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SUMMARY
In contrast tomono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as
caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory
genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution.
Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive
across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in
T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrich-
ment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in
mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malig-
nancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and
cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level under-
standing of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the
tissue-specific effects of non-coding mutations.
Cell Genomics 3, 100276, March 8, 2023 ª 2023 The Authors. 1
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INTRODUCTION

Cancer evolution is driven by altered cellular signaling states, re-

sulting from structural genome changes or dysregulated gene

expression.1,2 Early work on hereditary cancer syndromes,

such as retinoblastoma,3,4 linked oncogenesis to biallelic loss

of tumor suppressor genes (TSGs). Experimental proof for this

two-hit hypothesis was provided by the first TSG knockout

mice,4–6 while subsequent studies uncovered that, for some

TSGs, inactivation of one allele is sufficient to promote oncogen-

esis.7,8 This phenomenon, referred to as haploinsufficiency, can

be obligate and often displays context dependencies.9–12 Even

more pronounced TSG dosage sensitivity became evident in

studies analyzing hypomorphic Pten alleles, which showed that

very minor variation of gene expression can lead to impaired tu-

mor suppression—a state termed TSG quasi-insufficiency.13,14

In analogy to TSGs, transformation induced by oncogenes often

relies on an optimal dosage, which varies depending on the

cellular or co-mutational context.10,15–20 While this dosage-

dependent continuum model of cancer gene function is docu-

mented for few genes,14 scalable methods to systematically

map and causally connect subtle gene dysregulations with

cancer development in organisms are largely missing.

Subtle dysregulation affects thousands of genes in a cell and

can result from interference with regulatory elements (REs).

The protein-coding exome is 50 times smaller than the non-

protein-coding (nPC) genomic space, of which a considerable

part is thought to constitute regulatory sequence.21 During onco-

genesis, the regulatory genome undergoes extensive changes,

either through structural alterations (such as somatic mutations

or copy-number variation) or adaptive processes (such as global

chromatin remodeling through cell-intrinsic and -extrinsic trig-

gers).21,22 However, functional annotation of cancer-causing

non-coding regulatory alterations, their combinatorial effects,

and cell-type-specific functions remains a major challenge.23

Likewise, while up to 90% of the genome is transcribed24 (of

which only a smaller part encodes for mRNAs) global functional

interrogation of non-coding RNAs (ncRNAs) in cancer is in its

infancy.

Genomic alterations in the nPC cancer genome are frequent,

but their functional relevance is largely unexplored.21 T-ALL is

a prominent example for a disease characterized by low

numbers of mutations in PC sequence (on average 6 per tu-

mor),25 but almost 1,000 in the nPC genome.26 The effects of

these non-coding mutations are not understood, barring few

examples,27–31 but could indicate a possible role of quasi-insuf-

ficiency in T-ALL evolution. Human T-ALL is a heterogeneous

disease. The latest WHO classification added early T cell precur-

sor ALL (ETP-ALL, which develops from immature T cells) as a

biologically distinct—but in itself heterogeneous—sub-entity

with poor prognosis.32–34 The molecular principles shaping

sequential evolution of different T-ALL subtypes is, however,

not well understood.

The use of transposon systems for insertional mutagenesis in

mice35–37 made important contributions to the census of cancer

genes.20 Such screens proved particularly powerful in the dis-

covery of drivers that are typically not mutated in human cancer

but dysregulated by other means—and are hence difficult to
2 Cell Genomics 3, 100276, March 8, 2023
identify by genome-sequencing approaches. Transposon inser-

tions can also affect REs,20,38 thereby likely causing subtle gene

dysregulations. Here, we exploited insertional mutagenesis for

systematic functional interrogation of the regulatory genome.

We developed screening and analytical approaches, which

allowed us to perform genome-wide surveys for quasi-insuffi-

ciency in solid and hematopoietic cancers. We also devise

forward-directed screening approaches to interrogate in vivo

cancer evolution. Using T-ALL as a model, these screens show

how combinatorial codes of molecular, cellular, and temporal

parameters dictate tumor subtype evolution, and highlight

extensive quasi-insufficiency, which displays marked context

dependencies, including cell-of-origin associations.

RESULTS

In vivo interrogation of the coding and non-coding
genome using T-ALL as a model entity
We previously developed PiggyBac screening systems for gene

discovery inmice.20,37–39We now set out to developmethods for

systematic exploration of the nPC genome. Whole-body muta-

genesis using the PiggyBac transposase and ATP2 type trans-

posons induces tumorigenesis in the B, T, or myeloid lineage37

(Figure S1). To allow subtype-specific analyses, we generated

a large cohort (n = 256) of Rosa26PB/+;ATP2 mice, which we

monitored for cancer development (Figure S1; Table S1). Tumors

were characterized using immunohistochemistry and T cell

(acute) lymphoblastic lymphoma/leukemia (T-LBL/T-ALL; here-

after referred to as T-ALL; n = 51) was used as a model to inves-

tigate quasi-insufficiency in cancer (Figures S1C and S2A).

Quantitative insertion site sequencing (QiSeq)40 of all T cell tu-

mors revealed 170,075 non-redundant transposon integrations

(Figure S2B). To map genomic regions affected by transposon

insertions more significantly than expected by chance, we

performed statistical analyses based on Gaussian kernel convo-

lution (GKC).41 Using CIMPL (common insertion site mapping

platform), we identified 1,062 common insertion sites (CISs), of

which 994 CISs were found in at least 10% of samples.

Figure 1A displays the top 50 CIS genes, including: (1) known

T-ALL drivers (such as Notch1, Pten, or Bcl11b),42 (2) genes

that have not been linked to T-ALL before, but to other hemato-

logic malignancies (e.g., Cux1,Mecom, Crebbp), and (3) genes

that have not yet been associated with hematopoietic cancers

so far. Although the latter are typically poorly studied, some

have been linked to signaling (Sh3kbp1, Sipa1l1) or immune

functions (Slamf6, Ly6e, Mgat5). Moreover, we found that

several of these genes are strongly regulated during T cell

development (Gfra1, Nck2, Prim2, Serbp1, Fam169b) (Fig-

ure S3), indicating a function in the T cell lineage. The full list

of CISs and information on known association to human cancer

is provided in Tables S2 and S3.

To examine the suitability of our screening system for interro-

gation of the nPC genome, we first assessed general character-

istics of PiggyBac transposition. By examining the global

distribution of insertions we found that nearly half are located

in intergenic regions (Figure 1B). This is comparable with our

hematopoietic screens performed with Sleeping Beauty (55%

of insertions), a transposon system that does not have insertion



Figure 1. A genome-wide PiggyBac transposon screen interrogating the coding and non-coding genome in T-ALL

(A) Top 50CISs classified bymolecular category (as in Liu et al.42) and novelty. The heatmap indicates the number of sampleswith insertions in the respective CIS.

(B) Number of unique insertions in the protein-coding and non-protein-coding genome. Protein-coding includes exonic and intronic sequence.

(C) Profile heatmap plot showing overlap of CIS regions (n = 1,062) with H3K27ac peaks in T cells (DP stage43) and the lymphoblastic T cell line EL4.44 10 kb in both

directions around the CIS center are shown.

(D) Profile plots of thymus ChIP-seq data at genes with (n = 914, red) and without (n = 20,935, blue) CIS overlap. A region 2 kb upstream of the transcriptional start

site (TSS) and 2 kb downstream of the transcriptional end site (TES) is shown.

(legend continued on next page)
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biases toward intragenic insertions. This indicates that selection

rather than integration preference is the source of non-coding

CISs, thus supporting the functional relevance of regulatory

regions in tumorigenesis.

Next, we compared PiggyBac insertion profiles with epige-

netic features in the T cell lineage and investigated differences

between the PC (the sum of exonic and intronic sequence;

approximately 25% of the genome) and nPC genome. The over-

lay of all CIS regions with H3K27ac enhancer histone marks in

healthy andmalignant T cells revealed enrichment of active chro-

matin in CISs (Figure 1C). Looking specifically at the PC genome,

we found—as expected—a substantial accumulation of active

chromatin marks and depletion of repressive marks at CIS-over-

lapping genes (Figure 1D) compared with genes not overlapping

with CISs. Notably, the enrichment of active chromatin marks in

CISs is also true for the nPC genome (Figures 1E and S4). Thus,

beyond its preference for transcribed genes,45–48 PiggyBac has

a general propensity for active chromatin, supporting its applica-

tion to perturb cancer-relevant REs.

Finally, because cancer driver insertions are more likely to

support clonal outgrowth than passenger insertions, we exam-

ined sequencing read coverage profiles of genic and intergenic

insertions. We found nomajor differences between these groups

(Figure 1F), suggesting comparable functional relevance of genic

and regulatory CISs.

Annotation of epigenetic features in nPC CISs
For GKC statistics, commonly used scale parameters to identify

protein-coding CISs range between 30 and 240 kb. Because the

average size of REs (1.5 kb) is smaller than of PC genes (8 kb), we

speculated that the scale parameter needs to be adjusted. Sys-

tematic comparison of different CIS window sizes used for GKC

analyses indeed revealed that reducing the scale parameter

to 5k increases the sensitivity of regulatory CIS discovery

(Figures 2A, 2B, and S5; Table S4).

To annotate functional properties of intergenic CISs, we

developed ARCIS (annotation pipeline for regulatory common

insertion sites) (Figures 2C, S5, and S6; see STAR Methods for

details), which we used to overlap CIS regions with epigenetic

data from different T cell developmental stages or T-ALL (chro-

matin accessibility, histone modifications, and information on

3D organization,43 Tables S5 and S6). The ARCIS output sup-

ports fast explorative analyses by allowing one to (1) rank CISs

according to their regulatory potential (RE score), (2) sort for an

RE category of interest, and (3) search for an RE target gene of

interest (Tables S7 and S8). We also developed rules for final

RE assignment based on manual inspection of ARCIS output

data (Figure S6). Overall, the analyses created a catalog of

cancer-relevant REs in T-ALL. Specific results are shown for

the 45 high-scoring REs in Figure 2E, which indicates for each

CIS the related RE category and target gene/transcript. Data

S1–S5 provide detailed visualizations of all related genomic

regions.
(E) Profile plots of thymus ChIP-seq data at intergenic CIS regions (n = 227, red) a

and 10 kb downstream of the CIS center is shown.

(F) Read coverage of protein-coding and non-protein-coding insertions (insertio

protein coding; nPC, non-protein coding; DP, double positive; CIS, common ins

4 Cell Genomics 3, 100276, March 8, 2023
To explore the human relevance of identified REs, we exam-

ined the regulatory activity of CIS syntenic human regions.

To this end, we performed lift-over of mouse CIS coordinates

to the human genome followed by annotation of a range of

epigenomic human data (Figures 2C, 2D, and S7; Table S9).

Subsequent cross-species analyses revealed that the syntenic

human regions of mouse regulatory CISs display high concor-

dance in their regulatory activity (Figure 2D).

Perturbation of regulatory CISs causes subtle
dysregulations of target gene expression
We first examined intergenic REs and assigned potentially linked

genes (Figure 2E; Data S1; Table S8). Beyond known T-ALL

drivers (such as Runx1, Lef1, Bcl11b, and Rasgrp1), this list in-

cludes genes with a role in T cell biology (Satb1 and Rag2) as

well as developmental genes for which a function in T cells has

not been described before (such as Sall3 and the Hoxd cluster).

In principle, transposon insertions in regulatory regions can posi-

tively or negatively affect expression of target genes. Possible

mechanisms include disruption of transcription factor binding

sites, interference with 3D chromosomal conformation, and to-

pology-associated domain structure (see Table S3 for details

on the putative cancer relevance of target genes).

We next examined intragenic (intronic) REs, which are difficult

to identify in screens, as common analytical approaches assign

CISs primarily to overlapping genes. We therefore exploited 3D

connectivity data43 to assign intronic REs to their putative distant

target genes. These analyses identified 30 CISs categorized

as intronic REs (Data S5). Their main characteristics are: (1)

clustered insertion peak in a narrow intronic area, (2) unbiased

transposon orientation, (3) Hi-C connection to a distant gene,

and (4) often absent CIS gene expression in the relevant tissue.

Examples of genes regulated by newly identified REs include

Pten (a known T-ALL tumor suppressor49,50), Themis and Nrp1

(not implicated in T-ALL so far, but in T cell biology51,52), or

Txn1 and Iqgap2 (not studied in T cells so far).

The validity of the screen is exemplified by a narrow intronic CIS

region inRnls, which has a Hi-C connection to the�400 kb distant

Pten promoter (Figure 3A) and was recently described as a

Pten enhancer.53 Using global run-on sequencing (GRO-seq),

we examined the relevance of this RE in human T-ALL patient

data (Figure 3B) and found cell-type-specific enhancer activity,

with enhancer RNA signal peaks being present in T-ALL patients

but not in HEK293T cells. Accordingly, CRISPR-Cas9-based

deletion of the 7–8 kb RE region led to a stronger decrease of

PTEN expression in human and murine T cells (34% and 24%

reduction) than in HEK293 cells (15% reduction) (Figure 3C).

We identified CISs affecting 54 nPC transcripts (Figure 2E;

Data S2; Table S8). More than 70% of these ncRNAs are

expressed during T cell development (Figure S5D). Several are

in proximity to known T-ALL genes, such as Myb, Myc, and

Ptprc.54–56 Others are potential regulators of transcription

factors and signaling genes, such as Fam126a, Il6st, and
nd control CISs regions (blue, see STAR Methods). A region of 10 kb upstream

ns >1,000 reads included; p = 0.45, Wilcoxon test). hem, hematological; PC,

ertion site.



Figure 2. New methods support systematic identification and annotation of regulatory CISs

(A) Number of CISs resulting from CIMPL analysis using different size parameters (5–90k).

(B) Percentage of regulatory CISs dependent on the size parameter used and number of CISs analyzed (top 100, 300, or 500).

(C) Schematic representation of the ARCIS framework to annotate putative regulatory elements in CIS regions.

(D) Radar chart showing percentage of epigenomic features overlapping with mouse CISs and CIS syntenic human regions. The annotation of weak and active

enhancers were derived from chromHMM models, of super-enhancers (SE) from dbSuper. For H3K27ac ChIP-seq, GRO-seq, and ATAC-seq different read

cutoffs (either 10 or 50 reads) were used.

(E) Representation of different CIS categories. Schemes for all categories are shown. Red lines indicate HiC connections. All CIS regions above an arbitrary set

threshold (found in at least 7 samples, n = 537) were annotated. 195 regulatory CISs were identified using the ARCIS framework and manually verified to identify

high-confidence regions for each category. The potential target gene of each regulatory region is listed on the right for the top 45 regulatory CISs. A detailed

description of the analytical procedure can be found in Figure S6. PC, protein coding; nPC, non-protein coding; reg, regulatory; RE, regulatory element.
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Figure 3. Functional validation of regulatory CISs
(A) Insertions and CISs in the murine Pten and Rnls gene locus. H3K27ac and H3K4me1 tracks from double-positive T cells, as well as DNase-seq and Hi-C data

from different stages of T cell evolution (early, HSC-DN2a; late, DN2b-DN3) are shown below (publicly available data as listed in Table S5). The intronic CIS region

in the Rnls gene shows overlap with active chromatin and a Hi-C link to the Pten promoter.

(B) Human PTEN locus. Indicated are the CIS-syntenic human regions (top, green) and GRO-seq tracks (red) of two T-ALL patients, the Jurkat and HEK293 cell

lines. The syntenic region of the narrow regulatory CISs shows a typical bidirectional enhancer RNAGRO-seq signal peak in T-ALL patients and in Jurkat cells. Of

note, RNLS is not expressed in T-ALL, supporting the notion that the CIS target is not Rnls itself, but its intronic RE.

(C) Pten expression in clones with/without CRISPR-Cas9-based knockout of the potential Pten enhancer (�7 kb) located in the Rnls gene. Each dot represents

relative Pten gene expression in a single-cell-derived clone normalized to Gapdh expression. Experiments are shown for cell lines EL4 (KO n = 26, 8/26

homozygous, ctrl n = 18), Jurkat (human T-ALL; KO n = 12, 0/12 homozygous, ctrl n = 10), and HEK293 (KO n = 38, 6/38 homozygous, ctrl n = 14).

(D) Murine chr18 region encompassing Zeb1 and the Zeb1 antisense transcript Gm10125. Arrows indicate the orientation of insertions peaks.

(E) Zeb1 expression in clones with/without CRISPR-Cas9-based knockout ofGm10125 exons 2 and 3 (�2 kb) in EL4 cells (KO n = 17, 9/17 homozygous, ctrl n =

16; deletion boundaries 8 kb upstream of the Zeb1 promoter). Each dot represents relative Zeb1 gene expression in a single-cell-derived clone normalized to

Gapdh expression. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Wilcoxon test.

(F) Number of cancer-associated GWAS variants in CIS-syntenic human regions. Cancer-risk variants were filtered from the NHGRI-EBI GWAS catalog and

pruned for linkage disequilibrium. Variants were overlapped with CIS syntenic human coordinates. The sum of all CIS sizes (width) was used for statistical

calculation. **p < 0.01, c2 test. CIS, common insertion site; HSCs, hematopoietic stem cells; DN2, double-negative stage 2; DP, double-positive stage; Rel,

relative. EL4, mouse T lymphoblastic cell line; Jurkat, human T-ALL cell line; HEK293, immortalized human embryonic kidney cells.
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Kctd1, which have so far not been implicated in T-ALL (Data S2).

We performed detailed studies on a CIS overlapping with Zeb1,

which was annotated as ‘‘PC transcript plus ncRNA’’ by ARCIS.

Manual inspection of insertion patterns revealed two peaks with
6 Cell Genomics 3, 100276, March 8, 2023
opposite transposon orientations, predicted to activate either

Zeb1 or the Zeb1 antisense transcript Gm10125 (Figure 3D).

Human ZEB1-AS RNA can activate ZEB1 expression through

recruitment of H3K4 methyltransferases.57 Accordingly, we
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observed decreased Zeb1 expression (39% reduction) upon

heterozygous Zeb1-AS deletion in mouse EL4 cells (Figure 3E).

Thus, the functional outcome of both insertion clusters is induc-

tion of Zeb1 expression. Of note, Zeb1 was shown to have tu-

mor-suppressive function in T cells: Zeb1 knockout mice

develop mature (classical) T-ALL.58 In our screen, however,

Zeb1 insertions were (1) enriched in immature T-ALL and (2) pre-

dicted to be oncogenic, as in AML.59 These results therefore

suggest a dual role of Zeb1 in T-ALL, depending on cellular

context (before or after T cell commitment).

We also validated regulatory CISs affecting other loci,

including Ikzf1 (Figures S8A–S8C) or Lncpnt/mir29 (see details

in Figures S8D–S8F). The leukemia-associated transcription fac-

tor Ikzf1wasmarked by two CISs (Figure S8A). One CIS overlaps

with Ikzf1 itself and displays the expected gene inactivation-type

insertion pattern, consistent with the known tumor-suppressive

function of Ikzf1 (Figure S8B). The second CIS overlaps with a

region 100 kb upstream of Ikzf1 harboring enhancer sequence

as well as a lncRNA (Gm11998), which is subject to regulation

during T cell development (Figure S8A). Deleting this region in

T-ALL cell lines caused subtle but significant effects on Ikzf1

expression (32% reduction, Figure S8C), confirming the predic-

tions of the screen.

Taken together, these data show that nPC insertions are func-

tional and exert subtle effects on target gene expression. Their

large number suggests extensive quasi-insufficiency in T-ALL.

nPC CISs are enriched with human cancer risk variants
Cancer risk variants identified in human genome-wide associa-

tion studies (GWASs) frequently affect non-coding sequence,

suggesting subtle gene regulatory effects. To explore a possible

link between putative human and mouse regulatory alterations,

we intersected human GWAS and our regulatory CIS lists. We

indeed found that regulatory CIS targets (n = 149 genes) were

highly significantly enriched for GWAS-associated human can-

cer variants (p = 0.001, pan-cancer variants; p = 2.98 3 10�6

hematopoietic cancer variants; c2 test; Table S10).

In an orthogonal approach we performed lift-over of mouse

CISs coordinates to the human genome and used the syntenic

human regions to analyze their overlap with cancer-associated

GWAS variants (Table S11). To exclude SNPs located on the

same haplotype block, the list of GWAS variants was pruned

for linkage disequilibrium using LDlink.60 We found an enrich-

ment of pan-cancer GWAS risk variants in human genomic re-

gions syntenic to mouse CISs (3.09 variants per Mb) as

compared with their overall frequency in the human genome

(1.48 pan-cancer GWAS risk variants per Mb; p = 2.3 3 10�5,

c2 test; Table S11). This enrichment was more pronounced for

human regions syntenic to mouse intergenic CISs (4.48 variants

perMb; p = 0.0029; c2 test) as comparedwith regions syntenic to

intragenic CISs (2.82 variants per Mb; p = 0.001; c2 test, Fig-

ure 3F). These results support the human relevance of the

screens.

Gene desert deletions in mice drive oncogenesis
through subtle regulatory effects
Statistically, it is extremely unlikely for transposon insertions to

occur on both alleles of a gene or regulatory region in the
same cell. We therefore assume that interference with RE func-

tion in our screen is largely mono-allelic. This suggests that

even very subtle interference with gene regulation can promote

malignant transformation. To date there is, however, little

evidence that this assumption holds true in mouse cancer

models.

The most common pediatric T-ALL translocation is

t(5;14)(q35;q32), fusing a gene desert (a genomic region without

protein-coding genes) downstream of BCL11B to TLX3 (20%–

25% pediatric, 5% adult cases), or more rarely to NKX2-5 or

ZEB2.61 Thereby, hijacking of BCL11B REs leads to overexpres-

sion of these translocation partners, which has been shown to be

oncogenic.62,63 However, it is unclear whether mono-allelic

enhancer de-commissioning in itself is sufficient to induce tu-

mors in organisms (for example, through reduced BCL11B

expression). To address this question, we first explored the syn-

tenic mouse region in our screen, which revealed several CISs in

the gene desert downstream of Bcl11b, suggesting that interfer-

ence with Bcl11b enhancers can indeed in itself be oncogenic

(mice do not have translocations).

The translocation breakpoints in human T-ALL are almost

exclusively located downstream BCL11B. This �1 Mb region

displays regulatory activity,64,65 which we confirmed at high res-

olution by GRO-seq in human T-ALL (Figure 4A). The syntenic

mouse regulatory region was marked by several independent

CISs (Figure 4B). Moreover, there are multiple physical interac-

tions of CIS-marked putative REs with the Bcl11b promoter in

the T cell lineage (Figure 4B).

Guided by the human translocation coordinates (and the

mouse CISs locations), we engineered two mouse models with

kilo- to megabase-scale germline deletions (Bcl11bD105kb, n =

148 and Bcl11bD1Mb, n = 49) in the gene desert with regulatory

activity downstream of Bcl11b (Figure 4B). We found that not

only biallelic deletion but also heterozygous knockout mice dis-

played reduced Bcl11b expression in healthy tissues, although

the effects were very subtle for the smaller mutant Bcl11bD105kb

(Figure 4C). In both cohorts, animals started to develop signs of

sickness at a young age (Table S12). A subset of animals devel-

oped symptoms reminiscent of neurodevelopmental pheno-

types (Figure S9A), such as tremor, consistent with a function

of Bcl11b in brain development.66

The second major phenotype was cancer. Overall, 22%–45%

of animals developed tumors (Figure 4D), while none of the ani-

mals in the wild-type cohort (n = 21) developed cancer. These

numbers even underestimate the oncogenic effect of the knock-

outs, considering that a large subset of animals had to be sacri-

ficed at a young age because of neurodevelopmental pheno-

types. The tumor spectrum comprised hematologic cancers,

including T and B cell malignancies as well as a range of solid

cancers (Figures 4E, S9B, and S10; Table S12). Of note, although

all genotypes displayed highly penetrant cancer phenotypes, tu-

mor onset differed substantially between groups: median tumor-

related survival was lowest in Bcl11bD1Mb/D1Mb mice (195 days),

followed by Bcl11bD105kb/D105kb (338 days), Bcl11bD1Mb/WT

(466 days), and Bcl11bD105kb/WT (640 days) mice (Figure 4F).

We next examined whether individual genotypes give rise to

different cancer phenotypes and found strongly biased repre-

sentation for T-ALL (Figures 4E and 4G). Bcl11bD1Mb/D1Mb mice
Cell Genomics 3, 100276, March 8, 2023 7



Figure 4. Allelic series of ‘‘gene desert’’ deletions in mice display gradual gene dysregulations and differential cancer phenotypes
(A) Human BCL11B locus. Indicated are translocation breakpoints detected in T-ALL patients (dark blue) and cell lines (light blue), GRO-seq tracks of two T-ALL

patients, the Jurkat and HEK293 cell lines. A region with putative high regulatory activity is highlighted. CIS-syntenic regions are indicated in green.

(B) Mouse Bcl11b locus. Engineered intergenic germline deletions (as informed by CIS location and human translocation breakpoints) are indicated by red bars.

H3K27ac and H3K4me1 tracks from double-positive T cells, as well as DNase-seq and Hi-C data from different stages of T cell evolution (early, HSC-DN2a; late,

DN2b-DN3) are shown (publicly available data as listed in Table S5).

(C) Bcl11b expression in thymi of healthy (no tumor) wild-type and knockout mice (ctrl, n = 5; 105 kb-het, n = 3; 105 kb-hom, n = 6; 1 Mb-het, n = 3; 1 Mb-hom,

n = 1). qPCR was performed in duplicate and gene expression was normalized to Gapdh. Data are presented as mean ± SEM (**p < 0.01, Wilcoxon test).

(D) Incidence of tumors in 105 kb (36/148) and 1 Mb (19/49) knockout mice.

(E) Tumor spectra of 105 kb and 1 Mb knockout mice.

(F) Cancer-specific survival of 1 Mb and 105 kb knockout mice.

(G) Tumor-type-specific survival of 1 Mb and 105 kb knockout mice. Error bars represent SD. CIS, common insertion site; HSC, hematopoietic stem cell; DN,

double-negative stage; DP, double-positive stage; WT, wild type; hem, hematopoietic; het, heterozygous; hom, homozygous; ctrl, control.
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Figure 5. Genome-wide screens reveal pervasive roles of subtle

gene dysregulation across entities

(A) Fraction of intergenic (regulatory) CISs in genome-wide PiggyBac in vivo

screens conducted in different organs (1,450 tumors from 15 different

screens). Screens were performed using either whole-body or tissue-specific

activation of transposition using various Cre driver lines. CIS analyses were

performed using a reduced scale parameter to identify intergenic regulatory

regions (see STAR Methods). PDAC, pancreatic ductal adenocarcinoma;

HCC, hepatocellular carcinoma; ECC, extrahepatic cholangiocarcinoma; ICC,

intrahepatic cholangiocarcinoma; BCL, B cell lymphoma; MCL, mantle cell

lymphoma; AML, acute myeloid leukemia; T-ALL, T cell acute lymphoblastic

leukemia; B, screen performed in a Braf mutant context; K, Kras mutant

context; WT, wild type; Pi, Pi3k mutant context.
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developed no solid tumors, but almost exclusively T cell malig-

nancies (9/10). The difference to other genotypes (11/45

T-ALL) is highly significant (p = 0.0002, Fisher’s exact test) and

also holds true in age-matched analyses (animals younger than

500 days: T-ALL in 8/9 vs. 10/27 mice, p = 0.0089, Fisher’s exact

test). At the other end of the genotype spectrum, we found that

Bcl11bD105kb/WT animals did not develop T-ALL. Almost all can-

cers (12/13) were other than T-ALL (p = 0.013, Fisher’s exact test)

(Figure 4G). Thus, deletions of regulatory DNA on an otherwise

wild-type background are not only sufficient to induce striking

cancer phenotypes, but their nature (position, size) and dosage

(hetero- or homozygosity) also profoundly affect the outcome

(tumor type and frequency), suggesting additive effects and

enhancer modularity. Overall, these data support a model in

which even subtle gene dysregulation can significantly

contribute to oncogenesis.

Genome-wide screens reveal extensive quasi-
insufficiency across entities
To explore whether subtle gene dysregulation is of broad rele-

vance beyond T-ALL, we examined 1,450 cancers across 15

PiggyBac insertional mutagenesis screens, including 8 different

cancer types and their subentities (Table S13). We found that

10%–38% of CISs in these screens are located in intergenic re-

gions without an overlap to a PC gene (Figure 5A), suggesting

broad relevance of subtle gene dysregulation in oncogenesis.

To examine the distribution of functional traits in non-coding

CISs, we performed transcription factor motif analyses, which

uncovered cancer-type-specific enrichment profiles (Figure 5B).

For example, T-ALL non-coding CISs were enriched with binding

motifs for ETS transcription factors (Ets1, Fli1, Erg), which have

well-described roles in T cell leukemogenesis. In contrast, nPC

CISs in the pancreatic screen displayed motif enrichment for

transcription factors that have known functions in pancreatic

acinar cell de-diferrentiation and transformation (such as Fra1/

2 and Fos/Junb/Ap1.

To explore the allelic status of insertions, we manually in-

spected all 581 high-coverage nPC insertions in the two screens.

We found only 22 cases where two insertions were within a dis-

tance of 50 kb in the same cancer (Figure 5C). These few inser-

tions likely reflect independent hits on the same allele (in different

cell clones) occurring through local transposon hopping, which is

commonly observed and orders of magnitude more likely to

occur than insertions on the homologous chromosome. Thus,
(B) Transcription factor motif enrichment in regions of intergenic transposon

insertions in two exemplary cancer types (T-ALL, PDAC). Homer analysis for

known motifs was performed for a 200 bp region flanking intergenic insertions

(T-ALL, n = 56,320; PDAC, 57,291). The top 10motifs are shown (p value range

T-ALL: 1e-267 to 1e-87; PDAC, 1e-322 to 1e-259).

(C) Distance of high-coverage intergenic insertions in tumor tissue (T-ALL) and

primary cell cultures (PDAC). For each sample (n = 48 T-ALL; n = 50 PDAC),

high-coverage (R1,000 reads) intergenic insertions (n = 328 T-ALL; n = 253

PDAC) were selected and the distance between these insertions was calcu-

lated. Distance in a range of 0–50 kb is shown, and normalized coverage for

each insertion is indicated by the size of the circle. Two insertions within a

distance of 50 kb in the same cancer were observed in few cases only. These

likely reflect independent local hopping events on the same allele (in different

cell clones) rather than biallelic insertions in the same cell.

Cell Genomics 3, 100276, March 8, 2023 9
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biallelic insertions affecting the same functional RE are extremely

unlikely to occur, in line with the notion that non-coding inser-

tions have subtle regulatory effects.

This conclusion is further supported by functional studies,

which we performed to examine effects of intergenic transposon

insertions in non-hematopoietic tumors. In a pancreas screen

conducted in a KrasG12D mutant background (Figure 5), one of

the top intergenic CISs marks a region with putative regulatory

function located �145 kb downstream of the nuclear receptor-

interacting protein 1 (Nrip1) promoter. Using CRISPR-Cas9, we

generated 4.5 kb deletion knockouts of this region in KrasG12D

mutant mouse pancreatic cancer cells. Comparative analyses

using 17 wild-type and knockout clones revealed an overall

reduction of Nrip1 expression by 30% in the knockout clones

(Figure S11). Another CIS-linked regulatory region in this screen

is located 80 kb downstream of Enpp1, a nucleotide pyrophos-

phatase involved in anticancer immunity. We again performed

CRISPR-Cas9 knockouts of this region (3.5 kb), which resulted

in downregulation of Enpp1 (Figure S11). Thus, both experi-

mental series support the functional relevance of intergenic

transposon insertions.

We next performed mouse to human lift-over of CIS coordi-

nates for all intergenic CISs identified in the mouse screens

(n = 2,337). We observed a significant enrichment of cancer-

associated GWAS variants in the syntenic human CIS regions

compared with the rest of the genome (p = 7.95 3 10�7, c2

test), supporting the human relevance of discoveries made

in mice.

Comparison of mouse screens exposed that individual entities

and subentities display striking differences in the occurrence of

intergenic CISs (Figure 5A), suggesting context dependencies.

In the hematopoietic system, for example, immature AMLs

(defined by morphology/IHC) displayed much lower numbers

of regulatory CISs than more mature forms (10% vs. 18%–
Figure 6. The extent of quasi-insufficiency differs in T-ALL subtypes

(A) Schematic overview of T cell development, marker expression, and origin of

(B) Transcriptome-based sub-classification of T-ALLs (n = 37). Clustering was pe

(C) Gene set enrichment analysis comparing the two major PCA clusters. Hallma

compared. FWER values are depicted as circles relative to significance. Enrich

enrichment score (NES), pathways identified in the classical group are displayed

(D) A murine classifier gene set (n = 20) was generated to differentiate classical

enriched in ETPwere linked to early T cell development (Mef2c, Il7r, Il2ra, Lmo2), t

immune system (Lyz2), while classical T-ALL showed enrichment for genes assoc

signaling (Rag1, Themis) or specific oncogenes (Rasgrp1, Myb).

(E) Pattern of insertions in theMef2c gene in samples from the Mef2c-driven subg

alternative in-frame ATGs. Arrows show the orientation of insertions and indicate

size indicates the sequencing read coverage supporting individual insertions.

(F) Expression of Mef2c in the three major subgroups. rlog expression value is s

(G) Overlap of CIS regions from ETP-like and classical T-ALLs with stage-specifi

lineage (*p = 0.046, Fisher’s exact test).

(H) Sum of normalized sequencing read coverages for insertions in top CIS gen

subtypes. The PI3K signaling and proliferation genes Rasgrp1 and Rpl11 (not sh

(I) Number of unique insertions for each sample in indicated T-ALL subgroups:

Student’s t test).

(J) Percentage of intergenic CISs among all and the top 50 CIS regions in the cl

overlapping also with protein-coding genes were not considered for these analy

(K) Simplified model of T-ALL subtype evolution. Main molecular, cellular, and

matopoietic stem cell; MPP, multipotent progenitors; CLP, common lymphoid p

double-negative stage; DP, double-positive stage; GMP, granulocyte macrophag

C, classical; CIS, common insertion site.
19%, Figure 5A, immature AML vs. AML_P: Fisher’s exact test,

p = 0.045). Likewise, immature ETP-ALL have fewer regulatory

CISs than their more mature ‘‘classic’’ T-ALL counterparts

(detailed information on these analyses and T-ALL subtyping is

provided below).

Altogether, these studies imply pervasive roles of quasi-insuf-

ficiency across cancers and suggest the existence of substantial

context dependencies.

T-ALL subtyping for the study of regulatory context
dependencies
To explore possible context-dependent roles of quasi-insuffi-

ciency, we investigated whether our T-ALL model develops

different disease subtypes. Human T-ALL is a heterogeneous

disease. However, in the latest WHO classification one subset

with unique biology has been recognized as a distinct sub-entity:

ETP-ALL is characterized by the retention of myeloid and stem

cell markers32–34,67 (Figure 6A). To characterize mouse tumors,

we analyzed transcriptomes and determined immunopheno-

types of T-ALL, mature T cell lymphomas (MTL), and healthy

thymus (Figure S12). IHC-based profiling revealed CD4-positive

and -negative tumors, suggesting T-ALL heterogeneity in the

cohort (Figure S12). Model-based clustering of gene expression

data identified three major subgroups (Figures 6B and S13;

Table S14). We first compared the two largest clusters using

gene set enrichment analysis (Figure 6C) and found enrichment

of signatures characteristic for human ETP-ALL in one group

(e.g., IL6/Jak/Stat), while the second group was enriched for

cell-cycle-associated genes, a characteristic of human non-

ETP T-ALL (hereafter referred to as ‘‘classical’’ T-ALL).67,68

Moreover, the enrichment of signatures specific for hematopoi-

etic stem cells (HSCs), myeloid progenitors, and early T cells

(ETP/DN1) in ETP-like tumors reflects their origin in early precur-

sors, as in humans. In contrast, classical T-ALL displayed
T-ALL subtypes.

rformed using model-based clustering (k = 4).

rk pathways and gene signatures in hematopoietic and T cell development are

ed pathways in the ETP-like group are displayed with a negative normalized

with a positive NES.

and ETP-ALLs. The heatmap shows z-transformed expression values. Genes

he B cell lineage (Syk, Lyn,Bcl3), HSCs (Spi1,Cd34,Cebpa, Id2), and the innate

iated with T cell commitment (Tcf7, Bcl11b, Satb1, Cd4), TCR rearrangement/

roup.Mef2c possesses different isoforms, of which some are transcribed from

the direction of functionality of the transposon’s unidirectional promoter. Arrow

hown (***p < 0.001, Wilcoxon test).

c open chromatin peaks identified by ATAC-seq69 in the T cell developmental

es (Ikzf1, Pten, Mef2c, Notch1), indicated for each sample in the three T-ALL

own) were assigned to ‘‘Pten.’’

ETP-like (n = 14), Mef2c-driven (n = 7), and classical (n = 8) T-ALL (*p < 0.05,

assical and ETP-like subgroups (Tables S16 and S17). Intergenic CIS regions

ses (**p = 0.009, Fisher’s exact test).

temporal determinants of differential subtype evolution are shown. HSC, he-

rogenitor; B, B cells; ETP, early T cell precursor; NK, natural killer cells; DN,

e progenitor; M, macrophages; FWER, family-wise error rate; M, Mef2c-driven;
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enrichment for double-positive (DP) T cell signatures (Figures 6

and S14; Table S15). To account for the lack of mouse T-ALL

classifiers, we built a 20 gene panel that separates subgroups

(Figure 6D).

The characteristics of the third subgroup were initially difficult

to classify based on gene-expression profiles. We therefore in-

spected the insertion profiles in this group and found activating

insertions in Mef2c as a top hit in the majority of samples, as

defined by high-coverage Mef2c insertions with sense orienta-

tion (Figure 6E). In contrast, classical or ETP-like tumors had

no or predominantly low-coverage Mef2c insertions, respec-

tively. We therefore refer to the third tumor cluster as the

‘‘Mef2c-driven’’ group, which indeed had highMef2c expression

levels (Figure 6F). Mef2c-driven T-ALLs are CD4 negative (as are

ETP-like tumors), indicating their development from precursor

T cells (Figure S12C). Indeed, MEF2C is strongly expressed in

human HSCs and CLPs but not in T cells.70 Activation of human

MEF2C can occur through different translocations, which were

associated with immature T-ALL and MEF2C-dependent

suppression of Notch signaling.70–72

Multi-scale mapping of T-ALL subtype evolution reveals
context-dependent quasi-insufficiency patterns
We next investigated whether quasi-insufficiency displays

context dependencies at cellular, molecular, and temporal levels

in tumor evolution. To this end we integrated analyses of chro-

matin profiles along the T cell lineage and transposon insertion

landscapes.

Cell of origin

T-ALL is prototypical for tumor types that can arise from different

developmental precursors or cell types. While the cell of origin

can profoundly affect the biological properties of the evolving

tumor, it often cannot easily be inferred through standard pheno-

typing. We hypothesized that, in scenarios of insertion biases

(such as the preference of PiggyBac for open chromatin), the

transposon insertion landscape in a cell population reflects a

vague screenshot of global chromatin conformation at the stage

of genome integration. To examinewhether insertion profiles can

give indications on a tumor’s cell of origin, we overlapped sub-

type-specific CISs with regions of accessible chromatin in

different cell types along the T cell developmental lineage

(stage-specific ATAC-seq from Johnson and co-workers69). We

found that 79% of CISs in ETP-like tumors overlap with ATAC

peaks specific for progenitor, natural killer, B, or early T cells,

while classical T-ALL CISs overlap predominantly (68%) with re-

gions of accessible chromatin that are specific for intermediate

and late stages of T cell development (Figure 6G). These data

suggest that, despite ongoing transposon mobilization, some in-

sertions carry a certain level of ‘‘historical information’’ that allows

us to infer developmental origin, a concept that could possibly be

expanded to the study of other cancer types.

Sequentiality

The molecular determinants driving individual stages of tumor

evolution in different T-ALL subtypes are poorly understood.73,74

Interrogationofsuchevolutionaryprinciples inourdataset requires

clonal deconvolution, which is, however, not supported by

standardCIS calling algorithms. This is due to the non-quantitative

statistical concept used to search for genomic ‘‘insertion hot-
12 Cell Genomics 3, 100276, March 8, 2023
spots’’ ina cohortofmice. Toovercomethisproblem,weconduct-

eda second typeof analysis, which integratesquantitativedata for

each of the 170,000 non-redundant insertions based on quantita-

tive insertion site sequencing, a method we developed earlier for

this purpose.40 For each cancer, read coverages supporting

individual insertions (range: 2 to10,000) reflect their clonal distribu-

tion and likely position at the tumor’s evolutionary tree.

These analyses revealed that, while top CISs are shared be-

tween T-ALL subtypes, their clonal distribution differs markedly,

indicating distinct evolutionary hierarchies (Figure 6H). The most

prominent hit in ETP-like tumors was Ikzf1, which is supported

by very high read coverages in virtually all tumors (Figure 6H).

Strong positive selection for Ikzf1 insertions in virtually all ETP-

ALL establishes a critical role of Ikzf1 in the initiation of this

T-ALL subtype. In contrast, Pten, which was characterized by

highly subclonal insertions in ETP-like tumors, was the dominant

high-coverage hit in classical T-ALL (Figure 6H), indicating differ-

ential temporal orders of tumor-driving events in T-ALL subtypes.

Importantly, chromatin accessibility at Ikzf1 and Pten (or other

main drivers, including Notch1 and Mef2c) is similar at different

stages of T cell development (that is in the different cell types

fromwhich T-ALL subtypes arise; Figure S15), excluding the pos-

sibility of integration biases driving the differential distribution or

sequentiality of driver gene insertions in T-ALL subtypes.

Intratumor heterogeneity

We next exploited screening data to infer global characteristics

of clonal architecture in different T-ALL subtypes. The analyses

revealed that theMef2c-driven group differs from other subtypes

in that it displays: (1) fewer CISs, which is also true in sample-

size-matched analyses (Figures S16A andS16B) and (2) reduced

numbers of total insertions per tumor (Figures 6I and S16C). In

humans, there is controversy as towhetherMEF2Cdysregulated

and ETP-ALL feature a single or distinct disease entities.75,76 Our

results support the latter by highlighting substantial biological

differences between subtypes.

Subtype-specific driver genes

We next performed subgroup-specific CIS analyses (Figures

S16D–S16F; TablesS16–S18). CISs specific for ETP-ALL affected

mature T cell genes (inactivation of Ikzf2, Ikzf3), Ras pathway com-

ponents (Rapgef2, Nf1), and potential negative regulators of Wnt

signaling (Kremen1, Tmem170b; not linked to T-ALL so far). More-

over, several genes linked tostemnessor themyeloid lineagewere

among the top hits in this group (Cnr2, Chd2, Crebbp, Mecom)

(Figures S16DandS16E),which sheds light on several openques-

tions in human ETP-ALL biology (detailed in the discussion). In the

classical T-ALL subgroup, two observations stood out in addition

to the predominanceofPten hits described above: (1) recurrent in-

sertions in genes linked to late thymocyte development (Tcf12,

Rpl5), consistent with the notion of classical T-ALLs arising from

post-commitment DP cells, and (2) a large number of CISs

affecting intergenic REs, especially among the top CISs

(Figures 6J, S16D, and S16F), suggesting a so far unappreciated

importance of subtle gene regulation, specifically in classical

T-ALL.

Collectively, these results uncovered key characteristics of

different T-ALL subtypes (Figures 6K and S16G) and highlight

the ability of our experimental system to interrogate tumor evolu-

tionary principles in space and time. Their application exposed
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how the complex interplay of distinct cellular contexts, molecular

triggers, and the temporal dynamics of their alterations and

regulatory interactions drive cancer evolution along different tra-

jectories that give rise to distinct cancer phenotypes/subentities.

DISCUSSION

During oncogenesis, regulatory landscapes undergo extensive

changes, captured by global profiling studies, but not well under-

stood at the functional level. Determining whether an alteration is

cancer causing (driver) or neutral (passenger) is a challenge in

epigenetics, more so than in structural cancer genomics and

mutational profiling. Systematic in vivo perturbation of the non-

coding genomic space is—given its enormous size and limited

annotation—difficult to achieve by targeted approaches, such

as library-based CRISPR screens (which face size limits). Even

greater restraints to screening scalability arise from the hurdles

associated with somatic delivery of libraries to many organs

and cell types.20,77 Insertional mutagenesis using endogenous

transposon systems addresses these limitations. Continuous

mobilization and random reintegration of multiple transposons

in every single cell of the mouse produces enormous mutational

complexity, constituting a pool of hundreds of billions of alter-

ations in non-transformed cells that are then subject to selection.

We developed universally applicable methods for interrogation

of the nPC genome using transposon mutagenesis. Applied to

the evolution in T-ALL, the screens assembled catalogs of

cancer-relevant REs and nPC transcripts, constituting the first

systematic survey of its kind.

Another area of cancer research that faces methodological

constraints is evolutionary genetics. In human cancer samples,

genetic evolution is inferred retrospectively. Owing to selection

and clonal sweep, such analyses typically capture sequentiality

of the latest mutations only. Evenmore challenging is the discov-

eryof subtle, often temporally restricted (and reversible) regulato-

ry processes during tumor evolution, or the capture of other

determinants, such as the cell of origin. We devised methods

for prospective interrogation of cancer evolution by intersecting

epigenomic data along the T cell developmental lineage and

insertional mutagenesis to induce different T-ALL subentities.

We mapped perturbations driving evolution, including their type

and quality, regulatory fine-tuning, combinatorial code, temporal

sequence, and cellular/evolutionary history (Figure S16G).

Capturing the complex interactions of these different layers pro-

vided multifaceted new insights into T-ALL subtype evolution

(Figure 6K) and explain several open questions in the field.

It was reported earlier that IKZF1 alterations are enriched in

human ETP-ALL compared with classic T-ALL.67 The screens

in mice add both functional and temporal information to this as-

sociation by linking Ikzf1 to the initiation of this T-ALL subtype.

Moreover, ETP-ALL displayed exclusivity for a number of

screening hits, including genes or REs/gene pairs linked to

stemness or the myeloid lineage. Coupled with the observation

that stem cell and/or myeloid markers are expressed in

human ETP-ALL,78 the latter suggests a specific vulnerability

of pre-commitment progenitors (but not committed T cells) to

transformation by insults sustaining the lympho-myeloid pro-

gram. The variety of myeloid/stem cell-related CISs we found
in ETP-like ALL indicates that various such triggers can

contribute to ETP cell transformation. This might explain the

phenotypic diversity of human ETP-ALL, which express different

combinations of stem cell and/or myeloid markers.33 We specu-

late that distinct genetic interactions define whether perturbation

of such ‘‘myeloid/stem cell’’ genes in precursors promotes AML

or rather ETP-ALL development. Indeed, while in our AML screen

Mecom activation was found as a top truncal driver (unpublished

data), Mecom insertions in ETP-ALL were preceded by truncal

Notch1 and Ikzf1 insertions.

Our screening system constitutes a model for Mef2c-driven

T-ALL, which gave new insights into the biology of this sub-en-

tity. In humans, there is controversy as to whether MEF2C dys-

regulated and ETP-ALL feature a single disease entity or should

be regarded as distinct groups (there is often partial discordance

of immunophenotypic characteristics75,76). The mouse model

supports the latter. It shows that there are biological differences

between ETP-like and Mef2c-driven tumors at various levels,

including their transcriptional profiles, driver genes or clonal ar-

chitectures. This might also explain differences in treatment

response and resistance between groups as human MEF2C

T-ALL respond poorly to glucocorticoids.76

The dominance of high-coverage Pten hits in classical mouse

T-ALLs (vs. low-coverage hits in ETP-ALL) highlights differential

sequentiality of tumor driving events in T-ALL subtypes. Strong

selection for Pten inactivation in our functional screens likely re-

flects subtype-specific constraints or exigencies during early

evolution of classical T-ALL and rationalizes the enrichment of

PI3K pathway alterations in the equivalent mature forms of hu-

man T-ALL.49,79 Another observation that stood out in the clas-

sical subgroup was the large number of CISs affecting intergenic

REs, suggesting a so far unappreciated importance of subtle

gene regulation specifically in classical T-ALL. The evolutionary

pressures underlying these observations remain to be explored.

It is possible, for example, that classical T-ALL rely on establish-

ing a fine-tuned dosage reduction of T cell commitment genes

rather than their complete inactivation, which might either be

deleterious at this stage or lead to a phenotypic switch toward

a less differentiated state.

Over the past two decades, much effort in cancer genetics has

focused on identifying coding mutations, a process that had

transformative impact in cancer biology. Our results suggest,

however, that—beyond coding mutations—a vast and so far

understudied layer of molecular dysregulations contributes to

oncogenesis. The screens across many cancer types described

here provide evidence for widespread haplo- and quasi-insuffi-

ciency in tumor evolution, and we show in mouse models that

even small or temporal gene expression changes of tumor sup-

pressors, such as Bcl11b, can be oncogenic. Transposon inser-

tions affecting REs predominantly cause subtle gene dysregula-

tions, as do human cancer risk variants, which are commonly

located in the nPC genome. The strong enrichment of GWAS

hotspots in our catalogs of regulatory CISs thus reinforces the

human relevance of this study.

Functional experiments targeting cancer-relevant REs pro-

vided mechanistic insights into the pathogenic outcomes of

gradual gene dysregulations. Allelic deletion series that we engi-

neered in a large ‘‘gene desert’’ downstream Bcl11b in mice
Cell Genomics 3, 100276, March 8, 2023 13
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displayed striking developmental and cancer phenotypes. This

not only confirmed the predictions made by the screen, but

also provided new insights into the biology of the most frequent

human translocation in pediatric T-ALL. Allele-specific differ-

ences in tumor penetrance, latency, and spectra/types reflect

gradual gene dysregulations through enhancer modularity, with

additive effects and tissue-specific phenotypic outcomes—con-

cepts that require organismal models, such as the ones devel-

oped here, for their interrogation and proof.

Global interrogation of quasi-insufficiency requires methodol-

ogy capable to induce genome-wide subtle perturbations—in

experimental systems that can capture the relevant readout, that

is cancer development in an organism. Our screening approach

fulfills these requirements and enabled a comprehensive survey

toward a systems-level understanding of subtle gene dysregula-

tion in cancer. Both, our studies covering multiple-entities as well

as the focused hematopoietic screens revealed (sub)entity-spe-

cific differences in the global extent of RE alterations and quasi-

insufficiency. Subtle gene dysregulations were less predominant,

for example, in immature T-ALL than in tumors originating from

committed T cells, an observation that was also mirrored in

screens formyeloidmalignancies. Selection of fine-tuned rewiring

of signaling networks during transformation is not surprising, nor is

its context-specific variance: depending on the cell of origin and

oncogenic insult, the path between oncogenic cell fate changes

and cell death can be narrow, requiring precise orchestration of

molecular reprogramming during transformation.

Limitations of the study
One limitation of the screening approach is the dependence of

transposon-induced gene activation on splicing. As a result, all

genes having their translation initiationcodon inexon-1 (first exons

donot haveaspliceacceptor) cannotbeactivatedby thepromoter

engineered into transposons, unless the genes possess an alter-

native in-frameATG.Another limitation is thedifficulty topredict ef-

fects of insertions in the non-coding genomic space. This con-

trasts the analysis of the protein-coding CISs, where transposon

insertion patterns predict whether gene activation or inactivation

is the cancer-driving mechanism. In principle, transposon inser-

tions in regulatory regions can positively or negatively affect

expression of target genes. Possible mechanisms underlying

repressive effects includedisruptionof transcription factor binding

sites, interference with 3D chromosomal conformation and topol-

ogy-associated domain structure. In contrast, gene activation can

in principle be mediated by the transposon’s activating elements

or the disruption of silencer/insulator sequences. In this study,

effects related to selected intergenicCISswerevalidated function-

ally. Finally, some of the analyses comparing different T-ALL sub-

entitieswouldhavebenefited froma larger samplesize,whichmay

increase the power of the discovery approach.
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70. Canté-Barrett, K., Pieters, R., and Meijerink, J.P.P. (2014). Myocyte

enhancer factor 2C in hematopoiesis and leukemia. Oncogene 33,

403–410.

71. Homminga, I., Pieters, R., Langerak, A.W., de Rooi, J.J., Stubbs, A., Ver-

stegen, M., Vuerhard, M., Buijs-Gladdines, J., Kooi, C., Klous, P., et al.

(2011). Integrated transcript and genome analyses reveal NKX2-1 and

MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia.

Cancer Cell 19, 484–497.

72. Nagel, S., Venturini, L., Meyer, C., Kaufmann, M., Scherr, M., Drexler,

H.G., and Macleod, R.A.F. (2011). Transcriptional deregulation of onco-

genic myocyte enhancer factor 2C in T-cell acute lymphoblastic leuke-

mia. Leuk. Lymphoma 52, 290–297.

73. De Bie, J., Demeyer, S., Alberti-Servera, L., Geerdens, E., Segers, H.,

Broux, M., De Keersmaecker, K., Michaux, L., Vandenberghe, P., Voet,

T., et al. (2018). Single-cell sequencing reveals the origin and the order

of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia

32, 1358–1369.

74. Albertı́-Servera, L., Demeyer, S., Govaerts, I., Swings, T., De Bie, J., Gie-

len, O., Brociner, M., Michaux, L., Maertens, J., Uyttebroeck, A., et al.

(2021). Single-cell DNA amplicon sequencing reveals clonal heterogene-

ity and evolution in T-cell acute lymphoblastic leukemia. Blood 137,

801–811.

75. Zuurbier, L., Gutierrez, A., Mullighan, C.G., Canté-Barrett, K., Gevaert,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rat anti-B220/CD45R BD Bioscience B220; AB_393581

rat anti-CD138 BD Bioscience 281–2; RRID:AB_394999

rat anti-MPO DAKO A0398

rabbit anti-CD3 DCS Sp7; RRID:AB_2864584

rabbit anti-Tdt Supertechs 005

rat anti-CD4 Dianova GHH4; RRID:AB_2800530

Rabbit anti-rat secondary antibody Vector AI-4001-.5

Critical commercial assays

Amaxa� Cell Line Nucleofector� Kit V Lonza Bioscience Kit V

Amaxa� Cell Line Nucleofector� Kit V Lonza Bioscience Kit L

Deposited data

Publicly available data See Tables S5 and S6 NA

Deposited human GRO-Seq data This paper EGAS00001005864

Deposited murine RNA-seq data This paper PRJEB59121

GWAS Catalog (v1.0.2) MacArthur et al.80 RRID:SCR_012745

Experimental models: Cell lines

Jurkat ATCC TIB-152, RRID:CVCL_0065

EL4 ATCC TIB-39, RRID:CVCL_0255

HEK293T ATCC CRL-3216, RRID:CVCL_0063

C2a_16990 M€uller et al.10 NA

C1_9091 M€uller et al.10 NA

Experimental models: Organisms/strains

Rosa26PB Rad et al.37 Rosa26PB

ATP2 Rad et al.37 ATP2

Bcl11bD1Mb This paper NA

Bcl11bD105kb This paper NA

Oligonucleotides

Oligonucleotides See Table S19 NA

Recombinant DNA

pX333 vector Addgene RRID:Addgene_64073

lentiCas9-Blast Addgene RRID:Addgene_52962

guide-GFP vector Addgene RRID:Addgene_57822

MICER targeting vectors Adams et al.81 NA

Software and algorithms

QiSeq Friedrich et al.40 NA

CIMPL de Ridder et al.41 NA

Transmicron Bredthauer et al.82 NA

HOMER (v4.11) Heinz et al.83 RRID:SCR_010881

chromHMM Ernst and Kellis84 RRID:SCR_018141

GSEA v4.0.3 Subramanian et al.85 RRID:SCR_003199

LDlink Machiela and Chanock60 NA

GenomicRanges Bioconductor RRID:SCR_000025

DESeq2 Bioconductor RRID:SCR_015687

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

cola Gu et al.86 NA

Other

UCSC Genome Browser http://genome.ucsc.edu/ RRID:SCR_005780

Inkscape https://inkscape.org/en/ RRID:SCR_014479
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Roland

Rad (roland.rad@tum.de).

Materials availability
This study did not generate new unique reagents. Mouse lines generated in this study are available from the lead contact upon

request.

Data and code availability
Murine RNA-seq raw data are deposited at EBI European Nucleotide Archive under the accession number PRJEB59121. Human raw

GRO-Seq data are deposited at European Genome-Phenome Archive EGA under the accession number EGAS00001005864.

Accession numbers are listed in the key resources table and Table S1. This paper additionally analyzes existing, publicly available

data. Accession numbers are also listed in the key resources table and Tables S5 and S6.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse strains
Constitutive PiggyBac (PB) transposase knock-in mice (Rosa26PB) and transgenic transposon mouse lines harboring ATP2 have

been described earlier.37 Experimental (Rosa26PB/+;ATP2) and control (Rosa26PB/+ and ATP2 single transgenic) mice were main-

tained on a mixed C57BL/6 x 129Sv x FVB background. The T-ALL cohort included 48 ATP2-S1, 2 ATP2-H27 and 1 ATP2-H32

mice (information on sex and age listed in Table S1).

We generated intergenic knockout mouse models using MICER targeting vectors as previously described.81 Mouse embryonic

stem (ES) cells were transfected by electroporation and those carrying the vector were selected. Experimental mice weremaintained

on a mixed C57BL/6 x 129Sv x FVB background (information on sex and age listed in Table S12).

Mice were kept in the animal facilities of the Wellcome Trust Sanger Institute, Hinxton/Cambridge, UK under specific-pathogen-

free (SPF) conditions on a 12-h light/dark cycle, receiving food and water ad libitum. All animal experiments were carried out in

compliance with the requirements of the European guidelines for the care and use of laboratory animals and were approved by

the UK Home Office and the Institutional Animal Care and Use Committees (IACUC). Genotyping primers are listed in Table S19.

Cell lines
The human T-ALL cell line Jurkat (ATCC� TIB-152TM, male) and themurine T cell lymphoma cell line EL4 (ATCC� TIB-39TM, sex not re-

ported) were used for knockout and HEK293T cells (ATCC� CRL-3216TM, female) were used as a control. All cell lines were cultivated

according to distributor’s instructions. Additionally, primary murine pancreatic cancer cell lines were used from M€uller et al.10 Both

pancreaticcell lines, theC2acell line (16990,male) and theC1cell line (9091, female),werecultivated inDMEM.All cell lineswerecultured

in media supplemented with fetal bovine serum (FBS, 10%) and 1% penicillin/streptomycin and maintained at 37�C with 5% CO2.

Human subjects
Primary bonemarrow samples from two pediatric T-ALL patients (bothmale) were used for GRO-Seq assay. The studywas approved

by the Regional Ethics Committee in Pirkanmaa, Tampere, Finland (#R13109) and was conducted according to the guidelines of the

Declaration of Helsinki, and a written informed consent was received by the patient and/or guardians.

METHOD DETAILS

Generation of mouse strains and cohorts
Constitutive PiggyBac (PB) transposase knock-in mice (Rosa26PB) and transgenic transposon mouse lines harboring ATP2 have

been described earlier.37 Experimental (Rosa26PB/+;ATP2) and control (Rosa26PB/+ and ATP2 single transgenic) mice were
e2 Cell Genomics 3, 100276, March 8, 2023
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maintained on a mixed C57BL/6 x 129Sv x FVB background. Different ATP2 lines were used to generate final cohorts, which differ in

their number of transposon copies and the donor locus (ATP2-S1: donor locus chr17, 15 copies; ATP2-H27: donor locus chr4, 20

copies; ATP2-H32: donor locus chr2, 25 copies). The T-ALL cohort included 48 ATP2-S1, 2 ATP2-H27 and 1 ATP2-H32 mice

(Table S1) In addition to in depth analyses of tumors originating from these mouse cohorts, we have also explored specific questions

(on regulatory CISs) in datasets emanating from a large number of –mostly so far unpublished - constitutive and conditional PiggyBac

screens38,87,88 (Table S13). In total we analyzed 1450 tumors from 15 screens. Additionally, for comparison of integration profiles, we

analyzed a cohort of hematologic malignancies (n = 11) derived from a whole-body Sleeping Beauty Screen.82

We generated intergenic knockout mousemodels usingMICER targeting vectors as previously described.81 For the 1Mb deletion,

the MHPN-250E23 and the MHPP-53N24 and for the 105 kb deletion, the MHPN-262H24 and the MHPP-53N24 targeting vectors

from the MICER 3’Hprt (MHPP) and 5’Hprt (MHPN) library (CloneDB database) were used. Mouse embryonic stem (ES) cells were

transfected by electroporation and those carrying the vector were selected. After transient Cre expression, theHprtminigene recom-

bines in ES cells carrying both vectors and mediates hypoxanthine/aminopterin/thymidine (HAT) resistance. ES cells carrying the

deletion were selected with HAT-Medium and injected into C57BL/6-derived blastocysts to generate the mice. Experimental mice

were maintained on a mixed C57BL/6 x 129Sv x FVB background.

Necropsy and histopathological analysis
All animals were monitored regularly for signs of sickness (e.g., inactivity, palpable masses and poor grooming). During necropsy, a

gross inspection of all internal organs was carried out. For DNA/RNA isolation, tissue samples were stored in RNAlater (Sigma). For

histology, tissue samples were fixed in 4% formaldehyde, paraffin-embedded, sectioned, and stained using hematoxylin and eosin

following standard protocols.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on a Bond Rxm (Leica) using a Polymer Refine detection kit without post-primary anti-

body. Slides were deparaffinized and pretreated with Epitope retrieval solution 1 (ER1, citrate buffer, pH = 6) or solution 2 (ER2, EDTA

buffer, pH = 9) as indicated. The following primary antibodies were used: rat anti-B220/CD45R (B220, BD Bioscience, 1:50 dilution,

ER1, 20min), rat anti-CD138 (281-2, BDBioscience, 1:59, ER2, 20min), rat anti-MPO (A0398, DAKO, 1:100, ER2, 20min), rabbit anti-

CD3 (Sp7, DCS, 1:100 dilution, ER1, 20 min), rabbit anti-Tdt (005, Supertechs, 1:100, ER2, 20 min) and rat anti-CD4 (GHH4, Dianova

DIA-404, 1:50 dilution, ER2, 40 min). Rabbit anti-rat secondary antibody (Vector, 1:400) was applied for primary rat antibodies. Slides

were counterstained with hematoxylin and coverslipped after manual rehydration. Slides were scanned with a Leica AT2 scanning

system. HE stainings and IHCs were evaluated by experienced mouse pathologists, who were blinded to the mouse genotypes

according to the Bethesda proposals for classification of lymphoid neoplasms.89

Quantitative transposon insertion site sequencing
QiSeq is a method for semi-quantitative transposon insertion sequencing that we developed earlier.40 Briefly, DNA samples were

sheared with a Covaris AFA sonicator to a mean fragment length of 250 bp. The fragmented DNA was then end-repaired, A-tailed

and a splinkerette adapter was ligated to each DNA end. For the 5’ and 3’ transposon end, subsequent steps (amplification

and sequencing of transposon-genome junctions) were conducted separately. The specific structure of the splinkerette adapter

(Y-shaped design with a template and a hairpin strand) ensures that only transposon-genome junction fragments (and not genomic

fragments without transposon insert) can be amplified in the first PCR step (which was conducted with transposon- and splinkerette-

specific primers). Afterwards, a second nested PCR step was performed for further amplification, barcoding of samples and exten-

sion with Illumina flow cell binding sites P5 and P7. Each sample was then quantified with quantitative real-time PCR (using P5- and

P7-specific primers). Subsequently, samples were equimolarly mixed and the library pool was again quantified. Libraries were

sequenced on the Illumina MiSeq sequencer (75 bp, paired-end). Mapping of integrations to the mouse genome (mm10) was

performed using the SSAHA2 algorithm and sequences containing transposon-genome junctions were selected for downstream

analyses. Read coverage of insertions was normalized to the top hit of each sample (normalized read coverage).

CIS calling and downstream analyses
For the identification of common insertion sites (CISs; genomic regions that are more frequently hit by transposons than expected by

chance), ATP2 insertions were subjected to statistical analysis using CIMPL (Common Insertion site Mapping PLatform),41 which is

based on aGaussian kernel convolution framework. CIMPL assigns a p value to eachCIS (listed in Table S2) and controls the errors at

an average of 5%. Insertions within a 3 Mb region upstream and downstream of the transposon donor locus were excluded from the

analysis (local hopping area of the transposon as described in37). CISs were ranked according to the number of contributing inser-

tions. Sfi1, a known artefact frequently detected in insertional mutagenesis screens, was removed from the list of CIS genes.90 Addi-

tionally, Arid1b andMmp16were excluded due to their close proximity to the donor locus on chr17 and chr4, respectively. CIS genes

for Table S2 were ranked according to the number of contributing samples. A scale parameter of 30 k was used for CIS identification.

Profile plots and profile heatmap plots for visualization of ChIP-Seq peak enrichment in CIS regions were created using deeptools.91

Subgroup specific CIS analysis were performed using a scale parameter of 5 k and were ranked according to the number of contrib-

uting insertions. For comparisons of the number of intergenic CISs in multiple cancer types, a scale parameter of 5 k was used. The
Cell Genomics 3, 100276, March 8, 2023 e3
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GENCODE Biotype annotation was used to differentiate genic (protein-coding and immunoglobulin genes) and intergenic (all other

biotypes) CISs. CIS genes were compared to human cancer sequencing studies92–97(Table S3).

To exclude the possibility that insertion biases rather than selection are underlying non-coding CISs accumulation, we also used

Transmicron82 for CIS calling, which corrects for insertion biases by modelling neutral insertion rates based on chromatin accessi-

bility, transcriptional activity, and sequence context. CISs were filtered for an adjusted p value < 0.05 and overlapped with CIMPL 5 k

CISs. Of the 537 evaluated CIMPL-CISs (Table S8) and the top-ranked CIMPL-CISs (Figure 2E), 79% and 84% were also called by

Transmicron, respectively.

Footprint plots and transcription factor motif search
Footprint plots were generated using intergenic T-ALL CISs (n = 227) as an input. To show the specificity of the footprint signature, a

random background model was generated. Instead of selecting arbitrary loci in the genome, a set of ‘‘control CISs’’ was generated

with specific characteristics as similar as possible to the original CISs. For each CIS, the chromosome, width, number of insertions as

well as the number of comprised TTAA positions was used to identify a matching region in the genome resulting in a large pool of

‘‘control CISs’’ for each original CIS. ‘‘Control CISs’’ overlapping with any CIS were removed. The peak position for each mimicry-

CIS was determined by the relative position of the peak in the original CIS. The procedure of identifying the overlap density with

annotated regions was identical for the original and the control data, whereby for the latter this stepwas repeated 100 times in a boot-

strapping approach. Every time one randomly selected ‘‘control CIS’’ from the previously generated pool of candidates was selected,

and the final density line was then generated based on the 97.5%quantile of all values. ChIP-Seq input files are listed in Table S5. For

analysis of transcription factor binding sites, regions flanking 200 bp of single intergenic insertions sites were used as input. The find-

MotifsGenome.pl tool of HOMER (v4.11)83 was used for known motif analysis using default parameter.

CIS annotation pipeline (ARCIS)
For the identification of CISs using CIMPL, the scale parameter was set to 5 k to identify narrow regions with regulatory potential

(Figures 2A, 2B, and S5A). The resulting CIS coordinates were overlapped with a collection of publicly available datasets listed in

Table S5 43,44,69,98–104 using the GenomicRanges R package.105 The data was post-processed into a BED3 format with an additional

column for name assignment. For overlap with peak-based files (ChIP-Seq, DNase-Seq), the number of overlapping peaks and the

distance to the closest peak are reported. For interaction datasets (Hi-C from different stages of development and data from dbSuper

[mouse thymus]), linked target genes are annotated. Chromatin regions specifically increasing or decreasing during T cell develop-

ment (change in A and B compartment scores called from Hi-C data in Hu et al.43) were also overlapped with CIS regions (all publicly

available datasets are listed in Table S5, detailed ARCIS scheme shown in Figure S5B).

Additionally, we run a chromatin Hidden Markov Model (chromHMM)84 on a collection of thymus ChIP-Seq data from ENCODE to

define chromatin states, based on distinct combinations of histonemarks. Chromatin states were used as an additional input dataset

for ARCIS. We used six thymus-specific ChIP-Seq datasets: H3K4me1, H3K27ac, H3K4me3, H3K27me3, H3K36me3 and CTCF.

The observed chromatin combinations resulted in eight manually assigned chromatin states: active/weak/poised/insulated

enhancer, active promotor, gene body, CTCF binding sites and quiescent (Figure S5C, Table S7). For the human T-ALL cell lines

DND41 and Jurkat chromatin states are shown in Figure S7. The predicted regions showed amedian range of 400-1000 bp. To over-

come the issue of genomic sections with various small interrupted states, we implemented a merging and smoothing step. For each

chromatin state, neighboring regions within 3000 bp of each other weremerged into a single larger region, while bridging other states

in between. Resulting smooth chromatin states were filtered to only include regions with a minimum size of 4000 bp. As an additional

attempt to obtain large and coherent regulatory elements, the same procedure was also applied to combinations of interrelated chro-

matin states in close distance, like active with weak enhancers as well as promoters with active enhancers. Regarding the many

different states, only active and weak enhancer chromatin states were used for CIS annotation. The number of overlaps as well

as the distance to the closest element is reported. As silencers are less well-studied, and CISs affecting insulators were rare, we

focused our downstream analyses on enhancers and ncRNAs.

ARCIS computes the overlap between CIS regions and all input datasets and reports number of observed overlaps as well as the

putative target gene. For each CIS, ARCIS reports: (i) transcript annotation, (ii) number of peaks or distance to the closest peak (for

ChIP-, ATAC- and DNase-Seq), (iii) intersection with super-enhancers, (iv) connected target gene (for Hi-C and dbSuper),

(v) information on chromatin access change during T cell development, and (vi) annotation from chromHMM (Table S7). ARCIS cal-

culates a ‘RE-score’ based on a combination of features and ranks the CISs according to their regulatory potential reflecting an addi-

tional layer of information to support data interpretation (details shown in Figure S6). In brief, overlaps with super-enhancers

(dbSuper), increasing chromatin accessibility, active/weak enhancers according to chromHMM data and Hi-C connections were

used for scoring. The ARCIS output comprises a full (Table S7) as well as a user-friendly ‘‘reduced’’ format (Table S8).

The classification of intergenic enhancers without overlap to other functional elements is straightforward. However, because func-

tional elements in the genome often overlap (e.g. enhancer overlapping with lncRNAs and/or mRNAs) or are found in close proximity

to each other, a substantial part of putative REs has to be further inspected individually (Figures 2E and S6).

Main criteria for discriminating different RE categories are the position of CIS-insertions in relation to potential overlapping/neigh-

boring functional units in the genome, their orientation as well as the pattern of insertion clusters across samples. Integrating lncRNA

andmRNA expression profiles in respective tissues further aids discrimination of the RE type targeted by transposons in regions with
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multiple overlapping functional elements (Figure S5D). In a subset of these cases, however, definitive classification is not possible,

but requires downstream experimental interrogation. A detailed description of the manual annotation algorithm as well as related de-

cision trees are provided in Figure S6.

ARCIS can be used for any insertional mutagenesis screen as the availability of chromatin accessibility and histone modification

data constantly increases. If no tissue-specific data is available (especially for Hi-C) there are efforts to create global datasets that can

be applied universally.106

Human ARCIS was performed with datasets listed in Table S6.27,29,107–113

GRO-Seq
Primary bone marrow samples from two pediatric T-ALL patients were used for GRO-Seq assay. The study was approved by the

Regional Ethics Committee in Pirkanmaa, Tampere, Finland (#R13109) and was conducted according to the guidelines of the Decla-

ration of Helsinki, and a written informed consent was received by the patient and/or guardians. In addition, the T-ALL cell line Jurkat

was included (from the Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany). The

nuclei isolation and GRO-Seq library construction was performed as previously described,114 yielding �1–53106 nuclei per condi-

tion. Single-end Illumina sequencing was performed by GeneCore EMBL, Heidelberg Germany. GRO-Seq reads were trimmed using

the HOMER (http://homer.salk.edu/homer) software (homerTools trim) to remove A-stretches originating from the library preparation.

From the resulting sequences, those shorter than 25 bp or with poor quality were discarded. Genome alignment with Bowtie was

done in two steps, first removing reads mapping to rRNA regions (AbundantSequences as annotated by iGenomes) and blacklisted

regions (unusual low or high mappability as defined by ENCODE) followed by alignment to hg19. Up to two mismatches and up to

three locationswere accepted per read and the best alignment was reported. For visualization, readswere normalized to 107 reads to

generate bedGraph and bigWig files using HOMER. GRO-Seq data for HEK293T cells were published previously107 (Table S6).

Cell-culture-based CRISPR-Cas9 knockout experiments
For in vitro knockout experiments of candidate regions, region specific guides or lacZ guide controls (sequences listed in Table S19)

were sequentially cloned into the pX333 vector for expression of two sgRNAs from two independent U6 promoters and Cas9 expres-

sion by the Cbh promoter (Addgene #64073). For each knockout experiment, six guides were selected (three on each site of the

knockout region). Vectors of different guide combinations were pooled before electroporation. The human T-ALL cell line Jurkat

(ATCC� TIB-152TM) and the murine T cell lymphoma cell line EL4 (ATCC� TIB-39TM) were used for knockout and HEK293T cells

(ATCC�CRL-3216TM) were used as a control. All cell lines were cultivated according to distributor’s instructions. Cell lines were elec-

troporated using the Amaxa�Cell Line Nucleofector� Kit V and Kit L (Lonza Bioscience). For each knockout, the pX333 vector and a

GFP vector were co-electroporated into 2 3 106 cells according to manufacturer’s protocol. For Nrip1 and Enpp1 knockout in

pancreatic cancer, a C2a cell line (16990) and a C1 cell line (9091) from M€uller et al.10 were used, respectively. Cells were first trans-

duced with a lentiCas9-Blast vector (Addgene #52962). Stable single-cell derived Cas9-expressing clones were transfected with a

guide-GFP vector (Addgene #57822) using Lipofectamine 3000 (Thermo Fisher Scientific) according to manufacturer’s instructions.

Here, two guides were used on each site of the knockout region. GFP positive cells were single-cell sorted in 96-well plates and

cultured with conditioned medium. Colonies grown from single cell clones were screened for the knockout using PCR with region

specific primers (Table S19). Positive clones were expanded for RNA isolation. Expression of the target gene was determined by

real-time quantitative PCR (qPCR) using primers specific for the target transcripts (Table S19). For normalization of RNA input,Gapdh

qPCR (Table S19) was performed. Expression of the target gene was compared to cell clones electroporated with lacZ guides.

DNA and RNA isolation
DNA and total RNA isolation of tissue samples and cell clones was performed according to manufacturer’s instructions using the

Qiagen DNeasy Blood & Tissue Kit, the Qiagen RNeasy Plus Mini Kit or the Qiagen Allprep DNA/RNA Mini Kit. miRNA isolation of

tissue samples was performed using the mirVanaTM miRNA Isolation Kit (Thermo Fisher Scientific) according to manufacturer’s

instructions.

cDNA synthesis and qPCR
cDNA synthesis was conducted using SuperScript II Reverse Transcriptase (Thermo Fisher Scientific) using 1 mg of total RNA accord-

ing to standard protocols. Real-time qPCR was conducted with SYBR Select Master Mix (Thermo Fisher Scientific) with primers

listed in Table S19. Murine and human GAPDH were used as housekeeping genes for normalization. For microRNAs, expression

was assessed using the TaqManTM technology. cDNA was synthesized using the TaqManTM Advanced miRNA cDNA Synthesis

Kit (Thermo Fisher Scientific). Expression was assessed using the TaqManTM Advanced miRNA assays hsa-miR-29a-3p and

hsa-miR-29b-3p for microRNA29a and microRNA29b, respectively. Expression was normalized to microRNA16 using the

hsa-miR-16-5p assay (all Thermo Fisher Scientific).

3-Prime RNA sequencing
Library preparation for bulk-sequencing of poly(A)-RNA was done as described previously.115 Briefly, barcoded cDNA of each sam-

ple was generated with a Maxima RT polymerase (Thermo Fisher) using oligo-dT primer containing barcodes, unique molecular
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identifiers (UMIs) and an adaptor. Ends of the cDNAs were extended by a template switch oligo (TSO) and full-length cDNA was

amplified with primers binding to the TSO-site and the adaptor. NEB UltraII FS kit was used to fragment cDNA. After end repair

and A-tailing a TruSeq adapter was ligated and 3’-end-fragments were finally amplified using primers with Illumina P5 and P7 over-

hangs. In comparison to Parekh et al.,115 the P5 andP7 sites were exchanged to allow sequencing of the cDNA in read1 and barcodes

and UMIs in read2 to achieve a better cluster recognition. The library was sequenced on a NextSeq 500 (Illumina) with 63 cycles for

the cDNA in read1 and 16 cycles for the barcodes and UMIs in read2.

RNA-seq data analysis
Gencode gene annotationsM25 and themouse reference genomeGRCm38were derived from theGencode homepage (EMBL-EBI).

Data was processed using the published Drop-Seq pipeline (v1.12) to generate sample- and gene-wise UMI tables.116 The resulting

UMI filtered count matrix was imported into R v4.0.1. Lowly expressed genes were filtered so that 80%of samples have at least three

read counts per gene. The data was normalized to sequencing depth (within sample normalization) and variance stabilized (between

sample normalization). This was done via the rlog transformation implemented in the DESeq2 package and dispersion of the data

was estimated with an intercept only model using DESeq2 v1.28.1.117 Details on statistical analysis are described in the chapter

‘Quantification and Statistical Analysis’.

GSEA
For gene set enrichment analysis GSEA v4.0.385 and the hallmark gene sets (h.all.v7.2.symbols.gmt) were used. Hematopoietic gene

signatures were obtained from Laurenti et al. (http://www.jdstemcellresearch.ca/node/32) and Novershtern et al.118,119 A pathway

was considered to be significantly associated with an experimental condition if the FWER was below 0.05. All statistical values

can be found in Table S15. Details on statistical analysis are described in the chapter ‘Quantification and Statistical Analysis’.

Analyses of GWAS data
The GWAS catalog was downloaded from https://www.ebi.ac.uk/gwas/ (EMBL-EBI).80 All ‘associations’ with available ontology

annotations, GWAS Catalog study accession numbers and genotyping technology were used (v1.0.2). Disease traits were filtered

for ‘‘cancer’’/‘‘tumor’’/’’neoplasm’’ and/or ‘‘leukemia’’/’’lymphoma’’ to get cancer- and hematologic malignancies-associated vari-

ants, respectively. All studies resulting from this filtering were used. We assessed whether reported genes in the GWAS catalog

were over-represented among CIS-target genes (Table S11).

We additionally performed lift-over of mouse CISs (5 k size parameter) coordinates to the human genome (hg38) using the UCSC

liftover tool and used the syntenic human regions to analyze their overlap with cancer-associated GWAS variants. Details on

statistical analysis are described in the chapter ‘Quantification and Statistical Analysis’.

QUANTIFICATION AND STATISTICAL ANALYSIS

General statistical analyses
All statistical analyses were performed using R v4.0.1. Methods used for statistical hypothesis testing and exact n numbers are

directly stated in the figure legends. In general, the significance level was set to 0.05. Boxplots were generated using the default

ggplot2 geom_boxplot settings (middle, median; lower hinge, 25% quantile; upper hinge, 75% quantile; upper/lower whisker,

largest/smallest observation less/greater than or equal to upper/lower hinge ±1.5 * IQR).

CIS analysis
For CIS analysis, CIMPL assigns a p value to each CIS (listed in Table S2) and controls the errors at an average of 5%.

RNA-seq data analysis
Principal Component Analysis (PCA) was conducted with the 10 percent top variable genes in the rlog transformed dataset. The cola

R package was used to compare different clustering methods.86 The cola package provides a general framework for subgroup

classification by consensus partitioning. The rlog transformed expression matrix was used as an input and cola was run with default

parameters. The results show that 2 or 4 clusters were predicted as best choice (statistical details in Table S14, Figure S13A). After

careful review of the biology behind the clusters, the combination of CV (coefficient of variance) as top value method and mclust as

clustering method was chosen for downstream analyses. This approach predicted 4 as best k parameter and resulting cluster

assignments are shown in the PCA embedding (Figure S13). Samples showing ambiguous clustering were not used in downstream

analyses (Table S1). Detailed subtype analyses (Figures 6C–6J) were only performed on this subset of samples (ETP-like n = 14, clas-

sical n = 8, Mef2c-driven n = 7). Cluster assignments were then used as explanatory variable during model fitting with DESeq2. The

Wald test was used for determining differentially regulated genes between all pairwise clusters. Shrunken log2 fold changes were

calculated afterward. A gene was determined to be significantly regulated if the p value was below 0.05. Rlog transformation of

the data was performed for visualization and further downstream analysis.
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GSEA
GSEA v4.0.385 was used to perform gene set enrichment analysis in the preranked mode using the apeglm shrunken log2 fold

changes as ranking metric. apeglm shrinkage is a process to correct foldchanges that are overestimated due to low expression

of genes or highly variable genes.120 A pathway was considered to be significantly associated with an experimental condition if

the FWER was below 0.05. All statistical values can be found in Table S15.

Analyses of GWAS data
The GWAS catalog was downloaded from https://www.ebi.ac.uk/gwas/ (EMBL-EBI).80 We assessed whether reported genes in the

GWAS catalog were over-represented among CIS-target genes. For enrichment calculation, the number of protein-coding genes in

the genome was used as a control (19,370; Gencode). c2 test was used to calculate enrichment p values (Table S11).

We additionally performed lift-over of mouse CISs (5 k size parameter) coordinates to the human genome (hg38) using the UCSC

liftover tool and used the syntenic human regions to analyze their overlap with cancer-associatedGWAS variants. Variants (n = 8,677)

were pruned for linkage disequilibrium using the SNPclip tool (https://analysistools.cancer.gov/LDlink/?tab=snpclip) from LDlink60

with a threshold of R2 = 0.8 and MAF = 0.01. The thinned list of variants (n = 4,625) was used for overlap with CIS regions. c2 test

was used to calculate enrichment p values considering the sum of all human CIS regions (size in basepairs) in comparison to the

size of the complete genome (Table S12).
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