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A B S T R A C T

MoveIt is the primary software library for motion planning and mobile manipulation in ROS, and it incorporates
the latest advances in motion planning, control and perception. However, it is still quite recent, and
some important functions to build more advanced manipulation applications, required to robotize many
manufacturing processes, have not been developed yet. MoveIt is an open source software, and it relies on
the contributions from its community to keep improving and adding new features. Therefore, in this paper, its
current state is analyzed to find out which are its main necessities and provide a solution to them. In particular,
three gaps of MoveIt are addressed: the automatic tool changing at runtime, the generation of trajectories
with full control over the end effector path and speed, and the generation of dual-arm trajectories using
different synchronization policies. These functions have been tested with a Motoman SDA10F dual-arm robot,
demonstrating their validity in different scenarios. All the developed solutions are generic and robot-agnostic,
and they are openly available to be used to extend the capabilities of MoveIt.
1. Introduction

Robot manipulators have been utilized in industrial environments
since the 1960s, and their usage has been growing exponentially in the
following years, till present [1]. These industrial robots were initially
a niche class of machinery that perform manual operations with high
levels of accuracy and repeatability, boosting the productivity of the
manufacturing lines. However, with the increasing manufacturing com-
plexity of products and their production environments (with the arrival
of complex sensing and actuation elements), robotic manipulators have
grown in variety and functionality to best cater to the required needs.
These robots needed to communicate with other industrial devices,
which have their own proprietary system architectures and commu-
nication protocols [2]. Furthermore, the different manufacturers of
the robot manipulators themselves had their own proprietary UIs, pro-
gramming, and interfacing requirements. This was creating limitations
for roboticists to efficiently utilize the best robot for the situation,
as they required knowledge about robots from many manufacturers
and the expertise to work with them. Additionally, the developed
solutions were not easilytransferable and scalable, and mostlyrequired
each individual integration scenario to be handled from scratch. To
overcome these shortcomings, a generic robot framework called Robot
Operating System (ROS) was introduced in 2007.

∗ Corresponding author.
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ROS is a meta-operating system for robots, being a crossover frame-
work between an OS and a middleware. It has open-source repositories
of proprietary software libraries and user developed system solutions
and implementations, which can be used by the global user community
to develop their automation applications [3]. Majority of the man-
ufacturers of automation systems and devices develop and maintain
libraries for their products, which can be used to utilize the device
functionalities and integrate it with the other elements of the system.
ROS provides features which include hardware abstraction, concurrent-
resource handling, inter-platform operability, low-level device control,
synchronous and asynchronous communication between processes, and
package management—to create highly modular systems [4].

Regarding its applications, ROS is not just limited to research but
is also perfectly valid for industrial applications, taking advantage of
the high-level functionality of ROS and the reliability and safety of
industrial robot controllers. In particular, there is a project called ROS-
Industrial [5], whose aim is to extend the advanced capabilities of ROS
for industrial hardware and applications. This project counts with big
support and there is even a European project called ROSIN [6] working
on improving it and amplifying its impact.
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There is a vast amount of ROS-based packages, which can be
installed in ROS providing different functionalities, such as naviga-
tion, motion planning, coordinate frames tracking, robot controllers
interfacing, or 3D simulation and visualization, to highlight a few.
One of the fundamental functions in robotics is motion planning [7].
This functionality was originally implemented in ROS by the Arm
Navigation packages [8]. However, this was a preliminary development
which had several shortcomings, including communication bottleneck
while transferring heavy 3D data to multiple nodes simultaneously; and
synchronization issues between separate nodes. This caused inconsis-
tencies between nodes, resulting in failed motion plans. These issues
were addressed with the development of MoveIt.

The MoveIt framework is a set of software packages integrated
with ROS that incorporates the latest advances in motion planning,
manipulation, kinematics, 3D perception, control, and navigation [9].
Due to its reliability and its active user community, which keeps
upgrading the existing features and extending its avenues of utilization,
MoveIt is utilized in over 150 robots of all categories from some of the
most marquee technical companies in the world, such as NASA [10],
ABB, Yaskawa, or Fanuc [11]; and this compatibility catalog is still
growing. Additionally, MoveIt has a BSD license, which enables its free
utilization for research, commercial and industrial applications. How-
ever, MoveIt is still recent and some important functions for robotic
manipulation have not been developed yet. In particular, some features
required for many manufacturing applications, such as the automatic
tool changing or the control of the end effector’s speed [12], are
not implemented. As it is open-source, the community has to help
develop these necessary functions, and individual contributions are
very welcome. The goal of this paper is, therefore, to analyze the
current state of MoveIt to find its main current necessities and develop
valid solutions for them.

The following sections of the paper are structured as follows: Sec-
tion 2 delves deeper into the workings of MoveIt, highlighting its
system architecture and capabilities; and showcases some of the gaps
in its available features which require further development. These
shortcomings are solved with the functions developed and presented in
Section 3. The theoretically proposed functions are tested and evaluated
for reliability and proof of concept in Section 4. Finally, Section 5
talks about the various insights gained during the development of
these feature extending functions and its experimentation, along with
possible avenues to be explored as future work.

2. MoveIt

2.1. Library background and insights

MoveIt is the primary software library for motion planning and
mobile manipulation in ROS for both industrial [13,14] and research
applications. Thus, MoveIt is also the core motion planning library
for ROS-Industrial. One of its main characteristics is that it is robot-
agnostic, and it can be used with a vast amount of robots from different
vendors and with different structures, including single and dual-arm
robots, humanoid robots, and mobile manipulation systems [15]. This
is possible thanks to the configuration files of the MoveIt package of
each robot, from which all the necessary information for the robot’s
motion planning is automatically extracted and managed by MoveIt.
There are two main configuration files, the Unified Robot Description
Format (URDF) and the Semantic Robot Description Format (SRDF).
The URDF is an XML specification that describes the kinematic chains
of the robot, including, among other properties, the dimensions and col-
lision models of their links, and the type and limits of their joints [16].
The SRDF is another XML specification that complements the URDF file
with additional information such as joint motion groups, predefined
robot configurations, and the Allowed Collision Matrix (ACM), which
specifies which pairs of links do not need to be checked against each
other to reduce the computation time [17].
2

MoveIt has a central node called move_group, which integrates all its
apabilities using a plugin-based architecture. This node can be inter-
aced by the users, calling its actions and services. There are two ways
o do this, through a GUI in Rviz (the ROS visualizer), or through code,
ither in C++ or Python, being the interfacing packages very similar for
oth languages. Regarding the Python interface, the moveit_commander
ackage [18] is used to access to the different move_group capabilities.
his package has three main classes: RobotCommander, the outer-level

nterface to the robot, PlanningSceneInterface, the interface to the world
urrounding the robot, and MoveGroupCommander, the interface to one
roup of joints (e.g. a robot arm, two robot arms, or the robot’s torso).
he motion planning is performed by the defined MoveGroupComman-
er objects, moving the joints of the group in question to achieve
he target pose or configuration. This class offers three possibilities
o plan and execute a movement: defining a target configuration for
he joints of the group (set_joint_value_target, or set_named_target if the

configuration has been predefined in the SRDF file) or a target pose
for its end effector (set_pose_target) and then, planning and execut-
ing the movement towards that target, or planning a cartesian path
(compute_cartesian_path) and executing it.

In the first two motion types, in which a target is defined for
the group of joints, either in the cartesian or the joint space, the
motion is free, meaning that there is no control on the path followed
by the end effector (EEF) to reach the target pose. Due to this, the
generated motion plans can be unexpected or seem unintuitive. Ad-
ditionally, MoveIt normally uses randomized motion planners from
the Open Motion Planning Library (OMPL), such as Rapidly-exploring
Random Trees (RRTs), which are unrepeatable. Therefore, even the
motion planning between two tested poses can generate an unexpected
trajectory [19]. On the other hand, in the third motion planning option,
compute_cartesian_path, there is more control on the end effector’s path,
as it generates a motion plan in which the end effector moves in straight
line segments following the specified sequence of waypoints.

Using any of the three previous options, the motion planning re-
trieves a RobotTrajectory message [20], which contains a JointTrajectory
message, composed by a sequence of JointTrajectoryPoints. Each of these
JointTrajectoryPoints contains the joint values, velocities, accelerations,
and efforts of all the joints of the planned group of joints (e.g., the
joints of a robotic arm), as well as the time (since the beginning
of the motion) at which that point is reached. Finally, this message,
containing the motion plan, is sent to the ROS controllers, typically
to a joint_trajectory_controller, that interfaces the robot to execute the
planned trajectory [21].

2.2. Main necessities of MoveIt

Despite all the possibilities and the flexibility that MoveIt offers
to the users, some important features have not been implemented
yet. Several researchers have contributed to fixing this, providing
solutions to improve or extend MoveIt capabilities. Examples of this
are [22], that extended MoveIt to perform resolution-optimal inverse
kinematics along a specified workspace trajectory, and [23], which
provided ROS action interfaces for its existing capabilities and added
the capability of defining parameterized cartesian paths like circles
and helixes. With this objective, this paper presents a set of functions
that extend MoveIt with some of its most needed capabilities. These
capabilities are presented and analyzed below.

Automatic tool changing (ATC): What a robot can do is
largely determined by its end effector [24]. If a robot is used to
perform a single specific task, the end effector can be directly
bolted to its arm. However, if the product requires multiple
or complicated manipulations, an automatic and quick way to
change the tool is probably needed [25]. This is the case of
many industrial processes, such as electronic assembly, where
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products have many variations that require their own tools; in-
jection molding, where a single robot work with several molds,
each of them requiring a different suction cup gripper [24];
drilling, to create holes of different sizes [26]; or die polishing,
that requires changing the polishing pad [27]. Additionally, ATC
demand is in continuous growth, with a projected market size
value of 928 million USD by 2028 [28]. However, even being
an extremely necessary functionality, especially for manufacturing
applications [29,30], there is no official solution to do an ATC
in MoveIt. The kinematic structure of the robot is described in
its URDF configuration file, specifying the end effector that is
attached to the robot’s wrist. However, modifying this file in run-
time is not an easy task, as the URDF has many consumer nodes
and this should ensure that all these nodes are in a consistent state,
using the same version.

Some implementations of ATC in MoveIt have been reported, but
none of them update the collision models and the homogeneous
transformation matrix to the actuation frame of the new tool.
In [31] a robotic arm uses an automatic tool changer to switch
between a three fingers gripper and a vacuum cleaner. The move-
ments of the robot are planned using MoveIt, but there is not
mention of any update in the kinematic chain or the collision
models. Additionally, the authors suggest that the performance
would improve significantly adding collision models in MoveIt,
leading to safer, and more flexible arm movements. Something
similar is done in [32], where a UR10 robot changes between a
parallel and a magnetic gripper using an ATC. As in the previous
approach, MoveIt is used for the motion planning, and a C++ node
is used to control the tool changing, as well as to configure the tool
center point and the payload.

End effector speed control: As introduced in Section 2.1,
there are three options in MoveIt to plan movements for a group
of joints, setting a target in the cartesian or the joint space, or
indicating a list of waypoints through which the end effector of
the group has to pass, moving in straight line segments. However,
none of these options allow to control the speed at which the end
effector moves. This velocity control is very important for many
robotic applications, such as welding, to control the joint pene-
tration weld [33], precision tasks that require slow end effector
movements, or multi-robot synchronization [34]. Several authors
have tried to address this problem, but none of the approaches
offer a complete solution.

In [35], the robot velocity is controlled using the
set_max_velocity_scaling_factor method of the MoveGroupCommander
class, however, this function cannot be applied for cartesian paths,
and it just sets a scaling factor to reduce the maximum joint
velocities. In [36], the trajectory provided by MoveIt is modified,
smoothing the curves of the joint angles and velocities using
a quintic polynomial interpolation. This way, the end effector
movements are more reliable and steady, however, there is no
control over its cartesian velocity. The same is done in [37],
but using an optimized S-shaped trajectory planning algorithm to
smooth the angle, velocity and acceleration curves of the joints.

Both [38] and [39] focus on the cartesian speed control of robots
in teleoperation applications, using speed commands to move
them. In [38], these end effector speed commands are converted
into goal joint positions or velocities using the inverse Jacobian
method of the moveit_servo package of MoveIt. However, these two
approaches are not applicable for trajectories that are planned in
advance, as they just work with motion commands that are spec-
ified online (e.g., teleoperation and reactive locomotion tasks).

The solution proposed in [40] is to use an optimization-based
cartesian controller to control the end effector speed. For this,
3

the authors use a cost function that considers the quadratic error
between the real cartesian velocity (calculated from the joint
velocities) and the ideal cartesian velocity, where the constraints
are the speed limits of the joints. This solution allows the control
of the end-effector speed but requires an additional cartesian con-
troller, instead of directly obtaining a motion plan with cartesian
velocity control.

In [12], a numerical integration method is used to generate a mo-
tion plan with the optimal tool speed for a given path in a robotic
machining application. The optimal tool speed for this application
is defined as the one that allows finishing the process in the
minimum time possible without exceeding any of the kinematics
constraints. These constraints are the velocity, acceleration and
jerk limits of the robot joints, and the velocity and acceleration
limits of the tool in the cartesian space, as they are related to the
cutting force and the modal excitation of the robot. The speed
optimization is done in the cartesian space and MoveIt is used
to compute the inverse kinematics. The resultant motion is very
smooth, however, the high order of the constraints makes this
approach significantly slower. In particular, the motion planner
was tested for two use cases. In the first one, it took about 30 s
to compute a trajectory, which MoveIt calculated in a negligible
time; and in the second one, the planning time was about 10 min.
This issue makes this approach inappropriate for robotic appli-
cations in which online planning is required (e.g., vision-based
manipulation).

Dual-arm cartesian motion: Coordination and temporal syn-
chronization of multiple robots [41] or of the arms of a dual-arm
robot is required in many industrial applications [42]. The motion
planning and inverse kinematics solving plugins of MoveIt work
only for connected chains [43]. A dual-arm group is composed of
two sub-groups that do not form a chain; thus, none of the current
functions of MoveIt can be used directly for planning its motion.
However, there is a way of specifying dual-arm goal targets in
MoveIt, which consists of setting a target for each arm group
individually, in the cartesian or the joint space, and then executing
the movement of both arms simultaneously through the dual-arm
group [44]. This is done in some approaches for planning dual-
arm [45,46], or even upper-body (arms + torso) [47] coordinated
movements in MoveIt. However, it has many limitations, as there
is no control over the arms’ trajectories, and it is impossible to
coordinate their movements. Something more advanced is done
in [43], where, in order to have synchronized dual-arm move-
ments, a cartesian path is planned for one of the arms, and then,
the joint values of the generated plan are mirrored for the second
arm. This has still many limitations, as the arms configuration
must be symmetrical all the time, including their initial position.

To have more control over the trajectory of both arms, [48]
evaluates the possibility of computing a cartesian path plan for
each arm and then executing both simultaneously and indepen-
dently. The author concludes that this is not possible because each
trajectory is calculated independently, without taking into account
the movement of the other arm, and due to this, the collision
detection is not reliable. One of the problems derived from this
happens when, in a dual-arm motion, one of the arms is going
to pass through the initial position of the other. In this case, as
the motion planner of this arm is not aware of the simultaneous
motion of the other arm, it will consider that it will not move for
the collision checking. Therefore, when it tries to plan the motion
to this position, it will detect a collision between arms, returning
an error.

A solution for this is presented in [49]. In this approach, first, all
the waypoints of both arms are calculated. Then, the sequence of

waypoints of each arm is analyzed in order and, if this situation is
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detected (i.e., a waypoint of one arm closer than a certain thresh-
old distance to the initial position of the other arm), the waypoints
are separated in two consecutive lists. Then, a plan for the first list
of waypoints is computed for each arm independently, ensuring
no planning errors due to self-collisions. Next, the two resultant
plans are merged into a single dual-arm plan, and it is executed.
When the execution finishes, the process is repeated for the rest
of the waypoints. This approach overcomes some of the problems
of the previous approaches, however, this is just a patch for the
erroneous dual-arm collision-checking, but it does not solve the
problem, as the collisions derived from the simultaneous motion
of both arms will not be detected. Additionally, if the trajectory
needs to be split in successive motion plans, the arms will stop in
the final poses of every plan, plan the next trajectory, and start
moving again. Thus, even if the motion planning is very fast, the
robot arms will be constantly accelerating and decelerating and
their movement will not be smooth.

A complete solution to add the dual-arm capability to MoveIt
is presented in [50]. This approach applies a single-query bidi-
rectional RRT planner extended to closed kinematic chains. To
achieve this, the exploration tree uses a fast dual-arm constraint
sampler package that generates valid configurations for the torso
and arms of a robot to reach a given dual-arm target pose, and
checks their validity with respect to collisions. The problem with
this approach is that it is tailored for generating free-collision mo-
tion plans for closed-chain pick and place operations, and it does
not give the user too much flexibility for defining the trajectory of
the arms. Therefore, this approach would not be appropriate for
applications in which the relative pose between both end effectors
is not constant, such as folding clothes, opening a jar, joining
the pieces grasped by each hand, or performing independent but
synchronized dual-arm motions (e.g., each arm picking different
objects from the same box simultaneously).

Something similar happens in [51], where another complete
framework for planning closed-chain pick and place operations
is presented. Additionally, in this approach, the captured objects
are moving and have high momentum, increasing its complexity.
To achieve this, the dual-arm coordinated motion is computed
in the null space of the master arm using the relative Jacobian.
Thus, the required trajectory is calculated for the master arm and
the slave arm coordinates with it. Moreover, impedance control is
used to adjust the operational forces of the arms to compensate
for the momentum of the manipulated objects. This approach
shows excellent results, capturing objects of up to 10 kg, moving
at 0.1 m/s. However, as with the previous approach, this dual-
arm motion planning framework is targeted for a very specific
application, not being applicable for dual serial kinematic chain
operations. Furthermore, this approach is not integrated with
MoveIt, and therefore, it cannot leverage its enormous list of
advantages, which were presented in Sections 1 and 2.1 (e.g., easy
configuration, flexibility, compatibility with many ROS packages,
support, and integration of a variety of tools for perception,
collision checking, scene planning, kinematic calculations, etc.).

Finally, a complete and generic solution for implementing dual-
arm manipulation in ROS is presented in [52], but as in the
previous approach, MoveIt is not used for motion planning. A
custom-built framework is used instead to coordinate robotic dual-
arm systems. This framework integrates different modules for the
synchronization and coordination of the arms, as well as for check-
ing self-collisions and collisions with the environment, allowing it
to be used for any dual-arm system and application. However, due
to the use of a custom framework, this approach does not provide
either a complete and generic solution for the dual-arm motion
planning in MoveIt, being still one of its main necessities.
4

Fig. 1. UML activity diagram of the ATC process. M: Arm motion using MoveGroup-
Commander methods, E: Arm motion with speed control using the MoveIt extended
function presented in Section 3.2, S: Scene modification, P: Parameter modification, A:
Actuation of the tool changer.

3. Advanced manipulation functions for MoveIt

This section presents the functions developed to fill the current gaps
in MoveIt, analyzed in Section 2.2. These functions are generic and can
be implemented in any robot with slight or no modifications. All these
functions have been developed for ROS 1 and MoveIt 1, and they are
publicly available.1

3.1. Automatic tool changing

The automatic tool changing capability is added to MoveIt with the
ATC class, described in this section. For its integration with MoveIt,
this class uses the PlanningSceneInterface and MoveGroupCommander
instances that the user defines for the motion planning application.
Thus, the ATC class can call the methods of these instances, as well
as the extended MoveIt function defined in Section 3.2, to perform
modifications in the scene and move the robot with and without speed
control whenever required (see Fig. 1).

In the developed approach, the robot’s end effectors are added to
the scene as collision objects, which can be attached and detached
to the last link of the required motion group by using the methods
of the PlanningSceneInterface class. The models used for the collision
objects are the STL meshes of the utilized tools. Simplified collision
models of the tools can be used instead, reducing the computation time

1 https://github.com/pablomalvido/Advanced_manipulation_moveit

https://github.com/pablomalvido/Advanced_manipulation_moveit
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significantly. This approach is not applicable to tools that can change
their structure configuration and work in narrow spaces, as the collision
models used are static. However, this is just a minor case, and the
approach could be used for all the cases presented in Section 2.2.

The inclusion of these objects in the scene is managed by the class
constructor method. Additionally, this method assigns and attaches the
ools to any of the robot arms (if required), and stores information
bout the tools in class attributes. This information includes their
ames, the pose of their slots in the ATC platform, and the homoge-
eous transformation matrix from their bases to their actuation frames.
ll this knowledge about the tools is used later by the other methods
f the class to configure the robot movements, correct the target poses,
r provide information to external functions (e.g., the dimensions of
he attached tool might be requested outside the class to define the
aypoints of the robot’s path).

changeTool is the main method of the ATC class. The inputs of
this method are the name of the new tool, the motion group that is
hanging the tool, and the name assigned to this group; and it manages
he robot movements during the tool changing process, the attachment
nd detachment of the collision objects, the communication with the
utomatic tool changer, the modification of the ACM, and the update
f the name and actuation frame of the tool assigned to the robot arm.
he motion strategy and the full activity diagram of the ATC process is
hown in Fig. 1.

First, the arm in question moves to an offset position from the ATC
latform. In case the robot has additional motion groups, slight modifi-
ations might be required, such as moving the robot torso, or moving
way a second arm to leave space to the arm that is changing the tool to
ove. Then, the information of the arm is updated, indicating already

hat no tool is attached to it, as the rest of the movements will be
lanned for the wrist frame, and not for the actuation frame of the
nd effector. After this, the arm performs an approach motion to the
ose of the tool slot, in order to release it there. The approach strategy
onsiders a vertical insertion of the tools, but it might differ depending
n the geometry of the slots of the ATC platform. The approach motion
s done at reduced speed using the end effector speed control function
f Section 3.2.

When the tool is in position, the collision object is detached and
message is sent to the tool changer to release the end effector. The

ommunication protocol have to be modified to be compatible with the
tilized tool changer. The current implementation calls a ROS service
hat allows to modify the value of the digital outputs of the robot
ontroller. With one of these outputs, the pneumatic line connected
o the tool changer is controlled. Additionally, the ACM matrix is
odified, removing the released tool from it.

Then, the arm is retracted and moved again to the ATC station
ffset, so it can start approaching to the new tool. As for the first
pproach motion, all the approach and retract strategies depends on
he ATC station geometry and might need to be modified. Additionally,
ll of them are performed with reduced speed, using the speed control
unction presented in Section 3.2. Once the arm is in place, the collision
odel of the new tool is attached, the tool changer is actuated to lock

he tool, and the ACM is modified to include the allowed collisions for
he new end effector. Finally, the arm is retracted and its information
s updated with the name and actuation frame of the new tool.

In this approach, the motion groups of the robot arms do not contain
ny information about the end effector, hence, the motion planners
alculate the movement of the robot wrist to the target poses. However,
n most of the cases, the target poses have to be reached by the
ctuation frame of the end effector. The correctPose method of the ATC
lass was defined to manage these situations, correcting the target poses
ith the homogeneous transformation matrix from the frame of the

obot wrist to the actuation frame of the tool. The matrix of each tool
as defined in the class constructor, and the tool attached to each arm

s updated everytime it changes, therefore, this method knows which
ransformation to apply for each arm, and the only arguments needed
re the target pose and the name of the motion group. If the arm does
ot have any attached tool, the input target pose is not modified, so
5

he movements are still planned to the robot wrist.
3.2. End effector speed control

This function allows to control both the path and the speed of an
end effector’s trajectory in MoveIt. The control of the path is achieved
using the compute_cartesian_path method of the MoveGroupCommander
class, which allows to specify a sequence of waypoints through which
the end effector will move, doing straight line motions. The control of
the linear and angular speed of the end effector is done by applying
the equations of a trapezoidal velocity profile to the calculated path,
determining the times, as well as the required joint velocities and
accelerations, for the final motion plan. The selection of the velocity
profile was done according to the guidelines of [53] and [54], balancing
precision and computation time. Finally, a trapezoidal velocity profile
was selected instead of a third or quintic-order profile because the
effect of the acceleration slope would not be noticeable with the low
sampling rate of the generated JointTrajectory message, which does not
justify the increase in complexity and computation time. Additionally,
other reasons that led to this decision were the broad use of trapezoidal
profiles in the industry [55] and the fact that the jerk of the joints’
actuators is not infinite, which smooths the real profile slightly. All the
equations in this section are derived from the uniformly accelerated
rectilinear motion equations [54].

Before continuing with the description of the approach, Table 1
must be checked. This table defines the nomenclature used in Sections 3
and 4. The terms described in this table will be used during the rest of
the document, so it is crucial to understand them.

The function presented in this section allows the definition of tra-
jectories with complex velocity profiles (i.e., trajectories with multiple
target speed sections). This can be specified by the user with the
following input parameters: a list of lists of waypoints (each sublist
containing the sequence of waypoints of a target speed section), a list
with the target linear speed of each section, and the maximum linear
acceleration of the EEF. Additionally, the angular speed can be con-
trolled in the same way, specifying a list with the target angular speeds
for each target speed section, and the maximum angular acceleration
of the EEF, but this is optional.

This function has three constraints. First, the target linear and
angular speeds of each section of the trajectory can never be exceeded,
prioritizing safety. Due to this, the transition between two target speeds
must happen within the section with higher target speed. This means
that the speed must decrease before reaching the first waypoint of
the section with the lower target speed (in case of a deceleration),
or that it must increase after the last waypoint of the section with
the lower speed (in case of an acceleration). Second, the maximum
linear and angular accelerations can never be exceeded, and third, all
the joint velocities must be lower than their limits, which are read
from the URDF file. Additionally, if the user wishes to virtually reduce
these limits, this can be done by specifying the joint velocity limits’
percentage (𝜑), which is 100% by default.

As introduced at the beginning of the section, the path of the
end effector is calculated using the compute_cartesian_path method. This
method returns a RobotTrajectory message with a motion plan, how-
ever, this does not have any control over the end effector’s cartesian
speed. Therefore, just the sequence of joint trajectory configurations is
considered, guaranteeing the control in the end effector’s path, and the
trajectory times at which each of them will be reached are calculated
by the developed function.

The first step for calculating the trajectory times is to determine the
minimum distance (𝛥𝑋𝑠𝑚𝑖𝑛 ) and angle (𝛥𝜃𝑠𝑚𝑖𝑛 ) required to perform the
target speed changes (𝛥𝑉𝑠) between sections. This is required to satisfy

the first and second constraints.
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Table 1
Nomenclature description.

Term Definition

*Waypoints [𝑝𝑘] The sequence of poses specified by the user that the robot’s EEF must follow. The waypoint’s index is represented as 𝑘, and the
total number of waypoints is represented as 𝑛.

*Target speed section
(or section) [𝑠]

Part of the trajectory with a common target linear and angular speed. The section’s index is represented as 𝑠.

*Target linear speed/
velocity (or target
speed/velocity) [𝑉𝑠]

Linear velocity (in the cartesian space) at which ideally the EEF should move within a section.

*Target angular speed/
velocity [𝜔𝑠]

Angular velocity (in the cartesian space) at which ideally the EEF should move within a section.

JointTrajectoryPoints Points that compose the JointTrajectory ROS message. Each JointTrajectoryPoint is composed of a trajectory time and the joint
trajectory values at this time. The index of the JointTrajectoryPoints is represented as 𝑖.

Trajectory times [𝑡𝑖] The time, from the beginning of the motion plan, at which the planned group of joints (e.g., all the joints of one arm for a
single-arm motion plan) will have certain joint trajectory values.

Joint trajectory values
[𝑞𝑖,𝑗 , �̇�𝑖,𝑗 , 𝑞𝑖,𝑗]

The configuration (𝑞𝑖,𝑗 ), velocities (�̇�𝑖,𝑗 ) and accelerations (𝑞𝑖,𝑗 ) (∀𝑗) (in the joint space) that the planned group of joints will have
at a certain trajectory time. The index of the joints is represented as 𝑗.

Trajectory configuration
[𝑞𝑖,𝑗]

The configuration (𝑞𝑖,𝑗 ) of the planned group of joints at a certain trajectory time. The trajectory configurations are included in
the joint trajectory values.

Trajectory pose [𝑥𝑖] The pose at which the EEF will be for at a certain trajectory time (i.e., the joint trajectory configuration converted to the
cartesian space).

𝑣𝑖 EEF linear velocity (in the cartesian space) at a certain trajectory time.

𝑎𝑖 EEF linear acceleration (in the cartesian space) at a certain trajectory time.

*Maximum linear
acceleration [𝑎𝑚𝑎𝑥]

Maximum linear acceleration of the EEF (in the cartesian space). 𝑎𝑖 cannot exceed this value.

*Maximum angular
acceleration [𝛼𝑚𝑎𝑥]

Maximum angular acceleration of the EEF (in the cartesian space).

𝛥𝑡𝑠𝑚𝑖𝑛 Time required to perform the target speed transition between two sections using the maximum acceleration (𝑎𝑚𝑎𝑥).

𝛥𝑉𝑠 Target speed difference between two consecutive sections (𝑉𝑠+1 − 𝑉𝑠).

𝛥𝑋𝑠𝑖 Remaining distance (in the cartesian space) that the EEF must travel from the trajectory pose 𝑖 until the end of the section.

𝛥𝑋𝑠𝑡𝑜𝑡 Total distance (in the cartesian space) traveled by the EEF within a section.

𝛥𝜃𝑠𝑡𝑜𝑡 Total angle (in the cartesian space) rotated by the EEF within a section.

*Step [𝜀] Distance (in the cartesian space) between two consecutive trajectory poses.

*𝜑 Virtual joint speed limits. It is defined as a percentage of the real joint speed limits specified in the URDF file. It is 100% by
default.

The terms with an * are input parameters of the functions presented in Sections 3.2, 3.3, 3.4.
𝛥𝑡𝑠𝑚𝑖𝑛 =
𝛥𝑉𝑠
𝑎𝑚𝑎𝑥

(1)

𝛥𝑋𝑠𝑚𝑖𝑛 = 𝑉𝑠 𝛥𝑡𝑠𝑚𝑖𝑛 +
1
2
𝑎𝑚𝑎𝑥 𝛥𝑡

2
𝑠𝑚𝑖𝑛

(2)

Where 𝑠 is the index of the section from which it is transitioning,
𝑉𝑠 is the target speed of section 𝑠, 𝑎𝑚𝑎𝑥 is the maximum end effector
linear acceleration (specified as an input parameter), which is positive
in case of a speed increase and negative otherwise, and 𝛥𝑡𝑠𝑚𝑖𝑛 is the
minimum time required for the velocity transition. The equivalent
equations apply to the angular movements and velocities.

As the velocity control is done in the cartesian space, all the
obtained trajectory configurations are converted into poses (trajectory
poses) using a forward kinematics solver. Then, as the plan is discrete,
if the target speed of the next section is lower, the remaining distance
from every trajectory pose until the end of the section (𝛥𝑋𝑠𝑖 ) is checked,
to determine when the speed transition has to start (𝛥𝑋𝑠𝑟 ), as can be
seen in Fig. 2. Then, the trajectory times at which every trajectory pose
is reached are calculated according to the following equations:

𝛥𝑋𝑠𝑟 = 𝛥𝑋𝑠𝑖 ∶ 𝛥𝑋𝑠𝑖 ≥ 𝛥𝑋𝑠𝑚𝑖𝑛 ∧ 𝛥𝑋𝑠𝑖+1 < 𝛥𝑋𝑠𝑚𝑖𝑛 (3)

𝑎𝑖 =

⎧

⎪

⎨

⎪

0, if 𝛥𝑋𝑠𝑖 > 𝛥𝑋𝑠𝑟 ; (a)
2𝑉𝑠𝛥𝑉𝑠 + 𝛥𝑉𝑠2 , otherwise. (b)

(4)
6

⎩

2𝛥𝑋𝑠𝑟
Fig. 2. Representation of the real and minimum distance required for a sections’
transition. The red circles represent the trajectory times of the different trajectory poses.
𝛥𝑋𝑠𝑟 and 𝛥𝑋𝑠𝑚𝑖𝑛 are shown in the graph to represent graphically Eq. (3), however, the
correct variables should be 𝛥𝑡𝑠𝑟 and 𝛥𝑡𝑠𝑚𝑖𝑛 respectively, as the abscissa axis represents
time.
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𝑞

𝛥𝑡𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|𝑥𝑖, 𝑥𝑖−1|
𝑉𝑠

, if 𝑎𝑖 = 0; (a)

−𝑣𝑖−1 ±
√

𝑣2𝑖−1 + 2𝑎𝑖 |𝑥𝑖, 𝑥𝑖−1|

𝑎𝑖
, otherwise. (b)

(5)

𝑡𝑖 = 𝑡𝑖−1 + 𝛥𝑡𝑖 (6)

𝑣𝑖 = 𝑣𝑖−1 + 𝑎𝑖 𝛥𝑡𝑖 (7)

Where 𝑖 is the index of the JointTrajectoryPoint, and 𝑥𝑖, 𝑣𝑖, 𝑎𝑖 and 𝑡𝑖
are the trajectory pose, the cartesian velocity and acceleration, and the
trajectory time associated with this point. The sign of the square root in
(5b) is the one that produces the minimum, positive time increase. In
case there is a target velocity decrease, the speed transition starts at the
beginning of the next section, and the equivalent equations are applied
to calculate the times and speeds for every trajectory configuration.

Then, the calculated times are used to determine the joint velocities
(�̇�𝑖) and accelerations (𝑞𝑖) at each trajectory configuration (𝑞𝑖) using the
following equations, in which 𝑗 represents the index of the joint:

𝑞𝑖,𝑗 =
2
𝛥𝑡2𝑖

(𝑞𝑖,𝑗 − 𝑞𝑖−1,𝑗 − �̇�𝑖−1,𝑗 𝛥𝑡𝑖) (8)

̇𝑖,𝑗 = min(�̇�𝑖−1,𝑗 + 𝑞𝑖,𝑗 𝛥𝑡𝑖, 𝜑 �̇�𝑗𝑚𝑎𝑥 ) (9)

In case any of the resultant joint velocities is higher than its real or
virtual (if reduced by 𝜑) limit, it gets that value, as can be seen in (9),
and the joint acceleration and the trajectory time are recalculated.

𝑞𝑖,𝑗 =
2�̇�𝑖−1,𝑗 (�̇�𝑖,𝑗 − �̇�𝑖−1,𝑗 ) + (�̇�𝑖,𝑗 − �̇�𝑖−1,𝑗 )2

2(𝑞𝑖,𝑗 − 𝑞𝑖−1,𝑗 )
(10)

𝛥𝑡𝑖,𝑗 =
�̇�𝑖,𝑗 − �̇�𝑖−1,𝑗

𝑞𝑖,𝑗
(11)

After calculating all the joint speeds and accelerations of a JointTra-
jectoryPoint, if 𝛥𝑡𝑖,𝑗 had to be recalculated with (10) (11) for any of the
joints, 𝛥𝑡𝑖 is updated according to:

𝛥𝑡𝑖 = max
𝑗

(𝛥𝑡𝑖,𝑗 ) (12)

And all the joint speeds and accelerations of the JointTrajectoryPoint
are recalculated for the updated trajectory time with (8) and (9).
Finally, when none of the joint speed limits is exceeded, the calculated
JointTrajectoryPoint is added to the motion plan message.

An additional case must be considered to ensure that the first con-
straint of the function is satisfied. Even if the maximum acceleration of
the end effector is not enough to reach the target speed of a section, the
target speeds can never be exceeded. Therefore, if the distance needed
to accelerate and decelerate in a certain target speed section is higher
than the total distance traveled on the section (𝛥𝑋𝑠𝑡𝑜𝑡 < 𝛥𝑋𝑠−1𝑚𝑖𝑛 +
𝛥𝑋𝑠𝑚𝑖𝑛 ), the end effector must stop accelerating before reaching the
target speed, to guarantee that it will decelerate on time. This situation
is represented graphically in Fig. 3, and the distance at which the
end effector must start reducing its speed (𝛥𝑋𝑠) is calculated with the
following equations:

𝛥𝑋𝑠−1 = 𝑉𝑠−1𝛥𝑡𝑠−1 +
1
2
𝑎𝑚𝑎𝑥 𝛥𝑡

2
𝑠−1 (13)

𝑉 ′
𝑠 = 𝑉𝑠−1 + 𝑎𝑚𝑎𝑥 𝛥𝑡𝑠−1 (14)

𝛥𝑋𝑠 = 𝑉 ′
𝑠 𝛥𝑡𝑠 −

1
2
𝑎𝑚𝑎𝑥 𝛥𝑡

2
𝑠 (15)

𝑉𝑠+1 = 𝑉 ′
𝑠 − 𝑎𝑚𝑎𝑥 𝛥𝑡𝑠 (16)

𝛥𝑋𝑠𝑡𝑜𝑡 = 𝛥𝑋𝑠−1 + 𝛥𝑋𝑠 (17)
7

Fig. 3. Representation of the case in which the acceleration is not enough to reach
the target speed of the section. The distance required to decelerate the end effector to
the next target speed before the end of the section has to be calculated.

Where 𝛥𝑋𝑠−1, 𝛥𝑋𝑠, 𝛥𝑡𝑠−1, 𝛥𝑡𝑠 and 𝑉 ′
𝑠 are unknown, and the meaning

of all the variables is graphically explained in Fig. 3. Solving this
equation system, the following expressions are obtained:

𝛥𝑡𝑠 =
−2𝑉𝑠+1 +

√

2(𝑉 2
𝑠+1 + 𝑉 2

𝑠−1 + 2𝑎𝑚𝑎𝑥𝛥𝑋𝑠𝑡𝑜𝑡 )

2𝑎𝑚𝑎𝑥
(18)

𝛥𝑋𝑠 = (𝑉𝑠+1 + 𝑎𝑚𝑎𝑥𝛥𝑡𝑠)𝛥𝑡𝑠 −
1
2
𝑎𝑚𝑎𝑥𝛥𝑡

2
𝑠 (19)

All the equations presented in this section are for the calculation
of linear motions, but the equivalent equations are applied for the end
effector angular motions and the angular target speeds. However, when
there are both linear and angular speed targets, in most cases it is not
possible to satisfy both at the same time, as the path is already defined
and the linear and angular targets produce different times. Therefore,
in these cases, the final time steps will be the highest of the linear (𝛥𝑡𝑋𝑖

)
and angular (𝛥𝑡𝜃𝑖 ) time steps.

∀𝑖, 𝛥𝑡𝑖 = max(𝛥𝑡𝑋𝑖
, 𝛥𝑡𝜃𝑖 ) (20)

This will make one of the speeds constant at its target speed (the one
with the highest time) and the other variable below its target speed.
The whole process described in this section is summarized in Fig. 4.

3.3. Dual-arm cartesian motion

This function plans the trajectory of each of the arms individu-
ally, with (using the function of Section 3.2) or without (using the
compute_cartesian_path method) velocity control, and then merges both
plans, synchronizing the motion of the arms according to different
policies. As mentioned in Section 2.2, computing the motion plan of
each arm independently and executing them simultaneously makes
the self-collision checking unreliable, as it does not take into account
the simultaneous motion of the arms. However, collision checking is
still useful to avoid collisions with the environment or with its torso.
Therefore, the plan of each arm is generated using collision checking,
but the allowed collision matrix is modified before to not take into
account collisions between the arms. This kind of collision must be
checked only when the plans are merged, otherwise the simultaneous
motion of the arms will not be considered. Before continuing with the
description of the approach, Table 1 must be checked, which defines
the nomenclature that will be used throughout this section.

Once the motion plan of each arm is generated, the function merges
them into a single plan for the dual-arm group, including the joint
trajectory values of both arms. However, as the two single-arm motion
plans were generated independently, their trajectory times are differ-
ent, and hence, they cannot be merged directly. Due to this, their joint
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Fig. 4. UML activity diagram of the end effector speed control function.
trajectory values must be recalculated for the trajectory times used
in the merged plan. Three different synchronization policies can be
selected to merge the motion plans: (i) starting and finishing the motion
of both arms at the same time, (ii) moving each arm at the calculated
speed, or (iii) reaching several waypoints simultaneously by both arms.

In the first policy, when both arms finish moving at the same time,
the total execution time is the time of the slowest arm, and the speed
of the fastest arm is adjusted accordingly. Therefore, to construct the
merged plan, the trajectory times used are the ones of the plan of
the slowest arm. Thus, the joint trajectory values of this arm that are
required for the merged plan are already known. However, for the
other arm, the joint trajectory values for each trajectory time of the
merged plan are calculated by linear interpolation between its joint
8

trajectory values at its previous and next trajectory times. To achieve
a smooth motion of the arms, with a stable speed, the number of
points of the individual motion plans to merge must be as similar as
possible. This is done by adjusting the end-effector step parameter of
the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛_𝑝𝑎𝑡ℎ method, for the arm with the shortest motion
(i.e., the one that travels the shortest distance). This step (𝜀) defines
the cartesian distance between the generated trajectory poses, and it is
adjusted according to the following equation:

𝜀𝐵 =
𝜀𝐿

∑𝑛𝐿−1
𝑘=0 (|𝑝𝐿𝑘

, 𝑝𝐿𝑘+1
|)

∑𝑛𝐵−1
𝑘=0 (|𝑝𝐵𝑘

, 𝑝𝐵𝑘+1
|)

(21)

Where the subindexes 𝐵 and 𝐿 represent the shortest (briefest) and
longest plan respectively, 𝑛 is the number of waypoints specified to
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Fig. 5. UML activity diagram of the dual-arm cartesian motion function.

generate the plan, 𝑘 is the index of the waypoint, and 𝑝 represents the
list of waypoints.

In the second policy, each arm moves at its own target speed,
which is targeted for un-coordinated manipulation applications [56].
The merged dual-arm plan contains all the trajectory times of both
individual plans. For each arm, the trajectory values corresponding to
the trajectory times of the other arm are calculated by applying Eqs. (6),
(22), (8), and (9). For these calculations, the initial and final conditions
considered are the trajectory values of the previous and next point
with respect to the evaluated time. However, as each arm will finish
its trajectory at a different time, these equations cannot be applied
when, for one of the arms, the evaluated time is higher than all the
trajectory times of its plan. In this case, for this arm, the new trajectory
configuration will be the same as for its last JointTrajectoryPoint, and
the new joint velocities and accelerations will be set to zero, so it
remains in the final position while the other arm finishes its trajectory.

𝑞𝑖,𝑗 = 𝑞𝑖−1,𝑗 + �̇�𝑖−1,𝑗 𝛥𝑡𝑖 +
1
2
𝑞𝑖−1,𝑗 𝛥𝑡

2
𝑖 (22)

The third and last policy, synchronizes both arms to reach a set of
poses at the same time. A dual-arm plan is generated between every
pair of waypoints, using the first synchronization policy, obtaining a
sequence of plans that start and finish at the same time. Then, all
9

these dual-arm plans are merged into one, recalculating the trajectory
times and the joint speeds and accelerations from the beginning of
the deceleration of the previous plan until the end of the acceleration
of the next plan, using the Eqs. (5)–(9). This guarantees a smooth
transition between the different target speeds of the plans, respecting
the maximum acceleration constraints.

Finally, after the plans are merged according to one of these policies,
it is necessary to check that the synchronized motion of the arms will
not cause collisions between them. For this, the original values of the
ACM are restored (so collisions between the arms are considered again),
and the presence of self-collisions is evaluated in each trajectory config-
uration of the dual-arm plan. If any invalid configuration is detected,
the plan is rejected and an error message is returned, otherwise, the
plan is executed. To be safe, the step (𝜀) used to generate the individual
arm plans must be small, as this is the resolution of the collision
checking in the cartesian space. The full process can be seen in Fig. 5.

3.4. Master–slave dual-arm motion

This function uses the dual-arm motion function presented in Sec-
tion 3.3 and adds the capability to perform identical and constant
distance master–slave motions. This means that the user just needs to
define the motion of one of the arms, the master, and the motion of
the second arm, the slave, will be a function of it. Therefore, even
though the temporal synchronization of the arms is achieved using one
of the synchronization policies of the previous subsection, additional
considerations are required to ensure their spatial synchronization.
Fig. 6 shows how this function works.

In the constant distance master–slave motion, the slave arm moves
to keep always a constant relative pose with respect to the master arm.
This is especially interesting for closed chain bimanual manipulation
tasks [56], in which both arms are manipulating the same object. When
both grippers are grasping and moving an object, it is very important
to keep the relative pose of both end effectors constant to not damage
the object. To keep this relative pose constant, the initial homogeneous
transformation matrix between the arms is computed (𝐻𝑀

𝑆 ), and then,
all the slave waypoints (𝐻𝑊

𝑆𝑘
) are calculated by applying this same

transformation to the master waypoints (𝐻𝑊
𝑀𝑘

), as can be seen in Fig. 6.
The distance between consecutive waypoints must be small to ensure
that the relative pose between arms will be constant during the whole
trajectory.

In the identical master–slave motion, the slave arm performs the
same cartesian displacements and rotations as the master arm. This
is interesting when one arm has to move to a certain pose, but the
other arm might be in the middle of its trajectory. With this motion,
the slave arm will move away simultaneously, clearing the path for the
master arm to move. Another application of this function is when both
arms have to perform the exact same relative trajectory. In this case,
just the master arm trajectory needs to be planned, and the slave arm
will follow it. To achieve this, the same relative movements performed
between consecutive master waypoints (𝐻𝑀𝑘−1

𝑀𝑘
) are applied between

consecutive slave waypoints (𝐻𝑊
𝑆𝑘−1

and 𝐻𝑊
𝑆𝑘

), as can be seen in Fig. 6.
As in the previous case, the smaller the distance between waypoints, the
more similar the arms trajectories will be. Finally, the dual-arm motion
function is executed, sending the waypoints of both end effectors, and
selecting the synchronization policy of finishing the trajectory both
arms at the same time.

4. Experimental evaluation

The results of testing the developed functions with a real robot
are presented in this section. These experiments were performed with
a Motoman SDA10F dual-arm robot, using a PC with an Intel Core
i5-8365U CPU @ 1.60 GHz and 16 GB RAM, and the results have
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Fig. 6. UML activity diagram of the dual-arm master–slave motion function. 𝐻 = homogeneous transformation matrix from the frame of its super index to the frame of its
subindex, 𝑀 = Master, 𝑆 = Slave, 𝑊 = World𝑘 = index of the waypoint.
been recorded and compiled in a video2 All the EEF’s position and
velocity graphs of this section were generated by the data collected
when running the tests in the real robot. These values were obtained
by sampling the poses of the EEFs using the 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑒 method
of the MoveGroupCommander class. This section uses the nomenclature
introduced in Section 3.

4.1. Automatic tool changing tests

The performed tests consisted of automatically changing one of the
robot tools. Three tools were used for these experiments, two WSG-
50 parallel grippers and an automatic taping gun, and all the tool
change combinations were tested (i.e., change gripper to taping gun
and vice versa for both arms). A pneumatic automatic tool changer
was used to hook and release the tools, and the pneumatic line was
controlled through the robot I/Os, whose values were changed using
ROS services. The changes of tool were performed using a tool changing
platform with slots specifically designed for the dimensions of each
tool, as can be seen in Fig. 7. After calibrating the position of the tool
changing platform, all the possible changes of tool for both arms were
performed successfully. Fig. 7 shows the robot inserting the gripper in
its correspondent slot, before releasing it.

2 https://youtu.be/DJXKWWmBquM
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4.2. End effector speed control tests

The performance of the function to plan end effector trajectories
with speed control was tested with eight experiments: A trajectory
composed of different target speed sections (E1), a trajectory with slow
acceleration able to reach the target velocity (E2), a trajectory with
slow acceleration not able to reach the target velocity (E3), a circular
trajectory (E4), a trajectory with linear and angular motion (E5-6),
and a trajectory that exceeds the joint velocity limits (E7-8). All these
experiments are described in Table 2. This table shows also the perfor-
mance of each experiment with three metrics: the deviation between
the target intermediate/final EEF poses and the ones obtained in the
experiment (test poses), the average EEF speed (test speed AVG), and
the maximum EEF speed error (test speed EM). The last two met-
rics are calculated without considering the acceleration/deceleration
ramps. Additionally, the results of the experiments can be seen in Fig. 8
(E1-4), Fig. 9 (E5-6) and Fig. 10 (E7-8).

In the first experiment, a trajectory with a complex EEF speed
profile was planned. This trajectory has three sections, all of them
linear motions in the X axis. In the first one the EEF moves 150 mm with
a target speed of 70 mm/s (E1.1), in the second 100 mm at 30 mm/s
(E1.2), and in the third 150 mm at 70 mm/s (E1.3). As can be seen in
Fig. 8, the EEF reaches the target speeds in each section, and the speed
transitions happen within the sections with the highest target velocity.

In the second and third experiments, a trajectory with low accel-
eration is planned. In both cases, the motion is linear along the X

https://youtu.be/DJXKWWmBquM
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Fig. 7. Insertion of the WSG-50 gripper in its slot in the tool changing platform during one of the ATC tests.
Table 2
EEF cartesian velocity control experiments.

Exp Path type Start
(mm)
(deg)*

Path
definition
(mm)(deg)*

Target
speed
(mm/s)
(deg/s)*

Max accel
(mm/s2)
(deg/s2)*

Test poses
(mm)
(deg)*

Test speed
AVG/EM
(mm/s)
(deg/s)*

Fig

E1 Linear X
motion 𝑋0 = −130.3

𝑋𝑓 = −280.3 70 200 𝛥𝑋𝑓 = −9.8 69.7/3.7

8
𝑋𝑓 = −380.3 30 200 𝛥𝑋𝑓 = 5.6 29.5/1.5

𝑋𝑓 = −530.3 70 200 𝛥𝑋𝑓 = 0 68.4/−3.5

E2 Linear X
motion

𝑋0 = −530.3 𝑋𝑓 = −130.3 40 20 𝛥𝑋𝑓 = 0 39.4/2.2

E3 Linear X
motion

𝑋0 = −130.3 𝑋𝑓 = −380.3 70 E5 𝛥𝑋𝑓 = −0.1 𝑉𝑠 not
reached

E4 Circular
XY motion

𝑋0 = −380.3
𝑌0 = 506.8

𝑋𝑓 = −130.3
𝑌𝑓 = 506.8
𝑅 = 125
𝜃∗𝐴𝑟𝑐 = 180

80 200 𝛥𝑋𝑓 = −0.1
𝛥𝑌𝑓 = 0

79.0/−4.3

E5

Simultaneous
linear X
motion +
ZG rotation

𝑋0 = −130.3
𝜃∗𝑍0

= 1.7
𝑋𝑓 = −480.3
𝜃∗𝑍𝑓

= 176.7
50
200*

200
140*

𝛥𝑋𝑓 =
−1.9𝛥𝜃∗𝑍𝑓

=
0.6

49.6/3.1
(24.5/-175)∗† 9

E6

Simultaneous
linear X
motion +
ZG rotation

𝑋0 = −130.3
𝜃∗𝑍0

= 1.7
𝑋𝑓 = −480.3
𝜃∗𝑍𝑓

= 176.7
50
10*

200
140*

𝛥𝑋𝑓 = −1.9
𝛥𝜃∗𝑍𝑓

= 0.7
(19.5/−32.2)†
(9.6/−0.8)∗

E7 Linear X
motion

𝑋0 = −130.4 𝑋𝑓 = −580.4 1000
𝜑 = 10%

2000 𝛥𝑋𝑓 = −0.1 (141/-886)† 10

E8 Linear X
motion

𝑋0 = −580.4 𝑋𝑓 = −130.4 1000
𝜑 = 5%

2000 𝛥𝑋𝑓 = 0 (71.2/-937)†

𝑓 : final, ZG: Z axis of the gripper, 𝑅: Radius, †: High target velocity error because it is not reached (due to slow acceleration, joint speed limits exceeded, or linear-angular velocity
control).
axis. In the second, the EEF moves 400 mm with a target speed of
40 mm/s and the acceleration limited to 20 mm/s2. As can be seen
in Fig. 8, the acceleration is slower than in the first scenario, and
it takes more time to reach the target speed. However, in the third
experiment the distance traveled by the EEF is reduced to 250 mm,
the target speed increased to 70 mm/s, and the acceleration reduced
to 5 mm/s2, making it impossible to reach the target speed and then
decelerate before the end of the trajectory. Therefore, the speed of the
EEF starts reducing when it is slightly over 30 mm/s in order to stop
its motion in the last waypoint of the trajectory.

In the fourth experiment a simple velocity profile of 80 mm/s is
tested on a circular XY trajectory, to prove that the function not only
works for linear motions.

In the fifth and sixth experiments, an EEF trajectory composed of a
simultaneous linear (along the X axis) and an angular (around the Z axis
of the EEF) motion was tested. First (E5), the trajectory was executed
with a high target angular speed (200 deg/s) and a target linear speed
11
of 50 mm/s, and next (E6), with a very slow target angular speed (10
deg/s) and the same target linear speed as before. As the path of the
trajectory is given, in most cases it is impossible to move at both target
speeds. This issue is solved by ensuring that none of the target speeds
are exceeded, fixing always the one that is reached first, as can be seen
in Fig. 9. In the first case (E5), the target angular speed is too high,
so it cannot be reached without exceeding the linear one. Therefore,
the linear speed commands the motion and the angular speed varies
below its target. However, in the second case (E6), as the target angular
speed is low, it is reached before the target linear speed. Therefore, the
angular speed is the one commanding the motion in this case and the
linear varies below its target. Due to this, the speed oscillations are
higher for the velocity that is not commanding the motion.

Finally, in the last two experiments (E7-8), a motion with a high
target speed (1000 mm/s) and maximum acceleration (2000 mm/s2)
was performed to check if the function was keeping all the joint speed
limits below their limits. Additionally, the joint speed limits were
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Fig. 8. Cartesian speed control results. Experiments 1-4.
Fig. 9. Cartesian speed control results. Experiments 5-6: linear + angular motion. In E5, the motion is commanded by the linear speed and the angular speed varies below its

target, and vice versa in E6.
reduced virtually, first to a 10% (E7) and then to a 5% (E8), using the
𝜑 parameter. The specified target speed could not be reached in any
of the experiments without exceeding some of the joint velocity limits.
Therefore, the joint speeds were kept constant at their virtual limits,
12
making the EEF cartesian speed vary below its target according to the
Jacobian (as can be seen in Fig. 10).

All the graphs presented in this section were generated with data
obtained during the real robot operation. The small speed oscillations
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Fig. 10. Cartesian speed control results. Experiments 7-8: joint speed limits exceeded.
are due to the real behavior of the joint actuators, with an average
error of 0.32 mm/s and a maximum error of 4.3 mm/s with respect
to the target speed, which is much lower when the end effector speed
and the acceleration is low. The same experiments were repeated with
just the RVIZ visualization of the robot and the average error was
reduced to 0.07 mm/s and the maximum error to 1 mm/s. This confirms
that the calculated motion plan values are theoretically correct, as the
errors are much lower when the effect of the actuators, weights, and
inertias is not considered. The oscillations caused by the real actuators’
behavior could be minimized using this function with a real-time
control solution.

4.3. Dual-arm cartesian motion tests

Four different experiments were performed to test the dual-arm
cartesian motion functions (E9-12). E9 and E10 test the three synchro-
nization policies presented in Section 3.3, and they are described in
Table 3. Whereas E11 and E12 test the master–slave motions presented
in Section 3.4, which are described in Table 4. These tables show also
the performance of the experiments using the three metrics presented
Section 4.2. Additionally, two more metrics are used in Table 4 to
measure the performance of the master–slave motions: the average vari-
ation of the relative pose between EEFs (𝜟𝑹𝑷 AVG), and its maximum
error (𝜟𝑹𝑷 EM).

In E9, the same dual-arm trajectory was planned and executed both
with synchronization policy 1 (E9.1) and 2 (E9.2). The results of this
test can be seen in Fig. 11(a, c). Initially, synchronization policy 1 was
used, setting the maximum EEF speed to 30 mm/s. As the distance
traveled by the right arm is shorter, it moves slower than 30 mm/s,
while the left arm moves at 30 mm/s, and both arms finish their
trajectory at the same time. Then, the robot arms are moved back to
their initial positions (without speed control), and the same trajectory
is planned using synchronization policy 2. In this case, the right arm
velocity is set to 50 mm/s and the left arm velocity to 30 mm/s. As can
be seen in the figure, now each arm moves at its target speed and the
right arm finishes its motion before the left one. Finally, the robot arms
are moved back to their initial positions again (without speed control).

In E10, a trajectory is planned and executed both with synchroniza-
tion policy 1 (E10.1-E10.2) and 3 (E10.3). This trajectory is defined
by an intermediate and a final pair of waypoints, and each of them
must be reached by the two EEFs at the same time. In the first part of
the trajectory (from the initial to the intermediate pair of waypoints),
the left EEF travels less distance, so it must move slower than the
right EEF, while in the second part (from the intermediate to the final
pair of waypoints), the right EEF is the one with the shortest path,
and therefore, the one that must move slower. Regarding the target
EEF velocity, it is set to 50 mm/s for both arms and synchronization
policies.

When policy 1 is applied, the two parts of the trajectory are planned
and executed separately to ensure that the two EEFs will reach the
13
intermediate pair of waypoints at the same time. Due to this, the motion
stops between the two trajectory parts. However, when policy 3 is
applied, all the trajectory is planned at once, synchronizing the arms to
reach every pair of waypoints simultaneously. Additionally, the speed
changes between the different trajectory parts are smooth, and the
motion never stops. In both cases, the target velocity is just reached by
the arm with the largest path between waypoints, while the other arm
has to adjust its speed to reach the next waypoint in the same amount of
time. As in the previous experiment, movements without speed control
are performed to bring the arms back to their initial positions after each
experiment. The results of this experiment can be seen in Fig. 11(b, d).

The constant distance master–slave motion was tested in E11 with
a set of trajectories executed while grasping a rigid object with both
grippers. These trajectories included linear motions (E11.1, E11.5),
circular motions (E11.2) (Fig. 12.a), and end effector rotations (E11.3.
E11.4, E11.6) (Fig. 12.b), with different target velocities (Fig. 13.e,
f). The euclidean distance between the grippers was kept constant
at 250 mm, with a maximum variation of 3 mm (Fig. 13.a), and
the maximum variation of their relative orientation was 0.7 degrees
(Fig. 13.b).

Finally, to test the identical master–slave motion, a trajectory of the
master arm that passes through the initial position of the slave arm was
performed (E12). The trajectory was executed successfully, the slave
arm copied the master’s motions moving away and letting space for
the master to move without collisions. This trajectory included a linear
motion and EEF rotation, as can be seen in Fig. 12.c and Fig. 14.

5. Conclusions

MoveIt is the primary software library for motion planning and
mobile manipulation in ROS, however, it is still quite recent, and some
important functions have not been developed yet. Therefore, in this
paper, the current state of MoveIt has been analyzed in order to identify
these gaps. The three main necessities that were detected are: a generic
solution to implement an ATC, a function to control the linear and
angular cartesian speed of the end effector, and a solution to perform
dual-arm synchronized motions. This paper presents a solution for each
of these problems, which are publicly available at: https://github.com/
pablomalvido/Advanced_manipulation_moveit.

All the developed functions and classes were tested both in RVIZ
and with a real robot (a Motoman SDA10F dual-arm robot), showing
satisfactory results. The ATC was performed successfully with both
arms of the robot, using two parallel grippers and an automatic taping
gun. All the possible tool changes were performed (i.e., change gripper
to taping gun and vice versa for both arms) just by specifying the name
of the tools to change.

The end effector speed control was tested in different scenarios and
with different kind of trajectories, showing good control over the linear
and angular speeds and accelerations of the end effector for linear
and non-linear motions. The obtained velocity profiles showed a very
accurate average speed, with an error under 1 mm/s, but with certain
oscillations due to the behavior of the real joint actuators.

https://github.com/pablomalvido/Advanced_manipulation_moveit
https://github.com/pablomalvido/Advanced_manipulation_moveit
https://github.com/pablomalvido/Advanced_manipulation_moveit
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Table 3
Synchronized dual-arm motion experiments. The acceleration is 200 mm/s2 for all the experiments.

Exp Traj Sync
Policy

Arm Path type Start
(mm)

Path
definition
(mm)

Target
speed
(mm/s)

Test poses
(mm)(s)*

Test speed
AVG/EM
(mm/s)

Fig

E9

9.1 1

L
XY linear
motion

𝑋0 = −130.3
𝑌0 = 506.9

𝑋𝑓 = −430.3
𝑌𝑓 = 706.9

30 𝛥𝑋𝑓 = 0
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 17.1

29.5/−1.5

11(a, c)
R

XY linear
motion

𝑋0 = 119.7
𝑌0 = 506.9

𝑋𝑓 = 319.7
𝑌𝑓 = 656.9

30 𝛥𝑋𝑓 = 0
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 17.1

(20.9/−10.1)†

9.2 2

L
XY linear
motion

𝑋0 = −130.3
𝑌0 = 506.9

𝑋𝑓 = −430.3
𝑌𝑓 = 706.9

30 𝛥𝑋𝑓 = 0.1
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 38.2

30.0/−1.5

R
XY linear
motion

𝑋0 = 119.7
𝑌0 = 506.9

𝑋𝑓 = 319.7
𝑌𝑓 = 656.9

50 𝛥𝑋𝑓 = 0
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 31.5

49.8/2.5

E10

10.1 1

L
XY linear
motion

𝑋0 = −130.3
𝑌0 = 506.9

𝑋𝑓 = −230.3
𝑌𝑓 = 606.9

50 𝛥𝑋𝑓 = 0.1
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 11.0

(22.1/−28.7)†

11(b, d)

R
XY linear
motion

𝑋0 = 119.6
𝑌0 = 506.9

𝑋𝑓 = 369.7
𝑌𝑓 = 706.9

50 𝛥𝑋𝑓 = 0
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 11.0

49.9/2.9

10.2 1

L
XY linear
motion

𝑋0 = −230.3
𝑌0 = 606.9

𝑋𝑓 = −80.3
𝑌𝑓 = 756.9

50 𝛥𝑋𝑓 = −0.1
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 18.6

50.2/2.4

R
XY linear
motion

𝑋0 = 369.7
𝑌0 = 706.9

𝑋𝑓 = 269.7
𝑌𝑓 = 756.9

50 𝛥𝑋𝑓 = 0
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 18.6

(26.6/−27.9)†

10.3 3

L

Sequence of
XY linear
motions

𝑋0 = −130.3
𝑌0 = 506.9

𝑋1 = −230.3
𝑌1 = 606.9
𝑋𝑓 = −80.3
𝑌𝑓 = 756.9

50 𝛥𝑋1 = 7.3
𝛥𝑌1 = 5.2
𝑡∗1 = 39.2
𝛥𝑋𝑓 = 0
𝛥𝑌𝑓 = 0
𝑡𝑓 = 43.7

(22.0/29.1)†1
(49.8/−2.0)𝑓

R

Sequence of
XY linear
motions

𝑋0 = 119.6
𝑌0 = 506.9

𝑋1 = 369.7
𝑌1 = 706.9
𝑋𝑓 = 269.7
𝑌𝑓 = 756.9

50 𝛥𝑋1 = −6.2
𝛥𝑌1 = 1.0
𝑡∗1 = 39.2
𝛥𝑋𝑓 = 0
𝛥𝑌𝑓 = 0
𝑡∗𝑓 = 43.7

(50.0/−4.9)1
(26.2/−24.0)†𝑓

𝑓 : final, [𝑋1 , 𝑌1]: Intermediate XY waypoint, [𝑋𝑓 , 𝑌𝑓 ]: Final XY waypoint, †: High target velocity error for one of the arms because it is not reached (due to the use of the arms

ynchronization policies 1 and 3).
The developed dual-arm motion functions were tested with different
ynchronization policies: both arms moving at their own speeds, finish-
ng at the same time, or reaching certain intermediate waypoints at the
ame time. All these tests were successful, without self-collisions and
omplying with the synchronization policies. Additionally, the master–
lave dual-arm motion was tested. For this, the slave arm motion was
alculated to either mimic the master arm motion or to keep the dis-
ance between end effectors constant. This last case was tested grasping
rigid object with both grippers. The object was moved without any

amage or deformation, with a maximum variation of 3 mm in the
istance between the grasping points during the whole trajectory.

After testing, it can be concluded that all the functions presented
n this paper are valid solutions to overcome the main gaps identified
n MoveIt. Additionally, these functions are generic and robot-agnostic,
ence, they can be used to extend the current MoveIt capabilities for
ny robot and application.

Regarding future work, there are three objectives. The first one is
o keep testing the developed functions, using them for different use
ases and robots. The second one is to minimize the speed oscillations
f the trajectories generated with these functions. As mentioned at
he end of Section 4.2, this could be done by using these functions
ith a real-time control solution. Finally, the third objective is to
igrate the developed functions to ROS 2 and MoveIt 2. Moreover, the

epository will be maintained, keeping the functions updated with the
14

odifications derived from future work.
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Fig. 11. Dual-arm synchronization results. Experiments 9 (a, c) and 10 (b, d). R: Right, L: Left.
Table 4
Master–slave experiments. The acceleration is 200 mm/s2 for all the experiments.

Exp Traj Sync
Policy

Master
arm

Path type Start
(mm)
(deg)*

Path
definition
(mm)(deg)*

Target
speed
(mm/s)
(deg/s)*

Test poses
(mm)
(deg)*

Test 𝛥𝑅𝑃
AVG/EM
(mm)
(deg)*

Test speed
AVG/EM
(mm/s)
(deg/s)*

Fig

E11

11.1
MS
Const
𝑅𝑃

L
XY linear
motion

𝑋0 = −130.3
𝑌0 = 506.9

𝑋𝑓 = −280.3
𝑌𝑓 = 606.9

40 𝛥𝑋𝑓 = 0.1
𝛥𝑌𝑓 = −0.1

−0.9/−1.6 40.0/1.9

1311.2
MS
Const
𝑅𝑃

L
XY circular
motion

𝑋0 = −280.3
𝑌0 = 606.9

𝑋𝑓 = −280.3
𝑌𝑓 = 606.9
𝑅 = 150
𝜃∗𝐴𝑟𝑐 = 360

60 𝛥𝑋𝑓 = 0.1
𝛥𝑌𝑓 = 0

−0.1/3.0 59.9/−3.8

11.3
MS
Const
𝑅𝑃

L
Linear XY +
ZG rot

𝑋0 = −280.3
𝑌0 = 606.9
𝜃∗𝑍0

= 1.7

𝑋𝑓 = −130.3
𝑌𝑓 = 756.9
𝜃∗𝑍𝑓

= 61.7

30
21*

𝛥𝑋𝑓 = 0
𝛥𝑌𝑓 = −0.1
𝛥𝜃∗𝑍𝑓

= 0

0.3/1.0
(−0.2/−0.4)*

30.1/1.9
(8.5/−11.6)∗†

11.4
MS
Const
𝑅𝑃

L
Linear XY +
ZG rot

𝑋0 = −130.3
𝑌0 = 756.9
𝜃∗𝑍0

= 61.7

𝑋𝑓 = −280.3
𝑌𝑓 = 606.9
𝜃∗𝑍𝑓

= 1.7

30
-21*

𝛥𝑋𝑓 = 0.1
𝛥𝑌𝑓 = 0
𝛥𝜃∗𝑍𝑓

= −0.1

−0.3/−1.1
(0.2/0.4)*

29.9/1.9
(−8.5/11.3)∗†

11.5
MS
Const
𝑅𝑃

L
XY linear
motion

𝑋0 = −280.3
𝑌0 = 606.9

𝑋𝑓 = −130.3
𝑌𝑓 = 506.9

40 𝛥𝑋𝑓 = −0.1
𝛥𝑌𝑓 = 0

0.4/1.5 39.9/2.3

11.6
MS
Const
𝑅𝑃

L
Linear YZ +
XG rot

𝑌0 = 506.9
𝑍0 = 1197.2
𝜃∗𝑋0

= −91.7

𝑌𝑓 = 641.9
𝑍𝑓 = 1332.3
𝜃∗𝑋𝑓

= −181.7

30
-21*

𝛥𝑌𝑓 = −0.1
𝛥𝑍𝑓 = −0.2
𝛥𝜃∗𝑋𝑓

= 0.2

−0.1/−0.2
(0.3/0.7)*

29.0/−2.8
(−14.4/1.4)∗†

E12 12.1 MS
Id L

Linear X +
ZG rot

𝑋0 = −130.3
𝜃∗𝑍0

= 1.7
𝑋𝑓 = 69.7
𝜃∗𝑍𝑓

= 89.7
30
21*

𝛥𝑋𝑓 = −0.5
𝜃∗𝑍𝑓

= −0.4
– 30.2/1.8

(13.0/−7.1)∗†
14

𝑓 : final, ZG: Z axis of the gripper, 𝑅: Radius, 𝑅𝑃 : Relative pose between EEFs, MS Const 𝑅𝑃 : Constant relative pose Master–Slave motion, MS Id: Identical Master–Slave motion
†: High target velocity error because it is not reached (due to the linear-angular speed control).
15
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Fig. 12. RVIZ visualization of generated master–slave paths.

Fig. 13. Constant relative pose Master–Slave motion results. Experiment 11. R: Right, L: Left. The left arm is the master.
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Fig. 14. Identical Master–Slave motion results. Experiment 12. R: Right, L: Left. The left arm is the master.
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