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Abstract Failure diagnosis on some system is often preferred even the data of 

the system is not designed for the condition monitoring and does not contain any or 

contains little example cases of failures. For this kind of system, it is unrealistic to 

directly observe condition from single feature or neither to build a machine learning 

system that has been trained to detect known failures. Still if any data describing 

the system exists, it is possible to provide some level of diagnosis on the system. 

Here we present an LSTM (Long Short Term Memory) autoencoder approach for 

detecting and isolating system failures with insufficient data conditions. Here we 

also illustrate how the failure isolation capability is effected by the choice of input 

feature space. The approach is tested with the flight data of F-18 aircraft and the 

applicability is validated against several leading edge flap (LEF) control surface 

seizure failures. The method shows a potential for not only detecting a potential 

failure in advance but also to isolate the failure by allocating the anomaly on the 

data to the features that are related to the operation of LEFs. The approach presented 

here provides diagnostic value from the data than is not designed for condition mon-

itoring neither contain any example case failures. 

1 Introduction     

Failure diagnosis is an active area of research and increasing target of applica-

tion in industry due to increasing interest of condition based maintenance over a 

scheduled maintenance. Also the evolution of computing power, censoring technol-

ogy and machine learning algorithms have been boosting the development of failure 

diagnostics approach in reliability engineering in recent years.  

Failure diagnosis can be divided by several subcategories such like: failure de-

tection, failure isolation, failure identification and failure classification [1]. In prac-

tice it is desirable to have diagnostics system that is capable of achieving all levels 

of diagnosis but the goal is cumbersome to achieve when diagnosing a complex 

system. With an insufficient data conditions, it is typical that the achieved level of 

diagnosis is only an isolation. One approach to elude the problem is to use autoen-

coder type neural network. In the following literature autoencoder, or variants of it, 

are used to perform diagnostics in various conditions. 

In [2] a deep learning method for fault classification and degradation assessment 

was presented. In the study a vibration data of rotating machinery was used and the 
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results were validated by injected failures. The method was compared against a con-

ventional methods and was proven to be superior. In [3] a reconstruction-based 

auto-associative neural network for fault diagnosis in nonlinear systems was intro-

duced. In the method faults were isolated based on the network reconstruction. An 

applicability of the method was illustrated on a gas turbine process. The author 

claimed the method to be robust and not requiring a prior knowledge. In [4] MPL 

and RBF was used for detecting and isolating faults of the Tennessee Eastman 

benchmark process. As a novelty they transferred a time domain data to 2D image 

data. In [5] LSTM network was applied for fault detection and isolation task on 

electro-magnetical actuators of aircraft. In [6] used vibrational autoencoder (VAE) 

for failure detection in case of TFT-LCD manufacturing process. In [7] a stacked 

convolutional sparse denoising auto-encoder (SCSDAE) was used for defect defec-

tion in wafer maps in semiconductor manufacturing process. In [8] a deep transfer 

learning autoencoder was used for predicting remaining useful life of drilling tool. 

In the method a failure data was used. In [9] a stacked sparse autoencoder was used 

for steel grinding burn detection in supervised manner. In [10] a stacked long short-

term memory autoencoder for anomaly detection in rotary machine was proposed. 

In [11] sparse autoencoder with PCA and SVM was proposed for power system 

fault diagnosis. In [12] a stacked denoising autoencoder was proposed for health 

state identification. In the study the diagnosis method was applied on rolling bear-

ings. 

In order to achieve all levels of failure diagnosis by data driven model, the life 

time data of a set of systems is needed. Life time data of a sets of systems is not 

available until all systems of some fleet have reached the end of their life and will 

be discarded. Many times a great diagnostics results have been achieved with the 

high quality life time data monitored in laboratory by using carefully selected sen-

sors. On the other hand, there is a need for diagnosing systems that are in their early 

life state and do not yet have any failures in their history. Thus there is a need for 

tools that can provide failure diagnosis based on the data that is truncated, not life 

time data, not data from set of similar systems and does not contain necessarily any 

example cases of failures. This data condition here we call simply as insufficient 

data conditions. There exists a little study considering the failure diagnosis in insuf-

ficient data conditions. 

Deep autoencoder is a special type neural network that maps its inputs to its 

outputs. Here we will demonstrate that carefully constructed LSTM autoencoder 

neural network can not only provide failure detection but also some low level iso-

lation with insufficient data conditions. This is valuable since failure isolation is 

important for maintenance decision support since it provides some hint about the 

location from where the potential failure is developing. The following sections are 

organized as follows. In section 2 the construction of autoencoder, LSTM neuron 

type, a nature of the data, training procedure and identification metrics that is a re-

construction error are described. In section 3 are the results of the study followed 

by discussion on section 4. 
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2 Methods 

2.1 Autoencoder 

In this study we applied autoencoder for detecting and isolating failures. Auto 

encoder is a special type of artificial neural network that has a capability of captur-

ing the core structure of data without copying the actual data, so called representa-

tion learning. It can be also seen as a data compression tool. Autoencoder has a two 

parts, encoder and decoder. Encoder compresses the data by its internal structure of 

shrinking number of free parameters of network layers. Decoder decodes the en-

coded data by its structure of expanding number of free parameters of layers. Final 

layer of decoder part has an output that has dimensionality same as input dimen-

sionality. When training the autoencoder then the target values are the input values.  

2.2 LSTM network 

Long Short Term Memory (LSTM) neural network is constructed by using 

LSTM neurons. LSTM neuron has a capability of remember of its previous output 

state. The output state is stored until some other neuron gives the activation signal 

that frees the memory, so called forgot gate. Due to the memory of a LSTM net-

work, the network is useful for modelling the data that has a temporal characteristic, 

that is the case with the data of this study. 

2.3 Network setup 

In this study the autoencoder neural network have been build up by using Keras 

[13] libraries. One example network structure used here is described in figure 1. 

 
Figure 1: Autoencoder structure. 

 

Several other network configurations were also tested. The aspects configured 

while constructing a variety of networks were: 
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• Feature space size 

• Network depth 

• Shrinking layer size between encoder and decoder 

• Dropout layers and dropout rate 

 

3 Results 

3.1 Data 

The dataset used in this study is composed of 43 consequent flight data from 

single aircraft. Three flights were containing LEF seizure failures. Sample monitor-

ing frequency was 1/10s and total 1.5 ∗ 106 samples were available. 

Several feature space configurations were used and they are described in the 

table 1. 

 
The feature spaces of the table 1 were constructed by the following intuition: 

• FS3 contained only four error positions of the four LEF’s of the aircraft thus 

describing only the behaviour of the LEF’s and interrelationship between each 

other. The motivation of FS3 was to see if the actual source of failure could be 

isolated among the four LEF’s. 
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• FS2 contained all directly LEF related data plus some features that we assumed 

to be related indirectly to the LEF behaviour. The aim of the construction of this 

dataset was to have data that as it maximum amount describes the behaviour of the 

LEF’s, without aiming any obvious accessories. 

• FS3 contained the data of SF2 plus some extra data that was assumed to be 

non-phenomenon related. The aim of this data was to construct a dataset that was 

hard do classifier since containing non phenomena related information, and this way 

to test how diagnostic results might be effected if proper feature extraction cannot 

be done. 

The time window for LSTM was selected to be 20 samples (due to computing 

capacity and especially memory reasons), and thus having the window length of 2 

seconds. The window length of 20 samples and feature space FP2 from table 1 hav-

ing 13 features, can be seen in figure 1 as both as an input and output.  

3.2 Training 

The data for training was further treated in order match to input and output shape 

of the LSTM autoencoder. By applying a sliding window principle, the temporal 

length of the data did increase by the multiplication of the window size. For exam-

ple, with feature space of 13 features and window size of 20 the original data was 

extended from 1.5 ∗ 10^6 X 13 to 1.5 ∗ 10^6 X 20 X 13 

As a training data it was selected first 35 consequent flights, thus leaving 4 con-

sequent healthy flight before failure for validating the system, since first failure did 

occur during flight 40. The training data was further separated to training and test 

data with radios of 2/3 and 1/3. The test data was used for preventing the overfitting 

during training. As a validation data it was used 8 last flights from which 4 first 

were healthy flights and 4 last contained a LEF seizure failure. The data train, test 

and valid split and some other additional training information are listed in table 2. 

 

3.3 Reconstruction error 

Turing the training phase, the data that was presenting the normal behaviour of 

the system, was used for training autoencoder. Turing the training phase of autoen-

coder, the internal parameters of autoencoder network will be learned so that the 

network will present the structure of the data that has been used for training. By 
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monitoring also, the loss rate during the training of autoencoder, it was ensured the 

trained autoencoder is presenting a normal system. During the diagnosis phase, a 

reconstruction error of the trained autoencoder was calculated. Reconstruction error 

of autoencoder is a feature vice error between the input and the output of the auto-

encoder. Error space size is same as the feature space size, and thus there is an error 

related every feature. A large reconstruction error signals that the data diagnosed 

does not correspond the data used earlier for training. A large reconstruction error 

is hinting about an abnormal behaviour and thus providing a potential failure detec-

tion. Since there is a reconstruction error related with each feature, an isolation is 

also provided. 

3.4 Failure cases 

The target failure for autoencoder to detect and isolate is Leading Edge Flap 

(LEF) seizure failure demonstrated in the figure 2. In the figure 2 it can be seen that 

in the middle of the flight actual LEF position does not correspond to the control 

position and that state is defined here as a failure. 

 
Figure 2: Leading Edge Flap (LEF) seizure failure during the flight no. 40. 

 

The LEF seizure failure occurred during the three flights (fights 40, 41, 43) 

which all started as a healthy flights (see fig. 3). Before the failure flights there were 

39 healthy flights. Healthy flights and the failure flights are presented in figure 3 in 

terms of the error position of all four LEF’s of the aeroplane. The data of the figure 

3 is the same data as the data FP3 in table 1 except the sliding window. 
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Figure 3: Error positions for all four LEF’s of F-18 aircraft during the 43 consequent 

flights (separated by dashed vertical lines). 

3.5 Diagnosis results 

From the data of FS3 that was the data with only LEF error positions we were 

not able to construct a system that would reveal the source of the failure among the 

four LEF’s, neither isolate the individual failure source. When considering a reason 

for this and explanation may be that in practice the LEF’s of the same wing side are 

physically jointed. On the other hand, the interrelation between left and right side 

LEF’s are computationally corrected by the system automation. 

With the data of FS1 a failure detection was achieved since the trained autoen-

coder did produce large reconstruction during a healthy part of the failure flight and 

a one flight before. On the other hand, the reconstruction error was large on all 

channels and thus no meaningful isolation was achieved. The most applicable result 

was achieved with the data FP2 of the table 1 and with the autoencoder of figure 1. 

The result is presented in figure 4.  
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Figure 4: Reconstruction errors for 8 last consequent flights. Blue graph indi-

cates healthy system and red indicates system after first failure. 

 

From the figure it can be seen that the reconstruction error is small during the 

flights 36, 37 and 38 on all channels. This is correct since those flights have been 

normal flights also in practice. Also there can be seen a large reconstruction errors 

related to the LEF seizure (red curvature), but this is not interesting since the failure 

is obvious and known at that point. What is notable is that during the flight 39 that 

is the flight before the LEF seizure failure flight, there is large reconstruction error 

on all channels that are related to LEF operation. Also on the healthy part of the 

failure flights there can be seen large reconstruction errors. 

A large reconstruction error means that the diagnosed data does not correspond 

the autoencoder model and thus does not correspond the data of previous flights. 

These large reconstruction errors can be interpreted many ways: potential failure, 

abnormal flying style, abnormal environmental conditions, use of some rare func-

tionalities of system and so on. Thus system expert is further required to analyse the 

result. If the system expert does not conclude an ab-normal flying style or environ-

mental conditions one may conclude the potential failure and start further investi-

gations. 

Since the reconstruction error is large on specific channels but not on all chan-

nels, the isolation is provided among the channels. The isolation is obscured by the 

spillover effect. The spillover can be seen for example on channel ”Right engine 

inlet temperature”. The temperature cannot fail, thou the sensor can. Still here the 

observed large reconstruction error does not present temperature sensor failure, but 
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rather a spillover effect. Due to the internal construction of autoencoder, the auto-

encoder is forced to compress data. This compression leads to the creation of inter-

nal relations that do not necessarily exist in real world. From the result 4 it may be 

concluded that the ”Right engine inlet temperature” is reconstruction from the LEF 

operation parameters. In practical diagnosis this incorrect behaviour need to be 

judged by the system expert. 

 

4 Discussion 

In the field of condition based maintenance decisions are based on a system di-

agnosis. A diagnosis can be done in many levels and a data analytic level is a one 

of them. On the other hand, many times data available is not optimal for system 

failure diagnosis, but rather designed for other purposes. In this type of so called 

insufficient data conditions the failure diagnosis requires more careful algorithmic 

choices. 

 In this study it was demonstrated that LSTM autoencoder is capable for failure 

diagnosis even with insufficient data conditions. The level of diagnosis achieved 

here was failure detection and isolation. Here it was also demonstrated how LSTM 

autoencoder failure isolation capability is effected by the choice of input feature 

space. The level of failure isolation is notable achievement when considering the 

limitations of the data used here. In general, the model build on data cannot present 

more than the nature of the original data. Since the basis here was that a data does 

not contain failures, the model cannot present failures. On the other hand, the model 

can present a normal system and thus anomalous behaviour can be detected against 

the model of normal system. The significance of the method presented here is that 

the anomalies will be allocated on features and thus providing isolation. 

It is generally known that a knowledge based data pre-processing in an important 

preliminary step when applying machine learning, which did also apply here. The 

method proposed here brings up another challenge when interpreting the results, 

since the system knowledge turns out to be vital also on this site. The method pro-

vides only allocated anomalies, so called isolation, but it is the task of system expert 

to further interpreted if the anomaly actually presents a potential failure or some-

thing else. 

Benefits and practical application of the methodology are that many real world 

system providing data have a characteristic of data similar of our data. In practice 

any system without failure history or with data designed directly for condition mon-

itoring has data conditions similar to this study. 

Limitations of this study are that it was done on one system. Reason here was 

that we had one system with data sufficient to validate our methods. In future more 

studies with similar methods for different domains would be needed. 
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