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BACKGROUND The QT interval in the electrocardiogram (ECG) is a
fundamental risk measure for arrhythmic adverse cardiac events.
However, the QT interval depends on the heart rate and must be cor-
rected accordingly. The present QT correction (QTc) methods are
either simple models leading to under- or overcorrection, or imprac-
tical in requiring long-term empirical data. In general, there is no
consensus on the best QTc method.

OBJECTIVE We introduce a model-free QTc method—AccuQT—
that computes QTc by minimizing the information transfer from
R-R to QT intervals. The objective is to establish and validate a
QTc method that provides superior stability and reliability without
models or empirical data.

METHODS We tested AccuQT against the most commonly used QT
correction methods by using long-term ECG recordings of more
than 200 healthy subjects from PhysioNet and THEW databases.
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RESULTS AccuQT overperforms the previously reported correction
methods: the proportion of false-positives is reduced from 16% (Ba-
zett) to 3% (AccuQT) for the PhysioNet data. In particular, the QTc
variance is significantly reduced and thus the RR-QT stability is
increased.

CONCLUSION AccuQT has significant potential to become the QTc
method of choice in clinical studies and drug development. The
method can be implemented in any device recording R-R and QT in-
tervals.
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Introduction
A prolonged or shortened QT interval in the electrocardio-
gram (ECG) is a significant risk factor for numerous cardiac
diseases and adverse events such as torsades de pointes, ven-
tricular fibrillation, and sudden cardiac death.1,2 To interpret
the QT interval, it needs to be corrected for the heart rate (HR)
determined by the R-R intervals. In clinical practice, the cor-
rected QT (QTc) is routinely monitored and its assessment is
a mandatory part of drug development.3

Despite the paramount importance of QTc, its use and
impact are limited by the lack of universal and reliable correc-
tionmethods. The commonly used power-law formulae of Ba-
zett4 and Fridericia,5 as well as other population-based models
such as Hodges6 and Framingham7 corrections, are known to
under- or overcorrect the QT intervals in various situations
and have thus received considerable criticism.1,8,9 On the other
hand, subject-specific or individualQT corrections10,11 require
a reliable long-term baseline of R-R and QT intervals. More-
over, QT hysteresis12—that is, differences in the QT interval
depending on the derivative of the HR (decreasing or
increasing)—complicates the individual QT correction.
It is widely accepted that, on one hand, no universal for-
mula can account for the QT/R-R dependence,9 and, on the
other hand, individual corrections combined with, for
example, hysteresis models13,14 are not well applicable to
short-term QT assessment or clinical analysis.8 Further-
more, the intrasubject variability resulting from both biolog-
ical and methodological sources limits the use of QTc
monitoring in clinical applications. This factor should be
taken into account in the development of future QT correc-
tion methods.

In this work we introduce a QT correction method called
AccuQT,15,16 which employs the properties of transfer en-
tropy17,18 to minimize the dependence of the QT intervals
on the R-R intervals. The method is free of empirical data
or models. We carry out a thorough testing of the method
with 2 large datasets of long-term ECG recordings, and focus
on the performance of AccuQT to reduce the individual QTc
variation. Overall, AccuQT is found to have superior stability
and consistency compared to the conventional QTc methods,
and it is applicable also to short-term data.
Methods
The study has been approved by the ethical committee of Pir-
kanmaa Hospital District (R21067L).
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Figure 1 A: Illustration of information transfer from previous R-R intervals to the present QT interval.B: Examples of transition probabilities. The intersection
of the distributions as a function of QTi yields zero transfer entropy and thus candidates for the selection of the corrected QT interval (QTc).
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AccuQT correction method
We assume that the QT dependence on the HR (or RR) is
determined by the information flow from the R-R intervals
to the QT intervals, as illustrated in Figure 1A. An effective
measure for the information flow is transfer entropy (TE),
originally introduced by Schreiber.17 Some of the present au-
thors have applied TE to the RR-QT relationship and found
that, first, the previous R-R intervals affect the present QT in-
terval, whereas the previous QT intervals do not affect the
present R-R interval. Secondly, the dependence of the present
QT interval on the previous R-R intervals extends to the his-
tory by more than about 10 intervals.18 The key idea in the
AccuQT method is to set TE to zero in order to reduce the in-
formation flow from R-R to QT, and thus to determine the
corrected QT value (QTc).15

TE corresponds to the difference in the information (or un-
certainty) between (1) future observation QT(t11) obtained
from the past observations of QT and (2) future observation
QT(t11) obtained from the past observations of both R-R
and QT. Formally, we can write TE from R-R to QT as in
equation 1 18:
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where pðxÞ and pðxjyÞ are probability and conditional
probability distributions, respectively. In accordance with
references 17 and 18, we refer to the numerator and denom-
inator of eq. (1) as transition probabilities. The indices k
and n correspond to the preceding QT and RR values, respec-
tively, backwards from i – 1. In conjunction with the findings
in reference 18 we set the QT history to k5 1 and vary the RR
history in the range n 5 1 . 50. In practice, the RR history
length of RRh 5 20 is found to be sufficient, and it is used
here as the default value. The effects of RRh are examined
in the Supplemental Data (Appendix).

We apply the kernel density estimation with a Gaussian
kernel to obtain smooth transition probabilities. For a given
series of R-R and QT intervals, we estimate the joint proba-
bility distribution of events QTi, QTi21;.;QTi2k and
RRi21;.;RRi2n. Then for an interval QTi and its history
QT

ðkÞ
i21 and RR

ðnÞ
i21, we take a slice of the joint distribution

along the QTi axis, as illustrated in Figure 1B. This slice is
normalized according to the chain rule and it represents the
1-dimensional conditional probability density
pðQTi

��� QTðkÞ
i21;RR

ðnÞ
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i21Þ as a function of

QTi. According to eq. (1), the QT values where these
1-dimensional distributions intersect correspond to zero
TE. Thus, these QT values can be considered as candidates
for corrected QT (QTci) for each heartbeat as the correspond-
ing information transfer from RR to QT is then zero—in prin-
ciple—taking into account the statistical context of
probability distributions.

As the final step, we select the target QTci candidate to
represent the final QTci (for each heartbeat) as the output.
The selection can be done in a nonempirical fashion by, eg,
using the maximum probability (highest intersection point)
or the mean of all the QTci candidates exceeding a minimum
threshold in the probability density. Here, however, we deter-
mine QTci for each heartbeat as the QTci candidate that has
the minimum distance to QT0; that is, the QT value that cor-
responds to 60 beats per minute (RR 5 1000 ms) according



Table 1 Properties of the PhysioNet and THEW datasets used in
the study after preprocessing

PhysioNet THEW

N (male/female) 15 (4/11) 184 (94/90)
Age (years), mean 6 SD 33 6 8 38 6 15
HR (BPM), mean 6 SD 65 6 8 78 6 9
QT (ms), mean 6 SD 408 6 19 399 6 28

BPM 5 beats per minute; HR 5 heart rate.

Table 2 Mean values and standard deviations of the R-R, QT, and
computed QTc intervals collected from all 15 subjects of the
PhysioNet dataset included in the study

Interval Mean (ms) SD (ms) Pooled SD (ms)*

R-R 921 156 116
QT 402 32 26
QTc-Bazett 422 37 32
QTc-Fridericia 415 32 28
QTc-Hodges 414 30 26
QTc-Framingham 414 32 28
QTc-individual 410 30 24
QTc-AccuQT 403 23 13

*Pooled SD values, where subject-specific SDs are combined.
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to a second-order polynomial fit to the RR-QT point cloud. In
the Appendix we show how the results depend on the size of
the point cloud, ie, the length of the RR-QT measurement.

Other QT corrections
We compare the AccuQT results with the 4 most commonly
used QT correction methods discussed above and defined as
follows.

� Bazett4: QTc5 QT=
ffiffiffiffiffiffi
RR

p
� Fridericia5: QTc5 QT=

ffiffiffiffiffiffi
RR3

p
� Hodges6: QTc5 QT10:00175ðHR 2 60Þ
� Framingham7: QTc5 QT10:154ð1 2 RRÞ

Here the QT, QTc, and R-R intervals are expressed in sec-
onds and HR in beats per minute. In some cases we compare
the results also with the individual QT correction
method.10,11 In particular, we use the nonlinear regression
modelQTi5c e f½1 e ðRRiÞg� for individual RR-QT distri-
butions, which leads to the QT correction formula of the form
QTci 5 QTi1f½1 2 ðRRiÞg�.19 The obvious drawback of
this method is the empirical approach requiring a large num-
ber of R-R and QT intervals to obtain reliable results.20

Data
We focus on RR and QT data of healthy subjects and employ
2 databases, MIT-BIH Normal Sinus Rhythm Database in
PhysioNet21,22 and E-HOL- 03-0202-003 database of healthy
subjects in the Telemetric and Holter ECG Warehouse
(THEW).23,24 In the following we refer to the data extracted
from these databases as PhysioNet and THEW datasets,
respectively. We point out that in both databases we focus
on regular rhythms, although, in principle, our method—ex-
ploiting information transfer between R-R and QT—is inde-
pendent of the regularity of the rhythm. Irregular cases would
deserve a separate examination, preferably with other param-
eters of the method, eg, the length of the history considered.

PhysioNet data
The database contains 18 subjects without significant ar-
rhythmias (5 men, aged 26–45 years; 13 women, aged
20–50 years). The time series vary between 500 and 22,000
beats, ie, between about 10 minutes and 5 hours. In the pre-
processing,18 we removed the most obvious artifacts with a
moving average method, while trying to keep the time series
as contiguous as possible. We removed 3 samples completely
owing to insufficient data quality to reliably extract the R-R
and QT intervals. The basic measures of the remaining data-
set are shown in Table 1.
THEW data
The THEW dataset (E-HOL-03-0202-003) contains 24-hour
Holter ECG recordings with 3-lead pseudo-orthogonal lead
configuration from 202 healthy subjects (100 men, aged
12–80 years; 100 women, aged 9–82 years; and 2 undefined
sex).25 For the preprocessing we used our own ECG delinea-
tion algorithm. The dataset is subject to artifacts, that is,
missing or erroneous signals or inaccuracies in the QT extrac-
tion, especially owing to the ambiguity of the T wave. In
particular, some samples were found to contain a significant
proportion of unusually long QT values for healthy subjects.
Thus, we discarded 18 out of 202 samples (8.9% of the sam-
ples), which have more than 20% of QT intervals larger than
500 ms. The basic measures of the remaining THEW dataset
are shown in Table 1.
Results
PhysioNet dataset
The recordings of the PhysioNet dataset are relatively stable
and have low HRs with combined mean R-R of 921 ms.
Table 2 shows the mean values and standard deviations
(SDs) of all the R-R and QT intervals combined from all
the subjects, as well as the QTc values computed with the
correction methods introduced in the Methods section. It is
noteworthy that, as expected, the Bazett values are higher
than the rest owing to likely overcorrection, whereas the Ac-
cuQT values are relatively low and close to the raw QT
values. However, the SD is considerably lower in AccuQT
than in the other methods.

The difference between AccuQT and the other QTc
methods is highlighted in the last column showing the pooled
SD. This measure takes into account the different mean
values of the subjects26 and thus yields a better measure for
the QT(c) variability of the dataset than the SD of all the
available subject-independent intervals. In AccuQT the
pooled SD is as low as 13 ms, whereas in the other correction
methods the variation ranges from 24 ms (individual QTc) up
to 32 ms (Bazett).



Figure 2 A-D:QT(c) values as a function of the corresponding R-R intervals (RRIs) for the complete PhysioNet dataset (.120,000 interval pairs), presented as
point clouds (left) and box plots (right). The horizontal dashed lines denote the normal 350–450 ms range. The percentages on the right denote the proportion of
points located in the normal range. See text for details.
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In Figure 2, we visualize the QT(c) dependence on the
R-R intervals for the (a) raw QT values, (b) Bazett, (c) Frider-
icia, and (d) AccuQT method computed for the complete
PhysioNet dataset without subject-specific separation
(.120,000 RR-QT(c) pairs in total). The point clouds on
the left are smoothened to a normalized (0.1) density plot
according to reference 27, using 200! 200 bins and smooth-
ing parameter l5 5. The box plots on the right have 50-ms-
wide R-R interval bins.28 The lines in the boxes represent the
first, second, and third quartiles, and the whiskers extend up
to 1.5 times of the interquartile range. The gray dots denote
outliers falling outside the whiskers.

In Figure 2, it is noteworthy that in all the cases (A-D) the
densities are relatively well localized in the 350–450 ms
range. However, in AccuQT this localization is the most pre-
cise, so that 97% of the points are located inside the normal
range. For comparison, in raw QT, Bazett, and Fridericia
these values are 92%, 84%, and 90%, respectively. We point
out that here we cannot exclude the possibility of having
abnormally long QT values also for this set of “healthy” in-
dividuals. Hence, these performance indicators need to be in-
terpreted with care.
The trends of the point clouds in Figure 2 are also visible
in the box plots on the right: the Fridericia and AccuQT
methods yield the most stable behavior, but in AccuQT the
deviations within the bins are significantly smaller than in
the Fridericia method, especially regarding the outliers
shown in gray dots. Overall, the QTc variability is signifi-
cantly reduced in AccuQT, compared to the other methods
across the R-R interval range. This superior stability would
allow effective QTc assessment in clinical practice and in
drug development. The bright horizontal fringe in the Ac-
cuQT density cloud in Figure 2(D) is owing to the limited
number of subject-specific point clouds (15), which are com-
bined into 1 figure.

Next, we consider in more detail the subject-specific RR-
QT(c) point clouds of the PhysioNet dataset. Figure 3 shows
the point clouds for the 6 longest recordings of the set
compared between raw QT (upper row), Bazett (middle
row), and AccuQT (lower row). The color scale indicates
the difference between QTc and QT, so that negative values
(blue) correspond to reduced intervals in the correction and
vice versa. The tendency of overcorrection of the Bazett
method, that is, too-large QTc values at small R-R intervals



Figure 3 R-R interval (RRI)-QT(c) point clouds for the 6 longest recordings of the PhysioNet dataset. In the Bazett and AccuQT clouds the colors indicate the
shift from the raw QT values (QTc-QT).
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and—in some cases—too-small QTc values at large R-R in-
tervals, is evident. In contrast, AccuQT gives relatively stable
QTc values as a function of the R-R intervals, and the overall
variability is also significantly reduced, so that a large major-
ity of the points fit between 350 and 450 ms. As the AccuQT
values are calculated based on the histories, there is no
evident pattern in the coloring. This is in contrast with the Ba-
zett point clouds that display an evident pattern that follows
from the simple QTc formula. However, we should bear in
mind that the Bazett formula was originally designed not
for long ECG recordings, but for relatively stable and short
measurements.
Table 3 Mean values and standard deviations of the R-R, QT, and
computed QTc intervals collected from all the 184 subjects of the
THEW dataset included in the study

Interval Mean (ms) SD (ms) Pooled SD (ms)*

RR 775 173 150
QT 398 54 48
QTc-Bazett 456 49 46
QTc-Fridericia 435 46 42
QTc-Hodges 435 43 40
QTc-Framingham 432 43 39
QTc-Individual 441 41 37
QTc-AccuQT 408 42 35

*Pooled SD values, where subject-specific SDs are combined.
THEW dataset
In Table 3, we present the basic statistical measures of the
THEW dataset comprising over 18 million R-R and QT inter-
vals of 184 subjects. Compared to the PhysioNet dataset
(Table 2), the R-R and QT intervals are significantly shorter
with higher SD, which is due to the (approximately) 24-hour
measurement protocol that includes various daily activities,
compared to the shorter and possibly more controlled mea-
surements behind the PhysioNet data. Also for this dataset,
AccuQT yields the smallest mean for the QTc values and
the smallest pooled SD. However, the difference is not as
drastic as with the PhysioNet dataset.

Figure 4 shows the R-R interval–QT(c) point clouds of the
THEW dataset. The densities are normalized to the range 0–1
and smoothened according to reference 27 in 200! 200 bins
with a smoothing parameter l5 5. It is noteworthy that there
are quite a few outliers in the clouds that are not visible owing
to the smoothening and a large number of points (.18
million). The percentages of the QT(c) values located within
the normal limits of 350–450 ms (red dashed lines) are
shown in the figure. We remind that the results represent
healthy subjects, so that the coverage of normal QTc values
is important.
The proportion of QTc values satisfying the normal limits
is the highest in AccuQT, shown in Figure 4(F) with 75%,
whereas in other QTc methods the proportion varies between
51% (Bazett) and 73% (Framingham), compared to 66% in
raw QT values shown in Figure 4(A). Hence, the results
are in line with the PhysioNet dataset in Figure 2 in the sense
that AccuQT is the most and Bazett the least accurate. In
particular, the obvious overcorrection of the Bazett method
at low R-R intervals is clearly visible.

However, here for the THEW dataset the proportions in
the normal regime are significantly lower than in the case
of PhysioNet data. This is owing to the 24-hour recordings
in uncontrolled conditions, which are prone to large varia-
tions in the intervals as well as to detection errors. We suspect
that especially the leftmost linear “tail” of the point cloud re-
sults from measurement and/or QT extraction errors.
Regarding the apparent RR-QT trend or slope in the AccuQT
data in Figure 4(F), we remind that the point clouds represent
combinations of data from several subjects, whose individual
trends may be significantly smaller. This is analyzed in detail
below.
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Figure 4 A-F: QT(c) values as a function of the corresponding R-R intervals (RRIs) for the THEW dataset (.18 million interval pairs) presented as point
clouds. The density is normalized to the range 0–1. The horizontal dashed lines denote the normal 350–450 ms range. The percentages denote the proportion
of points located in the normal range. See text for details.
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Slopes and stability of the RR-QT cloud
The RR-QT(c) point clouds shown in Figures 2 and 4 indicate
relatively large differences between the methods regarding
the general RR-QTc trends. In Table 4, we show the slopes
for the RR-QT(c) and HR-QT(c) clouds of both the Physio-
Net and THEW datasets, respectively. The slopes have
been computed for the full set of RR-QT(c) interval pairs
in the dataset, ie, not as means of subject-specific slopes.
For comparison, we include the slopes computed from 2
other studies using different databases and measurement pro-
tocols, the RR-QTc slopes of Vandenberk and colleagues8

and the HR-QTc slopes of Luo and colleagues.29

For the THEWdata the AccuQT slope is noticeably higher
than with any of the conventional methods, whereas for the
PhysioNet data the magnitude of the AccuQT slope is smaller
than for most of the methods and similar to that of the Hodges
correction. Interestingly, the raw QT slope is also consider-
ably smaller for the PhysioNet data, compared to THEW
data or to that of Luo and colleagues.29 As expected, the in-
dividual QTc shows the smallest slopes, resulting from the
aims and the definition of the method to minimize the RR-
QTc dependency for each subject.
Table 4 Slopes of the RR-QT(c) and HR-QT(c) point clouds for the Physio

Correction method

RR-QT(c) slope

THEW PhysioNet

raw QT 0.194 0.065
Bazett -0.062 -0.138
Fridericia 0.030 -0.070
Hodges 0.019 -0.039
Framingham 0.040 -0.089
Individual -0.002 -0.001
AccuQT 0.134 0.045

Slopes are compared with the previous results of Vandenberk and colleagues8
The tendency of AccuQT to leave a positive RR-QTc
slope and correspondingly a negative HR-QTc slope, espe-
cially for the THEW data, requires further examination. As
mentioned above, the leftmost part of the density clouds to-
ward R-R intervals w500 ms is suspicious regarding the
quality of the data and QT extraction. At R-R intervals above
w800 ms the clouds are more consistent and would yield
smaller slopes than obtained through global fitting. In fact, re-
stricting the analysis to the stable segments of the THEW
data—as defined in the following section—leads to a slope
of 0.077 6 0.087.

For practical applications, it is informative to examine in-
dividual RR-QTc behavior (see Figure 3), which we here
demonstrate as a function of time. Figure 5 shows a 200-
beat segment of QT(c) values (Figure 5A) and the corre-
sponding R-R intervals (Figure 5B) for a healthy subject in
the THEW dataset. Compared to the raw QT, Bazett and Fri-
dericia corrections show similar or even increased variability,
whereas AccuQT displays significantly reduced variation
throughout the segment. This tendency is characteristic
of the AccuQT method, as discussed above in the
context of reduced (pooled) variances for the full datasets
Net and THEW datasets computed with different correction methods

HR-QT(c) slope

Ref. 8 THEW PhysioNet Ref. 29

- -1.68 -1.09 -1.89
-0.071 0.47 2.23 0.52
0.004 -0.32 1.11 -0.35
0.024 0.07 0.66 -0.14
-0.005 -0.44 1.31 -0.36

- -0.01 -0.02 -
- -1.24 -0.74 -

and Luo and colleagues29 for other datasets.
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Figure 5 A: QT(c) values as a function of time for a 52-year-old healthy
male subject from the THEW dataset. B: Corresponding R-R intervals. C:
Corresponding RR-QT(c) clouds and the slopes obtained for all clouds
with linear fitting. In (C) small noise (6 2.5 ms) has been added to the R-
R intervals (quantized within 5 ms) for better visualization.
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(Tables 2 and 3). For this individual example, AccuQT also
has the smallest linear slope for the RR-QT(c) clouds, as
seen in Figure 5C. Therefore, the global slopes presented in
Table 4 need to be interpreted with care, since in a practical
application of a QT correction the individual performance
regarding the RR-QTc consistency and stability is crucial.
Discussion
The QT correction, ie, the correction of the QT interval in the
ECG for the heart rate, has remained as one of the most
important problems in electrocardiography owing to the
paramount importance of the corrected QT values in clinical
practice, in cardiotoxicological assessments, in drug develop-
ment, and, in the future, also in preventive care through QT
measurements with wearable devices.30 It is generally agreed
that no universal formulas of the form QTc5 f(QT, RR) can
be developed. On the other hand, the empirical individual QT
correction methods, which are useful for long measurements
providing a lot of RR-QT data, have limitations in practical
applications with shorter segments.

In contrast with the conventional QTc corrections, Ac-
cuQT has been developed from the first principles without
external models by using transfer entropy between the R-R
and QT intervals. This approach provides superior perfor-
mance, but the method has some practical limitations. First,
R-R history of preferably 20 intervals needs to be collected
for the transfer entropy, alongside with a sufficient num-
ber—at least a few dozen—of RR-QT intervals for the
probability densities (see the Appendix for details). Sec-
ondly, a reliable estimation for the QT at 60 beats per minute
(QT0) requires preferably w100 RR-QT intervals, although
accurate determination of QTc is not very sensitive to QT0.
Thirdly, it still needs to be evaluated with high-quality (pref-
erably manually inspected) data how the method works for
short segments with highly varying R-R intervals. And
finally, it is still to be examined how AccuQT deals with
the hysteresis effects that have a range above several minutes,
thus exceeding the history length included in the method. It is
also noteworthy that not all the QT variations are due to the
R-R, even though the QT correction—by definition—solely
focuses on the removal of the R-R effect from the QT.
Despite these limitations we find that AccuQT is well appli-
cable to various QTc assessments apart from very short re-
cordings below about 30 seconds.

We remind that in this work our focus is on healthy sub-
jects and regular rhythms. Therefore, an obvious limitation
of the present study is the absence of patient data with heart
diseases and the lack of clinical evaluation with statistical
measures of the performance of our QT correction compared
with the other methods. We have left these examinations as
follow-up studies, where we use the existing THEW data
for subjects under QT-prolonging medication, as well as sub-
jects under cardiac disease such as long QT syndrome.
Conclusion
To conclude, we have developed a model-free QT correction
method—AccuQT—and tested it for healthy subjects in
PhysioNet and THEW databases. AccuQT provides excep-
tionally small intrasubject variation, especially for the Phys-
ioNet database representing more stable measurements than
the 24-hour Holter data of the THEW database. The RR-
QTc point clouds of the AccuQT method are well condensed
in the 350–450 ms range; in the PhysioNet case the result is
97%, compared to that of 84% in Bazett and 90% in Frider-
icia.

We find significant potential in the AccuQT method to
improve the reliability of QT correction. For clinical applica-
tions, thorough validation under appropriate measurement
conditions compliant with the regulatory pathway are
required. Studies of the method on the performance for
different diseases and drug effects are already underway.
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Appendix
Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.cvdhj.2
022.10.006.
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