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This paper proposes two novel methods for upscaling the macroscopic magnetic field strength from the local solutions of B-
conforming magnetoquasistatic multiscale problems. Unlike the volume average method classically used, these methods yield accurate
values of the macroscale magnetic field for problems with strong locally-confined eddy currents which enables B-conforming multiscale
formulations of eddy currents problems at higher frequencies.
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I. INTRODUCTION

MULTISCALE methods have been extensively studied
in the electromagnetic community thanks to their easy

parallelization and ability to speed up numerical simulations of
problems involving heterogeneous materials such as laminated
cores, stranded inductors and soft magnetic composites. These
methods make possible the simulation of 3D nonlinear eddy
currents problems with composite materials, unlike classical
methods such as the finite element method (FEM) which are
computationally too expensive for these problems.

Multiscale methods generally necessitate computation of
macroscopic quantities from finer scale quantities, also called
upscaling. Previous works [1] - [3] use B-conforming formu-
lation that necessitate the upscaling of magnetic field strength,
which is usually done using the volume average of the finer
scale magnetic field h. In the early work from El Feddi et.
al. [1], upscaling of magnetic field using volume average is
done at very high frequency. In Bottauscio et. al. [2] and
Niyonzima et. al. [3], the multiscale solution is validated at
low and medium frequencies. But Meunier et. al. [4] warned
that the upscaling of the magnetic and the electric fields
h and e can unfortunately be non trivial for eddy currents
problems. Indeed, a simple volume average of the finescale
magnetic field is not compatible with the Maxwell-Ampère
law at macroscopic scale in presence of strong locally confined
eddy currents. In their paper, the authors proposed that B-
conforming formulation should be avoided to prevent upscal-
ing h.

This paper proposes two novel methods for the upscaling of
the magnetic field strength that are always valid. These meth-
ods only depend on the solutions of the mesoscale problem and
the topology of its conducting region. The paper is outlined
as follow, Section II recalls the multiscale model for the B-
conforming formulation. The proposed upscaling methods are

derived in Section III, and the validation on a 2D eddy currents
problem is presented in Section IV.

II. MULTISCALE MODELING

Let σ and ν be the electrical conductivity and mag-
netic reluctivity. We are interested in solving the following
Maxwell’s equations (1) on an open domain Ω ⊂ Rd in the
magnetoquasistatic regime:

curlh = j, div b = 0, curl e =−∂tb, j = σe, h = νb, (1)

where h, b, j and e are the magnetic field strength, mag-
netic flux density, electric current density and electric field,
respectively. The conducting domain is denoted by Ωc, and
the nonconducting one by ΩN = Ω \ Ωc. The dimension d is
2 or 3.

A. Fine-scale model on periodic geometry

Let us consider a periodic medium denoted by Ωϵ included
in Ω, that is a tiling obtained by translation of a periodic unit
cell Y = Yc ∪ YN, where Yc and YN are its conducting and
nonconducting regions. Without loss of generality, the cell Y
is chosen as a rectangular hexahedron. In this paper, we make
the assumption that the conducting region of the cell Yc is
simply connected and does not intersect the boundaries of the
periodic cell, i.e. ∂Y ∩ Yc = ∅, which is tantamount to an
insulated periodic cell.

We use a usual B-conforming formulation [5]:
curlν curla+ σ∂ta = 0 in Ωϵ, (2a)
a× n = a× n on ∂Ωϵ, (2b)
curl ν0 curla = js in Ω \ Ωϵ, (2c)
a× n = 0 on ∂Ω, (2d)

where the modified magnetic vector potentials a verifies
b = curla and e = −∂ta, and has to be gauged in non
conducting parts of Ω. Here a known current source js and
magnetic reluctivity of the vacuum ν0 are assumed in the non
homogenized domain Ω \ Ωϵ.



B. The two scale model

In our multiscale approach, the reference problem (1) is
replaced by the macroscale problem and many mesoscale
problems both governed by equations similar to (2) and solved
in an iterative scheme. Mesoscale fields are defined on the
periodic cell Y and admit the following decomposition [4]:

h(y) = H + J × y

d− 1
+ hc(y), b(y) =B + bc(y),

e(y) = E − ∂tB × y

d− 1
+ ec(y), j(y) = J + jc(y),

(3)

where capital letters denote the macroscale fields assumed
constant on Y , the subscript •c is used to denote correction
fields assumed periodic on the cell Y and y represents the local
coordinate vector in the cell. Periodicity relates to tangential
components of ec and hc and to normal components of bc
and jc on ∂Y . Here J is null as Y is insulated.

The mesoscale B-conforming formulation is derived using
(1) and (3) as follow:

curl
(
ν (B + curlac)

)
+ σ ∂t

(
ac +B × y

d− 1

)
= 0, (4)

where the unknown potential ac has a periodic tangential
component across ∂Y , verifies bc = curlac and has to
be gauged in YN. The magnetic flux density, magnetic field
strength and electric field are b = B + curlac, h = νb and
e = −∂tac − ∂tB × y

d−1 .
To define the macroscopic problem, let ΩH be the homoge-

nized domain replacing Ωϵ. The macroscopic vector potential
A is the solution of (2b)-(2d) in Ω \ ΩH, but the equation in
ΩH must be defined for macroscopic fields. Since the current
density is zero at macroscale, ΩH is not conducting. Hence
macroscopic Maxwell-Ampère’s law reads

curlH = 0 in ΩH, (5)

where H is the upscaled magnetic field which will be com-
puted from the mesoscale solution obtained by imposing the
source B to the cell problem. In general, H is a nonlinear
function of B, and (5) can be solved iteratively, e.g. with :

curl
(
H(Bk) +

(
∂H

∂B

)k

(Bk+1 −Bk)

)
= 0 in ΩH, (6)

where Bk+1 = curl (Ak+1). The Jacobian ∂H
∂B

k
can be

computed using finite differences, its columns are given by:(
∂H

∂Bi

)k

=
1

δB

(
H(Bk+ δBei)−H(Bk)

)
for i = 1, . . . d ,

where ei are the standard basis vectors, δB is a scalar per-
turbation and k is the nonlinear iteration index. This Jacobian
computation requires solving d+ 1 problems on each cell.

The definitions of macroscopic fields are needed to define
the decomposition (3). The usual definition of macroscopic
fields uses the volume average <>Y of the mesoscopic ones:

U =< u >Y =
1

|Y |

∫
Y

u for a field u on Y,

where |Y | is the volume of Y . This definition always works
for B and J , i.e.

B =< b >Y , J =< j >Y , (7)

because the surface average of the flux of b and j through
the faces of ∂Y respectively sum up to volume average of b
and j in Y (because div b = 0 and div j = 0), meaning that
definition (7) is compatible with the continuity of B · n and
J · n on ∂ΩH. Combining (3) and (7) yields < bc >Y = 0,
which is verified in (4) because∫

Y

bc =

∫
Y

curlac =

∮
∂Y

ac × n = 0,

where the integral on ∂Y vanishes due to anti-periodicity of
ac × n.

The magnetic field h can also be upscaled using < h>Y

when eddy currents in Y are weak or non existent. Indeed,
some previous work could obtain correct results using <h>Y

for dynamical problems with eddy currents (see e.g. [1], [2]
and [3]), although the upscaling of h cannot generally be done
in this way, as will be shown later. The problem comes from
the fact that eddy currents impact the average of h without
impacting the average of j, leading the macroscopic Maxwell-
Ampère’s law to be wrong.

III. MAGNETIC FIELD UPSCALING

Although all the geometries and numerical tests presented
in this paper are done with an insulated cell, the material of
this section is derived in the general setting of a conducting
cell, but still with the assumption that Yc is simply connected.
In this section, we demonstrate how to properly upscale H by
removing the part of h that generates the local eddy currents in
j. More precisely, we define a potential t0 such that curl t0 =
je such that je are the local eddy currents, and such that
t0 = 0 when there are no eddy currents (je = 0). Then H
can be defined as

H =< h− t0 >Y . (8)

The rest of the current jM = j − je is the flow of the
macroscopic current in the cell.

A. A setting to study currents in the cell

The splitting j = je+jM will be defined with a Helmholtz-
Hodge decomposition (HHD) [6]-[7]. Let Γc = ∂Yc be
the boundary of the cell conducting domain, Γout

c = Γc ∩ ∂Y
the boundary of Y through which the current can flow and
Γin

c = Γc \ Γout
c the interface between the conducting and non

conducting domain in Y .
The current density verifies div j = 0, (j · n)n is periodic
through Γout

c , and the current cannot flow to the nonconducting
domain, i.e. j · n|Γin

c
= 0. We denote the space for j by

H#,out
0,in (div;Yc), where 0,in is the usual notation for null trace

on Γin
c and where #,out denotes the trace periodicity on Γout

c .
It is hard to study j in H#,out

0,in (div;Yc) because it has mixed
boundary conditions, and neither Γin

c nor Γout
c are closed and

simply connected when the cell is not insulated. We thus
introduce a simpler equivalent setting.

Let Yc be the periodized Yc, that is Yc but with the
opposite components of Γout

c identified. The boundary ∂Yc is
Γin

c periodized, so that ∂Yc is a closed surface while Γin
c is not.

There is a natural one to one correspondence between fields



Fig. 1. Example of HHD in a 2D insulated conducting sphere at high
frequency, from left to right : j = je (two viewpoints), t0, h and h− t0.

on Yc and the fields on Yc with periodic trace on Γout
c . In

particular H#,out
0,in (div;Yc) is isomorphic to H0(div;Yc). We

use symbols j̊, t̊ for the fields defined on Yc corresponding
to the Γout

c -periodic fields j, t defined on Yc.

B. Helmholtz-Hodge decomposition

In general, any vector field j̊ on Yc can be orthogonally
decomposed as follows with a HHD (see eq. (7) from [7]1):

j̊ = grad ϕ̊+ curl t̊0 + j̊t in Yc (9)

where ϕ̊ ∈ H(grad;Yc), t̊0 ∈ H0(curl;Yc) and j̊t ∈ H1(Yc)
is a tangential harmonic field, i.e. it is curl- and divergence-
free and j̊t ·n|∂Yc = 0. H1(Yc) is the first co-homology space,
its dimension β1 is the finite number of loops that Yc forms,
and its elements (e.g. j̊t) are harmonic fields looping in its
loops [7]. In addition, the flux of t̊0 through each connected
component of ∂Yc must be 0 to nullify its normal harmonic
components.

The general decomposition (9) is simpler for j̊ with

grad ϕ̊ = 0 in Yc. (10)

Indeed, by definition, all three j̊, j̊t and curl t̊0 are divergence
free and tangential to ∂Yc. Applying the divergence operator
on (9) yields div (grad ϕ̊) = 0. Similarly, taking the trace of
(9) yields grad ϕ̊ · n|∂Yc = 0. Then

∥grad ϕ̊∥2 =

∫
Yc

grad ϕ̊ · grad ϕ̊

= −
∫
Yc

div(grad ϕ̊) ϕ̊+

∫
∂Yc

(grad ϕ̊ · n) ϕ̊ = 0.

At this point, we can define the decomposition of j on Yc.
Let t0 ∈ H#,out

0,in (curl;Yc) be the field corresponding to t̊0, jM

the one corresponding to j̊t and define je = curl t0. We have
the unique orthogonal decomposition

j = je + jM in Yc. (11)

Moreover, the decomposition verifies

< je >Yc= 0, and < jM >Y = J (12)
(je = 0 =⇒ < t0 >Y = 0). (13)

Proof of (12):
∫
Yc
je =

∫
Yc

curl t0 =
∫
∂Yc

t0 × n =∫
Γin

c
t0 × n +

∫
Γout

c
t0 × n = 0 because both integrals vanish

due to t0×n nullity on Γin
c and anti-periodicity on Γout

c . Then

1The correspondence between [7] notations and ours is : Yc = M, ∂Yc =
∂M, j̊ = ω2, t̊0 = α1

n, j̊t = h2
n, curl = d1 and −grad = δ3. As h2

t and
η2 can both be written as codifferential δ3, we merged them with δ3β3

t in our
grad ϕ̊ term. The decomposition (9) is still orthogonal in 2D because hn and
ht+η are always orthogonal (see comments about Friedrichs decomposition).

< jM >Y = < j >Y −< je >Y = < j >Y = J .
Proof of (13): when curl t̊0 = 0 in Yc, there exist ψ̊0 ∈
H0(grad;Yc) such that t̊0 = grad ψ̊0 (because t̊0 contains no
harmonic part). Now coming back in Yc, one gets t0 = gradψ0

where ψ0 ∈ H#,out
0,in (grad;Yc). Finally,∫

Yc

t0 =

∫
Yc

gradψ0 =

∫
Γin

c

ψ0n +

∫
Γout

c

ψ0n = 0,

where both integrals vanish due to the nullity of ψ0n on Γin
c

and its anti-periodicity on Γout
c .

To sum up, the decomposition (11) is orthogonal and unique
and its properties have a desirable physical meaning. The
"macroscopic current flow" jM flows through ∂Y , averages
to J and has zero curl. On the other hand, the eddy cur-
rents je have zero average and contain all "curling" currents
(curl j = curl je). The potential t0 is defined to represent the
part of h that creates je. Indeed curl (h− t0) = j − je = jM
and the average of t0 vanishes when eddy currents vanish (13).

C. Macroscopic magnetic field computation
As stated before (8), we propose to define the macroscopic

field as H =< h− t0 >Y . This way, the local currents je no
longer impact H , which is consistent with the macroscopic
Maxwell-Ampère’s law which relates to J but not je.

The potential t0 can be extracted from j by solving the
projection curl (j− curl t0) = 0 in Yc. When j is the solution
of (4) and the cell is insulated, the FEM weak form reads:∫

Yc

σ ∂t

(
ac +B × y

d− 1

)
curl t′0 +

∫
Yc

curl t0 curl t′0 = 0

(14)
for all t′0, with t0, t

′
0 ∈ H0(curl;Yc). Here the periodicity of

t0 is not applied because Γout
c = ∅. And nothing is needed to

ensure that t0 cannot contain a normal harmonic part, because
Γin

c is connected. A decomposition example is shown Fig. 1.
Alternatively, when Yc is insulated, it is possible to compute

H in another way. Introducing < u >∂Y ∥ the tangential
average of a vector field u over ∂Y , it is defined by:

< u >∂Y ∥=
∑

i=x,y,z

1

|∂Y i|

∫
∂Y i

ut, (15)

where ∂Y i are faces of ∂Y with normal n = ei and
ut = (n× u)× n. One can prove that <u>∂Y ∥ = <u>Y

whenever ut is Y -periodic and curlu = 0 on Y . In an
insulated cell, curl (h− t0) = jM = 0, thus

H =< h− t0 >Y =< h− t0 >∂Y ∥=< h >∂Y ∥ , (16)

where the last equality is due to t0|∂Y = 0. So the simple
boundary integration < h >∂Y ∥ can be used to upscale H
without doing the FEM computation of t0. But this alternative
is only available for insulated cell, and might lead to more
numerical error than using the volume average (8).

IV. VALIDATION

The validation is done on a 2D insulated cell of width
100µm with a conducting disks of radius 40µm (see Fig. 4). If
not mentioned otherwise, we consider f = 100 MHz, ν = ν0

everywhere, σ = 1.01×107 S/m in the disk and σ = 0 outside.



A. Tests on a single cell problem
A first validation is done using the H-conforming formula-

tion of the cell problem with the imposed source H(t) known
at every time step t. Figure 2 shows the validation that the
proposed methods work, unlike the volume average.

0 2 4 6 8 10

−1

0

1
·106

Time (ns)

H
(A

/m
)

H <h>Y <h − t0>Y <h>Y∥

Fig. 2. Comparison of the magnetic field upscaling strategies, over one period
of H , which is sinusoidal. The proposed methods < h − t0 >Y (8) and
<h>Y∥ (16) match H , but the volume average <h>Y doesn’t.

To explain why previous use of < h >Y as the upscaling
formula were successful, the plots on Fig. 3 show that the
error committed is correlated with the percentage of the Joule
losses in the total electromagnetic power of the cell. This
percentage depends on the physical parameters, geometry, and
especially on the frequency. Using H =< h >Y below
f = 500 kHz would work fine to stay below 1% of error. In
general, simulation of magnetic cores with small Joule losses
are unlikely to require our approach.

B. Multiscale model validation
A full 2D multiscale problem is solved with FEM B-

conforming formulation at macro and meso scales. The studied
periodic geometry Ωϵ is a square of 10 by 10 cells. A source
field is generated by an external inductor coil surrounding Ωϵ

and fed by a sinusoidal current. The coil has a radius of 40µm
and is 670µm away from Ωϵ (Fig. 4 top).

Heterogeneous Multiscale Method (HMM) [3] is used for
the multiscale problem, i.e. a cell problem is associated to each
element of the macro mesh, which do not have to correspond
to the real geometry tiling. The macro and meso problems are
solved alternatively. The reference mesh takes into account the
real geometry of Ωϵ. Problems are meshed with Gmsh [8] and
solved using GetDP [9].

Using <h>∂Y ∥ , HMM yields the correct value of the total
Joule losses over one period with 1.34% of error compared to
the reference, versus 90.2% with <h>Y (Fig. 5).

Fig. 3. Log-log error contour maps in the meso cell exited by a sinusoidal B
source, at different frequencies and at different sphere relative permeabilities.
Left : percentage of difference between

∫ T
0 ∥H(t)− < h(t) >Y ∥dt and∫ T

0 ∥< h(t) >Y ∥dt. Right : percentage of the Joule losses power percentage
in the total electromagnetic power.

Fig. 4. Geometry for multiscale test with the two inductor cuts on the sides
(top), meshes of corners of Ωϵ and ΩH (left & middle), one cell mesh (right).
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Fig. 5. Joule losses power comparison in the multiscale simulation.

V. CONCLUSION

This paper presented the ins and outs of magnetic field
homogenization on geometries with insulated periodic cells.
Firstly by demonstrating the limitation of the volume average
and its dependency on the eddy currents power ratio in
the total electromagnetic power. Secondly by proposing a
general definition of the homogenized magnetic field which is
mathematically well defined and comprehensive with physical
insights. And finally by validating the proposed definitions on
multiscale solutions.

As future perspectives, the method should be validated on
a 3D geometry, and with nonzero macroscopic current. It
can also be extended to geometries with multi-connected cell
conducting domains. Finally, the same approach could be used
for the electric field upscaling.
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