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Abstract—The outbreak of the COVID-19 pandemic forced a
need to create screening tests to diagnose the disease. To answer
this challenge, this paper introduces the support methodology
for COVID-19 early detection based on wearable and machine
learning likewise on two various cohorts. We compare the level
of detection of the COVID-19 disease, Influenza, and Healthy
Control (HC) thanks to the usage of machine learning classifiers
likewise changes in heart rate and daily activity. The features
obtained as the parameters of the ratio of heart rate to the
variable of the number of steps proved to have the highest
statistical importance. The COVID-19 cases versus HC were
possible to be distinguished with 0.73 accuracy by the XGBoost
algorithm, whereas COVID-19 cases, Influenza vs. HC were able
to be differentiated on similar level of accuracy: in 0.72 by
Support Vector Machine. The multiclass classification between
the cases achieved a 0.57 F1-score for three classes by XGBoost.
For early diagnosis, this solution could serve as an extra test
for clinicians during the pandemic, and the result shows which
metric could be useful for creating the machine learning model.

Index Terms—COVID-19, AI, wearable, machine learning

I. INTRODUCTION

The COVID-19 pandemic started in December 2019 [1] and
reap the harvest of 6.39 milion deaths on the world so far
according to Johns Hopkins University (JHU) [2]. This disease
causes the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) [1]. Regarding the contagiousness of the
disease, the highest period is reported as 2 days before the
symptom onset to 1 day after the visibility of the illness [3]. To
the most recognised symptom of this disease belongs: fever,
decrease in SpO2, cough, changes in heart rate [4], fatigue,
shortness of breath, hoarse voice, muscle pain, and headache
[5], [6] likewise the loss of taste and smell [7]. The changes
in heart rate are especially visible in COVID-19 cases and

lasting longer than common Influenza, the resting heart rate is
elevated nearly the symptom onset [4].

Moreover, deviations from the norm of heart rate were also
observed during sleep for COVID-19 [8]. The researchers
reported the elevation in the estimated mean respiration rate
during deep sleep and the mean nocturnal heart rate during
non-rapid eye movement (NREM) sleep. Whereas, the de-
crease was observed for the root mean square of successive
differences (RMSSD) of the nocturnal RR series and the Shan-
non entropy of the nocturnal RR series. This was concluded
based on Z-value analysis and 1257 participants wearing Fitbit
devices.

The data could be collected in various ways for the screen-
ing test. The highest prediction of COVID-19 is achieved by
X-ray [9]. Nevertheless, the fastest and cheapest way to allow
the screening of a large population is the usage of wearable
devices [10]. The data for remote tracking of symptoms are
gathered thanks to the Internet of Medical Things [5]. The
modalities which could be commonly analysed from wearable
sensors to support society during a pandemic are cardio-
vascular strain, sleep parameters, activity levels, respirations
variable, SpO2 level, temperature, blood pressure, cough and
sound monitoring, and humidity sensors [10], [11], [12]. The
wearables on-body sensors could be placed in smartwatches,
smart rings, headbands, sociometric badges, camera clips and
sensors embedded in clothing [10]. The last step to create the
support methodology is analysing the data. The big promise
for the analysis of pandemic-related data brings Machine
Learning [6], [12] including the novelty of usage Federated
Learning [13].

In this paper, we proposed a support methodology for
COVID-19 detection based on smartwatches and short-time



analysis. We analysed also Influenza cases, the machine learn-
ing model was trained on two datasets from Stanford Univer-
sity and Evidation 2019-2020 Participatory ILI Surveillance
Program. We analysed the heart rate and steps taken during
the day. We created features based on literature and proved
the usability of the ratio of parameters heart rate related to a
variable based on the number of steps. Our main contribution
is the support methodology distinguishing COVID-19 cases
from Healthy Control (HC) on the level of 0.73 accuracy
for a balanced dataset likewise a combination of two datasets
from different cohorts and analysis of the experiment results.
Moreover, we proposed the classification approach which is an
improvement and extension of the original paper which was
introduced just anomaly detection.

The rest of the paper contains in Sec. II the state-of-the-
art and Sec. III describes the experiment. In subsection III-A,
it was marked out the experiment description, in subsection
III-B, it was provided data description and subsection III-C
brought the feature extraction closer. The results are described
in Sec. IV likewise the discussion is provided in Sec. V. The
conclusion is contained in the last section (Sec. VI).

II. RELATED WORKS

The research of this paper were based mostly on [14], [4],
[6], [15]. In the first paper, the researchers collected the data
thanks to the wearables, they analysed the data gathered by the
Fitbit device. They enrolled circa 5,300 participants and among
them, they had records of 32 COVID-19 cases, 15 Influenza,
and 73 HC. They used in the experiment the heart rate, and
the number of steps and collected also sleep patterns. They
introduced 3 algorithms for anomaly detection: Resting Heart
Rate (RHR) Difference (RHR-Diff) offline anomaly detection,
the heart rate over steps anomaly detection (HROS-AD) offline
anomaly detection, and CuSum online detection. HR-Diff
offline anomaly detection used residuals standardization of
RHR to detect anomalies in heart signals. They standardised a
1-hour signal based on an average of 28 days. If the time
window was under the relevance of 0.05, it was detected
anomaly. HROS-AD used a new metric HROS which was
the ratio of heart rate to steps. This algorithm is the type of
unsupervised anomaly detection and is using moving average,
undersampling to one hour, and Z-score transformation. If it
is found anomaly detection, the data are marked as outliers
thanks to the Gaussian distribution analysis. Moreover, the
author introduced an algorithm in real-time: the CuSum -
the type of cumulative statistics which was summing the
deviations of residuals of RHR. Under the considerations,
it was taken earlier 28 days of records to recognise the
anomaly. If the signal is suspicious for 24h, it is recognised as
positive. 63% of COVID-19 cases by CuSum were detected as
positive. Nevertheless, it was not mentioned the specificity of
the algorithm by authors. Additionally, 9 of 15 Illness cases
were recognised as ill during the beginning of Illness or before.

In [4], the authors used the data from 7000 people to detect
the state between COVID-19 and 2 types of Influenza: In-
fluenza before the main pandemic and Influenza in the middle

of the pandemic. They were measuring the elevated resting
heart rate of the infected people and the number of steps. The
collected dataset included 41 COVID-19 cases, 85 Influenza
at the time of the pandemic, and 1265 during pre-pandemic.
The symptoms of the disease were longer for COVID-19,
respectively 12 days vs. 9 and 7 for flu. Elevated resting heart
rate occurs more frequently nearly the onset of the disease.
The differences were confirmed by statistical tests. Whereas
in [6], the authors analysed the data originally published in
[14]. They presented the classification methodology in early
stage of the disease when in the [14] was only applied and
discussed the anomaly detection methodology.

In [6] was proposed the solution which used the wearable
device (Fitbit), machine learning methodology, and creation
of the features based on statistical analysis, spectral and
frequency-related features. It was taken into consideration
during choosing the time windows the incubation and con-
tagiousness periods. For one sample, it was compared the
difference between the features of a potentially ill state and
healthy, and healthy vs. healthy. The best results were achieved
for the 5-day windows and 7 days differences between the
states. The COVID-19 vs. HC state was distinguishable in 78
% accuracy thanks to the k-NN and COVID-19, Influenza vs.
HC in 73 % also for k-NN. Under analysis were taken 27
HC and 27 COVID-19 cases for the first scenario, and in the
second scenario to balance the data, 24 COVID-9 cases, 7
Influenza, and 33 HC.

In [15], the authors differentiate the COVID-19 samples
between Influenza in the middle of the pandemic and before
the main pandemic with the usage of machine learning. They
analysed data from [4] in the amount of 21 COVID-19
cases, 37 non-COVID-19 flu cases, and Pre-COVID-19. They
used mRMR feature selection. For the feature pre-selection
step were used the records of heart rate and number and
isolated from the parameters such as: mean, standard devia-
tion, maximum, minimum, range, variance, Shannon entropy,
approximate entropy, slope, skew, and kurtosis. The authors
were able to distinguish two Influenza cases in 80 % thanks
to the XGBoost and Decision Tree algorithm. Moreover,
they differentiated COVID-19 cases with people with flu in
the middle of the pandemic in 73 % thanks to the k-NN
algorithm likewise COVID-19 cases with Influenza before the
main pandemic in 82 %. The multiclass classification allows
distinguishing cases on the level of 0.64 F1-score for k-NN.

Additionally, there was also introduced neural network –
PCovNet to analyse the data from [14] in [16]. PCovNet is
a Long Short-term Memory Variantial Autoencoder (LSTM-
VAE)-based anomaly detection solution dedicated to analysing
RHR in the early stage of the disease. The evaluation shows
that the detection was possible in 0.946 precision, and 0.234
recall. The authors also introduced F-beta metrics equal for
this case 0.918, however, the parameter is unreliable. The net-
work was trained on 25 COVID-19 cases. PCovNet recognised
100 % of the ill person based on RHR, nevertheless after
recognised person as infected, so on quarantine. Additional
approach of anomaly detection based on the dataset from [14]



was provided in [17]. They applied One Class-Support Vector
Machine (OC-SVM) and they achieved better results than in
[14]. They registered changes in signal behaviour 23,5 % - 40
% earlier in the comparison to [14] (12 h – 4 days) likewise
they obtained the false positive rates. The optimal parameter of
the time window for parameters of RHR was 300 and 350. The
maximum of the found anomalies in signal was 21 among 29
for the COVID-19 for OC-SVM based on RHR (RHR-OC-
SVM). Whereas based on HROS signal was found by OC-
SVM (HROS-OC-SVM) 24 among 29 patients. Moreover, it
has to be taken into consideration that the false positive rate,
which was for RHR-OC-SVM lower than in the original paper,
was 39.96 outlier for HC.

Subsequently, the authors in [18] and [19] proved the
usability of the temperature for the COVID-19 diagnosis. In
[18], they checked the changes in the area under the curve
(AUC) after removing the temperature as one of the modalities
with the classifier which analysed all the types of signal, i.
e.: temperature, heart rate (HR), respiration rate (RR), heart
rate variability and metabolic equivalents (MET). For the
research, they enrolled and used data gathered by Oura Ring
of 73 people with COVID-19 disease. As the classifier was
chosen Random Forest and they achieved AUC = 0.819 for
all modalities and AUC = 0.770 for the combination of the
signals without temperature.

Moreover, it was also introduced the COVID-19 decompen-
sation index (CDI) for monitoring the need for hospitalization
in [20]. The wearable was placed on the chest for continuous
measuring of the patients. Based on 308 negative patients
(without the need for hospitalization) and 22 positive patients
was achieved 0.84 AUC with the usage of the gradient boosted
model.

What’s more, the promising future direction of monitoring
the COVID-19 disease by a wearable is the usage of smart-
watches with the function of measuring electrocardiogram
(ECG) like the Apple Watch [21].

III. EXPERIMENT

A. Experiment description

The main goal of this research was to compare classifica-
tions of the combined datasets gathered by the wearable device
- Fitbit. Those data contain the COVID-19 cases, Influenza
cases, and the HC group. The heart rate and the number
of steps were analysed as likewise ratio of the parameters
extracted from the heart rate to parameters obtained from the
number of steps as the human body efficiency. Based on our
previous research [15] and [6], we took into consideration the
character of the disease, i.e. the highest contagiousness period
and incubation period to limit the spreading of the disease
by the early detection. The nature of the disease was also
described in [16].

The dataset was originally published in [14] and [4] where
participants were wearing the wearable device to collect the
data which could be analysed to detect the anomaly in the
human physiological signals. The difference between both
datasets was in sampling rate and the demographic distribution

of the dataset. The dataset B was more homogenous and
people had recognised obesity which could bias the research.
Nevertheless, dataset B was collected in the USA. In the
research, it was evaluated the pre-processing step of the data,
statistical analysis likewise the machine learning approach to
classify the data. The flow of the algorithm is visible in Fig.
1.

Undersampling dataset A

Combining datasets

Defining time windows

Extracting the features for hear rate and 
number of steps

Computing the ratio of the extracted 
features between heart rate-related to 

activity-related 

Feature pre-selection mRMR

Classification with Stratified Cross-
Validation (Standarization + Classifier)

Results

20 features

Classifiers:
❖ XGBoost
❖ k-NN
❖ SVM
❖ Logistic Regression
❖ Decision Tree
❖ Random Forest

❖ Mean
❖ Std
❖ Rsd
❖ Max
❖ Min
❖ Slope
❖ Range
❖ Variance
❖ Skew
❖ Slope
❖ Kurtosis
❖ Shannon 

entropy
❖ approximate 

entropy

Fig. 1. Flow of the algorithm.

As the first step, it was undersampled the dataset B to be
able to combine both datasets. The sampling rate was equal
to 1 sample per day for heart rate and the number of steps.
Next, the dataset was combined according to the scenario. 6
scenarios are visible in Table I. There are 6 types of data:
COVID-19 A, COVID-19 B, Influenza A, Non-COVID-19 Flu,
Pre-COVID-19 Flu, HC. There is also given information as to
which class was assigned the data case.

TABLE I
SCENARIOS OF COMBINATION OF THE DATASET AND TYPES OF CLASS FOR

EACH EXPERIMENT.

Types of data Experiment 1a Experiment 1b Experiment 2 Experiment 3 Experiment 4 Experiment 5
COVID-19 A 1 1 1 1 1 2
COVID-19 B 1 1 1 1 2
Influenza A 1 0 1 1
Non-Covid-19 Flu 0 1 1
Pre-Covid-19 Flu 0 1 1
HC 0 0 0 0 0

In the next step, the time window was extracted with
the respect to contagiousness period and incubation period.
It was from 2 days before the onset to 7 days before the
visibility of the symptoms. Based on those time frames, several
parameters were computed for heart rate and the number of
steps, i. e.: mean, standard deviations, maximum, minimum,
slope, range, variance, skew, slope, kurtosis, Shannon entropy,
and approximate entropy. Additionally, the ratios between the
aforementioned parameters of heart rate and activity were
computed. Among such prepared 35 features were selected



20 of them thanks to the Maximum Relevance Minimum Re-
dundancy algorithm (mRMR). Because of the limited number
of samples, it was as classification 10-fold Stratified Cross-
Validation. The classifiers which were tested were XGBoost,
Logistic Regression, Random Forest, Decision Tree, k-NN,
and SVM. Additionally, one scenario was performed as mul-
ticlass classification and the rest were binary classification.
To check the statistical difference between the datasets, we
used the Mann-Whitney U test. This test does not require
the assumption of the normal distribution of the data and
it is suitable for small datasets. Additionally, to omit the
curse of the error-type I, we used the Benjamini-Hochberg
procedure [6]. The confidence level α was 0.05. We checked
the scenarios for the COVID-19 (A and B dataset) vs. HC and
COVID-19 (A and B dataset), Influenza vs. HC.

B. Data description

The created dataset was combination of two existing already
dataset [14], [4]. The first of them (here so-called A) contained
the COVID-19 cases, Influenza cases, and HC. The original
data were collected with the usage of smartwatches and the
publicly available dataset contains data gathered thanks to
the Fitbit device. The dataset includes heart rate and activity
expressed in the number of steps taken and lacking sleep
records which contain information about the stage of the
sleep and its duration. Originally, 5,262 participants were
enrolled and among them, 3,325 wore Fitbit devices. The
collected data were completed for 32 COVID-19 patients,
15 people with Influenza and 73 HC [14]. We choose for
the research among them 27 COVID-19 cases, 7 Influenza
cases, and also 73 HC. Moreover, we analysed heart rate and
steps taken by participants. The sampling rate was heart rate
per minute and steps taken per hour. Regarding the second
dataset (here so-called B), there were representatives of three
classes: COVID-19 cases (41 gathered with wearable data),
people with flu before the pandemic (Pre-COVID-19 Flu, 1265
gathered with wearable), and people infected by Influenza
during the pandemic (Non-COVID-19 Flu, 85 gathered with
wearable data). The data analysed in the original paper were
collected by the Fitbit device. Among the available dataset and
found utility by us, we choose 21 COVID-19 cases, 675 Pre-
COVID-19 Flu cases, and 37 Non-COVID-19 Flu cases to be
used in the experiment. The sampling rate in both cases was
1 sample per day. Moreover, we used different combinations
of the dataset to compare the possibility of the detection –
distinction between groups. The datasets were balanced. The
scenarios of the particular combinations could be found in the
Table II. It is provided the number of samples per experiment.

TABLE II
SCENARIOS OF COMBINATION OF THE DATASET AND NUMBER OF

SAMPLES FOR EACH EXPERIMENT.

Types of data Experiment 1a Experiment 1b Experiment 2 Experiment 3 Experiment 4 Experiment 5
COVID-19 A 27 27 27 27 27 27
COVID-19 B 21 21 0 21 21 21
Influenza A 0 0 7 7 7 7
Non-Covid-19 Flu 0 0 0 19 10 20
Pre-Covid-19 Flu 0 0 0 20 9 21
HC 48 48 34 0 74 48

C. Feature extraction

The inspiration for extracting the features could be found in
[15] and [6]. The process of extracting the features has a few
steps. First of all, the idea was to extract useful information
about the time series before the beginning of the visible
symptoms, it is from -7 to -2 days of the disease. This is
justified by the fact the highest contagiousness of the COVID-
19 disease is regarded as the -2 days before the onset of the
disease. Because, the dataset was limited in sampling numbers,
i. e. the sampling rate was 1 per day of dataset B, we need to
undersample dataset A. This step is visible in Fig. 2, where:

• tB is the beginning of the considered period of the illness
• pS is the length of the time window
• t0 is the Onset of the disease t0 = tB + pS
• tD is the diagnosis of the disease tD = 2 + t0

As the next process of the data was chosen the time window
of the aforementioned length. It was 5 days for each of
the samples for the record of heart rate and the number of
steps for both datasets A and B. From those fragments of
the time series were computed statistical parameters, entropy
values, and features based on the distribution of the time
series, i. e.: mean, standard deviation (std), relative standard
deviation (rsd), maximum (max), minimum, range, Shannon
entropy, approximate entropy, variance, the slope of the time
series, skewness and kurtosis. Additionally, we computed and
inspired by the limit, we computed the ratio of the calculated
12 aforementioned parameters between parameters of heart
rate and parameters of the activity.

tB t0 tD

t

OnsetpS Diagnosis

State of the person

Feature extraction Ԧ𝑓

Fig. 2. Feature extraction.

IV. RESULTS

This section describes the statistical analysis for COVID-19
vs. HC likewise analysis of COVID-19, Influenza vs. HC and
the outcomes of the classifications for various scenarios. The
explanation of the combination of the scenarios is presented
in Tables I and II. Here, there are pointed out the results in
the tables for such cases:

• Table V: Classification of the COVID-19 (A and B
dataset) vs. HC for all features

• Table VI: Classification of the COVID-19 (A and B
dataset) vs. HC for chosen 20 features

• Table VII: Distinction between COVID-19 cases from
dataset A, Influenza A vs. HC for 20 features

• Table VIII: Distinction between COVID-19 (A and
dataset B) vs. Influenza (A, Influenza before the main
pandemic and Influenza in the middle of pandemic)



TABLE III
STATISTICAL ANALYSIS THANKS TO THE MANN WHITNEY U-TEST

TOGETHER WITH FDR CORRECTION FOR COVID-19 CASES AND HC.

Feature pval pval FDR
activ std 0.00001 0.00014
activ variance 0.00001 0.00014
activ range 0.00001 0.00015
activ rsd 0.00003 0.00027
activ entropy shannon 0.00092 0.00644
heart std 0.00184 0.00921
heart variance 0.00184 0.00921
heart rsd 0.00291 0.01249
heart range 0.00321 0.01249
steps entropy shannon 0.00750 0.02624
steps range 0.01214 0.03540
activ max 0.01138 0.03540
steps slope 0.01593 0.04288
steps std 0.02331 0.05439
steps variance 0.02331 0.05439
steps max 0.03409 0.07457
heart max 0.03736 0.07692
heart entropy shannon 0.04967 0.09658
steps skew 0.05699 0.10498
activ mean 0.06626 0.11596
steps kurtosis 0.09272 0.15453
activ min 0.09860 0.15687
steps mean 0.10960 0.16224
steps min 0.11125 0.16224
heart mean 0.12333 0.16602
activ slope 0.12333 0.16602
steps rsd 0.14433 0.18709
heart min 0.24971 0.31214
activ kurtosis 0.27791 0.33541
heart slope 0.38690 0.45139
heart skew 0.42406 0.47878
heart kurtosis 0.64317 0.70347
activ skew 0.92736 0.98357
steps approx entropy 1.00000 1.00000
heart approx entropy 1.00000 1.00000

• Table IX: Classification of COVID-19 cases (A and B
dataset), Influenza (A, Influenza before the main pan-
demic and Influenza in the middle of pandemic) vs. HC

• Table X: Multiclass classification of COVID-19 (A and
B dataset), Influenza (A, Influenza before the main pan-
demic and Influenza in the middle of pandemic), and HC

The results of the statistical analysis of the features are
presented in Table III for COVID-19 (A and B dataset) vs.
HC likewise for COVID-19 (A and B dataset), Influenza (A,
Influenza in the middle of pandemic, Influenza before the

TABLE IV
STATISTICAL ANALYSIS THANKS TO THE MANN WHITNEY U-TEST

TOGETHER WITH FDR CORRECTION FOR COVID-19 CASES, INFLUENZA
AND HC.

Feature pval pval FDR
heart std 0.00000 0.00002
heart range 0.00000 0.00002
heart variance 0.00000 0.00002
activ std 0.00000 0.00002
activ range 0.00000 0.00002
activ entropy shannon 0.00000 0.00002
activ variance 0.00000 0.00002
heart rsd 0.00002 0.00009
activ rsd 0.00002 0.00009
heart max 0.00005 0.00019
heart entropy shannon 0.00010 0.00031
heart mean 0.00040 0.00118
steps entropy shannon 0.00303 0.00815
heart min 0.00395 0.00987
activ max 0.00952 0.02222
activ min 0.01776 0.03884
activ mean 0.01951 0.04017
steps min 0.05476 0.10648
steps max 0.10284 0.17997
steps skew 0.09805 0.17997
steps mean 0.11923 0.19872
steps slope 0.13656 0.21726
steps range 0.21119 0.32138
steps std 0.26776 0.36045
steps variance 0.26776 0.36045
steps kurtosis 0.26611 0.36045
activ kurtosis 0.44079 0.57139
heart skew 0.57789 0.72237
steps rsd 0.65872 0.75941
activ slope 0.67262 0.75941
activ skew 0.63672 0.75941
heart slope 0.77282 0.84528
heart kurtosis 0.88901 0.94289
steps approx entropy 1.00000 1.00000
heart approx entropy 1.00000 1.00000

main pandemic) vs. HC in Table IV. The first scenario (Table
III) shows that 13 features that are statistically significant
according to the Mann-Whitney U test with the false discovery
rate correction (FDR) thanks to the Benjamini-Hochberg pro-
cedure are: activ std, activ variance, activ range, activ rsd,
activ entropy shannon, heart std, heart variance, heart rsd,
heart range, steps entropy shannon, steps range, activ max,
steps slope. The ’activ’ shortcut means the ratio of the cre-
ated feature from the heart rate to the number of steps.



All of the above p-values with FDR correction were below
0.05. For the second scenario (Table IV), the 17 features
which met the requirement of the confidence level α =
0.05 are: heart std, heart range, heart variance, activ std,
activ range, activ entropy shannon, activ variance, heart rsd,
activ rsd, heart max, heart entropy shannon, heart mean,
steps entropy shannon, heart min, activ max, activ min, ac-
tiv mean.

For all of the features for classification COVID-19 for
datasets A and B vs. HC achieved 0.73 accuracy and 0.75
sensitivity for XGBoost and the Matthews correlation coef-
ficient (MCC) was also the highest for XGBoost, i. e. 0.48
(Table V). The best specificity was registered for k-NN: 0.77.
This was achieved for 27 COVID-19 A cases, 21 COVID-
19 B cases as 0 class, and 48 HC as 1 class. The data were
balanced.

TABLE V
THE RESULTS OF CLASSIFICATION COVID-19 (A AND B DATASET) VS.

HC (FOR ALL 36 FEATURES).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.73 ± 0.14 0.75 ± 0.22 0.75 ± 0.20 0.48 ± 0.30
k-NN 0.68 ± 0.13 0.60 ± 0.21 0.77 ± 0.18 0.39 ± 0.27
SVM 0.68 ± 0.15 0.61 ± 0.22 0.75 ± 0.22 0.38 ± 0.20
Logistic Regression 0.66 ± 0.16 0.62 ± 0.23 0.70 ± 0.21 0.33 ± 0.32
Decision Tree 0.66 ± 0.16 0.65 ± 0.22 0.66 ± 0.22 0.32 ± 0.33
Random Forest 0.70 ± 0.16 0.64 ± 0.24 0.76 ± 0.20 0.42 ± 0.33

Another analysis for provided for exactly this same data but
after feature extraction with the usage of 20 features among 36
(Table VI). The results of the classification show that XGBoost
achieved 0.73 accuracy, 0.71 sensitivity, and 0.48 MCC as the
best outcome among other classifiers. The highest specificity
has k-NN: 0.86.

TABLE VI
THE RESULTS OF CLASSIFICATION COVID-19 (A AND B DATASET) VS.

HC (FOR 20 FEATURES).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.73 ± 0.14 0.71 ± 0.22 0.75 ± 0.19 0.48 ± 0.29
k-NN 0.72 ± 0.15 0.58 ± 0.24 0.86 ± 0.16 0.47 ± 0.30
SVM 0.67 ± 0.14 0.60 ± 0.22 0.73 ± 0.19 0.35 ± 0.29
Logistic Regression 0.65 ± 0.15 0.59 ± 0.23 0.70 ± 0.20 0.31 ± 0.31
Decision Tree 0.68 ± 0.15 0.64 ± 0.23 0.71 ± 0.18 0.37 ± 0.30
Random Forest 0.70 ± 0.16 0.64 ± 0.24 0.76 ± 0.20 0.42 ± 0.33

For the classification of the COVID-19 A, Influenza A vs.
HC, the results are presented in Table VII. The distinction
between the classes was for 27 COVID-19 A cases, 7 Influenza
A cases, and 34 HC. The best accuracy obtained XGBoost:
0.63, and MCC was also the best for this classifier: 0.28. The
highest sensitivity obtained SVM: 0.90 and the best specificity
of 0.67 was recognised for Decision Tree.

The results of the classification of COVID-19 (A and B
dataset) vs. Influenza (A, Influenza before the main pandemic
and Influenza in the middle of a pandemic) are shown in
Table VIII. Under the analysis was taken: 27 COVID-19 A, 21
COVID-19 B, 7 Influenza A, 19 Non-COVID-19 Flu and 20
Pre-COVID-19 Flu. The highest accuracy achieved XGBoost
(0.67) and this classifier had 0.36 MCC. The Random Forest

TABLE VII
THE RESULTS OF CLASSIFICATION DATASET A BETWEEN COVID-19,

INFLUENZA VS. HC.

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.63 ± 0.18 0.65 ± 0.26 0.62 ± 0.28 0.28 ± 0.38
k-NN 0.56 ± 0.18 0.56 ± 0.27 0.58 ± 0.26 0.14 ± 0.39
SVM 0.57 ± 0.14 0.90 ± 0.20 0.24 ± 0.22 0.18 ± 0.31
Logistic Regression 0.49 ± 0.18 0.49 ± 0.28 0.48 ± 0.26 -0.03 ± 0.40
Decision Tree 0.57 ± 0.17 0.48 ± 0.25 0.67 ± 0.30 0.16 ± 0.37
Random Forest 0.54 ± 0.17 0.51 ± 0.33 0.57 ± 0.34 0.08 ± 0.36

had 0.66 sensitivity. The highest specificity was obtained for
SVM (0.73).

TABLE VIII
THE RESULTS OF CLASSIFICATION COVID-19 (A AND B DATASET) VS.

INFLUENZA (A AND INFLUENZA BEFORE THE MAIN PANDEMIC AND
INFLUENZA IN THE MIDDLE OF PANDEMIC).

Classifier Accuracy Sensitivity Specificty MCC
XGBoost 0.67 ± 0.13 0.63 ±0. 21 0.71 ± 0.19 0.36 ± 0.27
k-NN 0.62 ± 0.14 0.54 ± 0.22 0.70 ± 0.22 0.25 ± 0.30
SVM 0.62 ± 0.14 0.52 ± 0.22 0.73 ± 0.21 0.26 ± 0.29
Logistic Regression 0.61 ± 0.15 0.58 ± 0.22 0.64 ± 0.21 0.24 ± 0.31
Decision Tree 0.61 ± 0.15 0.62 ± 0.25 0.61 ± 0.21 0.24 ± 0.31
Random Forest 0.63 ± 0.14 0.66 ± 0.22 0.61 ± 0.21 0.28 ± 0.30

The outcome of the distinction between COVID-19 cases
(A and B dataset), Influenza (A, Influenza before the main
pandemic, and Influenza in the middle of pandemic) vs. HC is
shown in Table IX. Under consideration was taken 27 COVID-
19 A cases, 21 COVID-19 B cases, 7 Influenza cases, 10 Non-
COVID-19 Flu cases, 9 Pre-COVID-19 Flu cases and 74 HC.
The best accuracy of 0.72 was registered for SVM. Sensitivity
0.66 was the highest for Logistic Regression. For Decision
Tree was observed the highest specificity (0.90) and MCC
(0.47).

TABLE IX
THE RESULTS OF CLASSIFICATION COVID-19 (A AND B DATASET),
INFLUENZA (A AND INFLUENZA BEFORE THE MAIN PANDEMIC AND

INFLUENZA IN THE MIDDLE OF PANDEMIC) VS. HC

Classifier Accuracy Sensitivity Specificty MCC
XGBoost 0.68 ± 0.12 0.62 ± 0.18 0.74 ± 0.16 0.37 ± 0.25
k-NN 0.70 ± 0.12 0.65 ± 0.17 0.75 ± 0.16 0.41 ± 0.24
SVM 0.72 ±0.12 0.61 ± 0.19 0.82 ± 0.13 0.45 ± 0.25
Logistic Regression 0.67 ± 0.12 0.66 ± 0.17 0.68 ± 0.17 0.35 ± 0.25
Decision Tree 0.71 ± 0.11 0.53 ± 0.18 0.90 ± 0.11 0.47 ± 0.21
Random Forest 0.67 ± 0.11 0.57 ± 0.18 0.78 ± 0.18 0.37 ± 0.24

Additionally, we performed multiclass classification be-
tween COVID-19 cases and Influenza, and HC for both
datasets. 27 COVID-19 cases A, 21 COVID-19 B cases, 7
Influenza A cases, 20 Non-COVID-19 Flu, 21 Pre-COVID-
19 Flu, and 48 HC were analysed. The highest 0.57 F1-score
was achieved for XGBoost. Moreover, 0.58 accuracy was also
the best for this same classifier likewise MCC 0.38 was the
highest for XGBoost.

V. DISCUSSION

This research aimed to create a support system methodology
to distinguish COVID-19 cases vs. HC thanks to wearable
devices. Additionally, the group of people infected by a



TABLE X
THE RESULTS OF MULTICLASS CLASSIFICATION OF COVID-19,

INFLUENZA AND HC ON BOTH DATASETS.

Classifier F1-score Accuracy MCC
XGBoost 0.57 ± 0.13 0.58 ± 0.13 0.38 ± 0.20
k-NN 0.56 ± 0.14 0.57 ± 0.13 0.37 ± 0.20
SVM 0.53 ± 0.13 0.55 ± 0.12 0.34 ± 0.19
Logistic Regression 0.52 ± 0.13 0.54 ± 0.13 0.32 ± 0.19
Decision Tree 0.40 ± 0.07 0.51 ± 0.09 0.31 ±0.15
Random Forest 0.53 ± 0.12 0.55 ± 0.11 0.34 ± 0.17

different kind of Influenza was taken into consideration during
classification among others treated as one class with COVID-
19 cases. We created simple methodology for early detection
with those scenarios based on two datasets [14] and [4].
Naturally, those datasets were limited in the amount of the
samples likewise we need to undersample the one dataset A
to be able to combine A and B datasets. The extraction of
the features took into consideration the contagiousness period
and incubation period. Moreover, the features were created
after the choice of the time windows based on statistics,
distribution of the time series, and entropy of the signal. There
were considered heart rate, number of steps, and activity of
the person. For the statistical analysis, we performed two
analyses. The first of them was the comparison between
COVID-19 cases vs. HC and the second COVID-19 cases,
Influenza cases vs. HC. The first analysis shows that one-
third of the created features passed the Mann-Whitney test
with FDR correction. The most important features are the
standard deviation of the activity of the person, i. e. std
of heart rate to std number of steps. Meaningful features
were also variance, range, rsd, Shannon entropy, maximum
of personal activity and std, variance, rsd, range heart rate
likewise Shannon entropy, range, and slope of the number
of steps during the day. The idea of creating the ratio of
the measurements between the extracted features of heart
rate to the number of steps occurs to be successful. For the
second scenario, half of the features were statistically different,
moreover, with the eliminating error-type I. The most powerful
were the features obtained based on heart rate and human
activity. According to classification, we performed 6 scenarios
of the classification. The best results of accuracy for 5 out of
6 scenarios were achieved for the XGBoost. Additionally, the
MCC was also in most cases the highest for XGBoost and
once in the case of Decision Tree. F1-score was also the best
in the case of XGBoost. The XGBoost is the most complex
classifier among used algorithms, nevertheless, it could be also
slightly overfitted. Regarding the comparison of the datasets,
the highest accuracy of 0.73 was achieved for 2 scenarios, i.
e.: for the distinction between COVID-19 (A and B dataset)
vs. HC. The 0.72 accuracy was obtained for COVID-19 (A
and B dataset), Influenza (A and Influenza before the main
pandemic, and Influenza in the middle of a pandemic) vs. HC.
It means that a similar result of the classification was achieved
for the differentiation between COVID-19 cases vs. HC for
both datasets and Illness (COVID-19 and Influenza in both

datasets) vs. HC. The combination of both datasets allows for
creating simple support system detection in the early stages. It
could be concluded based on the 0.57 F1-score that multiclass
classification was somehow possible to differentiate between
each other for HC, Influenza, and COVID-19 cases. Moreover,
feature selection mRMR allows for obtaining higher outcomes
of the classification than the usage of all the feature (Tables V
and VI). The lower ability of distinction between cases for
classifier was registered for COVID-19 cases vs. Influenza
for both datasets (0.67 accuracy) likewise classification of
COVID-19 A, Influenza A vs. HC (0.63 accuracy). The classi-
fication of the proposed simpler methodology achieved lower
values in comparison to the more extended approach based
on extracting more advanced features including frequency and
spectral features between two states of patients and HC on
dataset A [6]. In this paper, the accuracy achieved 0.73 for
such a scenario. Additionally, for the more advanced solution,
the classification of the COVID-19 cases vs. HC gave higher
results: 0.78 accuracy for k-NN, 5-days windows, and only
dataset A. In this paper, we proposed simpler methodology
which is more approachable for low-latency solutions together
with compression of another dataset, nevertheless biased by
people with obesity. What’s more, we combined various types
of Influenza which could be the advantage of the proposed
support methodology. Subsequently, we used the methodology
introduced in [15] which was applied to the dataset B. We
extended the research for including more cases and HC thanks
to the combination with the dataset A. Bigger and more
diverse demographically dataset obtain lower results between
distinction COVID-19 cases vs. Influenza cases (0.67 for new
solution vs. 0.73 and 0.82 likewise 0.57 vs. 0.64 for multiclass
classification) what it could statistically mean that people
in the USA have different symptoms between the types of
Influenza and COVID-19, or perhaps, it is easier to distinguish
illness for them because of the obesity.

We assume that to succeed in higher accuracy, we would
need more modalities like signals gathered from the gyroscope,
magnetometers, altimeters, barometers [6] and temperature
measurements, additionally to extend the database for low
sampling rate. Another factor that could influence the quality
of the data is how frequently and with responsible people are
wearing the wearables, so the human factor.

VI. CONCLUSION

In our study, we created a support system methodology for
detecting the COVID-19 disease. We analysed 6 scenarios that
we have included in the machine learning model also with
Influenza cases. We combined two different datasets to obtain
more samples and various cohorts. First of all, we created
the features for our model based on statistical parameters,
distribution of the time series, and entropies. We included also
the parameters based on the ratio between the heart rate-related
variables to parameters based on the number of steps. The
statistical analysis shows that the most informative features
are those indicated on the activity of the human person. The
machine learning models allow us to differentiate COVID-



19 samples vs. HC most precisely thanks to the XGBoost
algorithm, with 0.73 accuracy. Almost this same accuracy
(0.72) for an extended dataset including also Influenza cases
allows us to distinguish people infected from HC by XGBoost.
The multiclass classification shows that on the level of 0.57
F1-score was possible to find differences between the three
classes. In the future direction, we could extend the dataset in
the number of samples from various cohorts based on universal
measurements from the Fitbit device.
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