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Abstract

The objective of this paper is audio-visual synchronisation of general videos ‘in the
wild’. For such videos, the events that may be harnessed for synchronisation cues may be
spatially small and may occur only infrequently during a many seconds-long video clip,
i.e. the synchronisation signal is ‘sparse in space and time’. This contrasts with the case
of synchronising videos of talking heads, where audio-visual correspondence is dense in
both time and space.

We make four contributions: (i) in order to handle longer temporal sequences re-
quired for sparse synchronisation signals, we design a multi-modal transformer model
that employs ‘selectors’ to distil the long audio and visual streams into small sequences
that are then used to predict the temporal offset between streams. (ii) We identify arte-
facts that can arise from the compression codecs used for audio and video and can be used
by audio-visual models in training to artificially solve the synchronisation task. (iii) We
curate a dataset with only sparse in time and space synchronisation signals; and (iv) the
effectiveness of the proposed model is shown on both dense and sparse datasets quanti-
tatively and qualitatively. Project page: v-iashin.github.io/SparseSync

1 Introduction
Audio-visual synchronisation is the task of determining the temporal offset between the au-
dio (sound) and visual (image) streams in a video. In recent literature, this task has been
explored by exploiting strong correlations between the audio and visual streams, e.g. in hu-
man speech [2, 9, 11] and playing instruments [3, 24], to provide a training signal for deep
neural networks. In such scenarios, effective signals for synchronisation can be discovered
between the lip or body movements and audio at almost every second. Despite the tremen-
dous success achieved by these methods, for the most part, existing models are still limited
to specialised domains, and not directly applicable to general (non-face, non-music) classes.
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Figure 1: Audio-visual synchronisation requires a model to relate changes in the visual and
audio streams. Open-domain videos often have a small visual indication, i.e. sparse in space.
Moreover, cues may be intermittent and scattered, i.e. sparse across time, e.g. a lion only
roars once during a video clip. This differs from a tight face crop of a speaker where cues
are dense in space and time.

Our goal in this paper is to develop the next-generation audio-visual (AV) synchroniser.
Rather than focusing on a specialised domain, such as human speech, we explore architec-
tures for AV synchronisation for videos of general thematic content, e.g. daily videos [7, 21,
23] and live sports [14]. A solution for this task would be extremely useful for a number of
applications that improve a user’s viewing experience – in order to avoid or at least automat-
ically detect AV synchronisation offsets. Applications such as video conferencing, television
broadcasts, and video editing, are currently largely done by ‘off-line’ measurements or heavy
manual processing [12, 29, 31].

However, upgrading the existing audio-visual synchronisation systems to general videos
is not straightforward, due to the following challenges: (i), in general videos, the synchro-
nisation signal is often sparse and instantaneous in time, (a lion roaring or a tennis volley),
rather than dense in time (a recorded monologue); (ii), objects that emit sounds can vary in
size or appear in the distance making their presence on the frame small or sparse in space (a
ball being hit in tennis), whereas synchronisation of a talking-head video may rely on visual
cues from the localised mouth region, i.e. dense in space; (iii), some sound sources do not
have a useful visual signal for synchronisation, e.g. stationary sounds (a car engine or electric
trimmer), ambient sounds (wind, water, crowds, or traffic), and off-screen distractors (com-
mentary track or advertisements); (iv), video encoding algorithms compress unperceived
redundancy of a signal, this, however, can introduce artefacts that may lead to a trivial solu-
tion when training for audio-visual synchronisation; lastly, (v) due to its challenging nature,
a public benchmark to measure progress has not yet been established.

In this paper, (i) we introduce a novel multi-modal transformer architecture, SparseSe-
lector, that can digest long videos with linear scaling complexity with respect to the num-
ber of input tokens, and predict the temporal offset between the audio and visual streams.
We achieve this by using a set of learnable queries to select informative signals from the
‘sparse’ video events across a wide time span. (ii) We show that for specific common au-
dio and visual coding standards, a model can detect compression artefacts during training.
We present a few simple indicators to determine if a model has learnt using these artefacts,
as well as suggest several ways to mitigate the problem. Specifically, for the RGB stream,
we recommend avoiding the MPEG-4 Part 2 codec, as well as reducing the sampling rate
for audio. (iii) Additionally, to measure the progress of audio-visual synchronisation on
general thematic content, we curate a subset of VGGSound with ‘sparse’ audio-visual corre-
spondence called VGGSound-Sparse. We validate the effectiveness of the new model with
thorough experiments on the existing lip reading benchmark (LRS3) and natural videos from
VGGSound-Sparse and demonstrate state-of-the-art performance.

Citation
Citation
{Chen, Xie, Vedaldi, and Zisserman} 2020

Citation
Citation
{Khosravan, Ardeshir, and Puri} 2019

Citation
Citation
{Korbar, Tran, and Torresani} 2018

Citation
Citation
{Ebeneze, Wu, Wei, Sethuraman, and Liu} 2021

Citation
Citation
{Dassani, Bird, and Cliff} 2019

Citation
Citation
{Shrestha, Barbieri, Weda, and Sekulovski} 2010

Citation
Citation
{Staelens, Deprotect unhbox voidb@x protect penalty @M  {}Meulenaere, Bleumers, Vanprotect unhbox voidb@x protect penalty @M  {}Wallendael, Deprotect unhbox voidb@x protect penalty @M  {}Cock, Geeraert, Vercammen, Vanprotect unhbox voidb@x protect penalty @M  {}den Broeck, Vermeulen, Vanprotect unhbox voidb@x protect penalty @M  {}de Walle, etprotect unhbox voidb@x protect penalty @M  {}al.} 2012



IASHIN, XIE, RAHTU, ZISSERMAN: AUDIO-VISUAL SYNCHRONISATION 3

2 Related Work
Audio-visual synchronisation. During the pre-deep-learning era, the audio-visual human
face synchronisation models relied on manually crafted features and statistical models [17,
30]. With the advent of deep learning, [10] introduced a two-stream architecture that was
trained in a self-supervised manner using a binary contrastive loss. Later improvements were
brought by multi-way contrastive training [11], and Dynamic Time Warping [27] used by
[15]. Khosravan et al. [21] demonstrated the benefits of spatio-temporal attention and Kim et
al. [22] employed a cross-modal embedding matrix to predict the offset for synchronisation.
The progress was followed by [19] who introduced an architecture called VocaLiST with
three transformer decoders [32]: two that cross-attend individual modalities and a third that
fuses the outputs of the first two. These methods achieve impressive performance but focus
on human speech rather than open-domain videos.

Although audio-visual synchronisation of general classes is a novel task, a few promising
attempts have been made. In particular, Casanovas et al. [6] studied a handful of different
scenes captured from a set of cameras. More recently, Chen et al. [8] adapted the trans-
former architecture and used a subset of VGGSound [7] covering 160 classes. In contrast
to prior work, we focus on more challenging classes that have ‘sparse’ rather than ‘dense’
synchronisation signals.

Video coding artefacts. Since the early work of Doersch et al. on self-supervision [13], it
has been known that network training can find shortcuts. Similarly, shortcuts due to video
editing and coding artefacts have been noted in Wei et al. [33] and Arandjelović et al. [3].
In particular, [33] tackled the arrow-of-time in videos and studied artificial cues caused by
black regions on video frames. While [3] noticed a slight impact of MPEG-encoding on
audio-visual correspondence training and attributed it to the way negative samples are picked
with respect to the start time of a positive sample. In this work, we study the ways to easily
spot that the data contains artificial signals, as well as provide a few recommendations on
how to prevent leaking such artefacts into data.

3 SparseSelector: an Audio-visual Synchronisation Model
In this section, we describe our audio-visual synchronisation model, where the audio-visual
correspondence may only be available at sparse events in the ‘in the wild’ videos. This
requires the model to handle longer video clips so that there is a high probability that a
synchronisation event will occur. To this end, we propose SparseSelector, a transformer-
based architecture that enables the processing of long videos with linear complexity with
respect to the duration of a video clip. It achieves this by ‘compressing’ the audio and visual
input tokens into two small sets of learnable selectors. These selectors form an input to a
transformer which predicts the temporal offset between the audio and visual streams.

Architecture overview. The overview of the model is shown in Fig. 2. Given an audio
spectrogram A ∈ RHa×Wa×1 (Ha, Wa are frequency and time dimensions) and a stack of
RGB frames V ∈ RTv×Hv×Wv×3, the audio-visual synchronisation model outputs the offset ∆

between audio (A) and visual (V) streams:

∆ = ΦSync

(
ΦA-Sel

(
ΦA-Feat(A)

)
, ΦV-Sel

(
ΦV-Feat(V)

))
. (1)
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Figure 2: An overview of SparseSelector. The input is a spectrogram of the audio waveform
and RGB frames from the video stream. These are passed through corresponding feature ex-
tractors, and the resulting features are refined with trainable selectors that ‘pick’ useful cues
for synchronisation. As a result, the synchronisation transformer operates on substantially
shorter sequences than the original input. The visual and audio selector queries are con-
catenated with classification (CLS) and separation tokens (MOD) as input to the transformer.
Finally, the CLS token of the transformer output is used to predict the audio offset using a
linear classification head. RGB frames are zoomed-in for visualisation purposes. The model
is trained by off-setting the audio spectrogram. Dashed lines illustrate train-time behaviour.

First, audio and visual streams are independently encoded in feature extraction modules
ΦA/V-Feat. Next, trainable selectors are passed to Feature Selectors (ΦA/V-Sel) along with the
encoded features where they ‘summarise’ informative signals from the features that contain
‘sparse’ information across time and space. Finally, the selectors are used in Synchronisation
Transformer (ΦSync) to predict the temporal offset ∆ between audio and visual streams.

Feature encoding. Audio & visual inputs are encoded in spatio-temporal feature extractors:

a = ΦA-Feat(A) ∈ Rha×wa×da , v = ΦV-Feat(V) ∈ Rtv×hv×wv×dv , (2)

where t, h, w, and d denote time, height, width and channel dimensions, respectively. For
the audio backbone, we use a variant of ResNet18 [16], which we pre-train on VGGSound
[7] for sound classification. As for the visual backbone, we adopt S3D [34] pre-trained for
action recognition on Kinetics 400 [20]. Although the setting allows employing any visual
recognition network, we found that training a synchronisation model with a frame-wise fea-
ture extractor was significantly more difficult.

Feature Selectors. To utilize sparsely occurring synchronisation cues, the model should be
able to handle longer input sequences. Moreover, accurate synchronisation requires a higher
visual frame rate than other video understanding tasks (e.g. action recognition), which further
increases the input size. For this reason, drawing on the idea of trainable queries [5, 18, 35],
we propose to use a small number of trainable ‘selectors’ that learn to attend to the most
useful modality features for synchronisation and, thus, reducing sequence length.

The architecture of the Feature Selector is similar to the transformer decoder [32]. Specif-
ically, we start by flattening audio and visual features into sequences a ∈ Rhawa×da and
v ∈ Rtvhvwv×dv . After adding trainable positional encoding (PE∗) for each dimension, train-
able selectors and modality features are passed to the separate Feature Selectors as follows:

q̂a = ΦA-Sel(a+PEa,qa +PEqa), q̂v = ΦV-Sel(v+PEv,qv +PEqv), (3)

where qa, q̂a ∈ Rka×d and qv, q̂v ∈ Rkv×d while ka/v are the numbers of selectors.
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Note that the selectors provide a ‘short summary’ of the context features through the
cross-attention mechanism while making the memory footprint more manageable. The re-
duced memory requirement is a consequence of (a) casting the complexity from quadratic to
linear w.r.t. the input length, and (b) setting kv� tv ·hv ·wv and ka� ha ·wa. The number of
selectors (kv or ka) can be conveniently tweaked according to the memory budget.

Audio-visual synchronisation transformer. To fuse the audio-visual cues from individual
selectors, we adopt the standard transformer encoder layers to jointly process them, and to
predict the offset, i.e. relative temporal shift between audio and visual streams, as follows:

∆̂ = ΦSync([CLS; qv; MOD; qa]) (4)

Here we concatenate the visual-audio selectors with two learnable special tokens, namely the
classification token [CLS], and the modality token [MOD] that separates the two modalities.
The offset prediction is obtained by applying a linear prediction head on the first token of
the output sequence (omitted from Eq. (1) and (4) for clarity).

Training procedure. We assume that the majority of videos in the public datasets are syn-
chronised to a good extent. With this assumption, we can artificially create temporal offsets
between audio and visual streams from a video. We formulate the audio-visual synchroni-
sation as a classification task onto a set of offsets from a pre-defined temporal grid space
as [−2.0,−1.8, . . . , 0.0,+0.2, . . . ,+2.0] sec. The step size is motivated by the ±0.2 sec
human tolerance, where the ITU performed strictly controlled tests with expert viewers and
found that the threshold for acceptability is −0.19sec to +0.1sec [28]. To train the model,
we employ the cross-entropy loss. For our experiments, we randomly trim a 5-sec segment
out of 9 seconds such that both audio and visual streams are within the 9-second clip to make
inputs of the same size and avoid padding that could hint if the input is off-sync.

4 Avoiding Temporal Artefacts
In this section, we describe our discovery of trivial solutions for training audio-visual syn-
chronisation, that is, the model is able to exploit the video compression artefacts, to infer the
time stamp for the specific video clip. Additionally, we also detail a suite of techniques that
allows us to probe the artefacts and provide some practical suggestions to avoid them.

4.1 Identifying Temporal Artefact Leakage
We present two ways of identifying the temporal artefact leakage. In particular, training to
predict the start time of a temporal crop (discussed next) and tracking metrics with temporal
tolerance (discussed in the supplementary material).

Training to predict a video clip’s time stamp. A synchronisation model should rely
solely on temporal positions of conceptual cues instead of, what we call, temporal artefacts.
To check if data is polluted with artefacts, we suggest training a model to predict the start
time of a random trim of an available video clip as shown in Tab. 1, left. Of course, it should
not be possible to determine the start time of the trim in the original clip from the trim itself,
and a network trained for this task should achieve only chance performance. However, for
some audio and video codecs, the performance is far higher indicating artefact leakage.

The start-time classifier is a simple feature extractor (ResNet18). It is trained on three
variations of the MJPEG-AoT dataset [33] obtained from the Vimeo streaming service: orig-
inal ProRes videos, and ProRes videos transcoded into either MPEG-4 Pt. 2 (aka.mpeg4)
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Flatten

Linear

Spatial AvgPool

Random 5-second trim

Loss

class #20

0.0 2.0 sec → class is #20 

Feature Extractor 50 x 7 x 7 x D

50 x 1 x 1 x D

50 * D

50

10-second clip (100 RGB frames at 10 fps)

Codec Acc@1 Acc@5

MPEG-4 Part 2 (mpeg4) 27.2 77.1
MPEG-4 Part 10 (H.264) 2.5 11.9
ProRes 2.7 13.4

AAC @ 44100Hz 86.7 100.0
AAC @ 22050Hz 23.0 74.3
AAC @ 16000Hz 6.3 19.3
Lossless @ 22050Hz 2.9 14.6

Table 1: Commonly used coding standards may leak temporal artefacts – it is easy to
test. Left: a simple architecture trained to classify the start of a trim from a 10s clip to a pre-
defined 0.1 sec-step grid (here for RGB). Right: Accuracy comparison for RGB and audio
stream codecs predicting the start of an RGB or audio trim. Metrics are accuracy at 1 and
5 on 50 classes. Chance performance is 2 and 10 %. The higher accuracies indicate that an
artefact is being used – see text for discussion.

or MPEG-4 Pt. 10 (aka. H.264). Note, frames in ProRes are compressed independently from
others. If the visual stream of the video is encoded using mpeg4, the model trained to predict
the start of the trim can do it significantly beyond a chance performance (Tab. 1, top-right).

Similarly, Advanced Audio Coding (AAC) might also leak temporal cues to the audio
signal (Tab. 1, bottom-right). Since it is challenging to find a large set of videos with lossless
audio compression, we used audio of randomly generated noise with a specified sampling
rate and saved it to a disk losslessly (PCM) to obtain the performance with lossless compres-
sion. To obtain results on AAC, we transcoded these files to AAC with ffmpeg.

4.2 Preventing Temporal Artefact Leakage
Avoiding MPEG-4 Part 2 in favour of H.264. The algorithm that selects key-frames in
MPEG-4 Part 2 (mpeg4) is less flexible than the one of H.264. In particular, ffmpeg,
which is commonly used in practice, by default, encodes key frames every 12 frames. This
means that each of the following 11 frames is merely a residual of the key frame and it is
noticeable on the RGB stream (as we show in the supplementary). Such a temporal regular-
ity can be picked up by a model and used to solve the task relying mostly on these artefacts.
In contrast, each frame encoded by H.264 can reference up to 16 key-frames, which can be
allocated more sparsely and their presence depends heavily on the scene rather than a rather
strict interval as in MPEG-4 Pt. 2. This benefit is apparent when training a model to predict
the start of a trim (see Tab. 1, top-right). A potential solution would be to avoid inter-frame
codecs (mpeg4 and H.264) in favor of an intra-frame codec (e.g. MJPEG, ProRes). How-
ever, this is a strong requirement for research datasets because it requires avoiding YouTube
which stores videos compressed with inter-frame codecs (H.264 or VP9, according to view
count).

Reducing audio sampling rate. There is a substantial difference in the model’s ability to
predict the start of a trim depending on the sampling rate of the audio track (Fig. 1, bottom-
right). While the reason behind the temporal artefacts in AAC is unknown, we recommend
avoiding higher sampling rates. In our experiments, we rely on a 16kHz sampling rate as it
provides a reasonable trade-off between audio quality and the start prediction performance.
Ultimately one would want to have a dataset with lossless audio tracks yet, again, it is a
strong requirement for a dataset as it is commonly used by YouTube.
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5 Experiments
Dense in time dataset. The dataset is Lip Reading Sentences (LRS3) [1] which is obtained
from TED talks for many speakers. We use two variations of the dataset. The first employs
strict rectangular face crop coordinates that are extended to make a square (‘dense in time
and space’). The second variation consists of full-frame videos without cropping (‘spatially
sparse and temporally dense’). The raw videos are obtained from YouTube with RGB (25fps,
H.264) and audio (16kHz, AAC) streams and referred to as ‘LRS3-H264’ and ‘LRS3-H264
(“No face crop”)’. We utilise the pretrain subset and split video ids into 8:1:1 parts for
train, validation, and test sets. Only videos longer than 9 sec are used to unify it with the
sparse dataset (discussed next). In total, we use ∼58k clips from ∼4.8k videos.

Sparse in time dataset. The dataset uses VGGSound [7] which consists of 10s clips col-
lected from YouTube for 309 sound classes. A subset of ‘temporally sparse’ classes is se-
lected using the following procedure: 5–15 videos are randomly picked from each of the
309 VGGSound classes, and manually annotated as to whether audio-visual cues are only
sparsely available. After this procedure, 12 classes are selected (∼4 %) or 6.5k and 0.6k
videos in the train and test sets, respectively (for class names see Fig. 3). Next, the second
round of manual verification of a different subset of 20 videos from each class determines
if it is feasible to align the sound based on the visual content. It is observed that ∼70 % of
these video clips are synchronisable. We refer to this dataset as VGGSound-Sparse.

Baseline. Drawing on architectural details proposed in [8], we design a baseline as a trans-
former decoder that uses audio features as queries and visual features as context (keys and
values) to predict the offset. The audio features are pooled across the spectrogram frequency
dimension and trained from scratch. Apart from that, the feature extractors resemble ours.

Offset grid. We define the synchronisation task as classifying the offset on a 21-class grid
ranging from −2 to +2 seconds with the 0.2-sec step size, as explained in Sec. 3. This can
be regarded as a more challenging variant of the sync/off-sync task that prior work solves.
We also experiment with a simpler setting with only 3 offset classes [−1, 0, +1], that test if
a model could predict if one track either lags, is in sync, or is ahead of the other one.

Metrics. Considering the human off-sync perception tolerance, in our experiments, we
mainly report the Top-1 Accuracy with a ±1 class of temporal tolerance (as described in
Sec. 4.1). Note, that the training loss does not account for this tolerance. In the supplemen-
tary section, we additionally provide performance on accuracy without tolerance.

5.1 Results
Dense in time and space. Tab. 2 shows the comparison between the baseline and proposed
architecture. As the task becomes more difficult (more sparse data or finer offset grid),
we observe a larger gap between our model and the baseline. In particular, the baseline
performs strongly on LRS3 (dense in time and space) in the setting with just three classes
(98.4 %). However, once the task gets more challenging, i.e. when training on finer offset
shifts (21 class, 0.2 sec apart), the baseline performance deteriorates significantly (∼89.8 %).
In contrast, the proposed model performs strongly even in the setting with finer offsets. This
suggests that the proposed model is better suited for more challenging data tasks.
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Dense-Dense Dense-Sparse Sparse-Sparse
LRS3 (Face crop) LRS3 (W/o face crop) VGGSound-Sparse
3 cls 21 cls 3 cls 21 cls 3 cls? 21 cls

AVSTdec 98.4 89.8 95.8 83.1 52.2 29.3
Ours 96.4 95.6 95.5 96.9 60.3 44.3

Table 2: The proposed model handles the increasing complexity of the setting and
dataset better than the baseline while reaching a strong performance compared to the
oracle. ‘Dense-Dense’ refers to the face-cropped speech videos (LRS3), ‘Dense-Sparse’ for
spatially-sparse LRS3 (‘No face crop’), ‘Sparse-Sparse’ is reported on VGGSound-Sparse
which is sparse in time and space, e.g. lion roars once during a clip. The synchronisation
performance is measured in two settings: the 3-class with (−1, 0, +1) offsets given 5-sec
clips, and 21 classes of offsets from −2.0 to +2.0 sec with 0.2-sec step size. The latter
setting allows ±1 temporal class tolerance (±0.2 sec). ?: oracle performance is 70 %.

0.0 0.1 0.2 0.3 0.4 0.5
Accuracy (± 1 class tolerance)
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dog barking
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Figure 3: Performance per data and offset class on VGGSound-Sparse (test).

Dense in time and sparse in space. A similar effect is observed on the dataset that is
dense in time and sparse in space, i.e. LRS3 (No face crop). As both architectures drop their
performance slightly on the 3-class setting after switching to a more difficult dataset, the drop
is more significant for the baseline than for our model. Moreover, the baseline performance
drops substantially in the 21-class setting (>6 %), while our model performs strong.

Sparse in time and space. Finally, the experiments on the VGGSound-Sparse reveal an
even larger difference between the baseline method and our final model. For this experi-
ment, we add additional data augmentation to mitigate overfitting. In particular, our model
significantly outperforms the baseline showing the benefit of selectors on a more challenging
dataset and setting. Ultimately, our model reaches 60 % in the 3-class setting which is close
to the oracle performance (∼70 %: a human performance on 240 randomly picked videos),
while achieving 44 % in the 21-class setting. We report performance per class in Fig. 3.

5.2 Ablation Study

In Tab. 3 we provide results for an ablation study. The results are reported on the VGGSound-
Sparse dataset with 21 offset classes. More results are provided in the supplementary.

Feature selectors. The architecture with feature selectors outperforms the vanilla trans-
former showing the effectiveness of selectors in ‘compressing’ signals from the audio and
visual features. Also, Fig. 4 shows a memory footprint comparison of the two, omitting the
memory consumed by feature extractors that are the same. It is evident that memory demand
grows rapidly with the input duration making it impossible to work with longer sequences
and the transformer that inputs concatenated audio and visual streams.
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Sync Model Pre-trained Unfrozen
pre-trained Feature Feature

Selectors on LRS3 Extractors Extractors Accuracy21

7 4 4 4 40.1
4 7 4 4 12.1
4 4 7 4 29.6
4 4 4 7 33.5
4 4 4 4 44.3

Table 3: Results of the ablation study. The experi-
ments are conducted on VGGSound-Sparse with 21 off-
set classes. Metric is Accuracy with±1 class tolerance.
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Figure 4: Working with longer se-
quences quickly becomes infeasi-
ble without selectors.

Chopping Wood Playing Badminton Dog Barking Skateboarding Lion Roaring

VGGSound-SparseLRS3 (No Face Crop)

Figure 5: Visual feature selectors focus on specific parts of the sparse signal that is
useful for synchronisation. Examples are from the hold-out set of LRS3 (‘No face crop’)
and VGGSound-Sparse. Attention is captured from a selector to a visual or spectrogram
feature token from a head within one of the layers. Attention values are min-max scaled.

Pre-training on dense signals. Pre-training a model on LRS3 (‘No face crop’) is an es-
sential part of the training procedure on VGGSound-Sparse: 44.3 vs. 12.1 (near chance
performance). For this reason, we also pre-train the baseline architecture (see Tab. 2).

Pre-trained feature extractors. The initialisation of audio and visual feature extractors
with pre-trained weights has a strong positive effect on model performance. To initialise our
feature extractors, we use weights of S3D pre-trained on Kinetics 400 for action recognition
and ResNet18 pre-trained sound classification on VGGSound. The initialisation not only
improves the final performance (43.3 vs. 33.5 %) but also significantly speeds up training.
We attribute this improvement to the fact that such initialisation allows the model to ‘skip’
learning of the generic low-layer features and focus on training for synchronisation.

Frozen feature extractors during training. Allowing the gradients to reach raw data pix-
els is useful for audio-visual synchronisation as it makes the model sensitive to the smallest
variations in the signal which is useful for synchronisation. In particular, having feature ex-
tractors to be trainable significantly boosts the performance from 34 to above 43 %, and the
difference is even more pronounced on LRS3 (‘No face crop‘) – see supplementary material.

Attention visualisation. Fig. 5 shows examples from LRS3-H.264 (‘No Face Crop’) and
VGGSound-Sparse. Specifically, the attention exhibits spatial locality as the selectors learned
to attend to the features extracted from the mouth region as expected from a model trained on
a speech dataset. For a more challenging and diverse dataset, VGGSound-Sparse, the model
highlights important parts of the visual and audio streams. In particular, the model accounts
for the hit of the second badminton player who is far away in the background or attends to
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Length VGGSound-Sparse
(sec.) 3 classes 21 classes

2 55.6 —
3 59.4 36.8
4 60.8 43.0
5 60.3 44.2
6 61.2 45.6
7 62.9 46.5

Table 4: Synchronisation accuracy improves with input
length. We report results on two settings: with 3 offset
classes (−1, 0, +1 sec) and 21 classes (±2.0 sec grid with
0.2-sec step size). The results are reported on the test subset
and accuracy is used as the metric. The accuracy for the 21-
class setting is reported with ±1 class tolerance. We use the
same input lengths for pre-training, fine-tuning, and testing.

the axe during the chop, or the roaring mouth of the lion, yet these occur just once per video
clip. Similarly, audio feature selectors point to specific parts of the spectrogram when the
change occurs. More examples are provided in the supplementary material.

Input length. As the sparse synchronisation cues occur only occasionally within a video
clip, processing shorter temporal crops decrease the chance of having sufficient cues for
synchronisation, which, in turn, should decrease the performance. In Tab. 4, we show how
performance varies with respect to the duration of input video clips. The results on the 3
and 21 offset classes illustrate the upward trend in model performance as the input duration
extends. Note that the longer the inputs, the less unseen training data the model processes at
each epoch. Specifically, a 10-second clip may be split into non-overlapping 3-second clips,
which is not possible with clips longer than 5 seconds. Thus, this effect may undermine the
current performance.

6 Conclusion
In this work, we study ‘in the wild’ videos that often have a synchronisation signal that
is sparse in time. This requires a model to efficiently process longer input sequences as
these synchronisation cues occur only rarely. To this end, we designed a transformer-based
synchronisation model that has linear complexity with respect to the input length. This was
made possible by using a small set of learnable ‘selectors’ that summarise long audio and
visual features that are employed to solve the synchronisation task. To evaluate models in
this challenging setup, we curate a dataset with only sparse events and train it on 5-second
long clips. Finally, we discovered that compression artefacts caused by audio and video
codecs might pose a threat to training for synchronisation, yet, as we show, these artefacts
are easily identifiable and could be avoided to a certain extent.

Limitations. First, considering the complicated input-output relationship in the proposed
model, it is challenging to determine which part of the input signal influences the output.
Second, in this work, we considered signals that are ‘dense in time and space’, ‘dense in time
but sparse in space’, and ‘sparse in time and space’. However, there is another interesting
setting ‘sparse in time but dense in space’ yet it is not clear how to design such a dataset
without making it ‘too artificial’. Third, despite showing strong performance on the proposed
dataset, VGGSound-Sparse, there is still room for improvement.

Acknowledgements. Funding for this research was provided by the Academy of Finland
projects 327910 and 324346, EPSRC Programme Grant VisualAI EP/T028572/1, and a
Royal Society Research Professorship. We also acknowledge CSC – IT Center for Science,
Finland, for computational resources.
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Figure 6: MPEG-4 Part 2 (mpeg4) leaks regular temporal artefacts every 12th frame
that are unnoticeable on the RGB stream. The top row shows a video encoded with H.264
and the pixel-wise first difference between two consecutive frames. The bottom row shows
the same video but now transcoded (encoded) from H.264 into MPEG-4 Pt. 2 (mpeg4) and
its first difference. The first difference illustration is made sensitive to any change in corre-
sponding pixel intensity (colored in white).

7 Supplementary Material

In this section, we present more details on temporal artefacts (Sec. 7.1), additional ablation
study results (Sec. 7.2), and implementation details (Sec. 7.3).

7.1 Further Discussion on Temporal Artefacts

Illustrating temporal artefacts. The temporal artefacts in the audio and visual streams
have a periodic nature, e.g. artefacts are equidistant temporally, and can be easily highlighted
on the RGB stream. In Fig. 6, we compare the first-order temporal difference calculated from
a video that was encoded with MPEG-4 Part 10 (H.264 or AVC) and MPEG-4 Part 2 (aka
mpeg4) which was transcoded1 from H.264. Notice the white noise (RGB intensity change)
on the 12th, 24th, 36th frames (the period is 12) in the bottom-right image. In particular,
notice that the caption at the bottom of each frame is fixed across the video yet every 12th

we see it to be white, and black otherwise. The 12-frame period originates from the Group
of Picture (GoP) size, i.e. how often independently-encoded frames occur, and is selected by
the ffmpeg tool by default.

1Sometimes this process is incorrectly called ‘re-formatting’ or ‘re-encoding”
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Figure 7: Some codecs leak temporal artefacts and it is easy to notice when training for
the temporal crop start-time prediction. Training dynamics for the start-time prediction
experiments. Left: random noise encoded in AAC with varying sampling rates. Right:
ProRes videos encoded as H.264 or mpeg4. Metric is the top-1 accuracy across 50 classes.

In contrast, on a video encoded in H.264, these artefacts are also visible but are not
regular (see the top row of Fig. 6) since the H.264 codec follows a more flexible key-framing
algorithm that allows it to reference not 1 as in mpeg4 but up to 16 different key-frames (I-
frames). Moreover, the allocation of key-frames depends heavily on the scene content, which
makes the temporal spacing of key-frames unique for each video and, thus, less predictable
a priori. Note: this should hold for any video originally encoded with regularly spaced key-
frames, i.e. transcoding will not remove temporal artefacts. For instance, if we crop out and
transcode 5 seconds of a 10-second MPEG-4 Part 2 video file into H.264, the artefacts will
still be present in the RGB stream.

Tracking accuracy metrics with temporal tolerance. We noticed that, when the model
is trained for start-time prediction and there are temporal artefacts in the data, the model tend
to output equidistant classes in the top-K predictions. For example, if the correct start class
is 15 (15th frame if a video is encoded at 10 fps), the model would be ‘confident’ in classes
(3, 15, 27, etc) or simply any class where ‘class id mod 12 = 3’. The 12 results from the GoP
size as described in the previous paragraph. This differs from the expected error behavior
where predictions would be around the true class, e.g. (13, 15, 14, etc) or 1.3sec ±0.1sec.

Training details. The artefact leakage can be detected by training a model to predict the
start-time of a temporal segment given a 5-second audio spectrogram or a stack of RGB
frames. In our experiments, we used a 50-way classification on a grid with the 0.1s (one
frame) stride from a 10fps video. The 50 classes is because in our implementation the start
of the temporal crop could only begin during the first 5 seconds. For simplicity, we used a
ResNet18 followed by a spatial average pooling and a dense layer as a classification head for
both audio and visual inputs. The training dynamic is shown in Fig. 7.

7.2 Ablation Study (Additional Results)

As mentioned in Sec. 5, we report additional results with metrics without temporal toler-
ance as well as the performance on LRS3-H.264 (‘No face crop’) in Tab. 5. Moreover, we
experiment with different numbers of layers in the transformer modules, provide additional
visualisation of attention, and show the benefit of fine-tuning the model on a more diverse
and large-scale dataset.
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Sync Model Pre-trained Unfrozen Dense-Sparse Sparse-Sparse
pre-trained Feature Feature LRS3 (No face crop) VGGSound-Sparse

Selectors on LRS3 Extractors Extractors Acc21 / Acctol.
21 Acc21 / Acctol.

21

7 4 4 4 78.3 / 97.2 21.2 / 40.1
4 7 4 4 — 5.0 / 12.1
4 4 7 4 76.6 / 94.1 16.0 / 29.6
4 4 4 7 38.6 / 69.7 14.7 / 33.5
4 4 4 4 80.7 / 96.9 26.7 / 44.3

Table 5: Additional results of the ablation study. The metrics are the accuracy with and
without temporal tolerance (±1 class) on a 21-class offset grid ranging from −2.0 sec to
+2.0 sec with a step size of 0.2 sec.

LRS3 (No face crop)
Depth Params. Acc21 / Acctol.

21

1 31.2M 61.7 / 89.2
2 42.8M 78.0 / 95.7
3 55.3M 80.7 / 96.9
6 89.0M 81.1 / 97.5

Table 6: The performance scales with the
depth of the transformer modules and satu-
rates by the 3-layer capacity. The results are
reported on the setting with 21 classes with off-
sets from −2.0 to +2.0 with step size 0.2 sec.
Metrics are accuracy with and without tempo-
ral tolerance (±1 class).

Results with additional metrics and a dataset. Similar to the results on the VGGSound-
Sparse dataset, we see the importance of each component in the final model performance
when compared on the ‘Dense-Sparse’ setting, i.e. LRS3-H.264 (‘No Face Crop’). Notice,
the narrower gap in performance compared to the models with and without selectors. This
highlights that the use of selectors becomes more important as the complexity of the task
increases (from ‘Dense’ to ‘Sparse’).

Interestingly, the feature extractors pre-training has a much more noticeable effect on the
VGGSound-Sparse compared with the LRS3 (‘No face crop’) dataset. We attribute it to the
simplicity of the talking-face dataset, which imposes lower requirements on the diversity of
audio-visual synchronisation cues. Such cues are easier and faster to learn because they are
quite generic across videos.

Number of transformer layers. Tab. 6 presents the impact of the transformer’s depth on
the model’s synchronisation performance. We vary the depths of two feature selector trans-
formers and the synchronisation transformer simultaneously. According to the results, the
performance grows as the capacity of the model increases, however, the returns are dimin-
ishing. Thus, we regard the 3-layer option as our final model.

Additional attention visualisations. We provide additional attention visualisation on the
LRS3-H.264 (‘No Face Crop’) dataset in Fig. 8. The illustration shows that the model per-
forms well regardless of gender, race, partial occlusion, position of a head within a frame, as
well as the different distance to a person, and background.

Fine-tuning on a larger dataset. We found that fine-tuning on a larger general-purpose
dataset, e.g. VGGSound (300+ classes), gives a significant boost to synchronisation perfor-
mance of the sparse classes. The results of this experiment are shown in Tab. 7.
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LRS3-H.264 ("No Face Crop")

Figure 8: Visual feature selectors focus on specific parts of the sparse signal that is
useful for synchronisation. Examples are from the hold-out set of LRS3 (‘No face crop’).
Attention is captured from a selector to a visual or spectrogram feature token from a head
within one of the layers. Attention values are min-max scaled.

Pre-trained on Fine-tuned on Acc21 / Acctol.
21

LRS3 (‘No Face Crop’) VGGSound-Sparse 26.7 / 44.3
LRS3 (‘No Face Crop’) VGGSound 33.5 / 51.2

Table 7: Fine-tuning on a larger general-purpose dataset significantly improves syn-
chronisation performance. The results are shown on the test-set of VGGSound-Sparse.
Metrics are accuracy with and without temporal tolerance (±1 class).

7.3 Implementation Details
Feature extractors. For visual input, we sample the video with 25fps and resize the frames
such that min(Hv,Wv) = 256 and take a random crop of 2242. The 5-second stack of cropped
frames (125×224×224×3) is encoded with S3D which results in a 16×7×7×1024 visual
feature map. For the 5-second audio input, we convert a waveform sampled at 16kHz to a
spectrogram with the STFT (512 in size with 128 hop length) and apply a logarithm to the
result. The log-spectrogram (257× 626 is passed to the ResNet18, which outputs an audio
feature map of size 9×20.

Feature selectors and audio-visual synchronisation transformer. Before processing the
visual feature map in the feature selector, a simple 1×1 convolution layer is used to map the
visual features from 1024-d to 512-d which is the dimension of the transformer blocks across
the final architecture. We use layer norm [4] on both audio and visual features and apply
positional encoding after that. Both feature selectors have the same number of trainable
‘selectors’ (ka = kv = 16) that are initialised with Gaussian noise. As has been discussed in
the ablation study, 3 cross-attention layers are used for each feature selector and 3 attention
layers in the audio-visual synchronisation transformer. The layers have 8 heads.

Data augmentations. We use two sets of augmentations for (pre-)training on LRS3 and
finetuning on VGGSound-Sparse. For the RGB stream, we use: random spatio-temporal
crop2 and random horizontal flip (with 50 % probability). For VGGSound-Sparse, we addi-

2The range of the temporal crop is limited such that the resulting clip could fit the audio that was offset as well
as the visual clip.
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tionally may crop smaller to 1922 (with 50 % probability) followed by upscaling to 2242 as
well as applying colour jittering and converting to a grey scale (with 20 % probability and
only for VGGSound-Sparse).

For the audio, we found that adding short audio jittering around the start of the offset au-
dio trim (e.g.∼U [−0.05,+0.05] seconds) stabilises training. Additionally, for VGGSound-
Sparse, we apply (with 20 % probability) random reverberation, amplitude jittering, random
pitch shift, a low-pass filter, and add small Gaussian noise. We also employ SpecAugment
[25] except for time stretching as it could potentially mislead the synchronisation signal.

Training details. The final synchronisation model is trained for 8 days on 8 NVidia V100
GPU (32Gb) with half-precision on LRS3-H.264 followed by a few hours of finetuning on
VGGSound-Sparse. During finetuning, we use the same hyper-parameters as for pre-training
(except for the data augmentation as mentioned earlier). The models are trained with a batch
size of 10 video clips per GPU with a learning rate of 5 ·10−6 scaled by the number of GPUs.
We warm up training with a 100-times lower learning rate and linearly increase it during the
first 1k iterations. During training, Adam optimizer is used with β1,2 = [0.99,0.999] and the
norm of the gradients is max-clipped to 1. The code base relies on PyTorch (including
torchvision and torchaudio) [26] and ffmpeg (version 4.3.2). Before training, we
fix the set of offsets for every video in the validation and test sets such that we could evaluate
using the same data during experimentation.

References
[1] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. LRS3-TED: a large-

scale dataset for visual speech recognition. arXiv preprint arXiv:1809.00496, 2018.

[2] Triantafyllos Afouras, Andrew Owens, Joon Son Chung, and Andrew Zisserman. Self-
supervised learning of audio-visual objects from video. In Proceedings of the European
Conference on Computer Vision, 2020.

[3] Relja Arandjelovic and Andrew Zisserman. Objects that sound. In Proceedings of the
European Conference on Computer Vision, pages 435–451, 2018.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kir-
illov, and Sergey Zagoruyko. End-to-end object detection with transformers. In Pro-
ceedings of the European Conference on Computer Vision, 2020.

[6] Anna Llagostera Casanovas and Andrea Cavallaro. Audio-visual events for multi-
camera synchronization. Multimedia Tools and Applications, 2015.

[7] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. VGG-Sound: A
large-scale audio-visual dataset. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, 2020.

[8] Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Nagrani, Andrea Vedaldi, and
Andrew Zisserman. Audio-visual synchronisation in the wild. In Proceedings of the
British Machine Vision Conference, 2021.

Citation
Citation
{Park, Chan, Zhang, Chiu, Zoph, Cubuk, and Le} 2019

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, etprotect unhbox voidb@x protect penalty @M  {}al.} 2019



16 IASHIN, XIE, RAHTU, ZISSERMAN: AUDIO-VISUAL SYNCHRONISATION

[9] Joon Son Chung and Andrew Zisserman. Out of time: automated lip sync in the wild.
In Workshop on Multi-view Lip-reading, ACCV, pages 251–263, 2016.

[10] Joon Son Chung and Andrew Zisserman. Lip reading in the wild. In Proceedings of
the Asian Conference on Computer Vision, pages 87–103, 2016.

[11] Soo-Whan Chung, Joon Son Chung, and Hong-Goo Kang. Perfect match: Improved
cross-modal embeddings for audio-visual synchronisation. In Proceedings of the Inter-
national Conference on Acoustics, Speech and Signal Processing, 2019.

[12] Vansh Dassani, Jon Bird, and Dave Cliff. Automated composition of picture-synched
music soundtracks for movies. In Proceedings of the European Conference on Com-
puter Vision, 2019.

[13] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation
learning by context prediction. In Proceedings of the International Conference on
Computer Vision, pages 1422–1430, 2015.

[14] Joshua P. Ebeneze, Yongjun Wu, Hai Wei, Sriram Sethuraman, and Zongyi Liu. Detec-
tion of audio-video synchronization errors via event detection. In Proceedings of the
International Conference on Acoustics, Speech and Signal Processing, 2021.

[15] Tavi Halperin, Ariel Ephrat, and Shmuel Peleg. Dynamic temporal alignment of speech
to lips. In Proceedings of the International Conference on Acoustics, Speech and Signal
Processing, 2019.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[17] John Hershey and Javier Movellan. Audio vision: Using audio-visual synchrony to
locate sounds. Advances in Neural Information Processing Systems, 1999.

[18] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and
Joao Carreira. Perceiver: General perception with iterative attention. arXiv preprint
arXiv:2103.03206, 2021.

[19] Venkatesh S Kadandale, Juan F Montesinos, and Gloria Haro. VocaLiST: An audio-
visual synchronisation model for lips and voices. arXiv preprint arXiv:2204.02090,
2022.

[20] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vi-
jayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics
human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[21] Naji Khosravan, Shervin Ardeshir, and Rohit Puri. On attention modules for audio-
visual synchronization. In Workshop on Sight and Sound, CVPR, 2019.

[22] You Jin Kim, Hee Soo Heo, Soo-Whan Chung, and Bong-Jin Lee. End-to-end lip
synchronisation based on pattern classification. In SLT Workshop, 2021.



IASHIN, XIE, RAHTU, ZISSERMAN: AUDIO-VISUAL SYNCHRONISATION 17

[23] Bruno Korbar, Du Tran, and Lorenzo Torresani. Co-training of audio and video rep-
resentations from self-supervised temporal synchronization. In Advances in Neural
Information Processing Systems, 2018.

[24] Andrew Owens and Alexei A. Efros. Audio-visual scene analysis with self-supervised
multisensory features. In Proceedings of the European Conference on Computer Vision,
2018.

[25] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D
Cubuk, and Quoc V Le. SpecAugment: A simple data augmentation method for auto-
matic speech recognition. arXiv preprint arXiv:1904.08779, 2019.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch:
An imperative style, high-performance deep learning library. Advances in Neural In-
formation Processing Systems, 32, 2019.

[27] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition.
Prentice-Hall, Inc., 1993.

[28] ITU Radiocommunication. Relative timing of sound and vision for broadcasting.

[29] Prarthana Shrestha, Mauro Barbieri, Hans Weda, and Dragan Sekulovski. Synchro-
nization of multiple camera videos using audio-visual features. IEEE Transactions on
Multimedia, 2010. doi: 10.1109/TMM.2009.2036285.

[30] Malcolm Slaney and Michele Covell. Facesync: A linear operator for measuring syn-
chronization of video facial images and audio tracks. Advances in Neural Information
Processing Systems, 2000.

[31] Nicolas Staelens, Jonas De Meulenaere, Lizzy Bleumers, Glenn Van Wallendael, Jan
De Cock, Koen Geeraert, Nick Vercammen, Wendy Van den Broeck, Brecht Ver-
meulen, Rik Van de Walle, et al. Assessing the importance of audio/video synchro-
nization for simultaneous translation of video sequences. Multimedia systems, 2012.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, 2017.

[33] Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learning and
using the arrow of time. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8052–8060, 2018.

[34] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking
spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. In
Proceedings of the European Conference on Computer Vision, pages 305–321, 2018.

[35] Mingze Xu, Yuanjun Xiong, Hao Chen, Xinyu Li, Wei Xia, Zhuowen Tu, and Stefano
Soatto. Long short-term transformer for online action detection. In Advances in Neural
Information Processing Systems, 2021.


