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Abstract: Communication between cells enables the coordination that drives structural and functional
complexity in biological systems. Both single and multicellular organisms have evolved diverse
communication systems for a range of purposes, including synchronization of behavior, division
of labor, and spatial organization. Synthetic systems are also increasingly being engineered to
utilize cell–cell communication. While research has elucidated the form and function of cell–cell
communication in many biological systems, our knowledge is still limited by the confounding effects
of other biological phenomena at play and the bias of the evolutionary background. In this work,
our goal is to push forward the context-free understanding of what impact cell–cell communication
can have on cellular and population behavior to more fully understand the extent to which cell–cell
communication systems can be utilized, modified, and engineered. We use an in silico model of 3D
multiscale cellular populations, with dynamic intracellular networks interacting via diffusible signals.
We focus on two key communication parameters: the effective interaction distance at which cells are
able to interact and the receptor activation threshold. We found that cell–cell communication can
be divided into six different forms along the parameter axes, three asocial and three social. We also
show that cellular behavior, tissue composition, and tissue diversity are all highly sensitive to both
the general form and specific parameters of communication even when the cellular network has not
been biased towards that behavior.

Keywords: cell–cell communication; Boolean networks; complex systems; multiscale modeling;
mathematical biology

1. Introduction

Communication between cells is a key property of living systems, from unicellular
microbes to multicellular organisms. By signaling to each other, cells are able to coordinate
their activity, thereby attaining structural and functional complexity. Fundamentally,
these complexities are achieved by regulating which cellular behaviors occur within a
population and how those behaviors are organized. To achieve this, organisms have
evolved communication systems that are diverse in both mechanism and function.

In microbial populations, cell–cell communication systems are pervasive and uti-
lized for a variety of population functions. For example, signaling is used to propagate
information through a population to provide long range coordination, as in the use of
ion channels to regulate metabolic states during growth cycles in biofilms [1,2]. It can be
used to aggregate environmental information to execute a singular collective behavior,
such as infectious bacteria like V. cholera and P. aeruginosa relying on quorum sensing to
collectively express virulence factors when pathogenicity will be maximized [3,4]; motile
bacteria like E. coli secreting a chemical trail to collectively migrate toward food sources [5];
and sporulating bacteria like B. subtilis collectively sporulating in response to quorum
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signals when there is not enough food for colony survival [6]. Cell–cell signaling can also
be used to coordinate subpopulations with different and often mutually exclusive functions,
such as in the generation of matrix- and surfactant-producing cells in B. subtilis colonies
during colony expansion [7,8]; and the regular spacing of nitrogen-fixing heterocysts and
photosynthetic vegetative cells in filamentous cyanobacteria for survival in low-nitrogen
conditions [9,10]. Further examples of microbial communication systems can be seen in
colony morphogenesis or multispecies biofilm maintenance [11–13].

In multicellular organisms, cell–cell communication is so vital that it is recognized
as a defining feature of multicellularity [14]. Indeed, it has been proposed that an ex-
pansion in the genes dedicated to cell–cell communication accompanied the transition
from unicellular to multicellular life [15]. As in microbial systems, cell–cell signaling in
multicellular organisms can serve to synchronize cells in a common behavior or manage
diverse subpopulations; however, there is much more breadth and complexity in multi-
cellular communication systems. From simple to complex organisms, across evolutionary
kingdoms, cell–cell communication is heavily involved in nearly all multicellular biological
operations. During development, multicellular organisms rely on cell–cell communication
cues for functions like temporal and spatial cellular differentiation (plant stem morpho-
genesis [16], nematode neuronal fate decisions [17]); directional cell migration (zebrafish
organogenesis [18], mammalian vessel formation [19]); and controlled cell death (avian
limb development [20], insect body segmentation [21]). In mature organisms, homeostasis
is maintained by cell–cell communication through functions like population size control
(murine T cells [22] and macrophage/fibroblasts [23] populations), maintaining multicellu-
lar structures (animal corneal maintenance [24] and bone remodeling [25]), and coordination
between subsystems (human wound healing [26]). Mature organisms must also navigate
their environment as a cohesive unit, using cell–cell communication to perform the complex
functions necessary for survival (mollusc neuromuscular coordination [27] and vertebrate
adaptive immunity [28]).

In addition to naturally occurring systems, cell–cell communication is increasingly
being utilized as a tool in synthetic systems. Many of the communication mechanisms
used in living systems can be adapted for synthetic systems. Current research areas
include the synthesis of populations capable of swarming behavior [29], reliable spatial
patterning [30], organization into multicellular structures [31], biological computing [32],
and complex functions like biofuel production [33]. For a thorough review of synthetic
cell–cell communications in both prokaryotes and eukaryotes, see Henning et al. (2015) [34].

While research has elucidated the form and function of cell–cell communication in
many biological systems across both unicellular and multicellular organisms, there are
often other phenomena at play that confound the effects of communication. For example,
the architecture of the genetic network, stochasticity in gene expression, asymmetric cell
division, and cell cycle heterogeneity can all contribute to behavioral heterogeneity within
a population [35–38]. In addition to these factors, mechanical interactions, cell death and
birth, and environmental conditions can influence the organization of cell types [39–42].
Furthermore, our knowledge of how communication can impact system behavior is limited
by which systems have evolved, which is driven by the functional requirements and
historical contingency of each specific system.

Given that cell–cell communication is such a vital aspect across many diverse systems,
understanding the extent of its effects can provide widely-applicable insights. Thus, with
the work reported here, we strive to push forward the general understanding of what
impact cell–cell communication can have on cellular and population behavior. We can
apply this understanding to learning how current systems might have evolved, including
the transition from unicellular to multicellular life. We can also more fully understand how
extant systems operate and how modifications to communication can affect population dy-
namics. Such knowledge extends to the role of communication in disease-altered states and
how disease effects might be remediated by cell–cell communication-based intervention.
Lastly, for synthetic systems, it is necessary to understand the role of communication so
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that systems can be designed accurately and efficiently, and undesirable collateral effects
can be avoided.

In order to isolate the effects of communication so that we may understand the general
principles relating cell–cell communication to cellular and collective behavior, we use
an abstract in silico model of cellular populations. Specifically, we use a 3D multiscale
cellular population model, with dynamic intracellular networks interacting via diffusible
signals to form intercellular connections (Figure 1). By including intracellular networks, we
can more explicitly define cellular behavior and explore the interplay between internally
and externally driven behavior. Importantly, cell–cell communication is not a simple
present/absent phenomenon in living systems. The mechanism, architecture, and strength
of communication are all variable and likely have functional consequences. Therefore, in
our work, we focus on two key signaling parameters: the effective interaction distance,
which is the distance at which cells are able to interact via signals; and receptor activation
threshold, which is the concentration of signal necessary to activate a cell’s receptor. Both
of these parameters have previously been shown to tune cells’ relative response to self-
generated versus non-self-generated signal [43,44]. Thus, by varying these parameters,
which are variable between and within biological systems, we can vary the degree of
communication and more finely explore the effects of communication.

Figure 1. 3D structured population of communicating cells. (a) The cellular population model consists
of cells (pink circles) that are arranged in three dimensions on a lattice-structured grid. (b) Cells are
described by internal networks and communicate with each other by secreting and sensing diffusible
molecules (gray squares).

We find that cellular populations are characterized by different forms of communica-
tion as a function of the effective interaction distance and receptor threshold. These include
the disruption of communication altogether and various degrees of dependence between
cells within a population. Cellular and population behavior is highly sensitive to both the
general form and specific parameters of communication present even when the cellular
network has no bias towards that behavior. Tissue diversity, both behavioral and spatial, is
also broadly impacted by communication. Overall, this work shows that communication
between cells has a strong and tunable effect on biological behavior across a general cellular
background that did not evolve a communication system.

2. Materials and Methods
2.1. Mathematical Model

Our in silico framework consists of a population of individual cells, organized on a 3D
grid, which send signals through diffusible molecules (Figure 1a). Each cell is described
by an internal Boolean network (BN), consisting of binary-valued regulatory nodes and
signaling nodes (Figure 1b). Regulatory nodes, which can be viewed as genes, largely
determine the behavior of the cell, while signaling nodes are responsible for signaling
between cells. By iterating the state of the system over time, we simulate the dynamics of
the cells, and consequently the population. For simplicity, we will refer to a population of
cells with identical cellular BNs as a tissue for the rest of the paper. Since a tissue may have



Entropy 2023, 25, 319 4 of 22

different signaling parameters, we will refer to a tissue with specific signaling parameters
as a tissue sample.

2.1.1. Cells as Boolean Networks

Each cell in our simulation framework is modeled as a Boolean network. BNs have a
long history of being used as biological models, especially as gene regulatory networks [45].
Importantly, BNs are vastly simplified models, as they do not capture many important
factors of intracellular dynamics. Here, the reduced detail of BNs is sufficient as our focus
is on modeling an abstract cellular system capable of expressing distinct stable behaviors.
Moreover, BNs are simple to implement and analyze, and capable of phenomenologically
recapitulating many complex behaviors observed in biological cellular systems [46,47].

The BN of cell i is a network defined on a set of n binary-valued variables,

Xi = xi
1, ... , xi

n , (1)

where xi
j ∈ {0, 1} represents the expression or activation of node j. The nodes in the cellular

networks are divided into two categories: regulatory nodes and signaling nodes. Signaling
nodes come in pairs of a signal node, which secretes a diffusible molecule, and a receptor
node, which is activated by that molecule. Over time, the state of the cell, Xi(t), changes
via updating the values of the regulatory and signaling nodes.

The value of each regulatory node, j, is determined by applying a corresponding
Boolean update function with k inputs , f i

j : {0, 1}k −→ {0, 1}. Thus, the Boolean value of

each regulatory node xi
j is given by:

xi
j(t + 1) = f i

j (xi
j1(t), xi

j2(t), ... , xi
jk (t)). (2)

The function f i
j can be described by the table of output values (truth table) it gives for

each combination of argument values. There are many schemes for generating the ar-
chitecture of the wiring between nodes (wiring diagram) and truth tables for Boolean
networks. For simplicity, we follow the original formulation of the random Boolean net-
work scheme [48]. For the wiring diagram, k is constant for all nodes; the k input nodes
for each regulatory node are randomly chosen uniformly from the regulatory and receptor
nodes. The signal node is never used as an input in order to keep communication distinct
from internal regulation. For the truth tables, elements are assigned values of 0 or 1 with
a bias p = P{ f i

j = 1}, j = 1, ..., n, which is the probability that the function takes on the
value of 1 for a combination of input values. In closed BNs (i.e., with no external inputs),
k and p can be varied to tune the network’s response to perturbations, ranging between
ordered dynamics (insensitive to perturbations) and chaotic dynamics (highly sensitive
to perturbations).

The two types of signaling nodes, signals and receptors, each behave differently. The
signal node follows the same rules as the regulatory nodes. The receptor node updates
using a threshold function on the local concentration of its corresponding signal—described
in Section 2.1.3.

2.1.2. Tissue Architecture

In our simulations, each of the N cells in a tissue is described by the same BN (identical
wiring diagram and truth tables) and occupies a grid point on a 3D structured lattice.
Specifically, cells are located in the center of voxels, which have a volume of Vc = H3

where H is the lattice size. We set H = 20 for this work with no loss in generality. The
lattice has periodic boundary conditions on all three axes, such that all cells have the same
neighborhood structure. This allows for observing patterns that might appear in much
larger tissues while only simulating a small tissue. It should be noted that simulated tissues
are physically static; while the states of the cells change over time, cells do not die, undergo
mitosis, or migrate.
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2.1.3. Cell–Cell Communication via Diffusible Molecules

We include signaling between cells by modeling the secretion and sensing of a single
diffusible molecule, m. A cell i releases molecule m with a secretion rate of η(xi

S) molecules
per second, which depends on the Boolean state of its designated signal node, xi

S. We
assume that η(0) = 1 and η(1) = α, α > 1, to account for basal and active expression,
respectively. We make this assumption with no loss of generality since it is equivalent to
normalizing active expression by the lower basal expression. We set α = 5 in this work.
The concentration, C, of molecule m changes in space and time according to a diffusion
degradation equation. For cells arranged in a rectangular lattice, this is approximated by:

∂Ci/∂t = D∆Ci − γCi + η(xi
S)/Vc (3)

for each voxel i of the lattice containing cell i. D is the diffusion coefficient and γ is the
constant degradation rate. Assuming that diffusion is much faster than gene regulation, we
use the steady state of the diffusion equation above:

0 = D∆Ĉi − γĈi + η(xi
S)/Vc (4)

and use a numerical solver for calculating Ĉi in simulations. An important component of
the steady state solution is the effective interaction distance, λ, where λ =

√
D/γ/R and

R is the radius of the cell [44,49]. λ is scaled by R so that the value of λ can be interpreted
in terms of multiples of the radius of a cell. When sensing molecule m, cell i checks the
local concentration of the signal at its grid point. If the local concentration of m is above a
threshold value, θ, then the receptor node is activated; otherwise, it is deactivated. Formally:

xi
R(t + 1) = 1, if Ĉi(x1

S(t), ... , xN
S (t)) > θ, (5)

xi
R(t + 1) = 0, otherwise, (6)

where Ĉi(x1
S(t), ... , xN

S (t)) is the concentration of m at the position of cell i. We will vary λ
and θ to change communication within the tissue. The other model parameters are kept
constant for all simulations.

2.1.4. Simulation Framework

Simulations of our model were implemented in Biocellion [50], a high performance
computing platform designed for simulation of multicellular systems. At every time step t
of the simulation, the concentration of signalling molecule m is updated by numerically
solving diffusion Equation (4), after which the Boolean states of the cells are updated
synchronously using the computed concentrations.

3. Experiments and Results

In order to investigate the impact of communication on cellular and population behav-
ior, we have taken a generalized in silico approach to study populations of communicating
cells. We simulated populations of 4096 cells, organized in a 16 × 16 × 16 3D grid, which
send signals within the population through a single diffusible molecular signal. Each
population is instantiated with specific signaling parameters λ, the effective interaction
distance, and θ, the threshold of the signal molecule’s receptor. By simulating tissues with
different signaling parameters, we can probe the effect of communication on cellular and
tissue dynamics.

3.1. Changing Interaction Distance and Receptor Activation Threshold Can Change the Mode
of Communication

In a similar theoretical framework, Maire et al. [44] showed that cells could enter
qualitatively different modes of communication depending on signal secretion and receptor
threshold. Therefore, we first investigated how the quality of communication that occurs
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between cells depends on our two signaling parameters λ and θ. Specifically, we tested
cells’ ability to influence each other via activation of each other’s receptors.

In this experiment, we constructed a tissue in which the cellular network consists of
only the two signaling nodes, with no regulatory nodes (Figure 2a). The update function
for the signal node is set to a constant, xi

S(t) = xi
S(t = 0), and the receptor node behaves

as described in Section 2.1.3. We simulated tissue samples with different λ, θ values to
check receptor response (ON,OFF) to distinct combinations of self and neighbor signaling
states. λ and θ were sampled using a fine grid of 271 × 141 points in the interval [0.3, 3.0]
and [1.0, 15.0], respectively, and a coarse grid of 66 × 200 points in the interval [0.5, 7.0] and
[1.0, 200.0], respectively. For each λ, θ pair, we initialized a tissue sample with each of four
different initial conditions of cell i’s and all other cells j’s signal nodes, xi

S and xj
S, j 6= i

(Figure 2b). We then updated the state of the tissue by a single time step and recorded the
response of cell i’s receptor, xi

R. The initial conditions were:

1. All cells’ signal nodes are OFF: xi
S = xj

S = 0;

2. Cell i’s signal node is OFF and all other cells’ signal nodes are ON: xi
S = 0, xj

S = 1;

3. Cell i’s signal node is ON and all other cells’ signal nodes are OFF: xi
S = 1, xj

S = 0;

4. All cells’ signal nodes are ON: xi
S = xj

S = 1.

Figure 2. Experimental design for testing the asocial to social transition of cells. (a) a population of
simple cells with only 2 nodes, xS and xR; (b) the initial conditions for the simple 2-node experiment.
xi

S(t = 0) is the initial state of cell i’s signaling node, and xj
S(t = 0) is the initial state of all other cells’

j signaling nodes.

By examining whether cell i’s receptor node turns ON in each of these scenarios, we are
categorizing its self- versus neighbor-dependence. Based on receptor response, we found
six distinct signaling regions within our signaling parameter space, which can be split into
social (regions S1, S2, and S3) and asocial (regions A1, A2, and A3) categories (Figure 3a).
Here, we use the terms social and asocial to indicate whether cells will incorporate the
signal originating from other cells in their receptor response. Because of the interplay of
λ and θ in receptor activation, the boundaries between these six regions are curves in the
λ, θ space. As the interaction distance increases, any cell i will receive a greater amount
of signal from a greater number of cells, allowing for the activation of its receptor even at
higher activation thresholds.

Asocial behavior occurs in regions A1, A2, and A3 of the parameter space (Figure 3a).
In region A1, the receptor threshold is so low that a basal level of signal secretion is enough
to turn ON a cell’s receptor even when no cells are actively signaling (Figure 3b). As λ
increases, more basally produced signal from a wider neighborhood of cells reaches a cell,
increasing the maximum threshold that can be satisfied by basal secretion alone. In this
region, if any cells did actively secrete signal, the receptor response would be unaffected.
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We will refer to this region as the ON region. The size of region A1 would decrease if
the basal secretion rate was reduced, until it disappears at a rate of 0. In region A3, in
contrast, the receptor threshold is so high that even active secretion by all cells will not
activate a cell’s receptor. Any changes in the signaling state of the cells would not affect
receptor activity. We will refer to this region as the OFF region. Lastly, in region A2, cells
can be described as having self-talk behavior. Here, a cell’s receptor is activated only by its
own signal, xi

R(t + 1) = xi
S(t) (Figure 3b). Even when receiving the maximum amount of

neighbor signal, a cell’s receptor remains OFF unless the cell itself has signaling turned ON.
This self-only activation can be due to either a cell’s signal not reaching far enough to affect
neighboring cells or a cell’s own signal masking that of its neighbors. We will refer to this
region as the SELF region. Thus, in regions A1, A2, and A3, cells are behaving completely
independently of each other, with receptor response constant under any configuration of
neighbor signaling states.

Figure 3. (a) The six distinct signaling regions in the λ, θ space. Each region corresponds to a distinct
signaling behavior of any cell i in a tissue sample with a given λ, θ value. In the asocial regions (blue),
cell i’s receptor is always ON (A1—light blue), responds to self-signal (A2—dark blue), or is always
OFF (A3—light blue). In the social regions (red), cell i’s receptor can be activated by self or neighbor
signal (S1—light red), primarily neighbor signal (S2—dark red), or both self and neighbor signal
(S3—light red). For easier visualization, only λ ≤ 3 is shown. See Figure S1 for the wider parameter
range used in simulations; (b) the value of cell i’s receptor at time t = 1, xi

R(t = 1), in response to the

four initial signaling conditions of cell i, xi
S, and all other cells j, xj

S, at time t = 0.

Signaling becomes communication and cells’ receptor responses are affected by their
social environment in regions S1, S2, and S3 of the λ, θ space (Figure 3a). In the extreme
case, in region S2, the state of a cell’s receptor is largely determined by the signal secreted
by its neighbors (Figure 3b). A cell cannot activate its own receptor but can contribute to its
receptor activation in concert with signaling neighbors. Neighbor signal, on the other hand,
can activate a cell’s receptor on its own. In parameter regions S1 and S3, a cell’s receptor
is more equally affected by both self and neighbor signal. Specifically, in region S1, the
receptor can be activated by either itself or neighbors; in region S3, a cell must receive signal
from both itself and neighbors for its receptor to be activated. For each of these regions, the
configuration of signaling states within the population affects receptor response and more
neighbor signal is required as θ is increased.

While these results were obtained from experimental simulations, one can also ana-
lytically derive the four boundary curves necessary to define the regions in the signaling
parameter space using an approximation of the steady state equation for molecule con-
centration (see Appendix A). This analysis also reveals that the relative positioning of
the boundary curves is independent of many biological parameters, including: the basal
secretion rate, the active secretion rate, the diffusion coefficient, the radius of cells, the
spacing between cells, and the size of the population. Thus, as long as these parameters are
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constant within a population, the relative distribution of the regions and their boundaries
will not change.

Here, we have only considered the extreme case in which every neighbor cell is
either signaling or not. However, the switch in social behavior occurs exactly at these
extremes. Within each parameter region, the particular response of a cell is dependent on
the fraction of signaling neighbors, their spatial configuration, and the signaling parameter
values; nevertheless, the particular response will fall under the category determined by the
parameter region. The granular effects of signaling state configuration were explored by
Maire et al. [44] in a similar theoretical framework. In examining the role of the secretion
rate and receptor activation threshold in determining the relative autonomy of bacteria,
they demonstrate the same social dynamics as we have.

3.2. Cellular and Tissue Behavior Are Distinct between Asocial and Social Behavior

Having identified six distinct signaling regions, we then investigated how cellular
and tissue behavior can change between and within them. For this, we simulated tissues
with different λ, θ values and analyzed the resulting cellular and tissue dynamics. In
this experiment, we generated 100 unique tissues, each with a particular cellular Boolean
network. The cellular BNs consist of 12 nodes (10 regulatory, 1 signaling pair), allowing
for a variety of possible cellular dynamics. Each cellular BN is instantiated as described
in Section 2.1.1, using in-degree k = 3 and bias p = 0.2113. These values were chosen to
give dynamically critical cells, the proposed dynamics of living cells [51,52]. Though it
should be noted that artificial cells that do not communicate are likely to be critical at these
parameter values; however, when communication is introduced, the dynamical regime of
the cells may be altered and may no longer be critical.

We simulated each tissue with 108 λ, θ parameter values (12 λ × 9 θ values) that were
sampled from across the different signaling regions identified in the previous experiment.
The 12 λ values are incremented by a value of 0.5, equivalent to half the cell radius, and the
9 θ values are sampled such that the different signaling regions are represented—1 value
in A1, 1 in S1, 5 uniformly in S2 or A2, 1 in S3, and 1 in A3 (Figure S1). The initial states
of all cells in a tissue were chosen randomly, with the same initial conditions for tissue
samples of the same tissue. Thus, any variations in dynamics are attributable to changes in
communication only.

All simulations were run for 2000 time steps, at which point all tissue samples had
reached steady state behavior (attractor). A tissue sample reaches an attractor once all cells
collectively revisit the same cell states, i.e., the set of all nodes in the tissue sample revisits
the same state. Formally, this occurs when there exists a τ > 0 such that:

Xi(t) = Xi(t− τ), i = 1, ..., N. (7)

The tissue attractor is defined as the vector of all cell states that occurred between time
t− τ and t:

ATλ,θ = [AC1 , AC2 , ... ACN ] (8)

where

ACi = Xi(t− τ), Xi(t− τ + 1), ... , Xi(t− 1), i = 1, ... , N. (9)

is the cellular attractor (CA) occupied by cell i. Note that, typically, attractors are fully
ordered sets under circular permutation; however, we do not consider state order. In
practice, we have observed that the state order is never the sole discerning feature between
two cellular attractors.

For each tissue, there exists a set of unique CAs, A1, A2, . . . , AM such that, for
every i ∈ {1, ... , N} ∃ j ∈ {1, ... , M} such that ACi = Aj. For analysis, we identified and
characterized the attractors of the cells and tissues.
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3.2.1. Cellular Behavior

First, we simply considered whether a cell behaves differently when cell–cell commu-
nication is present (S parameter regions) versus absent (A parameter regions). To quantify
this question, we measured the likelihood that a cell’s behavior would change as a function
of the signaling parameters. For a given tissue sample, we identified which cellular attractor
each of its 4096 cells occupied, representing the tissue sample by its tissue attractor, ATλ,θ .
The likelihood of a cell to change its behavior was measured as the fraction of cells in a
tissue sample that are in a different cellular attractor compared to when no communication
occurs. We use tissue samples in the three asocial regions (ON, OFF, and SELF) as references
for changes in cellular behavior. To compare a social tissue sample to each asocial reference,
we use the normalized Hamming distance:

DH(ATλ,θ , ATλ′ ,θ′ ) =
∑N

i=1 χ(ATλ,θ (i) = ATλ′ ,θ′ (i))
N

(10)

where ATλ′ ,θ′ is one of AT
λON ,θON , AT

λOFF ,θOFF , or AT
λSELF ,θSELF —the CA sets corresponding to

the three asocial regions. χ(a) is an indicator function that outputs a one if a is true and
zero if a is false. DH is thus a fraction ranging between 0 and 1. We use the minimum of
these three values:

bλ,θ = min(DH(ATλ,θ , AT
λON ,θON ), DH(ATλ,θ , AT

λOFF ,θOFF ), DH(ATλ,θ , AT
λSELF ,θSELF )) (11)

as our metric of cellular change so that we measure the changes as compared to the most
similar asocial reference. We find that bλ,θ takes the full range of values, with the frequency
decreasing as the likelihood of cellular change increases (Figure 4a). Surprisingly, we
find that about one third of tissues (36%) are not affected by communication at all, which
is greater than that expected by chance due to the regulatory nodes being disconnected
from the receptor node (5%). In fact, analysis of the 100 BNs showed that only 8% were
disconnected in such a way. Despite the presence of receptor-regulatory wiring in the other
28% of tissues, cells do not change their CA regardless of how communication is tuned
(Figure 4b). In all but one of these tissues, a cell’s behavior in the social parameter regions is
identical to that in the SELF region. Moreover, the SELF region in these tissues is identical
to that in either the ON or OFF parameter regions, indicating that the signal molecule is
either always secreted or never secreted (not shown). In all these instances, cells maintain
asocial behavior even when communication occurs within the tissue sample.

In the other 64% of tissues, some fraction of cells in the social tissue samples entered
different CAs compared to the ones occupied in the asocial references. Here, we found
that the magnitude of the cells affected is not only different between tissues but within
tissues (across tissue samples) as well (Figure 4c–e). Thus, the fraction of cells with altered
behavior is highly dependent on the value of λ and θ. We observed three general trends in
bλ,θ for a tissue. Within the social regions, bλ,θ can be equal across all λ, θ values (Figure 4c),
have a single peak that roughly follows a curve in λ, θ space (Figure 4d), or have two peaks
that roughly follow curves in λ, θ space (Figure 4e). Additionally, these tissues can behave
identically to the ON, OFF, and SELF regions even when the effective interaction distance
and receptor activation threshold place the tissue in the social regions (Figure S2a). For
each of these general trends, the particular response of tissue samples across λ, θ space
is variable between tissues (Figure S3). Interestingly, the greatest increase in bλ,θ occurs
within a short neighborhood of communication (λ = 3) (Figure 5a). Overall, it is clear that
changing the quality of communication between cells can lead to measurable changes in a
cell’s behavior, with significant diversity in the responses of individual tissues.
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Figure 4. The effects of communication on cellular and population behavior. (a) the distribution
of bλ,θ for all 100 tissues divided between the asocial(light blue) and social (light red) λ, θ regions.
Each bar counts the number of (a)social tissues with at least one bλ,θ at that value. All bλ,θ = 0 for
asocial tissues by definition; (b–e) bλ,θ (color) for four example tissues across all sampled λ, θ values;
(b) no changes in cellular behavior; (c) no variation in bλ,θ within social regions; (d) a single peak of
high bλ,θ ; (e) two peaks in bλ,θ ; (f) the distribution of D̂KL for all 100 tissues as in (a); (g–j) D̂KL for
four example tissues across all sampled λ, θ values; (g) no change in D̂KL; (h) no variation in D̂KL in
social regions; (i) a single peak in D̂KL; (j) two peaks in D̂KL; (k) the distribution of Hλ,θ for all 100
tissues as in (a); (l–o) Hλ,θ for four example tissues across all sampled λ, θ values; (l) no change in
Hλ,θ ; (m) no variation in Hλ,θ despite changes in cell and tissue composition; (n) a single peak in Hλ,θ ;
(o) two peaks in Hλ,θ . For all heatmaps, each row represents the same tissue across different metrics.
Blue lines represent the four boundaries of communication regions as measured in Section 3.1. Data
between sampled θ values for each λ value are interpolated for better visualization.
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Figure 5. Metrics of cellular change as a function of λ. (a) normalized maximum bλ,θ as a function of
λ, b̄λ. For each λ value, the maximum bλ,θ value is calculated and normalized by the maximum of the
tissue. The mean of the maxima across all 100 tissues is plotted; (b) D̂KL as a function of λ, D̄KL(λ).
For a given λ value, the maximum D̂KL was calculated and normalized for each tissue. The mean
across all tissues is plotted; (c) observation of novel CAs as a function of λ. MNovel is the number of
unique Novel CAs for a given tissue. The number of Novel CAs expressed at each λ is calculated as a
fraction of MNovel and the mean across all tissues is plotted; (d) frequency of Novel CAs as a function
of λ. The maximum fraction of cells expressing a novel CA is calculated for each λ and normalized
by the tissue maximum. The mean of the normalized maximum fraction (black circles) is plotted with
a trend line (blue line).

For those tissues in which cellular behavior is affected by cell–cell communication,
we also considered whether it can alter the range of possible behaviors cells can exhibit.
In other words, is cellular behavior limited or expanded by communication? For each
tissue, we counted the number of all cellular attractors observed across either asocial tissue
samples (regions A1, A2, A3) or social tissue samples (regions S1, S2, S3) and found a
significant difference between the two (Figure 6a). In roughly 50% of both social or asocial
tissue groups, cells were observed in five or fewer CAs; however, the tail of the distribution
for social tissues was heavier and longer than that for asocial cells (Figure 6b).

Given the discrepancy between the number of cellular attractors available to cells in
social versus in asocial tissue samples, the set of CAs in each category must be distinct,
i.e., cells that communicate are capable of different behavior compared to cells that do not.
By directly comparing CAs between the asocial and social parameter regions, we found
that cellular BNs can both lose or gain CAs when communicating (Figure 7). A cellular BN
loses a CA when communicating if that CA is present in asocial tissue samples but absent
in social tissue samples. Inversely, a CA is gained if it is absent in asocial tissue samples
but present in at least one social tissue sample. Losing or gaining behaviors is not rare,
with 66% cellular BNs missing at least one CA (Figure 7a) and 34% cellular BNs gaining at
least one CA (Figure 7b), with some cellular BNs both missing and gaining CAs. Moreover,
the behaviors that are either gained or lost are expressed in a nontrivial number of cells
(Figure S4), and could therefore be biologically meaningful.
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Figure 6. Numbers of cellular attractors observed in asocial (A1, A2, A3) and social (S1, S2, S3)
regions of the λ, θ parameter space. MAsocial and MSocial are the number of unique CAs observed
in the asocial and social λ, θ regions, respectively. (a) MAsocial vs. MSocial . Each tissue’s MAsocial is
directly plotted against its MSocial . The y-axis has been condensed (triple dots) to better visualize
outlying data points. The diagonal line is plotted for reference (dashed line). It is rare that a tissue
would have fewer attractors observed in social conditions as compared to asocial conditions (points
below the diagonal); (b) histograms of MAsocial and MSocial . The x-axis has been condensed (triple
dots) to better visualize outlying data points. Social tissues exhibit a longer tailed distribution as
compared to asocial tissues, with a maximum of over 10 times as many cellular behaviors.

Figure 7. Likelihood of observing Lost or Novel CAs in tissues. (a) distribution of MLost, the number
of CAs lost by each tissue when communicating. In addition, 66% of cellular BNs lose at least one CA
(light blue) and 34% do not lose any CAs (dark blue); (b) distribution of MNovel , the number of Novel
CAs gained by each tissue when communicating. Furthermore, 34% of cellular BNs gain at least one
CA (light blue) and 66% do not gain any CAs (dark blue).

While missing CAs are missing from the entire social signaling parameter space, the
expression of novel CAs is not evenly distributed across interaction distances and receptor
threshold values. Some novel CAs are only observed at particular λ, θ values. We found
that, on average, a cellular BN expresses the largest fraction of its novel CAs at λ = 1.5
(Figure 5c). Additionally, the maximum fraction of cells in a novel CA within a tissue
sample increases with λ until λ = 3 (Figure 5d). Thus, a cell will have the highest chance
of expressing a novel behavior and the largest number of possible novel behaviors, when
communication is limited to the distance of one or two neighboring cells.

In order to understand how novel CAs can arise in cells in social tissue samples, we
considered how they are related to other CAs. Per the definition of a cellular attractor, a
CA consists of a set of cellular states. In the case of cells in asocial tissue samples, when
cells are essentially closed systems, a cell state X will only occur once and will always have
the same following cell state X′. Therefore, the CAs of cells within a particular asocial
parameter region are composed of completely disjoint sets of states. When communication
is introduced, cells become open systems, and the composition of their CAs is no longer
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constrained. Thus, it is possible that the novel CAs are variations of existing CAs. To
obtain an idea of how CAs that arise in social tissue samples are related to those in asocial
tissue samples, we used the set intersection between CAs to calculate the overlap between
each novel CA and each asocial CA. Using this method, novel CAs can be classified into
three broad categories: modified, combined, and true novel. A modified CA is one that
has a non-empty set intersection with one (and only one) asocial CA with the addition of
other cell states. These additional cell states are transient states in asocial cells that become
stabilized in social cells. A combined CA is one that has a non-empty set intersection with
more than one asocial CA with or without the addition of cell states. The final category,
true novel, describes a CA that has an empty set intersection, i.e., no shared states, with
all asocial CAs. These true novel CAs are composed entirely of states that were unstable
transients in asocial cells. Notably, a cellular BN can have one, two, or all three types of
novel CAs. Overall, we found that combined CAs are the most common category, being
present in the highest fraction of tissues (Figure 8a) and usually the highest fraction of
the novel CAs for any of one tissue (Figure 8b). Modified CAs are the next most common
followed by true novel.

Figure 8. Characterization of Novel CAs. (a) fraction of cellular BNs with each of the three categories
of Novel CAs; (b) distribution of each category of Novel CA within each of the 34 tissues expressing
novel CAs.

3.2.2. Tissue Behavior

Does the composition of a tissue change as communication is added?
Next, we examined the relationship between communication and population behavior.

Since changes in lower cellular-level properties are not perfectly correlated with changes
in higher tissue-level properties, we began by testing whether a tissue has any change
to its behavior in response to changes in communication. Specifically, we measured the
macroscopic property of CA distributions within the tissue samples. To construct a CA
distribution for a given tissue sample, we calculate the fraction of cells in the tissue with
each CA, which gives:

Dλ,θ = d1
λ,θ , d2

λ,θ , ... , dM
λ,θ , (12)

where

di
λ,θ =

∑N
j=1 χ(CAj = Ai)

N
(13)

and M is the number of unique CAs for that tissue across all interaction distances, λ, and
receptor thresholds, θ. Each Dλ,θ for a given tissue has the same number of elements,
M, regardless of the CAs observed at a particular value of λ, θ. To measure changes to a
CA distribution, we compare distributions between tissue samples using the symmetric
Kullback–Leibler (KL) divergence. The symmetric KL divergence for P and Q is given by:

DKL(P, Q) = DKL(P||Q) + DKL(Q||P) (14)

which is the sum of the two KL divergences:
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DKL(P||Q) = − ∑
x∈X

P(x)log(
Q(x)
P(x)

) (15)

and, similarly defined, DKL(Q||P). Here, we use the natural logarithm, though any base
may be used for the logarithm. If P and Q are identical distributions, then the symmetric
KL divergence will be 0 and will increase as P and Q diverge. In practice, a small value
ε << 1 is added to P and Q to avoid calculations involving a value of 0.

In our calculations, the two distributions (P and Q) that we compare are the CA
distribution of a tissue sample, Dλ,θ , and the CA distribution of a tissue sample in one of
the three asocial regions: DλON ,θON , DλOFF ,θOFF , DλSELF ,θSELF . As before, we are using the
asocial regions as references to quantify the effect of changing communication, taking the
minimum across the three references. Therefore, we define:

D̂KL(λ, θ) = min(DKL(Dλ,θ , DλON ,θON ), DKL(Dλ,θ , DλOFF ,θOFF ), DKL(Dλ,θ , DλSELF ,θSELF )) (16)

as our metric of change in tissue composition.
We found that changes in tissue composition range between 0 and 72, approximately

the full range of values (Figure 4f). Lower values are more frequently observed. As expected,
the 36% of tissues that showed no change in cellular behavior also show no change to tissue
composition (Figure 4g). For the other 64% of tissues, there is a mixed relationship between
the likelihood of cellular change and changes in tissue composition. In some tissues,
there is a clear positive correspondence (Figure S5a). In others, there seems to be little
change in tissue composition regardless of changes in cellular behavior (Figure S5b). Most
interestingly, some tissues have little change in tissue composition until some percentage of
cells switch behavior (Figure S5c).

Overall, tissue composition is clearly a function of the signaling parameters (Figure 4h–j).
The broad regions of asocial and social behavior in the parameter space are reflected in
the shifts of tissue composition. Even so, the response of each tissue is unique, with
diversity across and within tissues. The same three general trends observed for changes in
cellular behavior (flat, single peak, double peak) are also observed for changes in tissue
composition. In many cases, the tissue composition of the ON, OFF, or SELF regions is
observed in the social regions, minimizing the communication parameter space where
distinct tissue compositions can occur (Figure S2b). Looking across all of the tissues, we
find that, on average, tissue composition changes most rapidly as the effective interaction
distance increases beyond a single cell, peaking by λ = 3 and then leveling out (Figure 5b).

Does the diversity of a tissue depend on communication?
Taking a different approach to measuring tissue composition, we also analyzed the

diversity within tissues. Population diversity is a functionally important property of
cellular populations, and is tightly regulated, whether for generating homogeneity or
heterogeneity [3,9,21]. Using the CA distributions of tissue samples, we calculated the
entropy of the distribution as a measure of diversity—completely homogeneous tissue
samples having the lowest entropy and tissue samples with an even distribution of every
CA having the highest entropy. Tissue diversity is defined as:

Hλ,θ = −
M

∑
i=1

di
λ,θ log(di

λ,θ). (17)

First, we examined the specific case of homogeneous tissue samples, in which Hλ,θ = 0.
We found a clear trend between the fraction of tissue samples that are homogeneous and
the degree of communication (Figure 9a). At λ = 1, there is an immediate decrease in the
number of tissues with only one cell type observed at that λ. This is the λ value at which
social communication begins in our parameter space. Remarkably, it is also the global
minimum of the fraction of homogeneous tissues. As the effective interaction distance and
receptor activation threshold are increased along the curve, the fraction of homogeneous
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tissues increases. Notably, this fraction is both highest and lowest within the social regions,
but peaks or dips at a low λ value (Figure 9b).

Figure 9. Fraction of tissue samples that are homogeneous as a function of λ and θ. (a) heatmap
of fraction of homogeneous tissues as a function of λ and θ; (b) maximum (solid) and minimum
(dashed) fraction of homogeneous tissues at each λ value, split by asocial (blue) and social (red)
regions. Both (near) global max and global min occur in social regions at λ ≤ 2.

For heterogeneous tissue samples, we found that communication has a strong effect
on tissue diversity. While the tissue samples in the asocial and social regions have a
similar distribution of entropy values, social tissue samples exhibit more entropy values per
tissue and a 60% increase in the maximum entropy as compared to asocial tissue samples
(Figure 4k). Tissue entropy in social tissue samples take values that are higher, lower,
and/or the same as in asocial regions, varying along λ, θ curves (Figure 4n,o).

We also briefly investigated the spatial heterogeneity in the tissues by visualizing the
cells in the tissue samples as cubes colored by a cellular attractor. While many tissues did
not have qualitatively notable spatial patterning (not shown), some displayed distinctive
patterning (Figure S6) resembling the reaction–diffusion patterns observed in biological
tissues [53]. This spatial patterning was highly dependent on the signaling parameters.

4. Discussion

Communication is a key component of living systems, providing a means by which
cells can coordinate their activities to achieve collective goals and accomplish complex
functions. Understanding the range and magnitude of the effects of communication
within populations advances our understanding of how communication systems have
evolved and how they function in extant organisms. It also advances our ability to modify,
manipulate, and repair existing or synthetic systems. In this work, we have used an in
silico model of three-dimensional cellular populations to explore the effects communication
can have on cellular and population behavior. In order to capture the interplay between
intercellular communication and intracellular systems capable of diverse behavior, we
modeled cellular dynamics using random Boolean networks. Boolean networks have
been successfully utilized to capture cellular dynamics with multiple stable behaviors,
including the transition into or between behaviors upon external perturbation [46,47,54–56].
However, BNs are limited as mechanistic models of the hierarchical differentiation that
occurs in multicellular organisms. Many key features of gene regulation, such as epigenetic
regulation, enhancer-based transcription, and non-switch like reactions, are not captured
by the BN formalism and thus limit the behaviors that it can model [57]. Though we
do not focus on demonstrating the full extent of differentiation here, these limitations
should be noted as caveats to the application of our results to specific eukaryotic systems.
Overall, by modeling an abstracted system, we aimed to explore the generalized effects of
communication without focusing on the details of cellular biology and without the bias of
systems evolved for specific functions.

We focused on two signaling parameters, the effective interaction distance between
cells, λ, and the receptor activation threshold, θ. These parameters have previously been
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shown to affect the degree of communication between cells [43,44]. In addition, both
parameters are variable within and between populations [58–60]. The effective interac-
tion distance between cells can be altered by the biochemical properties of the signaling
molecule, binding properties of the signal receptor, and the contents of the extracellular
environment, all of which can influence the stability, concentration, and diffusion rate of
the signal molecule. The receptor activation threshold can be altered by the biochemical
properties of the receptor and the level of receptor expression by the cell, both of which can
change the likelihood of receptor activation in the presence of signaling molecule.

Using our model, we have shown that signaling by cells does not guarantee com-
munication, in which a signal sent by one cell can alter the receptor response of another
(Figure 3a). Moreover, depending on λ and θ, cells can exhibit very different social de-
pendencies. They can be completely asocial, either with receptors always ON/OFF or
solely dependent on self-generated signal. Alternatively, they can be social, either with
receptor activation only dependent on neighbor-generated signal or on some combination
of self- and neighbor-generated signal. Similar signaling categories have been shown by
Maire et al. [44] who explored the role of the secretion rate and receptor activation thresh-
old in a similar framework. Thus, changing λ and θ are possible mechanisms by which
populations that use the same signaling framework can exhibit different levels of social
dependency.

When biological cells do communicate, they coordinate by regulating cellular behavior
within the population. Thus, cells utilize external signals as cues for changing their behavior.
We found that the fraction of cells within our simulated populations that change behavior
due to communication is highly variable with λ and θ (Figure 4a). It is decreasingly likely
to observe larger fractions of cellular change, with many tissues showing no changes at all.
This demonstrates the relative influence of the internal dynamics of the cell compared to
the external social influence of the population. Thus, both the signaling parameters and
internal cellular networks must meet certain criteria for social interdependence to occur
between cells. Considering that the single receptor node is competing with the influence of
multiple regulatory nodes to determine cellular dynamics, it is reasonable that stronger
receptor influence on cell behavior would be increasingly rare.

One consequence of the external influence from other cells is that the set of behaviors
that cells can exhibit is not consistent between cells within asocial and social signaling
environments. Cellular behaviors can be lost or gained due to cell–cell communication
(Figure 7a,b). Interestingly, Damiani et al. [61] showed that new behaviors can also arise in
communicating populations when changing coupling strength, i.e., the number of unique
signals used in communication. Fundamentally, these findings mean that asocial and social
cellular populations are operating within distinct sets of functionalities. That is, cells can
not only use cell–cell communication to coordinate the expression of different cellular
behaviors, but to define what behaviors are even possible within asocial or social settings.
One repercussion of this is that disrupting communication in social populations can either
result in the removal of social-specific behaviors or the appearance of asocial-specific
behaviors. Similarly, introducing communication to an asocial population can result in the
loss of certain behaviors or the appearance of unpredicted behaviors. Further examination
of how distinct cellular behaviors can arise in social populations showed that they can
either be variants of asocial behaviors, combinations of asocial behaviors, or completely
distinct from asocial behaviors (Figure 8a). Since cellular behaviors are often linked to
specific functions, these categories may have functional significance. Specifically, social
behaviors that are variations or combinations of asocial behaviors may be functionally
similar and social behaviors that are distinct may have distinct functions. By generating
these novel behaviors, cell–cell communication could be producing alternative cellular
functions rather than simply triggering them to occur. Notably, since our work involved
randomly generated cellular networks, our results show that the loss and gain of cellular
behaviors is an emergent property of populations in which cells communicate rather than a
product of evolutionary fine-tuning.
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While the behavior of individual cells is regulated by intercellular signals, cell–cell
communication is ultimately a population phenomenon. As such, population-level prop-
erties are also regulated by communication as a culmination of cellular level changes. In
this work, we focused on the distribution and diversity of cellular behaviors within a tissue
(tissue composition, tissue diversity) as population properties that are often important in
achieving collective behavior, especially division of labor. We have shown that both tissue
composition and diversity can be tuned by changing the effective interaction distance and
receptor activation threshold (Figure 4f,k). Interestingly, though changes in the behavior of
individual cells is a requirement for changes in tissue composition, the relationship between
the two is not the same for all tissues (Figure S5). Consequently, cellular populations can
have separate control over coordinating cellular behavior and changing the overall makeup
of the population, such as in the case of spatial organization. It may not be functionally
desirable to change which cellular behaviors are expressed, but simply where. We also
showed that, when communication occurs, the percent of behaviorally homogeneous tis-
sues increases with interaction distance (Figure 9b). Relatedly, Damiani et al. [61] showed
that the percent of homogeneous tissues increases with the coupling strength. These find-
ings together indicate that a stronger connection between cells, whether it be through
greater coupling to one cell or more communication partners, can strengthen the synchro-
nization between them. In complete contrast to this, however, we also observed tissues in
which cell–cell communication leads to an increase in behavioral diversity, demonstrating
that communication can equally lead to unifying or diversifying coordination. In terms of
spatial rather than behavioral diversity, we showed that spatial patterning similar to that
observed in reaction–diffusion systems occurs in our tissue models in a communication-
dependent manner (Figure S6). However, we did not observe the regular patterns often
found in biological systems, such as spots or stripes. Our sampling of network rules and
initial conditions may have been too limited to observe these behaviors by random chance.
Similarly, without sampling more initial conditions under the same signaling parameters,
we do not know whether the patterns we did observe are robustly expressed within tissues.
More targeted experiments and quantitative analyses are necessary to further investigate
spatial patterning in this model.

For each of the cellular and tissue properties we have discussed, we have found that
not only do different tissues have different responses to changing cell–cell communication
parameters, but that a single tissue is capable of distinct responses within the social regions
of the λ, θ signaling parameter space. However, there is one overarching trend that can
be seen across both cellular and population metrics. As the neighborhood of interaction is
extended beyond two neighboring cell lengths, there is a diminishing response to cell–cell
communication. On average, both the sharpest change and greatest magnitude of response
is observed within this range. Effectively, populations of cells do not need to interact
beyond a range of one or two cells to utilize the range of effects we have demonstrated here.
Since the same signal is generated by all neighbors, regardless of distance, it is reasonable
that the quality of cellular and population behavior would not depend on the distance the
signal has traveled. This quality may extend to other properties resulting from cell–cell
communication.

Overall, there is a clear difference between the cellular and population behavior of
communicating and non-communicating populations. Due to the small sample size of
tissue BNs that were simulated (100 of 1010 Boolean networks), more simulations would be
necessary to fully demonstrate the robustness of this observation. However, genetically
diverse populations all exhibit the same set of trends in their response to cell–cell commu-
nication, indicating that we have captured nontrivial behavior. Within the general trends,
there is still flexibility in the specific responses of different populations across cellular and
population properties, though the factors responsible for this diversity are unclear. It may
be that the tissues are inherently capable of different responses due to network structure
and dynamics. Alternatively, it may be that all tissues are capable of similar responses, but
we have only observed the outcome of a single initial condition. Further simulations and
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network characterization are necessary to explore these possibilities. For any particular
tissue, cellular populations can switch between broad types of asocial and social behavior
by tuning their signaling parameters. Even within social populations, there is heterogeneity
and flexibility in response to different values of the signaling parameters. Furthermore,
in real cellular populations, the properties of signaling molecules can vary across space
and time. Different signaling molecules will also have their own properties. Thus, social
behavior within a single population is spatially and temporally dynamic and functionally
modular. Additionally, external factors may modify signaling parameters, allowing for cells
to utilize environmental cues to alter their behavior or for an external agent to manipulate
the system. This diversity enables specialization for the unique selective pressures of any
given population, tuning their signaling parameters over both the lifetime of a single cell
and evolutionary time.
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Appendix A. Analysis of Social Boundary Curves

The diffusion equation for the concentration of molecule m at the surface of cell i is
given by:

∂Ci/∂t = D∆Ci − γCi + η(xi,S)/Vc (A1)

where Ci is the concentration at cell i, D is the diffusion coefficient, γ is the rate of degra-
dation, η(xi,S) is the secretion rate of cell i, and Vc is the volume of a cell. If we assume
that cells are identical spheres and that boundary conditions are not periodic, then the
steady-state concentration, Ĉi, is given by:

0 = D∆Ĉi − γĈi + η(xi
S)/Vc (A2)

which has the solution

Ĉi(xj,S) =
N

∑
j=1

η(xj,S)

4D(1 + 1
λ )
× 1

rj
× e

−(rj−R)
Rλ (A3)

taking the form of a sum of molecule m that was secreted by each cell j and has diffused to
the location of cell i [44]. N is the number of cells within the population, rj is the distance
from the center of cell j to the surface of cell i, and λ =

√
D/γ/R is the effective interaction

distance. If we separate the contributions of cell i and all other cells j, j 6= i, we obtain:

https://www.mdpi.com/article/10.3390/e25020319/s1
https://www.mdpi.com/article/10.3390/e25020319/s1
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Ĉi(xi,S, xj,S) = ĈS
i (xi,S) + ĈN

i (xj,S) (A4)

where the contribution of cell i to Ĉi is

ĈS
i (xi,S) =

η(xi,S)

4D(1 + 1
λ )

(A5)

and the contribution of all neighbor cells j to Ĉi is

ĈN
i (xj,S) = ∑

j 6=i

η(xj,S)

4D(1 + 1
λ )
× 1

rj
× e

−(rj−R)
Rλ (A6)

To determine the boundaries of social behavior in our model, we consider a tissue in which
R, D, γ, and rj are constant and all cells j, except cell i, have the same value for xj,S. That is,
xj,S = 1 or xj,S = 0∀j 6= i. Thus, we can further simplify ĈS

i (xi,S) and ĈN
i (xj,S) to:

ĈS
i (xi,S) = β× η(xi,S) (A7)

and

ĈN
i (xj,S) = β× η(xj,S)δ (A8)

where

β = (4D(1 +
1
λ
))−1, (A9)

and

δ = ∑
j 6=i

1
rj
× e

−(rj−R)
Rλ (A10)

Note that both β and δ are constant due to the static position of all cells. Finally, the
boundaries describing regions A1, A2, A3, S1, S2, and S3 are given by the receptor activa-
tion threshold value at which it equals the different combinations of self- and neighbor-
generated signal, ĈS

i (xi,S) , xi,S ∈ {0, 1} and ĈN
i (xj,S), xj,S ∈ {0, 1}. This gives four

boundary equations:

θ1 = ĈS
i (xi,S = 0) + ĈN

i (xj,S = 0) = β + βδ (A11)

θ2 = ĈS
i (xi,S = 0) + ĈN

i (xj,S = 1) = β + βαδ (A12)

θ3 = ĈS
i (xi,S = 1) + ĈN

i (xj,S = 0) = βα + βδ (A13)

θ4 = ĈS
i (xi,S = 1) + ĈN

i (xj,S = 1) = βα + βαδ (A14)

From this set of equations, we can see that θ1 < θ2 < θ4 and θ1 < θ3 < θ4 will hold for any
values of β, δ , N, and α > 1. To determine the relative positions of θ2 and θ3, we first find
their intersection, given by:

θ2 = θ3 (A15a)

β + βαδ = βα + βδ (A15b)

1 + αδ = α + δ (A15c)

1− α = (1− α)δ (A15d)

1 = δ (A15e)

1 = ∑
j 6=i

1
rj
× e

−rj−R
RλI (A15f)
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where λI is the value of λ at which θ2 and θ3 intersect. If λ > λI then θ2 < θ3 and,
similarly, if λ < λI , then θ2 > θ3. Because θ2 and θ3 are themselves functions of λ,
θ2|λ<λI < θ3|λ<λI < θ3|λ>λI < θ2|λ>λI . A consequence of this relationship is that the
regions described between θ2 and θ3, A2 and S2, do not overlap along either λ or θ axes.
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