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• Periodicity in water consumption and
water quality was studied.

• A flow-imaging particle counter classified
particles by machine learning.

• Contamination event-specific particles are
not detected in normal conditions.

• Selection of suitable particle channels is
an alternative to dynamic baseline.

• Characteristics of artificial contamination
vary from those of aperiodic events.
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Early warning systems monitoring the quality of drinking water need to distinguish between normal quality fluctua-
tions and those caused by contaminants. Thus, to decrease the number of false positive events, normal water quality
fluctuations, whether periodic or aperiodic, need to be characterized. For this, we used a novel flow-imaging particle
counter, a light-scattering particle counter, and electrochemical sensors tomonitor the drinkingwater quality of a pres-
sure zone in a building complex for 109 days. Data were analyzed to determine the feasibility of the sensors and par-
ticle counters to distinguish periodic and aperiodic fluctuations from real-life contaminants. The concentrations of
particles smaller than 10 μm and N, Small, Large, and B particles showed sudden changes recurring daily, likely due
to the flow rate changes in the building complex. Conversely, the concentrations of larger than 10 μm particles and
C particles, in addition to the responses of electrochemical sensors, remained in their low typical values despite flow
rate changes. The aperiodic events, likely resulting from an abnormally high flow rate in the water mains due to main-
tenance, were detected using particle counters and electrochemical sensors. This study provides insights into choosing
water quality sensors by showing that machine learning-based particle classes, such as B, C, F, and particles larger than
10 μm are promising in distinguishing contamination from aperiodic and periodic fluctuations while the use of other
particle classes and electrochemical sensors may require dynamic baseline to decrease false positive events in an early
warning system.
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1. Introduction

Drinking water is essential for public health, and water quality and
safety are ensured by a high-quality raw water source, efficient treatment
processes, and the hydraulic integrity of drinking water distribution
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systems (DWDSs). Even though treatment processes generally produce
water that meets national and international aesthetic, health-based and
other quality criteria, the quality of drinking water may be compromised
in DWDSs for several reasons. These reasons include failures in the physical
integrity of DWDSs (e.g., a pipe break that causes an external contaminant
intrusion), failures in the hydraulic integrity of DWDS (e.g., inability to
maintain pressure and flow rate during maintenance period) (Besner
et al., 2011), and the fact that DWDSs work as physical, chemical and bio-
logical reactors causing water quality to deteriorate during the transport
phase from a drinking water treatment plant (DWTP) to customer taps
(Chen et al., 2020; Fish et al., 2017; Liu et al., 2017).

To detect compromised drinking water quality in real time, an early
warning system (EWS) integrated with an event detection system (EDS)
can be established by utilizing online monitoring technologies and event
detection algorithms instead of laborious, infrequent, and time-lagged
grab sample analyses. Online water quality monitoring technologies com-
monly used in the routine monitoring of DWDSs and considered suitable
for EWS include conventional sensors, such as conductivity, oxidation-
reduction potential (ORP), chlorine concentration, pH, and turbidity
(Dejus et al., 2018; Liu et al., 2014b; Storey et al., 2011). For instance, tur-
bidity is a sum parameter for suspended particles, but it cannot characterize
suspended solids to gain knowledge about the origin and behavior of the
particles (Pronk et al., 2007), which may be beneficial for contamination
detection due to potential water quality compromising scenarios involving
particles, either chemical precipitates, microorganisms or their aggregates.
More advanced methods have emerged in drinking water contamination
studies to address the shortcomings of conventional sensor technologies, in-
cluding spectroscopy (especially fluorescence) (Sorensen et al., 2018a,
2018b; Stedmon et al., 2011) and optical counting technologies such as
flow cytometry (Besmer et al., 2017; Favere et al., 2020) and particle
counting (Ikonen et al., 2013, 2017). Flow cytometry and a state-of-art ap-
plication of particle counting, flow-imaging, are capable of high-frequency
monitoring of suspended particles and they not only measure the number
and size distribution of particles but also give an indication of microbial
presence within these particles through either selective staining (flow
cytometry) (Safford and Bischel, 2019) or particle morphology (flow-
imaging) (Højris et al., 2016, 2018). Flow-imaging based on the machine
learning analysis of images of particles is likely to be more robust and
requires less maintenance than flow cytometry (Højris et al., 2016;
Koppanen et al., 2022).

Continuous monitoring of water quality with different sensors can cap-
ture the short-term water quality fluctuations of a DWDS depending on the
sensor. These fluctuations can be divided into periodic patterns, such as
daily patterns that recur daily, and aperiodic events such as discoloration
events, which refer to occasional events in which mobilized particle mate-
rial on pipes leads to visible water discoloration. Previously, daily quality
patterns associated with daily hydraulic changes (especially flow rate)
were observed for several water quality sensors, including particle counters
(Prest et al., 2021; Vreeburg et al., 2008), turbidity (Mounce et al., 2015;
Sunny et al., 2020), conductivity, chlorine concentration and pH (Aisopou
et al., 2012). However, these studies did not determine the range and distri-
bution of periodic patterns, even though the processes of DWDSs are known
to be stochastic by nature, nor did they compare the sensor responses to
each other, such as particle characteristics and chemical parameters. Aperi-
odic events, such as discoloration events, are also typically related to
hydraulic changes in flow rate, as a disturbance in hydraulic integrity by
operational hydraulic changes may lead to exceptionally high flow veloci-
ties (shear stress)mobilizing an atypical proportion of accumulated particle
material. Although discoloration events have been captured using turbidity
sensors and particle counters and characterized reasonably well (Husband
and Boxall, 2016; Mounce et al., 2015; Sunny et al., 2020), there are few
studies of aperiodic events in which visible changes are not detected com-
pared with discoloration events. It has been shown that water quality fluc-
tuations, whether periodic or aperiodic, make it difficult to distinguish
actual contamination events from these quality fluctuations (Housh and
Ohar, 2017; Koppanen et al., 2022; McKenna et al., 2013). Thus, creating
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a dynamic baseline has been suggested (Favere et al., 2021), such as com-
bining a hydraulic and water quality model with EDS (Housh and Ohar,
2017; Oliker and Ostfeld, 2015) in addition to monitoring parameters
that do not respond to normal water quality fluctuations (Koppanen et al.,
2022). Real-time hydraulic and water quality modeling is usually not avail-
able due to the insufficient availability of data, aside from the fact that
water quality fluctuations are neglected in signal-processing based EDS
studies (Housh and Ohar, 2017). Therefore, it is important to continue de-
veloping signal-processing-based EDS by studying the characteristics of
water quality fluctuations. In addition, drinking water contamination stud-
ies typically rely on artificially produced normal water quality fluctuations
(Housh and Ohar, 2017) or on setups that attenuate these fluctuations
(e.g., a large tank between the distribution system and sensors) (Dejus
et al., 2018; Ikonen et al., 2017). Thus, it is important to be able to compare
periodic, aperiodic and contaminant fluctuations. To the best of our knowl-
edge, no studies have reported periodic and aperiodic water quality fluctu-
ations and fluctuations caused by actual contaminants using the same
measurement setup.

The objective of the present study was to assess the feasibility of differ-
ent online electrochemical sensors and particle counters to distinguish
drinking water contamination from its periodic quality patterns and aperi-
odic events occurring in DWDS. For this purpose, the characteristics of pe-
riodic water quality patterns and aperiodic events were determined in the
studied building complex in addition to the responses of simulated contam-
ination tests. The study was performed using a set of electrochemical water
quality sensors, a novel flow-imaging particle counter, and a more typical
light-scattering particle counter to monitor drinking water quality for
over 15 weeks.

2. Materials and methods

2.1. The study area and its monitoring

The study area was the pressure zone of a DWDS in a suburb with ap-
proximately 25,000 inhabitants including a university campus (10,000 stu-
dents and 2000 employers), a science park and a water tower in Tampere,
Finland (Fig. 1). The study was conducted from June 3 to July 16 (43 days)
and from September 22 to November 26 (66 days) in 2020. During that
time, many people were working from home due to the COVID-19 restric-
tions. The pressure zone is typically pressurized through the primary pres-
sure booster station, the water of which is acquired from Lake Roine and
treated in the primary DWTPwith a capacity of 50,000m3/d. Occasionally,
due to the maintenance shutdowns of the primary DWTP, the secondary
DWTP with the same capacity produces water for the pressure zone from
Lake Näsijärvi and the water is pressurized in the secondary pressure
booster station.

The water flow rate in the study area was monitored in five locations:
the primary DWTP, the primary and secondary pressure booster stations,
a university building (representing a building complex), and a water
tower. Hydraulic data were measured using the supervisory control and
data acquisition system of the water utility (primary DWTP and pressure
booster stations) or property maintenance (university building) at 60-min
intervals.

Water quality was monitored in the university building and water
tower. In the water tower, water quality was monitored in the inlet/outlet
of the tower using a flow-imaging particle counter. In the university build-
ing, water quality was monitored with a set of electrochemical sensors
(later referred to as the sensors) and flow-imaging and light-scattering par-
ticle counters installed in a test environment consisting of two lines. Drink-
ing water continuously flowed through the lines, with a constant flow rate
of 5500mL per line and a retention time of 1min from the tap to the sensors
and particle counters. The test environment was also used for short-term
contamination studies (Koppanen et al., 2022), but the present study uti-
lized previously unpublished drinking water quality data measured outside
the days of contaminant injections. The electrochemical water quality
sensors (Endress+Hauser, Switzerland) used were ORP, free chlorine



Fig. 1.A simplified representation of the study area including themonitoring locations. The pipe distance between the primary pressure booster station and the primarywater
treatment plant was approximately 1.2 km,with 100% of the pipes being asbestos cement. The pipe distance between the primary pressure booster station and the university
building was approximately 1.4 km, with 70 % of the pipes being ductile iron and 30 % were asbestos cement. The pipe distance between the university building and the
water tower was approximately 2.3 km, with 100 % pipes of the pipes being ductile iron.
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concentration, conductivity, and pH. The flow-imaging particle counter (a
development version of the Qumo water quality monitoring station,
Uponor Corporation, Finland) was a holographic microscopy-based online
particle counter that uses machine-learning methods to determine the fol-
lowing six particle classes: N, B, C, F, Small, and Large. The N particle
class depicts the total concentration of particles. The B, C, and F particle
classes were based on a hybrid machine learning model that combined sev-
eral deep neural networks, trained previously with stormwater contamina-
tion data not included in this work (Uponor R&D). In the B particle class,
particles are typically larger than 3 μm, irregularly shaped, and observed
in the mobilized particle material of drinking water pipe walls. The C parti-
cle class consists of larger than 3 μm particles that are found in wastewater
and stormwater. The F particle class consists of elongated fiber-like
particles. The Small and Large particle classes were related to size with
Small indicating particles <1 μm and Large indicating particles larger
than 2 μm. The light-scattering particle counter (PAMAS Partikelmess-
und Analysesysteme GmbH, Germany) had the following eight channels
for different particle sizes: 0.5–0.7, 0.7–1, 1–2, 2–5, 5–10, 10–15, 15–20,
and > 20 μm.

2.2. Determination of fluctuations and periodic patterns for water flow rate and
quality

Water flow rate and quality data were preprocessed for further data
analysis by merging the data from both study periods into one combined
dataset and, in the case of water quality data, by manually or automatically
removing the sensor/particle counter and equipment maintenance periods
and other arbitrary measurement artifacts. The arbitrary measurement arti-
facts were identified by going through the data week by week and compar-
ing the days of the week (Monday–Sunday) with each other between the
weeks, or by utilizing the self-diagnostic features of the flow-imaging parti-
cle counter and removing them from the combined dataset. The automatic
removal of measurement artifacts was implemented for the light-scattering
particle counter channel of 0.5–0.7 μm as it occasionally involved periods
of 5-min artifacts (values up to 800,000 particles/mL) repeating every
5 min probably due to air bubbles entering the measurement channel.
3

These short measurement artifacts were removed using amovingminimum
with a window of 10 min using the Rolling.min rolling window function in
the Python (v. 3.8.3) library Pandas (v. 1.05).

The flow rate and water quality sensor/channel fluctuations were ana-
lyzed statistically by determining two parameters that describe close to
the median and extreme fluctuations. The presence of close-to-median fluc-
tuations was assessed by calculating the relative dispersion of the flow rate
and sensor/channel responses, that is, the quartile coefficient of dispersion
in which the differences of the 75th and 25 percentiles were divided by the
sum of the 75th and 25th percentiles (Bonett, 2006). The resulting ratios
are unitless, thus making the responses of flow rate and different sensors/
channels comparable with each other. The higher the dispersion ratio, the
higher the dispersion of the response. The presence of extreme fluctuations
and their frequency in the dataset were assessed using the ratio of extreme
percentile values. The ratio of the 90th and 99.5th percentiles–90/99.5
ratio–was calculated, similar to the study of Vreeburg et al. (2008), to esti-
mate the sudden extremely high values of the responses of the flow rate and
all the sensors/channels. The 90/99.5 ratio decreases when the difference
between the 90th and 99.5th percentiles increases, indicating a higher var-
iation in high values. The ratio of the 0.5th and 10th percentiles–0.5/10
ratio–was calculated to estimate the number and density of sudden ex-
tremely low values for the following parameters: flow rate, free chlorine
concentration, and ORP. Similar to the 90/99.5 ratio, the 0.5/10 ratio
decreases when the difference between the 0.5th and 10th percentiles
increases, indicating higher variation in low values.

The patterns were determined using weekday and weekend scales to
study how the time scale affected the periodicity and variation of the re-
sponses, and how the water flow rate was compared with the responses
ofwater quality sensors/channels. The dataset was divided into two groups,
namely, weekdays (Monday–Friday) and weekends (Saturday–Sunday),
which were visualized, and their hourly distributions (25th, 50th, and
75th percentiles) were calculated and visualized. To create a typical weekly
pattern, each combined dataset was divided into seven subsets, each cover-
ing one day. These seven subsets, for example, Mondays, were divided into
24 subsets of 1 h. A pattern for each day of the week was calculated by de-
termining a median response (50th percentile) for these 60-min subsets. To

Image of Fig. 1
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obtain comprehensive insights into the distribution of these subsets and to
assess the characteristics of the periodicity of the data, the 25th and 75th
percentiles, which constituted the middle 50 % of sensor responses, were
calculated for each 60-min subset. This processing of 1-h subsets standard-
ized different measuring intervals between the sensors without the need for
actual resampling.

2.3. Effects of aperiodic and contamination events on water quality

The water quality was monitored, and the dataset was analyzed during
two aperiodic events related to the shutdown of the primary DWTP and the
usage of the secondary water source to producewater for the pressure zone.
Water from the secondary DWTP was conveyed to the area through a sec-
ondary pressure booster station. The use of a secondary booster station
led to hydraulic changes in the studied DWDS. The water utility informs
the residents of possible temporary drinking water discoloration when the
secondary booster station is used. In the first event (Event 1), a pipe leak
was observed in the proximity of the raw water pump site on June 18,
while the second event (Event 2) was related to the maintenance shutdown
of the primary DWTP due to the renovation of the technical processes of the
plant on October 29.

The artificial contaminants were studied in a test environment with two
lines; one line was used to examine drinking water quality, as presented
above, while contaminants were injected into the other line. Both lines
contained the electrochemical sensors and particle counters, as described
in Section 2.1. The contaminant injections studied were stormwater 0.5 %
(v/v) (undiluted characteristics: pH = 7.1, ORP = 356 mV, conductivity
= 120 μS/cm, turbidity = 68 NTU, total suspended solids = 18 mg/L),
wastewater 0.03 % (v/v) (undiluted characteristics: pH = 7.6, ORP =
118 mV, conductivity = 855 μS/cm, turbidity = 140 NTU, total suspended
solids = 168 mg/L), and well water 0.3 % (v/v) (undiluted characteristics:
pH = 6.9, ORP = 122 mV, conductivity = 632 μS/cm, turbidity = 122
NTU, total suspended solids = 24 mg/L). The data of each sensor/channel
response during contaminant injections (each lasting for approximately 30
min)were compared to periodic and aperiodic water quality fluctuations de-
termined based on the 109 days study period.

2.4. Water quality parameter distributions and false positive rate calculation

Themeasuredwater quality sensor/channel distributions under normal
operation conditions, Events 1 and 2, stormwater, wastewater, and well
water injections were visualized as a letter-value box representation
(Hofmann et al., 2017) created using the seaborn visualization library
(Waskom, 2021).

To estimate the reliability by which the artificial contaminations could
be distinguished from normal periodic fluctuations and Events 1 and 2, a
false positive rate (FPR) was calculated for each combination of contami-
nant concentration and response of the sensor/channel based on the ex-
pected response direction. FPRincrease or FPRdecrease was calculated based
on whether the sensor/channel response was likely to increase or decrease
due to a contaminant injection, respectively, as follows:

FPRincrease ¼
Ncref > ccont

N
; ð1Þ

FPRdecrease ¼
Ncref<ccont

N
; ð2Þ

where the number of data points (N) measured during the reference period
(normal operation, Events 1, or 2), under the condition that the measured
concentration cref exceeds or falls below the mean concentration ccont dur-
ing the contamination injection, is divided by the total number of data
points N in the reference period. Therefore, FPR shows the probability
that either normal quality fluctuations or a discoloration-like event
similar to Event 2 would have caused a greater response than artificial con-
tamination. By using the maximum acceptable FPR of 0.5 %, the most
4

suitable water quality sensors/channels for detecting contaminants can be
selected.

3. Results and discussion

To determine the normal periodic pattern characteristics
(i.e., periodicity, distribution and range of fluctuations in sensor/channel
responses), water quality and flow rate patterns (Fig. 2) were studied. The
patterns were derived from 15 weeks of flow rate and water quality data
(79 days between Monday and Friday and 30 days between Saturday and
Sunday) in the studied pressure zone. The monitoring period included
two aperiodic events caused by hydraulic disturbances that altered the re-
sponses of electrochemical sensors and particle counters. To distinguish
the sensor/channel responses caused by contamination from aperiodic
and periodic water quality fluctuations, sensor/channel responses to all
three cases were analyzed statistically.

3.1. Short-term periodic fluctuations in normal conditions

The periodic flow rate patterns of the pressure booster station and the
university building were analyzed to interpret the flow rate characteristics
leading to periodic water quality patterns and to provide a more compre-
hensive understanding of the pressure zone (Fig. 1). The changes in water
quality measured by electrochemical sensors and particle counters in the
university building were analyzed to study the characteristics of periodic
fluctuations.

3.1.1. Water flow rate
The outflow of the primary booster station showed a double peak

periodic pattern (Fig. 2B), in which flow rate was the highest (typically
300 m3/h) at around 12:00 and again at around 22:00. The filling of the
water tower during the night (00:00–06:00) could be observed as a rela-
tively high flow rate in the periodic pattern. In general, the water flow
rate pattern varied more on weekdays than on weekends. On weekdays,
the 0.5/10 ratio of the flow rate was considerably lower, and the quartile
coefficient of the dispersion was higher than on weekends (Table 1), indi-
cating a higher variation in extremely low values (sudden flow rate spikes
close to zero) and in the middle 50 % values in the primary booster station.
The shape of the flow rate pattern in the university building was different
from that of the primary booster station, peaking typically at 1.3–2.0 m3/h
at around 12:00 on weekdays (Fig. 2A). At night (18:00–07:00) and on
weekends, the flow rate was typically 0.7–0.8 m3/h, to which the consump-
tion caused by the test environment (0.72 m3/h) contributed almost all.
Based on the water flow patterns, the water qualitymonitored in the univer-
sity building during nights and weekends represented the water quality of
the DWDS. During daytime onweekdays, thewater qualitywas also affected
by the changes in water consumption in the distribution system (opening
and closing of valves) of the university building. Thus, in the following,
water quality fluctuations are compared, considering the differences in
these two main periods.

3.1.2. Water quality
In the university building, the electrochemical sensors, including free

chlorine concentration, ORP, conductivity, and pH, generally revealed peri-
odic water quality patterns in their responses when the middle 50 % was
determined (dashed and solid line in Figs. 2C–2F), although the middle
50 % and variation in the extreme values were relatively low, especially
for ORP, conductivity, and pH (Table 1). The daily periodicitywas observed
on weekdays, for example, as an increase in the response of free chlorine
concentration and ORP between 08:00 and 16:00, followed by a decrease
until 08:00 the next morning. On weekends, the increase in responses
was observed between 13:00 and 18:00, and the largest decrease was at
around 12:00. The pattern of pH was inversely proportional to those of
the free chlorine concentration and ORP. The response of conductivity
was 1–2 μS/cm higher during work hours (8:00–18:00) than outside
of them.



Fig. 2. The flow rate (university building, primary pressure booster station), electrochemical sensor responses measured in the university building (free chlorine
concentration, oxidation-reduction potential (ORP), conductivity, pH), responses of the flow-imaging particle counter channels (N, Large, C), and light-scattering particle
counter channels (0.5–1 μm, 1–5 μm, 5–20 μm) measured in the university building shown as weekday and weekend patterns. All data are depicted in gray. The dashed
line (–) represents the 25th and 75th percentiles, and the solid line (−) represents the 50th percentile of the data. The weekdays and weekend labels are aligned with
midday (12:00).
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Using both studied particle counters, the concentrations of the particles
in each measurement channel showed periodic responses with the highest
fluctuations on weekdays (Table 1), centering around 12:00. However,
the particle concentrations also fluctuated to some extent during nighttime
and weekends when the flow rate in the university building was close to
constant (Fig. 2G–L), suggesting changes in the water quality of the water
mains of the DWDS. In addition to the patterns of the particle size classes
of the light-scattering particle counter between 1 and 10 μm, the patterns
5

of particle classes N (similar pattern to that of Small class; see Fig. S1D),
Small, Large, C, and B (similar pattern to that of Large class; see Fig. S1E)
of the flow-imaging particle counter seemed to follow the flow rate pattern
of the university building (Fig. 2A). The following shows the similarity of
the particle class and flow rate patterns: sudden extreme spikes occurred
in the concentrations of N, Small, Large, B classes and 1–10 μm size classes
between 09:00 and 16:00 on weekdays when the flow rate was twofold
compared with weekends when such particle spikes were not observed as

Image of Fig. 2


Table 1
The ratio between the 90th and 99.5th percentiles (the ratio between the 0.5th and 10th percentiles in brackets) and the quartile coefficient of dispersion in different flow
rates and water quality sensor responses. The lower the 90/99.5 ratio or 0.5/10 ratio, the higher the variation in extremely high or low values, respectively. The quartile
coefficient of dispersion shows a relative statistical dispersion based on the 25th and 75th percentiles (lower values indicate lower relative dispersions).

90/99.5 ratio
(0.5/10 ratio for the flow rate, free chlorine
concentration, oxidation-reduction potential)

Quartile coefficient of dispersion
(75th percentile - 25th percentile) /
(75th percentile +25th percentile)

Weekday Weekend Weekday Weekend

Flow rate
University building inflow 0.76 (0.625) 1 (1) 0.31 0.07
Primary pressure booster station 0.83 (0.01) 0.93 (0.79) 0.26 0.08

Electrochemical sensors
Free chlorine concentration 0.65 (0.62) 0.86 (0.87) 0.12 0.14
Oxidation-reduction potential 0.98 (0.98) 0.99 (0.99) 0.013 0.016
Conductivity 0.990 0.994 0.005 0.007
pH 0.996 0.996 0.007 0.005

Flow-imaging particle counter
N 0.065 0.89 0.57 0.34
Small 0.22 0.74 0.43 0.27
Large 0.11 0.70 0.41 0.30
B 0.05 0.70 0.86 0.84
C 0.21 0.15 1 1

Light-scattering particle counter
0.5–0.7 μm 0.34 0.69 0.32 0.16
0.7–1 μm 0.11 0.47 0.39 0.27
1–2 μm 0.04 0.83 0.50 0.21
2–5 μm 0.03 0.70 0.53 0.40
5–10 μm 0.03 0.55 0.63 0.33
10–15 μm 0.06 0 Undefined Undefined
15–20 μm 0 Undefined Undefined Undefined
>20 μm 0 0 Undefined Undefined

Undefined = division by zero
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often. The responses of the smallest size classes of 0.5–1 μmwere different
from those of the 1–10 μm size classes since they also showed spikes on
weekends. The 90/99.5 ratio of the C particles was similar between week-
days and weekends (0.21 and 0.15, respectively), aside from its relatively
low concentration (middle 50 %: 0–0.4 particles/mL) throughout the day,
suggesting that the periodic flow rate of the primary pressure booster
station or the university building did not alter the concentration of the C
particles. The middle 50 % concentration of the F particles was
even lower than that of the C particles, but it manifested spikes up to 300
particles/mL, centering at around 12:00 (Fig. S1H).

The findings of the present study suggest that among the studied online
monitoring technologies, particle counters are better suited to monitor pe-
riodic water quality changes related to flow rate changes in DWDSs than
electrochemical sensors. In particle counters, particles 1–10 μm and ma-
chine learning-based particle channels, including N, Small, Large, and B,
seem to be the most feasible to follow periodic water quality fluctuations
in normal DWDS conditions. In these normal operation conditions, equilib-
rium between the liquid (bulk water) and solid phases (suspended solids,
pipe wall biofilm, and loose deposits) is sustained throughout the DWDS
(Chen et al., 2020). This is referred to as the accumulation–mobilization
process, in which the higher flow rate causes higher shear stress to the
pipe walls, mobilizing the particle material that accumulated on the pipe
walls during lower flow rates (Sunny et al., 2020). The periodic suspended
solids are directly related to drinking water quality, since their presence
may increase the risk of discoloration of water (Mounce et al., 2015;
Sunny et al., 2020; Vreeburg et al., 2008). Moreover, suspended solids pro-
vide a surface area for the attachment ofmicroorganisms and act as a source
of nutrients to them, possibly increasing their growth potential in the
DWDS (Liu et al., 2014a). The results of the present study show, that even
if the sudden extreme changes caused by the building complex flow rate
mobilize the particles, they do not affect the responses of the electrochem-
ical sensors (i.e., conductivity, free chlorine concentration, pH and ORP).
This is because the electrochemical characteristics of drinking water
typically depend on disinfection practices, as the amount and efficiency of
chlorine in DWDS are controlled by water residence time, pH, and chlorine
decay rate (Polycarpou et al., 2002) and the effect of the accumulation–
6

mobilization process (i.e., sudden changes in these characteristics) has
likely been very small. However, if the mobilized material is oxidized by
chlorine, the concentration of chlorine and the responses of other electro-
chemical sensors may be more affected.

3.2. Hydraulic disturbances cause aperiodic fluctuations

The effects of hydraulic disturbances and water source changes caused
by maintenance work on water quality as aperiodic fluctuations were stud-
ied on three occasions (referred to as Events 1A, 1B, and 2) in the university
building and the water tower to illustrate the propagation of aperiodic fluc-
tuations in the pressure zone. During these events, the secondary pressure
booster station was used to pump water to the pressure zone, either up to
a flow rate of 200 m3/h (Event 1B, 2) or 120 m3/h (Event 1A) (Fig. 3A
and F). The primary DWTP and the primary pressure booster station
stood idle in Events 1A and 2, while they operated simultaneously with
the secondary pressure booster station in Event 1B.

During Events 1B and 2, considerable increases in the N particle concen-
tration from the periodic fluctuations were detected in the university build-
ing. Event 2 was not detected in the water tower, since the water tower was
filled during the night, and Event 2 occurred during the daywhen thewater
flowed out of the water tower (for details on the water tower control, see
Section 3.1). In Event 1B, the N particle concentration increased 4 h after
the initiation of the secondary pressure booster station and showed a
broad spike between 23:00 and 11:00, peaking at 17000 particles/mL, in
the university building and between 22:30 and 07:30, peaking at 11550
particles/mL in the water tower. After Event 1B, the N particle concentra-
tion in the water tower was up to 170 % higher than that of Event 1B for
the next two days. This concentration decreased stepwise when the water
from the DWDS flowed into the water tower everyday between 00:00 and
06:00, until it stabilized at around 1500 particles/mL (data not shown).
Compared to Event 1B, Event 2 had up to a 365%higher N-particle concen-
tration during the period of 10:00–02:00, creating a broad spike in the uni-
versity building. During Event 2, the light-scattering particle counter was
operational, showing an increase in the response of all size channels except
for the 15–20 μm and > 20 μm channels (Fig. S3). Unlike in events with a



Fig. 3. Two captured aperiodic events illustrated by the flow rate of four monitoring locations (primary water treatment plant, pressure booster stations, university building,
water tower), the selected channels of the flow-imaging particle counter (N, B), the light-scattering particle counter (5–10 μm), and the selected conventional sensors (free
chlorine concentration, conductivity) in the university building and thewater tower. Theflow rate of thewater tower has a positive signwhenflow is conveyed into the tower
and a negative sign when flow is conveyed out of the tower. Events were captured on June 18 (Event 1A), June 19–20 (Event 1B), and October 29 (Event 2).

M. Koppanen et al. Science of the Total Environment 872 (2023) 162078
higher flow rate in the secondary pressure booster (Event 1B and 2), in
Event 1A, the N particle concentration increased from 350 particles/mL
to 2000 particles/mL between 21:30 and 04:00, creating a series of broad
spikes observed in the university building. In thewater tower, the N particle
concentration increased from 500 to 600 particles/mL to 2600 particles/
mL during the period of 00:30–06:00. However, the N particle concentra-
tion remained at 1300–1500 particles/mL until Event 1B, since during
that time, the particle counter measured the water leaving the tower. The
concentrations of the B and F particles increased (100 particles/mL and 2
particles/mL, respectively) in Event 2, while these concentrations remained
at their typical low level during Events 1A and 1B. The concentration of the
C particles remained at its typical low level during all events even though
an increase of 1–3 particles/mLwas observed in Event 2 in the same period
as the N particle increase.

The decrease in free chlorine concentration showed similarities be-
tween Event 1A and Event 2 in the university building. In Event 1A, the
free chlorine concentration decreased to 0.06 mg/L in the university build-
ing 2.5 h later than the initiation of pumping from the secondary pressure
booster station, and the concentration remained low for the next 14 h.
Event 2 showed a decrease in the free chlorine concentration from
0.19–0.25 mg/L to 0.1 mg/L between 10:00 and 21:00 (11h). Compared
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with the 14-h and 11-h periods of the low free chlorine concentration in
Event 1A and 2, respectively, Event 1B showed only a decrease in free chlo-
rine concentration to 0.08 mg/L for 5 h, but the residence time was 2.5 h.
The observed conductivity spikes, approximately an increase of 30 μS/cm
for Event 1A and an increase of 5 μS/cm in Event 1B, could be related to
the drinking water originating from the secondary DWTP since it had
slightly a higher conductivity of water, 187 μS/cm on average, compared
with the conductivity fluctuations of the primary DWTP measured in the
university building (Fig. 2E).

The results from the studied events suggest that the responses of the par-
ticle counters, especially the channels related to a smaller particle size
(N, Small, 0.5–10 μm) and conductivity, can be used to determine how
the hydraulic disturbances and possible water source changes caused by
the primaryDWTPmaintenance affectwater quality and how long the qual-
ity changes last. It seems that the flow rate of the secondary pressure
booster station caused increases in particle concentration, since Events 1B
and 2, with a 67 % higher flow rate than 1A, showed considerably higher
particle concentrations than Event 1A and periodic fluctuations. Recent
independent observations of the water utility also support this, since the
water utility personnel have noticed that the use of higher flow rates in
the secondary booster station leads to discoloration in the pressure zone.

Image of Fig. 3
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Conductivity, which can be an indicator of water origin, showed 3.5-h
spikes in Events 1A and 1B, indicating that during these spikes, an abnor-
mal amount of water originated from the secondary DWTP. However, in
Event 1A, it took 10.5 h until the conductivity spike was observed after
the initiation of the secondary booster station while it took only 3 h in
Event 1B. Therefore, it can be speculated that the DWDS between the sec-
ondary booster station and the secondary DWTP probably containedmostly
water from the primary DWTP prior to Event 1A,whereas prior to Event 1B,
the DWDS between the secondary pressure booster station and the DWTP
seemed to contain mostly water from the secondary DWTP, thus leading
to a shorter residence time. In the literature, higher flow rates causing in-
creased shear stress on pipe walls are interpreted as the primary cause of
discoloration events, and water source changes are considered a possible
contributing factor (Husband and Boxall, 2016).

Although the observed aperiodic events did not cause reported cus-
tomer contacts or water epidemics and were predictable at some level to
the water utility, the considerable increases in particle concentration lasted
up to 12 h with the free chlorine concentration decreasing close to zero in
the university building. In addition, in Event 1B, the water tower was filled
with water containing a high particle concentration, which was distributed
to customers the following day. For future research, it might be useful to
study such predictable events with detailed microbial analyses, including
pathogens and/or sensors that are able to distinguish microbial and nonmi-
crobial contaminants, since particle abundance does not confirm whether
there are microbiological risks related to exposure to water.

3.3. Distinguishing contamination from periodic and aperiodic fluctuations
using statistics

To detect real water contamination with online measurements, it is nec-
essary to distinguish contamination from normal periodic and aperiodic
water quality fluctuations. For this purpose, approximately 30min contam-
ination injections were performed in the second line of the test environ-
ment, and the responses were analyzed statistically to determine the
contamination detection performance for flow-imaging and light-
scattering particle counters channels, conductivity, and free chlorine con-
centration. The statistical plots in Fig. 4 condense the sensor/channel
response variation in the three contamination injections compared with
those in the periodic and aperiodic fluctuations (described in Sections 3.1
and 3.2). The FPR calculated in Tables S1 and S2 are complementary com-
pared with the statistical plots to assess the separability of the contamina-
tion injections from periodic fluctuation and aperiodic events.

The responses to the injection of stormwater (0.5 % v/v) for all the size
channels of the light-scattering particle counter overlapped little or not at all
with those of either periodic fluctuation (weekdays and weekends) or aperi-
odic fluctuation (Event 2). The injection of wastewater (0.03 % v/v) over-
lapped with aperiodic fluctuations (Event 2) for all the size channels of the
light-scattering particle counter, except for particles larger than 10 μm. Simi-
larly, the responses of the flow-imaging particle counter channels N and
Small to the injections of stormwater and wastewater overlapped with aperi-
odic event data, while the responses of the Large and C channels did not. The
FPR values below 0.5%were found for the 10–15 μm, 15–20 μm, Large, B, C,
and F channels for periodic fluctuations (Table S1), and 10–15 μm,
15–20 μm, and Large channels for aperiodic event 2 (Table S2) inwastewater
and stormwater contaminants. Well water, which consisted of a relatively
high concentration of small particles and few large particles in contrast to
stormwater and wastewater, overlapped little with the periodic fluctuations
(only with C particles) and aperiodic event 2 overlapped with >2 μm, N, C,
and F channels, resulting in below a FPR of 0.5 % for 0.5–0.7 μm,
0.7–1 μm, 1–2 μm, Small channels. In the electrochemical sensors, the de-
crease in free chlorine concentration due to the contaminant injections was
approximately 0.1 mg/L, overlapping with periodic fluctuations and Event
1, resulting in a FPR of 55–82 %. Similarly, conductivity overlapped with pe-
riodicfluctuations, even though the conductivity response during stormwater
0.5 % (v/v) injection was considerably low (FPR=5%) in comparison with
periodic fluctuations.
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The present study shows that the differences between the studied con-
taminants (stormwater, wastewater, and well water) and periodic fluctua-
tions were detected in all the channels of the light-scattering and flow-
imaging particle counters. As noted in Section 3.1, extreme spikes around
working hours were observed in the responses of the particle channels, ex-
cept for the largest size classes of 10–20 μm and machine learning-based C
particles, indicating their potential in contamination detection. If such ex-
treme spikes are common due to sudden increases in flow rates as in the
present study, it could be difficult to make a decision on what is large
enough change in the sensor response to justify action. Prest et al. (2016)
highlighted a major knowledge gap related to the degree of acceptable
change in biological stability (microbial counts), which also translates to
contamination detection, since the sensors used are typically not able to
evaluate health risks caused by water contamination. McKenna et al.
(2008) noted that 20 %–30 % of the changes between adjacent measure-
ments derived from normal water quality fluctuations could make it chal-
lenging to classify an event as a true negative instead of a false positive in
EDS. Thus, sensors/channels not responding to periodic water quality
changes, especially to extreme spikes, should be favored in contamination
detection. Drinking water studies advancing signal-processing-based EDSs
consist of designing an event detection algorithm that can distinguish nor-
mal fluctuations from contamination (Dejus et al., 2017; Liu et al., 2016)
rather than finding a sensor/channel that responds exclusively to possible
contaminants. In the case of the present study, the electrochemical sensors
and particle channels N, B, Small, Large, 1–10 μm responded to hydraulic
changes (i.e.,flow rate changes). For these channels, the use of real-timehy-
draulic modeling to implement a dynamic baseline for water quality may
decrease the number of false positives, similarly to Housh and Ohar
(2017, 2018). The contamination detection performance of different
sensor/channel responses with and without a dynamic baseline could be
compared in future studies.

The present study shows that the most suitable sensors/particle chan-
nels for distinguishing stormwater or wastewater contamination from ape-
riodic events are the flow-imaging particle counter channels C and F and
the light-scattering particle counter channels >10 μm. Moreover, the B par-
ticles of the flow-imaging particle counter showed promising results since
they were able to distinguish between Events 1B and 2 (Fig. 3C and 3H)
and were the only channel/sensor capable of such maneuvers. Distinguish-
ing well water contamination from aperiodic events proved to be difficult
because well water containedmostly small particles and few large particles
compared with stormwater and wastewater, which contained more larger
particles. The aperiodic events shown in the present study are likely to be
similar to discoloration events which have usually been shown to include
particles with a size of 10 μm (Husband and Boxall, 2016), similar to the
particle sizes present in the stormwater and wastewater. However, the
present study challenges this assumption because it seems that there are
also aperiodic events with a smaller dominating particle size, and which
do not cause discoloration of water. In addition to the different water qual-
ity characteristics of the contaminants, the characteristics of the DWDS of
the present study contained mostly particles smaller than 10 μm which
were observed especially in the sudden changes during working hours
(periodic patterns) and aperiodic events, but the water quality characteris-
tics may differ among DWDSs and in different parts of a DWDS. Larger par-
ticles have been found further down DWDSs (Prest et al., 2021; Verberk
et al., 2006). The university building in the present study was located
only 2 km away from the DWTP, unlike in the study of Vreeburg et al.
(2008) who found particles larger than 10 μm from a DWDS 40 km away
from the DTWP. For future research, it may be productive to monitor
periodic and aperiodic water quality patterns using particle counters in
locations where particles larger than 10 μm are more common unlike in
the present study. The machine learning-based particle classes of the
flow-imaging particle counter were able to distinguish different events,
but it should be noted that their performance relied heavily on training
data. To achieve more suitable results for any DWDS, training data should
cover data from multiple DWDSs, and algorithms could be trained again
when enough data are gathered from the DWDS.



Fig. 4. Distribution of particle concentrations during weekday work hours, weekday off-hours, weekends, Event 1 and 2, and the injections of stormwater, wastewater and
well water as classified by the light-scattering particle counter particle sizes (A–D), flow-imaging particle counter particle channels (E–H), free chlorine concentration (I), and
conductivity (J). The distribution is shown as a letter-value box, in which the largest box represents the middle 50 % (25th, 50th, and 75th percentiles) and the next largest
box represents half of the remaining data (37.5th and 87.5th percentiles), and so forth. Outliers are shown as single datapoints. The conditions are weekday working hours
(8:00–18:00), weekday off-hours, weekend, Event 1 (from15:00 on Jun 18 to 20:30 on Jun 20) and Event 2 (11:00–22:00 onOct 29), as observed in this study. Contaminants
were artificially introduced using stormwater, wastewater, and well water.
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4. Conclusions

• A long monitoring period (109 days) and a wide range of sensors made it
possible to determine periodic water quality patterns, capture aperiodic
events related to maintenance in a DWDS, and compare them to artificial
contamination events on a previously unseen scale.

• The results suggest that thewater quality response of contaminants can be
distinguished from that of periodicfluctuations and aperiodic eventswith
particle counters measuring particles larger than 10 μm and machine-
learning-based C-particles, whereas electrochemical sensors cannot
distinguish them.

• The water quality responses to aperiodic events were considerably higher
than those of periodic fluctuations in particle sizes of 0.5–10 μm and in
machine learning-based classes N and Small.

• The periodic pattern of the responses of particle sizes of 0.5–10 μm and
particle channels N, Small, Large, B was observed as sudden spikes,
which were most likely related to sudden changes in the flow rate of
the building complex duringworking hours. Conversely, the periodic pat-
tern of electrochemical sensors showed no such spikes, which couldmake
the sensors/channels showing these sudden spikes more prone to false
positives in EDS.

• The data analysis indicated that the periodicwater quality patterns of par-
ticles were more associatedwithflow rate changes in the distribution sys-
tem in the building complex than in those in the pressure booster station
in the studied pressure zone. By contrast, the particle responses of aperi-
odic events found to be caused by the flow rate changes in the secondary
pressure booster station.
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