
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2303  | https://doi.org/10.1038/s41598-023-29381-7

www.nature.com/scientificreports

A new blood based epigenetic 
age predictor for adolescents 
and young adults
Håvard Aanes 1, Øyvind Bleka 1, Pål Skage Dahlberg 1, Kristina Totland Carm 1, 
Terho Lehtimäki 2, Olli Raitakari 3,4,5, Mika Kähönen 6, Mikko Hurme 7,8 & Veslemøy Rolseth 1*

Children have special rights for protection compared to adults in our society. However, more than 
1/4 of children globally have no documentation of their date of birth. Hence, there is a pressing need 
to develop biological methods for chronological age prediction, robust to differences in genetics, 
psychosocial events and physical living conditions. At present, DNA methylation is the most promising 
biological biomarker applied for age assessment. The human genome contains around 28 million 
DNA methylation sites, many of which change with age. Several epigenetic clocks accurately predict 
chronological age using methylation levels at age associated GpG-sites. However, variation in DNA 
methylation increases with age, and there is no epigenetic clock specifically designed for adolescents 
and young adults. Here we present a novel age Predictor for Adolescents and Young Adults (PAYA), 
using 267 CpG methylation sites to assess the chronological age of adolescents and young adults. We 
compared different preprocessing approaches and investigated the effect on prediction performance 
of the epigenetic clock. We evaluated performance using an independent validation data set consisting 
of 18-year-old individuals, where we obtained a median absolute deviation of just below 0.7 years. 
This tool may be helpful in age assessment of adolescents and young adults. However, there is a need 
to investigate the robustness of the age predictor across geographical and disease populations as well 
as environmental effects.

Children are protected by a special subset of the human rights. However, as around 25% of the world’s children 
do not hold a birth  certificate1 and therefore cannot document when they were born, age assessment is of great 
importance to secure children their human rights. Today, the most commonly applied age assessment methods 
in children and young adults include radiographs of teeth and skeleton, however, these are methods with large 
biological variation. In the recent decades, epigenetic clocks have emerged as a promising tool to predict both 
biological and chronological age.

Epigenetic age predictors are utilized to study both biological aging and in forensics. Environmental and 
psychological stressors affect epigenetic  patterns2, and the development of epigenetic age predictors assessing 
biological age due to environmental influences or health issues are a growing field within aging  research3–5. These 
predictors can, among other applications, be used to measure the effects of anti-aging  interventions6. In contrast, 
in forensic applications, there is a need for predictors that are not affected by genetics, medical conditions or 
environmental variables (e.g. diet). Hence, epigenetic age predictors can be classified into two categories; one for 
forensic age assessment (chronological age), and another for health measurements (biological age). Forensic age 
estimation is of importance in a number of cases like unidentified bodies, suspects of crime, human trafficking, 
and in age assessment of asylum seekers with unknown age. These individuals may have been under immense 
physiological stress, and are likely to have experienced traumatic events during their lifetime. They may have 
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also experienced starvation and/or malnutrition. It is plausible that these stressors may influence the epigenetic 
markers in epigenetic clocks.

Epigenetics is the biology of genetic control without change of the genetic code. Often, chemical molecules 
are attached to the DNA to alter the way the DNA is read by specific intracellular proteins. Methylation, the 
attachment of methyl groups to specific sites, primarily cytosines followed by guanines are one of the most 
studied epigenetic mechanisms. These sites are referred to as CpG dinucleotides, and several repetitive CpGs 
are defined as a CpG island, often occurring near, or in the promoter region of genes. Among other functions, 
DNA methylation regulates transcription, most commonly inhibiting gene  expression7.

DNA methylation plays an important role in gene regulation during development and aging, and consequently 
many sites are associated with  age8. Numerous age predictors have been developed to estimate chronological age 
based on DNA methylation  patterns9. These epigenetic clocks accurately predict chronological age, but are mainly 
derived from datasets consisting of individuals with a broad age range (i.e. 0–100 years). Several studies have 
shown increased variation in age associated methylation CpGs and predicted epigenetic age as chronological age 
 increases10,11. Therefore, it is expected that epigenetic age predictions will be more precise for younger individuals.

As DNA methylation patterns change more rapidly in children and adolescents, the development of pedi-
atric epigenetic clocks has been a recent focus, resulting in three available age predictors designed for a pediat-
ric target  group12–14. As previously mentioned, children are protected by specific rights, and therefore the age 
group of around 18 years of age is important to investigate in several forensic applications. This age group has, 
to our knowledge, not yet been specifically targeted by any epigenetic clock. Epigenetic analyses might be both 
time-consuming and expensive, but can be reduced by decreasing number of CpG sites analysed. Therefore, age 
predictors developed for forensic use, are typically based on few CpG  sites15,16. However, such predictors have 
lower accuracy than models with several hundred methylation sites, and better prediction models are warranted 
to assess if an individual is a child or an adult.

DNA methylation levels are commonly analysed using Illumina DNA methylation arrays. When it was 
introduced in 2007, the Illumina array covered 27,000 CpG sites, which was later upgraded to 450,000 sites in 
2010 (450 K), and again to 850,000 sites in the latest EPIC array (2015). These arrays have high accuracy and 
 precision17.

The analysis of DNA methylation microarrays is complex and there are numerous methods available aiming 
to improve data quality. These methods can be broadly divided into preprocessing, data normalization and batch 
correction, and each one can influence the downstream  results18. The first step, preprocessing, includes image 
processing, calculation of methylation levels, quality control and filtering of probes and chips. The second step, 
normalization, intends to remove technical variation between and/or within chips. Normal-exponential out-of-
band (Noob) is a commonly used method for background correction, which also includes dye bias  correction19. 
Finally, batch effects; e.g. samples analysed on different days, position on the chip or efficiency of the bisulphite 
conversion, may systematically differ.  ComBat20 is a widely conducted batch correction method. However as for 
most batch correction methods, warnings of its use leading to masking of biological differences are  frequent21,22.

Machine learning methods are commonly applied to make age predictors using DNA methylation data. By 
far, the most popular method is elastic net (EN)23. EN is a regularized regression method that simultaneously 
selects the best set of methylation sites, and shrinks the coefficients by applying a penalty parameter. During the 
training of the model, the dependent variable is age, and the methylation sites are the independent variables. The 
trained model is then used to predict the age of new individuals. Predictive models are prone to overfitting, that 
is, they are parameterized well to the training data, but can perform poorly when predicting new data. This is 
due to variation in the training data included in the model, but not truly related to the outcome (e.g. age in our 
case)24. However, the result of the EN analysis is a small number of sites (relative to what you start with) where 
overfitting is reduced to some extent, and enhanced prediction performance for new data is achieved.

In the present study, we have developed the PAYA age predictor; a blood-based age predictor for adolescents 
and young adults between 12 and 25 years old, using DNA methylation levels at 267 CpG sites, aimed to assess 
chronological age without interference from environmental and disease conditions. This predictor might be 
included as part of a data driven process for assessing the chronological age of individuals in this age group.

Methods
Study participants. We identified relevant studies and downloaded data from GEO (Supplementary file 
1—Supplementary Table S1). Inclusion criteria were studies using 450 K array data, generated from blood sam-
ples of individuals in the age range 10–60 years. Information on age and access to IDAT files (raw data) were 
also necessary. In addition, we included 450 K array data from the Young Finns study (YFS). The total training 
dataset consisted of 2316 samples from 1013 males and 1303 females. To test the model, we used 450 K array data 
from 920 18-year old individuals from the E-risk  study25, hereby termed the test dataset. This is a birth cohort of 
twins born in 1994–5 in the United Kingdom. We randomly included one twin from each pair in our test group, 
in total 454 males and 466 females.

Methylation analysis pipeline. DNA methylation data (IDAT files) was imported into R with the “read.
metharray.exp” command in the Bioconductor package  Minfi26. The methylation levels were calculated as beta-
values: Methylated/(Methylated + Unmethylated + 100). During import we estimated cell counts using the “esti-
mateCellCounts” function in  Minfi27 and normalised data using “preprocessNoob” (includes background cor-
rection and dye-bias correction).

We designed a rigorous quality control pipeline to detect samples of low quality (see Supplementary file 1—
Supplementary methods), and samples were removed based on manual inspection of the quality control sum-
mary (see Supplementary file 1 for an overview of excluded sites and reason for exclusion). Based on this quality 
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control, two studies were left out (Supplementary file 1—Supplementary methods). The final training dataset 
consisted of 2316 samples (age span 10–60 years old, 1013 males and 1303 females see Fig. 1a and Supplementary 
figure S1 for details). From the test dataset, we excluded eight samples due to poor quality, and included only one 
randomly selected individual from each twin pair (Fig. 1b). Probes associated with SNPs, and sites reported to 
have cross-reactivity, as well as probes not found in the newer Infinium EPIC chip, were removed (See https:// 
github. com/ sirse lim/ illum ina45 0k_ filte ring for details). A total of 401,484 sites were removed after this filtering.

Evaluation of prediction performance. To evaluate the impact of different processing pipelines we con-
structed a function in R to run elastic net cross validation repeatedly: We used the cv.glmnet function from 
GLMnet R-package (v4.1–3) with default loss metric, alpha = 0.5, and the minimum lambda value chosen (if not 
otherwise stated). The training data was sampled into a random training subset (2/3 of the samples), and used 
in the cross validation procedure, and a test set (1/3 of the samples) were used to predict age. In addition, we 
evaluated the performance of the built model from the cross validation using the twin test dataset, as these data 
were not part of the cross-validation procedure (Fig. 1c). Hence, we had two test data in this function. As our 
measure of performance, we used the median absolute deviation (MAD) measure (years between predicted and 
chronological age). The training and prediction was repeated ten times to obtain a distribution of MAD values. 
In the final model fitting (i.e. the final predictor) all samples, except the independent twin test dataset, were used 
as training data.

Ethical considerations. All methods in the present study were carried out in accordance with the rel-
evant guidelines and regulations. The Young Finns study was approved by the ethical committee of the Hospital 
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Figure 1.  Sample retrieval and filtering. (A) Selection and quality control of the training data. (B) Selection and 
quality control of the independent test dataset. (C) The performance evaluation procedure. Using the training 
data, we selected 2/3 of the samples to fit an age prediction model using elastic net and the cross validation 
method. The remaining 1/3 of the samples were used to test the data, and the test dataset was also tested using 
the generated model. As a measure of prediction performance we used the median absolute deviation (MAD) in 
both cases.

https://github.com/sirselim/illumina450k_filtering
https://github.com/sirselim/illumina450k_filtering
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District of Southwest Finland on 20 June 2017 (ETMK:68/1801/2017) and Regional Ethics Committee of the 
Expert Responsibility area of Tampere University Hospital, Helsinki University Hospital Ethical Committee of 
Medicine, The Research Ethics Committee of the Northern Savo Hospital District and Ethics Committee of the 
Northern Ostrobothnia Hospital District. The study protocol of each study phase corresponded to the WHO 
proposal. All participants gave their written informed consent, and the studies were conducted in accordance 
with the Declaration of Helsinki. At prior follow-ups of the Young Finns Study, informed consent of every 
participant under the age of 18 was obtained from a parent and/or legal guardian. The remaining datasets used 
in the present study were collected from previously published sources (Accession numbers in Supplementary 
table S1), and an approval by an ethics committee in the use of these data was therefore not necessary. In all 
included studies, authors state that informed consent for each participant was obtained.

Results
Age span of the training data and age transformation. We tested the impact of building models 
with a narrow (12–25 years, n = 973 samples) or broad age span (10–60 years, n = 2316 samples). There was a dis-
tinct performance difference between the two approaches, where using the more narrow dataset improved per-
formance (Fig. 2a), despite having less than half the number of samples. The age predictor trained on a wider age 
span was more accurate when we added “Horvath’s transformation”8 (described in Supplementary methods and 
shown in Supplementary Fig. S2a), while the 12–25 years predictions were not substantially affected (Supple-
mentary Fig. S2b). Nonetheless, we chose to use the transformation for further analysis. The intended use of this 
model is in an adolescent population; we therefore chose to use the approach trained on the narrow age span.

Removal of multimodal sites. We observed that some DNA methylation sites were included in the mod-
els despite not correlating with age, but instead having the appearance of outliers (Supplementary file 2). Con-
sequently, we made a function to detect multimodal sites, and subsequently removed them (implemented in 
normtools, see Supplementary methods in Supplementary file 1). This reduced the number of sites to 393,821. 
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Figure 2.  Impact of different methodological factors on the performance of the model. (A) Impact of using 
different age spans. (B) Removal of multimodal sites. (C) Impact of different sample sizes. (D) Including cell 
fractions in the model.
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While this intervention did not influence the median of the MAD much, it did reduce the variability consider-
ably (Fig. 2b), and we decided to use this filtered dataset for further explorations.

Sample size. The number of samples have been shown to affect the performance of age prediction 
 models28,29. Down-sampling of our dataset to 500 and 750 randomly chosen samples, led to a gradual reduction 
in performance (Fig. 2c). We also measured performance without subsampling, i.e. using all samples for each 
model building. This resulted in further improvement of performance, with MAD around 0.70 years (min–max 
0.69–0.72).

Using cell counts in the predictions. It has been suggested that cell type composition might be an 
important variable in explaining DNA methylation  patterns30. To test this we compared model building with 
and without predicted cell type  fractions31. There were no improvement of age predictions for the test dataset 
when including cell type information, and therefore no cell type fractions were included in the model (Fig. 2d).

Batch correction. We applied principal component analysis (PCA) to uncover possible batch effects in our 
included data. PCA showed clustering of studies, indicative of batch effects (Fig. 3a). To overcome these batch 
effects, we applied  ComBat20,32. We first used the default method (parametric version i.e. all studies become 
relative to each-other), and included age as a protected variable. This resulted in large differences between the 
training- and the independent test dataset (data not shown). However, after switching to “reference study mode” 
(adjusting training- and test data using the YFS study), the two datasets became comparable. After batch correc-
tion, the training data did no longer cluster by study (Fig. 3b), and predictions improved for the test data, com-
pared to using no batch corrections (Fig. 3c). However, in a forensic application, the age of individuals tested will 
be unknown, hence we cannot use the chronological age as a “protected variable”. Without this, the use of batch 
correction did not improve predictions (Fig. 3c), on the contrary, the performance deteriorated considerably.

To by-pass the issue of not knowing chronological age, we instead tried to use the predicted age from the built 
model as the “protected variable” in ComBat. However, this strategy did not outperform using Noob normaliza-
tion only (data not shown).

Building the final model and marginal inspections. After testing various preprocessing and normali-
sation options (see methods and Supplementary Fig. S3), we opted for the following approach to build PAYA; 
we normalised data with Noob (dye bias correction included), before we removed samples and probes of low 
quality. We then removed CpG sites with multinomial modes and transformed the age variable using Horvath’s 
transformation of age (described in Supplementary methods). We trained the model on a narrow age span, 
according to the intended application of the method.

In EN, cross validation is used to calibrate the lambda penalty values. The lambda is typically chosen such 
that it returns the smallest cross validation error (i.e. “lambda.min”). When considering only the training data, 
smaller MAD were observed using “lambda.min” over “lambda.1se” (MAD 0.33 vs 0.73 years) (Fig. 4a). How-
ever, using “lambda.1se” returned slightly, but consistently smaller MAD for the test dataset (Fig. 4b): Also, we 
obtained using only 267 vs 660 CpG sites with the larger lambda.
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Methylation level by age in the training dataset were plotted for all sites included in the model (Supplemen-
tary file 2). Correlations (Spearman) between degree of methylation and age, together with their associated 
coefficients, can be found in Supplementary file 3. Despite removing the multimodal sites, we observe some 
sites included in the final model that appear multimodal (e.g. cg21015022). In addition, we find sites that do not 
correlate well with age (e.g. cg03846689), and contained outlier values.

All sites in the age predictor were annotated with associated gene names (Supplementary file 4). Functional 
annotation and disease association analysis in  Metascape33 was conducted. The analysis revealed no enrichment 
in the functional annotation categories, however, some disease associated terms were enriched (mental disorders, 
gait abnormality and smoking), with borderline significant q-values (Supplementary file 5).

We observed that most predictions were within + /− 1 year (of 18.5) (600/920, 65%), but there were also some 
predictions deviating > 2 years (45, ~ 5%), and five observations deviating > 3 years. Of those deviating > 3 years, 
three were overestimated (predicted ages 21.6, 22.1 and 22.2) and two underestimated (15.4 and 15.5), with the 
most severe error deviating 3.7 years. See Supplementary Fig. S4 for histogram of the observed errors. We found 
no effect of gender on the age-prediction. Using our test data (18 year olds), mean age prediction was 18.2 years 
for both genders.

Comparison with other age predictors and studies. We compared the sites in our model with sites 
in other age predictor models utilizing DNA methylation (see Table 1 for details). Most overlap was observed 
between the Zhang epigenetic  clock29 and the cABEC  clock28, with 47 and 41 sites overlapping with our model, 
respectively (Table 1). Horvath’s “skin and blood predictor” shared 26 sites with our predictor. Little overlap was 
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Figure 4.  Choosing lambda. (A) Scatter plot of predicted and chronological age using different penalties 
(minimum lambda in black, one standard deviation lambda in red). (B) Prediction performance on 
independent test dataset using the same lambdas.

Table 1.  Overview of epigenetic age predictors and the overlap in CpG sites compared to PAYA (Predictor of 
Adolescents and Young Adults). *Human fibroblasts, keratinocytes, buccal cells, endothelial cells and skin.

Epigenetic clock Publication
Number of CpG 
sites Age span

Training, number 
of samples Tissue

Overlapping CpG 
sites with PAYA %

PAYA Aanes et al., 2023 267 12–25 2315 Blood – –

Horvath Horvath et al., 
 20138 353 0–100 3931 27 different 4 1.5

Hannum Hannum et al., 
 201337 71 19–101 656 Blood 14 5.2

PhenoAge Levine et al.,  20183 513 18–100 926 Blood 6 2.2

PedBE McEwen et al., 
 202012 94 0–20 1032 Buccal 5 1.9

Skin and Blood Horvath et al., 
 201836 391 0–94 896 Blood, more* 26 9.7

DNAmTL Lu et al.,  201934 140 21–100 2256 Blood 4 1.5

Wu Wu et al.,  201913 111 0–18 716 Blood 1 0.4

Zhang Zhang et al.,  201929 514 2–104 13,661 Blood, saliva 47 17.6

Li Li et al.,  201814 83 6–17 90 Blood 2 0.7

cABEC Lee et al.,  202028 1892 19–88 2227 Blood 41 15.4
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found with other blood based paediatric age  predictors13,14. As expected, little overlap with the telomere age 
predictor was  recognised34.

Due to lack of information on the preprocessing steps leading up to beta values in other epigenetic age pre-
dictors, direct comparisons are difficult to conduct. However, we ran our test dataset (age 18) through different 
epigenetic clocks, using the R-package  methylClock35. Results from four of these clocks (Horvath, Skin and 
Blood, Hannum and the Elastic Net clock by Zhang et al.8,29,36,37) showed that PAYA predicted chronological age 
with the highest precision and accuracy (Supplementary Fig. S5).

Assessment of the impact of stress on sites in the age predictor. To evaluate if our age predictor 
could be affected by childhood trauma and possible physiological stress, we generated a DNA methylation site 
list from a review of DNA methylation effects from childhood  trauma38 (Supplementary file 6). Only one CpG 
site from this list was part of our age predictor, cg07012999. This site has a small positive coefficient of 0.1, and 
therefore a marginal effect in the age prediction. Two FKBP5 associated CpG sites, cg20813374 and cg00130530, 
linked to age and  stress39, were not found in our model.

To our knowledge, no epigenome wide studies to investigate the impact of starvation and/or malnutrition at 
the epigenetic level for adolescents or young adults have been conducted. Two studies have, however, investigated 
locus specific effects on the IGF2  gene40,41. This gene is not present in our cohort of genes associated with the 
sites of the age predictor.

Discussion
In this study, we present a novel blood-based epigenetic age predictor, PAYA, based on data from adolescents 
and young adults between 12 and 25 years old. The predictor includes 267 CpG sites and showed a high degree 
of accuracy in prediction of chronological age in an independent test set of 18-year-old individuals with an 
estimate of MAD value below 0.7 years. This is noticeably better than targeted approaches with fewer CpG sites, 
which typically report MAD values between 5 and 9  years42.

Although comparisons with other epigenome-wide age predictors are difficult due to different data and nor-
malization used for training, we find that PAYA perform better in the independent test data compared to other 
epigenetic clocks (Supplementary Fig. S5). We observed that reduction of the age span of the training data caused 
selection of other CpG sites, and increased prediction performance considerably compared to a wider age span 
(Fig. 2A). This is in concordance with previously reported  results12.

As mentioned, the age range of the included samples might affect the included CpG sites in the predictor. 
To our surprise, we observed little overlap of CpG sites with other pediatric clocks. Pediatric clocks have been 
evaluated by others, and were outperformed by the Skin and Blood clock from Horvath et al43. In line with this, 
our model shares more sites with the Skin and Blood clock compared to two pediatric clocks (Table 1). We 
observe that PAYA assess age more accurate in the independent test population than the Skin and Blood clock 
(Supplementary Fig. S5), probably due to the targeted age span on which it is trained.

Our model is trained and tested using Infinium HumanMethylation450 BeadChip data, but since new data 
will originate from the EPIC arrays, we have selected only EPIC compatible CpG sites to build our model. Despite 
the much larger number of sites included in the EPIC-array, it does not appear that epigenetic age predictors 
derived from EPIC data achieve higher accuracy than predictors based on the 450 K  array28,44.

It has been claimed by others that increasing the number of samples will make the model more  accurate28,29. 
This was confirmed in our study, as down-sampling of our own data resulted in lower accuracy of the age predic-
tor (Fig. 2C). Notably, we did not observe a horizontal asymptote of the MAD value when all data was included 
in the training. Hence, the accuracy of the present model might be improved if more IDAT files were available.

The two most important tunable parameters in the EN analysis are the alpha and lambda values. The former 
decides the amount of Lasso versus Ridge regression, while lambda is the amount of penalty  used45. We did 
initial testing of alpha values, and opted for a value of 0.5, similar to most existing  models8,28,29,36. Lambda was 
chosen using k-fold cross-validation (with k = 10), and prediction performance on the independent test dataset. 
Interestingly, we achieved better performance when we chose the largest lambda within one standard error of 
the minimum prediction error providing less included CpG sites (from > 600 to < 300). We validated the trained 
age predictor utilizing 920 individuals (18 year olds), from an independent dataset. It is crucial to test the age 
predictors on an independent dataset since there can be study-specific factors that are explained by the model, but 
not present in independent  data46. We observed similar performance between the test data and the independent 
test dataset, indicating that overfitting has been avoided.

It has been suggested that environmental effects are particularly important in epigenetic  variation47. This 
confounding variable, as well as a number of diseases and conditions remains an important area for future 
 research47,48. Recently, Mayer and colleagues revealed dependency between epigenetic age markers and growth 
 disorders49. The intended use of PAYA is to predict chronological age not influenced by genetic and environ-
mental effects. We tried to overcome this to some degree by including studies from different parts of the world, 
and only excluded conditions that are readily observable, meaning that not only healthy individuals are part of 
the data. The sites identified by EN may therefore be independent of some genetic and environmental effects, 
because if they were not, they would perhaps not explain the observed variation in chronological age well. PAYA 
might therefore, to some extent capture such effects. However, to fully assess the robustness of the current age 
predictor across populations with different ethnicities and environmental conditions, we have initiated a study 
where we sample individuals from different regions of the world, and evenly over the age span between 12 and 
25 years of age.

The data used to build our model was from blood samples, and therefore contain several different cell types. 
The cell type composition of the blood might influence the obtained DNA methylation  profiles50. It has been 
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suggested that the changes in cell type composition occurring with age, at least in part, may explain the age 
associated changes of DNA  methylation51. However, we could not identify any effect by including cell type frac-
tions in the age predictors (Fig. 2D). Other cell type prediction methods could perhaps yield better explanatory 
variables in the  model52, but this remains to be tested. There is also a need to evaluate the actual composition of 
the blood and not only the predicted composition.

Despite our initial tests of the age predictor, a more thorough evaluation of performance is needed, with a full 
panel of performance  metrics53. Application of the age predictor in forensic work will require thorough quality 
control (Ref Supplementary file 1) of new samples. It will also be of interest to test the PAYA age predictor in 
populations outside the intended age span to investigate the accuracy outside the age range of training.

To conclude, through thorough evaluation and selection of different analytical options, we have developed 
PAYA, the first blood based age predictor developed specifically for adolescents and young adults. We observe that 
PAYA outperforms existing epigenetic age predictors, making it eligible for application in forensic age-assessment, 
either alone or in combination with existing radiographic methods. Future studies is required to reveal if PAYA 
is robust when applied to diverse populations with different ethnicities and environmental or genetic effects.

Data availability
The datasets used and/or analysed in this article are freely available datasets from each of the included studies 
(Supplementary table S1), except for the dataset obtained from the Cardiovascular Risk In Young Finns study 
(YFS) after submission and approval of our study plan by the YFS coordinators. The YFS dataset comprises health 
related participant data and their use is therefore restricted under the regulations on professional secrecy (Act on 
the Openness of Government Activities, 612/1999) and on sensitive personal data (Personal Data Act, 523/1999, 
implementing the EU data protection directive 95/46/EC). Due to these legal restrictions, the data from this 
study can not be stored in public repositories or otherwise made publicly available. However, data access may 
be permitted on a case by case basis upon request only. Data sharing outside the group is done in collaboration 
with YFS group and requires a data-sharing agreement. Investigators can submit an expression of interest to the 
chairman of the publication committee (Prof Mika Kähönen, Tampere University, Finland).
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