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Uncovering the complex genetic 
architecture of human plasma 
lipidome using machine learning 
methods
Miikael Lehtimäki 1,2,3,12, Binisha H. Mishra 1,2,3,12, Coral Del‑Val 4,11, 
Leo‑Pekka Lyytikäinen 1,2,3, Mika Kähönen 2,5, C. Robert Cloninger 6, Olli T. Raitakari 7,8,9, 
Reijo Laaksonen 1,2,10, Igor Zwir 4,6,11, Terho Lehtimäki 1,2,3 & Pashupati P. Mishra 1,2,3*

Genetic architecture of plasma lipidome provides insights into regulation of lipid metabolism 
and related diseases. We applied an unsupervised machine learning method, PGMRA, to discover 
phenotype‑genotype many‑to‑many relations between genotype and plasma lipidome (phenotype) 
in order to identify the genetic architecture of plasma lipidome profiled from 1,426 Finnish individuals 
aged 30–45 years. PGMRA involves biclustering genotype and lipidome data independently followed 
by their inter‑domain integration based on hypergeometric tests of the number of shared individuals. 
Pathway enrichment analysis was performed on the SNP sets to identify their associated biological 
processes. We identified 93 statistically significant (hypergeometric p‑value < 0.01) lipidome‑
genotype relations. Genotype biclusters in these 93 relations contained 5977 SNPs across 3164 genes. 
Twenty nine of the 93 relations contained genotype biclusters with more than 50% unique SNPs 
and participants, thus representing most distinct subgroups. We identified 30 significantly enriched 
biological processes among the SNPs involved in 21 of these 29 most distinct genotype‑lipidome 
subgroups through which the identified genetic variants can influence and regulate plasma lipid 
related metabolism and profiles. This study identified 29 distinct genotype‑lipidome subgroups in the 
studied Finnish population that may have distinct disease trajectories and therefore could be useful in 
precision medicine research.

Atherosclerosis, the underlying pathology behind many cardiovascular diseases (CVDs), is a heterogeneous 
lipid accumulation and inflammation related disease with roots including  genetics1,  personality2, and lifestyle 
 factors3. Previous lipidomic analyses have revealed several ceramides and phospholipids associated with key 
atherosclerosis processes such as uptake and aggregation of lipoproteins, accumulation of cholesterol within 
macrophages, production of superoxide anions, expression of cytokines and  inflammation4–6. Similarly, genetic 
studies of traditional lipids such as total cholesterol (TC), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), 
non-HDL-cholesterol and triglycerides have identified about 1000 genomic loci and improved our understand-
ing of lipid  metabolism7–10. Some studies have reported genetic associations for subsets of  lipidome11–13 and 
 metabolome13–20. Only few genome-wide association studies (GWASs) of lipidome involving 141–596 lipid 
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species have been  done21–23. Therefore, genetic regulation of detailed lipidome beyond the traditional lipids is 
largely unknown.

While GWASs of traditional clinical lipids or lipidome using traditional linear or logistic regression model 
can identify loci associated with lipids across the whole studied population (global associations), they disregard 
potential subgroups within the studied population and their associations with lipids (local associations). Under-
standing of local associations is crucial for precision medicine because specific lipidome-based subgroups within 
a population may have different trajectories of disease development and may have varying disease or metabolic 
outcomes. Study of the complex genetics of the lipidome at the subgroups level within a population requires an 
alternative machine-learning-based bioinformatics approach, which is clearly lacking in the existing literature.

Therefore, in this study, our goal was to identify subgroups in the Young Finns Study (YFS) cohort partici-
pants with a distinct profile of sets of lipid species regulated by distinct sets of genetic variants using an alterna-
tive unsupervised machine learning approach. The machine learning approach referred as phenotype-genotype 
many-to-many relation analysis (PGMRA), involves a multilayer non-negative matrix  factorization24 of geno-
type and phenotype (lipidome in this study) data and identification of biclusters  separately25–28. Biclustering is 
simultaneous clustering of rows and columns of a matrix. For example, in case of lipidome data with samples 
on columns and molecular lipids on rows, a bicluster is a subset of the lipidome data matrix that contains subset 
of samples (columns) with similar profile across a subset of molecular lipids (rows). The identified biclusters 
(subgroups) in the genotype data are then associated with lipidome biclusters by testing the number of shared 
individuals between these biclusters and thus pinpointing significant relations. The overlap of individuals among 
the biclusters are tested using hypergeometric test. The bicluster pairs between the two data types are referred as 
many-to-many relations, which are complex in the sense that the same genotype may be associated with differ-
ent lipid profiles (which is called multi-finality) and different genotypes may have the same lipid profile (which 
is called equifinality).

Methods
Study participants. This study was based on the Cardiovascular Risk in Young Finns Study (YFS), an ongo-
ing Finnish longitudinal general population study on the evolution of cardiovascular risk factors from child-
hood to  adulthood29. The study began in 1980 with 3,596 participants including children and adolescents aged 
3–18 years, randomly selected from five university hospital catchment areas in Finland. The study was approved 
by the ethical committee of the Hospital District of Southwest Finland on 20 June 2017 (ETMK:68/1801/2017). 
All participants gave their written informed consent, and the studies were conducted in accordance with the 
Declaration of Helsinki. Data protection will be handled according to current regulations. The present study 
is based on 1,426 participants, aged 30–45, from the 2007 follow-up for whom genotype, plasma lipidome and 
covariate data were available. Characteristics of the study participants is summarized in Table 1.

Genotyping and quality control. Genomic DNA was extracted from peripheral blood leukocytes from 
whole blood samples of YFS using a commercially available kit and Qiagen BioRobot M48 Workstation accord-
ing to the manufacturer’s instructions (Qiagen, Hilden, Germany)30. Genotyping was performed at the Welcome 
Trust Sanger Institute using a custom-made Illumina Human 670 k BeadChips. Genotypes were determined 
using the Illuminus clustering algorithm. Fifty-six samples failed the Sanger genotyping pipeline quality control 
(QC) criteria (i.e. duplicated samples, heterozygosity, low call rate, or Sequenom fingerprint discrepancies)30. 
Three samples were removed due to a low genotyping call rate (< 0.95) and 54 samples were excluded for pos-

Table 1.  Population characteristics of the Cardiovascular Risk in Young Finns Study cohort. Data are 
expressed as mean ± SD or percentages.

Men Women

Number of subjects, N (%) 666 (47%) 760 (53%)

Age, years 38 ± 5 38 ± 5

Body mass index, kg/m2 26.8 ± 4.2 25.4 ± 5.1

Total cholesterol (mmol/l) 5.2 ± 0.9 4.9 ± 0.8

LDL cholesterol (mmol/l) 3.3 ± 0.8 3.0 ± 0.7

HDL cholesterol (mmol/l) 1.2 ± 0.3 1.4 ± 0.3

Triglycerides (mmol/l) 1.7 ± 1.2 1.2 ± 0.6

Serum glucose (mmol/l) 5.5 ± 0.8 5.2 ± 0.7

Insulin (IU/l) 9.7 ± 9.6 8.6 ± 7.6

C-reactive protein (mg/l) 1.6 ± 4.9 1.9 ± 3.2

Systolic blood pressure (mmHg) 125 ± 13 116 ± 14

Diastolic blood pressure (mmHg) 78 ± 11 73 ± 11

Alcohol consumption, units/day 1.4 ± 2 0.5 ± 0.7

Physical activity index (MET h/wk) 19 ± 22 19 ± 20

Daily smoking, % 111/575 (19%) 85/669 (13%)

Family risk factor for coronary heart disease (%) 87/577 (15%) 116/670 (17%)
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sible relatedness (pi.hat > 0.2). A total of 11,766 single SNPs were excluded based on the variation from Hardy–
Weinberg equilibrium (HWE) test (p ≤ 1.0 ×  10−6), 7,746 SNPs failed the missingness test (call rate < 0.95) and 
34,596 SNPs failed the frequency test (MAF < 0.01). After quality control there were 2,443 samples and 546,677 
genotyped SNPs available for further  analysis30. However, only 1,426 of the 2,443 participants had complete 
data on lipidome and covariates from the 2007 follow-up and therefore were further analyzed [Supplementary 
Figures S1 and S2].

Plasma lipidome profiling. Lipidome quantification for the stored serum samples was performed at Zora 
Biosciences Oy (Espoo, Finland). Lipid extraction was based on a previously described  method31. In brief, 10 μl 
of 10 mM 2,6-di-tert-butyl-4-methylphenol (BHT) in methanol was added to 10 μl of the sample, followed by 
20 μl of internal standards (Avanti Polar Lipids Inc., Alabaster, AL) and 300 μl of chloroform:methanol (2:1, 
v:v) (Sigma-Aldrich GmbH, Steinheim, Germany). The samples were mixed and sonicated in a water bath for 
10 min, followed by a 40-min incubation and centrifugation (15 min at 5700 × g). The upper phase was trans-
ferred and evaporated under nitrogen. Extracted lipids were resuspended in 100 μl of water-saturated butanol 
and sonicated in a water bath for 5 min. Then, 100 μl of methanol was added to the samples before the extracts 
were centrifuged for 5 min at 3500 × g, and finally the supernatants were transferred to the analysis plate for 
mass spectrometric (MS) analysis. The MS analyses have also been described in detail  previously32. The analyses 
were performed on a hybrid triple quadrupole/linear ion trap mass spectrometer (QTRAP 5500, AB Sciex, Con-
cord, Canada) equipped with ultra-high-performance liquid chromatography (UHPLC) (Nexera-X2, Shimadzu, 
Kyoto, Japan). Chromatographic separation of the lipidomic screening platform was performed on an Acquity 
BEH C18, 2.1 × 50 mm id. 1.7 μm column (Waters Corporation, Milford, MA, USA). The data were collected 
using a scheduled multiple reaction monitoring algorithm and processed using Analyst and MultiQuant 3.0 
software (AB Sciex). The heights of the peaks obtained from the MS analysis were normalized with the internal 
standard amount and sample volume. The details on the chromatography and mass spectrometry conditions 
have been previously described  in32. Lipid profiles of all the 437 molecular lipid species in the lipidome were 
available for more than 99% of the participants and therefore included in the final analysis. The list of studied 
437 lipids and their annotations are shown in Supplementary Table 1S.

GWAS of human plasma lipidome. PGMRA with a big genetic data is computationally challenging. 
Therefore, in order to pre-select relevant SNPs for PGMRA, we performed genome-wide association (GWA) 
analysis between 546,677 genotyped SNPs and 437 lipid species of human plasma lipidome using PLINK 
v1.9033,34. The analysis was adjusted for sex, age, body mass index (BMI), type 2 diabetes, lipid medication and 
the first 10 genetic principal components (PC1-10) as covariates.

PGMRA of genotype and lipidome data. The PGMRA analysis was performed on the whole lipid-
omic data and subset of genotype data with SNPs that obtained nominal significance (p-value < 0.0005) in the 
GWA analysis of lipidome data as described  elsewhere25–28. We implemented liberal criteria of p-value < 0.0005 
to preselect the SNPs to be maximally inclusive for the PGMRA analysis. Also, we optimized the threshold to 
be specifically p-value < 0.0005 to limit the number of preselected SNPs to maximum of 20,000. The analysis 
involved biclustering of both lipidomic (participants-by-lipids matrix) and genotype data (participants-by-SNPs 
matrix) separately using nonnegative matrix factorization (NMF) (Fig. 1)25. Biclustering with fuzzy NMF was 
implemented in order to allow a SNP/lipid or a participant to belong to more than one bicluster. Many-to-many 
relations between genotype and lipidome biclusters were identified by calculating the pairwise probability of 
intersection of participants between the biclusters using hypergeometric  statistics35. We performed linkage dis-
equilibrium (LD)-based pruning of the SNPs in biclusters of significant relations to identify independent SNPs 
before further biological process or pathway enrichment analysis using pairwise correlation method imple-
mented in PLINK v1.90 with default pairwise  r2 threshold of 0.5.

Annotation of SNPs and pathway enrichment analysis. Annotation of the discovered SNPs were 
done using ensembl Variant Effect Predictor (VEP) and ensemble assembly  GRCh3736. Pathway analysis of the 
corresponding list of genes was performed using overrepresentation analysis method implemented in the clus-
terProfiler R  package37. The analysis was done against the gene sets representing biological processes from Gene 
Ontology  database38 as well as gene sets representing biological pathways from Kyoto Encyclopedia of Genes and 
Genomes (KEGG)  database39.

Ethical approval. Informed consent was acquired from all the YFS participants, and the study was con-
ducted according to the principles of Helsinki declaration. The YFS was approved by the ethical committee of the 
Hospital District of Southwest Finland on 20 June 2017 (ETMK:68/1801/2017). Data protection will be handled 
according to current regulations.

Results
Study population characteristics. The characteristics of the study population are shown in Table 1.

GWAS of human plasma lipidome. GWAS of the 437 lipid species resulted into 51,707 SNP-lipid asso-
ciations with nominal statistical significance (p-value < 0.0005) (Fig. 2) with 18,370 unique SNPs. There were 
2340 SNP-lipid associations that were statistically significant at genome-wide level with p-value < 5 ×  10−8 [Sup-
plementary Table  2S] and 638 with study-wide significance levels with p-value < 1.1 ×  10−10 [Supplementary 
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Table 3S]. There were 65 unique SNPs in the 638 SNP-lipid associations, 21 of which have been reported by 
recent GWASs of human  lipidome21,23. We identified 34 independent SNPs out of the 44 newly reported SNPs 
in the current study using PLINK based clumping with the  r2 threshold of 0.1 and clumping window size of 250 
kilo bases (Table 2). For interpreting the GWAS results, we prefer clumping to pruning as our goal is to select the 
most statistically significant SNP per region of LD. Pruning removes one SNP from the correlated pair of SNPs, 
keeping the one with the largest minor allele frequency, thus possibly removing the SNP with higher statistical 
significance. The 34 independent SNPs from the clumps were further analyzed using  SnpXplorer40. SnpXplorer 
identified 38 genes associated with the 34 SNPs (Fig. 3A,B). Type of annotation of each of the SNPs (coding, 
eQTL or annotated by their positions) as well as their minor allele frequency and chromosomal distribution have 
been summarized in Fig. 3C. The genes associated with the SNPs have been reported by earlier GWASs to be 
associated with traits such as BMI-adjusted waist circumference, body height, type II diabetes mellitus, alcohol 
consumption and hemoglobin measurement (GWAS-catalog version 1.0.2 downloaded from https:// www. ebi. 
ac. uk/ gwas/ docs/ file- downl oads) (Fig. 3D). However, no biological processes or pathways were identified to be 
enriched in the list of associated genes.

Identification of lipidomic subgroups with distinct genetic component using PGMRA. The 
PGMRA analysis was done with the lipidome data and genetic data containing 18,370 unique SNPs preselected 
from GWAS. PGMRA identified 71 lipidome and 153 genotype biclusters. The detailed information about the 
genotype and lipidome biclusters (list of lipids or SNPs in each bicluster) has been presented in Supplementary 
Tables 4S and 5S. There were altogether 10,863 (153 genotype biclusters × 71 lipidome biclusters) candidates for 
lipidome-genotype relations analysis using hypergeometric statistics-based participants overlap test between 
each pair of biclusters from lipidome and genotype data. A total of 93 significant many-to-many lipidome-
genotype relations were identified with hypergeometric p-value < 0.01 [Table 5S]. Genetic biclusters of the 93 
lipidome-genotype relations contained 5,977 unique SNPs mapping to 3,164 different genes [Supplementary 
Table 6S]. Based on the SNPs and participants in the genetic biclusters of the 93 relations, we defined 29 of the 

Figure 1.  Phenotype-genotype many-to-many relation analysis (PGMRA) outline.

https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
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relations with biclusters containing more than 50% unique SNPs and participants as the most distinct relations. 
The most distinct relations might represent different genetic-lipidomic subgroups among the studied population 
(Table 3). We pruned the SNPs in the genetic biclusters of the 29 most distinct relations based on LD to estimate 
the independent number of SNPs. The number of independent SNPs left in each of the biclusters from the 29 
relations after SNP pruning is shown in column 4 of Table 3. Further, we compared the participants in each of 
the biclusters of the 29 relations with the rest of the participants with respect to total cholesterol (TC), LDL-
cholesterol (LDL-C), HDL-cholesterol (HDL-C), triglycerides (TG), BMI, blood glucose level, blood insulin 
level and systolic and diastolic blood pressure using two-sample t-test.

The lipidomic biclusters in the most distinct genotype-lipidome relations were different from each other 
with respect to the classes of lipid species they were populated with. For example, while all the lipid species 
in the lipidome bicluster P20.18 belonged to class sphingolipid, biclusters P.15.7, P14.8 and P13.12 contained 
majority (> 75%) of lipid species belonging to the same class [Supplementary Table 4S]. Similarly, lipidome 
biclusters such as P13.11 and P10.3 contained more than 93% lipid species belonging to glycerophospholipid 
class [Supplementary Table 4S].

Among the 93 significant relations, there were 17 genotype biclusters, each of which were related to more 
than one lipidome biclusters. For example, in relations R66-R71, genotype bicluster G12.1 was associated with 
five different lipidome biclusters [Supplementary Table 7S]. Most of the lipid species in these lipidome biclusters 
belonged to sphingolipid and glycerophospholipid class. Difference among these lipidome biclusters were due to 
different molecular properties of the constituent lipid species. These observations uncover the complex genetic 
architecture of human plasma lipidome where the same genetic network may regulate multiple phenotypic 
outcomes (i.e., pleiotropy or multifinality). Similarly, there were 19 lipidome biclusters each of which were related 
to more than one genotype biclusters (i.e., equifinality), thereby uncovering the complex genotypic-phenotypic 
architecture of the lipidome.

Biological pathways enriched in the SNPs of the most distinct lipidome‑genotype rela‑
tions. The biological significance of the 29 most distinct genetic-lipidomic relations was analyzed by per-
forming pathway enrichment analysis of the list of SNPs from the genetic biclusters of the the relations. We 
identified 30 gene ontology based biological processes significantly enriched in SNPs from 21 out of 29 most 
distinct genotype-lipidome subgroups (FDR < 0.05) (Fig. 4). Several biological processes among the list were 
related to lipid metabolism, inflammation process and immune system.

Similarly, pathway enrichment analysis was also done with biological pathways from KEGG database. We 
identified 11 pathways enriched in eight out of the 29 distinct genotype-lipidome relations that included pathways 
related to lipid metabolism and heart disease (Fig. 5).

Figure 2.  Manhattan plot showing results from GWAS of 437 lipid species results. The plot represents only the 
SNPs with nominal statistical significance (p-value < 5 ×  10−4). SNPs above the red line represents those with 
p-value < 5 ×  10−8.
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Discussion
In this study, we implemented PGMRA, a novel machine learning approach to augment traditional GWAS of 
human plasma lipidome followed by pathway enrichment analysis to reveal the complex hidden genetics of 
human lipidome and its biological significance. Using traditional GWAS of 437 lipid species using genotyped 
variants, we replicated 21 SNPs and identified 34 new independent SNPs associated with different lipid species 
of human lipidome as compared to previous  studies21,23. Our results suggest that human plasma lipidome from 
the participants of the YFS cohort has at least 29 genetically distinct subgroups and are influenced by genetic 
variations in genes related to biological processes such as lipid metabolism, inflammation process and immune 
system. The lipidomic biclusters of the distinct subgroups mostly contained lipid species belonging to classes 
sphingolipid and glycerophospholipid that are known to play crucial role in health and  disease41–43.

The study identified several biological processes and pathways, including those related to lipid metabolism, 
significantly enriched in 21 of the 29 genetically most distinct lipidome subgroups. The significance of these 
biological processes in the molecular biology of atherosclerosis and in other lipid related metabolic and 
degenerative disease in humans remains largely uncertain and warrants further studies. Uncovering the hidden 
risk architecture of these subgroups of individuals with distinct genotypic and lipidomic profiles opens the 
opportunity to develop specific diagnostic tests as targets for precise clinical interventions. This opportunity 
will address the limitation of traditional evidence-based protocols when applied to complex phenotypes 

Table 2.  Traditional GWAS for 437 plasma lipid species. Explanations of table columns 3rd and 4th columns, 
genes and their genomic regions to which the SNPs map; 5th column, the lipid species to which the SNPs 
are associated with; 6th column, effect size of the SNPs on the lipid species; 7th column, standard error. SE 
Standard error. The list of 34 newly identified independent short nucleotide polymorphisms (SNPs) associated 
with different lipid species in this study with study-wide statistical significance p-value < 1.1 ×  10−10.

SNP Position Gene Consequence Lipid species BETA SE p-value

rs925272 chr15:81,219,849 IL16 intron TAG.14.0.18.2.18.2 2.83 0.27 8.2 ×  10−24

rs7012713 chr8:42,737,160 CHRNB3 3_prime_UTR TAG.18.2.18.2.18.2 2.6 0.26 2.5 ×  10−22

rs157237 chr5:90,093,880 CTD-2151A2.3 intergenic TAG.14.0.18.2.18.2 2.17 0.24 1.2 ×  10−18

rs11252236 chr10:3,980,862 RP11-433J20.2 intergenic TAG.18.2.18.2.18.2 2.09 0.23 4.0 ×  10−18

rs9583985 chr13:91,998,895 GPC5 intron TAG.18.2.18.2.20.4 3.77 0.45 5.0 ×  10−16

rs7033785 chr9:107,393,025 LINC01509 intergenic TAG.16.1.16.1.16.1 2.96 0.36 8.2 ×  10−16

rs17170751 chr5:136,961,542 PRELID2 intergenic TAG.16.1.16.1.16.1 2.85 0.36 9.7 ×  10−15

rs9405270 chr6:5,460,429 FARS2 intron TAG.15.0.16.0.18.1 1.35 0.17 2.1 ×  10−14

rs10258334 chr7:15,731,926 RPL36AP26 intergenic TAG.18.2.18.2.18.2 1.71 0.23 1.6 ×  10−13

rs12317948 chr12:31,731,898 AMN1 upstream TAG.18.2.18.2.18.2 3.16 0.42 2.1 ×  10−13

rs2065079 chr14:50,784,059 NIN intron TAG.18.2.18.2.18.2 3.18 0.43 2.4 ×  10−13

rs12030788 chr1:66,302,446 PDE4B intron TAG.14.0.18.2.18.2 3.28 0.44 2.5 ×  10−13

rs3905248 chr9:15,297,030 TTC39B intron TAG.18.2.18.2.18.2 1.51 0.2 4.0 ×  10−13

rs11653054 chr17:7,101,608 ASGR2 synonymous TAG.15.0.16.0.18.1 1.98 0.27 5.0 ×  10−13

rs10986211 chr9:124,100,867 LHX2 intergenic TAG.18.2.18.2.20.4 2.68 0.37 6.4 ×  10−13

rs17652819 chr5:97,743,514 RP11-72K17.1 downstream TAG.14.0.18.2.18.2 3.08 0.42 8.7 ×  10−13

rs1156282 chr20:12,897,778 LINC01722 intron TAG.15.0.16.0.18.1 1.18 0.16 1.0 ×  10−12

rs13353012 chr1:55,190,415 USP24 intron PE.42.7 1.53 0.21 1.2 ×  10−12

rs964910 chr3:20,747,383 SGO1-AS1 intron TAG.18.2.18.2.20.4 1.26 0.18 2.4 ×  10−12

rs10042022 chr5:113,956 PLEKHG4B intron TAG.18.2.18.2.20.4 2.3 0.32 3.3 ×  10−12

rs11978191 chr7:140,493,059 MKRN1 intergenic TAG.14.0.18.2.18.2 2.82 0.4 4.0 ×  10−12

rs13216190 chr6:36,737,907 RAB44 downstream TAG.17.0.18.1.18.1 2.07 0.3 6.3 ×  10−12

rs9505514 chr6:922,407 RP11-157J24.2 intergenic PI.34.0 0.99 0.14 6.9 ×  10−12

rs16876602 chr6:47,836,700 OPN5 downstream TAG.18.2.18.2.18.2 1.34 0.19 8.2 ×  10−12

rs17437994 chr14:30,774,693 RP11-159L20.2 intron TAG.14.0.16.1.18.2 1.14 0.16 1.2 ×  10−11

rs11989919 chr8:32,645,107 NRG1 intron PC.30.2 0.91 0.13 1.2 ×  10−11

rs4793823 chr17:56,662,843 NOG intergenic TAG.16.1.16.1.16.1 2.16 0.31 1.3 ×  10−11

rs7915972 chr10:45,338,927 OR13A1 intergenic TAG.18.2.18.2.20.4 1.3 0.19 1.5 ×  10−11

rs13106855 chr4:47,411,505 GABRB1 intron Glc.GalCer.d16.1.16.0 0.37 0.05 1.5 ×  10−11

rs7827310 chr8:55,493,291 XKR4 intron TAG.14.1.16.0.18.1 1.65 0.24 2.0 ×  10−11

rs11071063 chr15:54,239,225 UNC13C intron TAG.14.0.18.2.18.2 2.46 0.36 2.9 ×  10−11

rs11118256 chr1:206,492,504 IKBKE intron TAG.16.1.16.1.16.1 2.05 0.3 3.0 ×  10−11

rs155594 chr2:157,413,630 CYTIP downstream TAG.18.2.18.2.18.2 2.12 0.32 5.0 ×  10−11

rs1926868 chr1:183,986,440 COLGALT2 intron PI.32.0 0.95 0.14 9.2 ×  10−11
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like atherosclerosis. Traditional evidence-based findings can only detect differences between the averages of 
heterogeneous groups and fail to indicate what is most effective in any particular individual.

While traditional GWAS can identify loci associated with a trait across the whole studied population, it 
disregards potential subgroups within the studied population and their associations with the studied trait. 
Consequently, subgroups’ specific loci with smaller effect sizes are missed by tradition GWAS due to lack of 
sufficient statistical power. We speculate that the problem of missing heritability of a trait is perhaps due to failure 
of GWASs to identify complete genetic determinants of complex traits across population subgroups.

A recent GWAS study of 141 lipid species with ~ 9.3 million genetic variants in 2181 individuals reported 35 
lipid-species-associated loci with p-value < 5 ×  10−821. In comparison, the present study identified 5,977 unique 
SNPs across 93 sub-populations represented by the 93 genotype-lipidome relations identified by PGMRA. The 
5,977 SNPs map to 3,164 different genes replicating 13 of the genes reported  by21 and extending the current 
knowledge by a total 3129 novel lipidome associated genes. The differences between the studies come from the 
substantially wider LC–MS/MS based analysis platform of 437 lipids and alternative machine learning approach 
used in this study as compared to only 141 lipid species used  by21 for traditional GWAS. The most recent trans-
ancestry meta-analyses in 1.65 million individuals including 350,000 non-Europeans identified 941 clinical lipid-
associated loci including 355 new loci from either single- or multi-ancestry  analyses10. From these novel findings, 
three of the reported SNPs were replicated in the present study with a substantially lower number of subjects 
(~ N = 1500). The second largest GWAS study of four clinical lipid traits (HDL-C, LDL-C, total cholesterol and 
triglycerides) with ~ 600 000 participants and 32 million genetic markers identified 826 independently associated 
lipid variants with genome-level significance (p-value < 5.0 ×  10−8)9. The 826 lipid variants contained 118 novel 
loci and 268 previously identified  loci8,9. The present study replicated 78 of the 386 loci with substantially smaller 
sample size (~ N = 1500 vs. ~ 600.000), highlighting the importance of our novel GWAS-PGMRA approach.

Early prediction of risk of CVDs is a cornerstone of disease prevention and could greatly reduce the enormous 
socio-economic burden posed by  CVDs44. The PGMRA approach identifies genetic-lipidomic subgroups within 
the study population allowing a gene-based classification of plasma lipidome. The distinct genetic variants in the 

Figure 3.  Results of the functional annotation of the 34 independent SNPs (single nucleotide polymorphisms) 
associated with different lipid species of human plasma lipidome.(A) Number of genes associated with each 
of the 34 independent SNPs.(B) Chromosomal distribution of all the 34 SNPs. (C) Circular summary figure 
showing the type of annotation of each SNP (coding, eQTL or annotated by their positions) as well as each 
SNP’s minor allele frequency and chromosomal distribution.(D) Number of genes associated with the 34 
independent SNPs (single nucleotide polymorphisms), expressed as fraction, for which a previous association 
was reported in the GWAS-catalog version 1.0.2 downloaded from https:// www. ebi. ac. uk/ gwas/ docs/ file- downl 
oads.

https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
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subgroups may contribute synergistically or additively to the risk of dyslipidemias and may be useful to develop 
precision diagnostics and prognostics for lipid related cardiometabolic as well as other degenerative diseases. 
Previously, the PGMRA approach has discovered genetic subgroups of schizophrenia associated with distinct 
gene products and clinical  syndromes45. The genetic information of subgroups can potentially be used for risk 
prediction and stratification already in very young age as genetic risks persist starting from fetal period.

This study has several limitations. A major limitation is the lack of validation of the results in an independent 
multi-ethnic population-based cohorts. Validation or replication of the results requires availability of both genetic 
and lipidomic data from comparable platforms which was unavailable to our knowledge during the period of this 
study. Our previous studies with complex traits of temperament, character and personality, however, suggests 
that reliability of PGMRA method as the results from Finnish population were highly replicable (80 to 90%) 
in independent data from Germans and Koreans  cohorts26,27. Another limitation is that the study is based on 
genotype data without imputation and therefore may have missed many genetic variants. We chose to focus on 
accurate, non-imputed and hence smaller data to showcase the implication of the proposed alternative machine-
learning approach to analyze the complex genetics of human plasma lipidome. Given the promising results in 

Table 3.  The 29 significant and most distinct (> 50% unique SNPs and participants) genotype-lipidome 
relations. Explanations of table columns 2nd column, number of shared participants between genotype and 
lipidome biclusters; 3rd and 4th columns, number of SNPs in the genetic bicluster before and after linkage 
disequilibrium (LD)-based SNP pruning respectively; 5th column, number of lipid species in the lipid 
bicluster; 6th column, hypergeometric p-values for the overlap of participants in the genotype and lipidome 
biclusters of the relation; 7th column, clinical variables with respect to which the participants in the genetic 
biclusters of the corresponding genotype-lipidome relations are significantly (p-values in parentheses) different 
as compared to the rest of the participants assessed with *two-sample t-test. TC Total cholesterol; HDL-C 
high density lipoprotein cholesterol; LDL-C Low density lipoprotein cholesterol; CRP C-reactive protein; TG 
Triglycerides; BP Blood pressure.

Relation 
ID

Number of shared 
participants

Number 
of SNPs

Number of 
independent SNPs

Number of 
lipid species

Hypergeometric 
p-value Associated clinical variables (p-value)*

R9 62 1447 1191 17 5.1 ×  10−19 TC (0.0002), Systolic BP (0.0001), diastolic BP (0.0005), LDL-C (0.002)

R7 29 1447 1191 14 1.2 ×  10−13 TC (0.02), systolic BP (7 X  10−06), diastolic BP (0.0008), LDL-C (0.04), 
Blood glucose (0.02)

R5 46 1447 1191 22 4.0 ×  10−09 TG (0.01), CRP (0.02), Systolic BP (0.0001), diastolic BP (2.4 X  10−06)

R68 27 27 17 82 3.1 ×  10−06 TC (0.001), HDL C (0.0002), TG (0.002), diastolic BP (0.04), LDL-C 
(0.0006), blood insulin (0.03)

R1 25 1447 1191 11 8.6 ×  10−06 HDL C (0.03)

R184 21 12 4 82 1.7 ×  10−05 BMI (0.01), HDL-C (0.0003), TG (0.003), blood glucose (0.01), blood 
insulin (0.01)

R107 7 232 173 30 4.2 ×  10−05 HDL-C (0.03), TG (0.03), systolic BP (0.002), diastolic BP (0.02)

R162 6 54 28 12 1.6 ×  10−04 TC (4 X  10−05)

R119 9 34 19 30 4.6 ×  10−04 HDL-C (0.001), TG (0.007), diastolic BP (0.05)

R103 5 193 123 28 4.7 ×  10−04 TG (0.006)

R156 6 90 45 14 6.0 ×  10−04 TG (0.005)

R101 11 8 2 82 6.2 ×  10−04 TC (0.01), HDL-C (0.01), LDL-C (0.04)

R93 7 50 9 17 7.3 ×  10−04 Systolic BP (0.05), diastolic BP (0.05), LDL-C (0.05)

R188 14 19 3 22 8.3 ×  10−04 -

R57 9 19 7 30 9.9 ×  10−04 TG (0.02)

R153 7 13 3 82 1.5 ×  10−03 TC (0.008), HDL-C (0.04), LDL-C (0.004)

R94 5 7 3 23 1.7 ×  10−03 TC (0.04), TG (0.05)

R32 15 65 24 82 2.1 ×  10−03 TC (0.01), LDL-C (0.02), blood glucose (0.006), blood insulin (0.02)

R89 8 38 16 30 3.2 ×  10−03 Systolic BP (0.003)

R10 16 1447 1191 10 3.6 ×  10−03 systolic BP (0.05), diastolic BP (0.008), blood insulin (0.005)

R181 7 14 1 16 3.7 ×  10−03 -

R45 11 114 62 16 4.0 ×  10−03 HDL-C (0.003), diastolic BP (0.02)

R6 11 1447 1191 14 6.1 ×  10−03 Systolic BP (0.02), diastolic BP (0.004)

R8 17 1447 1191 28 6.1 ×  10−03 TC (0.03)

R58 5 19 7 29 6.6 ×  10−03 TG (0.04), CRP (0.05), blood glucose (0.03)

R0 23 59 24 82 7.1 ×  10−03 BMI (0.01), TC (0.008), HDL-C (0.0001), TG (3.8 X  10−07)

R3 22 1447 1191 19 7.9 ×  10−03 TC (0.03), LDL-C (0.04)

R164 7 10 2 16 8.1 ×  10−03 BMI (0.004)

R104 5 10 1 36 9.9 ×  10−03 HDL-C (0.05), TG (0.02), blood insulin (0.009)
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the current study, similar analysis with imputed genotype data from multiple cohorts is warranted. Accurate 
identification of causal SNPs of complex traits among candidate set of SNPs in LD based purely on statistical 
evidence is difficult. Because of this, LD-based pruning of SNPs does not guarantee to retain the causal SNPs 
for further analysis. That is why, it is not advisable to perform LD-based pruning of SNPs before biclustering or 
any similar analysis to prevent the loss of (genetic) information. Because of these reasons, we did not perform 
LD-based pruning of SNPs before PGMRA in this study. As a consequence, we acknowledge that the identified 
biclusters may contain SNPs in LD with some SNPs that do not have true association with the studied traits. 
While we reported the number of independent SNPs obtained by LD-based pruning of SNPs in each of the 
biclusters obtained using PGMRA, this issue however requires consideration in further analyses of the SNP sets, 
such as in association analysis of the SNP sets or genetic risk scores (GRS) calculated using the SNP sets with 
phenotypes of interest. For example, LD pruning or clumping of the SNPs in a bicluster should be performed 
before calculation of GRS. A study  by46 suggests that modelling the LD structure rather than filtering out SNPs 
based on a LD threshold improves prediction accuracy of GRS by reducing information loss.

Conclusion
The study identified 29 distinct genotype-lipidome subgroups in the YFS participants that are influenced by 
genetic variations in genes related to biological processes such as lipid metabolism, inflammation process and 
immune system. The study presents an alternative ML-based research methodology in the field of genetics 
and lipidomics that provides potentially a ground-breaking resolution for the missing heritability problem 
for cardiovascular or any other lipid related diseases. The study proposes a step towards the direction of new 
genetic-based classification of polygenic dyslipidemias and their implication in early risk stratification for 
cardiovascular or other lipid related diseases and stimulates additional studies in the field of personalized and 
predictive medicine for CVDs. In addition, the study showcases a ML approach for multiomics integration that 
can be applied to other biomedical domains.
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Figure 4.  Biological processes (y-axis) from Gene Ontology database that were significantly (FDR < 0.05, 
x-axis) enriched in SNPs sets from 21 out of the 29 most distinct genotype-lipidome relations. Text within the 
bars represent the relation (R) identification numbers in which the corresponding biological processes were 
enriched.
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Data availability
The YFS dataset comprises health related participant data and their use is therefore restricted under the regu-
lations on professional secrecy (Act on the Openness of Government Activities, 612/1999) and on sensitive 
personal data (Personal Data Act, 523/1999, implementing the EU data protection directive 95/46/EC). Due to 
these legal restrictions, the Ethics Committee of the Hospital District of Southwest Finland has in 2016 stated 
that individual level data cannot be stored in public repositories or otherwise made publicly available. Data 
sharing outside the group is done in collaboration with YFS group and requires a data-sharing agreement with 
the understanding that collaborators will protect the data and not share it with any other parties. The list of all 
investigators that collaborate with the YFS group is displayed at the website of the YFS (http:// young finns study. 
utu. fi/). Investigators can submit an expression of interest to the chairman of the data sharing and publication 
committee (prof Mika Kähönen, Tampere University) in the case of clinical data and in genomic data to profes-
sor Terho Lehtimäki (Tampere University).
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