figure 8 are shown the marginal densities for parameters obtained by initial
random walk sampling for 3-nodes parallel model. The resulting distributions are
logical and expected, since the parallel nodes behave all equally. In Figures 9 and
10 are shown the results from refined sampling of 2-nodes serial and parallel models
and in Figure 11 are shown the results from refined sampling of 3-nodes parallel
model. The value for k1 is not sampled any more in the refined sampling (distribu-
tion from initial sampling is shown in gray) and the MAP estimate was used while
samples for three other parameters were drawn by the random walker (sampling).
The resulting distributions from the refined samplings are quite similar to the initial
sampling, but more smooth. Pairwise 2D marginal density plots of initially sampled
parameters from 2-nodes and 3-nodes serial models are shown in Figures 12 and
13. From the figures can be seen that the posterior distributions may be multimodal,
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that is, have several local maxima, where different global optimization algorithms
may get permanently stuck before finding the globally optimal point in the para-
meter search space. Also, from Figure 13 can be seen that the deeper nodes we are
interested in, the more difficult it is to obtain information from data, which consists
of only total weights of material sample at different time-steps. The resulting values
for MAP and CM estimates from all the samplings are shown in Tables 2–5.

In Figures 14 and 15 are shown the time-dependent curves of the three-phase
DVS-tests: the measured masses and numerically solved masses while using differ-
ent dynamic sorption models and different parameter estimates (MAP and CM).
The most obvious observation is that the CM estimate for both 2- and 3-node

Figure 8. Normalized marginal densities for 3-nodes parallel model (initial sampling).

Figure 9. Normalized marginal densities for 2-nodes serial model (refined sampling).
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parallel models (dark yellow line) is a poor choice. In the large area of different
types of inverse problems the CM estimate is often characterized as more robust
than MAP (Kaipio and Somersalo, 2005), but clearly in this case, MAP estimate is
better since the consideration of long tails in the distributions seem to distort the
estimation rather than improve it. In Figure 16 are shown also the relative humid-
ity in the DVS, measured masses and numerical results from the dynamic sorption
models (only MAP estimates) applied in the PDE-simulation of the sample as a
cube in Comsol Multiphysics. As a comparison, results from model using local
equilibrium (LE) assumption are also shown. From the results can be easily seen
that the dynamic sorption models are clearly better than LE model when modeling

Figure 10. Normalized marginal densities for 2-nodes parallel model (refined sampling).

Figure 11. Normalized marginal densities for 3-nodes parallel model (refined sampling).
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Figure 12. Pairwise 2D marginal density plots of the parameters of 2-nodes serial model
(initial sampling).

Table 2. 2-nodes parallel model, MAP and CM parameter estimates from marginal
distributions.

k�1 k1 k�2 k2 a1 a2

2 parallel nodes, MAP estimates

Initial 6.37 1.72e-3 6.36 1.73e-3 0.76 0.23
k1 prior 9.24 9.70e-5 0.81 0.18
2 parallel nodes, CM estimates
Initial 8.06 3.17e-4 7.96 3.51e-4 0.50 0.50
k1 prior 10.36 3.17e-5 0.76 0.24

Table 3. 2-nodes serial model, MAP and CM parameter estimates from marginal distributions.

k�1 k1 k�2 k2 a1 a2

2 serial nodes, MAP estimates

Initial 6.20 2.03e-3 6.12 2.20e-3 0.77 0.22
k1 prior 4.80 8.23e-3 0.80 0.19
2 serial nodes, CM estimates
Initial 6.10 2.24e-3 8.33 2.42e-4 0.61 0.39
k1 prior 8.57 1.89e-4 0.69 0.31
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numerically the small sample, and that the effect of vapor diffusion is relatively
small for the tested sample, since the modeled results from pointlike models and

Figure 13. Pairwise 2D marginal density plots of the parameters of 3-nodes serial model
(initial sampling).
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cube models are both close to the measurements. A cautious conclusion may be
drawn at this point that because numerical models predict faster mass change rates
than measured in test phase 2 (step-changes between 50% and 70% RH) and on
the other hand numerical models predict slower mass change rates in test phase 1
(step-changes between 50% and 60% RH), the intrusion of water molecules
becomes the slower the more the fibers have already adsorbed moisture. This may
mean that instead of—or in addition to—discretizing the moisture capacity into
several nodes it may be necessary to introduce also new coefficients, which describe
the moisture content dependency of the sorption rate parameters.

In Figures 17 to 19 are shown the results of the modeling of old laboratory test
wall. Reference point, which the curves describe, is the interface between LDF-
sheathing and insulation layer. With 1-node model the modeling was done with
using MAP estimate for sorption rate coefficient and, for the sake of curiosity,
with smaller arbitrary values also. In general, the dynamic sorption models seem to
improve the agreement between measurements and numerical modeling, but only
very slightly, and the results are still not at satisfactory level. Toward the end of
the spring phase of the test conditions the measured relative humidity show stron-
ger diurnal fluctuation than any of the simulations—except for the 1-node model
where an arbitrarily small and probably unrealistic value for sorption rate coeffi-
cient (k= 1e-6) was used. Not much more can be concluded from the laboratory
wall simulations, since the test structure contained also cellulose insulation

Table 5. 3-nodes serial model, MAP and CM parameter estimates.

k�1 k1 k�2 k2 k�3 k3 a1 a2 a3

3 serial nodes, MAP estimates:

Initial 6.16 2.11e-3 5.64 3.56e-3 11.16 1.42e-5 0.71 0.06 0.12
k1, k2 priors 6.16 2.11e-3 4.68 9.28e-3 11.76 7.81e-6 0.22 0.45 0.17
3 serial nodes, CM estimates:
Initial 5.99 2.50e-3 7.27 6.94e-4 9.20 1.01e-4 0.50 0.28 0.22
k1, k2 priors 5.99 2.50e-3 7.20 7.49e-4 9.46 7.81e-5 0.35 0.42 0.23

Table 4. 3-nodes parallel model, MAP and CM parameter estimates.

k�1 k1 k�2 k2 k�3 k3 a1 a2 a3

3 parallel nodes, MAP estimates:

Initial 6.60 1.36e-3 6.60 1.36e-3 6.60 1.36e-3 0.07 0.13 0.11
k1, k2 priors 6.60 1.36e-3 7.68 4.62e-4 11.52 9.93e-6 0.49 0.21 0.11
3 parallel nodes, CM estimates:
Initial 8.33 2.41e-4 8.53 1.98e-4 8.39 2.26e-4 0.33 0.34 0.33
k1, k2 priors 8.33 2.41e-4 9.50 7.45e-5 10.29 3.40e-5 0.52 0.29 0.19
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material, which may due to cellulosic origin have also dynamic sorption character-
istics. More experimental work is required in order to evaluate the suitability,
necessity or usefulness of the studied dynamic sorption models in numerical analy-
ses of real-scaled structures.

Discussion

Dynamic sorption and improving the hygrothermal models for wood and other cel-
lulosic materials is an active topic in research. Different types of mathematical
improvements have been proposed in recent years for numerical models. However,
introducing several new parameters in the model equations may yield a formidable
model fitting problem when the new parameters are attempted to be estimated from
time-dependent gravimetric data. In such cases, global optimization approach even
with vast computational resources may be ineffective because of the multimodality

Figure 14. Measurements (black) of the sample mass and corresponding 2-nodes model ODE-
solutions in DVS-test. Green = Parallel nodes (MAP), Olive = Parallel nodes (CM), Red = Serial
nodes (MAP) and Blue = Serial nodes (CM).
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of the objective function. A more robust approach may be statistical inversion as
presented in this paper, which is relatively easy to implement with random walk
Metropolis-Hastings algorithm. However, there are certain open questions related
to for example, suitable likelihood model and proper effective variance parameter
values in the implementation of the algorithm. The statistical inversion method
applied in this paper could be possibly useful also in other building physical mate-
rial studies, where the measurable time-dependent data contains information about
certain moisture transfer or storage related parameters, but which are very difficult
to solve directly from the measured data.

Conclusions

By comparing the measurements, conventional modeling results and new numerical
analyses with dynamic sorption models we can see that essential improvement in
the results for the analysis of real-scaled laboratory test wall could not be achieved

Figure 15. Measurements (black) of the sample mass and corresponding 3-nodes model ODE-
solutions in DVS-test. Green = Parallel nodes (MAP), Olive = Parallel nodes (CM), Red = Serial
nodes (MAP) and Blue = Serial nodes (CM).
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Figure 16. Measurements (black) of the sample mass and corresponding PDE-solutions (cube
model in Comsol, MAP estimates used in dynamic sorption models) in DVS-test. Grey = Local
equilibrium model, Green = 2 parallel nodes, Olive = 2 serial nodes, Red = 3 parallel nodes and
Blue = 3 serial nodes.

Figure 17. Relative humidity in the reference point of old laboratory test wall according to the
measurements and 1-node model with different parameters.
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by using dynamic sorption models for the LDF sheathing board. However, the
numerical analysis of the sample studied in the DVS-analyzer show clearly observa-
ble slowness in the sorption and the corresponding development of the sample’s
mass, which the local equilibrium model fails to predict. These observations may
imply that the slowness of sorption in the studied LDF-material is significant
enough to be measured and simulated numerically with satisfactory accuracy, but
the dynamic effects due to the slowness occur in such small time scales that it may
be negligible in many building physical studies, where the conditions change in
clearly slower cycles than the 15min step-changes, which were used in the DVS-
tests. However, reason for the poor agreement between modeling and

Figure 18. Relative humidity in the reference point of old laboratory test wall according to the
measurements and 2-node models with different parameters.

Figure 19. Relative humidity in the reference point of old laboratory test wall according to the
measurements and 3-node models with different parameters.
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measurements in the old laboratory test assembly inspected in this paper is still
unclear. Possible explanatory known moisture-physical phenomena—which were
not taken into account in the simulations presented in this paper—are
temperature-dependent and hysteretic properties of the sorption isotherm of LDF,
which will be a future topic of the authors’ research.
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