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• MPXV DNA is excreted to wastewater
from skin, nasal secretion, urine, and
feces.

• Many infected persons could remain un-
detected with syndromic surveillance.

• Wastewater-based surveillance (WBS) can
complement clinical surveillance of
MPXV.

• Production of quantitative human MPXV
DNA shedding data is critical.
A B S T R A C T
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Editor: Warish Ahmed
 Monkeypox disease (MPXD), a viral disease caused by the monkeypox virus (MPXV), is an emerging zoonotic disease
endemic in some countries of Central and Western Africa but seldom reported outside the affected region. Since May
2022, MPXD has been reported at least in 74 countries globally, prompting the World Health Organization to declare
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the MPXD outbreak a Public Health Emergency of International Concern. As of July 24, 2022; 92 % (68/74) of the
countrieswith reportedMPXD cases had no historicalMPXD case reports. From theOneHealth perspective, the spread
ofMPXV in the environment poses a risk not only to humans but also to small mammals andmay, ultimately, spread to
potent novel host populations.Wastewater-based surveillance (WBS) has been extensively utilized tomonitor commu-
nicable diseases, particularly during the ongoing COVID-19 pandemic. It helped in monitoring infectious disease case-
loads as well as specific viral variants circulating in communities. The detection of MPXV DNA in lesion materials (e.g.
skin, vesiclefluid, crusts), skin rashes, and various bodyfluids, including respiratory and nasal secretions, saliva, urine,
feces, and semen of infected individuals, supports the possibility of using WBS as an early proxy for the detection of
MPXV infections. WBS of MPXV DNA can be used to monitor MPXV activity/trends in sewerage network areas even
before detecting laboratory-confirmed clinical caseswithin a community. However, several factors affect the detection
of MPXV in wastewater including, but not limited to, routes and duration time of virus shedding by infected individ-
uals, infection rates in the relevant affected population, environmental persistence, the processes and analytical sensi-
tivity of the used methods. Further research is needed to identify the key factors that impact the detection of MPXV
biomarkers in wastewater and improve the utility of WBS of MPXV as an early warning and monitoring tool for
safeguarding human health. In this review, we shortly summarize aspects of the MPXV outbreak relevant to wastewa-
ter monitoring and discuss the challenges associated with WBS.
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1. Introduction

The spread of the monkeypox virus (MPXV) beyond its known endemic
region has created a global public health challenge (CDC, 2022a; WHO,
2022a), leading to the declaration of a Public Health Emergency of Interna-
tional Concern by the World Health Organization (WHO) on July 23, 2022
(UN, 2022). The first human case of monkeypox disease (MPXD) was re-
ported in 1970 in the Democratic Republic of the Congo (Yinka-Ogunleye
et al., 2019). Subsequently, clinical cases have emerged around the
rainforest regions of the Democratic Republic of the Congo and the rest of
central and West Africa. Endemic circulation of MPXV occurs in central
and western African countries, including Benin, Cameroon, the Central
African Republic, the Democratic Republic of the Congo, Gabon, Cote
d'Ivoire, Liberia, Nigeria, the Republic of the Congo, Sierra Leone, and
South Sudan (Brown and Leggat, 2016; Hutin et al., 2001; Mbala et al.,
2017; McCollum and Damon, 2014; Vaughan et al., 2018; Yinka-
Ogunleye et al., 2018). The first MPXD outbreak outside of its endemic
center (Central and West Africa) was reported in 2003 in the United
States, with about 47 MPXD cases (Reynolds et al., 2006). The cause of
that outbreak was linked to captive prairie dogs exposed to a rodent re-
cently imported from Ghana (Reed et al., 2004).

Since early May 2022, the number of cases of MPXD has rapidly in-
creased outside the endemic regions (CDC, 2022a; Cohen, 2022; Peiró-
Mestres et al., 2022; Tutu van Furth et al., 2022). As of July 24, 2022,
16,836 confirmed cases of MPXD have been reported from 74 countries
(CDC, 2022a). Of the confirmed cases, 98.6 % (16,593) were reported
from countries (68 out of 74 countries, or 92 %) that have no previous re-
ports of MPXV (CDC, 2022a). As of July 24, 2022, the five countries with
the highest number of reported cases are Gibraltar (corresponding to
148.4 cases per million people), a British Overseas Territory near Spain,
Spain (66.8 per million), Portugal (57.7 per million), Netherlands (41.6
per million), andMalta (38.5 per million). These numbers are continuously
increasing every day and are updated timely on their official websites by
2

WHO (WHO, 2022b), European Centre for Disease Prevention and Control
(ECDC) (ECDC, 2022), and US CDC (CDC, 2022a). In this review, we
shortly summarize aspects of MPXV outbreaks relevant to wastewater mon-
itoring and discuss the challenges associated with wastewater-based sur-
veillance (WBS).

2. Monkeypox virus taxonomy and transmission

MPXV is an enveloped, double-stranded DNA virus that belongs to the
Orthopoxvirus genus of the Poxviridae family (McCollum and Damon,
2014; Vaughan et al., 2018). Viruses from the Poxviridae family are brick
or oval-shaped, having eight genera, including Orthopoxvirus, Parapoxvirus,
Molluscipoxvirus, Yatapoxvirus, Capripxvirus, Suipxvirus, Leporipoxvirues, and
Avipoxvirus (Bonilla-Aldana and Rodriguez-Morales, 2022). The
Orthopoxvirus genus contains many serological cross-interacting species,
such as camelpox, cowpox, ectromelia, horsepox, monkeypox, raccoonpox,
skunkpox, taterapox, uasin gishu, vaccinia virus, variola (smallpox), and
volepox (McCollum and Damon, 2014; Vaughan et al., 2018). MPXV has
two genetic clades, the central African (Congo Basin) clade and the West
African clade (Alakunle and Okeke, 2022; Bonilla-Aldana and Rodriguez-
Morales, 2022). The Central African clade is considered to cause more se-
vere symptoms and is more contagious (Alakunle and Okeke, 2022;
WHO, 2022a). However, many people are against the clades naming con-
vention (central African clade and West African clade) which is based on
the geographic location of their first detection (Happi et al., 2022). As the
virus does not respect geographic boundaries, naming an outbreak virus
based on geographical locations is perceived as discriminatory and stigma-
tizing the people of those geographical regions (Happi et al., 2022).

Poxviruses are ubiquitous worldwide and cause widespread disease in
humans and various animals (Alakunle and Okeke, 2022; Bonilla-Aldana
and Rodriguez-Morales, 2022). These zoonotic viruses are transmitted to
humans with direct contact through blood, bodily fluids, or cutaneous or
mucosal lesions of infected animals, close contact with an infected person
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or animal, or physical contact with contaminated materials (Bonilla-
Aldana and Rodriguez-Morales, 2022; WHO, 2022a). Further, eating in-
adequately cooked meat and other animal products of infected animals
may increase transmission risks. Human MPXV infections historically
arise from the animal-to-human transmission. Various animal species
are susceptible to infection with MPXV. Animal hosts include a range
of rodents and non-human primates. This includes rope squirrels,
tree squirrels, Gambian pouched rats, dormice (Bonilla-Aldana and
Rodriguez-Morales, 2022), different species of monkeys (Patrono
et al., 2020), and other small mammals (Alakunle and Okeke, 2022).
The natural reservoir of MPXV has not yet been identified, though ro-
dents are believed to be the most likely.

3. Clinical characteristics, confirmation and treatment of MPXD

Mostly, the infection is self-limiting, with symptoms lasting from 2 to 4
weeks; however, it can be occasionally fatal (3–6 % fatality rates) (Brown
and Leggat, 2016). Major symptoms are fever, rash, and swollen lymph
nodes, which may lead to medical complications (Ogoina et al., 2020). Al-
though the severity may relate to the extent of virus exposure, patient
health status, and nature of complications, children and immunocompro-
mised individuals can be more vulnerable to severe cases than healthy
adults. The infection incubation period usually lasts 6 to 13 days but can
range from 5 to 21 days (WHO, 2022a).

Many cases in the current outbreak are atypical of the classic clinical
picture of MPXD infection (fever, swollen lymph nodes, followed by a
centrifugal rash) (Brown and Leggat, 2016). Atypical features described
currently include: presentation of only a few or even just a single lesion,
absence of skin lesions in some cases, with anal pain and bleeding, le-
sions in the genital or perineal/perianal area which do not spread fur-
ther, lesions appearing at different stages of development and the
appearance of lesions before the onset of fever, malaise and other con-
stitutional symptoms (WHO, 2022b). Clinical patients with such mild
symptoms may not seek clinical treatments, so they can be out of clinical
reporting. A recent study has reported three asymptomatic MPXV in-
fected people while screening 224 chlamydia and gonorrhea patients
and concluded that isolation of symptomatic individuals might not suf-
fice to contain the outbreak (De Baetselier et al., 2022). Such asymptom-
atic infections are more likely to evade clinical reporting based on
syndromic surveillance.

The CDC guideline recommends monitoring both non-lesion (e.g. urine
and blood) and lesion materials (e.g. skin sample, vesicle fluid, crusts, and
biopsy from infection) for clinical confirmation (CDC, 2022b). Clinical lab-
oratories collect skin lesions, buccal and throat swabs, oral fluid, urine, and
blood specimens for clinical confirmation (Leung et al., 2010; Tutu van
Furth et al., 2022; Vaughan et al., 2018; Yong et al., 2020). Conventional
tests that include virus isolation from a clinical specimen, electron micros-
copy, and immunohistochemistry are valid techniques. However, real-
time quantitative polymerase chain reaction (qPCR) and digital PCR
(dPCR) are preferred and available as sensitive methods (Leung et al.,
2010; McCollum and Damon, 2014; Tiwari et al., 2022a; Ahmed et al.,
2022).

Recently, the WHO reported a new vaccine has also been licensed to
treat MPXD (WHO, 2022a). Vaccines based on the vaccinia virus have
historically been used to prevent and eradicate smallpox. Now, the
same vaccine (ACAM2000) has been shown to be effective in controlling
MPXV (McCollum and Damon, 2014). This vaccine is based on live vac-
cinia virus preparation that is inoculated into the skin by pricking
the skin surface. Antiviral drugs, such as tecovirimat (TPOXX) and
Brincidofovir, could be treatment options for critically sick and immu-
nocompromised infected individuals under the supervision of health
care workers (McCollum and Damon, 2014). The prognosis of MPXV
can be affected by multiple factors, such as previous vaccination status,
initial health status, concurrent illness, and comorbidities. However,
how the vaccination and drugs affect the virus shedding in infected in-
dividuals is limited.
3

4. Opportunities of wastewater surveillance for MPXV monitoring

Wastewater-based surveillance (WBS), based on monitoring of un-
treated wastewater, is an important approach for detecting emerging path-
ogens in communities, providing an opportunity for estimating spatial and
temporal distribution, and circulating different variants of pathogens (Mao
et al., 2020). Wastewater analysis has been widely used to monitor water-
borne transmitted pathogens. Historically, it was used in the London chol-
era epidemic by the middle of 1800s, for tracking the fecal contamination
of water pumps from nearby a cesspool (Johnson, 2006). TheWBS is a crit-
ical component of the worldwide initiative to eradicate polio outbreaks
(Asghar et al., 2014) and has recently been applied as a monitoring tool
to fight globally against the COVID-19 pandemic (Ahmed et al., 2020;
Ahmed et al., 2021a,b; Haramoto et al., 2020; Hokajärvi et al., 2021;
Jakariya et al., 2022; Kumar et al., 2020; Malla et al., 2022; Medema
et al., 2020; Sherchan et al., 2020; Tiwari et al., 2022b). The same approach
has been successfully used for monitoring many other pathogens including
hepatitis E virus (Iaconelli et al., 2020), rotavirus (Santiso-Bellón et al.,
2020), adenovirus (Fong et al., 2010), hepatitis A virus (Hellmér et al.,
2014), noroviruses (Hellmér et al., 2014; Prevost et al., 2015; Santiso-
Bellón et al., 2020), JC polyomavirus (Levican et al., 2019), influenza A
virus (Wolfe et al., 2022a), enterovirus (Faleye et al., 2021), canine picorna-
viruses (Faleye et al., 2022), dengue virus (Thakali et al., 2022),
metagenome markers of many other viruses including different poxviruses
from the Poxviridae family (McCall et al., 2020), and antimicrobial resistant
pathogens (Chau et al., 2022; Tiwari et al., 2022c), circulating in popula-
tion level. Wastewater can be a perfect resource for monitoring communi-
cable diseases outbreaks at a community level, as it comprises composite
biological materials including lesion materials (e.g. skin, vesicle fluid,
crusts), skin rashes, and various body fluids, including respiratory and
nasal secretions, saliva, urine, feces, and semen of infected individuals
(symptomatic, asymptomatic, pre-symptomatic, and post-symptomatic) in
a community (Mao et al., 2020; Bibby et al., 2021; Sutton et al., 2022).
WBS provides near real-time evidence for the shedding of infectious agents
or their genetic components into the sewage system sometimes even several
days before the onset of symptoms, and often before the infected person
makes any contact to health care. Therefore, when clinical cases are labora-
tory confirmed and reported, it is possible that the circulation of a pathogen
in communities may have already been detected with WBS (Bibby et al.,
2021; Sutton et al., 2022).

With the global emergence of MPXD (CDC, 2022a; WHO, 2022a), ro-
bust epidemiological and laboratory surveillance systems are critical for ef-
ficiently targeting prevention and control measures for the areas and
populations at risk. Combining the strengths of both clinical and environ-
mental laboratory surveillance has the potential to strengthen the outbreak
response at local, regional, and global levels. Clinical surveillance has some
limitations and concerns, including social stigma, availability and cost of
clinical testing, asymptomatic individuals not being reached, and so on
(Sims and Kasprzyk-Hordern, 2020). Furthermore, clinical testing may
not be able to account for the true prevalence of the disease as the infection
is majorly self-limiting. Thus, infected individuals do not need to seekmed-
ical care and are not tested. Clinical testing is also limited due to possible
zoonotic transmission in communities. WBS can overcome some of these
limitations of the clinical monitoring approach. Table 1 shows the major
strengths and disadvantages of clinical surveillance and the WBS approach
for monitoring communicable diseases such as MPXD.

MPXV markers end in the wastewater from lesion materials (e.g. skin,
vesicle fluid, crusts), skin rashes, and various body fluids, such as respira-
tory and nasal secretions, saliva, urine, feces, and semen of infected individ-
uals (Leung et al., 2010; Tutu van Furth et al., 2022; Vaughan et al., 2018;
Yong et al., 2020). For example, MPXV markers have been reported in
semen, feces, and saliva in five MPXD-positive persons in Italy (Antinori
et al., 2022). In another study in Barcelona, Spain, from 12 MPXD patients
by Peiró-Mestres et al., MPXV was detected in saliva (12/12 cases), rectal
swab (11/12 cases), nasopharyngeal swab (11/12 cases), semen (7/9
cases), urine (9/12 cases), and fecal samples (8/12 cases) (Peiró-Mestres



Table 1
Comparison between clinical testing and surveillance with wastewater-based surveillance (WBS) for infectious diseases.

Clinical testing & surveillance Wastewater-based surveillance

■ Required for confirming and treating the disease at an individual level. ■ Capability of illustrating the spatial and temporal trends and peaks of outbreaks of
many communicable diseases at the community level.

■ Relatively expensive, as a clinical setting requires a lot of individual samples to have
surveillance power.

■ Relatively cost-effective, as a single wastewater sample can have the whole community
information.

■ Testing specimens are collected from only the symptomatic people, typically does not
capture asymptomatic cases.

■ Targets all infected individuals (symptomatic, asymptomatic pre-symptomatic, and
post-symptomatic cases) shedding virus particles in their excreta (nasal secretion, spit,
urine, and feces) and washing water.

■ Well-established networks for transferring data and knowledge between epidemiolo-
gists and clinical laboratories. Communication mechanisms are established, and most
common people understand the communicated results.

■ Interpretation and communication must be ensured by the engagement of the epide-
miologists.

■ Monitoring infrastructures such as hospitals, and testing laboratories with well--
trained permanent staff are available.

■ Might require building a new surveillance system, such as validation of methodology,
epidemiological interpretation. WBS is emerging approach and monitoring infrastruc-
tures have not yet been fully developed.

■ Testing is voluntary and personal consent is needed for testing. Thus, testing is
affected by personal willingness to be tested, and in some cases the paying ability of
individuals. Sometimes social stigma may oppose clinical testing.

■ WBS is a community wide tool not affected by personal testing willingness, testing
capacity, or personal consent.

■ Mostly, false negative rate is low and possible caveats of monitoring are relatively
well understood

■ A low number of pathogens maybe not be enough for detecting titers in wastewater.
Factors such as assay performance, PCR inhibitors, and dilution of targets in sewage
systems due to precipitation can affect the assay performance and subsequently the
detection rates in wastewater.

■ Cross reaction of assay can be low because most assays could be tested earlier with
probable microbes from the host.

■ Cross reaction of the assay with non-targeted microbes is relatively challenging as
wastewater is rich with wide varieties of environmental microbes from wide sources.

■ Relatively slow for detecting the trends of outbreaks, as data collected at individual
levels need to be compiled and analyzed.

■ Mostly provides real-time disease burden at the community level.

■ Individual specific results are quite simple to interpretate. ■ Needs to be validated with clinical data. Sometimes, exact clinical data can be chal-
lenging to achieve while the disease is self-limiting, and people do not go for testing, or
due to limited testing facilities.

■ Representativeness of sample, transportation conditions after sample collection and
analysis errors may affect the results of any laboratory result.

■ In addition to representativeness of sample, transportation conditions after sample
collection and analysis errors, also biomarker (genetic fingerprint of a human pathogen
such as DNA or RNA) stability in wastewater can affect the result.

■ Result interpretation is straightforward with aim to diagnose the cause of the illness
of the individual.

■ Uncertainties related to the representativeness of the wastewater sample in connection
to population estimates and the content of the wastewater sample (share of human
excreta)
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et al., 2022). In addition, MPXV DNA has been detected in the urine and
upper respiratory tract of clinical patients in the UK (Adler et al., 2022;
Hobson et al., 2021). So far, only one study reported non-detection of
MPXVDNA in the urine samples of infected individuals during clinical test-
ing in the Netherlands (Tutu van Furth et al., 2022). Quantitative data on
the shedding load of MPXV in samples from infected individuals have not
yet been made available. Still, the DNA concentration in biological mate-
rials could be high enough, as the DNA from these materials was detected
quite early in qPCR cycles (Peiró-Mestres et al., 2022; Wolfe et al.,
2022b). Further, during bathing, MPXV scabbing skin lesions or defoliation
of epithelial tissue and skin is an important shedding route to wastewater
systems. Infected individuals may contribute MPXV to the sewage system
through multiple routes; therefore, WBS can be a critical tool for monitor-
ing infected cases and containment of the disease.

5. Early findings of WBS for MPXV monitoring

Currently, many laboratories around the world have started monitoring
MPXVDNA inwastewater and tried to see the possible use ofWBS ofMPXD
as its management tool. De Jonge et al. (2022) have recently reported the
qualitative detection of MPXV in wastewater influent samples in the five
city districts in the Netherlands. They analyzed a total of 108 wastewater
influent samples for monitoring MPXV DNA with two USCDC assays:
namely, the G2R_G assay targeting the OPG002 gene (targeting all MPXV)
and the G2R_WA assay targeting the OPG002 gene (targeting the West
Africa clade) (Li et al., 2010), and detectedMPXVDNA in 45/108 (42%) sam-
ples (De Jonge et al., 2022). They reported that DNA extraction on the (bio)
solids could yield good results (De Jonge et al., 2022). Furthermore, the detec-
tion of MPXV in 10 of 11 sewer systems in the San Francisco Bay Area (CA,
USA) has been reported (Kiros, 2022; Wolfe et al., 2022b). The detection of
MPXVDNAhasbeen consisted inwastewater samples in 8out of 9wastewater
treatment plants monitoredwith digital PCR in San Francisco, California, USA
(Wolfe et al., 2022b). They analyzed settled solids from 287 wastewater
4

samples and monitored MPXV with the same USCDC assays G2R_G targeting
theOPG002 gene and theG2R_WAassay (Wolfe et al., 2022b). The concentra-
tion of MPXV DNA with G2R_G target ranged from non-detected to 24,114
copies/g dry weight of wastewater solid. The reported virus concentration
was 103-times higher in solid fraction of wastewater than in liquid fraction
when considered by weight/mass (Wolfe et al., 2022b).

A next preprint study conducted in Miami-Dade County, USA reported
4675 and 6800 genomic copies/L detection of MPXV DNA and RNA from
human infected cells in two hospital wastewater samples and five out of
ten municipal wastewater samples (Sharkey et al., 2022). Another preprint
study from Paris (France), reported an increasing trend in MPXV DNA in
wastewaterwith early reported clinical cases ofMXVD in the sewershed com-
munities (Wurtzer et al., 2022). They monitored a total of 264 samples col-
lected earlier for WBS of COVID-19 with MPXV TaqMan assay on the dPCR
platform (Wurtzer et al., 2022). The next preprint from Rome, Italy, reported
MPXV DNA from wastewater samples collected in airport buildings (La Rosa
et al., 2022). They analyzed a total of twenty samples with qPCR and nested
PCR by targeting the G2R region (TFN gene), F3L, and N3R genes. Three out
of twenty samples were reported positive (La Rosa et al., 2022). All these re-
cent studies have demonstrated that monitoring MPXDwithWBS can be fea-
sible, but the concept for MPXV monitoring is currently still at the proof-of-
concept level. Most of these studies reported that MPXV levels in wastewater
are relatively lower than SARS-CoV-2 levels reported elsewhere. Such a low
detection rate of MPXV in wastewater needs to be investigated if this is due
to a lower number of MPXV clinical cases or if MPXV is less abundantly
shaded into wastewater (Sharkey et al., 2022). More data comparing MPXD
clinical caseswith theMPXVDNAdata obtained fromwastewatermonitoring
are needed to further validate the idea ofWBS forMPXV. Recently, Chen and
Bibby (2022) produced a model based on viral shedding and concluded the
use of WBS for monitoring MPXV is theoretically possible (Chen and Bibby,
2022). However, their model, considered the MPXV DNA load in saliva,
stool, and urine samples from an earlier published study on Chimpanzee
(https://www.nature.com/articles/s41564-020-0706-0). Further, this

https://www.nature.com/articles/s41564-020-0706-0
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model has not included the possible variation of MPXV DNA in different in-
fected individuals and the fate and decay of MPXV DNA in sewerage net-
works (Chen and Bibby, 2022).

6. Challenges of wastewater-based environmental surveillance for
MPXV

There are some challenges in using WBS for monitoring MPXV in
communities. The first challenge is the lack of standard procedures
and methodologies, including sampling, virus concentration, DNA ex-
traction, detection and data interpretation. As each virus has special
characteristics, the most suitable method from the existing techniques
must be selected. In some cases, it may not be appropriate to continue
monitoring as developed previously. Further, the detection assay should
be 100 % inclusive, not cross-reactive with non-targeted species, and
must not react with other Orthopoxvirus. For example, the currently
used vaccine for MPXV, ACAM2000, is based on live vaccinia virus prep-
aration that is inoculated into the skin by pricking the skin surface. After
the vaccination campaign, the community spread of the vaccinia virus
can be increased and could be detected in wastewater. Therefore, it
should be considered carefully while developing and selecting the PCR
assay for monitoring MPXV for WBS.

Second, information regarding virus DNA loads in symptomatic and
asymptomatic carriers is currently unknown. The information about the re-
lease and load of the virus into the sewage system by infected individuals
(symptomatic/asymptomatic), viral persistence, fate, and decay kinetics of
such virus particles inwastewater under environmentally relevant conditions
– are all critical for establishing a relationship betweenWBSdatawith clinical
data. Unlike COVID-19 testing, MPXV can only be tested clinically if the pa-
tient has severe skin boils. In asymptomatic and mildly symptomatic cases,
many people may not visit doctors, as the disease is self-limiting and would
thus remain unreported. In addition, it may take time to develop severe
boils after acquiring the virus. The lack of accurate data on MPXV infection
makes it difficult to generate a predictionmodel or establish a relationship be-
tween clinical cases and WBS data (Chen and Bibby, 2022; Kiros, 2022).

Further, detecting the virus signal in wastewater may be affected by fac-
tors such as infection rate, process and analytical detection limits, wastewa-
terflow, the complexity of thewastewatermatrix, and shedding of the virus
by infected individuals. To date, the persistence ofMPXV inwastewater has
not been documented, although one systematic review reported vaccinia
virus persists for many days (first-order decay rate was reported
−0.15 per day) in freshwater and marine waters (Silverman and
Boehm, 2021), indicating that MPXV also can be detected for days.
Though it is a dsDNA genome virus, we can assume that the genetic ma-
terial of the virus is relatively persistent, even when the viral envelope is
damaged, and infectivity is lost. Further, there is a possibility of low sig-
nals of these viruses due to a low number of cases, as dilution of this
virus can play a significant role for non-detects. Therefore, estimating
the minimum number of infected individuals needed for detecting
viral markers in sewage systems can be valuable in establishing method-
ological limits (Tiwari et al., 2022b).

Since monkeypox is a zoonotic virus, possible virus release from animal
reservoirs to sewage systems could confound WBS data interpretation for
human cases. However, zoonotic pathogens are mainly managed with a
One Health approach (Bird and Mazet, 2018). This means if zoonotic path-
ogens are detected in any of the compartments, i.e., human, animal, or en-
vironment, it can jump from one compartment to the next, so the
prevalence of the virus in one compartment can pose a risk to others. There-
fore, the prevalence of zoonotic agents such as MPXV needs to be investi-
gated simultaneously in all possible compartments. Thus, neither clinical
surveillance nor wastewater surveillance alone can estimate the prevalence
of zoonotic carriers in communities.

Further, the likelihood of virus transmission from water matrices is un-
known.Viruses originating from skin defoliation can still be infective inwaste-
water, but their risk to public health and animal health remains unknown.
Notably, the risk of direct infection fromwastewater highlights that unknowns
5

or different transmission routes can greatly influence the application of sur-
veillance techniques. However, detection of virus DNA alone in the sewage
system does not guarantee the presence of infective viral entities particles
(Ahmed et al., 2021a,b; Tiwari et al., 2021; Tiwari et al., 2022b). Thus,
morework is needed to assessMPXV infectivity inwastewater and determine
MPXV viral DNA load in skin lesions, buccal and throat swabs, oral fluid,
urine, feces, and blood samples from different stages of infection.

In addition, the lack of sewerage networks in low- and middle-income
countries can limit the early-warning benefits of WBS monitoring of infec-
tious diseases (Adhikari and Halden, 2022). If WBS samples are collected
mostly from urban rivers and open sewage, there is potential for samples
to be influenced by MPXV input from non-human sources. Even in
resource-rich countries, when a combined sewerage system (sewage with
rainwater) is practiced, MPXV can enter the sewage system from non-
human sources, especially in areas closer to urban forests. Lastly, using
WBS for monitoring a small population is challenging, and may pose
some ethical issues and may stigmatize the sampled community that is
being surveilled (Jacobs et al., 2021; Hall et al., 2012). Thus, several as-
pects, such as the culture and values of the community and the individuals
connected to the sewer network, should be considered before disseminating
the results (Polo et al., 2020; Coffman et al., 2021).

7. Conclusion

Wastewater surveillance has a progressively imperative role in develop-
ing robust surveillance systems that are a prerequisite for the efficient and
timely prevention and control of both emerging and seasonal infectious dis-
eases. Complementing clinical surveillance with WBS may help elucidate
the true societal burden of the targeted infectious agent.WBS can be a valu-
able tool for the environmental surveillance of MPXV. In order to quickly
develop and implement a robust global network of WBS for MPXV, further
research is urgently needed to fill in critical knowledge gaps, such as shed-
ding of MPXV and its DNA in feces, urine, and skin, understanding the en-
vironmental persistence of MPXV and its DNA in wastewater matrix, the
infectivity ofMPXV inwastewater, and analyticalmethods to efficiently de-
tect MPXV DNA in the wastewater.
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