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ABSTRACT Although increased attention is being given to understanding how people search to build task
outcomes, a formal model of the relation between how people search and how people build task outcomes is
still lacking. This paper proposes a unified probabilistic model of how people search to build outcomes. The
model involves 3 types of searcher behaviors (i.e., query submission, document selection, and information
transformation) to model the effect of the information collected during search, and uses the item response
theory to capture the ternary relations between the ability to transform information, the information collected,
and the probability of successfully building task outcomes. We evaluate the proposed model in the task of
identifying searchers’ proficiencies under the assumption that high proficiency searchers would have high
abilities to transform information. The results obtained high accuracies and F1 scores, which could reflect
the effectiveness of the proposed model. The model contributes to the formal understanding of how people
search to build task outcomes, and provides new possibilities for personalized and session-based information
retrieval research.

INDEX TERMS Item response theory, searching as learning, outcomes.

I. INTRODUCTION
People are confronted with a large number of tasks in their
daily work. To complete these tasks, people need to satisfy the
information requirements imposed by these tasks [1]. Since
one’s knowledge about a task may not be enough to meet the
information requirements, retrieving additional information
is a commonly used way to fill this knowledge gap. As search
engines have become one of the most popular information
retrieval systems, more and more people use search engines
to collect information needed to complete tasks.

Today, search engines have been optimized to return
information that meets certain information requirements.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kah Phooi Seng .

Nevertheless, accessing the information required to complete
tasks does not necessarily imply completing tasks. In most
cases, people need to transform the collected information
into task outcomes further to complete tasks. This fact has
pushed search engine researchers to switch their focus from
understanding how people search to understanding how they
search to build task outcomes [2].

Recent years have seen increased attention being given to
understanding how people search to build task outcomes. For
example, in the domain of aerospace, how people search to
build task outcomes has been used to guide the design of
spacecraft systems [3]. In the domain of medical science,
how people search to build task outcomes has been used
to guide the fight against COVID-19 [4]. In the research
domain of Searching as Learning [5], how people search to
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build task outcomes has been deeply studied to understand
how humans learn. As two examples, Kathryn et al. studied
how engineering students accessed, used, and understood
information when solving engineering problems [6], while
Chi studied how well health consumers can search and learn
in online health information seeking [7].

Nonetheless, the topic of how people search to build task
outcomes is still under research and discussion. Especially,
the relation between how people search and how people
build task outcomes is still unclear [8]. Some studies try
to understand the relation from the perspective of searching
proficiency, but they failed to reach consistent conclusions.
Hersh found that the proficiency has no effect on task
outcome building [9]. Wildemuth found that the proficiency
has negative effect [10] and Vakarri found that the proficiency
has positive effect [2]. Some studies understand the relation
from the perspective of efforts in search process, but their
findings are also highly varied. Vakarri & Huuskonen found
that efforts in search process improve task outcomes [2],
while Bron found that efforts in search process have no
effect on task outcomes [11]. Collins Thompson suggested
that the main reason for the highly varied findings might be
the lack of a more appropriate perspective for understanding
the relation between how people search and how people
build task outcomes [12]. The highly varied results may also
imply that the relation between how people search and how
people build task outcomes may be quite complex and the
understanding of such complex relation is still lacking.

In [13], Hill suggested understanding the relation between
how people search and how people build task outcomes
from the perspective of the ability to transform information.
Hill showed that searchers with a low ability to transform
information might fail to complete tasks even when they
have found related information. Similar results have also
been observed in [14] and [15]. In [16], JR Hill and
MJ.Hannafin further designed an experiment to explore the
relation between searchers’ ability to transform information
and processes of searching to build task outcomes. In their
experiment, they invited some students to build some task
outcomes and provided them with personalized assistance
based on their level of ability to transform information
into outcomes. Experimental results showed that providing
assistance that matches their level increases their probability
of successfully building task outcomes. This finding reveals
the possibility that if a searcher’s ability to transform the
information can be measured, personalized assistance in
building task outcomes could be given. Thus, it is necessary to
build a measurable model for helping building task outcomes.
However, although the importance of the ability to transform
information has been emphasized, a measurable model of
how such ability affects the process of searching to build task
outcomes is still lacking.

The purpose of this paper is to propose a probabilistic
approach to formally model how the ability to transform
information affects the process of searching to build task
outcomes. Our key idea is to consider the ability to transform

information as a latent variable that parameterizes the prob-
ability of successfully building task outcomes. Meanwhile,
since the transforming of information happens only based on
collecting related information, the collected information also
affects the probability of successfully building task outcomes.
Such facts push us to design a unified probabilistic model to
reflect the ternary relation between the ability to transform
information, the information collected, and the probability of
successfully building task outcomes.

Our main contributions are stated as follows:
• A probabilistic model of how people search to build

task outcomes is proposed from the perspective of the ability
to transform information. The model parameterized the
probability of successfully building task outcomes according
to the ability to transform information and the information
collected during search.

• The item response theory (IRT) is adopted as the
theoretical framework to capture the ternary relation between
the aforementioned three aspects.

• Three experiments were designed and conducted to
evaluate the proposed model. In the first experiment, our
proposed model achieved an accuracy of 95.48% and a
F1 score of 0.9554 in the task of identifying searchers’
proficiencies. In the second experiment, the result of our
proposed model shows an accuracy of 95.52% and a F1
score of 0.9600. In the third experiment, our proposed
model is compared to state-of-the-art methods for identifying
searchers’ proficiencies and our proposed model outper-
formed than other methods. The performance reflected the
effectiveness of the proposed model in measuring searchers’
ability to transform information and identifying searchers’
proficiencies.

II. RELATED WORKS
A. SEARCHING TO BUILD TASK OUTCOMES
When carrying out complex tasks through an information
retrieval (IR) system, searchers would hope the IR system
can provide information that helps build task outcomes [2].
Conforming to such needs, Yen et al. developed an intelligent
state machine to support searchers build task outcomes [17].
Garigliotti and Balog et al. also developed a query suggestion
system to support searchers in building task outcomes [18].
These tools affect how searchers build task outcomes by
influencing how they search. However, the relation between
search processes and task outcomes remains unclear [8].

One of the reasons for the unclearness may be the lack
of an appropriate model of the use of information. The use
of information, which is considered the link between search
processes and task outcomes [8], is usually modeled as the
‘‘text reuse’’ between documents that emerged in the search
process and task outcomes. However, the use of information
is not just text reuse (e.g., text duplication, reformulation,
or partially rewrite) but refers to a more complex process
that requires searchers to transform information into task
outcomes through behaviors such as understanding and
learning.
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Some studies proposed to understand this complex process
from the perspective of searchers’ ability to transform
information. For example, Hill found that naïve searchers
with low ability to transform information fail to solve
problems even when they found helpful information [13].
However, although the importance of searchers’ ability to
transform information has been emphasized, few studies tried
to propose qualitative models to link the ability to transform
information and task outcomes. In this paper, we proposed
a quantitative model based on item response theory to fill
this gap. Our quantitative model reveals the possibility to
understand how people search to build task outcomes from
the perspective of searchers’ ability to transform the infor-
mation into outcomes. Furthermore, through our quantitative
model, searchers’ ability to transform the information can
be obtained quantitatively. Based on the quantitative ability,
more personalized and more effective assistance can be
provided to help searchers build task outcomes.

B. SEARCHING AS LEARNING
Searching is widely agreed to be a cognition-related activity,
and there have been lots of studies trying to understand
searching from the perspective of cognition. Vakkari empha-
sized the concept of Searching as Learning in [5]. He found
that searchers’ cognitive structure will change in their search
process, and this change allows searchers to solve problems
that were difficult for searchers before the search. Since
the change in cognitive structure is difficult to be observed
directly, task outcomes that can reflect the change in cognitive
structure have been concerned in research on Searching as
Learning. For example, Ghosh et al. evaluate how different
search behaviors affect learning [19].

Searching as Learning has attracted more attention in
recent years as the focus of searching is shifting to task
outcome. Many studies apply the perspective of Searching as
Learning to solve problems in fields that are closely related
to outcomes, such as engineering and medicine. The concept
of Searching as Learning has been used to understand how
engineering students search to solve engineering problems [6]
and how patients search for disease information or medical
advice [7].

Searching as Learning is also combined with artificial
intelligence (AI)methods in recent years. Change in cognitive
structure provides AI with a perspective for understanding
searching activities. AI methods also allow Searching as
Learning to accurately capture changes in cognitive struc-
ture. For example, Tibau et al. studied the application of
knowledge graphs in Searching as Learning situations [20].
Tang et al. proved the possibility of applying reinforcement
learning to Searching as Learning [21].

In this paper, we proposed a measurable model based on
the theory of Searching as Learning. The model proposed
by us describes the relation between searchers’ ability to
transform information into outcomes and their probability of
successfully build task outcomes. Furthermore, we designed
a classification experiment to verify the performance of

our model in estimating searcher’s ability to transform the
information into outcomes. The high accuracy achieved by
our model in classification experiment proves that Searching
as Learning is a suitable perspective of understanding how
people search to build task outcomes.

C. SEARCHING AND SEARCHERS’ ABILITIES
As searching for information on the Internet has gradually
become one of the main methods to solve problems, the
ability to search for information attracts more and more
attention. It is widely agreed that 1) searchers with high
abilities are easier to solve problems than those with low
abilities, and 2) when faced with the same problem, searchers
with different abilities may form different information needs
and search strategies.

Many studies have noticed that the differences in abilities
would be reflected in search behaviors. Search behavior
patterns of novice and experts were extracted in [22]
and [23]. Both studies pointed out the differences between
the behavior patterns of searchers with high and low abilities.
Such differences could be a possible basis for identifying
searchers’ abilities.

Domain expertise is perhaps the most studied ability in
the context of searching. White et al. found that domain
expertise contributed a lot to searching information [14].
Frerejean et al. also emphasized the effect of domain knowl-
edge on searchers’ problem solving [15]. They suggested that
searchers with more domain knowledge have a higher ability
to solve problems through searching.

More and more studies realized that searching ability
is a cognitive skill in recent years. They thus tried to
understand the ability to search for information from a
cognitive perspective. Brand-Gruwel et al. suggested that
searching for information is a complex cognitive skill [24].
Kalyani et al. observed searchers of different cognitive levels.
They found that cognitive levels are positively correlated with
the ability to search for information [25]. These findings
support the use of cognitive tools to understand searching.

Although transforming information into task outcomes is
an essential part of searching to build task outcomes [2], little
attention has been paid on searchers’ ability to transform
the information. We fill this gap in this paper by proposing
a model to describe the relation between searcher’s ability
to transform information into and their probability of
successfully building task outcomes.

D. IRT
IRT is widely used in test construction and test evalua-
tion [26], [27]. IRT refers to a set of mathematic models.
These mathematic models describe the relation between a
person’s response to a test item and their latent abilities.
Compared with the other widely used test theories such as the
classical test theory (CTT), IRT has the following advantages:

1) IRT provides the possibility of comparing the latent
abilities of individuals of different statistical popula-
tions when they are submitted to the same test items.
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This means that test takers’ statistical population can
be ignored when test items are determined. Thus, IRT
is suitable for situations where test takers’ statistical
population is unknown.

2) In IRT, the standard error of ability measurement is
regarded as a function of examinees’ ability [28]. This
means the standard error of IRTmodels can be assessed
easily, and the accuracy of the results of IRTmodels can
be evaluated with less effort.

3) IRT has a loose constraint on the completeness of the
data used. Suppose some responses to test items given
by a test taker are missing. In that case, IRT provides a
likelihood-based method to calibrate test takers’ latent
abilities based on available data. This advantage makes
IRT suitable for situations where data is incomplete.

These advantages extend IRT to many domains, such as
education, medicine [29], [30], and psychology [31]. The
possibility of applying IRT in the domain of IR has also been
confirmed in recent years. Leng et al. applied IRT models to
estimate the changes in the information collected in search
processes [32]. Yarandi et al. applied IRT models to estimate
changes in knowledge structure in processes of learning from
searching [33]. These studies support the use of IRT in the
domain of IR.

In this paper, we applied IRT models to describe the
process of a searcher searching to build task outcomes,
which extends the applicability of IRT models. Furthermore,
we improved the IRT model to make it applicable for
situations where the difficulty of a test item changes dynam-
ically. This improvement makes it possible to model the
influence of information collected on searchers’ probability
of successfully building task outcomes.

III. MODEL
Based on [13] and [34], when a searcher searches to build
a task outcome to complete a task, the probability of
successfully building the outcome is related to the searcher’s
ability to transform information and the information collected
by the searcher. Moreover, as stated in [5], the ternary
relations between the ability to transform information, the
information collected, and the probability of successfully
building task outcomes can be generalized to all search
tasks requiring learning as the relations are derived from
Kuhlthau’s task-independent information search process
model [35]. To propose a model that captures the ternary
relations, we need to answer the following two research
questions:

Research Question 1 (RQ1): How to relate searcher’s
ability to transform the information collected and the
probability of successfully building the outcome?

The relation between the two is rarely studied in the
research domain of information retrieval. However, how
a certain ability influences test takers’ performance in an
examination has been extensively studied. Some models have
been proposed to describe this influence in the domain of test

theory, such as item response theorymodels [29] and classical
test theory models [26]. These models reveal the possibility
and provide theoretical bases to answer RQ1.

Research Question 2 (RQ2): How to relate the information
collected in a search process and the probability of success-
fully building an outcome?

Exploratory search theories proposed byMarchionini have
already provided a perspective to answer RQ2. In exploratory
search theories, different information is thought to contribute
differently to outcomes building [34]. By considering how
certain information contributes to the successful building
of a task outcome [34], we could classify the information
collected in a search process into two categories: 1) informa-
tion that can be transformed into the outcome or part of the
outcome, and 2) information that cannot be transformed into
(part of) the outcome but can lead to a correct search direction
or can rule out wrong search directions. The contribution of
the information collected in a search process could thus be
used to capture the relation between information collected
and task outcome.

We seek to answer the two research questions in the
following subsections. The following sections provide a
mathematical model to answer the research questions fol-
lowed by the architecture and an intuitive justification of the
model.

A. RELATING THE ABILITY TO TRANSFORM
INFORM-ATION AND THE PROBABILITY OF
SUCCESSFULLY BUILDING AN OUTCOME
In response to RQ1, we propose an IRT-based approach to
express the relation between a searcher’s ability to transform
the information collected and the probability of successfully
building an outcome. As one of the most popular modern test
theories, IRT reveals the relation between a certain ability and
the probability of solving a test item designed to measure the
ability [26]. An IRT model is given in Equation (1).

P (Yik | θi, bk) =
exp (θi − bk)1−Yik

1 + exp (θi − bk)
(1)

where Yik is a Boolean variable and the value of Yik indicates
the correctness of the answer to test item k given by test taker
i. θi indicates the ability measured by the test of searcher
i. bk represents the difficulty of test item k . Difficulty is a
concept used by IRT. For a test item, the higher the difficulty
means the lower the probability of being answered correctly.
In particular, when a test taker’s ability is equal to the
difficulty of the test item, the probability of the test taker
correctly answering the test item is 50%.

Equation (1) provides theoretical possibilities to relate
the ability to transform information and the probability of
successfully building an outcome. To apply IRT models to
the process of searching to build task outcomes, we propose
a possible solution. The solution is to consider the task of
building an outcome based on collected information as a test
item. We then consider whether the outcome is successfully
built as the correctness of the test answer. In detail, we could
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consider θi as searcher i‘s ability to transform information,
bk as the difficulty of building outcome k based on the
information collected, and Yik as whether outcome k has been
successfully build by searcher i. Then we could estimate θi
as:

P (θi |Yik) =

∫
exp (θi − bk)1−Yik

1 + exp (θi − bk)
∗ P (bk) ∗

P (θi)

P (Yik)
dbk

∝

∫
exp(θi − bk )1−Yik

1 + exp(θi − bk )
∗ P (bk) ∗ P(θi)dbk

(2)

where the term P (θi) represents the prior information about
the ability of the searcher i to transform the information
collected. The term P (bk) represents the distribution of
the difficulty of building outcome k based on information
collected. The term P (Yik) represents the probability of
searcher i successfully building outcomes. In actual use,
P (Yik) term can be ignored since its value is fixed.

Estimating the ability to transform information using
Equation (2) may seem feasible. Still, a critical difference
between how a test taker answers a test item and how
a searcher builds an outcome is hard to determine bk in
Equation (2). In the original IRT, bk , although to be estimated,
is a constant as the difficulty of test item k is considered
as unchangeable [26]. Such an assumption holds only when
test takers cannot freely collect information. Many studies
on open-book tests have pointed out a fact that if test takers
could collect information as they need, the difficulty of test
item k will reduce [36]. In such a situation, bk will become
a variable and the original IRT (i.e., Equation (1)) will not
hold.

Being different from answering test items, collecting
information is essential for searching to build task outcomes.
When searchers notice knowledge gaps in building task
outcomes, they will search for additional information. Based
on exploratory search theories [34], the information collected
will reduce the difficulty of building task outcomes and
thus increase the probability of successfully building task
outcomes. Such an observation pushes us to improve the
original IRT to consider the variable difficulty of building
a task outcome as searchers collect new information.
Meanwhile, such an observation also provides a possible way
to resolve RQ2.

Our improvements to IRT consist of two parts: 1) modeling
the effect of the information collected in a search process,
and 2) modeling the reduction of difficulty caused by the
information collected. We present the details in the following
subsections.

B. MODELING THE INFORMATION COLLECTED IN A
SEARCH PROCESS
Since the information collected by a searcher cannot be
observed directly, a commonly used way is to model the
effect of the information collected as search behaviors. The
search behaviors we consider in this paper are originated

from [37]. The first type of search behavior we consider is
query submission:

Query Submission (QS): A searcher submits a query
formulated based on their information needs to a search
engine, and the search engine returns a ‘‘search engine result
page’’ (SERP).

According to exploratory search theories [34], different
information collected contributes to outcome in different
ways. Based on [34], we could classify the information
collected into two categories: 1) information that can be
transformed into outcomes, and 2) information that cannot
be transformed but can lead to a correct search direction
or rule out wrong search directions. In order to model the
different contributions, we further extended QS into two
search behaviors:

QS-Positive: The SERP of the QS contains a link to
information that can be transformed into outcomes.

QS-Negative: The SERP of the QS contains no link to
information that can be transformed into outcomes.

We then consider how QS-Positive and QS-Negative affect
the difficulty of building a task outcome. Since QS-Positive
contains a link to information that can be transformed into
outcomes, a searcher would have a chance to find the
information. We thus consider QS-Positive would reduce the
difficulty of building task outcomes.

While for QS-Negative, as it contains no link to informa-
tion that can be transformed into outcomes, a searcher may
still find information that can lead to a correct search direction
or at least rules out the current search direction. We thus
consider QS-Negative could slightly reduce the difficulty of
building task outcomes. However, the scale of the difficulty
reduced by QS-Negative would be significantly lower than
that of QS-Positive.

The second type of search behavior we consider is
document selection:

Document Selection (DS): A searcher selects (clicks) a
document from a result page.

According to whether the document of DS contains
information that can be transformed, we classify DS into
DS-Positive and DS-Negative. DS-Positive/Negative also
contributes to reducing difficulty as QS-Positive/Negative
does.

The last behavior we consider is information
transformation:

Information transformation (IT): A searcher transforms the
information collected into task outcomes.

In our model, IT is the indicator of whether a task
is completed. According to the completion status of
a task, IT will be classified into IT-Positive/Negative.
IT-Positive/Negative contributes to determine the value of Yik
in Equation (2). When a searcher i transforms the information
collected into a task outcome k , this transformation will be
modeled as an IT. If this IT is classified into IT-Positive,
the value of Yik in Equation (2) will be determined to be 1.
Otherwise, if this IT is classified as IT-Negative, the value of
Yik will be determined to be 0.
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C. MODELING THE REDUCTION OF DIFFICULTY CAUSED
BY THE INFORMATION COLLECTED
We introduced four variables 1bQS−Pos, 1bQS−Neg,
1bDS−Pos, and 1bDS−Neg to represent the reduction of
difficulty caused by the information collected. All these
variables in our model are estimated to follow truncated
normal distributions and the range of the truncation is from
0 to+∞. This estimation is based on the fact that whether the
information collected can be transformed into outcomes is the
main factor affecting the scale of difficulty reduced but not
the only factor. Factors such as the form of the information
collected [38], the amount of the information collected [2],
and the obscurity of the information collected [39] will also
slightly affect the scale of difficulty reduced. Based on [27],
it is a feasible approach to model the reduction on difficulty
caused by a main factor combined with many other factors as
a variable that follows normal distribution. Take 1bQS−Pos as
an example:

1bQS−Pos ∼ N
(
uQS−Pos, σ

2
QS−Pos

)
I (0, ∞),

where uQS−Pos and σ 2
QS−Pos are hyperparameters. Based on

the hierarchical IRT [27], the hyperparameters in IRT models
are considered to follow normal distributions:

uQS−Pos ∼ U
(
aQS−Pos, cQS−Pos

)
,

σ 2
QS−Pos ∼ U

(
dQS−Pos, fQS−Pos

)
.

We thus propose our improved IRT model as follows:

P (θi | yk)

=

∫
P

(
yk |θi, bf (k), g(i)

)
∗P

(
1bi

)
∗P (θ)∗P(bf (k))dbf (k)

P(yk )
,

J (x) =


QS − Pos x = 1
QS − Neg x = 2
DS − Pos x = 3
DS − Neg x = 4

,

g (i) =

4∑
p=1

nJ (p)i∑
n=1

1
n

∗ 1bJ (p)in

P
(
yk |θi, bf (k), g(i)

)
=

exp
(
bf (k) + g(i)−θi

)1−yk
1 + exp

(
bf (k) + g(i)−θi

) ,

P
(
1bi

)
=

4∏
p=1

∫∫
P

(
uJ(p)

)
∗ P

(
σ 2
J(p)

)
∗ 2,

2 =

∏nJ (p)i
n=1

P(1bJ(p)in |uJ(p), σ
2
J(p))duJ(p)dσ 2

J(p),

where f (k) represents the outcome built through attempt k .
yk represents the result of the kth attempt. θi represents the
ability to transform the information of searcher i. bi represents
the difficulty of building the outcome of task i. nki means
the total amount of behavior k between attempt i and attempt
i − 1. 1bkin represents the reduction on bi caused by the nth
behavior k between attempt i and attempt i− 1.

FIGURE 1. The overall structure of our proposed model.

A searcher usually makes multiple attempts in the process
of building an outcome. The result of n attempts by a
searcher is recorded as −→y . θp represents the estimation of
the searcher’s ability after the pth (p < n) attempt. The
expression of the searcher’s ability after n attempts is given
as follows:

P
(
θn |

−→y
)

= P (θ) ∗

∏n

i=1

p (yi | θi)
P (yi)

D. ARCHITECTURE
After introducing our proposed model from a mathematical
perspective, we summarize the architecture of our proposed
model in this section. Figure 1 shows the overall structure of
our proposed model.

Our proposed model is divided into four parts.
In the first part, as one of the inputs to our model,

searchers’ search behaviors will be used to model the
information collected. Since the information collected will
help searchers build task outcomes, the information collected
will be further used to model the reduction on the difficulty
of task outcomes. The reduction on the difficulty will be
represented by the variable 1b in our proposed model.

In the second part, searchers’ ability to transform the
information θ will be estimated. Based on the observation
by Hill [13], searchers with high ability to transform the
information collected into outcomes will have a higher
probability of building task outcomes. This observation
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implies the necessity of searchers’ ability θ in estimating the
probability of building task outcomes.

In the third part, difficulties of the task outcomes b will be
estimated by our proposed method. Traditional IRT models
believe that outcomes with higher difficulty have a lower
probability of being built. Thus, for estimating the probability
of building task outcomes, it is necessary to estimate the
difficulty b as one of the inputs to our model.
In the last part, the outputs of the above three parts:

1b, θ and b will be used as inputs to our proposed model
in Section III-C. Through this model, the probability of a
searcher building task outcomes will be estimated as the
output of our model.

E. INTUITIVE JUSTIFICATIONS
The idea behind IRT is that the ability of a testee could be
determined according to the answers to the test items made
by the testee. The essential parts of IRT are as follows:
Ep.t1) A testee who has a certain ability.
Ep.t2) A test that is designed to evaluate the ability of a

testee.
Ep.t3) Test items that constitute the test. Each test item has

a difficulty.
Ep.t4) Answers made by the testee to the test items.
The relations between the ability and the difficulty of a test
item are that:
Ti.1) If the difficulty is high, the testee has a low probability

of solving the item.
a) If the testee solves a high difficulty item, the ability of

the testee may be high.
b) If the testee fails to solve a high difficulty item,

the ability of the testee may not be high. However,
we cannot say that the ability of the testee is low.

Ti.2) If the difficulty is low, the testee has a high probability
of solving the item.

a) If the testee solves a low difficulty item, the ability of
the testee may be at least low. However, we cannot say
that the ability of the testee is high.

b) If the testee fails to solve a low difficulty item, the
ability of the testee may be low.

Our proposed model uses IRT to assess the ability of
a searcher to transform information by observing how the
searcher search to build outcomes. The essential parts of our
proposed model are as follows:
Ep.o1) A searcher who has the ability to transform informa-

tion.
Ep.o2) A task that is designed to evaluate the ability of the

searcher. The task requires building an outcome.
Ep.o3) Subtasks that constitute the task. Each subtask has a

difficulty and requires building a suboutcome.
Ep.o4) Suboutcomes made by the testee to the subtasks.

The relations between the ability to transform information
and the difficulty of a subtask are that:
St.1) If the difficulty is high, the searcher has a low

probability of building the suboutcome:

a) If the searcher builds a suboutcomewith high difficulty,
the ability of the searcher may be high.

b) If the searcher fails to build a suboutcome with high
difficulty, the ability of the searcher may not be high.
However, we cannot say that the ability of the searcher
is low.

St.2) If the difficulty is low, the searcher has a high
probability of building the suboutcome:

a) If the searcher builds a low difficulty suboutcome, the
ability of the searcher may be at least low. However,
we cannot say that the ability of the searcher is high.

b) If the searcher fails to build a low difficulty subout-
come, the ability of the searcher may be low.

We use Rθ&b to refer to the relations between the ability to
transform information and the difficulty of a subtask.

According to [30], we argue that the information collected
during the search process of a subtask would affect the
difficulty of the subtask:

If the searcher access information that can be transformed
into the suboutcome, the difficulty is reduced.

If the searcher access information that cannot be trans-
formed into the suboutcome, the information may still lead to
a correct search direction or rule out wrong search directions.
Then overall speaking, the information still slightly reduce
the difficulty of the subtask.

We use1b to refer to how the information collected affects
the difficulty. We use some examples to explain the joint
effects of Rθ&b and 1b. Suppose a searcher is working on
a moderate difficulty subtask:
Je.1) Suppose the searcher accesses related information

(i.e., information that can be transformed into the
suboutcome) and succeeds in building the suboutcome.
We then estimate the ability of the searcher according
to the reduced difficulty.

Je.2) Suppose the searcher accesses related information and
fails to build the suboutcome. Since the difficulty is
already reduced and yet the searcher still fails, the
ability of the searcher may be low.

Je.3) Suppose the searcher access unrelated information
(i.e., information that cannot be transformed into the
suboutcome) and fails to build the suboutcome. Since
the difficulty is only slightly reduced, we cannot say
that the ability of the searcher is low.

As discussed in Section III-B, since the information
collected during search cannot be observed, we use search
behaviors to model the effect of the information collected.
For query submission behavior, since a query corresponds
to a SERP, and it is easy to tell whether a SERP contains
related information, we use SERP to model the effect of the
information collected during query submission. We also use
the document selected to model the effect of the information
collected during document selection. Combining the search
behaviors, Rθ&b, and 1b, we could come to more complex
examples. Suppose a searcher is working on a high difficulty
subtask:
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If the searcher submitted an unrelated keyword or selected
an unrelated document, the searcher may fail to build the
suboutcome at this moment. As a result, the searcher may
thus rule out an unrelated search direction. The difficulty
is thus slightly reduced. However, if the searcher continues
to make lots of unrelated tries, the difficulty will be
reduced significantly. Then if the searcher fails to build the
suboutcome at the end, as the difficulty has been largely
reduced, the ability of the searcher may be low.

Suppose the searcher makes many unrelated tries and
finally manages to build the suboutcome. In that case, since
the difficulty has been largely reduced, we cannot say that the
ability of the searcher is high.

IV. ESTIMATING PARAMETERS
In this section, we introduce methods to estimate the
parameters and hyperparameters of our proposed model.

A. ESTIMATING THE DIFFICULTY OF BUILDING AN
OUTCOME
In traditional IRT models, the commonly used method of
estimating the difficulty of a test item consists of two steps:
1) determining a prior distribution of the difficulty based on
previous experience, and 2) obtaining the posterior estimation
of the difficulty. However, such a commonly used method is
not applicable for our improved model. The reason is bifold:

1) Prior distributions significantly impact the effective-
ness of posterior distributions. For traditional IRT
models, strong experience on test items is required
to ensure the correctness of prior distributions of
difficulty. While for our proposed model, it would be
hard to determine proper prior distributions for the
difficulty of building task outcomes as the studies on
related topics are quite insufficient.

2) The posterior estimation requires massive data. In tra-
ditional IRT models, answers to test items can be
collected at a low cost. The low cost ensures the
large amount of data required for posterior estimation.
Meanwhile, the cost of collecting data of people
searching to build outcomes is much higher. The high
cost would limit the amount of data available for
parameter estimation.

In response to the problems above, we propose a heuristic
method to estimate the parameters of our proposed model.
The heuristic method generates massive candidate data
for practical parameter estimation. Compared with the
commonly used method, our method is more suitable for
situations where background experience is lacking, and the
amount of data is limited.Moreover, themethod is suitable for
estimating both difficulties and hyperparameters. We present
the details in the following subsections.

B. HEURISTIC ESTIMATION OF PARAMETERS
Our proposed estimation method starts from some heuristic
rules on the value of parameters. For difficulties of building
task outcomes, we apply the following rules:

Dr1) The difficulties of building all the outcomes fall
within an interval [bmin, bmax], where bmin is the
0.25 quantile of the prior distribution of searchers’
ability to transform information divided by 2 and bmax
is the 0.75 quantile divided by 2. The estimation of
bmin and bmax is based on the method of estimating
the difficulty in traditional IRT models. To ensure that
testees with different abilities can be distinguished
through the test, difficulties of test items in the test
usually fall within a range [27]. The lower bound of
this range is the 0.25 quantile of the prior distribution of
testees’ ability divided by 2 and the upper bound is the
0.75 quantile of the prior distribution of testees’ ability
divided by 2.

Dr2) The difficulties of all the task outcomes are sorted
in descending order of their completion rates. The
completion rate of task outcome i is defined as Nci/Nai ,
where Nci represents the number of searchers who
successfully built the outcome and Nai represents
the total number of searchers who tried to build the
outcome.

Dr3) Insert the median of the interval (bmin + bmax)/2 in the
sorted difficulties. If the completion rate of an outcome
is higher than 50%, the difficulty of building it is lower
than (bmin + bmax)/2. Conversely, if the completion
rate of an outcome is lower than 50%, the difficulty of
building it is higher than (bmin + bmax)/2.

For hyperparameters, we apply the following rules:
Hr1) Since all the hyperparameters in our model follow

uniform distributions, it is necessary to estimate each
parameter in the uniform distribution that each hyper-
parameter follows. We divide the hyperparameters
of our model into two groups: 1) Means, including
uQS−Pos, uQS−Neg, uDS−Pos, and uDS−Neg; 2) Variances,
including σ 2

QS−Pos, σ 2
QS−Neg, σ 2

DS−Pos, and σ 2
DS−Neg.

We use PIDH to refer to the parameters in the uniform
distribution that the hyperparameter follows.

Hr2) The relation among PIDH within group Means is given
by the following equations and inequalities:

0 < lowerbound of uQS−Neg

lowerbound of uQS−Neg < upperbound of uQS−Neg

upperbound of uQS−Neg = lowerbound of uDS−Neg

lowerbound of uDS−Neg < upperbound of uDS−Neg

upperbound of uDS−Neg = lowerbound of uQS−Pos

lowerbound of uQS−Pos < upperbound of uQS−Pos

upperbound of uQS−Pos = lowerbound of uDS−Pos

lowerbound of uDS−Pos < upperbound of uDS−Pos

upperbound of uDS−Pos < bmax − bmin

where bmin is the 0.25 quantile of the prior distribution
of searchers’ ability to transform information divided
by 2 and bmax is the 0.75 quantile divided by 2. The
estimation of the upper bound bmax − bmin is based
on the observation that searchers who successfully
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complete low difficulty outcomes fail to complete
high difficulty outcomes even if they have collected
a lot of information that can be transformed into
outcomes [13]. This observation implies that the
reduction on difficulty of building outcomes caused
by information collected is limited, and it is almost
impossible to reduce the highest difficulty to the lowest
difficulty by collecting information. Since the highest
difficulty of building an outcome is estimated as bmax
and the lowest difficulty is estimated as bmin, the upper
bound is estimated as bmax − bmin.

Hr3) The relation among PIDH within group Variance is
given by the following equations and inequalities:

0 < lowerbound of σDS−Pos

lowerbound of σDS−Pos < upperbound of σDS−Pos

upperbound of σDS−Pos = lowerbound of σQS−Pos

lowerbound of σQS−Pos < upperbound of σQS−Pos

upperbound of σQS−Pos = lowerbound of σDS−Neg

lowerbound of σDS−Neg < upperbound of σDS−Neg

upperbound of σDS−Neg = lowerbound of σQS−Neg

lowerbound of σQS−Neg < upperbound of σQS−Neg

upperbound of σQS−Neg < c

where c is the variance of the prior distribution of
the ability to transform information. The estimation
of c is based on the observation by Hill [13] that the
ability to transform information into outcomes is the
main factor in building task outcomes. As the main
factor, searchers’ ability to transform the information
into outcomes has a greater influence than other factors.

Following the above heuristic rules, the difficulty of
building an outcome falls within a known interval. The value
of each PIDH also falls within a known interval. We could
then generate candidate data and estimate difficulties of
outcomes or suboutcomes and hyperparameters. The steps of
estimating these factors are as follows:
S1) Generate nb sets of vectors. The length of each vector

is equal to the number of outcomes in the dataset. The
value of the nth member in the vector is randomly
selected in the possible interval of the difficulty of the
nth outcome. The ith set is denoted as

−→
b i.

S2) Generate nPIDH sets of vectors. The length of each
vector is equal to the number of PIDH in our model.
The value of the nth member in the vector is randomly
selected in the possible interval of the estimated value
of the nth parameter. The ith set is denoted as

−−−→
PIDH i.

S3) Denote ns as the number of searchers on the dataset.
S4) For i = 1 to nb:

a) For j = 1 to ns:

i) Create a group Gj. This group contains all the
data in the dataset except the jth searcher’s
data.

ii) Define model M as:

P
(
θn |

−→y
)

= P (θ) ∗

∏n

i=1

p(yi|θi)
P(yi)

P (θi | yk)

=

∫
P

(
yk |θi, bf (k)

)
∗ P (θ) ∗ P(bf (k))dbf (k)
P(yk )

iii) Take
−→
b i as

−→
b in modelM , then estimate the

ability of ns−1 searchers inGj by usingmodel
M .

iv) Take the classification result given by domain
experts as the standard. Classify the esti-
mation results in the last step by using a
Linear SVC (Support Vector Classifier) and
the leave-one-out method. The classification
accuracy of this classifier is recorded asACC j.

b) Calculate the average classification accuracy of
ns groups:

ACC i =

ns∑
i=1

ACC i

ns
S5) For i = 1 to nb: Find the biggest ones of

ACC1 . . .ACCnb . If one of the biggest ones is ACCk ,
choose

−→
b k as one of the final estimates. Denote

−→
b k

as
−→
b chosen
i , where i implies the number of

−→
b that have

been selected as the final estimate. Record the total
number of

−→
b chosen as final estimate as nchosen.

S6) For i = 1 to nPIDH :
a) Create a groupGj. This group contains all the data

in the dataset except the jth searcher’s data.
b) For k = 1 to nchosen:

i) Define model N as the equation can be
derived, as shown at the bottom of next page:

ii) Take
−→
b chosen
i as

−→
b in model N . Take

−−−→
PIDH i

as the values of
−−−→
PIDH in model N . Estimate

the ability of ns − 1 searchers in Gj by using
model N .

iii) Take the classification result given by domain
experts as the standard. Classify the esti-
mation results in the last step by using a
Linear SVC and leave-one-out method. The
classification accuracy of this classifier is
recorded as ACC jk .

C. DETERMINING TERM P
(
1bi

)
As a multidimensional integral, term P

(
1bi

)
is hard to be

calculated directly. However, the known integrand of P
(
1bi

)
makes the use of Markov chain Monte Carlo sampling on
the estimation of P

(
1bi

)
possible. The steps for estimating

P
(
1bi

)
by MCMC sampling are as follows:

For i = 1 to n:
1) Choose a Markov matrix Q(i, j). The value of the

element in the matrix at position (i, j) is the probability
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of a normal distribution with a mean of i and a variance
of 1 at position j:

Q (i, j) =
1

√
2π

∗ exp (−
(j− i)2

2
).

2) Determine the stable distribution π (x):

π (x) = p
(
uJ(p)

)
∗ p

(
σ 2
J(p)

)
∗

∏nJ (p)i
n=1

p(1bJ(p)in |uJ(p), σ
2
J(p))∗P(x).

3) Determine the number of state transitions n1. Deter-
mine the number of the samples required n2.

4) Draw a sample x0 from any simple probability
distribution.

5) For t = 0 to n1 + n2 − 1:
a) Sample from the conditional probability distribu-

tion Q (x | xt) to obtain a variable x∗:

Q (x | xt) =
1

√
2π

∗ exp (−
(x − xt )2

2
)

b) Sample from a uniform distribution to obtain a
variable u:

u ∼ uniform[0, 1].

c) Determine the value of xt+1 according to the
following expression:
xt+1 = x∗, u< min{

π (x∗) ∗ Q(x∗, xt )
π (xt) ∗Q(xt , x∗)

, 1}

xt+1 = xt , u≥ min{
π (x∗) ∗Q(x∗, xt )
π (xt) ∗ Q(xt , x∗)

, 1}
.

6) Take (xn1, xn1+1, . . . ,xn1+n2−1) as a sample set from
distribution π (xt ). The members of this sample set
can be considered to follow the distribution p

(
uJ(p)

)
∗

p
(
σ 2
J(p)

)
∗

∏nJ (p)i
n=1 p(1bJ(p)in |uJ(p), σ

2
J(p)) when n1 is

big enough. The estimation of p(1bi ) is the average of
the product of each member in the sample set and the
integration area.

V. EXPERIMENTAL EVALUATIONS
We evaluate the proposed model in the task of identifying
searchers’ proficiencies. The idea behind such an evaluation
is that searchers with high proficiencies should have high
abilities to transform information. Based on such an assump-
tion, we estimate searchers’ abilities to transform information
and use the ability measures to identify searchers with high
and low proficiencies.

The performance of our model was demonstrated on two
datasets. The first dataset was built from scratch.We designed

a search task requiring learning and collected various search
behaviors conducted by volunteers. The search task, the
setups of our proposed model, and the experimental results
are introduced in detail from Section V-A to Section V-F. The
second dataset was from [40], and the results are presented
in section V-G. In Section V-H, we present a comparative
experiment. In this comparative experiment, our proposed
model was compared with state-of-the-art methods on the
task of identifying searchers’ proficiencies.

A. EXPERIMENTAL SETUPS
We recruited 55 undergraduate students to participate in the
experiment. We have obtained informed consent from all
the volunteers. Based on a reference check, 26 (47.27%)
volunteers were considered to have high programming profi-
ciencies, while 29 (52.72%) volunteers had low programming
proficiencies.

We designed a programming task for our evaluation.
The task consisted of 5 subtasks: 1) Click on a button
and show a video capture interface for the user. The user
will record a video. 2) Pop up a dialog for the user
to choose a folder. 3). Save the recorded video to the
chosen folder. 4) Click on another button and pop up a
dialog for the user to choose the saved video file. 5) Play
the video. Volunteers were asked to program the previous
subtasks on the Universal Windows Platform (UWP). During
programming, volunteers could search for any information
they needed, but collaboration was prohibited. We built
a controlled environment to log the querying, browsing,
and programming behaviors (https://github.com/zhangyin-
github/thesallab.alllogger).

After collecting these search behaviors, we tagged these
search behaviors mentioned in Section III-B according to a
set of key APIs for each of the 5 subtasks, as shown in Table 1.
After search behaviors were tagged, these tagged behaviors

were used in three sets of experiments to evaluate our model
and our methods. Section V-B presents the setups to evaluate
the proposed difficulty estimation method. Section V-C
presents the setups to evaluate the proposed PIDHs estima-
tion method. Section V-D presents the setups to evaluate
the performance of considering different combinations of
search behaviors (i.e. QS, DS, and IT) in our proposed
model. Section V-E presents the evaluations measures and
Section V-F presents the results.

B. SETUPS OF ESTIMATING DIFFICULTIES
Since the proposed method for estimating difficulty is based
on heuristic rules, some parameters in these heuristic rules

P
(
θn |

−→y
)

= P (θ) ∗

∏n

i=1

p(yi|θi)
P(yi)

P (θi | yk) =

∫
P

(
yk |θi, bf (k), g(i)

)
∗ P

(
1bi

)
∗ P (θ) ∗ P(bf (k))dbf (k)

P(yk )
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TABLE 1. Key apis of the subtasks.

need to be determined first. We set the prior distribution of
the ability to transform information as a normal distribution
N (0, 2). According to Section IV-B, bmin = −0.4769, bmax =

0.4769.We set bmin = −0.5, bmax = 0.5 for convenient.
By calculating the 55 volunteers’ completion rates, we deter-
mined the order of the difficulties of the 5 subtasks. The order
of difficulties is b1 = b4 < b2< (bmin + bmax)/2 <b5 < b3.
According to this order, we generated 30 possible vectors
of

−→
b = < b1, b2, b3, b4, b5 > according to the heuristic

rules. These vectors of
−→
b = < b1, b2, b3, b4, b5 > would

be trained by the training method proposed in Section IV-B.
The vector performed best among 30 vectors, the vector
performed worst among 30 vectors, and all these 30 vectors
would be considered as setups in the experiment.

For
−→
b , the 5 setups in the experiments are as follows:

1)
−→
b =< 0, 0, 0, 0, 0 >. This was equal to estimating
θ according to IT-Positive. This setup was used as a
baseline.

2)
−→
b = < −0.2, 0.2, 0.3, 0, −0.2 >, which was given
by domain experts.

3)
−→
b = < −0.1, 0, 0.2, −0.1, 0 >, which was the one
that performed the worst of the 30 generated vectors of
−→
b in the training method proposed in Section IV-B.

4) The average results of the 30 generated vectors of
−→
b .

5)
−→
b = < −0.5, −0.2, 0.3, −0.5, 0 >, which was the
one that performed the best of the 30 generated vectors
of

−→
b in the training method proposed in Section IV-B.

These different setups are referred as
−→
b1 to

−→
b5 , and the

results of these setups will be introduced in the following
section.

C. SETUPS OF ESTIMATING PIDHS
Since the proposed method for estimating PIDHs is based
on the difficulty performed best in the training and the
heuristic rules, the difficulty and some parameters in these
heuristic rules needs to be determined first. The difficulty
determined is

−→
b = < −0.5, −0.2, 0.3, −0.5, 0 > which is

referred as
−→
b5 in the previous experiments. Since the prior

distribution of the ability to transform the information is set
to N (0, 2), the upper bounds of PIDHs were 0.9538 and
were set to 1 for convenience. We then generated 30 possible
vectors of PIDHs. These vectors would be trained through the
method proposed in Section IV-B. The vector performed best
among the 30 vectors, the vector performed worst among the

30 vectors and all these 30 vectors would be considered as
setups in the experiment.

For PIDHs, the 4 setups considered in the experiment are
as follows:

1) Ignoring PIDHs in our proposed model. This setup was
used as a baseline.

2)
−−−→
PIDH = <

(
uQS−Pos = 0.22,σ 2

QS−Pos = 1.73
)

,(
uQS−Neg = 0.86,σ 2

QS−Neg = 0.6
)

, (uDS−Pos = 0.39,

σ 2
DS−Pos = 1.59), (uDS−Neg = 0.94,σ 2

DS−Neg =

0.14) >, which was the one that performed the worst
of the 30 generated vectors of PIDHs in the training
method proposed in Section IV-B.

3) The average results of the 30 generated vectors of
PIDHs.

4) The average results of the three vectors that performed
the best of the 30 generated vectors of PIDHs in the
training method proposed in Section IV-B:

a)
−−−→
PIDH = <(uQS−Pos = 0.05,σ 2

QS−Pos =

1.91), (uQS−Neg = 0.88,σ 2
QS−Neg = 0.82),

(uDS−Pos = 0.17,σ 2
DS−Pos = 1.28), (uDS−Neg =

0.9,σ 2
DS−Neg = 0.79) >,

b)
−−−→
PIDH = <(uQS−Pos = 0.07,σ 2

QS−Pos =

1.94), (uQS−Neg = 0.52,σ 2
QS−Neg = 0.64),

(uDS−Pos = 0.3,σ 2
DS−Pos = 1.52), (uDS−Neg =

0.56,
σ 2
DS−Neg = 0.61) >,

c)
−−−→
PIDH = <(uQS−Pos = 0.15,σ 2

QS−Pos =

1.66), (uQS−Neg = 0.91,σ 2
QS−Neg = 0.5),

(uDS−Pos = 0.38,σ 2
DS−Pos = 1.35), (uDS−Neg =

0.99,
σ 2
DS−Neg = 0.07) >.

These different setups are referred as
−−−−→
PIDH1 to

−−−−→
PIDH4,

and the results of these setups will be introduced in the
following sections.

D. SETUPS OF COMBINATIONS OF SEARCH BEHAVIORS
Our proposed model is a unified model of how searchers
search and build outcomes. The model considers 3 types of
search behaviors (i.e., QS, DS, and IT) to estimate the ability
to transform information. To demonstrate the necessity of
involving all the 3 types of search behaviors and the ternary
relation in the proposed model, we considered the following
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alternated approaches to estimate the ability to transform
information:

1) P (θ) = P (θIT |Yik) =
exp(θIT )1−Yik

1+exp(θIT )
∗ P (θIT ), namely

the ability to transform information equals to the ability
to generate IT-Positive. Yik = 1 if the kth IT of searcher
i is IT-Positive and Yik = 0 if it is IT-Negative.P (θIT ) is
the prior distribution of θIT . We assume θIT ∼ N (0, 2)
in our experiment.

2) P (θ) = P
(
θQS |Yik

)
=

exp(θQS)
1−Yik

1+exp(θQS)
∗ P

(
θQS

)
,

namely the ability to transform information equals to
the ability to generate QS-Positive. Yik = 1 if the kth
QS of searcher i is QS-Positive and Yik = 0 if it is
QS-Negative. P

(
θQS

)
is the prior distribution of θQS .

We assume θQS ∼ N (0, 2) in our experiment.

3) P (θ) = P (θDS |Yik) =
exp(θDS )1−Yik
1+exp(θDS )

∗ P (θDS),
namely the ability to transform information equals to
the ability to generate DS-Positive. Yik = 1 if the kth
DS of searcher i is DS-Positive and Yik = 0 if it is
DS-Negative. P (θDS) is the prior distribution of θDS .
We assume θDS ∼ N (0, 2) in our experiment.

4) θ = < θQS , θIT >, namely the ability to transform
information equals to the vector < θQS , θIT >.

5) θ = < θQS , θDS >, namely the ability to transform
information equals to the vector < θQS , θDS >.

6) θ = < θDS , θIT >, namely the ability to transform
information equals to the vector < θDS , θIT >.

7) θ = < θQS , θDS , θIT >, namely the ability to transform
information equals to the vector < θQS , θDS , θIT >

These alternated approaches are referred as < θ IT >,
< θQS >, < θDS >, < θQS , θIT >, < θQS , θDS >,
< θDS , θIT >, and < θQS , θDS , θIT > accordingly.

E. EVALUATION MEASURES
As the amount of data was limited in our experiment, we used
leave-one-out cross-validation to evaluate the compared
methods. For each fold of validation, the data of 54 volunteers
were used to train the classifier, and the data of the last
volunteer were used to validate the classification result. The
evaluation was conducted 55 times. We refer to the high
proficiency group as the positive class and the low proficiency
group as the negative class. We then logged the following
measures for all the 55 evaluations:

1) True Positive (TP): The number of predictions where
the classifier correctly predicts the positive class as
positive.

2) True Negative (TN): The number of predictions where
the classifier incorrectly predicts the negative class as
negative.

3) False Positive (FP): The number of predictions where
the classifier incorrectly predicts the negative class as
positive.

4) False Negative (FN): The number of predictions where
the classifier incorrectly predicts the positive class as
negative.

We then calculated the accuracy, precision, recall, and F1
measure as:

accuracy =
TP+ TN

TP+ FN + FP+ TN
,

precision =
TP

TP+ FP

recall =
TP

TP+ FN
,

F1 =
2 × precision× recall
precision+ recall

.

It should be noticed that instead of 55 runs of cross-
validation,

−→
b4 and

−−−−→
PIDH3 consisted of 1650 runs, while

−−−−→
PIDH4 consisted of 165 runs. This was due to the results of
−→
b4 and

−−−−→
PIDH3 were the average of 55 generated candidates,

and the results of
−−−−→
PIDH4 were the average of the 3 best

candidates.

F. EXPERIMENTAL RESULTS ON THE FIRST DATASET
The results of the compared methods for estimating the
difficulties on the first dataset are shown in Table 2, the results
of the compared methods for estimating the difficulties on
the first dataset are shown in Table 3 and the results of the
compared methods for comparing the different combinations
of search behaviors on the first dataset are shown in Table 4.
From the results of the different setups of

−→
b in Table 2,

we could observe that the accuracy of the main setup
−→
b5

had reached 90.91%, which had a significant advantage than
the accuracy that random classifiers could achieve (Z =

−4.692, p < .001).
Furthermore, the result in Table 2 showed that domain

experts provided
−→
b (i.e.,

−→
b2 ) and the best generated

−→
b (i.e.,

−→
b5 ) outperformed all the other setups in accuracy. The same
accuracy showed that the performance differences between
−→
b2 and

−→
b5 were not substantial. Considering the cost of

obtaining the difficulties provided by domain experts, these
results showed that the performance differences between the
heuristic rules described in Section IV-B could be a practical
approach to estimate the difficulties of tasks.

In addition, we could notice that the recall of themain setup
−→
b5 was higher than the precision of

−→
b5 . This result implied

that the probability of estimating low-ability searchers as
high-ability searchers is higher than the probability of
estimating high-ability searchers as low-ability searchers
under the main setup

−→
b5 . The main reason for this result

was that a small number of low-ability searchers have prior
knowledge about task outcomes in the experiment. Although
all the volunteers were restricted from obtaining information
related to the task outcomes before the experiment, it was
almost impossible to restrict all the information obtained by
volunteers. According to Section III-B, all the information
collected by searchers would reduce the difficulty of building
task outcomes. Thus, some volunteers have a higher probabil-
ity of building task outcomes and their estimated abilities are
higher than their actual abilities. This overestimation leads to
a higher recall of

−→
b5 .
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TABLE 2. Experimental results of the compared methods for estimating difficulties on the first dataset.

TABLE 3. Experimental results of the compared methods for estimating pidhs on the first dataset.

While for the worst generated
−→
b (i.e.,

−→
b3 ), the perfor-

mance under this setup was almost the same as the baseline
(i.e.,

−→
b1 )(Z = −0.278, p < .1). Such a result implied the

necessity of choosing the best generated one from all the
generated setups of

−→
b in our proposed model.

Although the necessity of finding appropriate setups
of

−→
b was implied, high time complexity of the method

proposed in Section IV-B makes choosing
−→
b a tradeoff.

The time complexity of the method for choosing the best
−→
b proposed in Section IV-B is O(n2), where n refers to the
number of generated groups. As n goes up, the cost of the
proposed choosing method could become substantial. It is
thus necessary to develop more efficient methods to reduce
the time cost for applications on a larger scale.

Moreover, all the generated setups of
−→
b performed better

than the baseline
−→
b1 . This result suggested that the difficulties

of transforming information into different outcomes varied,
and estimating difficulty was indispensable for modeling the
relations between the ability to transform information, the
information collected, and the probability of successfully
building task outcomes.

From the results of different setups of
−−−→
PIDH in Table 3,

we could observe that the accuracy of the main setup
−−−−→
PIDH4

had reached 95.48%, which had a significant advantage than
the accuracy that random classifiers could achieve (Z =

−5.344, p < .001).
Moreover, we could notice that the recall of the main

setup
−−−−→
PIDH4 was higher than the precision of

−−−−→
PIDH4.

This result showed that the probability of estimating low-
ability searchers as high-ability searchers is higher than the
probability of estimating high-ability searchers as low-ability
searchers under the main setup

−−−−→
PIDH4. The main reason for

this result was that few search behaviors were conducted
by low-ability searchers before their failing to build task
outcomes. Although collecting information is one of the
most effective and common ways to reduce the difficulty of

building task outcomes, some low-ability searchers was even
not able to describe their information needs clearly while
building task outcomes. This makes it difficult for low-ability
searchers to collect information through search behaviors
such as submitting queries and selecting documents. In our
model, few search behaviors implies that the difficulty of
building a task outcome is slightly reduced and the searcher
fails to build a task outcome with high difficulty. According
to Section III-E, if a searcher fails to build a task outcome
with high difficulty, we can’t say that the ability of this
search is low. Thus, the estimated abilities of some low-ability
volunteers were higher than those given by domain experts,
resulting in a higher recall.

Another observation from the results in Table 3 was that the
average performance off all generated

−−−→
PIDH (i.e.,

−−−−→
PIDH3)

outperformed than the baseline
−−−−→
PIDH1. This result implies

that considering
−−−→
PIDH did contribute to the improvements in

performance.
Furthermore, compared with the accuracy reached by the

baseline
−−−−→
PIDH1, the accuracy reached by the main setup

−−−−→
PIDH4 had improved significantly (Z = −1.649, p <

0.05). This result showed that choosing the best hyperpa-
rameters significantly contributed to the improvements in
performance.

The time complexity of the heuristic method to choose a
best

−−−→
PIDH proposed in Section IV-B is also O(n2), where

n refers to the number of generated groups. The time
cost for large-scale applications could still be substantial.
However, considering the significant improvements brought
by generating and choosing

−−−→
PIDH , the time consumption

could be a valuable tradeoff even with the current estimation
method.

From the results of different combinations of search
behaviors in Table 4, we could notice that in terms of the
abilities to generate positive QS, DS, and IT, < θQS >

performed the worst, < θDS > performed moderate, while
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TABLE 4. Experimental results of the compared methods for comparing different combinations of search behaviors on the first data set.

TABLE 5. Experimental results of the compared methods for estimating difficulties on the second dataset.

< θ IT > performed the best. The accuracy and F1 score of
< θDS > was 80.00% and 0.7841, while for < θ IT > they
were 85.45% and 0.8330. These results coincided with the
findings in related works saying that searchers with different
domain expertise would have different search behaviors, and
it was possible to identify searchers with high and low domain
expertise by observing their search behaviors. Meanwhile,
the cost of collecting QS and DS data is much lower than
IT. Thus, a simple observation of DS may be a cost-effective
estimation of proficiency.

Another observation from Table 4 was that precision of
< θ IT > was higher than the recall of < θ IT >. Since
searchers’ ability to transform information into outcomes
was considered to be equal to searchers’ ability to generate
IT-Pos, based on the definition of IT-Pos in Section III-B,
this observation implied that it is inaccurate to estimate
searchers’ ability to transform information into outcomes
without considering the information collected by searchers.

Furthermore, the precision of < θDS > is higher than
the recall of < θDS >. Since searchers’ ability to transform
information into outcomes was considered to be equal to
searchers’ ability to generate DS-Pos, based on the definition
of DS-Pos in Section III-B, this observation showed that
it is inaccurate to estimate searchers’ ability to transform
information into outcomes as searchers’ ability to collect
useful information. Similarly, the precision of < θQS > was
higher than the recall of < θQS >. Based on the definition
of QS-Pos, this result also proved that estimating searchers’
ability to transform information into outcomes as searchers’
ability to collect useful information is inaccurate.

An interesting result that emerged in the results of the
alternated approaches was that combining the abilities to
generate positive QS, DS, and IT as vectors could not
improve the performance. For example, the performance

of < θQS ,θDS > was the same as < θDS >. These
results implied that the ternary relation between the ability
to transform information, the information collected (with
effect modeled as QS, DS, and IT), and the probability of
successfully building task outcomes could not be modeled in
a naïve approach.

G. EXPERIMENTAL RESULTS ON THE SECOND DATASET
In [40], Li et al. built a search process dataset to verify
the performance of their search task extraction method. The
search task in this dataset consists of 5 subtasks. Searchers’
behaviors and task outcomes were also collected. As a result,
this dataset includes all the data needed for our model.

We involved two domain experts to evaluate the pro-
gramming proficiencies of the 67 web learners involved in
the dataset. 37 (55.22%) web learners were considered to
have high programming proficiencies, while 30 (44.78%)
web learners were considered to have low programming
proficiencies. The performance of our proposed difficulty
estimation method, the performance of our proposed PIDHs
estimation method, and the performance of considering
different combinations of search behaviors are evaluated in
the same way as described in Section V-B, Section V-C
and Section V-D. The results of the compared methods for
estimating the difficulties on the second dataset are shown in
Table 5. The results of the compared methods for estimating
the difficulties on the second dataset are shown in Table 6.
The results of the compared methods for comparing the
different combinations of search behaviors on the second
dataset are shown in Table 7.

From the results of the different setups of
−→
b in Table 5,

we could observe that the accuracy of the main setup
−→
b5

had reached 91.04%, which had a significant advantage than
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TABLE 6. Experimental results of the compared methods for estimating pidhs on the second dataset.

TABLE 7. Experimental results of the compared methods for comparing different combinations of search behaviors on the second data set.

TABLE 8. Experimental results of the comparative experiment of identifying searchers’ proficiencies.

the accuracy that random classifiers could achieve (Z =

−5.192, p < .001). Furthermore, the main setup
−→
b5 also

outperformed all the other setups in accuracy.
From the results of different setups of

−−−→
PIDH in Table 6,

we could observe that the accuracy of the main setup
−→

−−−−→
PIDH4 had reached 95.52%, which had a significant

advantage than the accuracy that random classifiers could
achieve (Z = −5.867, p < .001).
From the results of different combinations of search behav-

iors in Table 7, we could observe that the result is similar
to the results shown in Table 4. The similarity validates
our conclusions on the relation between the combination of
search behaviors and the programming proficiency.

H. COMPARASIONS WITH OTHER APPROACHES
As described in the previous subsections, we consider
searchers’ ability measured by our proposed model as the
indicator of their proficiencies. Experimental results showed
that this approach achieved high classification accuracies and
F1 scores in identifying searchers’ proficiencies. The remark-
able performance supported that our model can accurately
measure the searchers’ ability to transform information.
Furthermore, since the ability to transform information is
measured based on searchers’ search behaviors, our proposed
model provides a feasible perspective for understanding
the relation between searchers’ search behaviors and their
proficiencies.
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In recent years, many studies have attempted to identify
searchers’ proficiencies based on their search behaviors.
Most of these studies focused on the quantity and quality of
searchers’ search behaviors. For example, in [41], Mao et al.
explored the relation between searchers’ proficiencies and
the quality of their task outcomes. Their experimental results
showed that proficient searchers built task outcomes with
higher quality. Similar observations were also made in [42]
by O’Brien et al. In addition to the quality of task outcome,
the relation between searchers’ proficiency and other search
behaviors was also investigated in [43], [44], and [45]. The
search behaviors investigated in these studies include the
amount of query words, the length of sessions, the quality
of query words, and searchers’ judgement on the relevance
of search results. However, the findings of these studies
show that these search behaviors are weakly correlated or
even uncorrelated with searchers’ proficiencies. These weak
correlations imply that searchers’ proficiencies can hardly
be identified accurately by the quantity and quality of most
search behaviors.

Based on existing research, it shows that the quality of
searchers’ task outcomes is a state-of-the-art indicator of
identifying searchers’ proficiencies. To better understand the
performance of identifying searchers’ proficiencies with their
ability to transform information, a comparative experiment
on the first dataset was conducted. In the comparative
experiment, searchers would be classified to have high
proficiencies and low proficiencies under 15 different setups.
Each setup consists of an indicator for identifying searchers’
proficiencies and a classifier. All the five indicators used are
listed as follows:

1) The quality of searchers’ task outcomes [41] [42].
2) The amount of searchers’ query words [43].
3) The length of search sessions [44].
4) The quality of searchers’ query words [44].
5) The relevance of searchers’ search results [45].
And the three classifiers used are listed below:
1) Linear support vector machines (SVM)
2) Decision trees
3) Logistic regression classifiers.
The accuracy, the precision, the recall, and the f1 score

under each setting are shown in Table 8.
From the results shown in Table 8, we could observe

that the accuracy of identifying searchers’ proficiencies
with the quality of searchers’ task outcomes had reached
87.72%, which outperformed all the other setups. However,
identifying searchers’ proficiencies with the quality of
searchers’ task outcomes was significantly worse (Z =

−3.197, p< .001) than the accuracy of identifying searchers’
proficiencies with searchers’ ability to transform information
(shown in Table 3). The advantage in accuracy implies that
the ability to transform information is a feasible indicator of
searchers’ proficiencies. Moreover, by quantitatively measur-
ing searchers’ ability to transform information, our proposed
model could precisely identify searchers’ proficiencies.

VI. CONCLUSION AND FUTURE WORKS
This paper proposed a unified probabilistic model to
reflect the ternary relation between the ability to transform
information, the information collected, and the probability
of successfully building task outcomes. Based on the
IRT, the proposed model parameterized the probability
of successfully building task outcomes by the ability to
transform information and the effect of information collected
modeled as search behaviors, including QS, DS, and IT.
We designed heuristicmethods to estimate the parameters and
hyperparameters for our proposed. We evaluate the proposed
model’s performance in identifying searchers with high
and low programming proficiency under different setups.
Experimental results showed that the proposed model could
properly estimate the ability to transform information. Our
proposed model contributed to the formal understanding of
how people search to build task outcomes.

The time complexity of the parameter and hyperparameter
estimation methods proposed by us in Section IV-B was
O(n2), which may lead to performance issues when applied
in large-scale applications. In large-scale applications, the
parameter and hyperparameter in our proposed model could
be provided by domain experts. Based on the experimental
results in Section V-F and Section V-G, our model achieves
high accuracy and low time consumption when using
parameters and hyper-parameters given by domain experts.
Meanwhile, for future works, our parameter and hyperpa-
rameter estimation methods could possibly be improved by
considering intelligent optimization approaches.

We choose the one parameter logistic (1PL) IRT model
as the basis of our improved model. Our choice implies that
we make two assumptions: 1) It is impossible for a searcher
to transform the information into task outcome by guessing.
2) The discrimination between transforming information into
different outcomes is the same. Although the high accuracy
in our experiment shows that our assumptions hold in most
cases, taking discrimination and searchers’ probability of
building an outcome by guessing into consideration may lead
to a more accurate model.

In our proposed model, we only considered the ability to
transform information and ignored other types of abilities,
such as generating high-quality queries or selecting related
documents. The experimental results showed that simple
combinations of various abilities into vectors might be mean-
ingless. We argue to study further why such combinations led
to no improvements. Such studies may reveal possibilities to
understand how different abilities are related and propose a
more comprehensive understanding of how people search to
build outcomes.

Due to the high cost of collecting and analyzing data
on people searching to build outcomes, the scale of exper-
iments in the domain of Searching as Learning is usually
limited [46], [47]. This limitation affects the practical use
of studies in the domain of Searching as Learning [48].
In order to facilitate future studies in the domain of Searching
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as Learning, we have open-sourced our experimental sys-
tem at https://github.com/zhangyin-github/thesallab.allogger.
The system provides a possible solution to the collection
of search behaviors including query formulation, document
selection and information transformation. The system also
enables the collection of task outcomes. We hope the
system could advance Searching as Learning research and
applications.

Our model may be used as a framework to seek new possi-
ble ways to improve session-based search engines, including
providing a user with information that could be more likely
transferred, given the user’s ability to transfer information.
The high accuracy of our model in identifying proficient
searchers could also suggest new ways to personalize search
engines. Our model also suggests a new perspective to
understand search behavior as changes of difficulties. Such a
perspective may be adopted in reinforcement learning based
search methods to develop new dynamic search models.
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