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Abstract. We apply time dependent spectral phase modulation to generate
pulse trains that are spectrally and temporally partially coherent in an ensemble
averaged sense. We consider, in particular, quadratic spectral phase modulation of
Gaussian pulses, and demonstrate two particular types of nonuniformly correlated
pulse trains. The controlled partial temporal coherence of the nonstationary fields
is generated using a pulse compressor and experimentally verified with frequency
resolved optical gating (FROG). We show that the correlation characteristics of
such pulse trains can be retrieved directly from the FROG spectrograms provided
one has certain a priori knowledge of the pulse train. Our results open a pathway
for experimental confirmation of several correlation induced effects in the temporal
domain.
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1. Introduction

Partial coherence has been extensively studied over
the past several decades, with emphasis on modeling,
generating, and characterizing spatially partially
coherent fields [1, 2]. Recent studies have revealed
that statistically stationary, partially coherent beam-
like fields exhibit unexpected propagation properties,
such as self-focusing [3–5], self-splitting [6, 7], self-
steering [8], and enable various types of beam profile
transformations [9–16]. The emphasis on spatial
domain has been motivated by the experimentally
available methods for generating spatially partially
coherent fields.

In addition to spatially partially coherent fields,
a large number of temporally partially coherent model
pulse trains have been theoretically introduced [17–20],
with several potential applications including temporal
ghost imaging [21–23], inertial confinement fusion [24–
26], telecommunication [27–29], and micro-machining
[30, 31], to name a few. Many of these statistically
nonstationary fields have time-domain coherence
properties that are quite analogous to the spatial
coherence of the stationary beam fields. However, at
present, there is a severe lack of flexible and reliable
methods to produce temporally partially coherent
pulse trains with tailored coherence properties. In the
present study, we experimentally demonstrate such a
method and apply it to generation of pulse trains with
nonconventional temporal correlation functions.

We consider the individual pulses in a pulse train
as field realizations, in which case the second-order
statistical properties of the train can be described
by ensemble averaged two-coordinate correlation
functions, namely the two-frequency cross-spectral
density function (CSD) and the two-time mutual
coherence function (MCF) [32–34]. When employing
this notion for coherence, the pulse train is fully
coherent only if the pulses have identical wave forms
and are equidistant within the train; otherwise the
train becomes partially coherent.

The two-frequency CSD and the two-time MCF
admit specific formal representations, summarized in
Sec. 2, which ensure that the CSD and MCF necessarily
are genuine coherence functions and, furthermore,
provide a recipe for constructing pulse trains with
specified coherence properties. A large class of
model pulse trains can be realized by modulating
the spectral phases of the pulses of a coherent train.

The simplest way to do this is to introduce a
quasi-random linear phase, which leads to a jittered
output train of pulses with the same temporal shape,
formally allowing the realization of a variety of
conventional Schell-model correlated pulse trains [35].
However, jitter alone constitutes a limited means to
control pulse train coherence and, moreover, it is not
observable with most pulse characterization methods,
due to arrival time ambiguities. Therefore, here we
examine quadratic spectral phase modulation, and as
explicit demonstrations introduce pulse trains with two
specific types of nonconventional temporal correlation
functions.

The spectral and temporal wave forms of individ-
ual pulses can readily be obtained, for instance, by
frequency resolved optical gating (FROG) [36]. How-
ever, partial coherence smears multishot FROG spec-
trograms, rendering direct retrieval of the coherence
properties (or even average pulse shapes) ambiguous
in most cases [37]. We show in Sec. 3 that the relevant
characteristic parameters of the pulse trains we con-
sider can nonetheless be directly deduced from FROG
spectrograms, without any need for retrieval, provided
that the generic type of the pulse train is known a pri-
ori.

Furthermore, in Sec. 4, we prove the practical fea-
sibility of our proposed temporal coherence tailoring
scheme by presenting experimental results, based on
modulating the spectral phases of mode-locked fem-
tosecond laser pulses with the aid of a phase-only
spatial light modulator (SLM) [38] and characteriz-
ing the ensuing output pulses by FROG. Specifically,
we generate the temporal versions of circularly corre-
lated [39,40] and certain spatially nonuniformly corre-
lated light beams [3, 41, 42]. The protocol of control-
ling statistical temporal coherence of pulse trains, com-
bined with experimental SLM-based creation of two
specific nonconventional temporal coherence functions,
and the explicit demonstration of retrieving, under cer-
tain prior knowledge, the salient coherence features of
the modulated pulse train directly from FROG spec-
trograms constitute the main results of this work.

Finally, in Sec. 5, we present concluding remarks
and outline some possible future directions.

2. Theory

Let us denote the spectral representation of an
individual plane-wave pulse in the train by En(ω).



Generation of pulse trains with nonconventional temporal correlation properties 3

Then the two-frequency CSD is, by definition, given
by

W (ω1, ω2) = ⟨E∗(ω1)E(ω2)⟩

= lim
N→∞

1

N

N∑
n=1

E∗
n(ω1)En(ω2). (1)

Its normalized form, known as the two-frequency
complex degree of spectral coherence, is defined as

µ(ω1, ω2) =
W (ω1, ω2)√
S(ω1)S(ω2)

, (2)

where S(ω) = W (ω, ω) is the (mean) spectral density
of the pulse train.

The time-domain representations of the individual
pulse realizations are related to the frequency-domain
realizations by a Fourier transform

En(t) =

∫ ∞

0

En(ω) exp(−iωt)dω. (3)

In analogy with Eq. (1), one defines the two-time MCF
as

Γ(t1, t2) = ⟨E∗(t1)E(t2)⟩

= lim
N→∞

1

N

N∑
n=1

E∗
n(t1)En(t2). (4)

Its normalized form, known as the two-time complex
degree of temporal coherence, is

γ(t1, t2) =
Γ(t1, t2)√
I(t1)I(t2)

, (5)

where I(t) = Γ(t, t) is the (mean) temporal intensity
of the pulse train.

Let us now assume that the spectral realizations
can be expressed as a continuous function of a
parameter c, i.e., E(ω; c). Then the CSD has a
(genuine) representation [43]

W (ω1, ω2) =

∫ ∞

−∞
p(c)E∗(ω1; c)E(ω2; c)dc, (6)

where p(c) is a real and non-negative weight function
and

∫∞
−∞ p(c)dc = 1. Correspondingly, the MCF is

given by

Γ(t1, t2) =

∫ ∞

−∞
p(c)E∗(t1; c)E(t2; c)dc, (7)

where the temporal realizations E(t; c) are obtained by
a Fourier relationship analogous to Eq. (3).

In what follows, we assume that the spectral
envelope of each pulse has the same functional form
but the spectral phase may vary from pulse to pulse.
Then we may write

E(ω; c) = A0(ω − ω0) exp[iϕ(ω; c)], (8)

where the envelope, A0(ω − ω0), may in general
be complex and ω0 is the central frequency of the

mean spectrum. Here we consider quadratic phase
modulation with

ϕ(ω; c) = c(ω − ω0)
2. (9)

While the role of the parameter c is generally rather
formal, its physical significance becomes clear as soon
as we specify the form of the weight function p(c)
and the spectral phase of the pulses. With the
quadratic spectral phase in Eq. (9), c represents the
phase curvature at the center frequency. Increasing
|c| also increases the curvature of the spectral phase,
whereas c = 0 corresponds to flat spectral phase, i.e.,
a transform-limited pulse. Non-zero values of c mean
concave or convex parabolic phase, which both lead to
wider pulses in the time domain. This quadratic phase
is considered throughout the paper.

With the choice of a parabolic phase according to
Eq. (9), the CSD can be written as

W (ω1, ω2) = A∗
0(ω1 − ω0)A0(ω2 − ω0)µ(ω1, ω2), (10)

where

µ(ω1, ω2) =

∫ ∞

−∞
p(c)

× exp
{
ic
[
(ω2 − ω0)

2 − (ω1 − ω0)
2
]}

dc.(11)

In other words, the spectral correlation properties
depend entirely on the weight function p(c), and the
envelope dictates only the shape of the spectrum.
Corresponding to our experimental conditions, we
choose a Gaussian spectral envelope

A0(ω − ω0) = A0 exp

[
− (ω − ω0)

2

Ω2

]
, (12)

where Ω represents the spectral width of the incident
pulses. Pulse trains with nonconventional correlation
functions can now be constructed by choosing different
types of weight functions p(c).

2.1. Circularly correlated pulse trains

Let us first choose a rectangular weight function

p(c) =

{
Ω2

p, when |c| ≤ 1/2Ω2
p,

0, otherwise,
(13)

where Ωp is the spectral coherence width. Then, from
Eq. (11),

µ(ω1, ω2) = sinc

[
(ω2 − ω0)

2 − (ω1 − ω0)
2

2Ω2
p

]
, (14)

where sinc(x) = sin(x)/x. Equivalently, in average
and difference coordinates ω̄ = 1

2 (ω1 + ω2) and ∆ω =
ω2 − ω1, we have

µ(ω̄,∆ω) = sinc

[
(ω̄ − ω0)∆ω

Ω2
p

]
. (15)
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The result is the spectral representation of a circularly
correlated pulse train, which is a frequency-domain
analog of the spatially circularly correlated field [39,
40].

To construct the MCF of a circularly correlated
pulse train, we first transform the spectral field
realizations into the time domain, which yields

E(t; c) = exp(−iω0t)

×
∫ ∞

−∞
A0(ω̃) exp

(
icω̃2 − iω̃t

)
dω̃. (16)

Here we have denoted ω̃ = ω − ω0 and extended the
lower integration limit to −∞, assuming that Ω ≪ ω0.
Inserting from Eq. (12) and performing the integration
we arrive at

E(t; c) = A0

√
πΩ√

1− iΩ2c
exp

(
−Ω2

4

t2

1− iΩ2c

)
× exp (−iω0t) . (17)

The temporal intensity of a single field realization
therefore has the form

I(t; c) = I0(c) exp

[
− 2t2

T 2(c)

]
, (18)

where I0(c) = 2Γ0/ΩT (c),

T (c) = T
√

1 + Ω4c2, (19)

and T = 2/Ω is the temporal width of the incident
transform-limited (unchirped) Gaussian pulses and

Γ0 = πΩ2 |A0|2.
In view of Eqs. (7) and (17), the MCF of a train

of Gaussian pulses is given by

Γ (t1, t2) = Γ0 exp [−iω0 (t2 − t1)]

∫ ∞

−∞

p(c)√
1 + Ω4c2

× exp

[
−Ω2

4

(
t21

1 + iΩ2c
+

t22
1− iΩ2c

)]
dc. (20)

The integral can not be performed analytically, but it
can be readily evaluated numerically.

2.2. Nonuniformly correlated pulse trains

As a second example we insert a Gaussian weight
function

p(c) =
1√
π
Ω2

p exp
(
−Ω4

pc
2
)
, (21)

in Eq. (11). We obtain

µ(ω1, ω2) = exp

−

[
(ω2 − ω0)

2 − (ω1 − ω0)
2

2Ω2
p

]2
 ,(22)

or, in average and difference coordinates,

µ(ω̄,∆ω) = exp

{
−
[
(ω̄ − ω0)∆ω

Ω2
p

]2}
. (23)

This is the complex degree of spectral coherence of a
non-uniformly correlated pulse train [42]. The MCF of
this pulse train is obtained on inserting from Eq. (21)
into Eq. (20). Again the integral needs to be evaluated
numerically.

2.3. General characteristics

Figure 1 illustrates the spectral coherence characteris-
tics of the two types of pulse trains considered above.
Here we plot the absolute values |µ(ω̃1, ω̃2)| of the com-
plex degree of spectral coherence as functions of ω̃1/Ωp

and ω̃2/Ωp in the case ω0/Ωp = 100, which is close
to our experimental conditions. The distributions of
|µ(ω̃1, ω̃2)| feature a cross-like shape with diagonal and
anti-diagonal arms. The nature of the correlations is
therefore in both cases very different from those of
Schell-model fields (where the complex degree of spec-
tral coherence depends only on the coordinate differ-
ence ∆ω).

Figure 1. Absolute values of the complex degree of spectral
coherence of (a) a circularly correlated, and (b) a nonuniformly
correlated Gaussian pulse train.

The temporal coherence characteristics of the
same pulse trains are illustrated in Fig. 2, where we
plot the absolute values of the complex degree of
temporal coherence as functions of t1/T and t2/T . Also
the distributions of |γ(t1, t2)| are cross-shaped [42].

Figure 2. Absolute values of the complex degree of temporal
coherence of (a) a circularly correlated, and (b) a nonuniformly
correlated Gaussian pulse train.

The cross-like shape of the CSD is a result of it
being of specular form, with the property W (−ω1 +
ω0, ω2 − ω0) = W (ω1 − ω0, ω2 − ω0). This property is
the spectral analog of spatially partially coherent fields
with specular CSDs, first introduced in [44] and more
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recently demonstrated experimentally using wavefront-
folding interferometry [45]. These specular light fields
indeed represent an important class of optical fields
that do not obey the often-used Schell model.

3. FROG spectrograms

In the experimental part of this work we will employ
second-harmonic generation (SHG) FROG [36] to
characterize the nonconventional pulse trains discussed
above. This technique allows one to measure the
amplitudes and phases of individual pulses (or coherent
pulse trains) in both spectral and temporal domains.
Once an ensemble of these realizations has been
characterized, the CSD and the MCF of a partially
coherent pulse train can be constructed using Eqs. (1)
and (4), respectively.

Alternatively, to characterize unknown pulse
trains, one can perform multishot SHG FROG
measurements, i.e., measure spectrograms averaged
over a large number of realizations. Unfortunately it
is not possible to retrieve the CSD or the MCF of
a partially coherent pulse train from these multishot
spectrograms. However, as we will see below, the main
characteristics of the pulse trains can be retrieved from
such data provided that a priori knowledge on the
type of the pulse train is available. We note that
SHG FROG has two ambiguities: direction of time
and arrival time. The latter implies that the effects
of jitter are not visible in the spectrograms. However,
the effect of quadratic phase modulation is observable.

The single-shot SHG FROG spectrogram of a
temporal pulse E(t; c) is given by

G(ω, τ ; c) = |F (ω, τ ; c)|2, (24)

where τ is the time delay and

F (ω, τ ; c) =

∫ ∞

−∞
E(t; c)E(t− τ ; c) exp(iωt)dt (25)

is the (unmeasurable) complex spectrogram. If the
incident pulses follow a weight distribution p(c), the
averaged spectrogram of the entire ensemble is

G(ω, τ) =

∫ ∞

−∞
p(c)G(ω, τ ; c)dc. (26)

On inserting from Eq. (17) into Eq. (25) we get

F (ω, τ ; c) = E2
0(c) exp (iω0τ)

×
∫ ∞

−∞
exp

[
−Ω2

4

t2 + (t− τ)2

1− iΩ2c

]
× exp [i (ω − 2ω0) t] dt. (27)

Carrying out the integration and simplifying leads to

F (ω, τ ; c) = π
√
2πA2

0

Ω√
1− iΩ2c

exp

(
−Ω2

8

τ2

1− iΩ2c

)
× exp

[
−
(
1− iΩ2c

) (ω − 2ω0)
2

2Ω2

]
exp(iωτ/2). (28)

Hence, the spectrogram for a single pulse realization
given by Eq. (24) is of the form

G(ω, τ ; c) = G0
T

T (c)
exp

[
− τ2

T 2(c)

]
× exp

[
− (ω − 2ω0)

2

Ω2

]
, (29)

where G0 = 2π3 |A0|4 Ω2. In view of Eq. (29), we can
directly determine the pulse duration T (c) from the τ
axis and the spectral width Ω from the ω− 2ω0 axis of
the single-shot spectrogram, when the incident pulse is
a chirped Gaussian.

Let us next consider multi-shot SHG FROG
measurements by inserting Eq. (29) into Eq. (26). We
then have explicitly

G(ω, τ) = G0 exp

[
− (ω − 2ω0)

2

Ω2

]

×
∫ ∞

−∞

p(c)√
1 + Ω4c2

exp

[
− (τ/T )2

1 + Ω4c2

]
dc. (30)

The multishot spectrogram is therefore similar to
the single-shot spectrogram along the frequency axis.
However, the distribution along the τ axis is modified,
depending on the explicit form of p(c). Assuming a
uniform distribution, as in Eq. (13), and employing a
normalized variable c′ = cΩ2

p gives, at ω = 2ω0,

G(2ω0, τ) = G0

∫ 1/2

−1/2

[
1 + (Ω/Ωp)

4
c′2

]−1/2

× exp

[
− (τ/T )2

1 + (Ω/Ωp)
4
c′2

]
dc′. (31)

Clearly the distribution of G(2ω0, τ) depends uniquely
on the ratio Ω/Ωp. Therefore, if we know a priori
that the pulse train is circularly correlated, this ratio
(giving the degree of coherence) can be retrieved from
the multishot spectrogram.
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Figure 3. Time-delay cross sections at ω = 2ω0 of multishot
SHG FROG spectrograms of (a) circularly and (b) nonuniformly
correlated pulse trains with different degrees of coherence. Red:
ω0/Ωp = 100, green: ω0/Ωp = 300, and blue: ω0/Ωp = 400.

Similar conclusions hold also for nonuniformly corre-
lated pulse trains following Eq. (21), for which

G(2ω0, τ) =
G0√
π

∫ ∞

−∞
exp

(
−c′2

) [
1 + (Ω/Ωp)

4
c′2

]−1/2

× exp

[
− (τ/T )2

1 + (Ω/Ωp)
4
c′2

]
dc′. (32)
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Some cross-sections G(2ω0, τ) are illustrated in Fig. 3.

4. Experimental results

To verify the proposed method for generating tem-
porally partially coherent pulse trains, we performed
a set of proof-of-concept experiments. An unfolded
schematic of the setup that was employed to modu-
late the spectral phase of pulses from a mode-locked
femtosecond laser (Quantronix Integra C-5 with cen-
ter wavelength 792 nm) is presented in Fig. 4. The
incident pulses were first passed through a linear po-
larizer, after which the light was dispersed to a spec-
trum with a grating (Thorlabs GR25-1208) with 1200
lines/mm and a cylindrical Fourier transform lens (f =
100 mm). The spectrum was then modulated with
a phase-only reflective SLM (Hamamatsu X13267-02
LCOS, 800 × 600 pixels with pitch 12.5 µm). The re-
flected light followed the same path as the incident
pulse train, but was slightly shifted in the direction
perpendicular to the plane. This allows the modulated
light to be picked by mirror M2, which fed the pulses
into a commercial SHG FROG device (GRENOUILLE
8-50 USB).

Figure 4. Schematic of the unfolded experimental setup. G1,
G2: gratings, L1, L2: lenses, M1, M2: mirrors, SLM: a reflective
phase-only spatial light modulator.

Although the employed setup is essentially a
zero-dispersion pulse compressor, the input pulses
did experience some broadening as they propagated
through the setup. The broadening was due to
alignment errors [38]. In addition, the input pulses
were not perfectly transform-limited (i.e., shortest
possible for the given spectrum). To counteract this,
we measured the unmodulated pulses to find their
spectral phase. Addition of an opposite ‘base phase’
in the SLM allowed us to achieve nearly flat phase
across the spectrum, yielding nearly transform-limited
pulses, as shown in Fig. 5, where the blue line depicts
the field, and the red line corresponds to the phase.
The full width half maximum (FWHM) width of the
uncompressed pulses was 150 fs (see Figs. 5(a) and (b)),
whereas after compression the pulse width was 130 fs
(see Figs. 5(c) and (d)), which is the manufacturer-
specified minimum pulse length.

The measured spectral phase corresponded well
with the desired phase and there were no significant
distortions. The spatial profile of the beam was roughly
Gaussian, and it remained the same shape at the
output as it was at the input. Moreover, the spot
size on the SLM in our experiments was small enough
so that the spatial distribution at each wavelength
experienced an almost constant phase. Thus, the
spatial coherence and the spatial intensity distribution
at the output were essentially unmodified.
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Figure 5. The measured pulse-profiles before compression in
(a) spectral and (b) temporal domains, and after compression
likewise in (c) and (d). The blue lines show the absolute values
of the spectral and temporal fields, and the corresponding phases
are shown in red.

To check the stability of the transform-limited
pulse train, we measured 50 individual pulses by
intensity triggering the GRENOUILLE via software.
The repetition rate of the laser was 1 kHz, and thus,
by keeping the exposure time less than 1 ms it was
possible to obtain FROG traces of single pulses. After
computing the correlation functions, we found that
the incident pulses are indeed almost similar, and the
normalized correlation functions have values close to
unity in the region where the (spectral or temporal)
intensity is significant. Thus, we conclude that the
pulse train incident on our experimental setup is almost
completely temporally and spectrally coherent, as far
as our measurement setup can detect. Note that we
have not considered the carrier-envelope offset phase
or timing jitter in our theoretical calculation, since the
GRENOUILLE cannot detect either.

Starting from the compressed pulses, we produced
partially coherent pulse trains via time dependent
spectral phase control. Since the compressed pulses
in Fig. 5 are not exactly of transform-limited Gaussian
form, slight deviations between the experiments and
theory were to be expected. We changed the curvature
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c of the quadratic phase profile and performed single-
shot measurements with GRENOUILLE, such that
each measured pulse has a different spectral phase.
For all retrievals, the FROG error was between 1-3
percent which is well within acceptable limits. The
value of c was changed following either uniform or
Gaussian distribution within the range from 0 to ∼
100× 10−28 s2.

It needs to be noted that the frame rate of the
SLM was too slow to follow the 1 kHz repetition rate
of the laser. Therefore we were not able to modulate
each pulse separately. Instead, we measured longer
segments of the train having identical pulses. While
every segment is completely coherent, the whole pulse
train with N segments is partially coherent. This is
mathematically equivalent to reducing the repetition
rate by using an electro-optic modulator and observing
direct multi-shot spectrograms.

Figure 6. Simulated and experimental complex degrees
of coherence of circularly correlated pulse train showing
(a) and (b) the simulated results in spectral and temporal
domain, respectively, whereas (c) and (d) are the corresponding
experimental results. Red curves denote the intensity profiles in
the spectral and temporal domain.

The complex degrees of coherence were computed
from the measured ensembles and compared with the
simulated ones as presented in Fig. 6 for circularly
correlated pulse trains and in Fig. 7 for nonuniformly
correlated pulse trains with Ωp = ω0/150. The
simulated and experimentally observed absolute values
of the complex degrees of coherence in both spectral
and temporal domains are in good agreement. There
is a slight asymmetry in the measured spectral domain
correlations, which is due to the non-Gaussian and
asymmetric spectral shape of the incident pulses.

Finally, in Fig. 8 we present the effect of time-
dependent spectral phase modulation on the SHG
FROG spectrograms of circularly correlated pulses
for both single-shot and multi-shot simulations and
measurements. First of all, from the single-shot

Figure 7. Simulated and experimental complex degrees
of coherence of nonuniformly correlated pulse train showing
(a) and (b) the simulated results in spectral and temporal
domain, respectively, whereas (c) and (d) are the corresponding
experimental results. Red curves denote the intensity profiles in
the spectral and temporal domain.

Figure 8. Simulated and measured single-shot (for the
transform-limited pulse) (a, c, e) and multi-shot (b, d, f) results.
(a) and (b) present the full 2D plots of simulated spectrograms,
(c) and (d) illustrate the corresponding measured spectrograms.
(e) and (f) show some line profiles in the central region of the
FROG spectrogram, black: 396 nm, blue: 395.5 nm, green: 395
nm, and red: 394.5 nm, where solid line represents simulated
results and dotted line shows experimental results.

measurement (see Fig. 8(c)), the temporal and spectral
pulse widths of the transform-limited pulse, T and Ω,
can be found. This step is not necessary for finding
the correlation properties of the pulse train, since the
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coherence functions do not depend on either T or Ω, see
Eqs. (15) and (23). From the multi-shot SHG FROG
spectrogram (Fig. 8(d)) we find G(τ, 2ω0), the black
dotted line in Fig. 8(f), which we use to find Ωp by
fitting Eq. (31) on the measured curve.

The experimental values retrieved from the
measured spectrograms are Ω = 1.33 × 1013 s−1 and
Ωp = 6.93 × 1012 s−1. The root-mean-square (rms)
error between the measured and simulated multi-shot
spectrograms is about 1.8 %, and there is clearly a good
agreement between the theoretical and experimental
results, although the spectra of the two are not exactly
the same. The main difference can be seen in the
amplitudes of the curves, whereas the widths have a
good correspondence.

5. Conclusions and discussion

In the present work we have demonstrated controlled
generation of temporally partially coherent pulse
trains via time dependent spectral phase modulation.
This marks a decisive experimental demonstration of
controlled nonconventional temporal coherence of pulse
trains and its confirmation by means of direct FROG
spectrograms. The type of correlation in our scheme
can be changed by suitably choosing the modulating
phase profile, whereas the degree of coherence depends
only on the chosen weight function. The main
limitation of our method is the modulation speed, since
SLMs are generally not fast enough (highest frame
rate is 120 Hz or so, which is not nearly enough
for modulating single pulses even in our setup). In
this regard, one option to increase it considerably is
to use acousto-optic modulators [38], in analogy with
coherence modulation in the spatial domain [46]. This
would require a somewhat different analysis approach
(not considered here). However, when the observation
time is much longer than the modulation switching
time, the train is effectively partially coherent. This
is analogous to controlling the spatial coherence with a
rotating diffuser: if the diffuser does not rotate fast
enough, then one can observe the coherent speckle
patterns at the observation plane. When integrating
over a long measurement time, we emulate partial
spatial coherence.

The ability to generate nonconventional temporal
correlations such as circularly and nonuniformly
correlated pulse trains will facilitate in-laboratory
observation of the theoretically predicted properties
of such pulse trains, including temporal self-focusing.
Although we concentrate here on quadratic phase
modulation, any type of spectral phase profiles
may be employed. The technique can therefore
be readily extended to the generation of other
partially coherent pulse trains that have been studied

theoretically. Expanding this technique to vectorial
partially coherent trains would allow further control
over the correlation properties of the pulse train, which
is a research direction we aim to explore in the near
future.
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2017 Coherence control of pulse trains by spectral phase
modulation J. Opt. 19 095501

[36] Trebino R Frequency-Resolved Optical Gating: The Mea-
surement of Ultrashort Laser Pulses (Kluwer Academic
Publishers)

[37] Bourassin-Bouchet C and Couprie M E 2015 Partially
coherent ultrafast spectrography Nat. Commun. 6 6465

[38] Weiner A M 2000 Femtosecond pulse shaping using spatial
light modulators Rev. Sci. Instruments 71 1929–1960

[39] Santarsiero M, Mart́ınez-Herrero R, Maluenda D, de Sande
J C G, Piquero G and Gori F 2017 Partially coherent
sources with circular coherence Opt. Lett. 42 1512–1515

[40] Santarsiero M, Mart́ınez-Herrero R, Maluenda D, de Sande
J C G, Piquero G and Gori F 2017 Synthesis of circularly
coherent sources Opt. Lett. 42 4115–4118

[41] Cai Y, Chen Y and Wang F 2014 Generation and propa-
gation of partially coherent beams with nonconventional
correlation functions: a review [Invited] J. Opt. Soc. Am.
A 31 2083–2096

[42] Lajunen H and Saastamoinen T 2013 Non-uniformly
correlated partially coherent pulses Opt. Express 21 190–
195

[43] Gori F and Santarsiero M 2007 Devising genuine spatial
correlation functions Opt. Lett. 32 3531–3533

[44] Gori F, Guattari G, Palma C and Padovani C 1988 Specular
cross-spectral density functions Opt. Commun. 68 239–
243

[45] Partanen H, Sharmin N, Tervo J and Turunen J 2015
Specular and antispecular light beams Opt. Express 23
28718–28727

[46] J. Turunen, E. Tervonen, and A. T. Friberg, Acousto-optic
control and modulation of optical coherence by synthetic
holographic gratings, J. Appl. Phys. 67, 49-59 (1990)

View publication stats

https://www.researchgate.net/publication/359154629

