
Tampere University Dissertations 751

751/2023
PA

N
U

 SJÖ
VA

LL Feasibility Study of H
igh-Level Synthesis

Feasibility Study of
High-Level Synthesis

Implementation of a Real-Time HEVC
Intra Encoder on FPGA

PANU SJÖVALL

Tampere University Dissertations 751

PANU SJÖVALL

Feasibility Study of High-Level Synthesis

Implementation of a Real-Time HEVC
Intra Encoder on FPGA

ACADEMIC DISSERTATION

To be presented, with the permission of

the Faculty of Information Technology and Communication Sciences

of Tampere University,

for public discussion in the auditorium TB109

of Tietotalo, Korkeakoulunkatu 1, Tampere,

on 17 March 2023, at 12 o’clock.

ACADEMIC DISSERTATION

Tampere University, Faculty of Information Technology and Communication Sciences

Finland

Responsible
supervisor

and Custos

Associate Professor

Jarno Vanne

Tampere University

Finland

Supervisor Professor

Timo Hämäläinen

Tampere University

Finland

Pre-examiners Associate Professor

Maxime Pelcat

INSA Rennes, IETR

France

Dr. Ercan Kalali

Eindhoven University of Technology

Netherlands

Opponents Associate Professor

Maxime Pelcat

INSA Rennes, IETR

France

Dr.-Ing. Christian Herglotz

Friedrich-Alexander University
Erlangen-Nürnberg

Germany

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2023 author

Cover design: Roihu Inc.

ISBN 978-952-03-2775-0 (print)

ISBN 978-952-03-2776-7 (pdf)

ISSN 2489-9860 (print)

ISSN 2490-0028 (pdf)

http://urn.fi/URN:ISBN:978-952-03-2776-7

Carbon dioxide emissions from printing Tampere University dissertations
have been compensated.

PunaMusta Oy – Yliopistopaino

Joensuu 2023

http://urn.fi/URN:ISBN:978-952-03-2776-7

PREFACE

The research for this thesis was conducted in Tampere University of Technology
(TUT) Department of Pervasive Computing and Laboratory of Pervasive
Computing during 2014-2018 and in Tampere University (TAU) Computing
Sciences during 2019-2021. Although the name of the university and the unit has
changed during this journey, I have had the pleasure to be a part of the Ultra Video
Group (UVG), led by Assoc. Prof. Jarno Vanne, the whole time. I received my
M.Sc, degree in December 2015 and started pursuing for a PhD in August 2016. I
was lucky enough that I could continue the same research during my doctoral
studies that I started with my M.Sc. The research was thus a direct continuation of
my master’s thesis titled “High-Level Synthesis of HEVC Intra Prediction on
FPG”. This thesis describes the fully HLS implemented HEVC intra video
encoder on FPGA.

I would like to express my deepest gratitude to Assoc. Prof. Jarno Vanne and
Prof. Timo D. Hämäläinen for giving me the opportunity to work at the university,
and for the guidance and collaboration with practically all of the publications. Also,
a big thanks to all other co-authors collaborating to the research and publications,
including Vili Viitamäki, Arto Oinonen, Mikko Teuho, Ari Lemmetti, Sakari Lahti,
Janne Virtanen, and Ari Kulmala. A special thanks goes to my supervisor Assoc.
Prof. Jarno Vanne for the supervision of my thesis and for all the help during my
doctoral studies.

I would also like to thank my colleagues working in the same office room as I
did, Esko Pekkarinen, Mikko Teuho, and Vili Viitamäki. Thank you for all the
discussions (random and work related), for the company during lunchtime and
coffee breaks, and for the occasional game of chess. These have been an essential
part of work happiness and provided a small break from work when needed. It
helped keeping the motivation high and reaching this final goal.

Finally, I would like to thank my family for all the support during this process.

iii

I would have never gotten this far with my academic career without you. It is a
privilege to come home from work to a loving family. Even though I had some
doubts about working remotely from home during the COVID-19 situation at first,
it proved to be very easy and pleasant. Even the writing of this thesis was done fully
at home. Working from home has also made it possible to spend even more time
with you.

Panu Sjövall
11.11.2022 Ylöjärvi

iv

ABSTRACT

High-Level Synthesis (HLS) is an automated design process that seeks to improve
productivity over traditional design methods by increasing design abstraction from
register transfer level (RTL) to behavioural level. Various commercial HLS tools
have been available on the market since the 1990s, but only recently they have
started to gain adoption across industry and academia. The slow adoption rate has
mainly stemmed from lower quality of results (QoR) than obtained with
conventional hardware description languages (HDLs). However, the latest HLS tool
generations have substantially narrowed the QoR gap.

This thesis studies the feasibility ofHLS in video codec development. It introduces
several HLS implementations for High Efficiency Video Coding (HEVC), that is the
key enabling technology for numerous modern media applications. HEVC doubles
the coding efficiency over its predecessor Advanced Video Coding (AVC) standard
for the same subjective visual quality, but typically at the cost of considerably higher
computational complexity. Therefore, real-time HEVC calls for automated design
methodologies that can be used tominimize theHW implementation and verification
effort.

This thesis proposes to use HLS throughout the whole encoder design process.
From data-intensive coding tools, like intra prediction and discrete transforms, to
more control-oriented tools, such as entropy coding. The C source code of the open-
source Kvazaar HEVC encoder serves as a design entry point for the HLS flow, and
it is also utilized in design verification. The performance results are gathered with
and reported for field programmable gate array (FPGA).

The main contribution of this thesis is an HEVC intra encoder prototype that
is built on a Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 14-core
Intel Xeon processors and two Intel Arria 10 GX FPGA Development Kits, that
can be connected to the server via peripheral component interconnect express (PCIe)
generation 3 or 40 Gigabit Ethernet. The proof-of-concept system achieves real-time

v

4K coding speed up to 120 fps, which can be further scaled up by adding practically
any number of network-connected FPGA cards.

Overcoming the complexity of HEVC and customizing its rich features for a real-
time HEVC encoder implementation on hardware is not a trivial task, as hardware
development has traditionally turned out to be very time-consuming. This thesis
shows that HLS is able to boost the development time, provide previously unseen
design scalability, and still result in competitive performance and QoR over state-of-
the-art hardware implementations.

vi

TIIVISTELMÄ

High-Level Synthesis (HLS) on automatisoitu suunnitteluprosessi, joka pyrkii
parantamaan tuottavuutta perinteisiin suunnittelumenetelmiin verrattuna,
nostamalla suunnittelun abstraktiota rekisterisiirtotasolta (RTL)
käyttäytymistasolle. Erilaisia kaupallisia HLS-työkaluja on ollut markkinoilla aina
1990-luvulta lähtien, mutta vasta äskettäin ne ovat alkaneet saada hyväksyntää
teollisuudessa sekä akateemisessa maailmassa. Hidas käyttöönottoaste on johtunut
pääasiassa huonommasta tulosten laadusta (QoR) kuin mitä on ollut mahdollista
tavanomaisilla laitteistokuvauskielillä (HDL). Uusimmat HLS-työkalusukupolvet
ovat kuitenkin kaventaneet QoR-aukkoa huomattavasti.

Tämä väitöskirja tutkii HLS:n soveltuvuutta videokoodekkien kehittämiseen. Se
esittelee useita HLS-toteutuksia High Efficiency Video Coding (HEVC)
-koodaukselle, joka on keskeinen mahdollistava tekniikka lukuisille nykyaikaisille
mediasovelluksille. HEVC kaksinkertaistaa koodaustehokkuuden edeltäjäänsä
Advanced Video Coding (AVC) -standardiin verrattuna, saavuttaen silti saman
subjektiivisen visuaalisen laadun. Tämä tyypillisesti saavutetaan huomattavalla
laskennallisella lisäkustannuksella. Siksi reaaliaikainen HEVC vaatii
automatisoituja suunnittelumenetelmiä, joita voidaan käyttää rautatoteutus- (HW)
ja varmennustyön minimoimiseen.

Tässä väitöskirjassa ehdotetaan HLS:n käyttöä koko enkooderin
suunnitteluprosessissa. Dataintensiivisistä koodaustyökaluista, kuten intra-ennustus
ja diskreetit muunnokset, myös enemmän kontrollia vaativiin kokonaisuuksiin,
kuten entropiakoodaukseen. Avoimen lähdekoodin Kvazaar HEVC -enkooderin
C-lähdekoodia hyödynnetään tässä työssä referenssinä HLS-suunnittelulle sekä
toteutuksen varmentamisessa. Suorituskykytulokset saadaan ja raportoidaan
ohjelmoitavalla porttimatriisilla (FPGA).

Tämän väitöskirjan tärkein tuotos on HEVC intra enkooderin prototyyppi.
Prototyyppi koostuu Nokia AirFrame Cloud Server palvelimesta, varustettuna

vii

kahdella 2.4 GHz:n 14-ytiminen Intel Xeon prosessorilla, sekä kahdesta Intel Arria
10 GX FPGA kiihdytinkortista, jotka voidaan kytkeä serveriin käyttäen joko
peripheral component interconnect express (PCIe) liitäntää tai 40 gigabitin
Ethernettiä. Prototyyppijärjestelmä saavuttaa reaaliaikaisen 4K
enkoodausnopeuden, jopa 120 kuvaa sekunnissa. Lisäksi järjestelmän
suorituskykyä on helppo skaalata paremmaksi lisäämällä järjestelmään käytännössä
minkä tahansa määrän verkkoon kytkettäviä FPGA-kortteja.

Monimutkaisen HEVC:n tehokas mallinnus ja sen monipuolisten
ominaisuuksien mukauttaminen reaaliaikaiselle HW HEVC enkooderille ei ole
triviaali tehtävä, koska HW-toteutukset ovat perinteisesti erittäin aikaa vieviä.
Tämä väitöskirja osoittaa, että HLS:n avulla pystytään nopeuttamaan kehitysaikaa,
tarjoamaan ennen näkemätöntä suunnittelun skaalautuvuutta, ja silti osoittamaan
kilpailukykyisiä QoR-arvoja ja absoluuttista suorituskykyä verrattuna olemassa
oleviin toteutuksiin.

viii

CONTENTS

Preface . iii

Abstract. v

Abbreviations. xv

Original publications . xix

1 Introduction . 1
1.1 The motivation and objectives of the research 2
1.2 Research questions and methods 3
1.3 Summary of publications . 5
1.4 Outline of the thesis . 10
1.5 Acknowledgments . 10

2 Background . 11
2.1 Automated design process: High-level synthesis (HLS). 11

2.1.1 HLS flow . 11
2.1.2 Advantages of HLS over traditional hardware design

methods . 13
2.1.3 Catapult HLS tool . 14
2.1.4 HLS design example 15

2.2 Application of Interest: High Efficiency Video Coding (HEVC) . 18
2.2.1 Block partitioning structure. 18
2.2.2 Intra prediction . 18
2.2.3 Inter prediction . 19
2.2.4 Transform coding . 20
2.2.5 Entropy coding . 21
2.2.6 Techniques for HEVC encoder parallelization 21

ix

2.2.7 Open-source implementations for HEVC encoding . . . 22
2.2.8 Kvazaar HEVC encoder 23

2.3 Target device: Field-programmable gate array (FPGA). 23

3 Related work . 27
3.1 Existing HLS implementations for HEVC 27

3.1.1 Intra prediction . 27
3.1.2 DCT and IDCT . 29
3.1.3 Interpolation . 29
3.1.4 Hadamard SATD . 30
3.1.5 Decoding tools . 30

3.2 Existing hardware implementations for HEVC entropy coding . . 30
3.2.1 Whole entropy encoder 31
3.2.2 Separate implementations for arithmetic encoding or

binarization . 31
3.3 Existing hardware implementations for complete HEVC

encoders . 32
3.3.1 Academic HEVC encoders on FPGA 32
3.3.2 Academic HEVC encoders on FPGA/ASIC 33
3.3.3 Academic HEVC encoders on ASIC 34

3.4 How to improve upon prior art. 34

4 Results of the research. 37
4.1 HLS implementations of single HEVC intra encoding tools 37

4.1.1 Intra prediction . 37
4.1.2 Transform coding . 38
4.1.3 User study: HLS vs. manual RTL 39

4.2 FPGA-accelerated HEVC intra search on a compute server 40
4.2.1 1st generation Intra Search Core 41
4.2.2 2nd generation Intra Search Core. 42
4.2.3 Live demonstration of the Intra Search Core. 44

4.3 FPGA-accelerated HEVC intra search in a cloud environment . . 44
4.4 Complete HEVC intra encoder on FPGA 45

5 Conclusion . 49
5.1 Discussion about lessons learned 49

x

5.2 Research question 1: Feasibility of HLS for implementing the
HEVC encoder . 51

5.3 Research question 2: Area and performance of the HLS
implementations against existing work 51

5.4 Research question 3: Final conclusion 52

References . 53

Publication I . 63

Publication II . 73

Publication III . 81

Publication IV . 87

Publication V . 103

Publication VI . 111

Publication VII . 119

Publication VIII . 123

Publication IX . 131

Publication X . 135

List of Figures

1.1 Summary and connection of publications. 6

1.2 Author’s main scientific contributions.. 9

2.1 HLS design flow [Publication X]. 12

2.2 HEVC encoder model [6]. 19

2.3 Parallelization approaches supported by HEVC: (a) slices, (b) tiles, (c)
wavefront parallel processing, and (d) overlapped wavefront. 22

2.4 Simplified example of an FPGA. 24

xi

2.5 High-level overview of the design flow from HLS code to FPGA
programming.. 24

4.1 System architecture of the proposed HEVC intra encoder on FPGA
[Publication X].. 46

List of Tables

3.1 Existing HLS approaches for HEVC encoding 28
3.2 Existing HLS approaches for HEVC decoding 28
3.3 Existing CABAC implementations for HEVC 33
3.4 Existing commercial HEVC encoders on HW. 33
3.5 Existing academic HEVC encoders on HW 33

4.1 HLS implemented HEVC intra prediction units with area and
performance figures . 38

4.2 HLS-implemented HEVC DCT/DST units with area and
performance figures . 39

4.3 HLS-implemented HEVC IDCT/IDST units with area and
performance figures . 40

4.4 Area and performance figures from the test group study for HLS and
RTL designs, with quality and productivity comparison. 40

4.5 Supported base configuration for the proposed HW HEVC intra
encoder . 42

4.6 Corresponding intra depth ranges and luma PU and TU sizes 42
4.7 The resource consumption of the proposed 1st and 2nd generation

Intra Search Cores . 43
4.8 The performance of the proposed 1st and 2nd generation Intra Search

Cores . 43
4.9 The performance of proposed Intra Search Cores using PCIe and

40GbE . 45
4.10 The area figures of the proposed fully HLS implemented HEVC intra

encoder on FPGA . 46

xii

4.11 Performance comparison of the proposed standalone CABAC Core
[Publication X] to related work . 46

4.12 The 2160p performance of the proposed prototype HEVC intra
encoding system [Publication X] . 47

4.13 Performance comparison with related work [Publication X] 47

List of Programs and Algorithms

2.1 HLS example . 17

xiii

xiv

ABBREVIATIONS

AI All-Intra

ALM Adaptive logic module

ALUT Adaptive look-up table

AMP Asymmetric motion partition

ASIC Application-specific integrated circuit

AVC Advanced Video Coding

AVX2 Advanced vector extensions 2

BD-rate Bjøntegaard delta bitrate

CABAC Context-adaptive binary arithmetic coding

CB Coding block

CPB Current picture buffer

CPU Central processing unit

CTB Coding tree block

CTU Coding tree unit

CU Coding unit

D Residual

D’ Inversed residual

Drec Reconstructed picture

Dref Reference picture

DCT Discrete cosine transform

DF Deblocking filter

xv

DMA Direct memory access

DPB Decoded picture buffer

DSE Design space exploration

DSP Digital signal processing

DST Discrete sine transform

EC Entropy coding

EDA Electronic design automation

FIFO First in, first out

FME Fractional motion estimation

FPGA Field-programmable gate array

GbE Gigabit Ethernet

HDL Hardware description language

HDMI High-definition multimedia interface

HEVC High Efficiency Video Coding

HLS High-level synthesis

HM HEVC Test Model

HW Hardware

IDCT Inverse discrete cosine transform

IDST Inverse discrete sine transform

idx Reference picture index

IME Integer motion estimation

IP Internet protocol

IP Intra prediction

IPOL Interpolation

IQ Inverse quantization

IT Inverse transform

LE Logic element

xvi

LF Loop filtering

LUT Look-up table

MC Motion compensation

MD Mode decision

ME Motion estimation

MV Motion vector

OWF Overlapped wavefront

Pinter Inter prediction

Pintra Intra prediction

PB Prediction block

PC Personal computer

PCIe Peripheral component interconnect express

PMI Prediction mode interlaced

PSNR Peak signal-to-noise ratio

PU Prediction unit

Q Quantization

QoR Quality of Results

QP Quantization parameter

QTCOEFF Quantized transform coefficient

RA Random access

RD Rate-distortion

RDO Rate-distortion optimization

RMD Rough mode decision

RTL Register transfer level

RTP Real-time transport protocol

SAD Sum of absolute differences

SAO Sample-adaptive offset

xvii

SATD Sum of absolute transformed differences

SDN Software defined networking

SoC System on Chip

SW Software

T Transform

TB Transform block

TCOEFF Transform coefficient

TCOEFF’ Inversed transform coefficient

TU Transform unit

USB Universal serial bus

VHDL Very high-speed integrated circuit hardware description
language

WPP Wavefront parallel processing

xviii

ORIGINAL PUBLICATIONS

Publication I P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen, “High-
level synthesis design flow forHEVC intra encoder on SoC-FPGA,”
in Proceedings of Euromicro Conference on Digital System Design,
Funchal,Madeira, Portugal, Aug. 2015.DOI: 10.1109/DSD.2015.
67.

Publication II P. Sjövall, V. Viitamäki, J. Vanne, and T.D.Hämäläinen, “High-level
synthesis implementation ofHEVC2-DDCT/DST on FPGA,” in
Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, NewOrleans, Louisiana, USA,Mar. 2017.DOI:
10.1109/ICASSP.2017.7952416.

Publication III V. Viitamäki, P. Sjövall, J. Vanne, and T.D.Hämäläinen, “High-level
synthesized 2-D IDCT/IDST implementation forHEVC codecs on
FPGA,” in Proceedings of IEEE International Symposium onCircuits
and Systems, Baltimore,Maryland, USA,May 2017.DOI: 10.1109/
ISCAS.2017.8050323.

Publication IV S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we
there yet? A study on the state of high-level synthesis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 5, pp. 898–911, May 2019. DOI: 10.1109/
TCAD.2018.2834439.

Publication V P. Sjövall, V. Viitamäki, A.Oinonen, J. Vanne, T. D.Hämäläinen,
and A. Kulmala, “Kvazaar 4K HEVC intra encoder on FPGA
accelerated air-frame server,” in Proceedings of IEEE InternationalWorkshop
on Signal Processing Systems, Lorient, France, Oct. 2017.DOI: 10.1109/
SiPS.2017.8109999.

xix

https://doi.org/10.1109/DSD.2015.67
https://doi.org/10.1109/DSD.2015.67
https://doi.org/10.1109/ICASSP.2017.7952416
https://doi.org/10.1109/ISCAS.2017.8050323
https://doi.org/10.1109/ISCAS.2017.8050323
https://doi.org/10.1109/TCAD.2018.2834439
https://doi.org/10.1109/TCAD.2018.2834439
https://doi.org/10.1109/SiPS.2017.8109999
https://doi.org/10.1109/SiPS.2017.8109999

Publication VI P. Sjövall, V. Viitamäki, J. Vanne, T. D.Hämäläinen, andA. Kulmala,
“FPGA-powered 4K120p HEVC intra encoder,” in Proceedings
of IEEE International Symposium onCircuits and Systems, Florence,
Italy, May 2018. DOI: 10.1109/ISCAS.2018.8351873.

Publication VII V. Viitamäki, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Live
demonstration: 4K100p HEVC intra encoder,” in Proceedings of
International Symposium on Circuits and Systems, Florence, Italy,
May 2018. DOI: 10.1109/ISCAS.2018.8351770.

Publication VIII P. Sjövall, A.Oinonen,M. Teuho, J. Vanne, and T.D.Hämäläinen,
“Dynamic resource allocation forHEVC encoding in FPGA-accelerated
SDN cloud,” in Proceedings of IEEE Nordic Circuits and Systems
Conference, Helsinki, Finland,Oct. 2019.DOI: 10.1109/NORCHIP.
2019.8906940.

Publication IX P. Sjövall, M. Teuho, A.Oinonen, J. Vanne, and T.D.Hämäläinen,
“Visualization of dynamic resource allocation forHEVC encoding
in FPGA-accelerated SDN cloud,” in Proceedings of IEEE Visual
Communications and Image Processing, Sydney,New SouthWales,
Australia, Dec. 2019. DOI: 10.1109/VCIP47243.2019.8966042.

Publication X P. Sjövall, A. Lemmetti, J. Vanne, S. Lahti, and T.D.Hämäläinen,
“High-level synthesis implementation of an embedded real-time
HEVC intra encoder on FPGA for media applications,” ACM
Transactions on Design Automation of Electronic Systems, vol. 27,
no. 7, May 2022. DOI: 10.1145/3491215.

xx

https://doi.org/10.1109/ISCAS.2018.8351873
https://doi.org/10.1109/ISCAS.2018.8351770
https://doi.org/10.1109/NORCHIP.2019.8906940
https://doi.org/10.1109/NORCHIP.2019.8906940
https://doi.org/10.1109/VCIP47243.2019.8966042
https://doi.org/10.1145/3491215

1 INTRODUCTION

High-level synthesis (HLS) is an intriguing subject in the field of hardware (HW)
design. Even though various commercial HLS tools have been available on the
market since the 1990s, they have only recently started to gain adoption across
industry and academia [1]. One can argue that the slow adoption rate has mainly
stemmed from lower quality of results (QoR) than obtained with conventional
hardware description language (HDL) approaches. However, the latest HLS tool
generations have substantially narrowed the QoR gap. HLS has also traditionally
worked well with data-intensive designs, whereas implementing clock accurate
control structures has been more challenging due to the lack of explicit time
information in behavioural source code [2], [3].

Using HLS to fully implement a complex High Efficiency Video
Coding (HEVC) [4], [5] video encoder on HW should give good insight on how
HLS performs over traditional HDLs. HEVC is the key enabling technology for
numerous modern media applications. HEVC doubles the coding efficiency over
its predecessor Advanced Video Coding (AVC) standard for the same subjective
visual quality, but typically at the cost of considerable computational complexity.
Overcoming the complexity of HEVC and customizing its rich features for a
real-time HEVC encoder implementation on HW is not a trivial task, as HW
designs are traditionally very time-consuming. Thus, the development of modern
video encoders can make use of automated design methodologies that can be used
to minimize the HW implementation and verification effort.

This chapter gives the introduction for the thesis, including the motivation,
research questions and methods, and the summary of publications with author’s
main scientific contribution in them.

1

1.1 The motivation and objectives of the research

The main motivation for this thesis is to evaluate whether HLS is a feasible
implementation approach for computation-intensive multimedia processing. In
practise, the analysis is carried out by implementing HLS solutions for HEVC
encoding and evaluating their QoR, performance, and development time on
field-programmable gate array (FPGA). The motivation is also to see if HLS is
suitable for implementing designs that require more accurate control structures.
This would enable the use of HLS for the whole system, and not just for
traditionally suitable data-intensive algorithms. HEVC [4], [5] video encoder is an
ideal application for the following reasons:

1. HEVC has gained a lot of traction in academia, so the obtained results can be
compared with many other scientific works;

2. it is a very complex application, which will minimize the effect of normal
variance in results (difference between HLS tools, synthesis results, etc.);

3. the complexity of HEVC is still reasonable for the scope this thesis;

4. HEVC has several independent units (coding tools, entropy coding, control
structures) making it possible to showcase potential productivity increase and
comparable QoR with HLS for single units and the whole system;

5. it also has characteristics that can be considered both strengths and weaknesses
of HLS, i.e., functionality that can be considered data-intensive or something
that needs of an accurate control structure; and finally,

6. HEVC is suitable for FPGA implementation, in order to enable performance
measurements outside of simulations.

HEVC is a widely deployed and researched topic in industry and academia. The
complexity of the HEVC [6] is very high, but HLS holds promise for better
design management over traditional design methods. HEVC adopts the
conventional hybrid video coding scheme (intra/inter prediction, transform
coding, and entropy coding) [5] from the prior MPEG/ITU-T video coding
standards. It offers a great variety of functionality, ranging from data-intensive
algorithms, like intra prediction and discrete sine/cosine transform, to more
control-intensive tools, such as intra search control and context-adaptive binary

2

arithmetic coding (CABAC). The latest FPGAs are able to meet the capacity and
performance need for HEVC intra encoding, so they can be used as a real-life
proof-of-concept test platforms, in addition to simulation.

The objectives of the thesis are the following:

1. To implement single algorithms/coding tools of HEVC on FPGA, by using
Catapult HLS tool [7];

2. to integrate the implemented coding tools together and to add the associated
control logic, to enable a fully-fledged real-time 4K HEVC intra encoder on
FPGA; and

3. to make the encoder easily customizable for different media applications,
scalable for different performance requirements, and portable to different
platforms, from embedded devices to cloud environments.

The results of all these objectives are compared with prior art in existing scientific
publications.

The entire implementation process relies on the open-source HEVC encoder
called Kvazaar [8]–[10], that is used as a design entry point and as the reference
software (SW) encoder. Although the implementation needs additional work to be
fully optimized for HW, the original source code can still be used as is for testing
purposes. Utilizing the existing Kvazaar C-code and C/C++ for the HW
implementations, removes the need for re-implementing the reference algorithm.
The automatic generation of register transfer level (RTL)-code with an HLS tool
also removes the need for manual writing of traditional HDL, like very high-speed
integrated circuit hardware description language (VHDL) and Verilog. This way, the
focus can be directed more on the behavioural code.

Even though this work focuses on the All-Intra (AI) [11] coding configuration of
HEVC Main Profile, the proposed design approach can be applied to other HEVC
profiles or video codecs as well.

1.2 Research questions and methods

This thesis aims to answer the following research questions:

1. Is HLS feasible for the implementation of a complex multimedia application,
like HEVC, that consists of multiple parallel units, and both control and data

3

intensive algorithms?

2. Do the developed HLS implementations for HEVC intra coding show
comparable area and performance results with existing HW designs?

3. By combining and generalizing the first two questions, does HLS offer overall
improvement over traditional design methodologies in terms of development
time and QoR?

To answer these questions, the research in this thesis follows the principles of
the design science methodology [12], [13] that has established well-known
guidelines and evaluation methods for an iterative design process. The
implementation of the whole encoding system is constructed of individual HEVC
coding tools and control structures that are finally integrated together. The
iterative design process for each coding tool starts from the reference algorithm,
which is used for the first HW implementation and test bench. The design process
then continues with design space exploration (DSE) and code restructuring, in order
to optimize the area and performance of the HW design.

During the development, the individual units and the encoding system are
iterated, improved, and compared with prior art according to the following criteria:

1. Area. The area figures reported for proposed implementations include the
number of logic elements (LE), look-up table (LUT), adaptive look-up
table (ALUT), or adaptive logic module (ALM) [14], the amount of on-chip
memory, and the number of digital signal processing (DSP) units used for the
specified FPGA. For fair comparison, effort has been made to unify the area
figures with previous work, e.g., by using coefficients between the LEs
according to the functionality of the used LE, or by re-generating the results
for the same device using HLS and an appropriate synthesis tool.

2. Performance. The performance is measured for the developed individual
coding tools by applying the worst-case scenario. For a complete encoder,
several open-source 4K sequences [15] were used to obtain reliable and
consistent results. Again, effort has been made to calculate or estimate
missing values of the related work by extrapolating them from the published
information.

3. Coding quality. For proposed individual coding tools where the
implementation is one-to-one to Kvazaar [8]–[10], the need for such

4

measurements can be omitted. If the Kvazaar reference code had to be
optimized in a way that it changed the original algorithm, this modification
was also implemented in the HEVC reference encoder, HEVC Test
Model (HM) [16], in order to report coding quality changes. Bjøntegaard delta
bitrate (BD-rate) [17] can be used as direct value for comparing the coding
quality between two codecs. It allows the measurement of bitrate reduction
by a codec or a codec feature while maintaining the same quality as measured
by objective metrics. In practise, the average peak signal-to-noise ratio (PSNR)
is measured for the anchor and the one being evaluated using same four
quantizers. BD-rate is then calculated for both curves [17]. Furthermore,
HM, using AI configuration [18], is used as an anchor for the proposed full
encoding system. The BD-rate gain, or loss, is reported for the test sequences
from [15]. Coding quality is also considered when comparisons are made to
related work.

4. Supported HEVC features. The supported features of individual coding tools
and the supported encoding configuration of the full encoding system is always
specified. The support or absence of features is listed for the related work.
Supporting all features will always produce the best coding quality, but by
removing some features, it can have a more positive affect on the area and
performance when compared to the negative effect on coding quality.

This thesis contributes to the debate for the feasibility of HLS and the promise
of overall improvement over traditional design methods by implementing a
complete HEVC intra encoder on FPGA, using solely HLS. The individual
publications included in this thesis illustrate the steps taken to achieve the goal and
give a detailed description of how HLS was used to implement individual units and
the final encoder.

1.3 Summary of publications

This section introduces all the publications included in this thesis. Figure 1.1
summarizes the main outcomes of these publications and the interconnections. The
figure is drawn from the perspective of the developed HEVC encoder.

Publication I describe the developed HLS flow and how it can be used to
develop HW- accelerated functions. The introduced HLS design flow is applied for

5

Integration

Improved features and parallelism

Publication V
1st generation

Intra Search Core

Interface support
for 40GbE

Pipeline optimizations
and

chroma reconstruction

Demonstration

Integration

Publication X
3rd generation

Intra Search Core
HEVC intra encoder

Publication IX
FPGA accelerated

cloud HEVC
encoding system

Publication I
HEVC

Intra prediction

Demonstration
Publication VI
2nd generation

Intra Search Core

Publication IV
HLS vs RTL

Test group study
HEVC 2-D DCT

Publication VIII
Network support

and
managing system

Integration

Validation of results

Publication II
HEVC

2-D DCT/DST

Integration

Publication III
HEVC

2-D IDCT/IDST

Publication VII
FPGA accelerated

HEVC
encoding system

Conference paper

Demonstration paper

Journal article

Implementation of
intra search control
and PCIe interfacing

Implementation of
HEVC CABAC and
integration of full
HEVC intra encoder

Figure 1.1 Summary and connection of publications.

HEVC intra prediction to produce a HW implementation for FPGA. The
publication also presents a complete design of a real-time HEVC intra encoder on
system on chip (SoC)-FPGA, utilizing the implemented HW intra prediction for
encoding acceleration.

Publication II describes an HLS implementation of HEVC 2-D discrete cosine
transform (DCT)/discrete sine transform (DST) on FPGA. The work reported in
Publication III stems from that of Publication II, as it describes the inverse version
of the same algorithm, 2-D inverse discrete cosine transform (IDCT)/inverse discrete
sine transform (IDST). Both approaches implement the 2-D transforms by two

6

successive 1-D transforms using a well-known row-column and even-odd
decomposition techniques. These two publications showed that the benefits of HLS
do not come at the cost of implementation overhead, as the HLS solutions
outperformed existing works in terms of performance and cost.

Publication IV is a survey of the state of HLS, based on the scientific literature
published since 2010. The literature survey was conducted by Sakari Lahti. Sakari
Lahti also wrote the majority of the text. The author contributed to this publication
with the planning, organization, analysis, and text for the case study, in which a test
group was given an assignment to implement HEVC 2-D DCT algorithm for 8 × 8
residual blocks with both HLS and traditional HDLs.

Publication V describes a 4K HEVC intra encoder partitioned between a
processor and a peripheral component interconnect express (PCIe)–connected FPGA.
It introduces the implementation and integration of the following data-intensive
Kvazaar coding tools: intra prediction, DCT, IDCT, quantization, and inverse
quantization. It also describes the HW implementation of the control-oriented
intra search process using HLS. CABAC and other control-intensive coding tools
are executed on SW. The publication also describes the implementation of the
HW/SW partitioning scheme between a central processing unit (CPU) and an
FPGA.

Publication VI describes the 2nd version of the Intra Search Core that has been
improved upon the 1st version presented in Publication V. The proposed speedup
techniques include optimizing the use of DSP-units, increasing the support of
parallel coding tree units (CTU) on HW, and duplicating time-sensitive resources.
Furthermore, the Linux kernel driver is upgraded to maximize the utilization of
both HW and SW and to support multiple PCIe-FPGA cards.

Publication VII is a demonstration publication. It showcases how the encoding
system presented in Publication VI can be utilized for real-life purposes. The
presented demonstration setup enables real-time HEVC encoding of three 4K
cameras simultaneously. The cameras send the RAW video data through
high-definition multimedia interface (HDMI) and the HDMI-capture cards transmit
the data to the encoder via universal serial bus (USB). Finally, the encoded video is
sent via Ethernet for live view on three laptops.

Publication VIII describes an approach to accelerate, distribute, and manage
video encoding services in large-scale cloud systems. The Intra Search Core

7

presented in Publication VI is used as a proof-of-concept application. In the case of
cloud encoding, the usage of PCIe-FPGAs from the previous publications would
have limited the flexibility of the encoding system, as the FPGAs are bound to
servers and only 1-2 boards could be attached per cloud server. The given solution
is an advanced partitioning scheme for sharing execution between servers, FPGAs,
and software defined networking (SDN) switches. This combination allows the
deployment of practically any number of heterogeneous FPGAs and servers. The
implemented resource manager, which controls the SDN switches, is responsible
for allocation, deallocation, and load balancing of software and hardware resources
upon service requests, or changes in network infrastructure. The research also
includes HLS implementations for the Ethernet packet parsing and generation,
which was integrated to the HEVC accelerator logic presented in Publication VI.

Publication IX is another demonstration publication. It showcases how the
system presented in Publication VIII works in practice. The demonstration setup
includes a laptop that is connected to the cloud system. Through this connection,
several encoding services can be invoked with requests to the resource manager. A
run-time visualizer on the laptop illustrates in real-time the data provided by the
resource manager, such as the physical network structure, running services, and
performance of the network elements. The live encoded video stream can also be
viewed on the laptop screen.

Finally, Publication X describes the HLS development framework improved
upon Publication I, the 3rd version of Intra Search Core optimized from the
version described in Publication VI, and the HLS implementation of the CABAC
Core. The integration of intra search and CABAC cores is also presented, and the
needed changes in the kernel driver. This finally creates a complete HEVC intra
encoder on FPGA. This is the key publication of the thesis, and it shows that the
HLS proposal not only boosts development time, but also provides previously
unseen design scalability with competitive performance over the existing encoder
implementations.

The author served as the 1st author in publications Publication I, Publication II,
Publication IV, Publication V, Publication VIII, Publication IX, and Publication
X, and as the 2nd author in Publication III, Publication VI, Publication VII. The
author’s contribution in each publication is listed in Table 1.2. The table also lists
the work done in collaboration with co-authors.

8

Figure 1.2 Author’s main scientific contributions.

9

1.4 Outline of the thesis

The introductory part of this thesis is organized as follows. Chapter 2 describes the
background of the thesis. It introduces the HLS design flow, the basics of HEVC
encoding, and the basic concept of an FPGA. Chapter 3 considers the related work
that is limited to HW HEVC approaches in academia. The related work consists of
HLS implementations for single HEVC coding tools, as well as dedicated CABAC
and entire encoder implementations done with handwritten HDLs. Chapter 4
summarizes the main results of the publications and gives the rationale for design
choices and implementation process. Finally, Chapter 5 concludes the thesis.

1.5 Acknowledgments

This work is supported in part by Nokia, the European Celtic-Plus projects
4KREPROSYS and VIRTUOSE, the European ECSEL project ADACORSA
(under the grant agreement 876019), the Tuula and Yrjö Neuvo Fund, Nokia
Foundation, and the Finnish Foundation for Technology Promotion.

10

2 BACKGROUND

This chapter introduces the automated design process, HLS design flow, and their
advantages over traditional design methods. Secondly, the basics of HEVC
encoding are presented with common terminology used in the introductory part
and publications. Finally, the use of FPGA as the target technology is rationalized
and the basic concept of an FPGA is explained.

2.1 Automated design process: High-level synthesis (HLS)

HLS is an automated design process, where an HLS tool is used to automatically
generate the RTLHDL-code from a high-level program code. The higher abstraction
level offers technology-independent implementations, as the HLS tool can be used to
configure and optimize the design for different target technologies, e.g., application-
specific integrated circuits (ASIC) or FPGAs, without the need to rewrite the code.
The RTL-code generation is based on the behavioural code and constraints specified
by an HLS tool. Furthermore, to minimize the verification effort, HLS tools can be
used to verify both the high-level code and the generated RTL-code with a shared
high-level testbench.

There are numerous commercial and academic HLS tools [19] that support the
HLS design flow. According to the survey done in Publication IV, the most
popular HLS tool in academia was the Xilinx Vitis HLS [20] (previously Vivado
HLS/Autopilot). However, the range of different HLS tools used in the scientific
literature is wide, which argues that no single HLS tool is the best choice for every
situation.

2.1.1 HLS flow

Figure 2.1 depicts the conceptual block diagram of the HLS design flow. The HLS
tool is used for compiling the algorithmic specification of the system, most often

11

Library

Specification

Compilation

Formal model

Allocation Scheduling

Binding

Generation

RTL architecture

Logic synthesis

HLS tool

Figure 2.1 HLS design flow [Publication X].

written in C, C++, or SystemC. The user can specify the target technology and
provide micro-architectural constraints, such as directives for loop
pipelining/unrolling, desired clock frequency, number of clocks, clock-crossing,
the usage and depth of first in, first out (FIFO) memory components, and mapping
of arrays to registers or memories. The HLS tool then automatically allocates the
HW resources required by the specification, creates state machines, schedules the
operations, and binds the operations to physical resources specified in the target
technology library. The clock(s) and reset(s) in the generated RTL code are
completely inserted by the HLS tool, according to the architectural constraints.
The generated RTL HDL-code can then be used in the downstream logic synthesis
SW, for both FPGA and ASIC designs.

12

2.1.2 Advantages of HLS over traditional hardware design methods

The main strength of HLS comes from the productivity increase, when compared
to traditional HW design methods. This is achieved by increasing design abstraction
from RTL to behavioural level [2], [3], [21]. HLS has been reported to provide 4-6
times increase in productivity [Publication IV], mainly because the behavioral code
is more readable, design and verification times are shorter, and the design reusability
is far better than that of handwritten HDL.

In particular, HLS offers advantages over manual RTL coding in the following
cases:

1. Data-intensive designs. HLS has traditionally worked well with
data-intensive designs, whereas implementing clock accurate control
structures has been more challenging due to the lack of explicit time
information in behavioural source code [3], [21]. However, a recent
work [22] has showed that even more demanding control structures could be
described with the latest HLS tools.

2. Algorithm and system architecture optimizations outperform
micro-architectural optimizations. Adopting HLS and high-level coding
techniques allows the designer to shift focus from fine-tuning single
algorithms to the whole system architecture, which tends to provide higher
performance gains than optimizing micro-architectures.

3. DSE. Although the system architecture optimizations can also be considered
as part of DSE, HLS tools also enable DSE for single units in the form of
architectural constraints. These can be applied via configuration scripts or by
embedded pragmas, like loop unrolling/pipelining options, in the code. The
process of finding the optimal trade-off between performance and area is
significantly faster with HLS than with hand-written RTL. In practice, a
comprehensive DSE cannot be conducted with conventional HDL
approaches, as each solution would require extensive rewriting of the code.

4. Reduced verification effort. Reducing the verification effort is an important
aspect of any design. Especially for digital system projects, it has become one
of the most time-consuming phase [23]. The verification process can be
significantly faster with HLS than verifying manually written RTL, as the
functional correctness of the high-level code and the automatically generated

13

RTL code can be done using the same high-level testbench. The output of the
generated RTL can also be validated automatically against the behavioural
code. Most often, only the algorithm level verification is needed. In addition,
some corner cases, e.g., type casting or vector overflows, may require
additional effort. The testbench also synchronizes with the input and output
of the design under verification, which makes it tolerant of architectural
changes and removes the need for any code rewriting during the DSE.

5. Technology independency. HLS can offer better design reusability over
traditional design approaches. A technology-independent behavioral code
releases the designers from addressing the implementation details of the target
technology, such as timing, interfaces, and memory elements. In principle,
the same holds for the handwritten RTL code, but the design is usually
implemented with a specific technology and performance in mind. In
practise, when a new platform is selected with an HLS tool, a
platform-optimized RTL code is generated using the same existing source
code. In contrast, with manual RTL, time-consuming code restructuring is
typically needed because of new clock constraints or additional resource
sharing, caused by limited capacity of the new platform. Full technology
independency might not be achieved with every HLS tool, as different HLS
tools support a different range of target technologies.

6. Increased productivity.All previous advantages of HLS add to the compelling
productivity increase over traditional RTL design flows. Even though custom
RTL approaches tend to achieve better performance with less resources, the
literature survey in Publication IV indicates that the average development time
of an HLS project is only a third of that of the manual HDL project. The
average productivity of HLS is also reported to be more than 4× as high in
terms of the system performance with respect to the development time.

2.1.3 Catapult HLS tool

In this work, Catapult HLS [7] from Siemens (previously owned by Calypto and
Mentor) was used for its availability at the university where the research was
carried out. In addition, Catapult HLS was preferred over another available tool,
Xilinx Vitis, because Catapult HLS supports Intel FPGAs that were found

14

appropriate for this work. Several versions of the Catapult HLS tool were used
during the research and the version was updated upon availability of newer version.
Before the version 10.3 was released, the university only had access to a university
license (some limitations in features), after that a full license was available.

Catapult HLS provides a wide support for the features described in Section 2.1.2.
These features include:

• language support for C/C++/SystemC;

• support for both algorithmic and control logic synthesis;

• configuration scripts and embedded pragmas for architectural constraints;

• support for a unified testbench for the verification of both algorithmic code and
RTL, with automated verification of the generated RTL against the algorithmic
code;

• variety of target technologies ranging from ASIC technologies to different
FPGA vendors, including automated synthesis tool integration;

• possibility to have multiple clock domains in a hierarchical designs and
automatically generated clock crossing components;

• initial area and performance results without actual RTL synthesis; and

• a cycle accurate Gantt Chart of the scheduled operations for a visual
representation of the generated RTL.

2.1.4 HLS design example

Listing 2.1 exemplifies the basic HLS coding features supported by the Catapult
HLS tool. It shows how hierarchical designs, arrays, loops, pragmas, functions,
channels, look-up-tables, type definitions, bit accurate types, macros, and
compilation time calculated bit widths (nbits) can be used in HLS code. In this
producer-consumer implementation, the producer (chef) is hierarchically connected
to the consumer (tables) on the top-level function restaurant. These functions are
marked with pragmas hls_design and hls_desgin top. The top-level interface consists
of two parameters, orders and income. Both of these are defined as algorithmic C
(ac), datatypes, and more specifically channels. In Catapult, the channels can be
used to implement data transfers without, or with one or two handshake signals,
buffered input/output for a more pipelined behaviour, FIFOs with automatic or

15

manually adjusted depth, and even clock crossing support between hierarchical
blocks. Bit accurate types (ac_int) are also used and defined with type definitions.

The implementation of the producer has three separate parts. First, a Tables
structure is read from the channel orders. The helper structure is necessary for
reading an array of data with one call. Secondly, a separate function called
calculate_number_of_orders() is used for calculating the number of non-zero orders
in a loop that is fully unrolled with pragma hlr_unroll. Thirdly, the chef starts
preparing the food in a loop for each table that has a non-zero recipe and writes the
correct price from a look-up-table price_of_food to the correct index in the array of
channels. This array will result in separate data paths for each index in the
generated RTL. The for loop is pipelined with pragma hls_pipeline_init_interval 1,
stating that a new iteration of the loop is started after one cycle. The possible
interval depends on the implementation and data dependencies. The
implementation of the for loop also shows how a break statement is used for an
optimized loop control, as a known number of loops is always better than an
unknown one. Breaking the loop when remaining iterations have no effect
improves the responsiveness. It also shows the usage of continue.

The implementation of the consumer has to parts. First part is the loop, which
is fully unrolled. All tables that get food, eat and pay for it. As the food parameter
of the function is an array of channels and all indexes need to be iterated, the loop
utilizes size() function of the channel to implement non-blocking reading. The other
alternative would be using nb_read(), but size() is used here for a more optimized
implementation. If the table is getting food (size() is not zero), the price for the food is
read from the channel and stored to cash. The cash is incremented to the cash_register
as zero or the read value. This loop shows the importance of data dependency in
a fully unrolled loop, as incrementing cash_register inside the if statement would
have resulted in a lower maximum frequency due to the dependency to cash_register
between iterations. After the loop the cash_register is given to the owner.

On top of the code, the compilation can be affected with a set of directives
(Tcl script), that can be modified directly in the directives file or via GUI. These
directives affect the outcome, i.e., area, latency, and slack. Pragmas are also
interpreted from the HLS code automatically as directives. Other important
directives include design goal latency/area, clocks, clock overhead, resource binding
(channels, wires, memories, registers), FIFO depths, and DSP extraction options.

16

Listing 2.1 HLS example

17

2.2 Application of Interest: High Efficiency Video Coding (HEVC)

Due to the increased usage of numerous modern media applications, i.e., Internet
video, video-streamed gaming, and video conferencing, video traffic has been
estimated to account for 82% of all global internet protocol (IP) traffic by 2022 [24].
HEVC [4], [5] is the latest widespread MPEG/ITU-T video coding standard. It
doubles the coding efficiency over its predecessor AVC [25] standard for the same
subjective visual quality, but typically at the cost of considerable computational
complexity overhead in the reference encoder HM [6] and practical encoders.

HEVC adopts the conventional hybrid video coding scheme [5] from the prior
MPEG/ITU-T video coding standards. The encoding model of HEVC is shown
in Figure 2.2. It can be divided into intra/inter prediction, transform coding, and
entropy coding. They are covered in the following sections. Although the focus of
this thesis is in HEVC intra encoding [11], inter encoding is also briefly covered.

2.2.1 Block partitioning structure

The coding structure of HEVC has been extended from the traditional macroblock
structure. It is an analogous block partitioning scheme with four different logical
units: CTU, coding unit (CU), prediction unit (PU), and transform unit (TU). For
4:2:0 color format, each of these consists of one luma and two chroma blocks that
cover the corresponding block areas: coding tree block (CTB), coding block (CB),
prediction block (PB), and transform block (TB). This new HEVC coding structure is
the primary factor for the improved coding gain over AVC. As a downside, it also
introduces majority of the computational overhead for both intra and inter encoding.

In HEVC, each raw input video frame is partitioned into CTU [26] quadtree
structures. The size of the CTU can be defined as 2NMAX × 2NMAX , where NMAX ∈
{8, 16, 32}. The CTU can be recursively split into four smaller square CUs until the
min CU size of 8×8 is reached. The size of the CU can be defined as 2N × 2N , where
N ∈ {4, 8, 16, 32}. Each CU in the CTU is predicted and transformed individually.

2.2.2 Intra prediction

Intra prediction utilizes spatial redundancy in compression. HEVC intra prediction
supports CBs from 32 × 32 pixels down to 8 × 8 pixels. In intra prediction, the PBs

18

Figure 2.2 HEVC encoder model [6].

can be of the same size as the processed CB. In addition, HEVC supports partitioning
the CB into four equal sized PBs when the CB size equals the smallest allowed CB
size.

The intra prediction (IP) algorithm utilizes predefined prediction methods [5]
to estimate the current CU. HEVC supports 35 different IP modes (DC, planar,
and 33 angular modes) for each PB size. The intra prediction (Pintra) refers to the
reconstructed picture (Drec) from the current picture buffer (CPB), which is a storage
for the previously reconstructed CBs. In intra mode, the residual (D) is calculated
by subtracting Pintra from the original CB.

2.2.3 Inter prediction

Inter prediction utilizes temporal redundancy between different video frames.
HEVC inter prediction supports CBs of 64 × 64 pixels down to 8 × 8 pixels. In
addition to PBs of the same size as the processed CB, HEVC supports horizontal
and vertical partitioning of CBs into two equal size PBs, or into four equal sized
PBs when the CB size equals the smallest allowed CB size. Furthermore, by
utilizing asymmetric motion partitions (AMP), HEVC supports partitioning of CBs
into two asymmetric PBs [4], [5].

Inter prediction consists of motion compensation (MC), integer motion
estimation (IME), and fractional motion estimation (FME). MC produces inter

19

predictions (Pinter) for PBs based on the result of motion estimation (ME) (IME,
FME). First, IME is used to search the best candidate for the PB of interest from
the decoded picture buffer (DPB), which is a storage for previously reconstructed
reference pictures (Dref). The motion vector (MV) and reference picture index (idx)
produced by the IME is then forwarded to FME, which uses an 8-tap/4-tap
separable interpolation (IPOL) filter to produce 1/4-pixel luma samples and
1/8-pixel chroma samples. The initial MV generated by the IME can then be
refined to a sub-pixel accuracy.

When the encoder operates in inter mode, the Pinter produced by the MC is used
to compute the D, by subtracting Pinter from the original CB. If the CU is encoded
as skip mode, no D is computed, only PBs of size 2N × 2N are allowed, and motion
parameters are derived with merge mode [5]. The merge mode is used to derive the
motion parameters, including MV and one or two reference picture indices (idx), from
spatially or temporally neighboring blocks.

2.2.4 Transform coding

In HEVC, the transform (T) stage utilizes 2-D DCT (TB sizes from 32 × 32 to
8 × 8) and 2-D DST (4 × 4 TBs) to transform D from spatial domain into frequency
domain transform coefficients (TCOEFF) [27]. The transform coding supports CB
sizes of 32 × 32 to 8 × 8 and further partitioning of square CBs into square sized TBs
until the size of 4 × 4 is reached. In frequency domain, high-frequency components
of the video can be removed in the quantization (Q) stage to produce quantized
transform coefficients (QTCOEFF) without significant quality loss, since human eye
is less sensitive to the high-frequency components.

The encoding loop also includes decoder-side functionality such as inverse
quantization (IQ) and inverse transform (IT) stages, where QTCOEFFs are
dequantized into inversed transform coefficients (TCOEFF’) and then transformed
back into inversed residuals (D’), i.e., back from frequency domain to spatial
domain. The IT stage uses the corresponding inverse functions of the T stage, i.e.,
2-D IDCT and 2-D IDST [27]. The reconstructed D is then added to the
Pintra/Pinter to generate the final D’, which is stored in CPB. For example, in intra
mode, reconstructed CBs are needed in the intra prediction phase, where spatially
adjacent pixels are used as a reference for generating predictions for neighbouring
CBs. Furthermore, as the reconstructed pictures correspond to the images

20

generated and displayed by the decoder, they can also be used to measure the error
introduced by compression.

In addition, HEVC supports sequential in-loop filters, sample-adaptive
offset (SAO) and deblocking filter (DF), in the loop filtering (LF) stage. This stage is
used for filtering distortions and visible borders of blocks. Unlike intra mode,
which utilizes the Drec directly, inter mode utilizes the filtered Drec from DPB to
find the best temporal candidate for the processed PU and to generate the inter
prediction.

2.2.5 Entropy coding

In the last encoding phase, the QTCOEFFs, IP mode, and MV are processed by
the entropy coding (EC) stage to generate the final encoded bitstream. In this step,
the video signal is reduced to a series of syntax elements that contain properties of
the blocks, including prediction modes, quantization parameters, transform
coefficients, filter modes, and all other parameters required to describe how the
video signal should be reconstructed by the decoder.

These elements are ordered and compressed to generate an encoded video
bitstream. Entropy coding method in HEVC is called CABAC [28], which is a
lossless compression technique based on arithmetic coding. The compression is
achieved by utilizing statistical properties of symbols, i.e., more frequent symbols
are coded with less bits and less frequent symbols with more bits.

2.2.6 Techniques for HEVC encoder parallelization

HEVC supports parallel processing of multiple CTUs [29] in a single frame, as well
as parallelism between frames. As shown in Figure 2.3, the specified strategies include
(a) slices, (b) tiles [30], (c) wavefront parallel processing (WPP) [30], [31], and (d)
overlapped wavefront (OWF) [30], [32].

In its simplest, a slice in HEVC can contain the whole frame. For added
parallelism, a single frame can be encoded using several independent slices. The
minimum size of a slice is a single CTU. Each slice can consist of varying number
of CTUs per frame, and each frame can consist of varying number of slices.

With tiles, the frame can be divided into independently encoded rectangular
regions. This increases the capability of parallel processing of CTUs in a single

21

(a) (b)

(c) (d)

Frame 1

Frame 3

Frame 2

Frame N

Figure 2.3 Parallelization approaches supported by HEVC: (a) slices, (b) tiles, (c) wavefront parallel
processing, and (d) overlapped wavefront.

frame without the need for complex synchronizations.
When WPP is enabled, processing of adjacent CTU rows can always be started

when two CTUs from the preceding row have been encoded. Thus, the level of
parallelism withWPP increases row by row. Furthermore,WPPmay provide higher
coding performance than tiles by utilizing CABAC better, i.e., the CABAC state of
the previous row is always propagated to the next row with a delay of two CTUs.
This dependency does require better synchronization methods than with tiles.

OWF is the process of encoding multiple frames in parallel. This is
straightforward in all-intra mode, as the frames have no temporal dependencies, but
when using inter mode, additional synchronization is required for reference
pictures.

2.2.7 Open-source implementations for HEVC encoding

The most notable open-source HEVC encoder is the HEVC reference software
called HM [16]. The main purpose of HM is to implement and provide a reference
for all coding tools in the standard. On the other hand, HM has not been
optimized for speed, e.g., with multithreading, and thus it has a considerable
computational complexity, which severely limits its practical usage outside research.

There are also two notable open-source HEVC encoder implementations
addressing practical encoding, namely x265 [33] and Kvazaar [8]–[10]. Both of
them are highly optimized and support HEVC specified parallelism to achieve

22

real-time SW encoding. The x265 encoder has primarily been written in C++, just
like HM. The development of x265 is coordinated by MulticoreWare. Kvazaar
encoder is presented in more detail in Section 2.2.8.

2.2.8 Kvazaar HEVC encoder

Kvazaar [8]–[10] is an academic open-source SW HEVC encoder developed by
Ultra Video Group at Tampere University. The open development of the encoder
was started in January 2014 and still continues actively. The encoder has
completely been implemented from scratch using C with additional advanced vector
extensions 2 (AVX2) optimizations. Kvazaar supports HEVC Main profile [18]
with ten presets from ultrafast to placebo [10]. Kvazaar architecture offers
multi-threaded coding scheme with rate-distortion optimized (RDO) mode decision
and HEVC parallelization strategies to achieve high rate-distortion (RD)
performance with reasonable coding time.

In almost all publications included in this thesis, Kvazaar is used as a reference
software for HEVC, i.e., as a design entry point for HLS implementations, for
testing purposes, and as the SW application running on CPU where applicable.
The wide usage of Kvazaar in this thesis is not only because Kvazaar has been
developed in the same research group as this thesis is being carried out, but also
because Kvazaar is a fully-fledged open-source HEVC encoder, which is
implemented completely in a hardware-friendly C-code, and has shown promising
results when compared with HM [16] or x265 [33].

2.3 Target device: Field-programmable gate array (FPGA)

FPGAs are re-programmable logic circuits that enable fast development and
real-time emulations for HW implementations. A simplified example of an FPGA
is illustrated in Figure 2.4. In the basic case, an FPGA is made up of an array of
programmable LEs, consisting of a classic 4-input LUT, carry logic, and a single
register. The FPGA also has programmable interconnections for connecting the
LEs. These interconnected LEs can be used to form designs from simple gates to
highly complex functions. In reality, the basic building block [14] of an FPGA
device depends highly on the FPGA vendor. These building blocks can consist of
several classic LEs, larger LUTs, multiple registers, or additional hard-coded

23

LE LE LE

LE

LE

LE

LE

LE

LE

IO IO IO IO

IO IO IO IO

IO

IO

IO

IO

DSP

DSP
On

-ch
ip

me
mo

ry
On

-ch
ip

me
mo

ry

FPGA

LUT DFF

LE

MU
X

Figure 2.4 Simplified example of an FPGA.

RTL
code

EDA
1. Synthesis

2. Place & Route
3. Image Assembly

HLS tool
1. Compilation
2. HLS Process

3. RTL Generation

HLS
code

FPGA
image FPGA

chip

JTAG

FPGA board

Program

Figure 2.5 High-level overview of the design flow from HLS code to FPGA programming.

functionality such as adders. The FPGA chips also usually contain on-chip
memory blocks and DSPs. The memory blocks are typically allocated for FIFOs
and single or dual-port memories. DSPs are mostly used for performing complex
mathematical functions. They can be used together with LEs and minimize the LE
usage in memory-intensive or arithmetic applications.

Figure 2.5 gives a high-level overview of the design flow from HLS code to
FPGA programming. The initial state of the LEs, memory blocks, DSPs, and the
connections between them are generated by an electronic design automation (EDA)
software. The EDA usually takes an HDL description of the design as an input and
the HDL code goes through synthesis, place & route, and finally bitstream
generation. The bitstream image can be used for programming the specific FPGA.
Because the code generated by the HLS tool is in HDL format (VHDL or
Verilog), the use of HLS should not affect the EDA tools used for FPGA synthesis.

FPGA is selected as the target device in almost every publication included in
this thesis, because it enables the construction of proof-of-concept systems, which

24

is a step forward from calculations or simulations. Achieving realistic performance
evaluations is somewhat limited in simulations, as it might not consider all real-
life aspects and dependencies. Furthermore, FPGAs were also preferred to ASICs,
because the back-end flow for ASICs would have been too demanding for the scope of
this thesis, without the possibility to actually have the chip physically manufactured.

From the scope of the HLS flow and the generated RTL, the target technology
is not that important, as HLS offers technology-independent designs. This made it
possible to prioritize the device selection according to device and EDA software
availability/support. Hence, the chosen setup was Catapult HLS, Intel Quartus
Prime (previously Altera Quartus II) FPGA synthesis tool, and Intel (previously
Altera) FPGAs (Cyclone V, Arria V, and Arria 10 device families)

25

26

3 RELATED WORK

Since the advent of HEVC, a great number of individual HW components or
complete HW encoders have been designed for it on FPGAs and ASICs, both in
academia and industry. However, to the best of knowledge, none of the existing
HLS approaches, at least in literature [34]–[45], have proposed a complete HEVC
encoder but only individual HEVC coding tools.

All these existing HLS approaches considered only data-intensive coding tools
and skipped the control-intensive parts of HEVC, e.g., CABAC. This is because
data-intensive algorithms have traditionally been considered more suitable for HLS.
CABAC is part of the work presented in this thesis, and due to the lack of HLS
implementations of CABAC in literature, independent CABAC units implemented
with traditional RTL [46]–[52] are included in the related work for comparison.
Correspondingly, industrial and academic HEVC encoders developed with manual
RTL are considered as related work [53]–[67].

3.1 Existing HLS implementations for HEVC

As listed in Table 3.1, HLS implementations have been presented for different
HEVC encoding tools, including 1) IP [34]–[36]; 2) DCT/IDCT [37], [38]; 3)
interpolation [39]–[41]; and 4) sum of absolute transformed differences (SATD) [42].
Correspondingly, Table 3.2 lists the works for HEVC decoding tools [43]–[45].

3.1.1 Intra prediction

The authors in [34] used Xilinx Vivado HLS (now Xilinx Vitis HLS [20]) to
implement HEVC IP for Xilinx Virtex 6. It supported all PU sizes and was able to
process predictions for 1080p video at 35 fps (1080p@35fps) in the worst case.
Three prediction units are used to calculate angular, planar, and DC predictions at
32, 4, and 1 pixel(s) per clock cycle, respectively. The authors performed manual

27

Table 3.1 Existing HLS approaches for HEVC encoding

Table 3.2 Existing HLS approaches for HEVC decoding

loop unrolling and several Vivado HLS specific optimizations to increase
performance.

The work in [35] addressed the mode decision (MD) process of intra predicted
PUs. It proposed to calculate the sum of absolute differences (SAD) [68], [69] only for
8 × 8 PUs and construct the larger CUs from them. The reconstruction dependencies
have also been removed by utilizing original pixels as reference for adjacent PUs.
This increased parallelism but decreased the MD accuracy. The presented HEVC
intra encoder was able to encode 1080p@29.7fps on the ARM platform.

Another HLS IP implementation was presented in [36]. The design included
six groups of 35 prediction modes and supported 8 × 8 PUs only. The design was
parallelized by removing the recursive search, accumulating the SADs of 8 × 8 PUs
for the larger PUs, and utilizing original pixels as reference for adjacent PUs instead
of reconstructions. The presented SoC FPGA (Xilinx ZCU102) solution was able
to encode 1080p@29fps. Both [35] and [36] utilized Kvazaar [8]–[10] as a reference
for their HLS designs.

28

3.1.2 DCT and IDCT

The authors in [37] utilized HLS, HW/SW co-design, and a SoC FPGA (Xilinx
Zynq ZC702) to implement separate 2-D DCT/IDCT cores for 4 × 4 and 32 × 32
TUs for 1080p@30fps video coding. They also ported Kvazaar to the processor of
the SoC FPGA in order to verify the HLS-implemented HW in real-time testing.
Kvazaar was also used as reference for the implementation. The full 2-D HEVC
transform phase consisted of two 1-D DCT and 1-D IDCT units and a transpose
circuit between them. The authors also implemented the corresponding HDL design
for comparison with the HLS implementation.

The work in [38] presented three HLS implementations for 2-D IDCT that
supported all TU sizes. The used HLS tools were Vivado HLS, LegUp [70], and
MATLAB Simulink HDL Coder [71]. In addition, the authors have previously
implemented the same design using handwritten HDL supporting 2160p48fps,
which is compared with the HLS designs supporting 1080p@35fps to
1080p@55fps. The HLS designs consisted of two 1-D transforms for each TU size
and a transpose memory between the transforms. The results showed that real-time
performance is achievable for IDCT with several different HLS tools, with
significantly reduced design time.

3.1.3 Interpolation

Even though this thesis only considers the implementation of an intra HEVC
encoder, literature shows that HLS has also been applied for HEVC inter
encoding, i.e., interpolation filter for FME and MC. The authors in [39] used
Vivado HLS to create multiple versions for the interpolation HW. Each version
utilized different optimization techniques, ranging from Vivado HLS specific
optimizations and manual loop unrolling to different multiplierless designs. The
best design was able to process interpolations for 2160p@45fps video.

HEVC interpolation was also used in [40] as a proof-of-concept algorithm to
demonstrate the proposed Design Productivity evaluation when the same design was
implemented with VHDL and CAPH HLS [72].

The work in [41] considered fully accurate interpolation filters that were
implemented with Catapult HLS [7] and optimized for FME. The design was
profiled to be able to filter an adequate number of samples for 2160p@99fps video

29

on Virtex 6.

3.1.4 Hadamard SATD

The work in [42] considered an HLS implementation for SATD [68], which is
used to calculate similarity between pixel blocks. The work combines previously
introduces techniques with HLS and introduced implementations for 4 × 4, 8 × 8,
and 16 × 16 blocks. The designs were profiled to provide adequate SATD
throughput for 2160p@60fps FME.

3.1.5 Decoding tools

Even though this thesis only considers HEVC encoding, HLS implementations for
HEVC decoders can also be found in literature. The authors in [43] used Impulse
C [73] to implement 2-D IDCT/IDST for all TU sizes. After the design was
optimizing using loop unrolling and pipelining, it supported decoding of
1080p@30fps.

The HEVC decoder has also been used as a case study for HLS in [44]. The
work proposed HW implementations for IP, dequantization, and IDCT using
Vivado HLS. These units are deployed on a SoC FPGA (Xilinx Zynq ZC702), and
the SW/HW design is profiled to be able to decode 1080p@17fps video. The same
authors [44] also published a dedicated HLS implementation for IP [45]. In this
work, they have utilized Vivado HLS and created multiple solutions by adding
optimized pragmas incrementally, finally achieving 1080p@51fps performance for
the standalone unit, and 1080p@15fps decoding speed with the entire SW/HW
design.

3.2 Existing hardware implementations for HEVC entropy coding

The related works for CABAC are listed in Table 3.3. The authors in [46]–[49]
presented the whole entropy encoder (both binarization and arithmetic encoding),
whereas the remaining works focused only on arithmetic encoding [50], [51] or
binarization [52]. All these works included various optimization techniques for
removing data dependencies, minimizing critical paths, multi-symbol processing,
and parallel processing of bypass-mode.

30

3.2.1 Whole entropy encoder

The work in [46] described an architecture for the whole CABAC encoder. It
detailed how the context modeler and binarizer work in parallel with a connection
to the arithmetic encoder via a parallel-in/serial-out unit. The overall process was
controlled by a CABAC controller unit. The design aimed to reduce HW
resources by applying optimizations via adaptive binarization and memory
reduction in context selection. Separate area figures were reported for Virtex 6
FPGA and ASIC for 1600p@60fps video.

The authors in [47] also presented an architecture for the whole CABAC
encoder, including binarization, separated paths for regular bins and bypass bin,
and a multi-stage arithmetic encoding. Optimizations for the arithmetic encoding
were carried out by utilizing incomplete data dependencies considering range
updating and less probable symbol bins, shortening critical paths. The work also
presented a new architecture for context modeling and binarization, that were
developed to ensure an adequate output speed for arithmetic encoding.

In [48], the authors analyzed the challenges of CABAC and proposed
parallelism for binary coding and the renormalization of the least probable symbol.
The optimization of binarization is also considered by using eight heterogeneous
functional units. The design has been developed to support 4K content.

A full CABAC encoder was presented in [49], that supported the throughput
requirement of real-time 8K encoding. The architecture showed how the CABAC
processing was controlled by a top controlling unit with connections to context
modelling, binarization, and arithmetic encoding. The work described optimizations
for binarization in the form of pre-allocated context modelling, which simplified
the actual binarization of syntax elements. Optimizations for arithmetic encoding
included efficient utilization of bypass bins, by splitting them from the multistage
arithmetic encoding pipeline and merging them to a later stage.

3.2.2 Separate implementations for arithmetic encoding or binarization

The work in [50] presented an arithmetic encoding part of the full CABAC
process. It was designed for a low-power ASIC architecture that supported
real-time processing of 8K content. The low-power techniques applied for the
design included clock gating and operand isolation. They were used together with

31

an analysis of the statistical behaviour of inputs.
An arithmetic encoding unit was also presented in [51]. The proposed

optimizations included: 1) a parallel four-path data flow for range evaluation
supporting high operating frequencies, 2) hardware usage of the four-path range
evaluation and actual range calculation is optimized to reduce complexity, 3)
modified processing order for updating low register, and 4) increased number of
symbols in bypass mode.

The same authors [51] also presented a corresponding binarization unit in [52].
It was designed to meet the high throughput of their arithmetic encoder via fast
implementations of binarization, context modeling, and probability model. The
work described the decomposition of the processing path into many parallel ones.
The proposal was targeted for real-time processing of high-quality 8K content.

3.3 Existing hardware implementations for complete HEVC
encoders

As listed in Table 3.4, commercial HW encoders have been unveiled for HEVC,
e.g., by NVIDIA (NVENC) [53], Xilinx (LogiCORE IP H.264/H.265 Video
Codec Unit) [54], VITEC (e.g. MGW Diamond) [55], ORIVISION (e.g.
ZY-EH901) [56], and AJA (Corvid HEVC) [57]. However, the publicly available
information of these confidential solutions tends to be limited, so only academic
works are considered in this thesis.

The existing academic HW HEVC encoders are listed in Table 3.5. They can
be further categorized as: 1) FPGA implementations [58]–[60]; 2) FPGA/ASIC
implementations [61]–[63]; and 3) ASIC implementations [64]–[67].

3.3.1 Academic HEVC encoders on FPGA

The authors in [58] presented an implementation capable of supporting both intra
and inter encoding for 1080p@60fps video. In addition, the used FPGA can be
mounted in a rack supporting as many as 17 FPGAs and 8K@60fps encoding.

An intra encoder for 1080p@30fps video was presented in [59]. It proposed to
reduce dependencies in the RDO loop and use Hadamard-based early decision
method for higher parallelism.

32

Table 3.3 Existing CABAC implementations for HEVC

Table 3.4 Existing commercial HEVC encoders on HW

Table 3.5 Existing academic HEVC encoders on HW

An intra HEVC encoder capable of 1080p@60fps was presented in [60]. The
work introduced basic pixel-level processing elements for various fundamental
algorithm modules, from which the encoder was constructed.

3.3.2 Academic HEVC encoders on FPGA/ASIC

The authors in [61] presented an HEVC intra encoder for 1080p@60fps video.
The architecture takes advantage of a simplified RDO process, a separate 4 × 4
reconstruction loop, and an interleaved mode processing.

33

The same authors in [62], [63] presented two intra encoders for 1080p@45fps
video with small differences. They proposed chroma reconstruction based on luma,
luma mode preselection, and simplified CABAC rate estimation.

In addition, the works in [61]–[63] also included ASIC results for 4K@30fps
video.

3.3.3 Academic HEVC encoders on ASIC

The authors in [64] presented an implementation for 8K@30fps video supporting
both intra and inter encoding. It was implemented without the complex 8 × 8 CUs
and 4 × 4 PUs. It also supported fully parallelized encoding of 64 × 64, 32 × 32, and
16 × 16 intra CUs to meet high throughput.

The work in [65] described an intra encoder capable of 1080p@44fps. The work
utilized CU/PU pre-decision to reduce the complexity, but the sequential processing
caused throughput degradation.

The ASIC HEVC encoder presented in [66] supported intra encoding of
1080p@60fps video. The work proposed multiple fast algorithms to remove data
dependencies and to reduce computational complexity. These fast algorithms
included fast rough mode decision (RMD), prediction mode interlaced (PMI) RDO
mode decision, parallelized context adaption, and chroma-free CU/PU decision.

The intra/inter HEVC encoder presented in [67] supported 4K@30fps video
encoding. The work utilized a pyramid motion estimation to reduce search
complexity, original pixels for intra mode decision to reduce pipeline stall, and
various low-power design techniques.

3.4 How to improve upon prior art

The solutions described in this thesis aim to improve upon the existing works with
the following means:

• The use of HLS not only for the data-intensive parts of HEVC (intra
prediction, discrete sine/cosine transform, quantization, inverse
quantization, inverse discrete sine/cosine transform , and reconstruction),
but also for more control-oriented tools, such as intra search control and
CABAC. Using HLS for the entire implementation is beneficial from the

34

perspectives of design effort, complexity, re-usability, ease of modification,
and verification time.

• Support for parallel processing of multiple independent CTUs, in order to
efficiently fill the pipeline with independent CUs from different CTUs. This
approach maximises the utilization of the HW pipeline without breaking any
dependencies between adjacent CTUs in a frame or adjacent CUs in a CTU.
This way, it improves encoding speed without any negative effects on the
coding quality.

• This work is not limited to simulations or assessments of the potential
encoding performance. Most of the existing HEVC encoders on HW have
been implemented with ASIC technologies, but a proof-of-concept system
for real-life HEVC encoding is more easily achievable with FPGA. This also
makes it possible to benchmark the coding quality of the implemented HW,
instead of estimating the coding quality by introducing possible
optimizations or limitations to HM [16].

35

36

4 RESULTS OF THE RESEARCH

The main results of this thesis are summarized in the following sections. Each
publication is addressed separately, except that two technical papers (Publications V
and VIII) are accompanied with associated demonstration papers (Publications VI
and IX). The purpose of these two demonstration papers is to describe the
technical setup used to validate the proposed functionality in practice.

Section 4.1 presents the results for single HEVC encoding tools. It includes the
implementations for intra prediction (Publication I), 2-D DCT/DST (Publication
II), and 2-D IDCT/IDST (Publication III). It also describes the results of the
conducted test group study (Publication IV). Section 4.2 presents the results for the
1st and 2nd generation versions of the Intra Search Core on an FPGA (Publications
V, VI, VII). Section 4.3 presents the results for the 2nd generation Intra Search
accelerator in a cloud environment (Publications VIII, IX). Finally, Section 4.4
presents the results for the full HEVC intra encoder, which includes the 3rd

generation Intra Search Core and the HLS implementation of CABAC
(Publication X). Comparisons to prior art that are not covered in this chapter are
included in respective publications.

4.1 HLS implementations of single HEVC intra encoding tools

4.1.1 Intra prediction

The HEVC encoder implementation was started with the HLS implementation of
IP described in Publication I. The area and performance results of the implemented
IP units are listed in Table 4.1. IP was chosen as the first coding tool for HLS
implementation according to the profiling results of Publication I, where IP was
shown to account for almost 68% of the whole intra encoding process when the
encoding was performed on the CPU.

37

Table 4.1 HLS implemented HEVC intra prediction units with area and performance figures

The work included two versions of the unit. One capable of performing IP and
intra MD at a rate of one pixel per cycle, and a second one able to perform two
pixels per cycle. These versions could perform intra prediction for 1080p
resolution at 6 fps and 9 fps, respectively. The work also included a
proof-of-concept HEVC streaming system on a SoC-FPGA, where the
implemented HW Intra Prediction unit was used to accelerate the HEVC encoding
on CPU. Even though the performance of the coding tool did not achieve real-time
performance for 1080p resolution, the design served as a promising starting point
for utilizing HLS in fast development and accelerating SW HEVC encoding. In
hindsight, the speed was limited by not fully utilizing the internal encoding
pipeline for successive CUs, and the limited potential of the low-end Cyclone V
FPGA. Nevertheless, the work gave a positive outlook for continuing the
development of an embedded HW HEVC encoder.

4.1.2 Transform coding

The next coding tools after IP were DCT and IDCT, described in Publication II
and Publication III, respectively. Quantization/Inverse Quantization could have
also been selected for implementation, but as the quantization process is more
straightforward than DCT/IDCT, the added value of reporting such work would
have been limited. The area and performance results of the implemented HW
DCT and IDCT units are listed in Table 4.2 and Table 4.3, respectively. The target
device for these two works was upgraded from Cyclone V to a mid-end Arria II
FPGA device, removing the device performance limitation in Publication I.

The work in Publication II included two separate versions of 2-D DCT/DST
units that support all luma and chroma TBs. The individual units presented were
1) a separate 2-D DCT/DST unit dedicated for luma and chroma 4 × 4 TBs, 2) a
low-cost variant of 2-D DCT for larger luma and chroma TBs, and 3) a high-speed

38

Table 4.2 HLS-implemented HEVC DCT/DST units with area and performance figures

variant of 2-D DCT for larger luma and chroma TBs. The individual units support
HEVC transform in the worst case at the rate of 2160p@30fps, 1080p@60fps, and
2160p@30fps, respectively. Table 4.2 also lists two combinations of these
individual units, creating a complete 2-D DCT/DST unit for all luma and chroma
TBs. A comparison to the existing manual RTL designs showed that the HLS
implementations were able to produce transformed coefficients with a much higher
rate and with better area to performance ratio.

The work in Publication III included two separate units for performing 2-D
IDCT/IDST, which are listed in Table 4.3. The first one is dedicated for 4 × 4
luma and chroma TBs and the second one for the rest of the larger TBs. These two
units were capable of performing HEVC inverse transform 2160p@68fps and
2160p@96fps, respectively. Again, the complete 2-D IDCT/IDST unit was able to
outperform and achieve better area to performance ratio than the prior art.

4.1.3 User study: HLS vs. manual RTL

To validate the findings of Publication II, a case study was organized in Publication
IV to better evaluate the efficiency of HLS and manual RTL design flows. The test
subjects were instructed to implement a specified algorithm with both manual RTL
and HLS. The coding tool of interest was HEVC 2-DDCT for 8 × 8 TBs and the
subjects were given the opportunity to start with either HLS or manual RTL. The
results of the study are summarized in Table 4.4, which shows the area, speed, and
hours used by each subject. The bolded values indicate the subjects that started with
the specific design flow.

39

Table 4.3 HLS-implemented HEVC IDCT/IDST units with area and performance figures

Table 4.4 Area and performance figures from the test group study for HLS and RTL designs, with
quality and productivity comparison

This case study justified that the quality improvement achieved with HLS for
HEVC DCT (in Publication II) over the manual RTL implementations was not a
random occurrence. Table 4.4 shows that all subjects were able to produce a design
with better performance using HLS than with manual RTL. Only one subject got
better performance area ratio with manual RTL, but HLS still improved the
productivity in that case too. These results are well in line with the experiences of
the author and the results of the previously implemented HEVC coding tools.

4.2 FPGA-accelerated HEVC intra search on a compute server

The implementation of the HEVC encoder was continued by moving the focus
from single data-intensive coding tools to a complete intra search on FPGA. As the
most demanding coding tools of the intra search pipeline were already
implemented, Publication V and Publication VI addressed 1) the integration
aspects of the IP, DCT, and IDCT, 2) implementation of the missing
quantization/dequantization and reconstruction units, and 3) the whole control

40

logic of intra search. This also shifted the focus from data-intensive algorithms to
more control-oriented implementations.

As intra search alone cannot produce the final HEVC bitstream from a direct
video input, a CPU of a server/PC was used for input processing, parallelization,
chroma coding (1st generation only), CABAC, and HEVC output bitstream
processing. Furthermore, in order to access the implemented Intra Search Core on
FPGA from CPU, a Linux kernel driver was implemented for sending and
receiving data to/from FPGA via PCIe 3.0 x4 and dedicated direct memory access
(DMA) units that are connected to FPGA memory blocks.

Table 4.5 tabulates the base encoding configuration used in benchmarking. In
addition, an intra depth range can be configured at run time as specified in Table 4.6.
The intra depth range can affect the encoding speed, i.e., larger blocks are more
data intensive, the number of smaller blocks is larger, and a larger range affects the
number of possible configurations.

4.2.1 1st generation Intra Search Core

The work carried out for the 1st generation Intra Search Core is described in
Publication V. This first complete HLS implementation of the Intra Search Core
was designed to process data at CTU level to maximize the internal parallelization
of CUs within a single core. This parallelization method was also chosen because it
does not break any adjacent CTU dependencies and thus does not degrade the
coding quality. The 1st generation Intra Search Core was able to perform intra
search for eighth individual CTUs in parallel. The number of parallel CTUs was
limited by the intra search control and the size of intra search memories. The
number of FPGAs per CPU was also limited to a single board by the initial Linux
kernel driver.

The area and performance figures of the 1st generation Intra Search Core are
given with the specified configurations in Table 4.7 and Table 4.8, respectively. A
single Arria 10 FPGA chip can accommodate two parallel Intra Search cores, and
the area is given for the whole design. The performance was separately benchmarked
with a single and two cores per FPGA using sequences from [15]. With the wider
intra depth range of 1-3 and quantization parameter (QP) of 32, the two cores were
able to perform 1080p encoding at 109 fps. Using the narrower intra depth range
of 2-3, the two cores were able to perform 2160p encoding at 41 fps. Although

41

Table 4.5 Supported base configuration for the proposed HW HEVC intra encoder

Table 4.6 Corresponding intra depth ranges and luma PU and TU sizes

some HEVC encoding functionalities were implemented on CPU, the 1st generation
Intra Search Core was able to more than double the encoding speed over CPU only
encoding. Furthermore, the implementation showed competitive performance over
existing FPGA and ASIC implementations.

4.2.2 2nd generation Intra Search Core

The work for the 2nd generation Intra Search Core in Publication VI was motivated
by the bottlenecks found in the 1st generation core. The work thus described the
solutions for the encountered limitations, added support for HW chroma coding,
and proposed optimizations for faster encoding speeds.

The encoding system in Publication V utilized available CPU processing power
to maximize the coding speed because the 1st generation Intra Search Core only

42

Table 4.7 The resource consumption of the proposed 1st and 2nd generation Intra Search Cores

Table 4.8 The performance of the proposed 1st and 2nd generation Intra Search Cores

came with limited parallelism and thus utilized only a portion of the CPUs threading
performance. To that end, the support of parallel CTUs in a single core was increased
from 8 to 16. In addition, the processing time in different parts of the HW pipeline
was equalized by separating the 2-D process of DCT and IDCT units into individual
pipeline stages. The operation of the Linux kernel driver was also upgraded to enable
multiple PCIe boards and interrupt handling. In addition, the overall optimizations
improved the HW utilization and enabled a higher clock frequency.

The area and performance figures of the 2nd generation core are also given in
Table 4.7 and Table 4.8, respectively. The duplication of the DCT and IDCT units
increased the number of ALUTs per core only minimally and decreased the
number of DSPs per core. The maximum clock frequency increased from 125
MHz to 175 MHz, which improved the coding speed by 40%. The performance of
the 2nd generation core was benchmarked using the base encoding configuration
with 1-3 intra depth range only. As three 2nd generation cores could now be
accommodated per FPGA, the maximum number of parallel Intra Search Cores in
the encoding system with two FPGAs increased from 2 to 6. This increased the
maximum number of parallel processed CTUs from 16 to 96. With the sequences
from [15], this system was able to encode 2160p video at 123 fps on average.

43

4.2.3 Live demonstration of the Intra Search Core

The proof-of-concept encoding system proposed in Publication VI was also
validated with a live demonstration described in Publication VII. The
demonstration showcased how a single personal computer (PC) with two PCIe
FPGAs can encode three 4K streams in real time. The applied 4K cameras
supported raw video output via HDMI. The outputs were captured by HDMI
capture cards and transmitted to the PC via USB. The encoded videos were finally
streamed to three separate laptops for playback over a network using real-time
transport protocol (RTP).

4.3 FPGA-accelerated HEVC intra search in a cloud environment

Publication VIII is about adding support for a 40 Gigabit Ethernet (GbE)
connection for the 2nd generation Intra Search Core whereas publication IX
describes the live demonstration of the developed cloud encoding system. These
works were motivated by the objective of adding even more cores to the encoding
system, without a specialized motherboard that can fit and support multiple PCIe
boards. The combination of an Ethernet connection and a network switch enables
practically any number of heterogeneous FPGAs to be added to the system. The
challenge with the network connection resides in implementing a full protocol
stack for communication and application abstraction on FPGA. This effort was
minimized by utilizing SDN switches, in which the connections and data flows are
programmable by a separate controller. This allows the network interface on
FPGA to be at very low level, which in turn saved a major portion of the FPGA
resources and implementation time. The publication also describes the
implementation of a resource manager and how it controls the SDN flows. The
advanced utilization of these SDN flows also enabled the manager to modify the
used resources at run-time, i.e., allocate varying number of FPGAs per server,
switch FPGAs on the fly without disrupting the HEVC streaming, and
prioritizing different streams being encoded.

Table 4.9 shows the performance of the same 2nd generation Intra Search Core
when using either PCIe 3.0 x4 or 40 GbE. The benchmarking was carried out with
a single FPGA board, three cores, and the same server CPU. The intra depth range

44

Table 4.9 The performance of proposed Intra Search Cores using PCIe and 40GbE

of 2-3 and the QP of 22 were used. The results show that the system with a 40 GbE
was also able to encode 2160p video at 61fps, with similar CPU utilization. The
performance of the network connected FPGA was mainly limited by the utilization
of 2 × 10 GbE connections on the server, in comparison with the 32Gbps PCIe
connection. Having access to a 40 GbE network card on the server would have
given identical performance.

4.4 Complete HEVC intra encoder on FPGA

The final publication, Publication X, describes the 3rd generation Intra Search
Core and the implementation of the CABAC coding tool. In all previous systems,
CABAC was performed on CPU, but in this work, CABAC was implemented as a
dedicated core that operates in parallel with the Intra Search Core. The
implementation of the intra search control logic and CABAC gave a thorough
understanding of HLS competitiveness with sequential and control-intensive
implementations.

The system architecture of the implemented HEVC Intra encoder is presented
in Figure 4.1. It depicts the interconnectivity of the CPU and FPGAs. Each Intra
Encoder instance consists of a single Intra Search Core and two parallel CABAC
Cores (TOP and BTM) that divide the CTU processing.

The optimizations of the 3rd generation Intra Search Core include the improved
pipelining of the IP unit to remove initial latencies of adjacent PUs and optimized
area and memory usage of the prediction buffer. The 2nd generation Intra Search
Core supported chroma coding, but only together with luma CBs. To skip the
processing of unused chroma CBs, the 3rd generation core reconstructs the
corresponding chroma results from the luma results. The resource utilization of the
3rd generation core is presented in Table 4.10. A single 3rd generation core now
utilizes 180k ALUTs (1 ALM ≃ 2 ALUTs) and 523 DSPs. For comparison,
previously a single 2nd generation core 4.7 utilized 184k ALUTs and 409 DSPs.

45

Intra Encoder #1

Intra Search Core

CABAC Core BTM

CABAC Core TOP

FPGA #1

FPGA #2

FPGA NCPU
Linux

User space

Kernel space

Kvazaar #1

Kvazaar #2

Kvazaar N

Driver

Network switch

PCIe gen3 x4

or

40G40G

Intra Encoder #2 Intra Encoder #3

Intra Search Core

CABAC Core BTM

CABAC Core TOP

Intra Search Core

CABAC Core BTM

CABAC Core TOP

PCIe
or

40GbE
Fiber

Figure 4.1 System architecture of the proposed HEVC intra encoder on FPGA [Publication X].

Table 4.10 The area figures of the proposed fully HLS implemented HEVC intra encoder on FPGA

Table 4.11 Performance comparison of the proposed standalone CABAC Core [Publication X] to
related work

The maximum clock frequency also increased from 175 MHz to 190 MHz, which
further improved the performance by almost 9%.

The work describes in detail how both CABAC binarization and CABAC

46

Table 4.12 The 2160p performance of the proposed prototype HEVC intra encoding system
[Publication X]

Table 4.13 Performance comparison with related work [Publication X]

arithmetic encoding have entirely been implemented with HLS. This was the first
HLS implementation for CABAC in literature. The area figures for a single
CABAC Core are listed in Table 4.10. The performance of the CABAC Core was
reported in the publication for different configurations, but individual comparison
with related work was omitted since the focus was on the overall HEVC encoding
performance. However, the omitted comparison is given here in Table 4.11. The
related work consists of only manual RTL implementations and a collection of
designs implementing either CABAC arithmetic encoding, binarization, or a full
CABAC entropy encoder. The whole CABAC processing power of the encoding
system (12 × CABAC Cores in total) presented in Publication X, benchmarked by
using the worst-case sequence (Beauty [15]), and averaged over every intra depth
range, had a throughput of 4152 Mbins/s and 15.6 Bins/cycle. The design shows
equal or higher performance in comparison with the related work.

As can be seen in Figure 4.1, two CABAC Cores are dedicated per a single Intra

47

Search Core. This configuration was found to be ideal for the proposed system. The
number of CABAC cores per Intra Search Core can was made configurable in the
RTL synthesis tool, allowing optimization of area or performance for future designs.
Table 4.10 lists the area usage for three Intra Search Cores and six CABAC Cores
when fitted on a single FPGA.

Tables 4.12 and 4.13 report the performance of the entire encoding system, and
comparison to related work, of the work presented in Publication X. It consists
of two FPGAs, a Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 14-
core Intel Xeon processors, 6× Intra Search Cores, and 12× CABAC Cores. The
average coding speed is given with all 4K (3840 × 2160) test sequences [15], for four
different QP values and for each intra depth range. The base configuration is the
same as before (Table 4.5). The highlighted Fast and Ultrafast presets comply with
the original Kvazaar HEVC encoder [9], [10]. With these presets, the average coding
speed across all QP values is 2160p@122fps and 2160p@145fps, respectively.

48

5 CONCLUSION

The main objective of this thesis was to examine the feasibility of HLS when
implementing an embedded HEVC intra encoder on FPGA. Real-time HEVC
encoding was selected as an application, because of its data and control-intensive
characteristics. HLS was shown to provide short implementation and verification
times, easy portability between FPGAs, increased design reusability and
customization, and competitive performance with prior art.

5.1 Discussion about lessons learned

In the beginning, the author was already familiar with programming languages like
C/C++, but also with traditional RTL design methods for FPGAs, which may
influence the views presented in this section. On the other hand, the author also
obtained some second-hand knowledge from designers with different backgrounds
and also from the group study organized in Publication IV. However, the actual
learning process of HLS was started from zero for this thesis. It did take some time
to learn the best practises to achieve good and consistent results, but even the first
designs created with somewhat limited HLS knowledge showed comparable results
against the related work. In the end, the time used for learning HLS was paid off, as
the design times of later designs were shortened significantly. Although HLS tends
to improve the QoR more than absolute performance, the results listed in this
thesis also showed competitive video coding speed over related work.

The HLS code for this work was written mostly using C for algorithms taken
from Kvazaar [10]. C++ was used for templates, template recursion, and classes,
instead of structures, where additional functionality is closely related to the
structured data, e.g., reading a configuration bit vector and parsing the data to class
variables. Furthermore, SystemC was utilized in Publication I, but for the purpose
of early system simulations of the first HEVC coding tool. The RTL of this coding

49

tool was still generated using untimed C/C++. A more accurate control of the
outcome and introduction of clock in the design itself with SystemC was not found
necessary. The coding overhead (actual lines of code) with SystemC would have
also been larger than that of the purely untimed C/C++.

The original reference code was used as is in almost every test bench for
generating golden reference data with a random input. On the other hand, the
amount of modifications needed for the HLS implementations was dependent on
the coding tool. SAD, quantization, dequantization, and even non-time critical
parts of CABAC did not need a lot of effort, but some highly vectorized coding
tools like IP, DCT/IDCT, intra coding control, and time critical parts of
CABAC, needed substantial re-writing. The necessary modification for all units,
moving from the reference to the implementation, was the interface, integration to
the pipeline, and passing of necessary data for operation, i.e., data pointers to big
data structures cannot be reused from the original reference code as such.
Introducing parallelism to a single coding tool turned out to be the most
time-consuming part, especially when applying loop unroll for a loop was not
enough, e.g., IP predicting all modes and multiple pixels in parallel, DCT/IDCT
having parallel 1D transforms with a constant 32 pixel transform independent of
TB size, and CABAC with efficient coefficient binarization and arithmetic
encoding. As a downside, these modifications separate the HLS code from the
original reference code. Although the entire HW implementation is still executable
on CPU, it is no longer optimized for it.

For this thesis, the verification effort was minimized with the combination of a
ready-made reference code and Catapult HLS tool. Catapult supports the
utilization of a high-level C/C++ test bench that can be used for verification of
both the behavioural code and the generated RTL. In practice, only the verification
of the behavioural model was necessary, as the generated RTL preserves exactly the
same functionality. Some corner cases were found, e.g., issues with type casting and
overflows, but they can be removed with careful and proper coding style.
Furthermore, for the system-level verification, the HW and SW reference encoders
were run in parallel and validated for functionality.

The author sees that HLS code and tools provide a shorter path to HW design
than learning RTL design with traditional HDLs. However, experiences with HLS
might vary between HLS tools because they offer different features and target

50

technologies. This is also true for downstream synthesis tools generating netlist
code from HDLs. The ease of verification also advocates the usage of HLS.

5.2 Research question 1: Feasibility of HLS for implementing the
HEVC encoder

It is notable that the main novelty of this thesis comes from the reported feasibility
and usability of HLS in implementing the HEVC intra encoder. To the best of
knowledge, this thesis presents the first known HEVC intra encoder that is fully
implemented through HLS, even though there are multiple prior HEVC intra
encoder implementations on ASIC and FPGA. Furthermore, when focusing solely
on the implemented HEVC intra encoder, the presented design offers unseen
scalability via number of server CPUs, accelerator FPGA boards, and HW encoder
instances per FPGA. In addition, it offers connectivity via PCIe or 40 GbE port
and flexibility to switch execution between SW and HW. This was also very
beneficial during design time, from component and connectivity/protocol
verification to more complex system verification.

The implemented encoding system shows competitive performance over the
existing FPGA and ASIC encoder implementations. Finally, the support for
network connectivity in the design together with SDN switches and a resource
manager, the coding performance can be easily scaled up by adding practically any
number of network-connected FPGA cards and servers to the system. This thesis
showed that the designer writing code for an HLS tool can translate behavioural
source code to structural RTL and optimize it efficiently.

5.3 Research question 2: Area and performance of the HLS
implementations against existing work

In the end, HLS was very feasible for the implementation of an HEVC intra
encoder on an FPGA and showed comparable or better results when compared to
prior art. The justification for this conclusion gathered from the included
publications is covered in the following paragraph. The area and performance of
the HLS-implemented coding tools and larger coding entities were reported and
compared with prior art in respective publications.

51

The Publications I- III showed that HLS is very suitable for data-intensive
HEVC coding tools. The group study organized in Publication IV validated that
HLS can provide results for HW designs faster. Publications V - VII showcased
that HLS can also be used for more control-oriented designs. These publications
also stated that HLS does not only provide better QoR against manual RTL, but
also competitive performance. Publications VIII and IX demonstrated the
possibility to customize the interfacing logic for the FPGA and the HW encoding
architecture. In these works, HLS was specifically used for implementing the
Ethernet packet parser and generator. Finally, Publication X again showed the
feasibility of HLS for a control-oriented algorithm with the full implementation of
CABAC encoding and its integration with the existing Intra Search Core. This
publication also further showed how HLS produced better or comparable QoR
and performance against existing manual RTL works.

5.4 Research question 3: Final conclusion

The HEVC encoder, with its parallel HW instances, is a very complex design as a
whole and manually controlling all task allocations and scheduling would have been
very laborious. This thesis proves that with HLS, the shorter development time
and better complexity control does not come at the cost of coding performance or
increased logic area.

52

REFERENCES

[1] G.Martin andG. Smith, “High-level synthesis: Past present and future,” IEEE
Des. Test. Comput., vol. 26, no. 4, pp. 18–25, Jul. 2009.

[2] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction to
high-level synthesis,” IEEE Des. Test. Comput., vol. 26, no. 4, pp. 8–17, Jul.
2009.

[3] H. Ren, “A brief introduction on contemporary high-level synthesis,” in Proc.
Int. Conf. IC Design Technol., Austin, Texas, USA, Jun. 2014.

[4] ITU-T and ISO/IEC, High Efficiency Video Coding, document ITU-T Rec.
H.265 and ISO/IEC 23008-2 (HEVC), Nov. 2019.

[5] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high
efficiency video coding (HEVC) standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[6] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro, “Comparative
rate-distortion-complexity analysis of HEVC and AVC video codecs,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1885–1898, Dec. 2012.

[7] Siemens. “Catapult high-level synthesis and verification,” [Online]. Available:
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/ (visited
on Nov. 4, 2021).

[8] A. Lemmetti, M. Viitanen, A. Mercat, and J. Vanne, “Kvazaar 2.0: Fast and
efficient open-source HEVC inter encoder,” in Proc. ACM Multimedia Syst.
Conf., Istanbul, Turkey, Jun. 2020.

[9] A. Lemmetti, A. Koivula, M. Viitanen, J. Vanne, and T. D. Hämäläinen,
“AVX2–optimized Kvazaar HEVC intra encoder,” in Proc. IEEE Int. Conf.
Image Processing, Phoenix, Arizona, USA, Sept. 2016.

[10] Ultra Video Group. “Kvazaar HEVC encoder,” [Online]. Available: https:
//github.com/ultravideo/kvazaar (visited on Nov. 5, 2021).

53

https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/
https://github.com/ultravideo/kvazaar
https://github.com/ultravideo/kvazaar

[11] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of the
HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,
pp. 1792–1801, Dec. 2012.

[12] S. T. March and G. F. Smith, “Design and natural science research on
information technology,” Decision Support Systems, vol. 15, no. 4,
pp. 251–266, Dec. 1995.

[13] A. Hevner, A. R, S. March, S. T, Park, J. Park, Ram, and Sudha, “Design
science in information systems research,” Management Information Systems
Quarterly, vol. 28, no. 1, pp. 75–106, Mar. 2004.

[14] Altera. “FPGA architecture white paper,” [Online]. Available: https://www.
intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/
wp-01003.pdf (visited on Feb. 23, 2022).

[15] A.Mercat, M. Viitanen, and J. Vanne, “UVGdataset: 50/120fps 4K sequences
for video codec analysis and development,” in ACM Multimedia Syst. Conf.,
Istanbul, Turkey, Jun. 2020.

[16] Joint Collaborative Team on Video Coding Reference Software. “Ver. HM
16.24,” [Online]. Available: http : / / hevc . hhi . fraunhofer . de/ (visited on
Dec. 3, 2021).

[17] G. Bjøntegaard, Calculation of average PSNR differences between RD curves,
Document VCEG-M33, Austin, Texas, USA, Apr. 2001, pp. 1–4.

[18] F. Bossen, Common test conditions and software reference configurations,
document JCTVC-L1100, Geneva, Switzerland, Jan. 2013.

[19] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey and
evaluation of FPGA high-level synthesis tools,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 10,
pp. 1591–1604, Oct. 2016.

[20] Xilinx. “Vitis Platform,” [Online]. Available: https : //www.xilinx . com/
products/design-tools/vitis/vitis-platform.html (visited on Nov. 17, 2021).

54

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
http://hevc.hhi.fraunhofer.de/
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

[21] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[22] S. Lahti, J. Vanne, and T. D. Hämäläinen, “Designing a clock cycle accurate
application with high-level synthesis,” in Proc. Annu. Conf. IEEE Ind.
Electronics Soc, Florence, Italy, Dec. 2016.

[23] H. Foster. “The 2018 wilson research group functional verification study,”
[Online]. Available: https ://blogs . sw.siemens .com/verificationhorizons/
2018/12/04/part-3-the-2018-wilson-research-group-functional-verification-
study/ (visited on Nov. 18, 2021).

[24] C. Systems. “Cisco visual networking index: Forecast and trends 2017-2022,”
[Online]. Available: http://web.archive.org/web/20181213105003/https:
/www.cisco.com/c/en/us/solutions/collateral/service- provider/visual -
networking - index - vni/white - paper - c11- 741490.pdf (visited on Nov. 23,
2021).

[25] ITU-T and ISO/IEC, Advanced video coding for generic audiovisual services,
document ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), Mar. 2009.

[26] I. K. Kima, J. Min, T. Lee, W. J. Han, and J. Park, “Block partitioning
structure in the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, pp. 1697–1706, Dec. 2012.

[27] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M. Sadafale, “Core
transform design in the High Efficiency Video Coding (HEVC) standard,”
IEEE J. Select. Topics Signal Process., vol. 7, no. 6, pp. 1029–1041, Dec. 2013.

[28] V. Sze and M. Detlev, “Entropy coding in HEVC,” High Efficiency Video
Coding (HEVC). Springer, 2014, pp. 209–274.

[29] H. Schwarz, T. Schierl, and D. Marpe, “Block structures and parallelism
features in HEVC,” High Efficiency Video Coding (HEVC). Springer, 2014,
pp. 49–90.

[30] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,
and T. Schierl, “Parallel scalability and efficiency of HEVC parallelization

55

https://blogs.sw.siemens.com/verificationhorizons/2018/12/04/part-3-the-2018-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2018/12/04/part-3-the-2018-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2018/12/04/part-3-the-2018-wilson-research-group-functional-verification-study/
http://web.archive.org/web/20181213105003/https:/www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
http://web.archive.org/web/20181213105003/https:/www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
http://web.archive.org/web/20181213105003/https:/www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf

approaches,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,
pp. 1827–1838, Dec. 2012.

[31] G. Clare, F. Henry, and S. Pateux, Wavefront parallel processing for hevc
encoding, and decoding, Document JCTVC-F274, Torino, Italy, Jul. 2011.

[32] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, V. George, and T. Schierl,
“Improving the parallelization efficiency of HEVC decoding,” in Proc. IEEE
Int. Conf. Image Process., Orlando, Florida, USA, Sept. 2012.

[33] M. Inc. “X265 HEVC Encoder / H.265 Video Codec.,” [Online]. Available:
https ://bitbucket .org/multicoreware/x265_git/downloads/ (visited on
Dec. 3, 2021).

[34] E. Kalali and I. Hamzaoglu, “FPGA implementation of HEVC intra
prediction using high-level synthesis,” in Proc. Int. Conf. Consum. Electronics
- Berlin, Berlin, Germany, Sept. 2016.

[35] Z. Cui, J. Xia, Y. Wang, G. Shi, and W. Yan, “Design of HEVC intra model
decision based on Zynq,” in Proc. Int. Conf. Real-time Comput. Robot.,
Irkutsk, Russia, Aug. 2019.

[36] W. Chen, Q. He, S. Li, B. Xiao, M. Chen, and Z. Chai, “Parallel
implementation of H.265 intra-frame coding based on FPGA heterogeneous
platform,” in Proc. Int. Conf. High Perform. Comput. Commun., Yanuca
Island, Cuvu, Dec. 2020.

[37] B. Mohamed, A. Elsayed, O. Amin, E. Khafagy, M. Abdelrasoul,
A. Shalaby, and M. S. Sayed, “High-level synthesis hardware implementation
and verification of HEVC DCT on SoC-FPGA,” in Proc. Int. Comput. Eng.
Conf., Cairo, Egypt, Dec. 2017.

[38] E. Kalali and I. Hamzaoglu, “FPGA implementations of HEVC inverse
DCT using high-level synthesis,” in Proc. Conf. Des. Architectures Signal
Image Process., Krakow, Poland, Sept. 2015.

[39] F. A. Ghani, E. Kalali, and I. Hamzaoglu, “FPGA implementations of
HEVC sub-pixel interpolation using high-level synthesis,” in Proc. Int. Conf.
Des. Technol. Integr. Syst. Nanoscale Era, Istanbul, Turkey, Apr. 2016.

56

https://bitbucket.org/multicoreware/x265_git/downloads/

[40] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry, “Design productivity
of a high level synthesis compiler versus HDL,” in Proc. Int. Conf. Embedded
Comput. Syst.: Architectures,Modeling and Simul.,Agios Konstantinos, Greece,
Jul. 2017.

[41] P. Sjövall, M. Rasinen, A. Lemmetti, and J. Vanne, “High-level synthesis
implementation of an accurate HEVC interpolation filter on an FPGA,” in
Proc. IEEE Nordic Circuits Syst. Conf., Oslo, Norway, Oct. 2021.

[42] T. Partanen, A. Lemmetti, P. Sjövall, and J. Vanne, “High-level synthesis
implementation of transform-exempted SATD architectures for low-power
video coding,” in Proc. IEEE Int. Symp. Circ. Syst., Daegu, Korea, May 2021.

[43] S. Cichoń and M. Gorgoń, “H.265 inverse transform FPGA implementation
in Impulse C,” in Proc. Federated Conf. Comput. Sci. Inf. Syst., Prague, Czech
Republic, Sept. 2017.

[44] M. Kammoun, A. Ahmed, A. Karim, and A. Rabie, “Case study of an
HEVC decoder application using high-level synthesis: Intraprediction,
dequantization, and inverse transform blocks,” J. Electronic Imaging, vol. 28,
no. 3, pp. 1–11, May 2019.

[45] A. B. Atitallah and M. Kammoun, “High-level design of HEVC intra
prediction algorithm,” in Proc. Int. Conf. Adv. Technologies Signal Image
Process., Sousse, Tunisia, Sept. 2020.

[46] B. Peng, D. Ding, X. Zhu, and L. Yu, “A hardware CABAC encoder for
HEVC,” in Proc. Int. Symp. Circuits Syst., Beijing, China, May 2013.

[47] D. Zhou, J. Zhou, W. Fei, and S. Goto, “Ultra-high-throughput VLSI
architecture of H.265/HEVC CABAC encoder for UHDTV applications,”
IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 3, pp. 497–507, Mar.
2015.

[48] B. Vizzotto, V. Mazui, and S. Bampi, “Area efficient and high throughput
CABAC encoder architecture for HEVC,” in Proc. Int. Conf. Electronics,
Circuits, Syst., Cairo, Egypt, Dec. 2015.

[49] W. Li, X. Yin, X. Zeng, X. Yu, W. Wang, and Y. Fan, “A VLSI implement
of CABAC encoder for H.265/HEVC,” in Proc. Int. Conf. Solid-State Integr.
Circuit Technol., Qingdao, China, Oct. 2018.

57

[50] F. L. L. Ramos, J. Goebel, B. Zatt, M. Porto, and S. Bampi, “Low-power
hardware design for the HEVC binary arithmetic encoder targeting 8K
videos,” in Proc. Symp. Integr. Circuits Syst. Des., Belo Horizonte, Brazil,
Aug. 2016.

[51] G. Pastuszak, “Multisymbol architecture of the entropy coder for
H.265/HEVC video encoders,” IEEE Trans. Very Large Scale Integration
Syst., vol. 28, no. 12, pp. 2573–2583, Dec. 2020.

[52] G. Pastuszak, “Generative multi-symbol architecture of the binary
arithmetic coder for UHDTV video encoders,” IEEE Trans. Circuits Syst. I:
Regular Papers, vol. 67, no. 3, pp. 891–902, Mar. 2020.

[53] NVIDIA. “Video Codec SDK,” [Online]. Available:
https://developer.nvidia.com/nvidia- video- codec- sdk (visited on Dec. 8,
2021).

[54] Xilinx. “Video Processing Subsystem,” [Online]. Available: https ://www.
xilinx.com/products/intellectual-property/v-vcu.html#overview (visited on
Dec. 8, 2021).

[55] VITEC. “MGW Diamond,” [Online]. Available: https://www.vitec.com/
product/mgw-diamond (visited on Mar. 4, 2022).

[56] ORIVISION. “HDMI Video Encoder,” [Online]. Available: https://www.
orivision.com.cn/collections/hdmi-video-encoder (visited on Dec. 8, 2021).

[57] AJA. “Corvid HEVC,” [Online]. Available:
https://www.aja.com/products/corvid-hevc (visited on Dec. 8, 2021).

[58] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K. Iguchi,
A. Ichigaya, and S. Sakaida, “Real-time hardware implementation of HEVC
video encoder for 1080p HD video,” in Proc. Picture Coding Symp., San Jose,
California, USA, Dec. 2013.

[59] S. Atapattu, N. Liyanage, N.Menuka, I. Perera, and A. Pasqual, “Real time all
intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf. Appl.-specific
Syst. Architectures Processors, London, United Kingdom, Jul. 2016.

[60] D. Ding, S. Wang, Z. Liu, and Q. Yuan, “Real-time H.265/HEVC intra
encoding with a configurable architecture on FPGA platform,” Chinese J.
Electron., vol. 28, no. 5, pp. 1008–1017, Sept. 2019.

58

https://developer.nvidia.com/nvidia-video-codec-sdk
https://www.xilinx.com/products/intellectual-property/v-vcu.html#overview
https://www.xilinx.com/products/intellectual-property/v-vcu.html#overview
https://www.vitec.com/product/mgw-diamond
https://www.vitec.com/product/mgw-diamond
https://www.orivision.com.cn/collections/hdmi-video-encoder
https://www.orivision.com.cn/collections/hdmi-video-encoder
https://www.aja.com/products/corvid-hevc

[61] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of
the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 1, pp. 210–222, Jan. 2016.

[62] Y. Zhang and C. Lu, “High-performance algorithm adaptations and
hardware architecture for HEVC intra encoders,” IEEE Trans. Circuits Syst.
Video Technol., vol. 29, no. 7, pp. 2138–2145, Jul. 2019.

[63] Y. Zhang and C. Lu, “Efficient algorithm adaptations and fully parallel
hardware architecture of H.265/HEVC intra encoder,” IEEE Trans. Circuits
Syst. Video Technol., vol. 29, no. 11, pp. 3415–3429, Nov. 2019.

[64] S.-F. Tsai, C.-H. Tsai, and L.-G. Chen, “Encoder hardware architecture for
HEVC,”High Efficiency Video Coding (HEVC). Springer, 2014, pp. 209–274.

[65] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, “HDTV1080p HEVC intra
encoder with source texture based CU/PU mode pre-decision,” in Proc. Asia
South Pacific Des. Automat. Conf., Singapore, Jan. 2014.

[66] X. Huang, H. Jia, B. Cai, C. Zhu, J. Liu, M. Yang, D. Xie, andW. Gao, “Fast
algorithms and VLSI architecture design for HEVC intra-mode decision,” J.
Real-Time Image Process., vol. 12, no. 6, pp. 285–302, Aug. 2016.

[67] K. Xu, Y. Li, B. Huang, X. Liu, H. Wang, Z. Wu, Z. Yan, X. Tu, T. Wu, and
D. Zeng, “A low-power 4096x2160@30fps H.265/HEVC video encoder for
smart video surveillance,” in Proc. Int. Symp. Low Power Electronics Des.,New
York, New York, USA, Jul. 2018.

[68] I. E. Richardson, The H.264 advanced video compression standard. John Wiley
& Sons Ltd, 2011.

[69] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Processing Mag., vol. 15, no. 6, pp. 74–90, Nov.
1998.

[70] LegUp. “Legup high-level synthesis software,” [Online]. Available: https://
www.legupcomputing.com/ (visited on Jan. 18, 2022).

[71] MathWorks. “HDL coder,” [Online]. Available: https://www.mathworks.
com/products/hdl-coder.html (visited on Jan. 18, 2022).

59

https://www.legupcomputing.com/
https://www.legupcomputing.com/
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html

[72] J. Sérot, F. Berry, and S. Ahmed, “Caph: A language for implementing stream-
processing applications on FPGAs,” in Embedded Systems Design with FPGAs,
Springer, 2013, pp. 201–224.

[73] I. A. Technologies. “Impulse c,” [Online]. Available: https://web.archive.
org/web/20180901184426/http://www.impulsec.com/ (visited on Jan. 18,
2022).

60

https://web.archive.org/web/20180901184426/http://www.impulsec.com/
https://web.archive.org/web/20180901184426/http://www.impulsec.com/

PUBLICATIONS

PUBLICATION

I

High-level synthesis design flow for HEVC intra encoder on SoC-FPGA

P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen

In Proceedings of Euromicro Conference on Digital System Design, Funchal, Madeira,
Portugal, Aug. 2015

DOI: 10.1109/DSD.2015.67

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/DSD.2015.67

High-Level Synthesis Design Flow for HEVC Intra Encoder on SoC-FPGA

Panu Sjövall, Janne Virtanen, Jarno Vanne, Timo D. Hämäläinen

Department of Pervasive Computing

Tampere University of Technology, Tampere, Finland

panu.sjovall@tut.fi, janne.m.virtanen@tut.fi, jarno.vanne@tut.fi, timo.d.hamalainen@tut.fi

Abstract—This paper presents a High-Level Synthesis

(HLS) flow for mapping a software HEVC encoder into Altera

CycloneV SoC-FPGA. The starting point is a C

implementation of an open-source Kvazaar HEVC intra

encoder, which is minimally refined for SystemC design space

exploration and automatic Catapult-C RTL generation. The

final implementation involves Kvazaar encoder executed in

Linux on dual-core ARM, and HW accelerated intra prediction

on FPGA. Changing the SW/HW partitioning or modifying the

implementation takes hours instead of weeks with Catapult-C

HLS. In addition, the design is portable to other platforms

without major manual re-writing. We obtained 9 fps full-HD

intra prediction speed with a single accelerator on Altera

Cyclone V SX on Terasic VEEK-MT-C5SoC board including

video capture and HEVC video streaming via Ethernet. To the

best of our knowledge, this is the first reported HLS assisted

implementation of HEVC encoder on SoC-FPGA.

Keywords—High-Level Synthesis, C to RTL, Catapult-C,

HEVC, Kvazaar, intra coding, SoC-FPGA, SystemC, Cyclone V

I. INTRODUCTION

The latest video coding standard, HEVC (High Efficiency
Video Coding) [4], has been developed for the transmission
and storage of next-generation video. Compared with its
predecessor standard AVC [8], HEVC is able to halve the bit
rate for the same subjective quality, but its encoding
complexity tends to be at least doubled in practical encoders.
Furthermore, HEVC coding is at the same time both control
and data dependent, which makes its modeling and
implementation difficult. A trade-off would be a combination
of state-based and dataflow-oriented models of computation
(MoC). In this approach, the most complex parts of the
encoder are tackled by hardware and control-intensive tasks
are mapped to processor cores.

System-on-Chip FPGAs (SoC-FPGAs) integrate hard
processor cores and programmable logic on a single chip,
which makes them attractive to high-performance computing
and application evaluation for HW/SW partitioning. The
current design tools for SoC-FPGAs integrate traditionally
separated SW development tools for processors and FPGA
design tools. One challenge is the interface between these
two domains. HW abstraction layers were written practically
once for the traditional processor platforms, but this would
be a weekly practice for SoC-FPGAs as the HW can easily
be modified. Another challenge is the way the current tools
operate. They follow the waterfall approach, and force
starting over from the beginning for changes in the middle.

This is very laborious for prototyping with HW/SW
partitioning on SoC-FPGAs. For these reasons, we chose
High-Level Synthesis (HLS) to speed up the design
exploration, verification, and implementation [1][2].

The proposed HLS experiments have been carried out
with an open-source Kvazaar HEVC encoder [6]. In this
paper, the focus is on all-intra (AI) coding configuration [5]
of Kvazaar. Our first platform is a low-range Altera Cyclone
V chip on Terasic’s VEEK development board [11].

Fig. 1 shows an overview of the prototype. The live video
is captured with VEEK’s camera, displayed on a
touchscreen, encoded on Cyclone V, streamed to PC, and
decoded on PC. Kvazaar HEVC intra encoder runs on a dual-
core ARM@Linux with synthesized HW accelerators on
FPGA. The overall design mission is very complex, and this
paper reports how the implementation is accomplished. The
new contributions of this paper are the following:

1. The first reported streaming HEVC intra encoder

implementation on SoC-FPGA

2. HLS of HW accelerated HEVC intra encoding functions

3. HW/SW interface accepting pointers in SW code and

DMA transfers in HW for HLS

The rest of this paper is organized as follows. Section 2
presents Kvazaar HEVC encoder and prior-art FPGA
implementations of HEVC intra encoder functions. The used
HLS design flow is introduced step by step in Section 3.
Section 4 and Section 5 illustrate the implemented HW and
SW architectures. Section 6 compares the design time and
obtained performance between the proposed and
contemporary approaches. Section 7 concludes the paper.

Camera

Compressed
video stream over
Ethernet to PC

HEVC live video encoding on
CycloneV SX@VEEK-MT-C5SoC

Video
decoding@PC

Fig. 1. Prototype platform for SoC-FPGA based HEVC encoder.

II. RELATED WORK

Currently, there exist three noteworthy practical open-
source HEVC encoders: x265 [12], Kvazaar, and f265 [13],
out of which only x265 and Kvazaar are currently under
active development. Compared to x265 written in C++,
Kvazaar is more hardware-friendly being implemented in C
from scratch. Therefore, Kvazaar is used in our experiments.

A. Kvazaar HEVC intra encoder

Kvazaar intra encoder supports HEVC AI coding of 8-bit
video with 4:2:0 chroma sampling. Currently, Kvazaar
includes two presets: RD1 for high-speed encoding and RD2
for high-quality encoding [6]. The RD1 preset with
parameters listed in Table 1 has been selected for the HLS
flow. The involved encoder features are detailed in [6] and
the source codes for Kvazaar can be found on its GitHub
page [7]. Kvazaar version 0.24 is used in our experiments.

Fig. 2 depicts a state-machine model of Kvazaar HEVC
intra encoder to illustrate its computational complexity. Here,
the focus is on a rapid implementation of the HEVC encoder
through a HLS flow, which later enables fast
implementations of more optimized designs.

B. Existing HEVC implementations on FPGA

To the best of our knowledge, this is the first reported
HLS assisted implementation of a complete HEVC encoder
on SoC-FPGAs. However, there exits some non HLS
implementations for core functions like intra-prediction [9]
that supports all block sizes from 4x4 to 32x32 and achieves
17 frames per second on Altera Aria II. One of the existing
FPGA implementations [14] is capable of real-time HEVC
encoding of 8k video, but it has 17 boards, each having 3
FPGA chips. One board is capable of encoding full-HD at
60fps. Comparing our work to [14] would be difficult, due to
lack of specifics on algorithm speeds, FPGA chips, and used
area.

There is also a couple of HLS assisted HEVC decoder
implementations on FPGA such as [15]. In addition
Verisilicon has created a WebM (VP9) video decoder for
Google. They report less than 6 months of the development
time, compared to a one year estimate for a traditional RTL
approach [10]. The project includes 69k lines of C++ source
code, which is much smaller compared to 300k lines of RTL
source code. We can confirm similar order of speed-up in our
development work.

III. DESIGN FLOW AND TOOLS

Fig. 3 depicts the main design steps and tools. The first
phase, functional verification, is done on a PC using ready-
made make for Linux GCC compiler. The next step is
profiling for early performance estimation, in which we use
Gprof, gprof2dot, and Graphwitz. Potential functions for HW
acceleration are selected by examining the Gprof results.

According to our profiling with Cactus 1080p test
sequence, the most time-consuming encoding functions are
intra prediction, quantization, dst/dct, inverse dst/dct, and
dequantization, whose respective shares of the encoding time
are 67,74%, 8,54%, 4,69%, 3,78%, and 0,95%. Furthermore
in Kvazaar intra prediction (search_intra_rough) the most
time consuming function is intra_get angular with 35,75% of
whole encoding process.

Search_intra_rough function calls intra_get_pred
function to calculate the prediction for all 35 modes, then
calculates the Sum of Absolute Difference (SAD) for all these
modes, and finally returns the costs for all modes through a
pointer passed to the function (Fig. 2). These functions are
the most potential candidates for HW acceleration.

Get_predictors
Candidate_modes;
above_cu; left_cu;

Search_cu
depth; x; y;
pos[3..0];

Start

pos[depth]==0

x<=x;
y<=y;

Finnish

pos[depth]==1

x<=x+half_cu;
y<=y;

pos[depth]==2

x<=x;
y<=y+half_cu;

pos[depth]==3

x<=x+half_cu;
y<=y+half_cu;

Search_cu_intra
depth; x; y;

Build_ref_border
rec_buffer; x; y;

Search_intra_rough
mode; costs[34..0];

mode==0 mode==1

mode==35

mode>1 AND
mode<35

Intra_get_angular
reference;
prediction;

Intra_get_dc
reference;
prediction;

Intra_get_planar
reference;
prediction;

Cost_function
orig_block;
precition;

Intra_recon
best_mode;

Transform
residual; coeff;

Quantize
quant_coeff;

coeff;

Dequantize
quant_coeff;

coeff;

mode<=0;

pos[depth]==4

depth<=depth-1;
pos[depth-1]<=pos[depth-1]+1;--------------------

depth<=0;
x<=0;
y <=0;
pos[3..0] <=0;

Depth==1 AND
pos[1]==4

mode<=mode+1;

cbf==0

depth<=depth-1;
pos[depth-1]<=
pos[depth-1]+1;

Inv_transform
residual; coeff;

depth!=4

(Split)
depth=0

depth<=depth+1;

cbf==1

Fig. 2 Kvazaar HEVC intra encoder modelled as a state machine.

Table 1 Kvazaar HEVC coding parameters used in this work.

Feature Kvazaar HEVC intra encoder

Profile Main

Internal bit depth, color format 8, 4:2:0

Coding modes Intra

Sizes of luma coding blocks 64×64, 32×32, 16×16, 8×8

Sizes of luma transform blocks 32×32, 16×16, 8×8, 4×4

Sizes of luma prediction blocks 64x64, 32×32, 16×16, 8×8, 4×4

Intra prediction modes DC, planar, 33 angular

Mode decision metric SAD

RDO Disabled

RDOQ Disabled

Transform Integer DCT (integer DST for luma 4×4)

4x4 transform skip Enabled

Loop filtering DF, SAO

To implement intra predictions and SAD calculations on
HW, we need to modify search_intra_rough to transfer data
to and from the HW accelerator. This has to be done with
minimal changes to the original Kvazaar code to maintain
good portability.

A. High-level synthesis for estimation

Kvazaar is primarily developed for general-purpose
processors, so inputting Kvazaar C code as such to Catapult-
C [3] HLS would result in poor area and performance results.
However, it is reasonable to utilize HLS of single functions
for early area estimates, and use that information to partition
Kvazaar for HW/SW implementations.

Catapult-C offers good support for interfacing SW and
HW. To prepare a single C function for HLS, the input
arguments and return values are replaced by explicit
communication channels. On the other hand, pointer data can
be retained in the SW code and the actual memory region can
be accessed by a HW module. Based on Gprof profiling
results and HLS trials of Kvazaar functions, SystemC models
are created for design space exploration and HW/SW
partitioning.

B. Untimed SystemC modeling

 The next design step is separation of communication and
computation in Kvazaar. The work is started with untimed
SystemC model in which the intra prediction functions are

divided into two main modules (kvazaar_core and
kvazaar_ip_sub) as depicted in Fig. 4. We separated only the
neeededdata used by the HW accelerator from the PC
friendly data structure to minimize the data transfers.

 At this point, a HW abstraction layer is prepared
between Kvazaar and the SystemC modules for later
implementation models. The Kvazaar main function is called
in a SystemC thread, and interaction with other SystemC
modules occurs through class member functions called
mmap, ioctl, read, and write. By using these functions,
moving from the SystemC model to C with Linux drivers is
possible without remarkable modifications to the Kvazaar
code.

The HW accelerator (kvazaar_ip_sub) consists of four
threads. The control thread waits until data is valid and then
starts the prediction threads angular, dc, and planar which
have the same implementations as in Kvazaar. Each
prediction thread- calculates the prediction- and the
corresponding SAD for it after which the control thread sorts
the results and returns the best one to the Kvazaar module.
Data is passed between Kvazaar module and the HW
accelerator using TLM-2.0 transaction level modeling.

C. Timed SystemC modeling

The untimed model proved that the functionality did not
change after separation of communication and introducing
the hardware abstraction layer (HAL). The next step is to
create a timed SystemC model to explore parallelization of
the HW model. This is carried out by re-fining
kvazaar_ip_sub, adding more modules, and by leaving the
kvazaar_core intact.

Actual functions calculating intra prediction pixels in
Kvazaar are divided into intra_get_dc, intra_get_planar and
intra_get_angular. In the untimed model, we created
different processes for those, but still executed all 33 angular
modes sequentially as in the original Kvazaar. However,
none of the 35 intra prediction modes have data
dependencies and can run in parallel. We also further divided
the intra_get_angular to three separate functions
get_ang_pos, get_ang_neg, and get_ang_zero to remove
overlapping computation. This decision was based on
Catapult-C HLS trials and area results.

The complete timed SystemC model is depicted in Fig. 5.
It includes reference pixel filtering in ip_ctrl, all 35 modes
predicted in parallel with get blocks, and SAD for all modes
in sad_parallel. The kvazaar_ip_sub is now different
compared to the untimed model, also the naming for the IP

HW library

Qsys

Quartus

CatapultC

SystemC

Kvazaar 0.24
Gprof Performance estimation

Area estimation

Untimed SystemC

Timed SystemC
HW/SW partitioning

Exploration

FPGA Performance

annotationMeasurementsBenchmarks

HAL code

Drivers source

Kvazaar C

models from

timed SystemC

model

CatapultC

ARMGCC Executables, drivers

Linux Yocto build
Image tools

Preloader

Device tree blob

U-boot bootloader

Linux Image

SD card image

Raw binary (FPGA config)

Verilog

Precision

synthesis
Netlist

TerminalExecutables Load and run

HEVC@SoC-FPGA

INPUT DESIGN STEP&TOOL OUTPUT

Fig. 3 HLS-based design flow for HEVC on SoC-FPGA

Fig. 4 Untimed SystemC model of Kvazaar.

ACC blocks has been changed to differ from original
Kvazaar functions. In the untimed model, kvazaar_ip_sub
did the intra prediction, but it is now substituted by a block
that has the same interface to the kvazaar_core as before but
is used as an abstraction between the IP ACC blocks and
TLM2.0 transactions. SystemC test benches are created for
all intra prediction SystemC modules and a system test for
the full model.

D. Platform modeling and performance estimation

The next step is the FPGA platform modeling with
measured benchmark values. This is used to annotate the
timed SystemC model for more accurate performance
estimation results. Benchmarking programs were written for
Cyclone V to measure memory bandwidths and latency
between HPS and the FPGA. In addition, we measured the
performance of Kvazaar on ARM with Linux to get realistic
annotations to the timed SystemC model. We compiled
Kvazaar using the same makefile we used to compile it for
Linux PC, only changing the compiler to ARMGCC.

Time consumption estimates of different functions used
SystemC function wait(), which suspends the thread or
clocked thread process instance from which it is called. This
turned out to increase the simulation time 15x in some cases.
We solved this by using nanosecond counters for the
functions, and using wait() only in the timed HW model.

The timed SystemC model was annotated with the
measured values from Kvazaar executed on ARM without

any HW acceleration. We used the frame rate got from ARM
and the distribution of time got from Gprof. In the non-HW
accelerated SystemC model, the time usage of the
intra_rough_search is adjusted to match to the measured.

In the HW accelerated version, the time used for
intra_rough_search is the clock accurate simulation time of
the SystemC hardware model. Other functions run on ARM
stay the same, thus giving the frame rate improvement. The
simulation model could be easily modified for different
FPGA boards by changing the benchmarked or estimated
values.

E. Implementation

Next, we implemented the HW for our encoder.
Generating the RTL for the HW accelerator only involves
creating the top-level function required by Catapult-C and
modifying the SystemC code to match Catapult-C code style.
This phase could be omitted if there were a license for
SystemC synthesis in Catapult-C. Since the created Kvazaar
model in SystemC is close to the C in Catapult-C- it was
very easy to change between the two without changes in
functionality. Changes included differences in defining ports,
writing to ports or Catapult-C channels, wait() calls removed
and bit accurate types sc_int changed to ac_int. All of that
could be automated.

Catapult-C generates Verilog code, which was
synthesized using Precision that generated netlist. The rest of
the design flow follows a conventional SoC-FPGA

socket

kvazaar_
main

kvazaar_core

b_transport

kvazaar_ip_sub

orig_
block_
sender

config_
sender

unfilt1_
sender

unfilt2_
sender

irq_
poller

onchip_
ram

unfiltered1 unfiltered2

orig_data

sads

irq

in1

in2

in3 -10

in11

in12 -
26

in27

in28-
35

sad_parallel

ip_sad_
main

config

orig_data sads irq

get_
planar_

main

get_planar

get_
dc_main

get_dc

get_
ang_pos
_main

get_ang_pos

ip_get_
ang_zer
o_main

get_ang_zero

ip_get_
ang_neg

_main

get_ang_neg

ip_get_
ang_zer
o_main

get_ang_zero

ip_get
ang_pos
_main

get_ang_pos

x8

x15

x8

in1

in2

in3-10

in11

in12-
26

in27

in28-
35

out1

out2

out3-
10

out11

out12-
26

out27

out28-
35

unfiltered1 unfiltered2 config

ip_ctrl

ip_
ctrl_
main

ip_
read_
unfilte
red1

ip_
read_
unfilte
red2

out1

out2

out3 -
10

out11

out12 -
26

out27

out28-
35

config

socket config

IP ACC

Fig. 5 Timed SystemC model of Kvazaar.

development project. Qsys was used to include hard
processor system (HPS) and components connected to the
AXI3 bus, and Quartus to assemble HLS generated parts and
library components. A ready-made Linux image was utilized
without re-building, because the generated HW accelerator
uses a standard HPS to FPGA interface.

IV. HW ARCHITECTURE

The final HW architecture on SoC-FPGA is depicted in
Fig. 6. It consists of the fixed HPS with ARM cores, ready-
made Terasic camera subsystem with our own modifications,
the HLS generated HW accelerator, and our custom interface
blocks for DMA and configuration.

A. HPS/FPGA interface

The HPS has two ways to interface with the FPGA.
Shared AMBA3 (AXI) interconnection is suitable for small
data amounts like signaling. The second way is to use multi-
port DDR SDRAM controller and off-chip DDR3 memory.

An important issue is to use non-cached memory in ARM
and Linux to ensure data coherency between HW/SW. This
way, we can use data through the original memory pointers
in Kvazaar source code by mapping the memory to a
physical location of our choosing. Transferring data to the

HW accelerator only requires that the DMA is configured to
read the right amount of data from DDR3. DMA is
synthesized on FPGA and connected to the memory
controller through the AXI bus.

 HPS has fixed base addresses for generic interfaces for
FPGA. Each IP-block using them gets address offset on top
of the base. The resulting physical FPGA addresses are
above the reserved Linux memory space in DDR3, which
ensures Linux is not interfering with data. However, physical
address is mapped to a Linux virtual address by a driver
calling mem_map. This way, the Linux Device Tree is not
needed to re-create every time the FPGA logic is modified.

V. SW ARCHITECTURE

CycloneV boots by first starting the HPS on boot ROM.
It reads a preloader from the SD card that configures the
FPGA part and starts the U-boot bootloader, which in turn
starts Linux OS. The Linux image is built using Yocto
project, in which design specific Linux Device Tree Source
is obtained from the handoff files from Quartus. In our case,
the interface between HPS and FPGA remains the same
(FPGA bus base addresses are intact) and there is no need to
rebuild Linux after redesigning the HW accelerator part (Fig.
6).

4

AXI BUS

IP CTRL

GET DC

GET PLANAR

GET POS

GET ZERO

GET NEG

GET ZERO

GET POS

SAD PARALLEL

x8

x1
5

x8

16+2

AXI AVALON
WRAPPER

AXI AVALON
WRAPPER

PIO ONCHIP
RAM

6

32

Kvazaar HW
accelerator
”IP ACC”

ORIG
DMA

UNFILT1
DMA

UNFILT2
DMA

AXI to
CHANNEL

8+3

32+2

8+3

32+2

Hard Processor System (HPS)

L3
 IN

TE
R

C
O

N
N

EC
T

CPU0 CPU1

ARM

ACP SCU

MULTIPORT
DDR SDRAM
CONTROLLER

L2

MULTIPORT
DDR SDRAM
CONTROLLER

AVALON BUSDDR2 WRITE

64

LCD CONTROLLER

DDR2 READDDR2 WRITE

32

RAW 2 RGB
RGB to

YUV

CCD
CAPTURE

I2C
CONTROLLER

32

32 32

PIO

AXI AVALON
WRAPPER

ONCHIP
RAM

AXI AVALON
WRAPPER

FPGA Altera Cyclone V SX

CMOS CAMERA SENSOR LCD DISPLAY FPGA DDR_2 HPS DDR

166

256
256 256

64 64 6464 64 64

MEMORY

IP BLOCK

BUS

For buses only data width shown

ETH

32

1Gbps
Ethernet

16+2

16+2

16+2

16+2

16+2

16+2

8+2

8+2

8+2

8+2

8+2

8+2

8+2

Fig. 6. HEVC intra encoder architecture on CycloneV SoC-FPGA.

A. HW abstraction

We use run time loadable kernel driver modules for the
HW abstraction. Two drivers are needed for FPGA: The
camera and the Kvazaar HW accelerator (Fig. 6). Both
consist mostly of functions mapped to system calls (SCs),
and have an initialization and a clean up call for loading and
removing the kernel module. Both do memory mapping and
access HW via such memory regions. Both include about 1k
LOC. For debugging, Altera Signal Tap was used to see how
the interaction functioned from the HW side.

The kernel modules are used in SW via file descriptors
given as a parameter to system calls, such as open() and
ioctl(). The other parameters are predefined when designing
and implementing the driver.

The drivers implement a function for each supported
system call. Most important is mmap(), which maps a region
of physical memory for the application utilizing the driver.
This allows the application to access data directly in the
DDR memory. This saves CPU time, as the alternative
would be using a driver to copy data to kernel space, and
then copy it again to the user space. Within the kernel
module, remap_pfn_range is called to execute the mapping.
ACU was not used, because we did not want to affect the L2
cache, and to get parallel access to the memory controller.

The memory mapping is applied only to large transfers
such as pixel data, while ioctl is used for configuration and
control signaling. Both may require some HW specific
handling, such as acknowledging that data is read. This is
done by an ioctl call before or after accessing a mapped
region. The regions used for signaling are mapped for the
kernel module by calling ioremap_nocache.

For both mapping types, the physical HW specific
addresses are defined in the kernel module. This way the
application remains fully portable. An important issue is to
mark the mapped regions non-cached. The transfers between
HW/SW fail if the data is not truly in DDR at all times.

B. HW/SW interaction

Fig. 7 illustrates the message sequence chart of the
complete system from camera to ethernet. Kvazaar supports
multi-threading, and there can be multiple instances of the
HW accelerator. For clarity, the threads are omitted and only
one vertical line is displayed for each instance. On the top of
the chart, the blue boxes are HW components and green are
SW.

The major components are Camera User, Kvazaar, IP
Acc and Stream server. The rest are mostly used for transfers
between other components. DDR is used for large transfers
and on-chip memory and parallel io (PIO) are used for
smaller signals and configuration data. DMA modules are
used to control the transfers using DDR. Software accesses
the HW via drivers.

The execution sequence begins with initialization.
System calls are used for user space software to access the
kernel module drivers. Furthermore, Camera User, Kvazaar,
and the Stream server are configurable with command line
parameters.

The camera feeds frames simultaneously for both LCD
controller in RGB format and YUV format for the rest.
Kvazaar expects 4:2:0 YUV, which is not HW accelerated
but the Camera User must convert each frame before passing
it to stdout. This is currently a known bottleneck with larger
resolutions. The camera operates in a continuous mode,
feeding frames as fast as it can. Also an interrupt driven
mode is supported (not shown).

Kvazaar reads a frame from stdin. For each LCU (Large
Coding Unit), the HW accelerator is used to compute its
SAD values. Each LCU is configured by sending the original
block to the accelerator. The original block is first written to
the HPS DDR and the Original block is signaled the address
and length of the block in the DDR. After that, DMA
proceeds to read the original block and pass it to the
accelerator.

The LCU contains multiple CUs. Each contains two
unfiltered blocks, which are passed to the accelerator.
However, each of these is preceded by additional
configuration data passed directly to the accelerator, saved
for a bridge between it and the AXI bus channel. For each
LCU, a SAD value is computed in the accelerator. When
done, the values are passed via on-chip memory. The driver
polls the HW for a signal notifying that the values are
available. The system also supports interrupts. After SADs
are passed to Kvazaar, it proceeds with encoding.

Output of Kvazaar in this system is passed via stdio to a
streaming server application, which sends it over UDP to a
stream client. A standard PC and Classic Media Player is
used to receive and decode the video (not shown in chart).

VI. EVALUATION

 Altogether, Kvazaar 0.24 intra encoder has 19k lines of
code, 300 functions, and 33 modules. Table 2 shows the lines

Table 2 Lines of code in SystemC and generated Verilog RTL code.

Module SystemC Verilog

kvazaar_core (untimed/timed) 289 -

kvazaar_ip_sub (untimed) 357 -

kvazaar_ip_sub(timed) 369 -

ip_ctrl 553 9423

get_planar 170 1824

get_dc 186 1658

get_ang_pos 150 1422

get_ang_zero 149 1301

get_ang_neg 178 2060

sad_parallel 404 10976

Table 3 Cycle counts of intra prediction on FPGA (version 1).

Search Mode Execution count HW cycles/mode Total cycles

4 74 074 159 11 777 766

8 27 568 243 6 699 024

16 7876 503 3 961 628

32 1980 1403 2 777 940

Total 111 498 25 216 358

Table 4 Cycle counts of intra prediction on FPGA (version 2).

Search Mode Execution count HW cycles/mode Total cycles

4 74 074 110 8 148 140

8 27 568 159 4 383 312

16 7876 300 2 362 800

32 1980 776 1 536 480

Total 111 498 16 430 732

of handwritten SystemC code and the lines of RTL Verilog
code generated by Catapult-C for the implemented modules.
The rest of Kvazaar functions stay unchanged so they are
excluded.

The untimed and timed SystemC models use the same

kvazaar_core module, but the kvazaar_ip_sub modules have

different timing abstractions. The timed modules include

Kvazaar source code algorithms as such, only major

difference being the cycle accurate interfaces between the

blocks.

Changes in Kvazaar C source code were transferred to

the HW implementation with only minor effort. For

example, reorganizing the DC filtering in Kvazaar from

reconstruction to be also part of the intra prediction HW

took about 4 hours. To create a single DCT or a quantization

Fig. 7. HEVC intra encoder HW/SW message sequence chart.

accelerator is estimated to take less than a day for the first

implementation and another day for speed and area

optimizations.

A. Intra prediction performance

Tables 3 and 4 report the cycle counts for two different
versions of the implemented intra prediction on FPGA. The
test sequence is Cactus 1920×1080.

In version 1, one pixel is predicted at a time. The HW
accelerator calculates intra predictions for all prediction
modes and block sizes, and SAD for every prediction mode.
The encoding speed of this design is 5.9 fps and the FPGA
area occupied is 8345 ALMs.

In version 2, two pixels are predicted simultaneously.
This changes the 8+2 outputs of GET blocks in Fig. 6 to
16+2 outputs, increases the area of the GET blocks and SAD
PARALLEL block.In this case, SAD is calculated for all
modes two pixels at a time. The encoding speed increased to
9.1 fps and the area to 10815 ALMs, which is 25.8% of the
total. CycloneV SX can accommodate two HW accelerators.
The time to make such a change in the design took only
about ten hours from C to verified execution on board.

B. Discussion

For comparison, the design presented in [9], uses 31.179
ALUTs (15.589 ALMs) and achieves 17.52 fps. Contrary to
our design, the presented result does not include SAD
computation. The similar performance could be achieved
with our design by, e.g., calculating four pixels at a time,
decreasing time sending configurations, and sending more
reference pixels from ip_ctrl to GET blocks at a time (Fig.
7). More HW acceleration can also be included in the camera
side, e.g., by formatting raw frames from 4:4:4 to 4:2:0 that
is inefficient with SW. Furthermore, passing frames via stdio
from Camera User to Kvazaar involves extra copying in SW.
As the HPS side limits the performance, more functions
could be HW accelerated in the remaining available area.

Based on the annotated SystemC simulations, we can
estimate the requirements for a Full-HD 30 fps performance.
According to timed SystemC model, one alternative is to run
the ARM at 3GHz and the HW accelerator at 500MHz with
the design version 2.

Our benchmark measurements for SystemC simulation
annotations revealed some bottlenecks on the platform. For
example, having two user space Linux threads reading and
writing via L3 interconnect (without cache, forced DDR3)
resulted in 28.81 MiB/s speed. For comparison, the read-
write speed between FPGA on-chip memories is 200 MiB/s
with the FPGA side AXI bus running at 50MHz. The
external DDR3 memory speed is dependent on the board
design and thus out of scope of our research.

VII. CONCLUSIONS

We presented the design of a live streaming HEVC intra
encoder on SoC-FPGA using High-Level Synthesis for HW
accelerated functions. The design time and flexibility is
significantly improved over traditional VHDL-based
implementations. As a rough estimate, the HLS reduces the
development time from weeks to days, especially for

changes and modifications in the original source code. Since
Kvazaar is under intensive development, it is essential to
have a rapid design flow to carry out the algorithmic changes
to HW implementations. In addition, fast porting of the
encoder functionality onto different embedded platforms or
for different HW/SW partitions is one of our main goals.

Compared to reported HEVC implementations, our HLS-
based design flow produces comparable performance and
area for the CycloneV device which has enough capacity for
two intra search HW accelerators Our future work includes
an implementation on Altera Arria SoC-FPGAs that can
accommodate more encoder functionality on HW.

REFERENCES

[1] L. Daoud, D. Zydek, and H. Selvaraj, “A survey of high level

synthesis languages, tools, and compilers for reconfigurable high
performance computing,” in Advances in Systems Science, Springer,
2014, pp. 483-492.

[2] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt,
“An Overview of Todays High-Level Synthesis Tools,” Design
Automation for Embedded Systems, pp. 1-21, Aug. 2012.

[3] Calypto's Catapult 8 HLS: C-Based HWHardware Design Matures,
Berkeley Design Technology, Inc. [Online] Available:
http://www.bdti.com/InsideDSP/2014/11/18/Calypto

[4] High Efficiency Video Coding, document ITU-T Rec. H.265 and
ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[5] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding
of the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, pp. 1792-1801, Dec. 2012.

[6] M. Viitanen, A. Koivula, A. Lemmetti, J. Vanne, and T. D.
Hämäläinen, “Kvazaar HEVC encoder for efficient intra coding,” in
Proc. IEEE Int. Symp. Circuits Syst., Lisbon, Portugal, May 2015.

[7] Kvazaar HEVC encoder [Online]. Available:
https://github.com/ultravideo/kvazaar

[8] Advanced Video Coding for Generic Audiovisual Services, document
ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), ITU-T and
ISO/IEC, Mar. 2009.

[9] A. Abramowski and G. Pastuszak, “A double-path intra prediction
architecture for the hardware H.265/HEVC encoder,” in Proc. IEEE
Symp. Des. Diagnost. Electron. Circuits Syst., Warsaw, Poland, Apr.
2014, pp. 27 - 32.

[10] Calypto's Catapult 8 HLS: C-Based Hardware Design Matures
[Online] Available:
http://www.bdti.com/InsideDSP/2014/11/18/Calypto

[11] VEEK-MT-C5SoC [Online] Available:
http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=&No=828

[12] x265 [Online]. Available: http://x265.org/

[13] f265 [Online]. Available: http://f265.org/

[14] Miyazawa, K.; Sakate, H.; Sekiguchi, S.-I.; Motoyama, N.; Sugito,
Y.; Iguchi, K.; Ichigaya, A.; Sakaida, S.-I., "Real-time hardware
implementation of HEVC video encoder for 1080p HD video,"
Picture Coding Symposium (PCS), 2013 , vol., no., pp.225,228, 8-11
Dec. 2013,

[15] Abid, M.; Jerbi, K.; Raulet, M.; Deforges, O.; Abid, M., "System
level synthesis of dataflow programs: HEVC decoder case study,"
Electronic System Level Synthesis Conference (ESLsyn), 2013 , vol.,
no., pp.1,6, May 31 2013-June 1 2013

PUBLICATION

II

High-level synthesis implementation of HEVC 2-D DCT/DST on FPGA

P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen

In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing,
New Orleans, Louisiana, USA, Mar. 2017
DOI: 10.1109/ICASSP.2017.7952416

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/ICASSP.2017.7952416

HIGH-LEVEL SYNTHESIS IMPLEMENTATION OF HEVC 2-D DCT/DST ON FPGA

Panu Sjövall, Vili Viitamäki, Jarno Vanne, Timo D. Hämäläinen

Laboratory of Pervasive Computing

Tampere University of Technology, Finland

{panu.sjovall, vili.viitamaki, jarno.vanne, timo.d.hamalainen}@tut.fi

ABSTRACT

This paper presents the first known high-level synthesis

(HLS) implementation of integer discrete cosine transform

(DCT) and discrete sine transform (DST) for High Efficiency

Video Coding (HEVC). The proposed approach implements

these 2-D transforms by two successive 1-D transforms using

a well-known row-column and Even-Odd decomposition

techniques. Altogether, the proposed architecture is

composed of a 4-point DCT/DST unit for the smallest

transform blocks (TBs), an 8/16/32-point DCT unit for the
other TBs, and a transpose memory for intermediate results.

On Arria II FPGA, the low-cost variant of the proposed

architecture is able to support encoding of 1080p format at 60

fps and at the cost of 10.0 kALUTs and 216 DSP blocks. The

respective figures for the proposed high-speed variant are

2160p at 30 fps with 13.9 kALUTs and 344 DSP blocks.

These cost-performance characteristics outperform

respective non-HLS approaches on FPGA.

Index Terms— High Efficiency Video Coding (HEVC),

Discrete cosine transform (DCT), Discrete sine transform

(DST), High-level synthesis (HLS), Catapult-C, Field-
programmable gate array (FPGA)

1. INTRODUCTION

The latest video coding standard, High Efficiency Video

Coding (HEVC) [1], has been developed to meet the

transmission and storage needs of modern video applications.

Compared with its predecessor standard AVC [2], HEVC is

able to halve the bit rate for the same subjective quality, but

its encoding complexity tends to be at least doubled in

practical encoders.
 HEVC adopts the conventional hybrid video coding

scheme (inter/intra prediction, transform coding, and entropy

coding) [3] from the prior MPEG/ITU-T video coding

standards. As a new feature, the coding structure of HEVC

has been extended from a traditional macroblock concept to

an analogous block partitioning scheme that supports coding

tree units (CTUs) of up to 64 × 64 pixels [4].

This paper focuses on HEVC transform coding for which

the sizes of transform blocks (TBs) and associated core

transform matrices can be defined as N × N, where N ϵ {4, 8,

16, 32}. Extending the sizes of transform matrices from that

of AVC to N > 8 improves coding gain by around 5-7% but

it also introduces the majority of complexity overhead in

HEVC transform coding [5].

HEVC specifies two-dimensional (2-D) integer discrete

sine transform (DST) for intra coded luminance TBs of size

4 × 4 pixels [6] and 2-D integer discrete cosine transform

(DCT) for all other TBs [7]. Both of these 2-D transforms are

separable so they can be computed by applying two N-point

1-D transforms first row-wise and then column-wise [5]. This

indirect approach is called a row-column decomposition

technique and it is typically utilized by software [8]-[9] and
hardware implementations [10]-[16] of HEVC DCT/DST.

This work focuses on HEVC DCT/DST implementations

on FPGA. Contrary to previous works [12]-[16], our proposal

does not use traditional hardware (HW) description

languages (HDLs), but High-Level Synthesis (HLS) [17]

which is an emerging approach for raising the abstraction

level in HW description. HLS is a way of using well-known

programming languages such as C and C++ to describe the

designs at behavioral level and automatically generating the

HDL from it. This way, the code is more readable, design and

verification times are shorter, and the design reusability is far

better than with handwritten HDL equivalents.
To the best of our knowledge, this is the first paper to

describe an HLS implementation for HEVC DCT/DST. The

proposed designs include low-cost and high-speed variants of

the 8/16/32-point DCT unit for N ϵ {8, 16, 32} and a separate

4-point DCT/DST unit for N = 4. They are all implemented

on Arria II FPGA using Catapult C [18] HLS tool.

The rest of this paper is organized as follows. Section 2

describes the hardware-oriented DCT/DST algorithm

implemented in this work. Section 3 proposes our HLS

implementations for low-cost and high-speed DCT/DST

computation. In Section 4, the proposed HLS
implementations are compared with handcrafted prior-art.

Section 5 concludes the paper.

2. 2-D INTEGER DCT/DST ALGORITHMS IN HEVC

In this work, the C implementations of DCT and DST

algorithms are obtained from the open source Kvazaar HEVC

encoder [8]. Basically, Kvazaar implements the same

DCT/DST functionality than HEVC reference encoder (HM)

[9] but the hardware-oriented C source code of Kvazaar

provides a better starting point for HLS.

2.1 Even-Odd decomposition algorithm

In HEVC encoder, DCT and DST are used to convert spatial-

domain residual blocks into transform-domain coefficient

matrices. A well-known row-column algorithm [5] executes

these 2-D transforms with separable 1-D transforms in two

consecutive stages. An N-point transform is first applied 1) to

each row of a residual block of size N × N to generate an

intermediate matrix of size N × N; and then 2) to each column

of the intermediate matrix to generate a final transform

coefficient matrix of size N × N.

The number of arithmetic operations can be further
reduced by implementing these 1-D transforms with Even-

Odd decomposition algorithm, a.k.a., Partial Butterfly

algorithm [5]. It decomposes an input and core transform

matrices of size N × N into two matrices of size N/2 × N/2

according to even and odd rows/columns, respectively. The

core transform matrices for each N (CN) are specified in [7].

Now, an N-point transform can be computed for even and odd

cases separately with two N/2-point transforms.

For a residual vector X = [x(0), x(1), …, x(N-1)], the even

and odd vectors, E = [e(0), e(1), …, e(N/2-1)] and O = [o(0),

o(1), …, o(N/2-1)], can be computed as

𝑒(𝑖) = 𝑥(𝑖) + 𝑥(𝑁 − 1 − 𝑖) (1)

𝑜(𝑖) = 𝑥(𝑖) − 𝑥(𝑁 − 1 − 𝑖) (2)

where i = 0, 1, …, N/2 - 1. The output vector Y = [y(0), y(1),

…, y(N-1)] of 1-D transform coefficients could be directly

obtained by multiplying the vectors E and O by the associated

transform matrices at this stage. However, the arithmetic

operations can be further reduced by applying decomposition

recursively. In this approach, the largest transform matrix
also embeds the smaller transform matrices.

Fig. 1 depicts the phases of Even-Odd decomposition for

N = 32. First, the vectors E and O of size 16 are computed

according to (1) and (2). The latter is an input to C32 × O

multiplication and the former is recursively decomposed into

smaller even and odd vectors as in (1) and (2), i.e., the vector

E is divided into EE and EO vectors of size 8. The vector EO

is multiplied by C16 whereas EE is decomposed into EEE and

EEO vectors of size 4, and EEE to EEEE and EEEO vectors

of size 2. EEO is multiplied by C8, EEEO by C4/O, and

EEEE by C4/E. The corresponding structure can be used for

all N by starting at depth (log2N) - 1.

2.2 Proposed hardware-oriented algorithm optimization

In the case of 8-bit video, the residual vector X contains

9-bit signed integers for which the original Even-Odd

decomposition algorithm produces 9 + (log2N + 6) –bit signed
results [5] without any truncations. Our motivation is to

optimize the algorithm for 18 × 18 multipliers on Arria II

FPGA due to which 19-bit (N = 16) and 20-bit (N = 32) odd

and even values are saturated to 18-bit signed values.

The impact of this modification was tested with HM 16.12

using test sequences from HEVC common test conditions

(classes A-F) [19] and the average BD-rate overhead is

0.002%. This negligible loss is preferred to using 20 × 20 –

bit multipliers that would increment the number of needed

DSP blocks fourfold.

3. PROPOSED DCT/DST ARCHITECTURE

The proposed DCT/DST architecture is composed of 1) an

8/16/32-point DCT unit for TBs of size 8 × 8, 16 × 16, and

32 × 32; 2) a separate 4-point DCT/DST unit for TBs of size

4 × 4; and 3) a transpose memory for intermediate results.

3.1 8/16/32-point DCT unit

Fig. 2 shows the block diagram of the 8/16/32-point DCT

unit. It contains a control block (Ctrl8/16/32), 3-stage pipeline

for DCT computation, and a transpose memory.
 A 288-bit input to the Ctrl8/16/32 block is for up to 32 9-bit

signed residuals. The Ctrl8/16/32 block sign extends each 9-bit

residual to 16 bits and passes them through the 3-stage DCT

computation via a 512-bit connection. The mapping of the

v32[k][j] = c32[k][j] × o[j]

k, j ϵ [0, 15]

v16[k][j] = c16[k][j] × eo[j]

k, j ϵ [0, 7]

v8[k][j] = c8[k][j] × eeo[j]

k, j ϵ [0, 3]

v4[k][j] = c4/E[k][j] × eeee[j]

v4[k+2][j] = c4/O[k][j] × eeeo[j]

k, j ϵ [0, 1]

y[i] += v32[k][j]

i ϵ [16, 31]; k, j ϵ [0, 15]

y[i] = (y[i] + round) >> shift

y[i] += v16[k][j]

i ϵ [8, 15]; k, j ϵ [0, 7]

y[i] = (y[i] + round) >> shift

y[i] += v8[k][j]

i ϵ [4, 7]; k, j ϵ [0, 3]

y[i] = (y[i] + round) >> shift

y[i] += v4[k][j]

i ϵ [0, 3]; k ϵ [0, 3]; j ϵ [0, 1]

y[i] = (y[i] + round) >> shift

D
C

T
 s

ta
g

e
2

M
u

lt
ip

li
ca

ti
o

n

D
C

T
 s

ta
g

e
1

D
ec

o
m

p
o

si
ti

o
n

e[i] = x[i] + x[31-i] o[i] = x[i] - x[31-i] i ϵ [0, 15]

ee[i] = e[i] + e[15-i] eo[i] = e[i] - e[15-i] i ϵ [0, 7]

eee[i] = ee[i] + ee[7-i] eeo[i] = ee[i] - ee[7-i]

i ϵ [0, 3]

eeee[i] = eee[i] + eee[3-i]

eeeo[i] = eee[i] - eee[3-i]

i ϵ [0, 1]

O

EO

EEO

EEEE

D
C

T
 s

ta
g

e
3

A
cc

u
m

u
la

ti
o

n

Depth 1

Depth 2

Depth 3

Depth 4

V4 V8 V16 V32

Y

X

E

EE

EEE

EEEO

Figure 1. Even-Odd decomposition algorithm (N = 32).

Even-Odd decomposition algorithm to three DCT stages is

illustrated in Fig. 1.

The DCT stage 1 performs the recursive Even-Odd

decomposition for the 16-bit residuals and computes all even

and odd vectors (E/O, EE/EO, EEE/EEO, and EEEE/

EEEO). It is implemented in C code as a recursive template

function which is synthesized by Catapult-C to an adder tree
The DCT stage 2 is for multiplication between transform

matrices and odd vectors (C32 × O, C16 × EO, C8 × EEO,

C4/O × EEEO, and C4/E × EEEE). On FPGA, this

functionality is mapped to multipliers of DSP blocks to save

logic cells. Catapult-C facilitates instantiation of DSP blocks

in C code by providing a library for DSP blocks as C++

templates for different FPGA architectures.

The DCT stage 3 finalizes the 1-D transform by

accumulating the individual products of multiplication and

scales the coefficients to 16 bits.

The 8/16/32-point DCT unit performs the 2-D DCT in two
successive passes and the intermediate data is stored in the

transpose memory. The latency for both passes is 3 cycles

because of the DCT pipeline. Finally, the 2-D 16-bit

transform coefficients (tcoeffs) are sent via 512-bit output.

This work proposes two alternate 8/16/32-point DCT

units with different parallelization strategies:

1) A low-cost unit processes N residuals (one row/column of

a TB) in parallel. In this unit, the residuals enter the DCT

stage 1 at depth (log2N) - 1. In addition, the DCT stages 2

and 3 operate at double clock frequency to be able to

compute the largest TB in two phases with the reduced

number of DSP blocks. This approach halves the width of
the largest multiplier array, without increasing latency.

2) A high-speed unit processes 32 residuals (32/N

rows/columns of a TB) in parallel so that a constant data

rate with full hardware utilization is achieved. In this unit,

the residuals enter the DCT stage 1 at depth 4. In addition,

all DCT stages operate at the same frequency and the

DCT stage 2 contains a full-width multiplier array.

3.2 4-point DCT/DST unit

Fig. 3 depicts a 4-point DCT/DST unit that operates in

parallel with the 8/16/32-point DCT unit. A 144-bit input to

the Ctrl4 block accepts a single 4 × 4 residual block at a time.

The 9-bit residuals are sign extended to 16-bits and passed

row-wise to the respective four DCT/DST blocks. The

intermediate matrix is ready in one cycle after which it is sent

back to the same DCT/DST blocks by picking the

intermediate values from the registers in a transposed order.

After these two passes, the unit outputs 16 16-bit coeffs.

A separate 4-point DCT/DST unit increases the occupied

resources on FPGA. However, this overhead is compensated
by better load balancing since the share of 4 × 4 TBs is

relatively high compared to the other TBs.

3.3 Transpose memory

Fig. 4 depicts the structure of the transpose memory used in

the 8/16/32-point DCT unit. On FPGA, it is made of 32 dual-

port on-chip memory modules without registers. Each

memory module has a 512-bit write (N coefficients) and a 16-

bit (1 coefficient) read port. The structure supports block

transpose for N ϵ {8, 16, 32}.
The memory utilization of the low-cost 8/16/32-point

DCT unit depends on N. The intermediate matrix is written to

the memory modules row by row and the module number is

incremented from 0 to N accordingly. The right module is

identified by a one-hot write enable (wen) signal. A matrix is

read from the memory column by column by accessing a

single coefficient per each module and incrementing the read

address (raddr) by one after each read (from 0 to N).

The high-speed 8/16/32-point DCT unit utilizes the whole

memory for each N. To enable simultaneous reading of 32/N

columns of the matrix without any access conflicts, the same

rows are written to (32/N)2 modules. Let us use N = 8 as an
example. The first four rows are written in the modules 0-3,

8-11, 16-19, 24-27 after which the last four rows are written

to the remaining modules respectively. Eight columns can

now be read in two cycles by using raddr and offset.

4. PERFORMANCE ANALYSIS

Table 1 reports the cost-performance characteristics of the

proposed and the most competitive prior-art FPGA

implementations. The comparison is simplified by deriving

Dual-port RAM 0

Dual-port RAM 1

Dual-port RAM 31

512 data

16

16

16

offsetwen

. . .

...waddr

data 512 raddr

. . .

Figure 4. Block diagram of the transpose memory.

Ctrl8/16/32

DCT stage 1

Decomposition

DCT stage 2

Multiplication

DCT stage 3

Accumulation
512

288 residuals

Transpose memory
512 tcoeffs

512

Figure 2. Block diagram of the 8/16/32-point DCT unit.

DCT/DST 0

DCT/DST 1

DCT/DST 2

DCT/DST 3

Ctrl4

64

64

64

64

64

64

64

144

64
64

64

64
residuals

64

256 tcoeffs

Figure 3. Block diagram of the 4-point DCT/DST unit.

normalized performance and cost figures for the

architectures: sample rate as million tcoeffs processed per

second (Mtcoeffs/s) and performance-cost ratio as logic cells

per sample rate (cells/(Mtcoeffs/s)). The works in [12], [13],

[15] only implement the 1-D transform. For fair comparison,
their sample rates have been scaled (divided by two) to

correspond to those of the 2-D transform architectures.

4.1 Proposed architecture

Table 1 tabulates the results for the proposed low-cost and

high-speed variants of 8/16/32-point DCT units and for the 4-

point DCT/DST unit separately. Altogether, the combined

resource usage of our proposal is (4.2 + 5.8) kALUTs = 10.0

kALUTs and 216 DSP blocks in the low-cost case and (8.1 +

5.8) kALUTs = 13.9 kALUTs and 344 DSP blocks in the
high-speed case. The low-cost approach uses 28% less

ALUTs and 37% less DSP blocks than the high-speed one

which has, on the other hand, almost 2.4× better sample rate.

The sample rate of our low-cost solution is adequate for

transform coding of 4:2:0 1080p (1920 × 1080) video at 60

fps. The speed is computed for the worst case where the

DCT/DST is needed once for all TBs in a CTU. It is also

assumed here that there are always residual blocks available

for the architecture. A practical HEVC intra/inter encoder can

meet these conditions by coding successive CTUs in parallel

without rate-distortion optimization. Respectively, the high-

speed case is for 4:2:0 2160p (3840 × 2160) video at 30 fps.
On FPGA, the functionality of the proposed design was

validated as a part of Kvazaar HEVC intra encoder.

4.2 Comparison with prior-art

The architecture proposed by Jeske et al. [12] is limited to

N = 16 whereas the work of Darji et al. [13] supports all TBs

but results are given for N = 16 only. Hence, the features of
these two works are not directly comparable with our

proposal. Furthermore, Zhao et al. [14] support all TB sizes

but with non-competitive cost-performance figures.

The remaining approaches make also use of DSP blocks

whose impact on the overall logic cell count is taken into

account in Table 2. For the proposed designs, the total cell

count is obtained by synthesizing them without the DSP

blocks. The same cost per DSP block (72.5 ALUTs) is used

when estimating the respective count for the related works.

The fastest prior-art solution is presented by

Arayacheeppreecha et al. [15] whose overall cell count is also

the smallest. However, including the missing DST unit and
transpose memory would add overhead in their cost-

performance figures. Furthermore, the cell counts of our both

architectures are smaller if DSP blocks are available. Our

high-speed architecture is also almost 1.5× faster.

Pastuszak et al. [16] present an approach similar to ours

by implementing separate units for N = 4 and N ϵ {8, 16, 32}.

However, our low-cost architecture is slightly faster and

consumes still 14% less resources. Our high speed approach

needs around 31% more resources but is around 2.4× faster.

5. CONCLUSIONS

This paper presented the first known HLS implementation for

HEVC 2-D DCT/DST on FPGA. The presented architecture

implements a hardware-oriented even-odd decomposition

algorithm whose C code is synthesized to HDL with HLS. A

low-cost variant of the architecture is able to support 1080p

video up to 60 fps and a high-speed variant 2160p video up

to 30 fps. HLS reduces design and verification times over

traditional handwritten approaches. This work shows that

these benefits do not come at the cost of implementation

overhead but our HLS solution outperforms the prior-art

approaches in terms of performance and cost.

6. ACKNOWLEDGMENT

This work was supported in part by the European Celtic-Plus

Project 4KREPROSYS and the Academy of Finland

(decision no. 301820).

Table 1. Comparison of the proposed and related work.

Architecture Transform N FPGA DSPs Freq. Mtcoeffs/s Cells/(Mtcoeffs/s)

Proposed (low-cost) 2-D DCT 8/16/32 Arria II 4 263 ALUTs 216 100 MHz 515 8.3

Proposed (high-speed) 2-D DCT 8/16/32 Arria II 8 114 ALUTs 344 160 MHz 1 224 6.6

Proposed (4×4) 2-D DCT/DST 4 Arria II 5 775 ALUTs 0 160 MHz 1 280 4.5

Jeske et al. [12] 1-D DCT 16 Stratix III 5 168 ALUTs 0 88 MHz *701 7.4

Darji et al. [13] 1-D DCT 16 Spartan 3E 3 419 LEs 0 48 MHz *384 **7.1

Zhao et al. [14] 2-D DCT 4/8/16/32 Cyclone IV 40 541 LEs 0 125 MHz 238 **136.3

Arayacheeppreecha et al. [15] 1-D DCT 4/8/16/32 Spartan 3A 15 677 LEs 77 205 MHz *820 **15.3

Pastuszak et al. [16] 2-D DCT 8/16/32 Arria II 6 928 ALUTs 256 100 MHz 512 13.5

Pastuszak et al. [16] 2-D DCT/DST 4 Arria II 4 256 ALUTs 0 100 MHz 400 10.6

*Scaled sample rate (divided by two) **1.25 × LE = ALUT

Logic cells

Table 2. Logic cells (DSP blocks replaced by logic).

Architecture Cells w/o DSPs Cells/(Mtcoeffs/s)

Proposed (low-cost) 25 698 36.3

Proposed (high-speed) 38 829 23.0

Arayacheeppreecha et al. [15] 18 124 22.1

Pastuszak et al. [16] 29 744 42.3

7. REFERENCES

[1] High Efficiency Video Coding, document ITU-T Rec. H.265

and ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Apr.
2013.

[2] Advanced Video Coding for Generic Audiovisual Services,
document ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC),
ITU-T and ISO/IEC, Mar. 2009.

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,
“Overview of the high efficiency video coding (HEVC)
standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1649-1668, Dec. 2012.

[4] I. K. Kim, J. Min, T. Lee, W. J. Han, and J. Park, “Block
partitioning structure in the HEVC standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1697-1706,
Dec. 2012.

[5] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M.

Sadafale, “Core transform design in the High Efficiency Video

Coding (HEVC) standard,” IEEE J. Select. Topics Signal
Process., vol. 7, no. 6, pp. 1029-1041, Dec. 2013.

[6] A. Saxena and F. C. Fernandes, “CE7: Mode-dependent
DCT/DST without 4×4 full matrix multiplication for intra
prediction,” Document JCTVC-E125, Geneva, Switzerland,
Mar. 2011.

[7] A. Fuldseth, G. Bjøntegaard, M. Budagavi, and V. Sze “Core
transform design for HEVC,” Document JCTVC-G495,
Geneva, Switzerland, Nov. 2011.

[8] Kvazaar HEVC encoder [Online]. Available:
https://github.com/ultravideo/kvazaar

[9] Joint Collaborative Team on Video Coding Reference
Software, ver. HM 16.3 [Online]. Available:
http://hevc.hhi.fraunhofer.de/

[10] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, and C. Yeo,
“Efficient integer DCT architectures for HEVC,” IEEE Trans.
Circuits Syst. Video Technol., vol. 24, no. 1, pp. 168-178, Jan.

2014.
[11] G. Pastuszak, “Hardware architectures for the H.265/HEVC

discrete cosine transform,” IET Image Process., vol. 9, no. 6,
pp. 468-477, 2015.

[12] R. Jeske, J. C. de Souza, G. Wrege, R. Conceição, M. Grellert,
J. Mattos, and L. Agostini, “Low cost and high throughput
multiplierless design of a 16 point 1-D DCT of the new HEVC
video coding standard,” in Proc. Southern Conf.

Programmable Logic, Bento Goncalves, Spain, Mar. 2012.
[13] A. D. Darji and R. P. Makwana, ”High-performance

multiplierless DCT architecture for HEVC,” in Proc. Int. Symp.
VLSI Design and Test, Ahmedabad, India, Jun. 2015.

[14] W. Zhao, T. Onoye, and T. Song, “High-performance
multiplierless transform architecture for HEVC,” in Proc.
IEEE Int. Symp. Circuits Syst., Beijing, China, May 2013, pp.
1668-1671.

[15] P. Arayacheeppreecha, S. Pumrin, and B. Supmonchai,
“Flexible input transform architecture for HEVC encoder on
FPGA,” in Proc. Int. Conf. Electrical Engineering/
Electronics, Computer, Telecommunications and Information
Tech., Hua Hin, Thailand, Jun. 2015.

[16] G. Pastuszak and A. Abramowski, “Algorithm and architecture
design of the H.265/HEVC intra encoder,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 1, pp. 210-222, Jan.
2016.

[17] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An
introduction to high-level synthesis,” IEEE Des. Test. Comput.,
vol. 26, no. 4, pp. 8-17, Jul.-Aug. 2009.

[18] Catapult: Product Family Overview [Online]. Available:
http://calypto.com/en/products/catapult/overview

[19] F. Bossen, “Common test conditions and software reference
configurations,” Document JCTVC-J1100, Stockholm,
Sweden, Jul. 2012

PUBLICATION

III

High-level synthesized 2-D IDCT/IDST implementation for HEVC codecs on
FPGA

V. Viitamäki, P. Sjövall, J. Vanne, and T. D. Hämäläinen

In Proceedings of IEEE International Symposium on Circuits and Systems, Baltimore,
Maryland, USA, May 2017

DOI: 10.1109/ISCAS.2017.8050323

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/ISCAS.2017.8050323

High-level Synthesized 2-D IDCT/IDST

Implementation for HEVC Codecs on FPGA

Vili Viitamäki, Panu Sjövall, Jarno Vanne, Timo D. Hämäläinen

Laboratory of Pervasive Computing

Tampere University of Technology

Tampere, Finland

{vili.viitamaki, panu.sjovall, jarno.vanne, timo.d.hamalainen}@tut.fi

Abstract— This paper presents efficient inverse discrete cosine

transform (IDCT) and inverse discrete sine transform (IDST)

implementations for High Efficiency Video Coding (HEVC). The

proposal makes use of high-level synthesis (HLS) to implement a

complete HEVC 2-D IDCT/IDST architecture directly from the C

code of a well-known Even-Odd decomposition algorithm. The

final architecture includes a 4-point IDCT/IDST unit for the

smallest transform blocks (TB), an 8/16/32-point IDCT unit for the

other TBs, and a transpose memory for intermediate results. On

Arria II FPGA, it supports real-time (60 fps) HEVC decoding of

up to 2160p format with 12.4 kALUTs and 344 DSP blocks.

Compared with the other existing HLS approach, the proposed

solution is almost 5 times faster and is able to utilize available

FPGA resources better.

Keywords— High Efficiency Video Coding (HEVC); Inverse

discrete cosine transform (DCT); Inverse discrete sine transform

(DST); High-level synthesis (HLS); Field-programmable gate array

(FPGA)

I. INTRODUCTION

High Efficiency Video Coding (HEVC/H.265) [1] is the
newest international video coding standard published as twin
text by ITU, ISO, and IEC as ITU-T H.265 | ISO/IEC 23008-2.
It has been developed to address the increasing transmission and
storage needs of modern video applications. HEVC is able to
reduce the bit rate by almost 40% over the current mainstream
standard AVC [2] for the same objective quality, but the
respective encoding and decoding complexities tend to be at
least 1.5 times higher [3]. The main reason for HEVC coding
gain and complexity increase is a new HEVC coding structure
that extends a traditional macroblock concept to an analogous
block partitioning scheme with coding tree units (CTUs) of up
to 64 × 64 pixels.

This paper addresses HEVC transform coding [4] for which
the sizes of transform blocks (TBs) and associated core
transform matrices [5] can be defined as N × N, where N ϵ {4, 8,
16, 32}. Increasing the sizes of transform matrices from that of
AVC to N > 8 improves rate-distortion (RD) performance by
around 5-7% but it also introduces the majority of complexity
overhead in HEVC transform coding [4].

HEVC standard specifies two-dimensional (2-D) integer
inverse discrete sine transform (IDST) for intra coded luminance
TBs of size 4 × 4 pixels and 2-D integer inverse discrete cosine
transform (IDCT) for all other TBs [1]. Both of these separable

2-D transforms can be computed by two successive N-point 1-D
transforms, first column-wise and then row-wise [5]. This
indirect approach is called row-column decomposition and it is
a widely used technique in software [6]-[7] and hardware
implementations [8]-[11] of HEVC IDCT/IDST.

 This work deals with field-programmable gate array
(FPGA) implementations of HEVC IDCT/IDST architectures.
However, our design is not written in traditional hardware (HW)
description languages (HDLs), but the abstraction level in HW
description is raised by High-Level Synthesis (HLS) [12]. HLS
tools support well-known programming languages such as C and
C++ in design description from which they can automatically
generate the HDL. This approach makes the code more readable,
shortens design and verification times, and increases the design
reusability over those of handwritten HDL equivalents.

 In our recent work [13], we proposed to use HLS for HEVC
DCT/DST. This work utilizes the same HLS flow than in [13]
and applies it to IDCT and IDST algorithms. The created 2-D
IDCT/IDST architecture includes an 8/16/32-point IDCT unit
for N ϵ {8, 16, 32}, a separate 4-point IDCT/IDST unit for N =
4, and a transpose memory for intermediate results. The
architecture is implemented on Arria II FPGA using Catapult C
[14] HLS tool. For the time being, only a single HLS
implementation has been presented for HEVC IDCT [8] and
none for HEVC IDST. Thus, this paper presents the first HLS
implementation for a complete HEVC 2-D IDCT/IDST.

The remainder of the paper is organized as follows. Section
2 describes the adopted hardware-oriented IDCT and IDST
algorithms. Section 3 proposes our HLS implementation for
HEVC 2-D IDCT/IDST. In Section 4, performance
characteristics of our proposal are reported and compared with
the prior-art. Section 5 concludes the paper.

II. 2-D INTEGER IDCT/IDST ALGORITHMS IN HEVC

In this work, the C implementations of IDCT and IDST
algorithms are taken from the open-source Kvazaar HEVC
encoder [6]. Basically, Kvazaar implements the same
IDCT/IDST functionality than HEVC reference encoder (HM)
[7] but the hardware-oriented C source code of Kvazaar provides
a better starting point for HLS.

A. Even-Odd decomposition algorithm

In HEVC codec, IDCT and IDST are used to convert
transform-domain coefficient matrices back into spatial-domain
residual blocks. A well-known row-column algorithm [4]
executes these 2-D inverse transforms with separable 1-D
inverse transforms in two consecutive stages. An N-point
inverse transform is first applied 1) to each column of a
transform-domain coefficient matrix of size N × N to generate
an intermediate matrix of size N × N; and then 2) to each row of
the intermediate matrix to generate a final spatial-domain
residual block of size N × N.

The number of arithmetic operations can be further reduced
by implementing these 1-D inverse transforms with Even-Odd
decomposition algorithm, a.k.a., Partial Butterfly algorithm [5].
It decomposes an input and core transform matrices of size N ×
N into two matrices of size N/2 × N/2 according to even and odd
columns/rows, respectively. The core transform matrices for
each N (CN) are specified in [5]. Now, an N-point inverse
transform can be computed with two N/2-point transforms so
that the matrix multiplication is done separately for even and odd
cases after which the result is yielded with basic add and subtract
operations. The respective decomposition can be applied
recursively down to N = 4 to reduce arithmetic operations
further. In this approach, the largest transform matrix also
embeds the smaller transform matrices.

B. Example: 32-point IDCT

Fig. 1 depicts the Even-Odd decomposition of the 1-D
inverse transform for N = 32. The transform coefficients of the
input vector Y = [y(0), y(1), …, y(31)] are recursively
decomposed into five parts which can be multiplied in parallel
by transform matrices as shown by (1), (2), (3), and (4) in Fig.
1. That is, {y(8), y(24)} are multiplied by C4/O, {y(0), y(16)} by
C4/E, {y(4), y(12), y(20), y(28)} by C8, {y(2), y(6), … y(30)} by
C16, and {y(1), y(3),…y(31)} by C32 to yield 2-point vectors
EEEO and EEEE, a 4-point vector EEO, an 8-point vector EO,
and a 16-point vector O, respectively.

In the next stage, a 4-point vector EEE is computed from the
vectors EEEE and EEEO with add and subtract operations as
in (5). Correspondingly, an 8-point vector EE is derived from

the vectors EEE and EEO as in (6), a 16-point vector E from
the vectors EE and EO as in (7), and finally a 32-point vector V
from the vectors E and O as in (8). The residual output vector X
= [x(0), x(1), …, x(31)] is then formed by scaling the vector V.
The scaling factor depends on the transform stage (column or
row) and on the video bit depth (8 bits in our case) [5].

III. PROPOSED IDCT/IDST ARCHITECTURE

 The proposed IDCT/IDST architecture is composed of 1) an
8/16/32-point IDCT unit for TBs of size 8 × 8, 16 × 16, and 32
× 32; 2) a transpose memory for intermediate results; and 3) a
separate 4-point IDCT/IDST unit for TBs of size 4 × 4.

A. 8/16/32-point IDCT unit

 Fig. 2 depicts a block diagram of the 8/16/32-point IDCT
unit. It can be divided into three parts: 1) a control block
(Ctrl8/16/32); 2) a 3-state IDCT computation pipeline; and 3) a
transpose memory.

 The Ctrl8/16/32 block has a 512-bit input for 32 16-bit signed
transform coefficients (tcoeffs). It extends the coefficients with
configuration bits and passes them to the IDCT computation.
The configuration bits are used to define the block size and the
scaling factor. After the first pass, the Ctrl8/16/32 block extends
the transposed results with new configuration bits and sends
them back to the IDCT computation.

 The IDCT stage 1 performs multiplications between the
transform matrices (C32, C16, C8, C4/O, and C4/E) and input (Y).
To save logic cells on an FPGA, multiplications are mapped to
DSP blocks. Catapult-C facilitates instantiation of DSP blocks
in C code by providing a library for DSP blocks as C++
templates for different FPGA architectures.

 The IDCT stage 2 includes three addition/subtraction levels
to compose the final even vector (E) from the decomposed even
and odd vectors (EEEO, EEEE, EEO, EEE, EO, and EE). Fig.
1 depicts this for N = 32 in (5) – (7). For N < 32, all these levels
are used to calculate 32/N rows or columns at a time. For
example, for N = 8, four rows or columns are decomposed into
the EEEO, EEEE, EEO, EO, and O vectors in parallel to take
full advantage of the available adding and subtracting levels.

o[k] += c32[k][j] × x[i]

i = 2×k+1; k, j ϵ [0, 15]

eo[k] += c16[k][j] × x[i]

i = 4×k+2; k, j ϵ [0, 7]

eeo[k] += c8[k][j] × x[i]

i = 8×k+4; k, j ϵ [0, 3]

eeeo[k] += c4/O[k][j] × x[i+8]

eeee[k] += c4/E[k][j] × x[i]

i = 16×k; k, j ϵ [0, 1]

OEOEEOEEEO

EEEE

eee[i] = eeee[i] + eeeo[i]

eee[i+2] = eeee[1-i] - eeeo[1-i]

i ϵ [0, 1]

ee[i] = eee[i] + eeo[i] ee[i+4] = eee[3-k] - eeo[3-i] i ϵ [0, 3]

e[i] = ee[i] + eo[i] e[i+8] = ee[7-k] - eo[7-i] i ϵ [0, 7]

v[i] = e[i] + o[i] v[i+16] = e[15-k] - o[15-i] i ϵ [0, 15]

EEE

E

EE

V

y[i] = (v[i] + round) >> shift i ϵ [0, 31]

X

Y

(1) (2) (3) (4)

(5)

(6)

(7)

(8)

(9)

Fig. 1. Even-Odd decomposition algorithm for IDCT (N = 32).

 The IDCT stage 3 finalizes the 1-D transform by combining
the E and O vectors and by scaling the final result (V) to 16-bit
signed residuals (X). Before outputting the final residual vector,
it is permuted back to its original order.

 The 8/16/32-point IDCT unit performs the 2-D IDCT in two
successive passes and the intermediate data is stored in the
transpose memory. 32 coefficients (32/N rows or columns of a
TB) are processed in parallel to ensure a more constant hardware
utilization. The latency for both passes is three clock cycles.
Finally, the 32 16-bit residuals are sent via the 512-bit output.
The same output is connected to the transpose memory.

B. Transpose memory

 Fig. 2 also shows the structure of the transpose memory used
with the 8/16/32-point IDCT unit. On FPGA, it is made of 32
dual-port on-chip memory modules without registers. Each
memory module has a 512-bit write (32 coefficients) and a 16-
bit (1 coefficient) read port. The structure supports a block
transpose for N ϵ {8, 16, 32}.

 The 8/16/32-point IDCT unit utilizes the whole memory for
each N. To enable simultaneous reading of 32/N rows of the
matrix without any access conflicts, the same columns of the
matrix are written to (32/N)2 modules. The right modules are
identified by a write enable (wen) signal. Let us use N = 8 as an
example. The first four columns are written in the modules 0-3,
8-11, 16-19, 24-27 after which the last four columns are written
to the remaining modules respectively. Eight rows can now be
read in two clock cycles by using raddr and offset.

C. 4-point IDCT/IDST unit

 Fig. 3 depicts a 4-point IDCT/IDST unit that can operate in
parallel with the 8/16/32-point IDCT unit. The 256-bit input to
the Ctrl4 block accepts one 4 × 4 coefficient block at a time. The
16 16-bit coefficients are passed column-wise to the respective
four IDCT/IDST blocks. The intermediate matrix is ready in one
clock cycle after which it is sent back to the same IDCT/IDST
blocks by picking the intermediate values from the registers in a
transposed order. After these two passes, the unit outputs 16 16-
bit residuals.

 A separate 4-point IDCT/IDST unit increases the occupied
resources on FPGA. However, this overhead is compensated by
better load balancing since the share of 4 × 4 TBs is relatively
high compared to the other TBs.

IV. PERFORMANCE ANALYSIS

 Table 1 reports the cost-performance characteristics of the
proposed and the most competitive prior-art FPGA
implementations.

A. Proposed architecture

 Table 1 tabulates results for the proposed 8/16/32-point
IDCT unit and for the 4-point IDCT/IDST unit separately.
Altogether, the combined resource usage of our proposal is (6.9
+ 5.6) kALUTs = 12.4 kALUTs and 344 DSP blocks. The total
cell count rises to 49.9 kALUTs if the DSP blocks are not used.
It is assumed here that one DSP block (DSP18×18) equals to 109
ALUTs. This relationship was obtained by synthesizing an
equivalent DSP functionality using only logic cells.

 The proposed design is capable of supporting 4:2:0 Ultra HD
(3840 × 2160) video decoding at 68 frames per second (fps) and
4:2:0 Ultra HD video encoding at 35 fps. The reported speeds
are for the worst case scenarios: a decoded bit stream is assumed
to contain TBs of size 8 × 8 pixels only and an encoder is
assumed to encode all TBs in a CTU when searching for the best
block partitioning.

 The functionality of the proposed design was validated on
FPGA, as part of Kvazaar HEVC intra encoder.

B. Comparison with prior-art

 Kalali et al. [8] present the first HSL implementations for
HEVC IDCT. Altogether, they proposed three implementations

512 Ctrl8/16/32

IDCT stage 1

Multiply

IDCT stage 2

Add, Subs tract

IDCT stage 3

Scale
512

Dual-port RAM 0

Dual-port RAM 1

Dual-port RAM 31

. . .

... waddr

wen

512

. . .16

16

16

offset data 512512 data raddr

tcoeffs data

residual

Fig. 2. Block diagram of the pipelined 8/16/32-point IDCT unit and a transpose memory.

IDCT/IDST 0

IDCT/IDST 1

IDCT/IDST 2

IDCT/IDST 3

Ctrl4

64

64

64

64

64

64

64

256

64
64

64

64 64

256 residual

tcoeffs

Fig. 3. Block diagram of the separate 4-point 2-D IDCT/IDST unit.

done with three different HLS tools. The best performance
characteristics were obtained with MATLAB Simulink HDL
Coder. It supports IDCT for all TB sizes but is missing the IDST
unit. In addition, it is only capable of decoding 1080p video at
55 fps. Our solution is 3.7 times larger when DSPs are
normalized to logic cells, but also 5.0 times faster.

 Pastuszak et al. [9] introduce an approach similar to ours by
implementing separate units for N = 4 and N ϵ {8, 16, 32}.
However, our approach is slightly faster and consumes around
25% less resources when DSPs are normalized to logic cells.
Our 4-point IDCT/IDST unit, compared with their counterpart,
consumes 1.6 times more resources, but is three times faster.

 Kalali et al. [10] also propose a handwritten Verilog RTL
implementation, that is notably faster but also larger than their
HLS implementation. Compared with our solution, the cell
count is much higher as it does not utilize DSP blocks. With
DSPs normalized to logic cells, our architecture is 1.3 times
larger, but also 1.4 times faster.

 Conceição et al. [11] present an implementation that
supports IDCT for all TB sizes but not IDST. Their
implementation does not utilize DSP blocks. When DSPs are
normalized to logic cells, our proposal requires 1.4 times more
logic cells, but is also 3.4 times faster.

V. CONCLUSION

 This paper presented the first complete HLS design for
HEVC 2-D IDCT/IDST on FPGA. The proposed design
implements a hardware-oriented Even-Odd decomposition
algorithm whose C code is directly synthesized to HDL with
HLS. The architecture supports 2160p video decoding up to 68
fps at a cost of 12.4 kALUTs and 344 DSP blocks. It is almost 5
times faster than the existing HLS implementation for IDCT and
consumes less logic cells on an FPGA due to efficient mapping
of computation to the available DSPs.

 Compared with traditional approaches, HLS design
techniques are known to increase design productivity, code
readability, and design reusability. The presented results also
show that our HLS solution is very competitive with the existing
non-HLS IDCT/IDST solutions in terms of performance and
cost. Hence, the main conclusion of this paper is that the
manifold benefits of HLS do not come at the cost of
implementation overhead.

ACKNOWLEDGMENT

This work was supported in part by the European Celtic-

Plus Project 4KREPROSYS and Academy of Finland (decision

number 301820).

REFERENCES

[1] High Efficiency Video Coding, document ITU-T Rec. H.265 and

ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[2] Advanced Video Coding for Generic Audiovisual Services,

document ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC),

ITU-T and ISO/IEC, Mar. 2009.

[3] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,

“Comparative rate-distortion-complexity analysis of HEVC and

AVC video codecs,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 22, no. 12 pp. 1885-1898, Dec. 2012.

[4] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M.

Sadafale, “Core transform design in the High Efficiency Video

Coding (HEVC) standard,” IEEE J. Select. Topics Signal

Process., vol. 7, no. 6, pp. 1029-1041, Dec. 2013.

[5] A. Fuldseth, G. Bjøntegaard, M. Budagavi, and V. Sze “Core

transform design for HEVC,” Document JCTVC-G495, Geneva,

Switzerland, Nov. 2011.

[6] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar

[7] Joint Collaborative Team on Video Coding Reference Software,

ver. HM 16.3 [Online]. Available: http://hevc.hhi.fraunhofer.de/

[8] E. Kalali and I. Hamzaoglu, “FPGA implementations of HEVC

inverse DCT using high-level synthesis,” in Proc. Conf. Design

and Architectures for Signal and Image Processing, Krakow,

Poland, Sep. 2015.

[9] G. Pastuszak and A. Abramowski, “Algorithm and architecture

design of the H.265/HEVC intra encoder,” IEEE Trans. Circuits

Syst. Video Technol., vol. 26, no. 1, pp. 210-222, Jan. 2016.

[10] E. Kalali, E. Ozcan, O. M. Yalcinkaya, and I. Hamzaoglu, “A low

energy HEVC inverse transform hardware,” IEEE Trans.

Consumer Electron., vol. 60, no. 4, pp. 754-761, Nov. 2014.

[11] R. Conceição, J. C. de Souza, R. Jeske, M. Porto, B. Zatt, and L.

Agostini, “Power efficient and high troughtput multi-size IDCT

targeting UHD HEVC decoders,” in Proc. IEEE Int. Symp.

Circuits Syst., Melbourne, Australia, Jun. 2014.

[12] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An

introduction to high-level synthesis,” IEEE Des. Test. Comput.,

vol. 26, no. 4, pp. 8-17, Jul.-Aug. 2009.

[13] P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen, “High-

level synthesis implementation of HEVC 2-D DCT/DST on

FPGA,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal

Process., New Orleans, Louisiana, USA, Mar. 2017.

[14] Catapult: Product Family Overview [Online]. Available:

http://calypto.com/en/products/catapult/overview

TABLE 1. COMPARISON OF THE PROPOSED AND RELATED IDCT/IDST ARCHITECTURES ON FPGA

Architecture HLS Transform N FPGA Logic cells DSPs Cells w/o DSPs Freq. Speed (worst case)

Proposed YES 2-D IDCT 8/16/32 Arria II 6 859 ALUTs 344 44355 ALUTs 150 2160@68fps

Proposed (4x4) YES 2-D IDCT/IDST 4 Arria II 5 559 ALUTs 0 5559 ALUTs 150 2160@96fps

Kalali et al. [8] YES 2-D IDCT 4/8/16/32 Virtex 6 13 669 4-LUTs 0 *13669 ALUTs 110 1080@55fps

Pastuszak et al. [9] NO 2-D IDCT 8/16/32 Arria II 3 079 ALUTs 512 58887 ALUTs 200 2160@64fps

Pastuszak et al. [9] NO 2-D IDCT/IDST 4 Arria II 3 554 ALUTs 0 3554 ALUTs 100 2160@32fps

Kalali et al. [10] NO 2-D IDCT/IDST 4/8/16/32 Virtex 6 38 790 4-LUTs 0 *38790 ALUTs 150 2160@48fps

Conceição et al. [11] NO 2-D IDCT 4/8/16/32 Stratix V 17 340 ALMs 0 **34680 ALUTs 63 2160@20fps

*4-LUT = ALUT **ALM = 2×ALUT

PUBLICATION

IV

Are we there yet? A study on the state of high-level synthesis

S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898–911

DOI: 10.1109/TCAD.2018.2834439

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/TCAD.2018.2834439

TCAD-2017-0366 1

Abstract—To increase productivity in designing digital

hardware components, high-level synthesis (HLS) is seen as the
next step in raising the design abstraction level. However, the
quality of results (QoR) of HLS tools has tended to be behind those
of manual register-transfer level (RTL) flows. In this paper, we
survey the scientific literature published since 2010 about the QoR
and productivity differences between the HLS and RTL design
flows. Altogether, our survey spans 46 papers and 118 associated
applications. Our results show that on average, the QoR of RTL
flow is still better than that of the state-of-the-art HLS tools.
However, the average development time with HLS tools is only a
third of that of the RTL flow, and a designer obtains over four
times as high productivity with HLS. Based on our findings, we
also present a model case study to sum up the best practices in
comparative studies between HLS and RTL. The outcome of our
case study is also in line with the survey results, as using an HLS
tool is seen to increase the productivity by a factor of six. In
addition, to help close the QoR gap, we present a survey of
literature focused on improving HLS. Our results let us conclude
that HLS is currently a viable option for fast prototyping and for
designs with short time to market.

Index Terms—Electronic design automation (EDA) and
methodology, field programmable gate array (FPGA), hardware
description languages (HDL), high level synthesis (HLS),
reconfigurable logic

I. INTRODUCTION

OR DECADES now, register-transfer level (RTL) has been
the dominant method to describe very large scale

integration (VLSI) systems and their constituent intellectual
property blocks. Whereas the RTL tools have developed only
incrementally, the complexity of the VLSI systems has raised
exponentially, which has made the design and verification
process a bottleneck for productivity [1].

High-level synthesis (HLS) promises to alleviate this
problem by a variety of ways [2]–[5]. In HLS, the application
is described on a behavioral level, omitting implementation
details such as timing and the nature of interface and memory
elements. These details are determined using an HLS tool that
takes the behavioral description as an input. The designer can
select the target technology in the tool and map the interface
and memory variables to specified technology-dependent
elements. The HLS tool then produces an RTL description
based on the target technology and microarchitectural choices.

The promises of HLS are many.

1) Initial design effort is reduced by raising the
abstraction level. The designer can concentrate on
describing the behavior of the system without having
to spend time implementing the microarchitectural
details. Introduction of bugs in the code is also less
likely on a higher level of abstraction.

2) Verification is accelerated. The behavior of the design
can often be verified using software verification tools
that are faster and simpler to use than RTL simulation
tools. Furthermore, the RTL output of the HLS tool
can be verified by using the original behavioral test
bench, as the tool can check that the results of both
models are identical.

3) Design space exploration (DSE) is faster. The
microarchitecture can be explored by making choices
in the HLS tool, which require little or no
modifications to the code. Thus, several
transformations such as pipelining and various loop
unrolling factors can be explored in a matter of hours.
This is a tremendous improvement upon RTL
methodology, where these kind of changes would
require significant modifications to the source code.

4) Targeting new platforms is straightforward. If the
target platform changes, the HLS tool is able to
modify the RTL output accordingly. For example, if
the new platform has a different clock frequency, the
HLS tool reschedules operations according to the new
frequency.

5) HLS is accessible to software engineers. Whereas
RTL design requires knowledge of languages such as
VHDL and Verilog, HLS tools usually use familiar
languages such as C/C++. The HLS tool can take care
of most of the hardware specific implementation
details, so the threshold of software engineers to
tackle hardware projects is greatly reduced. That said,
to obtain optimal results, hardware expertise is still
useful when employing HLS.

Together, these benefits reduce the design and verification
time, push down the development costs, and lower the bar for
tackling hardware projects. Consequently, the time to market is
shortened, and using hardware acceleration on heterogeneous
systems becomes a more attractive option.

The rise of field-programmable gate arrays (FPGAs) is also
an enabling factor for HLS. FPGAs are ideal platforms for HLS

Are We There Yet? A Study on the State of
High-level Synthesis

Sakari Lahti, Graduate Student Member, IEEE, Panu Sjövall, Graduate Student Member, IEEE, Jarno
Vanne, Member, IEEE, and Timo D. Hämäläinen, Member, IEEE

F

TCAD-2017-0366 2

designs, as they allow quick prototyping, have rapid design
cycle, and are inherently reprogrammable. Modern HLS tools
usually contain a wide library of FPGA technologies for design
targeting.

The history of HLS dates back to the 1970s and 1980s, but it
was not until the turn of the century that it became a viable
option for the industry [2]. One of the reasons for the slow
adoption is that the quality of results (QoR), such as resource
usage and performance, was initially poor compared with the
RTL approach. The QoR has improved with the newest
generation of HLS tools, but the results reported in individual
studies still vary, and it is unclear whether the QoR gap has been
closed yet.

The goal of this paper is to answer this question by a literature
review. We examine 46 recent papers that compare the QoR and
development effort of HLS and RTL approaches for the same
applications. Our work has four main contributions:

1) a comparative analysis of the QoR and design effort of
HLS and RTL reported in scientific articles;

2) a case study presenting the best practices for
comparing HLS and RTL approaches with a test group
that uses both flows to implement a part of a
HEVC/H.265 video encoder;

3) a survey of the literature suggesting research
directions and ways to improve HLS;

4) conclusions on the current state of the art in HLS.
To the best of our knowledge, this is the first comprehensive

quantitative study that uses a wide variety of sources to
compare the QoR and design effort of HLS and RTL flows.
Previous works have instead focused on comparing different
HLS tools to each other [6], [7]. Other papers have provided
insights on how to close the QoR gap against RTL or otherwise
improve HLS tools [5], [8]. A thorough quantitative analysis on
the current state of HLS has been missing, however, which this
paper amends.

The rest of the paper is structured as follows. Section 2
describes our criteria for selecting papers for this study. Section
3 contains a meta-analysis of the reviewed papers, summarizing
what kind of information was reported in them. In Section 4, we
show and analyze the results from the literature study, and
Section 5 describes our test group study with its results. Section
6 reviews papers that propose improvements to HLS, and
finally section 7 concludes the paper with some discussion of

the results.

II. QUALIFYING PAPERS

For this study, we examined papers published in 2010 or later
to get a comprehensive view of the latest HLS works.
Altogether, we found over a thousand candidate papers and
selected those articles for further study whose abstracts stated
that: 1) one or more applications were implemented using HLS;
and 2) the obtained results were compared with equivalent self-
made or referenced RTL applications.

We also required the qualifying papers to list one or more of
the following metrics for both the HLS and RTL versions of the
applications:

1) performance with an application specific metric;
2) execution time and/or latency;
3) maximum achievable clock frequency on target

platform;
4) area on application-specific integrated circuit (ASIC);
5) resource usage on FPGA;
6) power consumption;
7) development time;
8) lines of input source code (LoC).

In total, we found 46 qualifying papers out of which 39 were
from IEEE Xplore, two from Springer Link, one from ACM
Digital Library, two from arXiv.org, one from EBSCOhost, and
one from Science Direct. Basic information on all the reviewed
papers is given in Table IX in the Appendix. As can be seen
from the table, the range of applications is very diverse. This
makes it impractical to analyze the QoR results by the type of
application, which would otherwise give interesting insight on
the strengths and weaknesses of HLS. A qualitative analysis
like that would also benefit from access to the implementations’
source codes, which are seldom available.

Table I shows a breakdown of the number of qualifying
papers published each year. Because the number of papers from
each year is low, it is not feasible to use our data to check for a
possible trend in the QoR of HLS during these years. A longer
year range would also be preferable for that kind of study.

III. META-ANALYSIS

Table II gathers a summary of the metrics of interest and their
frequency of occurrence in the reviewed papers. In general, the
reviewed works have much variance in the reported details
about the experimental setup and results. The table counts only
those papers that report the results in exact terms either in
absolute values or in percentages. Inexact values, such as “the
execution time was less than 100 ms,” were excluded from our
quantitative analysis.

Twenty-two articles report results for more than one
application or experimental setup. In many works, multiple
different applications were implemented, often related to each
other (for example, [9]–[11]). Some authors compared different
HLS tools [12]–[14], whereas others compared various micro-
architectural optimizations, such as loop unrolling and
pipelining [15], [16], or different FPGA chips [17], [18]. The
data set is thus larger than the mere number of qualifying papers

TABLE I
NUMBER OF PAPERS PUBLISHED BY YEAR

Year Papers
2010 4
2011 5
2012 3
2013 8
2014 10
2015 8
2016 8

TCAD-2017-0366 3

would suggest. For brevity, we shall call each of these
individual results applications, regardless of whether they are
based on actual different applications, HLS tools, FPGA chips,
or other variations. The third column of Table II shows the total
number of applications for which the given metric is reported.

Development time is of great interest when comparing the
HLS and RTL methodologies. However, only a third of the
papers report the development time, which can be seen as a flaw
in the articles omitting it. Of the various QoR metrics, FPGA
resource usage is reported more often than the performance
values. Only four papers target ASIC implementation (instead
of FPGA), and thus there is not enough data to compare ASIC
area results. The same is true for power consumption.

Almost all papers report the used HLS tool. The remaining
works give no reason for not revealing the information, but
license agreements may have been the cause. However, even
those articles mention the HLS input language.

Table III shows a summary of the used HLS tools. The
second column tells the number of occurrences of each tool and
the third column their input languages. The table suggests that
Vivado HLS (formerly known as Autopilot) is the most popular
HLS tool, at least in academia. All the other tools gain only
scattered usage. Vivado’s popularity is probably due to Xilinx
being the leading FPGA vendor, whose design suite for FPGAs
includes Vivado HLS. The large number of used HLS tools also
speaks of the relative immaturity of the field.

Of the 46 qualifying works, 39 used self-made RTL
implementations for comparison with HLS and seven cited
RTL results from other research groups. There are additional
papers that would have qualified for this study, but they cite
papers with incompatible RTL implementations, which resulted
in their preclusion. For example, the FPGA chip used for RTL
was from a different family, which prevented fair resource

usage comparison.

IV. COMPARATIVE STUDY RESULTS AND ANALYSIS

A. On the QoR Metrics
The fundamental building block of FPGAs is a configurable

logic block (CLB) or a logic array block (LAB), depending on
the FPGA vendor and device. CLB/LAB consists of a few
logical cells that may be called logic cells (LCs), logic elements
(LEs), or adaptive logic modules (ALMs). These logical cells
are made of look-up tables and flip-flops. The reviewed papers
usually report one of these figures when synthesizing an
application for FPGA. For the purposes of this study, it is
irrelevant which figure was reported, since we are interested in
the ratio of resource usage between HLS and RTL. Thus, we
have grouped all of these resource metrics under the same term
called basic FPGA resources.

FPGAs also contain other resources such as DSP blocks and
on-chip block RAM (BRAM) memories, which cannot be
converted to CLB equivalents without sufficient data from the
FPGA vendors. This would require knowing the exact FPGA
chip type, but only about 60% of the reviewed papers report it,
and the others merely state the used FPGA family. Therefore,
we had no universal way to combine all the resource metrics
into a single resource usage value, which could be compared
across applications. Thus, we discarded this approach and chose
CLBs or its constituents as the basis for resource usage
comparisons.

The reviewed papers also use various different performance
metrics depending on the implemented application. These can
be divided into four categories: 1) performance, 2) execution
time, 3) latency, and 4) maximum frequency. In this context,
performance can be interpreted in several ways depending on

TABLE II
THE METRICS AND THE FREQUENCE OF THEIR OCCURRENCE IN THE REVIEWED PAPERS

Metric
Number of papers

reporting
(percentage of total)

Number of
applications for
which the metric

was reported
HLS tool 42 (91%) -
HLS input language 46 (100%) -
Lines of input code 13 (28%) 36
Development time 15 (33%) 25
Maximum frequency 24 (52%) 74
Latency 10 (22%) 17
Execution time 8 (17%) 14
Performance 15 (33%) 46
FPGA
LUTs/LCs/LEs/Slices

36 (78%) 92

FPGA Flip-flops 23 (50%) 63
FPGA DSP blocks 22 (48%) 50
FPGA BRAM 22 (48%) 55
ASIC area 4 (9%) 8
Power consumption 3 (7%) 7
Total papers 46

TABLE III
HLS TOOL USAGE BY PAPERS

HLS Tool N Tool language
AccelDSP 1 MATLAB
Altera OpenCL 3 OpenCL
Bluespec 2 Bluespec language
C2RTL 1 C
Cadence Stratus 1 C/C++/SystemC
CAPH Toolset 2 CAPH language
Catapult-C 2 C/C++/SystemC
Chisel 2 Scala
Cadence C-to-Silicon 2 C/C++/SystemC
Convey Hybrid-Threading 1 HT language
HCE 2 C
HIPAcc 2 HIPAcc language
Impulse C 1 C
LegUp 3 C
MATLAB Simulink HDL Coder 1 MATLAB functions, Simulink models
Maxeler MaxCompiler 1 Java
ROCCC 1 C
Xilinx System Generator for DSP 2 MATLAB Simulink
Xilinx Vivado HLS/Autopilot 18 C/C++/SystemC
Undisclosed 4 N/A

TCAD-2017-0366 4

the application. For example, for a video encoder, it would
mean frames per second, and for a cryptography module, it
would mean encrypted bits per second. For applications with a
clear start and finish, execution time is often reported, and some
papers report latency, i.e. the number of clock cycles for
processing a sample. The most often reported performance
metric is the maximum frequency for which the application can
be scheduled on the target FPGA.

We wanted to include as many performance metrics as
possible so all of them are used in our study. For papers that
report more than one metric, we prioritize performance over
execution time, execution time over latency, and latency over
maximum frequency. Thus, we use only one of these values per
application rather than try to create an arbitrary aggregate
performance metric. In the figures of the following subsections,
we shall call the selected value just performance. We have also
inverted execution time and latency values in calculations for
the figures so that a larger value is always better. The way to
examine the various data cloud figures in the following
subsections is not to compare individual data points to each
other but to concentrate on the center of gravity and dispersion
of the data.

B. Numerical Analysis
Table IV gathers the numerical aggregate data of our

findings. N denotes the number of applications for which the
corresponding data were reported. The third column reports the
mean of the ratios between HLS and RTL results. For all the
values except DSP blocks and BRAM, we used the geometric
mean rather than the arithmetic one, since the values in each
category can differ by orders of magnitude because of the wide
variety of applications. For DSP blocks and BRAM, the
geometric mean could not be calculated because of the zeros in
the data set, so arithmetic mean was used instead. Bolded mean
values favor HLS while unbolded values favor RTL. The fourth
column shows the geometric standard deviation (GSD). Note
that it is a multiplicative value: The lower bound is obtained by
dividing by the GSD and the upper bound is obtained by
multiplying by the GSD. The last column shows the percentage
of results for which the HLS application performed as well or

better than the corresponding RTL version.
As expected, HLS outperforms RTL in both development

time and lines of source code. The average development time is
only about a third of a corresponding RTL application. We also
examined the HLS to RTL development time ratio as a function
of the absolute development time to see if the scale of the project
had an effect on the ratio, but found no correlation. Thus, it
seems that for both large-scale and small-scale applications the
reduction in development time is the same. On the other hand,
the respective comparison with code size shows that for larger
applications (1,000 LoC or more), HLS code seems to be more
compact compared with RTL code. In fact, in all the cases
where there was more HLS LoC than RTL LoC, the code size
was less than 250 LoC. With smaller code size, non-behavioral
code takes a relatively larger part of the total, which seems to
favor RTL.

In performance and execution time, the HLS design is on
average clearly inferior, but in latency and maximum frequency
the difference is less prominent. The HLS approach also loses
in basic resource usage: On average, HLS uses 41% more basic
FPGA resources than RTL. With BRAM and DSP blocks, the
results are ambivalent. Based on papers, which report the
number of used BRAM blocks, HLS seems to use them more
efficiently, but with papers, which report BRAM usage in
kilobytes, RTL wins. In DSP block usage, HLS and RTL seem
similar. .

We also examined how the HLS input language affects the
QoR. In [19], the HLS tools are divided into five categories
based on their style of describing the input: hardware
description language (HDL) like frameworks, C based
frameworks, high-level language (HLL) based frameworks
(these are highly abstract, usually object-oriented languages),
model based frameworks (using executable specification, e.g.
NI LabView and Matlab HDL Coder), and CUDA/OpenCL
based frameworks. In our study, we found five applications
implemented with HDL like, 77 with C based, 10 with HLL
based, six with model based, and 11 with CUDA/OpenCL
based frameworks. Since other than C based frameworks
receive only scattered usage, it is not prudent to compare all the
categories with each other. Instead, we compare the QoR of C
based frameworks and all the others. The results are shown in
Table V, where N denotes the number of comparable results. It
seems that C based frameworks produce designs with worse
performance than the other frameworks but save in basic
resource usage. Looking further into the data, we noticed that

TABLE IV
SUMMARY OF THE NUMERICAL DATA FROM THE PAPERS

Metric N
HLS/RTL

mean
Geometric
std. dev.

HLS better or
equal to RTL

Lines of code 36 0.52 2.26 75 %
Development time 25 0.32 2.59 88 %
Performance 46 0.47 5.50 39 %
Execution time 14 1.70 2.21 39 %
Latency 17 1.05 2.07 35 %
Maximum frequency 74 0.88 1.48 42 %
Basic FPGA resources 92 1.41 3.76 33 %
DSP blocks 50 1.11 - 68 %
BRAM blocks 29 0.49 - 45 %
BRAM (kB) 27 1.47 - 33 %

TCAD-2017-0366 5

the CUDA/OpenCL based frameworks were especially
resource consuming (3.56×) and produced the worst
performance (0.56×).

C. Comparisons between Resource Usage and Performance
 To better illustrate the QoR differences, Fig. 1 shows the

relative HLS/RTL performance against the relative HLS/RTL
basic resource usage for each application. Each “X” in the
figure represents a single application. The wider horizontal and
vertical lines denote break-even lines where the performance
and basic resource usage are the same for both HLS and RTL,
respectively. Most of the marks are clustered around the
intersection of the break-even lines, indicating that in the great

majority of cases the performance and basic resource usage
difference between HLS and RTL is relatively small.
Nevertheless, there are more marks towards the right and
bottom of the figure than in the opposite directions, showing
that RTL tends to outmatch HLS in both regards.

Another way to look at the same data is depicted in Fig. 2,
which shows the absolute performance and basic area usage
values for both HLS applications (“+”) and RTL applications
(“x”). The large, partially overlapping symbols show the
centers of gravity based on geometric means for both metrics
correspondingly. The data point clouds are largely overlapping,
and the centers of gravity lie close to each other. Thus, on
average there is no radical difference between the HLS and RTL
QoRs, but RTL fares somewhat better.

We also wanted to see, whether there exists any correlation
between the relative HLS/RTL performance and the absolute
numbers of basic resource usage. That is, does the relative
performance between HLS and RTL designs change as a
function of consumed FPGA resources. Our hypothesis was that
the HLS tools’ ability to optimize data path and control logic
might be more limited with larger applications. The results are
plotted in Fig. 3, which shows that there is no clear correlation,
and indeed, the Pearson correlation coefficient is only 0.10 for
this data set. Thus, the size of the design does not seem to affect
the HLS tools’ ability to optimize performance.

D. Comparisons Based on Design Effort
Fig. 4 shows the HLS/RTL development time ratio for

applications for which the development time was reported. In
all but three cases, the ratio is less than one, and in 72% of cases,
it is less than 0.5. The three applications, where the HLS
development time is larger than that of RTL, are from the same
work [13]. The authors stated that the difference in
development time was due to the time spent to learn to use the
HLS tool and the need to modify the reference C++ source code
to reach the required throughput.

TABLE V
COMPARISON OF QOR BY FRAMEWORK TYPE

N
HLS/RTL

performance
ratio

N
HLS/RTL

Basic resouce usage
ratio

C based framework 100 0.64 71 1.26
Other frameworks 51 0.84 36 1.50

Fig. 1. Scatter graph of the HLS to RTL ratio between performance
and basic resource usage for different applications.

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100 1000

H
LS

/R
TL

 P
er

fo
rm

an
ce

 r
at

io

HLS/RTL Basic Resource Usage Ratio

Fig. 2. HLS (orange “x”) and RTL (blue “+”) performance and basic
resource usage for each application. Note that the performance does
not have a listed unit as it varies from application to application.

1E-06

1E-04

1E-02

1E+00

1E+02

1E+04

1E+06

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

Pe
rfo

rm
an

ce

Number of used basic resources

Fig. 3. HLS/RTL performance vs. HLS basic resource usage.

0

1

2

3

4

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

H
LS

/R
TL

 p
er

fo
rm

an
ce

 r
at

io

Number of used basic resources in HLS

TCAD-2017-0366 6

Similarly, Fig. 5 depicts the LoC ratio between HLS and RTL
designs. Here, the HLS dominance is less prominent but still
significant. In 75% of cases, the HLS LoC is smaller than RTL
LoC.

We also investigated a possible correlation between the size
of the application in LoC and HLS/RTL performance. Fig. 6(a)
shows the data. When the three outliers in the top right corner
are eliminated from calculations, the Pearson correlation
coefficient is only 0.04. Thus, it seems that the size of the code
is no indication for the relative HLS/RTL performance. Fig.
6(b) shows the same data for the relative HLS/RTL basic
resource usage. The correlation is -0.08, so the code size does
not correlate with the basic resource usage ratio either. Taken
together, Figs. 3 and 6 indicate that the complexity of the
application has no effect on the relative HLS to RTL
performance or basic resource usage. However, as Fig. 6 shows,
the majority of the applications presented in the papers are
rather small in terms of LoC. Studying the respective behavior
with larger applications is omitted due to the absence of data.

One way to look at the usefulness of HLS relative to RTL is
to examine the performance obtained per design hour as
discussed in [11]. Fig. 7 shows the relative productivity for all
applications for which both performance and development time
is reported, by dividing the HLS/RTL performance by the

development time ratio. A value larger than one indicates that
the HLS approach gives more performance per design hour than
RTL. The average value is 4.4. RTL approach clearly wins in
cases 1 to 4. The methodologies are about equal in cases 5 and
6, and HLS is the better approach in the remaining cases. For
application 1, the bar is almost invisible, as the ratio is 0.05.

Fig. 4. HLS/RTL development time ratio for different applications.

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19 21 23 25

H
LS

/R
TL

 D
ev

el
op

m
en

t
Ti

m
e

Ra
tio

Application#

Fig. 5. HLS/RTL LoC ratio for different applications.

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

H
LS

/R
TL

 L
oC

 R
at

io

Application#

(a)

(b)
Fig. 6. HLS/RTL (a) performance ratio (b) basic resource usage ratio
vs. HLS LoC.

0

0.5

1

1.5

2

10 100 1000 10000

H
LS

/R
TL

 P
er

fo
rm

an
ce

 r
at

io

HLS LoC

0.1

1

10

100

1000

10 100 1000 10000

H
LS

/R
TL

 B
as

ic
 R

es
ou

rc
e

U
sa

ge
 R

at
io

HLS LoC

Fig. 7. Relative HLS to RTL productivity for different applications.

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
LS

 t
o

RT
L

Pe
rfo

rm
an

ce
ra

tio
/d

ev
el

op
m

en
t t

im
e

ra
tio

Application#

TCAD-2017-0366 7

This application is a sparse algorithm matrix multiplication [11]
with dynamic loop bounds, which are unsuitable for the
automatic optimizations that HLS tools perform to speed-up
computation. Despite that, the figure indicates that on average,
a designer gets more performance per design hour with HLS
tools.

V. TEST GROUP STUDY

This survey demonstrates that many prior works report the
results of HLS to RTL comparisons rather inadequately, which
also complicated our data collection. Therefore, we organized a
case study to demonstrate the best practices in setting up
appropriate tests for such comparisons and reporting the results.
A secondary purpose of the case study was to examine how
HLS and RTL flows differ from the user’s perspective and what
is the relative productivity of the flows. Most previous studies
have focused only on the QoR differences instead.

The case study was to implement a 2-dimensional discrete
cosine transform (DCT) [20] algorithm for 8 × 8 residual blocks
used in the High Efficiency Video Coding (HEVC) [21]
encoder. DCT was chosen because it is well known and of
suitable complexity for this study.

A. Test Group
The test group consisted of six participants having basic

knowledge on digital design and programming. As shown in
Table VI, they had written 1k to 100k lines of C or C++
previously. On average, they had about 15 months of
programming experience in work or hobby projects. The
participants were much less experienced in hardware design
with an average of 1k lines of VHDL or Verilog code and three
months of experience in such projects. Only one of the
participants had done a small tutorial with HLS before this
study, making this experiment the first introduction to HLS for
the rest.

We selected participants with limited hardware experience
but moderate software experience, as HLS promises to hide
away the hardware-specific implementation details. Thus,
programmers who are used to writing behavioral descriptions
in software projects are an ideal audience for HLS. Indeed, the
litmus test of HLS is that such users reasonably effortlessly can
produce acceptable results when designing relatively simple
hardware blocks.

To acquire sufficient background knowledge of HLS, the
participants self-studied the HLS basics and carried out five
small exercises implementing parts of an audio codec for

FPGA. Previously, they had done the same exercises using
VHDL RTL.

B. Test Case
In an HEVC encoder, DCT is used to convert 8 × 8 spatial-

domain residual blocks into 8 × 8 transform-domain coefficient
(tcoeff) matrices. A well-known row-column algorithm [20]
executes these 2-D transforms with separable 1-D transforms in
two consecutive stages. The transform is first applied to each
row of the residual block to generate an intermediate matrix and
then to each column of the intermediate matrix to generate the
final transform coefficient matrix.

The participants were assigned to implement this 2-D DCT
hardware unit for 8 × 8 residual blocks with RTL (VHDL or
Verilog) and HLS (C/C++ with Mentor Graphics’ Catapult-C
version 8.2m UV). Catapult-C supports the whole design flow
from writing the original source code to generating and
verifying the RTL code. In this study, no physical FPGA
implementation was made, but only the synthesis results were
used to obtain the QoR data. Performing place & route (P&R)
was omitted as we were interested in the relative HLS to RTL
results, and P&R should not affect the ratio significantly.

The provided DCT references included the HEVC
specification and its implementation in the HEVC reference
encoder (HM) [22]. The participants were also given a ready-
made SystemC test bench and requirements for the interfaces to
make the test bench work without modifications. Interface
requirements included the widths of the input and output data
buses and related control signals. The same test bench was used
for the RTL and HLS versions. It generated random residual
values for the first pass and performed the necessary transpose
for the second pass. The condition for successful
implementation was to pass the test bench validation.

The participants were also instructed to allocate their
working hours to five categories: designing, implementing,
searching information, simulating, and debugging. They were
allowed to choose whether to implement the HLS or RTL
version first or both simultaneously.

C. Results
Table VII shows the area and speed figures of the RTL and

HLS implementations for the individual test persons. The
HLS/RTL ratio shows the ratio between the results for HLS and
RTL. The bolding indicates when the HLS flow achieved better
results. The speed was calculated as million transform
coefficients per second (Mtcoeff/s) using the output
coefficients, latency, throughput, and frequency reported by the
participants.

Four test persons started the work with the RTL
implementation. All participants wrote the RTL code with
VHDL rather than Verilog. Even though the smallest area and
the highest frequency were achieved with RTL, the overall
trend was that the participants were able to get slightly smaller
area and slightly higher clock frequencies with the HLS tool.
Furthermore, the HLS designs are over 2.5× as fast as the RTL
designs, which also affected the speed to area ratios. For
example, person #4 achieved the best speed to area ratio of all
designs with HLS. On the other hand, person #3 was the only
one who got better speed to area ratio with RTL. All test persons

TABLE VI
BACKGROUND EXPERIENCE OF THE TEST GROUP

Person # LoC (SW)
SW experience

(months) LoC (HW)
HW experience

(months)
1 1k 18 1k 10
2 10k 3 1k 3
3 10k 18 1k 3
4 100k 50 1k 0
5 10k 3 1k 3
6 1k 1 1k 1

TCAD-2017-0366 8

used a multi-stage structure to calculate the DCT in RTL code,
but none of them implemented a more complex state machine
to use stage pipelining for consecutive inputs. The lack of
pipelining lowered throughputs in the RTL case. In comparison,
all persons were able to use loop unrolling and pipelining in
HLS to achieve much better throughput values than with RTL.

Table VIII tabulates productivity values for HLS and RTL
approaches. The productivity of all participants was clearly
better with the HLS tool, and the average productivity of HLS
was up to 6.0 times that of RTL. Hence, it is even higher than
that found in the survey results. We can speculate how the
productivity would have changed if the persons had
implemented stage pipelining in their RTL implementations. It
is still unlikely that the productivity levels had shifted to
support RTL over HLS, as the time usage would have increased
along with the throughput.

Fig. 8 shows the time usage of the participants in five
categories. On average, the persons used less time within all
categories when working with HLS. The grand total for
maximum, average, and minimum time usages with the RTL
flow was 37.7, 15.1 and 3.7 hours, respectively, whereas the
respective values for the HLS flow were 25.0, 10.1, and 1.6
hours.

As a conclusion, all participants had better productivity with
HLS than with RTL. Although the group size was small, and
the hardware background of the persons was very similar, this
study shows that it is easier to adopt HLS than RTL and receive
better results faster for people who have most of their
experience in software design. This result underlines the fact
that HLS is a useful tool for software engineers who want to
implement, for example, hardware accelerators.

It should be noted that our result differs from the typical
surveyed study, where the QoR of RTL was better than that of
HLS. The likely explanation for this is that in the surveyed
works, the designers had significantly more previous hardware
expertise than our test persons. On the other hand, our case
study is in line with the surveyed literature concerning
productivity, which favors HLS.

D. Feedback from the test persons
After completing the test assignments, the participants were

asked about the pros and cons of HLS and RTL design flows,
out of which they finally had to select their favorite. The
answers were split evenly (3-3) between HLS and RTL flows.

The persons favoring RTL over HLS hoped for more open
source support for HLS tools, as the flow is highly tool
dependent. This would allow more hobbyists to use HLS tools.

TABLE VIII
HLS AND RTL PRODUCTIVITY

Person # Hours Quality*/Hours Hours Quality*/Hours
1 2 80 4 14 5.9×
2 4 44 9 11 4.1×
3 12 19 21 17 1.1×
4 9 47 18 6 7.6×
5 5 60 9 6 9.4×
6 20 15 26 2 9.0×

Avg. 9 44 14 9 6.2×

*Mtcoeffs/kLUTs

HLS RTL HLS/RTL
Quality Ratio

Fig. 8. Maximum, minimum, and average time usage for different categories with RTL and HLS.

0

2

4

6

8

10

12

Designing
RTL

Designing
HLS

Implementing
RTL

Implementing
HLS

Searching
information

RTL

Searching
information

HLS

Simulating
RTL

Simulating
HLS

Debugging
RTL

Debugging
HLS

H
ou

rs

TABLE VII
AREA AND PERFORMANCE FIGURES OF RTL AND HLS DESIGNS

HLS
Person # Area (LUTs) Freq. (MHz) Speed* Speed/Area** Started

1 1 860 214 258 139
2 3 161 101 588 186 x
3 2 814 211 675 240
4 2 273 167 972 427 x
5 2 768 137 797 288
6 2 463 211 750 305

Avg. 2 557 174 673 264
RTL

1 4 000 145 197 49 x
2 2 068 108 192 93
3 1 292 308 458 355 x
4 4 431 148 499 113
5 2 066 137 122 59 x
6 2 722 149 121 44 x

Avg. 2 763 166 265 119
HLS/RTL ratio

1 0.47× 1.48× 1.31× 2.81×
2 1.53× 0.94× 3.06× 2.00×
3 2.18× 0.69× 1.47× 0.68×
4 0.51× 1.13× 1.95× 3.80×
5 1.34× 1.00× 6.55× 4.89×
6 0.90× 1.42× 6.22× 6.87×

Avg. 0.93× 1.05× 2.54× 2.22×
*Mtcoeffs/s **Mtcoeffs/kLUTs

TCAD-2017-0366 9

Some test persons also longed for more control in the HLS tool
over the resulting RTL in terms of cycle accuracy. For them,
RTL was easier to fine tune and it gave them a better
understanding of the problem at hand.

The persons favoring HLS over RTL liked the ease of HLS,
where unnecessary details such as automatic I/O handshaking
and pipelining support can be left as the responsibility of the
HLS tool. This let the participants to focus on defining the
behavioral description. They also felt that RTL was more time
consuming, required more planning, and would have been
harder to redesign.

The overall conclusion from the test persons was that HLS
vs. RTL compares to C vs. assembly languages in embedded
programming. They expressed the view that, a designer would
rather use HLS, the highest level of abstraction available, and
the lower level RTL should only be used in cycle critical
applications or if it is able to provide a noticeable increase in
performance.

E. Best Practices
We use our literature survey and this case study to sum up

the following best practices for conducting comparative studies
with RTL and HLS work flows:

1) A group of individuals should be used to implement the
same design to lessen the impact of designer experience
with the two flows.

2) The used HLS tools and languages should be reported
unless license agreements prevent that. These choices
have been shown to affect the QoR [12]-[14].

3) The same microarchitectures should be used in both
RTL and HLS designs when conducting a study that
concentrates on the QoR differences. If the emphasis is
on productivity or the usability of HLS, however, then
this restriction can be lifted.

4) For FPGA implementation, the exact FPGA chip model
and version should be reported to allow replication of the
results.

5) The time usage by each designer should be reported.
Additionally, the time spent in each work phase should
be reported to allow more insight into what parts are the
most time consuming with HLS and RTL versions.

6) Lines of input code should be reported to show the size
and complexity of the applications.

7) In addition to the basic QoR results, performance per
design time should be reported to show the difference in
productivity between the HLS and RTL flows.

VI. CLOSING THE QUALITY GAP

Our survey shows that more often than not, there still is a
QoR gap between the HLS and RTL methods for any given
application, usually favoring RTL. A large amount of literature
exists that has recognized the gap and proposes ways to close
it. In this section, we present a survey of that literature to
highlight it for the HLS researchers and developers. In addition,
we review papers that introduce novel improvements to the
existing HLS flows.

A. Research Directions for Tool Developers
The authors in [8] have several suggestions for the HLS tool

developers, for where to focus their efforts. They note that
resource sharing and scheduling are two major features in HLS
techniques that the current HLS tools still struggle with. For
example, they demonstrate that a HLS tool instantiates 31
hardware operators of a certain type when only 13 would be
needed with optimal sharing. They also note that the HLS tools
obfuscate the relationship between the source code and the
generated hardware, which in turn makes it hard to identify the
sub-optimal parts of the code. Furthermore, the authors call for
the industry to agree on a standard C-based input language for
HLS. This would allow an unambiguous way for the tool users
and the tools themselves to interpret the source code.

In [57], the authors recognize room for development in both
the usability and the QoR of HLS. Their study uses AutoPilot
(now Vivado HLS), but the advice is generalizable. The authors
propose automatic tradeoff analysis of loop pipelining and
unrolling to make the DSE faster. With complicated loop
structures, the number of possible optimization combinations
can be very high. In addition, the authors call for support for
BRAM port duplication directives, more robustness for
dataflow transformations, and support for streaming
computation for 2D access patterns. To improve the QoR, they
suggest that the tools should detect memory level dependence
between separate loops and functions, and automatically re-
order memory access to allow partitioning, streaming, and
better pipelining. The tools should also automatically create
buffers to improve memory access reuse.

The importance of optimized memory accesses in high-
quality designs is also recognized in [5]. The authors point out
that the HLS tools usually do not have support for memory
hierarchy nor do they abstract external memory accesses.
Therefore, the designer is required to pay attention to the details
of bus interfaces and memory controllers, which does not sit
well with the idea of behavioral design paradigm. The HLS
tools should hide external memory transfers from the designers
to fix this problem. The paper also notices the difficulty of
obtaining task-level parallelism from sequential C/C++
specifications, for which the authors suggest developing an
appropriate device-neutral programming model.

In [32], the lack of support for dynamic data structures in
HLS tools is brought forward. The authors implement the same
algorithm with a data-flow centric way and by using recursive
tree traversal, which uses dynamic memory allocation, and
observe a significant performance reduction using the latter
method. By applying several manual code transformations, the
authors can increase the performance, and conclude that the
HLS tools should automatically perform similar optimizations
with dynamic data structures.

B. Improvements to the HLS Flow
Since the writers of research articles typically have no access

to the source code of commercial HLS tools, most papers that
have improved upon the HLS results do so by introducing new
optimization steps to the design flow. Some promising results
falling in this category are reviewed in this sub-section.

TCAD-2017-0366 10

In [58], the authors propose using parallel pattern templates
to scale module implementation according to the properties of
the target device, exceeding the capability of the HLS tool to do
so. The authors show up to 2.8× speed-up over a standard HLS
tool flow. A template-based approach is also used in [59],
where composable and parameterizable templates of common
computation patterns optimized for hardware are used to
improve performance. These kind of templates could be
included in HLS tools for the users’ convenience.

In [60], the problem of memory access bottleneck in
massively parallel algorithms is discussed. The authors propose
an algorithm that schedules the memory accessed during
different pipeline stages reducing the simultaneous access
pressure. Their approach improves the pipelining performance
by 43% on average and reduces memory bank usage by 55%.
Another way to reduce memory access overhead is discussed in
[61]. The paper presents a novel algorithm to scalarize arrays
selectively to on-chip registers within certain area constraints.
The results indicate significant performance improvements.

One method to enable more efficient HLS is by identifying
custom operations that are merged from sequential basic
operations. This reduces the complexity of the data flow graph
of the synthesized algorithm, which in turn reduces synthesis
runtime and improves the QoR. This method has been studied
in [62], achieving significant improvements in area
consumption, performance, and code size. Therefore, HLS tools
should include custom operation identification as a pre-
processing step.

Resource allocation and operation binding are two of the
basic steps in HLS. Thus, their efficient implementation is of
critical importance in achieving good QoR. In [63], the effect
of register allocation has been investigated. The paper shows
that in most cases a naïve resource allocation strategy, i.e. one
register per variable without register sharing leads to the best
QoR results.

HLS tools use a software compiler to create an intermediary
representation (IR) of the input program. The IR is then used in
the HLS optimization steps. It is not surprising that the IR and
thus the compiler options affect the QoR. The authors in [64]
have studied the effect of different compiler options on the QoR
and developed a method to automatically select only those
options that improve the QoR, achieving on average a 16%
better performance compared to the usual –O3 optimization
level.

In [65], it is observed that significant area savings can be
achieved by merging different behavioral descriptions instead
of performing HLS for each of them separately. This is due to
allowing better resource sharing of functional units on FPGA
when the HLS tool can share them between descriptions. The
paper presents an algorithm for searching for optimal mergings
within given latency constraints.

C. Design Space Exploration
The HLS tools contain various directives that can guide the

hardware synthesis to generate designs that are more efficient.
These directives include pipelining and unrolling of loops and
array partitioning among others. Since most algorithms contain

numerous loops and data arrays, finding the group of Pareto
optimal directive settings can be a daunting task, yet it is
essential for good QoR. Exploring the design space for optimal
settings should therefore be automated, but currently the
leading HLS tools do not help the user in DSE. On the other
hand, there are a few academic papers that have studied the DSE
automation in HLS.

A straightforward automated iterative DSE methodology is
presented in [66]. The method, which focuses on area reduction,
achieves up to 50% improvement in the QoR when compared
to non-guided HLS flow. A more complicated DSE algorithm,
based on an adaptive windowing method, is shown in [67]. This
algorithm is shown to offer a good trade-off between running
time and finding the best QoR. A similar approach specializing
on applications with nested loops has demonstrated up to 235×
speed-up compared to exhaustive DSE, while achieving similar
results [68].

A sequential model-based optimization has been applied to
the DSE problem in [69]. The paper shows that the method can
find globally optimal points from a space of tens of thousands
of possible designs in reasonable time. In [70], a lightweight
pre-processing step has been added before HLS to perform
dynamic dependence analysis of the target algorithm. The
method can expose resource sharing opportunities that result in
better QoR when they are given as constraints to the HLS tool.

The specific but important question of finding the optimal
loop unrolling factor has been discussed in [71]. The authors
have developed an algorithm for finding the optimal unrolling
factor within given area constraint and show that it can provide
the best performance compared to other possible solutions.

D. Verification
Verification remains a time-consuming part of any design

project. Therefore, it is crucial that the HLS tools support the
verification flow on all stages. While the HLS flow allows for
efficient behavioral verification of single modules, the
generated RTL must still be verified for non-behavioral aspects
such as interface synthesis results and successful component
integration. Traditional RTL verification after HLS is difficult
since there is no direct relationship to the input source code [4],
[5], [8]. Nevertheless, verification time has been halved in
many cases using HLS [72].

The verification aspects of HLS have been extensively
discussed in a recent paper [72]. The author points out that logic
redundancy, which lowers test coverage, is a major problem
with HLS. Logic redundancies may be present in the source
specification but also introduced by the HLS tool in the RTL
generation. Thus, the developers of the HLS tools should strive
to eliminate the tendency to generate logic redundancy. Besides
that, formal tools can be used to identify the redundancies
during verification. The paper also promotes source linting as a
way to improve HLS. Not only can it be used to check for error
sources, but also to help with the design optimization by
proving properties such as FIFO sizes.

The authors in [5] present three noteworthy items to enable
most of the debugging to occur on the behavioral input
language level for on-chip validation: 1) the ability to add

TCAD-2017-0366 11

debugging logic with small overhead, 2) the ability to observe
critical buffers such as FIFOs, and 3) the ability to observe the
internal states of hardware blocks using breakpoints in the
source code. These important debugging features cannot be
implemented on the RTL level after performing HLS because
of the machine-generated RTL code.

Besides verification, engineering change orders (ECOs)
present difficulties with HLS [4]. When an ECO is issued, only
some small incremental changes are required, which are
typically not captured by the high-level behavioral description.
On the other hand, it has been noted that since the behavioral
source code can be extensively verified and the HLS tools
ensure that the generated RTL is correct, ECOs are uncommon
in HLS flows [66].

VII. CONCLUSION

In this paper, we examined 46 recent articles about
comparisons on the QoR and design effort between HLS and
RTL design flows. As HLS promises great productivity gains
over RTL, our aim was to see whether the contemporary HLS
tools are also able to produce results that can compete with hand
tuned RTL designs.

Our survey indicates that even the newest generation of HLS
tools does not provide as good performance and resource usage
as manual RTL does. However, there is a great variance in the
results and HLS is shown to equal or outperform RTL approach
in about 40% of the evaluated cases. Our own case study
demonstrates that a designer with limited hardware experience
can obtain better results with HLS, with 2.5 times more
performance and slightly lower FPGA resource usage. We also
examined whether the size of the design affected the relative
QoR between HLS and RTL, but found no correlation. Thus,
HLS seems as suited for small as large designs.

In design effort, the survey showed that HLS was clearly the
frontrunner as expected. On average, the HLS design time was
only a third of the corresponding RTL design time. In addition,
the size of the HLS input code was almost halved, being 52%
of the RTL code size on average. When taking into account both
the QoR and the design effort, we found out that a designer gets
on average 4.4 times as high performance per design hour using
HLS than RTL. Our own case study supported this argument by

reporting 6.0 times increase in productivity. Thus, HLS is a
particularly good choice when time to market is a dominant
issue and there is no compelling need to gain the ultimate
performance or smallest resource usage for the product. HLS
also offers tremendous time savings when architectural changes
are made to an existing design.

In our reference literature, there was often lacking
information, which made the HLS to RTL comparisons more
challenging. Therefore, our case study also demonstrated the
best practices in reporting HLS and RTL results for the same
application. Preferably, the test group should be larger than we
had at our disposal, but our test case still shows the essential
details that we recommend reporting in this kind of research. In
the future, a similar case study could be carried out with a test
group with more hardware expertise. While our study shows
that people with limited hardware experience can easily adopt
HLS and produce good results, it would also be interesting to
see how the productivity and QoR differences behaved with
hardware engineers as test persons.

Verification effort comparisons were also often missing from
the surveyed papers. Most often, there was only a brief note on
how HLS tools allow convenient use of behavioral test bench
in RTL verification. As verification is a major part of any
hardware project, this is a significant oversight in the state of
HLS research. Therefore, in the future, more quantitative
studies should be carried out on HLS vs. RTL verification
flows.

We also surveyed the literature for both suggestions and
completed research for improving the QoR and verification
flow of HLS. We found numerous papers that showed methods
to improve the QoR significantly by adding new steps to the
HLS design flow or by automating the design space
exploration.

With the progress achieved in HLS tools during the last
decade, we can conclude that the methodology is ready for
adoption by the industry in prototyping and fast product
development. If the next generation of HLS tools can close the
QoR gap entirely, then HLS will become the new standard
design method, and RTL can be targeted at similar limited fine-
tuning as assembly languages in software development today.

APPENDIX

TABLE IX
SUMMARY OF THE REVIEWED PAPERS

[#] Year HLS tools Modules or algorithms Number of
applications

LoC Dev.
time

Performance Basic FPGA
Resources

[5] 2011 AutoPilot Multi-I/O sphere decoder 1 x x
[8] 2016 Undisclosed AES encryption 1 x x
[9] 2014 Catapult-C K-means accelerator, histogram map/reduce,

matrix mult., word count
5 x x

[10] 2016 Vivado Data pinning, step row filter, Sobel filter 3 x x x
[11] 2013 Vivado Matrix multiplication 3 x x x
[12] 2015 Vivado, LegUp, Simulink HDL HEVC 2D IDCT 3 x x

TCAD-2017-0366 12

TABLE IX CONT.

REFERENCES

[1] “International technology roadmap for semiconductors, 2011 edition,
design,” ITRS. 2011. [Online] Available: https://www.dropbox.com/
sh/r51qrus06k6ehrc/AACQYSRnTdLGUCDZFhB6_iXua/2011Chap
ters?dl=0&preview=2011Design.pdf

[2] G. Martin and G. Smith, “High-level synthesis: past, present, and
future,” IEEE Des. Test. Comput., vol. 26, no. 4, pp. 18-25, Jul. 2009.

[3] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An
introduction to high-level synthesis,” IEEE Des. Test. Comput., vol.
26, no. 4, pp. 8-17, Jul. 2009.

[4] H. Ren, “A brief introduction on contemporary high-level synthesis,”
in 2014 IEEE Int. Conf. IC Design & Technology, Austin, TX, pp. 1-
4.

[5] J. Cong et al., “High-Level Synthesis for FPGAs: From Prototyping to
Deployment,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 30, no. 4, pp. 473-491, Apr. 2011.

[6] S. Windh et al., “High-level language tools for reconfigurable
computing,” Proc. IEEE, vol. 103, no. 3, pp. 390-408, Mar. 2015.

[7] R. Nane et al., “A survey and evaluation of FPGA high-level synthesis
tools,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35,
no. 10, pp. 1591-1604, Oct. 2016.

[8] Z. Sun, K. Campbell, and W. Zuo, “Designing high-quality hardware
on a development effort budget: A study of the current state of high-
level synthesis,” in 2016 21st Asia and South Pacific Design
Automation Conf., Macao, pp. 218-225.

[9] M. Sharafeddin et al., “On the efficiency of automatically generated
accelerators for reconfigurable active SSDs,” in 2014 26th Int. Conf.
Microelectronics, Doha, pp. 124-127.

[10] A. Cortes, I. Velez, and A. Irizar, “High level synthesis using Vivado
HLS for Zynq SoC: Image processing case studies,” in 2016 Conf.
Design Circuits and Integrated Systems, Granada, pp. 1-6.

[11] S. Skalicky, C. Wood, M. Lukowiak, and M. Ryan, “High level
synthesis: Where are we? A case study on matrix multiplication,” in
2013 Int. Conf. Reconfigurable Computing and FPGAs, Cancun, pp.
1-7.

[12] E. Kalali and I. Hamzaoglu, “FPGA implementations of HEVC inverse
DCT using high-level synthesis,” in 2015 Conf. Design and
Architectures Signal and Image Processing, Krakow.

[13] 2014 Vivado, Catapult-C Predict ive block-based motion estimation 8 x x x x
[14] 2014 Altera OpenCL, BlueSpec,

Chisel, LegUp
Bitonic sorter, spatial sorter,
median operator, hash join

16 x x x

[15] 2016 Cadence C-to-Silicon Semi-global matching algorithm for stereo vision 4 x x
[16] 2011 Xilinx System Generator for DSP,

Simulink HDL
Hybrid RAKE receiver for DS-UWB communicat ion 2 x

[17] 2011 Xilinx System Generator for DSP,
Simulink HDL

Adaptive impulsive noise filtering 3 x x

[18] 2014 Vivado 128-bit key AES-CTR cryptography 6 x x
[23] 2010 BlueSpec, unspecified Reed-Solomon decoder for 802.16 protocol receiver 2 x x
[24] 2010 ROCCC 2.0 Ten small separate applications 10 x x x x
[25] 2010 Impulse-C Computed tomography filtered backproject ion 2 x x
[26] 2010 AccelDSP Image preprocessing coprocessor 1 x x x
[27] 2011 HCE Reverse time migration for solving a wave equation 1 x x x
[28] 2011 AutoESL AutoPilot Sphere detector for spatial multiplexing MIMO 1 x x
[29] 2012 Cadence C-to-Silicon Hardware-based run-time monitors 4 x x
[30] 2012 HCE GRN generator for Brownian motion simulation 1 x x x
[31] 2012 Chisel 3-stage 32-bit RISC processor 2 x
[32] 2013 Vivado K means clustering 2 x x
[33] 2013 Vivado Operating system scheduler 1 x x
[34] 2013 Vivado Buck converter closed-loop control 1 x x
[35] 2013 Catapult-C IEEE 802.15.4 physical layer for SW defined radio 1 x
[36] 2013 MaxCompiler LDPC decoder 1 x
[37] 2013 Vivado Skin detection image processing system 1 x
[38] 2013 Vivado Convolution, background subtraction 2 x x x
[39] 2014 Altera OpenCL, Vivado Tri-diagonal linear system solver 2 x x
[40] 2014 Vivado 10 Gb/s network flow monitor 1 x x x
[41] 2014 Undisclosed Floating-point unit co-processor 3 x
[42] 2014 CAPH Toolset MPEG encoder core 1 x x x
[43] 2014 Vivado Memcached key-value store 1 x x x
[44] 2014 CAPH Toolset Histograms of oriented gradients 1 x x
[45] 2015 Undisclosed Microwave imaging via space-time beamforming 1 x
[46] 2015 LegUp MIPS ISA processor 2 x x
[47] 2015 Convey Hybrid-Threading Sobel edge detector, breadth-first search,

Smith-Waterman sequence alignment
3 x x x x

[48] 2015 Altera OpenCL Canny edge detector, Sobel edge detector,
SURF feature extraction

6 x x x

[49] 2015 HIPAcc & Vivado Stereo vision block matching 1 x x
[50] 2015 HIPAcc & Vivado Stereo block matching 2 x x
[51] 2015 Vivado Non-binary LDPC decoder 1 x
[52] 2016 Cadence Stratus HLS Direct memory access controller 1 x x x
[53] 2016 Vivado HEVC sub-pixel interpolat ion 1 x x
[54] 2016 Vivado HEVC intra predict ion 1 x x
[55] 2016 C2RTL Bilateral filter for image denoising 1 x x
[56] 2016 Vivado SURF algorithm 1 x x

The "x" marks denote what information was given in the papers

TCAD-2017-0366 13

[13] G. Schewior, C. Zahl, and H. Blume, “HLS-based FPGA
implementation of a predictive block-based motion estimation
algorithm — A field report,” 2014 Conf. Design and Architectures
Signal and Image Processing, Madrid, pp. 1-8.

[14] O. Arcas-Abella et al., ”An empirical evaluation of High-Level
Synthesis languages and tools for database acceleration,” in 2014 24th

Int. Conf. Field Programmable Logic and Applications, Munich, pp.
1-8.

[15] A. Qamar, F. Muslim, F. Gregoretti, L. Lavagno, and M. T. Lazarescu,
“High-level Synthesis for Semi-global Matching: Is the juice worth the
squeeze?,” IEEE Access, vol. 4, no. 99, Dec. 2016.

[16] C. Thomos and G. Kalivas, “FPGA-based architecture and
implementation techniques of a low-complexity hybrid RAKE
receiver for a DS-UWB communication system,” Telecommunication
Systems, vol. 52, no. 4, pp. 2115-2132, Apr. 2013.

[17] A. Rosado-Munoz, M. Bataller-Mompean, E. Soria-Olivas, C.
Scarante, and J. F. Guerrero-Martinez, “FPGA Implementation of an
Adaptive Filter Robust to Impulsive Noise: Two Approaches,” IEEE
Trans. Ind. Electron., vol. 58, no. 3, pp. 860-870, Mar. 2011.

[18] E. Homsirikamol and K. Gaj, “Can high-level synthesis compete
against a hand-written code in the cryptographic domain? A case
study,” in 2014 Int. Conf. Reconfigurable Computing and FPGAs,
Cancun, pp. 1-8.

[19] D. F. Bacon, R. Rabbah, S. Shukla, “FPGA Programming for the
masses,” ACM Queue, vol. 11, no. 2, Feb. 2013.

[20] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M. Sadafale,
“Core transform design in the High Efficiency Video Coding (HEVC)
standard,” IEEE J. Sel. Top. Signal Process., vol. 7, no. 6, pp. 1029-
1041, Dec. 2013.

[21] High Efficiency Video Coding, document ITU-T Rec. H.265 and
ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[22] Joint Collaborative Team on Video Coding Reference Software, ver.
HM 16.3 [Online]. Available: http://hevc.hhi.fraunhofer.de/

[23] A. Agarwal, M. C. Ng, and Arvind, “A Comparative Evaluation of
High-Level Hardware Synthesis Using Reed–Solomon Decoder,”
IEEE Embedded Systems Letters, vol. 2, no. 3, pp. 72-76, Sep. 2010.

[24] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing Modular
Hardware Accelerators in C with ROCCC 2.0,” in 2010 18th IEEE
Annu. Int. Symp. Field-Programmable Custom Computing Machines,
Charlotte, NC, pp. 127-134.

[25] J. Xu, N. Subramanian, A. Alessio, and S. Hauck, “Impulse C vs.
VHDL for Accelerating Tomographic Reconstruction,” in 2010 18th

IEEE Annu. Int. Symp. Field-Programmable Custom Computing
Machines, Charlotte, NC, pp. 171-174.

[26] M. Samarawickrama, R. Rodrigo, and A. Pasqual, “HLS approach in
designing FPGA-based custom coprocessor for image preprocessing,”
in 2010 5th Int. Conf. Information and Automation Sustainability,
Colombo, pp. 167-171.

[27] T. Hussain, M. Pericás, N. Navarro, and E. Ayguadé, “Implementation
of a Reverse Time Migration kernel using the HCE High Level
Synthesis tool,” in 2011 Int. Conf. Field-Programmable Technology,
New Delhi, pp. 1-8.

[28] J. Noguera et al., “Implementation of sphere decoder for MIMO-
OFDM on FPGAs using high-level synthesis tools,” Analog Integrated
Circuits and Signal Processing, vol. 69, no. 2-3, Sep. 2011.

[29] M. Ismail and G. E. Suh, “Fast development of hardware-based run-
time monitors through architecture framework and high-level
synthesis,” in 2012 IEEE 30th Int. Conf. Computer Design, Montreal,
QB, pp. 393-400.

[30] J. S. Malik, P. Palazzari, A. Hemani, “Effort, resources, and
abstraction vs performance in high-level synthesis, finding new
answers to an old question,” ACM SIGARCH Computer Architecture
News, vol. 40, no. 5, pp. 64-69, Mar. 2012.

[31] J. Bachrach, H. Vo, and B. Richards, “Chisel: Constructing hardware
in a Scala embedded language,” in 2012 49th ACM/EDA/IEEE Design
Automation Conf., San Francisco, CA, pp. 1212-1221.

[32] F. Winterstein, S. Bayliss, and G. A. Constantinides, “High-level
synthesis of dynamic data structures: A case study using Vivado HLS,”
in 2013 Int. Conf. Field-Programmable Technology, Kyoto, pp. 362-
365.

[33] J. Dahlstrom, and S. Taylor, “Migrating an OS Scheduler into Tightly
Coupled FPGA Logic to Increase Attacker Workload,” in 2013 IEEE
Military Communications Conf., San Diego, CA, pp. 986-991.

[34] D. Navarro, O. Lucia, L.A. Barragan, I. Urriza, and J. I. Artigas,
“Teaching digital electronics courses using high-level synthesis tools,”

in 2013 7th IEEE Int. Conf. e-Learning Industrial Electronics, Vienna,
pp. 43-47.

[35] V. Bhatnagar, G. S. Ouedraogo, M. Gautier, A. Carer, and O. Sentieys,
“An FPGA Software Defined Radio Platform with a High-Level
Synthesis Design Flow,” in 2013 IEEE 77th Vehicular Technology
Conf., Dresden, pp. 1-5.

[36] F. Pratas, J. Andrade, G. Falcao, V. Silva, and L. Sousa, “Open the
Gates: Using High-level Synthesis towards programmable LDPC
decoders on FPGAs,” in 2013 IEEE Global Conf. Signal and
Information Processing, Austin, TX, pp. 1274-1277.

[37] D. O’Loughlin, A. Coffey, F. Callaly, D. Lyons, and F. Morgan,
“Xilinx Vivado High Level Synthesis: Case studies,” in 25th IET Irish
Signals & Systems Conf. 2014 and 2014 China-Ireland Int. Conf.
Information and Communications Technologies, Limerick, pp. 352-
356.

[38] J. Hiraiwa and H. Amano, “An FPGA Implementation of
Reconfigurable Real-Time Vision Architecture,” in 2013 27th Int.
Conf. Advanced Information Networking and Applications Workshops,
Barcelona, pp. 150-155.

[39] D.J. Warne, N.A. Kelson, and R.F. Hayward, “Comparison of High
Level FPGA Hardware Design for Solving Tri-diagonal Linear
Systems,” Procedia Computer Science, vol. 29, pp. 95-101, 2014.

[40] M. Forconesi, G. Sutter, S. Lopez-Buedo, J. E. Lopez de Vergara, and
J. Aracil, “Bridging the gap between hardware and software open
source network developments,” IEEE Network, vol. 28, no. 5, pp. 13-
19, Sep. 2014.

[41] C-I. Chen, C-Y. Yu, Y-J. Lu, and C-F. Wu, “Apply high-level
synthesis design and verification methodology on floating-point unit
implementation,” in 2014 Int. Symp. VLSI Design, Automation and
Test, Hsinchu.

[42] J. Sérot and F. Berry, “High-Level Dataflow Programming for
Reconfigurable Computing,” in 2014 Int. Symp. Computer
Architecture and High Performance Computing Workshop, Paris, pp.
72-77.

[43] K. Karras, M. Blott, and K. Vissers, “High-Level Synthesis Case
Study: Implementation of a Memcached Server,” in 1st Int. Workshop
FPGAs Software Programmers, Munich, 2014, pp. 77-82.

[44] J. Sérot, F. Berry, and C. Bourrasset, “High-level dataflow
programming for real-time image processing on smart cameras,”
Journal of Real-Time Image Processing, vol. 12, no. 4, pp. 635-647,
Dec. 2016.

[45] D. J. Pagliari, M. R. Casu, and L. P. Carloni, “Acceleration of
microwave imaging algorithms for breast cancer detection via High-
Level Synthesis,” in 2015 33rd IEEE Int. Conf. Computer Design,
New York, NY, pp. 475-478.

[46] T. Ahmed, N. Sakamoto, and J. Anderson, “Synthesizable-from-C
Embedded Processor Based on MIPS-ISA and OISC,” in 2015 IEEE
13th Int. Conf. Embedded and Ubiquitous Computing, Porto, pp. 114-
123.

[47] G. Wang, H. Lam, and A George, “Performance and productivity
evaluation of hybrid-threading HLS versus HDLs,” in 2015 IEEE High
Performance Extreme Computing Conf., Waltham, MA.

[48] K. Hill, S. Craciun, A. George, and H. Lam, “Comparative analysis of
OpenCL vs. HDL with image-processing kernels on Stratix-V FPGA,”
in 2015 IEEE 26th Int. Conf. Application-specific Systems,
Architectures and Processors, Toronto, ON, pp. 189-193.

[49] M. Schmid, O. Reiche, F. Hannig, and J. Teich, “Loop coarsening in
C-based High-Level Synthesis,” in 2015 IEEE 26th Int Conf.
Application-Specific Systems, Architectures and Processors, Toronto,
ON, pp. 166-173.

[50] O. Reiche et al., “Automatic Optimization of Hardware Accelerators
for Image Processing,” in DATE Friday Workshop Heterogeneous
Architectures and Design Methods for Embedded Image Systems,
Grenoble, 2015, pp. 10-15.

[51] J. Andrade, N. George, and K. Karras, “From low-architectural
expertise up to high-throughput non-binary LDPC decoders:
Optimization guidelines using high-level synthesis,” in 2015 25th Int.
Conf. Field Programmable Logic and Applications, London, pp. 1-8.

[52] Q. Zhu and M. Tatsuoka, “High quality IP design using high-level
synthesis design flow,” in 2016 21st Asia and South Pacific Design
Automation Conf., Macao, pp. 212-217.

[53] F.A Ghani, E. Kalali, and I. Hamzaoglu, “FPGA implementations of
HEVC sub-pixel interpolation using high-level synthesis,” in 2016 Int.
Conf. Design and Technology of Integrated Systems Nanoscale Era,
Istanbul.

TCAD-2017-0366 14

[54] E. Kalali, I. Hamzaoglu, “FPGA implementation of HEVC intra
prediction using high-level synthesis,” in 2016 IEEE 6th Int. Conf.
Consumer Electronics, Berlin, pp. 163-166.

[55] I. Endo, T. Isshiki, D. Li, and H. Kunieda, “A design method for real-
time image denoising circuit using High-Level Synthesis,” in 2016 7th
Int. Conf. Information and Communication Technology Embedded
Systems, Bangkok, pp. 30-35.

[56] W. Chen et al., “FPGA-Based Parallel Implementation of SURF
Algorithm,” in 2016 IEEE 22nd Int. Conf. Parallel and Distributed
Systems, Wuhan, pp. 308-315.

[57] K. Rupnow, Y. Liang, Y. Li, and D. Chen, “A study of high-level
synthesis: Promises and challenges,” in 2011 9th IEEE Int. Conf. ASIC,
Xiamen, pp. 1102-1105.

[58] L. Josipovic, N. George, and P. Ienne, "Enriching C-based High-Level
Synthesis with parallel pattern templates," in 2016 Int. Conf. Field-
Programmable Technology, Xi'an, 2016, pp. 177-180.

[59] J. Matai, D. Lee, A. Althoff, and R. Kastner, "Composable,
parameterizable templates for high-level synthesis," in 2016 Design,
Automation & Test Europe Conference & Exhibition, Dresden, pp.
744-749.

[60] T. Lu, S. Yin, X. Yao, Z. Xie, L. Liu, and S. Wei, "Memory
fartitioning-based modulo scheduling for high-level synthesis," in
2017 IEEE Int. Symp. Circuits and Systems (ISCAS), Baltimore, MD,
pp. 1-4.

[61] P. R. Panda, N. Sharma, A. K. Pilania, G. Krishnaiah, S. Subramoney,
and A. Jagannathan, "Array scalarization in high level synthesis," in
2014 19th Asia and South Pacific Design Automation Conf.,
Singapore, pp. 622-627.

[62] C. Xiao and E. Casseau, "Improving high-level synthesis effectiveness
through custom operator identification," in 2014 IEEE Int. Symp.
Circuits and Systems, Melbourne VIC, pp. 161-164.

[63] G. Hempel, J. Hoyer, T. Pionteck, and C. Hochberger, "Register
allocation for high-level synthesis of hardware accelerators targeting
FPGAs," in 2013 8th Int. Workshop Reconfigurable and
Communication-Centric Systems-on-Chip, Darmstadt, 2013, pp. 1-6.

[64] Q. Huang et al., "The Effect of Compiler Optimizations on High-Level
Synthesis for FPGAs," in 2013 IEEE 21st Annual Int. Symp. Field-
Programmable Custom Computing Machines, Seattle, WA, pp. 89-96.

[65] B. Carrion Schafer, "Process selection for maximum resource sharing
in High-Level Synthesis," in 2015 Electronic System Level Synthesis
Conf., San Francisco, CA, pp. 35-40.

[66] J. S. da Silva and S. Bampi, "Area-oriented iterative method for Design
Space Exploration with High-Level Synthesis," in 2015 IEEE 6th
Latin American Symp. Circuits & Systems, Montevideo, pp. 1-4.

[67] D. Liu and B. C. Schafer, "Efficient and reliable High-Level Synthesis
Design Space Explorer for FPGAs," in 2016 26th Int. Conf. Field
Programmable Logic and Applications, Lausanne, pp. 1-8.

[68] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, "Design
space exploration of multiple loops on FPGAs using high level
synthesis," in 2014 IEEE 32nd Int. Conf. Computer Design, Seoul, pp.
456-463.

[69] C. Lo and P. Chow, "Model-based optimization of High Level
Synthesis directives," in 2016 26th Int. Conf. Field Programmable
Logic and Applications, Lausanne, pp. 1-10.

[70] R. Garibotti, B. Reagen, Y. S. Shao, G. Y. Wei, and D. Brooks, "Using
dynamic dependence analysis to improve the quality of high-level
synthesis designs," in 2017 IEEE Int. Symp. Circuits and Systems,
Baltimore, MD, pp. 1-4.

[71] R. Nane, V. M. Sima, and K. Bertels, "Area constraint propagation in
high level synthesis," in 2012 Int. Conf. Field-Programmable
Technology, Seoul, pp. 247-252.

[72] A. Takach, “High-level Synthesis: Status, Trends, and Future
Directions,” IEEE Design & Test, vol. 33, no. 3, pp. 116-124, Jun.
2016.

Sakari Lahti (S’16) received the M.Sc.
degree in engineering physics from the
Tampere University of Technology (TUT),
Tampere, Finland in 2002 and in computer
engineering in 2014.
 From 2000 to 2002, he was a Research
Assistant with the Department of Physics,

TUT, and from 2012 to 2014 with the Department of Pervasive
Computing, TUT. Since 2015, he has been a doctoral student at
the Laboratory of Pervasive Computing, TUT, where he works
as a university teacher. His research interests include high-level
synthesis on FPGA, and hardware and system-on-chip
designing.

Panu Sjövall (S’17) received the M.Sc
degree in automation engineering from the
Tampere University of Technology (TUT),
Tampere, Finland in 2015.
 He was a Research Assistant with the
Department of Pervasive Computing in
TUT from 2014 to 2016, and briefly a
Project Researcher with the Department of
Pervasive Computing in 2016. Since 2016,

he has been a doctoral student at the Laboratory of Pervasive
Computing, TUT. His research interests include hardware and
system-on-a-chip designing, high-level synthesis, FPGAs,
Linux kernel driver development and video encoding.

Jarno Vanne (M’02) received the M.Sc.
degree in information technology and the
Ph.D. degree in computing and electrical
engineering from the Tampere University
of Technology (TUT), Tampere, Finland,
in 2002 and 2011, respectively.

He is currently an Assistant Professor in
the Laboratory of Pervasive Computing,
TUT. He leads the Ultra Video Group that

develops open-source Kvazaar HEVC encoder and related
multimedia applications on various computing platforms
ranging from low-power embedded devices to highly
distributed cloud environments. His special research interests
include real-time HEVC coding, 3D/360 video coding for
virtual and augmented reality, future video coding standards,
intelligent video compression, and high-level synthesis.

Timo D. Hämäläinen (M’95) received the
M.Sc. and Ph.D. degrees in electrical
engineering from the Tampere University
of Technology (TUT), Tampere, Finland, in
1993 and 1997, respectively.

He is currently a full professor and head
of the Laboratory of Pervasive Computing
in TUT. He is an author of more than 70

journals and 240 conference publications. He holds several
patents. His current research interests include model based
design methods for multiprocessor systems-on-chip, Kactus2
open source IP-XACT based system design tool with new
visualization paradigms and FPGA accelerated cloud
computing for video processing.

PUBLICATION

V

Kvazaar 4K HEVC intra encoder on FPGA accelerated air-frame server

P. Sjövall, V. Viitamäki, A. Oinonen, J. Vanne, T. D. Hämäläinen, and A. Kulmala

In Proceedings of IEEE International Workshop on Signal Processing Systems, Lorient, France,
Oct. 2017

DOI: 10.1109/SiPS.2017.8109999

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/SiPS.2017.8109999

Kvazaar 4K HEVC Intra Encoder on FPGA

Accelerated Airframe Server

Panu Sjövall, Vili Viitamäki, Arto Oinonen, Jarno

Vanne, Timo D. Hämäläinen

Laboratory of Pervasive Computing
Tampere University of Technology

Tampere, Finland

Ari Kulmala

Accelerator SoC R&D

Nokia

Tampere, Finland

Abstract— This paper presents a real-time Kvazaar HEVC

intra encoder for 4K Ultra HD video streaming. The encoder is

implemented on Nokia AirFrame Cloud Server featuring a 2.4

GHz dual 14-core Intel Xeon processor and Arria 10 PCI Express

FPGA accelerator card. In our HW/SW partitioning scheme, the

data-intensive Kvazaar coding tools including intra prediction,

DCT, inverse DCT, quantization, and inverse quantization are

offloaded to Arria 10 whereas CABAC coding and other control-

intensive coding tools are executed on Xeon processors. Arria 10

has enough capacity for up to two instances of our intra coding

accelerator. The results show that the proposed system is able to

encode 4K video at 30 fps with a single intra coding accelerator

and at 40 fps with two accelerators. The respective speed-up

factors are 1.6 and 2.1 over the pure Xeon implementation. To the

best of our knowledge, this is the first work dealing with HEVC

intra encoder partitioned between CPU and FPGA. It achieves the

same coding speed as HEVC intra encoders on ASIC and it is at

least 4 times faster than existing HEVC intra encoders on FPGA.

Keywords— High Efficiency Video Coding (HEVC), Kvazaar,

Intra coding, Field-programmable gate array (FPGA), PCI Express

(PCIe), Real-time

I. INTRODUCTION

Internet video traffic is forecast to grow threefold in five
years from that of 2015 and video is estimated to account for
82% of all global consumer Internet traffic by 2020 [1]. This
growth comes from new end users and multimedia applications
entering the market but also from higher video dimensions,
resolutions, frame rates, and color depths. Despite the fast
progress of network capacities, the holistic increase of video
volume makes more efficient video compression inevitable.

High Efficiency Video Coding (HEVC/H.265) [2], [3] is the
latest international video coding standard developed to meet
video storage and transmission needs of modern multimedia
applications. HEVC is published as twin text by ITU, ISO, and
IEC as ITU-T H.265 | ISO/IEC 23008-2. This paper addresses
all-intra (AI) coding configuration [4] of HEVC Main Profile.
HEVC is shown to improve intra coding efficiency by 23% over
that of the preceding state-of-the-art standard AVC/H.264 [5] for
the same objective quality but at a cost of over 3 × encoding
complexity [6]. Therefore, implementing a real-time HEVC
intra encoder with a reasonable coding efficiency,
implementation cost, and power budget requires efficient
encoder optimizations and powerful computing platforms.

The complexity of software (SW) HEVC encoders can be
primarily tackled by two techniques: multithreading through
data-level parallelism [7], [8] and single instruction multiple
data (SIMD) optimizations [9], [10]. Further speedup and lower
power dissipation can be obtained by offloading the compute-
intensive coding tools to hardware (HW) accelerators or
implementing the entire HEVC encoder on HW [11]-[14].
Existing HW encoders include both application specific
integrated circuit (ASIC) [11], [12] and field-programmable
gate array (FPGA) implementations [12]-[14].

The main motivation of this work was to optimize our
Kvazaar HEVC intra encoder [15], [16], for real-time 4K Ultra
High Definition (UHD) coding on Nokia AirFrame Cloud
Server. Airframe includes a 2.4 GHz dual 14-core Xeon
processor an Arria 10 PCI Express (PCIe) FPGA accelerator
card. Airframe rackmount server is easily expandable to large
server farms and an accompanied FPGA brings lots of additional
computing power for a single server. Cloud video encoding on
servers like AirFrame has gained a lot of traction in the recent
years because of the advent of cloud gaming, telco clouds, and
edge computation in general.

Our previous works have already investigated parallelization
of Kvazaar intra encoder on multi-core processors [8] and SIMD
optimizations of Kvazaar [10], so the main emphasis here is on
1) HW/SW partitioning of Kvazaar; and 2) HW acceleration of
Kvazaar on FPGA. The HW-oriented C source code of Kvazaar
enables more straightforward HW/SW partitioning than other
eligible open-source HEVC encoders [17], [18]. Kvazaar code
is also written at a suitable abstraction level for high-level
synthesis (HLS) [19] that enables automatic hardware
description language (HDL) generation from C. In this work,
our intra coding accelerator is implemented using Catapult C
[20] HSL tool. Through HLS, the code is more readable, design
and verification times are shorter, and the design reusability is
far better than with handwritten HDL equivalents.

The rest of this paper is organized as follows. Section 2 gives
an overview of the adopted CPU + FPGA platform and the
proposed SW/HW partitioning of Kvazaar on it. Section 3
describes the Kvazaar functionality on CPU, Section 4 the
communication between CPU and FPGA, and Section 5 the
implemented intra coding accelerator on FPGA. In Section 5, the
speedup of HW acceleration is benchmarked against SW only
encoding using 2160p (3840 × 2160) and 1080p (1920 × 1080)
test videos. Section 6 concludes the paper.

II. SYSTEM OVERVIEW

Fig. 1 shows the block diagram of the underlying CPU +
FPGA platform on which Kvazaar encoder is implemented. The
backbone of the system is Nokia AirFrame server [21] with two
Xeon E5-2680 v4 processors and 256 GB of memory. Arria 10
FPGA accelerator card is connected to the CPU via a PCIe bus.
The operating system is CentOS 6.8.

A. Kvazaar HEVC Intra Encoder

Kvazaar [15] is an academic cross-platform open-source
HEVC encoder. It contains all integral coding tools of HEVC
and its modular code facilitates parallelization on multi and
manycore processors as well as algorithm acceleration on HW.

Kvazaar intra encoder supports HEVC Main profile for 8-bit
4:2:0 video with ten presets out of which fast and medium presets
are used in this work for their favorable cost-performance
characteristics. Table I tabulates the settings of these presets.
The medium preset is utilized without rate-distortion optimized
quantization (RDOQ). Kvazaar implements a basic HEVC block
partitioning structure in which the pictures are partitioned into
coding tree units (CTUs) of size 64 × 64. CTUs can be optionally
divided into four equal-sized blocks and the division can be
recursively continued until the maximum hierarchical depth of
the HEVC quadtree is reached. The leaf nodes of the quadtree
are called coding units (CUs).

The proposed implementation of Kvazaar offers two
schemes for parallel CTU coding: 1) Wavefront Parallel
Processing (WPP); and 2) picture-level parallel processing.
These schemes can be enabled concurrently.

B. Kvazaar Partitioning

Kvazaar is run on the platform under AI coding
configuration in which the main coding tools are intra prediction

(IP), discrete cosine transform (DCT), quantization (Q), inverse
Q (IQ), inverse DCT (IDCT), and context-adaptive binary
arithmetic coding (CABAC). In this work, the most
computationally intensive coding tools including IP, DCT, Q,
IQ, and IDCT are implemented with HLS and synthesized to
FPGA. CABAC and other control-intensive coding tools such a
control for WPP and for picture-level parallelism are executed
on CPU. In addition, CPU takes care of raw input video reading,
chrominance coding, and outputting the encoded bit stream.

Arria 10 FPGA has enough resources for two instances of
our intra coding accelerator including the needed peripherals and
on-chip memories. Mapping a major share of CTU coding to
FPGA could be utilized to decrease power dissipation through
lower CPU usage. However, we are aiming at the maximum
HEVC coding speed, so encoding parallelism is increased by
coding additional CTUs entirely in SW with released CPU
resources.

Fig. 1. Block diagram of the proposed encoder system with a single intra coding accelerator.

TABLE I. IMPLEMENTED CODING TOOLS OF KVAZAAR INTRA ENCODER

Feature Fast Medium (wo RDOQ)

Profile Main Main

Internal bit depth 8 8

Color format 4:2:0 4:2:0

Coding mode Intra Intra

Coding units 16×16, 8×8 64×64, 32×32, 16×16, 8×8

Prediction units 16×16, 8×8 32×32, 16×16, 8×8

Transform units 16×16, 8×8 32×32, 16×16, 8×8

IP modes 35 (DC, planar, 33 angular) 35 (DC, planar, 33 angular)

Intra Search Full Full

Transform Integer DCT Integer DCT

Mode decision Sum of absolute difference Sum of absolute difference

Parallelization WPP, Picture level WPP, Picture level

SAO Enabled Enabled

Signhide Disabled Disabled

Rate Control Disabled Disabled

RDO Disabled Disabled

RDOQ Disabled Disabled

III. FUNCTIONALITY ON XEON

On Xeon processors, Kvazaar is run in the user space and the
Linux driver in the kernel space. The Linux driver is used for the
CPU-PCIe-FPGA interfacing. It is accessed by Kvazaar via
ioctl, write, and read system calls.

A. User Space: Kvazaar

Kvazaar parallelization is implemented using a CPU thread
pool with a single CTU as the smallest work unit. The CTUs are
put in a queue in the order they would be processed in a single
threaded case, and the free worker threads start processing the
first CTU with no dependencies. In this work, a CTU search
function of Kvazaar is modified to offload a majority of coding
tasks to the HW accelerator on FPGA. Offloading is performed
through system calls to the kernel driver. A worker thread sends
its CTU data to the HW accelerator and sleeps until the
accelerator notifies that the CTU coding on FPGA is completed.
Then, the worker thread performs chrominance coding and
CABAC coding for the CTU according to the results from
FPGA. The threads not being able to be served by FPGA are
encoded on CPU. Intra coding on FPGA has the highest priority
for new CTUs and the CPU is used only when the pipeline of the
HW accelerator is full.

B. Kernel Space: Driver

Fig. 2 shows the sequence chart of system calls between
Kvazaar and the kernel driver. At first, Kvazaar calls the ioctl
function to request a free index from the driver, which returns a
nonnegative index if the HW accelerator can accept a new CTU
for encoding. The driver uses semaphores initialized to the
maximum CTU count supported by the accelerator. In the next
step, Kvazaar calls the write function to copy all necessary data
of the processed CTU to FPGA. The data being sent to FPGA is
aligned in consecutive virtual memory addresses in the user
space and in consecutive physical memory addresses in the
kernel space. A worker thread uses the read function to request
intra coding results for the CTU of interest. The thread will sleep
in the kernel space until the CTU of interest has finished and the
accelerator sends an interrupt signal. Both the write and read
system calls return the amount of bytes (length) read or written
successfully.

IV. INTERFACE BETWEEN XEON AND FPGA

Fig. 1 shows the FPGA interface made of the Avalon-MM
Hard IP for PCIe, separate Direct Memory Access (DMA) blocks
for reading and writing, and the on-chip memories of the intra
coding accelerator.

A. PCIe Interface

The CPU communicates with the FPGA via the PCIe bus.
The PCIe IP is configured to PCIe generation 3 × 4 with 128-bit
interface and 250 MHz application clock. The IRQ Buffer block
is used for generating the interrupt through the PCIe IP. The IRQ
buffer detects the rising edges of the CTU ready signals from the
intra coding accelerator and buffers them. The interrupt is
delayed until the CPU acknowledges the previous interrupt. This
is done in order to prevent two interrupts from happening in
consecutive cycles, which is a limitation of the PCIe IP.

B. DMAs

A single intra coding accelerator consists of two DMA
blocks. One DMA block is used for reading data from the shared
memory and the other one is for writing data to the shared
memory. This separation allows the DMA blocks to better utilize
the bandwidth of the PCIe interface to the CPU memory. Our
tests showed that this scheme increases the data transfer speed
by 54% compared with sequential reading and writing.

The accelerator utilizes Reader and Writer indexer blocks for
address translation. The blocks are configured with the CTU
index before the DMA transfers are started. The DMA blocks
read and write to consecutive memory addresses, but the
memory structure of the on-chip memories on FPGA requires
non-consecutive addresses depending on the index of the CTU.

C. On-Chip Memories

For each CTU, the HW accelerator requires the
corresponding reference pixels, information about the CU
borders (reconstructed pixels and modes), as well as the CTU
CABAC states. The reference pixels are used to calculate Sum
of Absolute Difference (SAD) values for intra mode selection and
Sum of Squared Differences (SSD) values for final mode
decision. CTU border pixels are used to calculate intra
predictions for the CUs on the CTU borders whereas border
modes are used as candidate modes when selecting the best intra
mode. The CABAC states are used for mode decision (MD).

There are also on-chip memories for the final reconstructed
pixels and quantized coefficients, which are flushed from the
intermediate buffer. The CU info contains the resulting modes
and depths from the accelerator. The RAM aligners are used as
wrappers with the on-chip memories because the PCIe interface
and the HW accelerator have different memory access widths.

Fig. 2. Message sequence chart between Kvazaar and the kernel driver.

V. INTRA CODING ON FPGA

Fig. 3 shows a block diagram of the intra coding accelerator.
It consists of the following units implemented with HLS.

A. Intra Coding Control (Ctrl)

The Ctrl unit receives instructions from the CPU. It is split
into Initialization, Scheduler, Start, and End blocks.

The Initialization block generates a full instruction set for
processing a CTU. The instruction set contains operations for
calculating IPs with different configurations and MD operations
for selecting a CTU configuration. The HW generates the
instruction set for each CTU individually.

The Scheduler block is responsible for the CTU
parallelization in the HW accelerator. It loads the valid
instructions for each CTU and selects the ones with the highest
priority for processing. The priority for each instruction is
determined so that there will be a minimal delay on the intra
coding pipeline.

The Start block processes instructions from the Scheduler in
order. It initializes the IP configuration for the CU according to
the input instruction and sends CU information to the Get Border
unit. It also notifies the CPU about finishing the CTU search if
it receives the instruction for terminating the search.

The End block is at the end of the intra coding pipeline, from
where it receives the search results. The results include the
selected intra mode, SSD, and the estimated coding cost of the
CU coefficients. The End block uses the results to calculate the
MD cost for every CU configuration and stores them to the
internal memory. With the MD instructions, the End block
determines the best CU partitioning for the CTU according to
stored cost values and flushes the pixels and the coefficients for
that configuration from the buffer.

B. Get Reference Border (Get Border)

The Get Border unit reads the reconstructed reference pixels
and sends them to the IP unit. It operates according to the
configuration data consisting of CU block size and coordinates
of the CU in the CTU. The coordinates are utilized when reading
reconstructed pixels, i.e., either the neighboring column on the
left to the CU or the neighboring row above the CU. The
reconstructed pixels are read from either the CTU memory or the
CTU borders memory, depending on the location of the CU
within the CTU.

C. Intra Prediction (IP)

The IP unit is composed of an IP control block, SAD block,
and the following IP blocks that predict 35 IP modes in parallel:
DC IP (mode 0), Planar IP (mode 1), Positive Angular IP (modes
2-9, 27-34), Negative Angular IP (modes 11-25), and Zero
Angular IP (modes 10, 26). All these IP blocks predict four
pixels at a time, i.e., 32 × 32 block is predicted in 256 cycles, 16
× 16 block in 64 cycles, etc. The IP unit used here is an improved
version of our previous IP accelerator presented in [22].

The IP unit operates according to the configuration data
consisting of the CU block size and the corresponding reference
pixels from the Get Border block. The IP control block filters
reference pixels if needed and configures all the IP blocks that
perform the prediction algorithm for a proper CU size, and all
angular IP blocks for the right angle. This configurability makes
the IP blocks more generic and easy to instantiate.

All angular IP blocks calculate the predicted pixels in
original order, so additional transposing is not needed. The
blocks also have a common control. Furthermore, IP modes with
an equal distance to the horizontal (mode 10) and vertical (mode
26) modes are computed by the same IP block. For example,
modes 2 and 34 are calculated in the same Positive Angular IP
block since 10 - 2 = 34 - 26. This allows a reduced number of
intra prediction IPs and saves area.

Fig. 3. The block diagram of the intra coding accelerator on FPGA.

The SAD block reads the reference pixels of the processed
CU from the corresponding on-chip memory. It also receives
predicted pixels from the IP blocks and calculates the SAD in
parallel for all modes. The SAD block sends all the predicted
pixels and the reference pixels to a buffer, four pixel at a time.
After the SAD calculation is done and the best mode is
determined, SAD block notifies the buffer. The buffer
recalculates the residual vector and reference pixels for the best
mode and sends them to the DCT unit.

D. Discrete Cosine Transform (DCT)

The DCT unit equals the high-speed variant of our 8/16/32-
point DCT unit presented in-depth in [23]. The unit performs the
2-D DCT in two successive passes and the intermediate data is
stored in a transpose memory. It can process 32 residuals in
parallel so that a constant data rate with full HW utilization is
achieved. The latency for both passes is three cycles because of
the DCT pipeline. After the 2-D transform, the 16-bit transform
coefficients (tcoeffs) are passed to the Q unit.

E. Quantization (Q)

The Q unit operates according to the configuration data
consisting of the block size and the quantization parameter. The
unit receives one or several columns of tcoeffs from the DCT
unit per write, depending on the block size. Then it performs the
quantization to all tcoeffs in parallel and outputs the quantized
tcoeffs to the IQ unit and the Coeff Cost unit.

F. Inverse Quantization (IQ)

The IQ unit operates according to the configuration data
consisting of the block size and the quantization parameter. The
unit receives one or several columns of quantized tcoeffs from
the Q unit per write, depending on the block size. Then it
performs the inverse quantization to all quantized tcoeffs in
parallel and outputs them to the IDCT unit.

G. Inverse Discrete Cosine Transform (IDCT)

The IDCT unit equals the 8/16/32-point IDCT unit presented
by us in-depth in [24]. The unit performs the 2-D IDCT in two
successive passes and the intermediate data is stored in a
transpose memory. The IDCT unit can process 32 tcoeffs in
parallel to ensure a more constant HW utilization. The latency
for both passes is three clock cycles. After the 2-D inverse
transform, the 16-bit residuals are passed to the Rec unit.

H. Coefficient Cost (Coeff Cost)

The Coeff Cost unit operates according to the configuration
data consisting of the block size. The unit reads all the columns
of the quantized tcoeffs, which are transposed back to the
original order. After the transpose, the block calculates the
approximate coding cost for the CU coefficients, processing 32
coefficients in parallel.

I. Reconstruction (Rec)

The Rec module reads the reconstructed residuals from the
IDCT unit and the original and predicted pixels from the
memory in parallel. It generates the final reconstructed pixels
and calculates the SSD for the processed CU. The reconstructed
pixels are stored to memory through a buffer in order to store the
right CU in the CTU sized memory.

VI. EXPERIMENTAL RESULTS

Table II tabulates the characteristics of the proposed and
other existing HEVC intra encoders on ASIC and FPGA. The
real-time coding speed of the ASIC-based HEVC intra encoder
in [11] is limited to 1080p video. The HEVC intra encoder in
[12] supports real-time 2160p video encoding on ASIC but the
respective FPGA implementation is limited to 1080p resolution.
Similarly, the FPGA-based HEVC intra encoder in [13] is
restricted to 1080p video coding. The intra/inter HEVC encoder
in [14] is able to encode 1080p at 60 fps with a custom board of
three separate FPGA chips. Higher resolutions are also
supported but not without increasing the number of boards. To
sum up, our proposal is the only FPGA-based implementation
that supports real-time HEVC encoding up to 2160p resolution
with a single board.

 TABLE III. CODING SPEED WITH 2160P VIDEO (FAST PRESET)

TABLE IV. CODING SPEED WITH 1080P VIDEO (MEDIUM PRESET)

No acceleration

Speed (fps) Speed (fps) Speedup Speed (fps) Speedup

Beauty 20 31 1.6× 40 2.0×

Bosphorus 21 32 1.6× 42 2.1×

HoneyBee 19 31 1.6× 41 2.1×

Jockey 22 35 1.6× 47 2.1×

ReadySetGo 20 31 1.6× 41 2.0×

ShakeNDry 17 26 1.6× 35 2.1×

YachtRide 19 30 1.6× 40 2.1×

Average 20 31 1.6× 41 2.1×

Sequence

(2160p)

1 accelerator 2 accelerators

No acceleration

Speed (fps) Speed (fps) Speedup Speed (fps) Speedup

Beauty 63 102 1.6× 136 2.2×

Bosphorus 51 82 1.6× 110 2.2×

HoneyBee 46 73 1.6× 98 2.2×

Jockey 52 84 1.6× 113 2.2×

ReadySetGo 51 79 1.6× 107 2.1×

ShakeNDry 44 70 1.6× 94 2.2×

YachtRide 49 78 1.6× 105 2.1×

Average 51 81 1.6× 109 2.2×

Sequence

(1080p)

1 accelerator 2 accelerators

TABLE II. COMPARISON OF THE PROPOSED AND RELATED HEVC INTRA ENCODERS

Architecture Technology Board HW Lang. Frequency Resolution Coding mode Cells DSPs

Proposed CPU + FPGA Arria 10 C/C++ 125 MHz 2160p@30fps Intra 308k ALUTs 862

Zhu et al. [11] ASIC - Verilog 357 MHz 1080p@44fps Intra 2296k gates -

Pastuszak et al. [12] ASIC - VHDL 200/400 MHz 2160p@30fps Intra 1086k gates -

Pastuszak et al. [12] FPGA Arria II VHDL 100/200 MHz 1080p@30fps Intra 93k ALUTs 481

Atapattu et al. [13] FPGA Zyng ZC706 Verilog 140 MHz 1080p@30fps Intra 84k LUTs 34

Miyazawa et al. [14] FPGA Custom 3xFPGA N.A. N.A. 1080p@60fps Intra/Inter N.A. -

Table III and Table IV report HEVC coding speed of the
proposed system with fast and medium presets (Table I) using
2160p and 1080p test videos, respectively. The 8-bit 4:2:0 2160p
test sequences were taken from Ultra Video Group test sequence
set [25] and scaled down to 1080p resolution for our tests. In
both cases, the results are given for our system with 0, 1, and 2
intra coding accelerators.

The average results with the fast preset show that our
implementation is able to encode 2160p video at 20 fps without
HW acceleration, at 30 fps with a single accelerator, and at 40
fps with two accelerators. The speedups obtained with one and
two accelerators are 1.6× and 2.1× over the pure SW
implementation, respectively. In 2160p case, real-time coding
speed (30 fps) requires at least one accelerator. The coding
speeds of 1080p test videos are approximately 2.6 times as high
as those of 2160p sequences even though a more complex
medium preset (without RDOQ) is used. Hence, real-time
coding speed is attainable without any HW acceleration in 1080p
case. Our implementation would also be able to encode three
separate real-time 1080p sequences in parallel.

VII. CONCLUSION

This paper presented the first known 4K HEVC intra encoder
partitioned between a processor and a PCIe-connected FPGA.
The encoder functionality is based on C source code of Kvazaar
HEVC intra encoder and HLS was used to implement the most
compute-intensive Kvazaar coding tools on FPGA. For the first
time, HLS was applied to the whole intra coding chain from intra
prediction to block reconstruction. HLS is generally known to
reduce design and verification times over a traditional HDL
workflow. This work shows that these benefits do not come at a
cost of coding performance.

The proposed encoder implementation was prototyped on
Nokia AirFrame Cloud Server composed of dual 14-core Intel
Xeon processor and Arria 10 FPGA. On AirFrame, our solution
is able to encode one 2160p video in real-time. The introduced
HW acceleration roughly doubles coding speed over that of a
pure SW encoder. Further performance boost could be easily
obtained by inserting another FPGA card in the available slot in
the server and replacing the current FPGAs with larger ones.
This way, up to four times as high coding speed is anticipated.

ACKNOWLEDGMENT

This work was supported in part by Nokia, the European
Celtic-Plus Project 4KREPROSYS, and the Academy of
Finland (decision no. 301820).

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2015-

2020, Jun. 2016.

[2] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC

23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-1668.

[4] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of

the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, Dec. 2012, pp. 1792-1801.

[5] Advanced Video Coding for Generic Audiovisual Services, document

ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), ITU-T and ISO/IEC,

Mar. 2009.

[6] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,

“Comparative rate-distortion-complexity analysis of HEVC and AVC

video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,

Dec. 2012, pp. 1885-1898.

[7] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,

and T. Schierl, “Parallel scalability and efficiency of HEVC

parallelization approaches,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 22, no. 12, Dec. 2012, pp. 1827-1838.

[8] A. Koivula, M. Viitanen, J. Vanne, T. D. Hämäläinen, and L. Fasnacht,

“Parallelization of Kvazaar HEVC intra encoder for multi-core

processors,” in Proc. IEEE Workshop Signal Process. Syst., Hangzhou,

China, Oct. 2015, pp. 1-6.

[9] Y. J. Ahn, T. J. Hwang, D. G. Sim, and W. J. Han, “Implementation of

fast HEVC encoder based on SIMD and data-level parallelism,”

EURASIP J. Image Video Process., vol. 16, Dec. 2014, pp. 1-19.

[10] A. Lemmetti, A. Koivula, M. Viitanen, J. Vanne, and T. D. Hämäläinen,

“AVX2-optimized Kvazaar HEVC intra encoder,” in Proc. IEEE Int.

Conf. Image Processing, Phoenix, Arizona, USA, Sep. 2016, pp. 549-553.

[11] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, “HDTV1080p HEVC Intra

encoder with source texture based CU/PU mode pre-decision,” 2014 19th

Asia and South Pacific Design Automation Conf., Singapore, 2014.

[12] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of

the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video

Technol., vol. 26, no. 1, Jan. 2016, pp. 210-222.

[13] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real

time all intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf. on

Application-specific Syst., Architectures and Processors, London, Jul.

2016, pp. 191-195.

[14] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K.

Iguchi, A. Ichigaya, and S. Sakaida, “Real-time hardware implementation

of HEVC video encoder for 1080p HD video,” in Proc. Picture Coding

Symposium, San Jose, California, USA, Dec. 2013, pp. 225-228.

[15] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar

[16] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and T.

D. Hämäläinen, “Kvazaar: open-source HEVC/H.265 encoder,” in Proc.

ACM Int. Conf. Multimedia, Amsterdam, The Netherlands, Oct. 2016, pp.

1179-1182.

[17] x265 [Online]. Available: http://x265.org/

[18] Turing codec [Online]. Available: https://github.com/bbc/turingcodec

[19] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction

to high-level synthesis,” IEEE Des. Test Comput., vol. 26, no. 4, Jul.-Aug.

2009, pp. 8-17.

[20] Catapult: Product Family Overview [Online]. Available:

http://calypto.com/en/products/catapult/overview

[21] AirFrame data center solution [Online]. Available:

https://networks.nokia.com/solutions/airframe-data-center-solution

[22] P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen, “High-level

synthesis design flow for HEVC intra encoder on SoC-FPGA,” in Proc.

Euromicro Symp. Digit. Syst. Des., Funchal, Madeira, Portugal, Aug.

2015, pp. 49-56.

[23] P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen, “High-level

synthesis implementation of HEVC 2-D DCT/DST on FPGA,” in Proc.

IEEE Int. Conf. Acoustics, Speech, Signal Process., New Orleans,

Louisiana, USA, Mar. 2017, pp. 1547-1551.

[24] V. Viitamäki, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “High-level

synthesized 2-D IDCT/IDST implementation for HEVC codecs on

FPGA,” in Proc. IEEE Int. Symp. Circuits Syst., Baltimore, Maryland,

USA, May 2017.

[25] Test Sequences [Online]. Available:

http://ultravideo.cs.tut.fi/#testsequences

PUBLICATION

VI

FPGA-powered 4K120p HEVC intra encoder

P. Sjövall, V. Viitamäki, J. Vanne, T. D. Hämäläinen, and A. Kulmala

In Proceedings of IEEE International Symposium on Circuits and Systems, Florence, Italy,
May 2018

DOI: 10.1109/ISCAS.2018.8351873

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/ISCAS.2018.8351873

FPGA-Powered 4K120p HEVC Intra Encoder

Panu Sjövall, Vili Viitamäki, Jarno Vanne, Timo D. Hämäläinen, Ari Kulmala*

Laboratory of Pervasive Computing, Tampere University of Technology, Tampere, Finland

*Datacenter Infrastructure Modules, Nokia, Tampere, Finland

Abstract— This paper presents a hardware-accelerated

Kvazaar HEVC intra encoder for 4K real-time video coding at up

to 120 fps. The encoder is implemented on a Nokia AirFrame

Cloud Server featuring a 2.4 GHz dual 14-core Intel Xeon

processor and two Arria 10 PCI Express FPGA accelerator cards.

The presented encoder is a speed-optimized version of our 1st

generation 4K40p HEVC intra encoder. The proposed speedup

techniques include 1) Increasing the number of FPGA cards to

two; 2) Remapping the simplest multiplications from DSP blocks

to logic for better FPGA utilization; 3) Making task scheduling

more flexible to improve utilization rate of hardware accelerators;

and 4) Increasing the pipeline depth and duplicating time-sensitive

resources in the hardware accelerator. As a result, up to three

hardware accelerator instances can be accommodated in a single

Arria 10 so the encoder is able to make use of six accelerators.

According to our experiments, the proposed encoder obtains

threefold speedup over our 1st generation encoder. Our proposal

is also shown to outperform all other encountered FPGA and

ASIC implementations.

Keywords— High Efficiency Video Coding (HEVC); Ultra High

Definition Television (UHDTV); Kvazaar Intra coding; field-

programmable gate array (FPGA); real-time

I. INTRODUCTION

Live Internet video is forecast to grow 15-fold in five years,
accounting for 13% of all Internet video traffic by 2021 [1]. This
growth comes from a plurality of new end users and multimedia
applications but also from higher spatial and temporal video
resolutions that are rapidly gaining ground. For example, 4K
Ultra High Definition Television (UHDTV) format features 3840
× 2160 pixels (2160p) and frame rates up to 120 frames per
second (fps) [2].

Despite the fast progress of transmission and storage
technologies, the holistic growth of video volume makes more
efficient video coding inevitable. The latest international video
coding standard, High Efficiency Video Coding (HEVC/H.265)
[3], [4], is developed to address these needs. This work deals
with all-intra (AI) coding configuration [5] of HEVC Main
Profile. It is shown to improve intra coding efficiency by 23%
over that of the preceding standard AVC/H.264 [6] for the same
objective quality, but at a cost of over threefold increase in
coding complexity [7]. Therefore, implementing a real-time
HEVC intra encoder for UHDTV format with a reasonable
coding efficiency, implementation cost, and power budget
requires efficient encoder optimizations and powerful
computing platforms.

Multithreading [8] and single instruction multiple data
(SIMD) optimizations [9] are primary design techniques for

complexity reduction in software (SW) HEVC encoders. Further
speedup and lower power dissipation is typically sought by
offloading the compute-intensive coding tools to hardware
(HW) accelerators or implementing the entire HEVC encoder on
HW [10]-[13].

Our recent work [14] shows that a pure SW implementation
of HEVC intra encoder is able to attain real-time coding speed
for 4K30p format and formats up to 4K60p can be supported by
using several software encoder instances in parallel [15]. The
respective speeds are also reported for HW accelerated intra
encoders [11], [16] and high-end frame rates of 4K UHDTV
format are only reached with several HW encoder instances [13].

The main motivation of this work was to implement a real-
time HEVC intra encoder for up to 4K120p format. The
presented solution is a direct continuation to our previous work
[16] where Kvazaar open-source HEVC encoder [17] is
accelerated to encode 4K video at 40 fps on Nokia AirFrame
Cloud Server [18]. The adopted server setup included a 2.4 GHz
dual 14-core Xeon processor and an Arria 10 PCI Express
(PCIe) FPGA accelerator card. Servers like AirFrame have
gained a lot of traction in the recent years due to the advent of
cloud gaming, telco clouds, and edge computation.

In this work, the same AirFrame server is equipped with two
Arria 10 PCIe cards. In addition, up to three HW accelerator
instances can be accommodated on a single FPGA by remapping
the simplest multiplications to logic blocks and only allocating
DSP blocks to the most compute-intensive multiplications.
Individual HW accelerator instances are also boosted by using a
higher pipeline depth and duplicated resources, whereas a
proposed task scheduling improves the utilization rate of the
instances. Together, the proposed techniques result in around
threefold encoding speed over that of [16].

The original HW accelerator is implemented in [16] with
Catapult C [19] high-level synthesis (HLS) [20] tool that enables
automatic hardware description language generation from C
source code of Kvazaar. The same approach is applied in this
work since HLS offers much shorter design and verification
times than manual design approaches. This is particularly true in
resource remapping and pipeline modifications.

The remainder of this paper is structured as follows. Section
2 describes the applied platform and the selected SW/HW
partitioning of Kvazaar on it. Section 3 presents the pipeline
optimizations made for the HW accelerator instances. Section 4
introduces the proposed task-scheduling scheme among the
accelerator instances. In Section 5, 4K performance of the
proposed encoder is benchmarked against our earlier solution
and other prior-art. Section 6 concludes the paper.

II. OVERVIEW OF THE PROPOSED SYSTEM

Fig. 1 shows the block diagram of the underlying SW/HW
platform. The backbone of the system is a Nokia AirFrame
Cloud server [18] with two Xeon E5-2680 v4 processors and 256
GB of memory. Two Arria 10 FPGA cards are connected to the
CPU via a PCIe bus. The operating system is CentOS 6.8.

A. Kvazaar Partitioning

On Xeon processors, Kvazaar [17] is run in the user space
and the Linux driver in the kernel space. The Linux driver is used
for the CPU-PCIe-FPGA interfacing. A single Arria 10 FPGA
has enough resources for three Intra Coding accelerator
instances including the needed peripherals and on-chip
memories. The FPGA interface is made of the Avalon-MM Hard
IP for PCIe, separate Direct Memory Access (DMA) blocks for
reading and writing, and the on-chip memories of the Intra
Coding accelerator. A more detailed functionality of the
platform is described in our previous work [16].

Kvazaar implements a basic HEVC block partitioning in
which the pictures are partitioned into coding tree units (CTUs)
of size 64 × 64. CTUs can be optionally divided into four equal-
sized coding units (CUs) and the division can be recursively
continued until the maximum hierarchical depth of the HEVC
quadtree is reached. The proposed encoder supports Kvazaar
ultrafast preset [17] with extended coding tree depth so that CUs
of size 32 × 32, 16 × 16, and 8 × 8 are supported. It also
implements Wavefront Parallel Processing (WPP) and picture-
level parallel processing for parallel CTU coding. These
schemes can be enabled concurrently.

The most computationally intensive Kvazaar coding tools
including intra prediction (IP), discrete cosine transform
(DCT), quantization (Q), inverse Q (IQ), inverse DCT (IDCT),
and reconstruction (Rec) are implemented with HLS and
synthesized to FPGA. Context-adaptive binary arithmetic
coding (CABAC) and other control-intensive coding tools are
executed on CPU. In addition, the CPU takes care of raw input
video reading and outputting the encoded bit stream. Mapping
the major share of CTU coding to FPGA decreases the power
dissipation through lower CPU usage and accelerates the whole
encoding process.

B. System Configuration

In this work, the FPGA driver is upgraded to support
practically any number of FPGAs, but the FPGA count is here
limited to two by the available PCIe slots. Therefore, the system
can contain six accelerator instances (Acc0 - Acc5) at maximum.

The proposed system is also configurable at run time to the
chosen number of Kvazaar instances without any performance
compromises. This way, the user can choose whether to encode
a single video with the maximum speed or several videos in
parallel. Different Kvazaar instances can also encode input
videos with different encoding parameters and resolutions at the
same time. This is made possible by processing each CTU
individually in the Intra Coding accelerators.

III. PROPOSED HARDWARE PIPELINE

Fig. 1 illustrates the processing flow of CTUs in Intra Coding
accelerators. Each accelerator is able to take care of 16 CTUs

Fig. 1. Block diagram of the proposed encoder and a processing flow of CTUs in Intra Coding accelerators.

(0..15) simultaneously, so up to 96 CTUs can be under way in
parallel with six accelerators. An eight-stage pipeline of a single
accelerator can process eight blocks of separate CTUs at a time
and the remaining eight CTUs are buffered for faster access. The
processed blocks move sequentially through HEVC encoding
stages. Altogether, each CTU can contain 4 + 16 + 64 = 84
separate CUs at maximum when CUs of size 32×32, 16×16, and
8×8 are supported.

A. Intra Prediction Pipelining

In our 1st generation encoder, IP and the creation of

reference pixels were done in the same pipeline stage.

Generating the reference pixels from the border pixels caused

an overhead, which almost doubled the delay of the IP stage

with 8×8 blocks. Therefore, the reference pixel generation was

moved from the IP stage to the control stage. Now, the reference
pixels of successive CUs from different CTUs are generated

and buffered in advance. This way, the control stage is not

blocked by the IP and the IP has an adequate small delay

between predictions.

B. DCT / IDCT Pipelining

Our 1st generation encoder used only a single transform unit
for the DCT and another unit for the IDCT, i.e., both algorithms
ran the transform twice with the same transform unit. First from
the input and second from the transpose memory. Although this
design had sufficient speed for smaller number of parallel CTUs
in a single Intra Coding accelerator, it caused a bottleneck when
aiming higher CTU parallelism.

In the proposed work, there are two transform units for both

the DCT and IDCT. In addition, the memory size of the

transpose memories was doubled, allowing all transform units

to run at the same time and enabling successive block

pipelining. This modification practically doubled the

processing speed of DCT [21] and IDCT [22] and increased the

overall hardware pipeline by two stages. Although this

modification increased the area of the whole Intra Coding
accelerator, the speed improvement was more significant.

C. Remapping Multiplications from DSP to Logic

Our prior encoder implementations relied heavily on DSPs,
mostly because they were implemented on FPGAs having half
the logic area but still ~75% of the DSPs of Arria 10. Hence,

adding a third Intra Coding accelerator would have caused Arria
10 to run out of DSPs.

Even though the DCT and IDCT transform units were
doubled in this work, we were able to fit a third Intra Coding
accelerator in a single Arria 10 FPGA. This was achieved by
replacing all DSPs in IP and DST transform as well as constant
multiplications in DCT and IDCT with logic elements. More
economic utilization of DSPs and other HLS code optimizations
allowed for better routing of our design on FPGA and made it
possible to increase the maximum frequency from 125 MHz to
175 MHz.

D. Other Optimizations

In our 1st generation encoder, a single Intra Coding
accelerator supported eight parallel CTUs and the CPU was used
to encode CTUs whenever the accelerators had no space for a
new CTU. In this work, the additional CPU encoding was not
used anymore since the proposed improvements have made the
accelerator much faster at processing a CTU than the CPU. In
addition, the increase of parallel CTUs supported on a single
Intra Coding accelerator from eight to 16, caused encoding even
a single CTU with the CPU to bottleneck the system. Waiting
for available processing time from the accelerators and waiting
for the result is faster than encoding a CTU with SW.

Performing the CTU encoding solely on the FPGA reduced
the overall CPU usage and the CPU is now mostly waiting for
results from the FPGA. This allows the CPU to perform other
processing, even while encoding HEVC 4K120p. Further
improving the CPU utilization and maximizing thread usage, the
DMAs in the FPGA now generate interrupts when ready.
Previously, the kernel driver polled the DMAs, but the increase
in FPGAs and accelerators caused the locking mechanism in the
kernel to use a major part of the processing time of a thread. With
interrupts and semaphores, the thread can now sleep while
waiting for the DMA completion and yield processing time for
other threads.

IV. TASK SCHEDULING AND RESOURCE MANAGEMENT

Scheduling of intra coding tasks is also improved to make
the most of Kvazaar SW instances on a CPU and Intra Coding
accelerators on FPGA.

A. CTU Load Balansing

Fig. 2 shows the process of scheduling processing time for
different Kvaazar instances and choosing the best available Intra

Fig. 3. Block scheduling in Intra Coding accelerator.

Fig. 2. CTU load balancing between Kvazaar instances and accelerators.

Coding accelerator for a new CTU. The Linux driver is
accessible by all Kvazaar instances, which request processing
time on the FPGA from the driver. If there are no available
resources, Kvazaar instances need to wait. Waiting instances are
served in request order. The driver assigns new CTUs to
different Intra Coding accelerators according to the CTU id
provided by the driver. The CTU id is a running number limited
by available resources, i.e., the number of Intra Coding
accelerators and the number of CTUs per accelerator.

B. Block Scheduling in Intra Coding Accelerator

Fig. 3 shows how the Intra Coding accelerator determines
the next block to the pipeline. For each CTU, a set of instructions
are generated to signal the scheduler the encoding order of the
blocks in a CTU. The next block of a CTU is valid for processing
if the previous block of the same CTU is done. The scheduler
assigns priorities to the valid blocks and chooses the one with
the highest priority. The priority is higher when the next block
in line is of equal size or larger than the previous one. This policy
aims to keep the pipeline utilization high and it prevents larger
blocks from bottlenecking smaller ones.

V. CODING SPEED ANALYSIS

Table I tabulates the obtained encoding speeds with different
number of Intra Coding accelerators using the 8-bit 4:2:0
4K120p test video sequences from [23]. The average results
show that our implementation is able to reach 4K30p with two
accelerators, 4K60p with three accelerators, and 4K120p with
six accelerators. The maximum speed of the accelerated system
is 6.8 times as high as that of the pure software version. Coarsely
speaking, doubling the number of accelerators doubles the
encoding speed.

Our 1st generation encoder was able to encode 4K30p with
a single Intra Coding accelerator but it was limited to use CU
sizes of 8×8 and 16×16. In addition, it utilized the remaining
CPU power for CTU encoding. Disabling 32×32 blocks in the

current version would also increase its 4K coding speed to 30
fps with a single accelerator even without utilizing the CPU.
With medium preset [17] and rate-distortion-optimized
quantization (RDOQ) disabled, our proposal is able to encode
4K60p with six Intra Coding accelerators.

Table II tabulates the performance figures of the proposed
and existing HEVC intra encoders on ASIC and FPGA. To make
comparison more straightforward, our proposal is configured to
use only a single FPGA with which 4K format can be encoded
up to 60 fps (Table I). Our 1st generation encoder was already
able to outperform related FPGA implementations and compete
equally with the existing ASIC implementations. The proposed
2nd generation encoder even beats these ASIC approaches.

VI. CONCLUSION

This paper presented our 2nd generation HEVC encoder for
real-time 4K intra coding. The proposed encoder was prototyped
on Nokia AirFrame Cloud Server composed of a dual 14-core
Intel Xeon processor and two Arria 10 FPGAs. On AirFrame,
our solution is able to encode 4K video at 120 fps or four 4K
videos at 30 fps.

The implemented HW acceleration speeds up the encoder by
6.8 times over the pure SW implementation and the obtained
performance is three times as high as that of our 1st generation
encoder. The speedup was achieved by increasing the number of
FPGAs to two, improving FPGA utilization by allocating the
simplest multiplications to logic, increasing the efficiency of
pipeline in Intra Coding accelerator, and improving the
utilization rate of the accelerators by better task scheduling.

The Intra Coding accelerators of the encoder are entirely
implemented with HLS tools from C source code of Kvazaar
HEVC intra encoder. HLS is generally known to reduce design
and verification times over traditional design flows. This work
further shows that the shorter development time does not come
at a cost of coding performance.

ACKNOWLEDGMENT

This work was supported in part by Nokia, the European
Celtic-Plus Project 4KREPROSYS, and the Academy of
Finland (decision no. 301820).

TABLE I. CODING SPEED OF 4K VIDEO WITH DIFFERENT NUMBER OF INTRA CODING ACCELERATORS

TABLE II. COMPARISON OF THE PROPOSED AND RELATED INTRA ENCODERS

Software

No acceleration 1 accelerator 2 accelerators 3 accelerators 2 accelerators 4 accelerators 6 accelerator

Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps)

Beauty 17 25 49 64 50 96 125

Bosphorus 20 27 53 65 54 102 127

HoneyBee 17 26 50 64 51 98 124

Jockey 21 29 54 65 58 104 126

ReadySetGo 19 27 52 64 53 99 123

ShakeNDry 16 22 44 63 45 85 115

YachtRide 18 26 51 64 51 98 123

Average 18 26 50 64 52 97 123

Sequence (2160p)

Single FPGA Two FPGAs

Architecture Technology Frequency Resolution Cells DSPs

[10] ASIC 357 MHz 1080@44fps 2296k gates -

[11] ASIC 200/400 MHz 2160@30fps 1086k gates -

[11] Arria II 100/200 MHz 1080@60fps 93k ALUTs 481

[12] Zyng ZC706 140 MHz 1080@30fps 84k LUTs 34

[13] Custom 3x FPGA N.A. 1080@60fps N.A. -

[16] CPU + Arria 10 125 MHz 2160@40fps 308k ALUTs 862

Proposed CPU + Arria 10 175 MHz 2160@60fps 552k ALUTs 1227

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2016-

2021, Jun. 2017.

[2] Parameter values for ultra-high definition television systems for
production and international programme exchange, document ITU-R

Rec. BT.2020-2, ITU-R, Oct 2015.

[3] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC

23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[4] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-1668.

[5] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of

the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, Dec. 2012, pp. 1792-1801.

[6] Advanced Video Coding for Generic Audiovisual Services, document

ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), ITU-T and ISO/IEC,

Mar. 2009.

[7] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,
“Comparative rate-distortion-complexity analysis of HEVC and AVC

video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,

Dec. 2012, pp. 1885-1898.

[8] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,

and T. Schierl, “Parallel scalability and efficiency of HEVC
parallelization approaches,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 22, no. 12, Dec. 2012, pp. 1827-1838.

[9] Y. J. Ahn, T. J. Hwang, D. G. Sim, and W. J. Han, “Implementation of
fast HEVC encoder based on SIMD and data-level parallelism,”

EURASIP J. Image Video Process., vol. 16, Dec. 2014, pp. 1-19.

[10] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, “HDTV1080p HEVC Intra
encoder with source texture based CU/PU mode pre-decision,” in Proc.

Asia and South Pacific Design Automation Conf., Singapore, Jan. 2014.

[11] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of
the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video

Technol., vol. 26, no. 1, Jan. 2016, pp. 210-222.

[12] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real
time all intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf.

Application-specific Syst., Architectures and Processors, London, United

Kingdom, Jul. 2016.

[13] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K.

Iguchi, A. Ichigaya, and S. Sakaida, “Real-time hardware implementation
of HEVC video encoder for 1080p HD video,” in Proc. Picture Coding

Symp., San Jose, California, USA, Dec. 2013.

[14] A. Ylä-Outinen, A. Lemmetti, M. Viitanen, J. Vanne, and T. D.
Hämäläinen, “Kvazaar: HEVC/H.265 4K30p intra encoder,” in Proc.

IEEE Int. Symp. Multimedia, Taichung, Taiwan, Dec. 2017.

[15] T. K. Heng, W. Asano, T. Itoh, A. Tanizawa, J. Yamaguchi, T. Matsuo,
and T. Kodama, “A highly parallelized H.265/HEVC real-time UHD

software encoder,” in Proc. IEEE Int. Conf. Image Processing, Paris,

France, Oct. 2014.

[16] P. Sjövall, V. Viitamäki, A. Oinonen, J. Vanne, T. D. Hämäläinen, and A.

Kulmala, “Kvazaar 4K HEVC intra encoder on FPGA accelerated
Airframe server,” in Proc. IEEE Workshop Signal Process. Syst., Lorient,

France, Oct. 2017.

[17] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar

[18] AirFrame data center solution [Online]. Available:

https://networks.nokia.com/solutions/airframe-data-center-solution

[19] Catapult: Product Family Overview [Online]. Available:

http://calypto.com/en/products/catapult/overview

[20] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Des. Test Comput., vol. 26, no. 4, Jul.-Aug.

2009, pp. 8-17.

[21] P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen, “High-level
synthesis implementation of HEVC 2-D DCT/DST on FPGA,” in Proc.

IEEE Int. Conf. Acoustics, Speech, Signal Process., New Orleans,

Louisiana, USA, Mar. 2017.

[22] V. Viitamäki, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “High-level

synthesized 2-D IDCT/IDST implementation for HEVC codecs on
FPGA,” in Proc. IEEE Int. Symp. Circuits Syst., Baltimore, Maryland,

USA, May 2017.

[23] Test Sequences [Online]. Available:

http://ultravideo.cs.tut.fi/#testsequences

PUBLICATION

VII

Live demonstration: 4K100p HEVC intra encoder

V. Viitamäki, P. Sjövall, J. Vanne, and T. D. Hämäläinen

In Proceedings of International Symposium on Circuits and Systems, Florence, Italy, May
2018

DOI: 10.1109/ISCAS.2018.8351770

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/ISCAS.2018.8351770

Live Demonstration: 4K100p HEVC Intra Encoder

Vili Viitamäki, Panu Sjövall, Jarno Vanne, Timo D. Hämäläinen, Ari Kulmala*

Laboratory of Pervasive Computing, Tampere University of Technology, Tampere, Finland

*Datacenter Infrastructure Modules, Nokia, Tampere, Finland

Abstract— This paper describes a demonstration setup for

real-time 4K HEVC intra coding. The system is built on Kvazaar

open-source HEVC encoder partitioned between 22-core Xeon

processor and two Arria 10 FPGAs. The demonstrator supports 1)

live streaming of up to three 4K30p videos; or 2) offline video

streaming up to 4K100p format. Live feeds are shot by three

cameras whereas offline video is accessed from a local hard drive.

In both cases, encoded bit stream is sent over a wired connection

and played back by laptop(s). The demonstrated HEVC coding

speed is over three times as fast as that of a pure software solution.

Keywords— High Efficiency Video Coding (HEVC); real-time

intra coding; 4K; Kvazaar; field-programmable gate array (FPGA)

I. INTRODUCTION

The explosive growth of live Internet video arouses a need
for efficient real-time video compression. The latest video
coding standard, High Efficiency Video Coding (HEVC/H.265)
[1], brings about significantly higher coding efficiency but at the
cost of substantially increased coding complexity over that of
earlier standards. Therefore, implementing a real-time HEVC
encoder with a reasonable coding efficiency requires efficient
encoder optimizations and powerful computing platforms.

This work focuses on the all-intra (AI) coding configuration
of HEVC Main Profile. The setup is built on Kvazaar HEVC
encoder [2] that is shown to be the fastest fully-fledged open-
source implementation for AI coding [3]. Our recent work [4]
shows that a pure software implementation of Kvazaar is able to
attain 4K30p coding speed on a 22-core 2.2 GHz Intel Xeon E5-
2699 v4 processor. This demonstrator setup more than triples the
coding speed attained in [4] by accelerating the same processor
with two Altera Arria 10 FPGA cards connected via PCIe buses.

II. SETUP FOR KVAZAAR 4K100P HEVC ENCODING

Fig. 1 depicts the demonstrator equipment showcased to the
visitors. The implementation details of Kvazaar encoder are
given in [5] on Nokia AirFrame Cloud Server which is,
however, replaced by a more compact workstation in this
demonstrator setup.

In the case of live streaming, three Sony FDR X1000V 4K
action cameras are used to shoot three 4K (3840×2160) streams
at 30 frames per second (fps). These raw feeds are captured by
Epiphan AV.io HDMI capture cards and converted by three
FFmpeg instances from RGB to YUV 4:2:0 format. Three
Kvazaar instances encode the converted YUV streams in real-
time on a FPGA-accelerated Xeon E5-2699 v4 processor. The
encoded HEVC bit streams are then encapsulated by three
FFmpeg instances to MPEG-2 TS format and sent over the

Ethernet cables to three Asus VivoBook Pro 15 laptops for 4K
playback. The average bit rate is ca. 21 Mb/s per stream.

In the offline case, a single YUV 4K100p video is read from
a local hard drive, encoded by a single Kvazaar instance at 100
fps, converted to TS, and sent to Asus laptop for playback (with
the frame rate limited to 60 fps).

The demonstrator seeks to make the visitors understand the
stringent requirements of live 4K HEVC encoding. The visitors
can monitor Xeon CPU usage and Kvazaar coding statistics in
real time. They can also move cameras to see how the texture
of the video affects the bit rate and CPU load.

REFERENCES

[1] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC

23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[2] Kvazaar HEVC encoder [Online]. Available:

https://github.com/ultravideo/kvazaar

[3] A. Lemmetti, A. Koivula, M. Viitanen, J. Vanne, and T. D. Hämäläinen,
“AVX2–optimized Kvazaar HEVC intra encoder,” in Proc. IEEE Int.

Conf. Image Processing, Phoenix, Arizona, USA, Sep. 2016.

[4] A. Ylä-Outinen, A. Lemmetti, M. Viitanen, J. Vanne, and T. D.
Hämäläinen, “Kvazaar: HEVC/H.265 4K30p intra encoder,” in Proc.

IEEE Int. Symp. Multimedia, Taichung, Taiwan, Dec. 2017.

[5] P. Sjövall, V. Viitamäki, J. Vanne, T. D. Hämäläinen, and Ari Kulmala,
“FPGA-powered 4K120p HEVC intra encoder,” in Proc. IEEE Int. Symp.

Circuits Syst., Florence, Italy, May 2018.

Fig. 1. Demonstration setup for Kvazaar live 3×4K30p HEVC intra coding.

PUBLICATION

VIII

Dynamic resource allocation for HEVC encoding in FPGA-accelerated SDN
cloud

P. Sjövall, A. Oinonen, M. Teuho, J. Vanne, and T. D. Hämäläinen

In Proceedings of IEEE Nordic Circuits and Systems Conference, Helsinki, Finland, Oct. 2019
DOI: 10.1109/NORCHIP.2019.8906940

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/NORCHIP.2019.8906940

Dynamic Resource Allocation for HEVC Encoding

in FPGA-Accelerated SDN Cloud

Panu Sjövall, Arto Oinonen, Mikko Teuho, Jarno Vanne, Timo D. Hämäläinen

Computing Sciences, Tampere University, Finland

{panu.sjovall, arto.oinonen, mikko.teuho, jarno.vanne, timo.hamalainen}@tuni.fi

Abstract—This paper presents a novel approach to

accelerate, distribute, and manage video encoding services in

large-scale cloud systems. A proof-of-concept application is

Kvazaar HEVC intra encoder, whose functionality is

partitioned between FPGAs and processors. Typically, only 1-2

FPGA boards can be attached per cloud server, which severely

limits the flexibility of the cloud systems. Our solution is based

on Software Defined Networking (SDN), in which practically

any number of FPGAs and servers can be deployed. The system

features a resource manager that is responsible for allocation,

deallocation, and load balancing of resources upon service

requests or changes in network infrastructure. Our prototype

cloud system is composed of three Intel Xeon servers, two HP

SDN switches, and two Intel Arria 10 FPGAs. The servers and

FPGAs have 20GbE and 40GbE connections to the SDN

switches, respectively. The prototype system can encode two 4K

HEVC streams at 60 fps and the performance is predicted to

scale almost linearly with the number of servers and FPGAs.

Keywords— High Efficiency Video Coding (HEVC), Kvazaar

HEVC encoder, field-programmable gate array (FPGA),

Software-defined networking (SDN), High-level synthesis (HLS)

I. INTRODUCTION

Video coding, deep neural networks, and data analytics are
the main drivers of hardware acceleration in cloud computing.
Kvazaar HEVC intra encoder has been previously accelerated
on a field-programmable gate array (FPGA) [1], [2] using
High Level Synthesis (HLS) [3], [4] and 4× increase in coding
speed was obtained with two FPGAs. However, the FPGA
boards were connected to the server via the PCIe bus, which
limits the number of FPGAs per server. Moreover, PCIe
FPGA cards cannot fully act as independent computing nodes.

In this work, our ultimate goal is to deploy flexible
combinations of servers and FPGAs, so that the same FPGA
can be shared by many servers and vice versa. In addition,
FPGA acceleration should act as a microservice for as easy
deployment as software resources in cloud computing. The
challenge is that implementing a full protocol stack for
communication and application abstraction on an FPGA takes
a major portion of the FPGA resources. Hence, it introduces
too much overhead for an application. Our solution is to
offload most of the network functionality from the FPGA by
using software-defined networking (SDN), in which any data
flow is programmable and the network interface can be at very
low level [5]. Our main contributions are listed below:

• Dynamic resource allocation for HEVC encoding services

on a changing setup of software and hardware resources

• Usage of SDN for offloading most network functions from

the FPGA

• An advanced partitioning scheme for sharing execution

between servers, FPGAs, and SDN switches

• HLS implementations for the network interface, control,

and HEVC accelerator logic

• A prototype system implementing real-time 4K HEVC

intra encoder

This paper is organized as follows. Section II considers the
related work. Section III presents the proposed system
consisting of Kvazaar FPGA accelerators, servers, and SDN
switches. It also describes how the proposed resource manager
and SDN are used to dynamically distribute HEVC encoding
services between software and hardware resources. Section IV
analyses the performance of the proposed system. Section V
concludes the paper.

II. RELATED WORK

The mainstream approaches for cloud FPGA acceleration
are based on PCIe boards that are attached to the host server
[6]-[9] or connected via Ethernet [10]-[12]. However, the host
PCIe was still needed in [10] and all server traffic was routed
through an FPGA making it even more tightly coupled to a
server than in the other proposals. In [11] and [12], a complete
network interface was implemented on an FPGA, so the full
FPGA independency was attained at the cost of FPGA area.

For the time being, several HEVC encoders have been
implemented on an FPGA [1], [2], [13]-[16], but none of them
have utilized network interfaces between the processor and
FPGA logic. To the best of our knowledge, this is the first
paper that addresses fully independent FPGAs and servers in
video encoding acceleration.

Fig. 1. Snapshot of the server rack.

III. PROPOSED SYSTEM PARTITIONING

Fig. 1 and 2 show a snapshot and the corresponding
network structure of our prototype cloud system, respectively.
Table I tabulates the component specifications for Fig. 2. The
SDN controller manages connections between the servers and
FPGAs by modifying data flows in SDN switches. Each
FPGA is connected to an SDN switch via one 40 Gigabit
Ethernet (40GbE) link and each server with 2×10GbE links.

A. Server Interfacing

In the proposed system, the servers use Linux operating
system, e.g., CentOS or Ubuntu. Each server has two 10GbE
SFP interfaces, which are configured to use IEEE 802.3ad
Dynamic link aggregation (802.3ad, LACP) that combines the
interfaces into a single load-balanced logical link with an
effective bandwidth of 20GbE. As the proposed system
operates on Ethernet frames, the criteria for load balancing are
derived from the source and destination MAC addresses and
the Ethernet type.

Because the proposed system utilizes the data link layer
(layer 2), there are no built-in reliability mechanisms available
with Ethernet frames. Therefore, the CPU and FPGA keep
track on how many packets need to be received and sent for
each coding tree unit (CTU) [20] in HEVC encoding. A lost
packet causes a timeout and the same data is then re-sent to
the FPGA for re-encoding. Using the IPv4 and UDP protocols
from the network and transport layers (layer 3-4) would add
some overhead in data rates and FPGA design complexity, but
it would make it possible to send packets over different LANs.
Wrapping the CTU payload inside the UDP packets would
allow inclusion of UDP ports in the criteria for load balancing.
These aspects will be addressed in the future.

B. FPGA Interfacing

Fig. 3 depicts the network interface on the FPGA. It
includes Intel 40G Ethernet IP block and our own
implementations of RX/TX Parsers and ETH Writer modules.
The RX Parser decodes the Ethernet frames, ensures that the
incoming frame is valid, and configures the correct accelerator
instance. The TX Parser is responsible for generating the

Ethernet headers, gathering the payload, and controlling the
ETH Writer. The frame size and the number of Ethernet
frames generated per CTU are configurable. Implementing
these three modules in C and using Catapult-C HLS tool [21]
simplified the design process on FPGA and lowered the bar
for design iterations over the corresponding approaches with
VHDL or Verilog. With HLS, these blocks could also be
easily modified for any accelerator usage.

The RX and TX parsers utilize a look-up-table for MAC
addresses to identify which server sent the CTU for encoding.
This way, the server MAC address can be translated and the
results are sent back to the correct server. This approach also
allows multiple servers to use the same FPGA at the same time
and all results are forwarded back correctly. Fast FIFO
memories compensate for differences in data widths and rates
between the physical 40G Ethernet IP and our FPGA logic.

C. Kvazaar Cloud FPGA Accelerator

The execution of Kvazaar encoding is partitioned between
CPUs and FPGA accelerators. First, the CTU structures of a
video frame are initialized by the CPU and sent to the
accelerator which implements most of the coding tools. Only
the final steps, context-adaptive binary arithmetic coding
(CABAC) and video stream construction, are left for the CPU.
The implementation supports Kvazaar ultrafast preset [22]
detailed in Table II.

A block diagram of the accelerator architecture is also
shown in Fig. 3. The core component is the Kvazaar HEVC
intra coding unit [1], [2], which was implemented with
Catapult-C HLS tool from Kvazaar [23] open-source C code.
Altogether, three accelerator instances (Acc0, Acc1, and Acc2)
can be placed on a single Arria 10 FPGA. Each accelerator is
able to process up to 16 CTUs in parallel. Software parts of
the encoder can be executed on any server running Linux.

Fig. 2. Prototype cloud system.

TABLE I. CLOUD SYSTEM SPECIFICATIONS

Device Type CPU Memory

Server1 HP Server Xeon E5-2630 96GB

Server2 Nokia Airframe Cloud server [17] Xeon E5-2680v4 256GB

Server3 Nokia Airframe Cloud server [17] Xeon E5-2680v3 256GB

Switch1 HPE FlexFabric 5900AF 48G 4XG 2QSFP+ - -
Switch2 HP Switch 5406Rzl2 - -
FPGA1 Intel Arria 10 GX FPGA Dev Kit [18] - -
FPGA2 Intel Arria 10 GX FPGA Dev Kit [18] - -
Controller HP VAN SDN Controller [19] - -

TABLE II. KVAZAAR INTRA CODING SETTINGS

Feature [20] Kvazaar parametrization

Coding unit sizes 16×16, 8×8

Prediction unit sizes 16×16, 8×8

Transform unit sizes 16×16, 8×8

Intra prediction modes 35 (DC, planar, 33 angular)

Parallelization

Sample adaptive offset Disabled

Sign bit hiding Disabled

RD optimized quantization Disabled

Transform skip Disabled

Quantization parameter 22

Wavefront parallel processing

Picture-level

Fig. 3. Proposed FPGA accelerator architecture.

D. SDN

The SDN-controlled switches make it easy to connect the
FPGAs to the network. As the data flows are automatically set
by the resource manager, the FPGA does not need to support
a full set of Internet protocols. Different FPGAs are identified
by their MAC addresses, which is sufficient for routing the
packets correctly. For example, when the SDN controller sees
a MAC address assigned to a certain FPGA, it routes all
associated packets to it. The data from the FPGA is routed
back to the server when the source refers to the FPGA and the
destination is the MAC address of the server.

E. Dynamic Resource Allocation Manager

Fig. 4 shows a message sequence chart of how our
dynamic resource allocation is used for an HEVC encoding
service. First, a Kvazaar HEVC encoding service is started by
a user request. The resource manager collects all the needed
network components including devices, switches, and
connections from the database. Then, it creates a network
graph and defines the most economical paths for the
components, e.g., the shortest paths from a video source to a
server and from the server to an FPGA. The same server and
FPGA can be allocated multiple times to different services,
but by monitoring the resource usage, the manager tries to
optimize resource utilization for the best performance.

The manager also supports prioritization of services.
Encoding speeds can thus be balanced by giving higher
resolution videos a higher priority in FPGA acceleration.
When a higher priority service is invoked and no FPGAs are

available, the manager moves the execution of a lower priority
service from the FPGA to the CPU, as shown in Fig. 4 with
the option (1).

After the manager has allocated the needed resources, it
sets the necessary SDN flows by using the API of the SDN
controller. For example, in Fig. 2, Server1 can access the
FPGA2 connected to a different switch by using their original
MAC addresses, without any Address Resolution Protocol
(ARP) messages. After the setup is ready, the manager uses
POST messages to inform the resources to start the service,
maybe with some additional configuration information (e.g.,
IDs and encoding parameters).

The manager brings robustness to the encoding process,
e.g., the system is able to recover from FPGA removal. When
an FPGA is switched off, the manager automatically switches
the services from the removed FPGA to a CPU and starts
checking equivalent replacements for the removed FPGA.
This is illustrated in Fig. 4 by the option (2). Switching an
encoding service from FPGA to CPU takes around one second
due to the implemented encoder timeouts. Instead, switching
between FPGAs and from CPU to FPGA take place
instantaneously.

After a service is completed, the manager deallocates the
resources in use. If an FPGA is deallocated, it is automatically
assigned to the next service having no assigned FPGA, as
described in Fig. 4 with the option (3). The reallocation favors
services with the highest priority and the longest running time
on a CPU.

Fig. 4. Message sequence chart of dynamic resource allocation for a HEVC encoding service.

IV. PERFORMANCE ANALYSIS

Table III reports the performance results for Kvazaar
HEVC encoder on three different platforms: 1) CPU-only; 2)
CPU with a single PCIe FPGA card [2]; and 3) the proposed
prototype cloud system containing a single CPU and FPGA.
For fair comparison, the resources of the cloud setup are
unified with that of the PCIe approach. Furthermore, all these
setups use an equivalent Intel Xeon CPU and the latter two
equivalent Arria 10 FPGA for acceleration.

According to our results, the proposed cloud approach
speeds up HEVC encoding by 1.5-2 fold over that of the CPU-
only case. However, the average coding speed of our proposal
is around 9 fps slower than that of the PCIe approach. There
are three reasons for the slowdown: the usage of a 20Gbps
Ethernet link in place of a 32Gbps PCIe bus, the overhead of
Ethernet packets, and reduced parallelism due to longer
waiting times of Ethernet frames. Nevertheless, our proposal
is still able to encode 4K resolution test videos at 60 fps.

It is notable that the average frame latency with the fiber
connection is around 40% higher than that of the PCIe bus. On
the other hand, the Ethernet interfacing still has 31% smaller
average frame latency than with CPU-only encoding. The
CPU utilization is nearly the same in the cloud and PCIe
approaches. Both solutions accelerate HEVC encoding and

still use around 50% less CPU resources than the CPU-only
case.

The proposed system is able to encode 4K video at 90 fps
with two FPGAs and a single server (Fig. 2). In this case, the
maximum speed is limited by the 20GbE connection.
Alternatively, our system can encode two 4K sequences at 60
fps with two servers and two FPGAs. Using 40Gbps network
cards on the servers in place of 2×10GbE would remove this
limitation and provide smaller latency as well as faster
encoding speed. However, acquiring these network cards is
left for the future.

The system also appears to be robust, as Kvazaar
execution can be switched between CPUs and FPGAs on the
fly depending on the resource availability. This means, in
practice, that the system can switch an encoding process
between FPGA accelerators and recover from an FPGA
removal, all without interrupting the encoding process. These
features are visualized in [25].

Despite the minor performance penalty, the fiber
connected FPGAs allow much better scalability than the
dedicated PCIe-based approach. For example, both
approaches would need three Kvazaar accelerator instances on
FPGA for 4K60p encoding, but only the cloud approach is
able to attain the same speed with three smaller FPGAs, each
having a single accelerator instance.

The proposed dynamic resource allocation and
partitioning scheme leaves lots of room for further
performance scaling. Fig. 5 predicts the total encoding
performance of differently scaled up systems with the 40GbE
links in servers. For example, the graphs show equal
performance for the systems composed of 16 servers or 4
servers with 8 FPGAs. A high-end system with 16 servers and
32 FPGAs has potential to encode 64 HEVC streams at 4K30p
or 16 streams at 4K120p simultaneously.

V. CONCLUSION

This paper presented an automated approach for managing
services with a lightweight framework that connects multiple
servers and FPGAs in an SDN based cloud. The combination
of a dedicated resource manager and SDN makes it possible
to have practically any number of independent FPGAs on the
network without wasting FPGA resources for communication
and application abstraction.

Instead of using complicated network protocols, the
proposed system uses the SDN controller and SDN switches
for routing data. A dedicated SDN controller allows scaling
the network to a large-scale cloud infrastructure without
losing the speed and connectivity of a small network.

The proposed system was also validated in practice with a
proof-of-concept real-time 4K HEVC encoder
implementation. It was shown to attain near the same speed as
the previous PCIe equivalent implementation but with much
better scalability and robustness.

TABLE III. PERFORMANCE OF KVAZAAR HEVC INTRA ENCODER ON CPU, CPU + PCIE FPGA CARD [2], AND THE PROPOSED SYSTEM (CPU + FPGA)

CPU only PCIe Proposed CPU only PCIe Proposed CPU only PCIe Proposed

Beauty 31 70 60 49 24 33 94 56 60

Bosphorus 43 70 62 33 18 25 94 33 35

HoneyBee 34 70 61 41 19 27 96 49 48

Average 36 70 61 41 20 28 95 46 48

Sequence [24]

(2160p)

Avg. frame latency (ms) CPU utilization (%)Speed (fps)

Fig. 5. Predicted encoding performance with differently scaled setups.

0

240

480

720

960

1200

1440

1680

1920

2160

2400

1 2 4 8 16

T
o

ta
l 4

K
 H

E
V

C
 e

n
co

di
ng

 p
er

fo
rm

an
ce

 (
fp

s)

of servers

32 FPGAs

16 FPGAs

8 FPGAs

4 FPGAs

2 FPGAs

1 FPGAs

0 FPGAs

ACKNOWLEDGMENT

This work was supported in part by the European Celtic-
Plus project VIRTUOSE, the Academy of Finland (decision
no. 301820), Nokia Foundation, and the Finnish Foundation
for Technology Promotion.

REFERENCES

[1] P. Sjövall, V. Viitamäki, A. Oinonen, J. Vanne, T. D. Hämäläinen, and
A. Kulmala, “Kvazaar 4K HEVC intra encoder on FPGA accelerated
Airframe server,” in Proc. IEEE Workshop Signal Process. Syst.,
Lorient, France, Oct. 2017.

[2] P. Sjövall, V. Viitamäki, J. Vanne, T. D. Hämäläinen, and A. Kulmala,
“FPGA-powered 4K120p HEVC intra encoder,” in Proc. IEEE Int.
Symp. Circuits Syst., Florence, Italy, May 2018.

[3] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? A study on the state of high-level synthesis,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 5, May 2019,
pp. 898-911.

[4] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Des. Test Comput., vol. 26, no. 4, Jul.-
Aug. 2009, pp. 8-17.

[5] M. Vajaranta, V. Viitamäki, A. Oinonen, T. D. Hämäläinen, A.
Kulmala, and J. Markunmäki, “Feasibility of FPGA accelerated IPsec
on cloud,” in Proc. Euromicro Symp. Digit. Syst. Des., Prague, Czech
Republic, Aug. 2018.

[6] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” IEEE Micro, vol. 35, no. 3, May-June 2015, pp.
10-22.

[7] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA
accelerators for efficient cloud computing,” IEEE Int. Conf. Cloud
Comput. Technol. Sci, Vancouver, British Columbia, Canada, Nov.-
Dec. 2015.

[8] Z. Zhu, A. X. Liu, F. Zhang, and F. Chen, “FPGA resource pooling in
cloud computing,” IEEE Trans. Cloud Comput., Early Access.

[9] J. Lallet, A. Enrici, and A. Saffar, “FPGA-based system for the
acceleration of cloud microservices,” in Proc. IEEE Int. Symp.
Broadband Multimedia Syst. Broadcast., Valencia, Spain, Jun. 2018.

[10] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in
Proc. Annual IEEE/ACM Int. Symp. Microarchitecture, Taipei,
Taiwan, Oct. 2016.

[11] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling
FPGAs in hyperscale data centers,” in Proc. IEEE Int. Conf.
Ubiquitous Intell., Beijing, China, Aug. 2015.

[12] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-
attached FPGAs for data center applications,” in Proc. Int. Conf. Field-
Programmable Technol., Xi'an, China, Dec. 2016.

[13] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, “HDTV1080p HEVC
intra encoder with source texture based CU/PU mode pre-decision,” in
Proc. Asia and South Pacific Design Automation Conf., Singapore, Jan.
2014.

[14] G. Pastuszak and A. Abramowski, “Algorithm and architecture design
of the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 1, Jan. 2016, pp. 210-222.

[15] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real
time all intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf.
Application-specific Syst., Architectures and Processors, London,
United Kingdom, Jul. 2016.

[16] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K.
Iguchi, A. Ichigaya, and S. Sakaida, “Real-time hardware
implementation of HEVC video encoder for 1080p HD video,” in Proc.
Picture Coding Symp., San Jose, California, USA, Dec. 2013.

[17] AirFrame data center solution. Accessed on: Sep. 20, 2019. [Online].
Available: https://www.nokia.com/networks/solutions/airframe-data-
center-solution/

[18] Arria 10. Accessed on: Sep. 20, 2019. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/products/bo
ards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html

[19] HP Virtual Application Networks SDN Controller. Accessed on: Sep.
20, 2019. [Online] Available:
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-
c03967699

[20] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of
the High Efficiency Video Coding (HEVC) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-
1668.

[21] Catapult High-Level Synthesis. Accessed on: Sep. 20, 2019. [Online].
Available: https://www.mentor.com/hls-lp/catapult-high-level-
synthesis/

[22] Kvazaar HEVC encoder. Accessed on: Sep. 20, 2019. [Online].
Available: https://github.com/ultravideo/kvazaar

[23] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and
T. D. Hämäläinen, “Kvazaar: open-source HEVC/H.265 encoder,” in
Proc. ACM Int. Conf. Multimedia, Amsterdam, The Netherlands, Oct.
2016.

[24] Test Sequences. Accessed on: Sep. 20, 2019. [Online]. Available:
http://ultravideo.cs.tut.fi/#testsequences

[25] P. Sjövall, M. Teuho, A. Oinonen, J. Vanne, and T. D. Hämäläinen,
“Visualization of dynamic resource allocation for HEVC encoding in
FPGA-accelerated SDN cloud,” in Proc. IEEE Int. Conf. Visual
Commun. Image Process., Sydney, Australia, Dec. 2019.

PUBLICATION

IX

Visualization of dynamic resource allocation for HEVC encoding in
FPGA-accelerated SDN cloud

P. Sjövall, M. Teuho, A. Oinonen, J. Vanne, and T. D. Hämäläinen

In Proceedings of IEEE Visual Communications and Image Processing, Sydney, New South
Wales, Australia, Dec. 2019

DOI: 10.1109/VCIP47243.2019.8966042

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1109/VCIP47243.2019.8966042

Visualization of Dynamic Resource Allocation for

HEVC Encoding in FPGA-Accelerated SDN Cloud

Panu Sjövall, Mikko Teuho, Arto Oinonen, Jarno Vanne, Timo D. Hämäläinen

Computing Sciences, Tampere University, Finland

{panu.sjovall, mikko.teuho, arto.oinonen jarno.vanne, timo.hamalainen}@tuni.fi

Abstract—This paper describes a demonstration setup to

visualize dynamic resource allocation for real-time HEVC

encoding services in FPGA-accelerated cloud. The

demonstrated application is Kvazaar HEVC intra encoder,

whose functionality is partitioned between FPGAs and

processors. During the demonstration, several encoding services

can be invoked with requests to the resource manager, which is

responsible for allocation, deallocation, and load balancing of

resources in the network. The manager provides JSON data to

the visualizer, which uses D3 JavaScript library to visualize 1)

the physical network structure; 2) running services; and 3)

performance of the network elements. This interactive

demonstration allows users to request new video streams, view

the encoded streams, observe the visualization of the network

and services, and manually turn on/off resources to test the

robustness of the system.

Keywords— Data Center processing, High Efficiency Video

Coding (HEVC), Kvazaar HEVC encoder, Field-programmable

gate array (FPGA), Software-defined networking (SDN)

I. INTRODUCTION

The rapidly increasing popularity and complexity of video
coding, deep neural networks, and data analytics call for
hardware acceleration in cloud computing. In the mainstream
cloud computing systems, field-programmable gate array
(FPGA) acceleration is typically implemented by PCIe cards
attached to host servers [1], [2]. However, this approach ties
the number of FPGAs to the server counts.

We solved this limitation by connecting FPGAs to servers
via fiber and letting FPGAs act as independent nodes. We also
replaced the full protocol stack implementations on the
FPGAs with Software-Defined Networking (SDN). The SDN
approach enables sharing any FPGA with any server through
programmable data flows. The proposed system makes use of
a proactive resource manager that dynamically switches
between available software and hardware resources, without
breaking up the live video stream.

II. DEMONSTRATION SETUP

Fig. 1 shows our cloud architecture. It consists of three
Xeon servers, two Intel Arria 10 FPGAs, and two HP SDN
switches with HP VAN SDN Controller. The network
components are specified in Table I.

Fig. 2 illustrates the demonstration setup. The prototype
cloud is physically located at Tampere University (Fig. 2 (a))
and it is accessed over the network via VPN in the
demonstration. A laptop (Fig. 2 (b)) is used for displaying the
visualization interface, user interaction, and video playback.

The demonstrated application is Kvazaar HEVC encoder
[3] which can be executed as a CPU-only service or it can be
partitioned between CPUs and FPGA accelerators [4], [5].
Kvazaar is a standard software encoder [6] written in C and its
hardware accelerator is implemented with Catapult-C high-
level synthesis tool [7] from the C code. The inputs for all

demonstrated encoding services are raw video files with
different resolution. The output is in HTTP Live Streaming
(HLS) format, which is decoded in live playback.

III. RUN-TIME VISUALIZER

The visualizer is written in JavaScript using D3 library. It
gets input data in real time in JSON format from the manager.
The visualizer illustrates dynamic deployment of HEVC
encoding tasks in run time. It can work with an arbitrary set of
resources and with varying number of encoding services.

The physical view of the network is shown in Fig. 2 (c).
The symbols correspond to the device type and the server
symbol size to the number of CPU cores. The physical view
also shows 1) the CPU load graph inside the server symbol; 2)
details as tooltips; and 3) connection bandwidth with changing
line width. The services are shown in Fig. 2 (d) by dividing
them as input sources, software (Kvazaar_HEVC) and
hardware (Kvazaar_HEVC_acc) encoding services, and
output destinations. Encoding speeds and bitrates are also
shown for every service.

During the demonstration, existing computing resources
can also be manually removed to see how the network self-
organizes without breaking up video streaming. This can be
seen from the visualization in real time.

Fig. 1. Prototype cloud system

TABLE I. CLOUD COMPONENT SPECIFICATIONS

Device Type CPU Memory

Server1 HP Server Xeon E5-2630 96GB

Server2 Nokia Airframe Cloud server [8] Xeon E5-2680v4 256GB

Server3 Nokia Airframe Cloud server [8] Xeon E5-2680v3 256GB

Switch1 HPE FlexFabric 5900AF 48G 4XG 2QSFP+ - -
Switch2 HP Switch 5406Rzl2 - -
FPGA1 Intel Arria 10 GX FPGA Dev Kit [9] - -
FPGA2 Intel Arria 10 GX FPGA Dev Kit [9] - -
Controller HP VAN SDN Controller [10] - -

IV. CONCLUSION

Our system with fiber connected FPGAs provides a new
microservice based approach for hardware accelerated video
encoding services in the cloud. This paper described a setup
to demonstrate the basic operating principles of our proposal.
In the demonstration, a special attention is paid to dynamic
resource allocation for HEVC encoding services, switching
service execution between CPUs and FPGAs, recovering from
changes, and scalability of our architecture. The visualizer
offers a real-time view of the available resources, running
services, and performance.

ACKNOWLEDGMENT

This work was supported in part by the European Celtic-
Plus project VIRTUOSE, the Academy of Finland (decision
no. 301820), Nokia Foundation, and the Finnish Foundation
for Technology Promotion.

REFERENCES

[1] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” IEEE Micro, vol. 35, no. 3, May-June 2015, pp.
10-22.

[2] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in
Proc. Annual IEEE/ACM Int. Symp. Microarchitecture, Taipei,
Taiwan, Oct. 2016.

[3] Kvazaar HEVC encoder [Online]. Available:
https://github.com/ultravideo/kvazaar

[4] P. Sjövall, V. Viitamäki, A. Oinonen, J. Vanne, T. D. Hämäläinen, and
A. Kulmala, “Kvazaar 4K HEVC intra encoder on FPGA accelerated
Airframe server,” in Proc. IEEE Workshop Signal Process. Syst.,
Lorient, France, Oct. 2017.

[5] P. Sjövall, V. Viitamäki, J. Vanne, T. D. Hämäläinen, and A. Kulmala,
“FPGA-powered 4K120p HEVC intra encoder,” in Proc. IEEE Int.
Symp. Circuits Syst., Florence, Italy, May 2018.

[6] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and
T. D. Hämäläinen, “Kvazaar: open-source HEVC/H.265 encoder,” in
Proc. ACM Int. Conf. Multimedia, Amsterdam, The Netherlands, Oct.
2016.

[7] Catapult High-Level Synthesis [Online]. Available:
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

[8] AirFrame data center solution [Online]. Available:
https://networks.nokia.com/solutions/airframe-data-center-solution

[9] Arria 10 [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/products/bo
ards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html

[10] HP Virtual Application Networks SDN Controller [Online]. Available:
http://h17007.www1.hpe.com/docs/networking/solutions/sdn/4AA4-
8807ENW.pdf

Fig. 2. The demonstration setup. (a) Remote server. (b) Laptop at the venue. (c) Physical view of the visualizer. (d) Service view of the visualizer.

PUBLICATION

X

High-level synthesis implementation of an embedded real-time HEVC intra
encoder on FPGA for media applications

P. Sjövall, A. Lemmetti, J. Vanne, S. Lahti, and T. D. Hämäläinen

ACM Transactions on Design Automation of Electronic Systems, vol. 27, no. 7
DOI: 10.1145/3491215

Publication reprinted with the permission of the copyright holders.

https://doi.org/10.1145/3491215

This work is part of the ADACORSA project that has received funding within the ECSEL JU in collaboration with the European Union's H2020
Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement 876019. Other supporters include Nokia
Foundation and the Finnish Foundation for Technology Promotion.
The authors are with Tampere University, Korkeakoulunkatu 7, 33720 Tampere, Finland; emails: {panu.sjovall, ari.lemmetti, jarno.vanne,
sakari.lahti, timo.hamalainen}@tuni.fi

High-Level Synthesis Implementation of an Embedded Real-Time HEVC Intra

Encoder on FPGA for Media Applications

Panu Sjövall, Ari Lemmetti, and Jarno Vanne

Ultra Video Group, Computing Sciences, Tampere University, Finland

Sakari Lahti and Timo D. Hämäläinen

SoC Design Group, Computing Sciences, Tampere University, Finland

High Efficiency Video Coding (HEVC) is the key enabling technology for numerous modern media applications. Overcoming

its computational complexity and customizing its rich features for real-time HEVC encoder implementations, calls for

automated design methodologies. This paper introduces the first complete High-Level Synthesis (HLS) implementation for

HEVC intra encoder on FPGA. The C source code of our open-source Kvazaar HEVC encoder is used as a design entry

point for HLS that is applied throughout the whole encoder design process, from data-intensive coding tools like intra

prediction and discrete transforms to more control-oriented tools such as context-adaptive binary arithmetic coding (CABAC).

Our prototype is run on Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 14-core Intel Xeon processors and two

Intel Arria 10 PCIe FPGA accelerator cards with 40 Gigabit Ethernet. This proof-of-concept system is designed for hardware-

accelerated HEVC encoding and it achieves real-time 4K coding speed up to 120 fps. The coding performance can be easily

scaled up by adding practically any number of network-connected FPGA cards to the system. These results indicate that our

HLS proposal not only boosts development time, but also provides previously unseen design scalability with competitive

performance over the existing FPGA and ASIC encoder implementations.

CCS CONCEPTS •Hardware~Electronic design automation~High-level and register-transfer level

synthesis~Hardware-software codesign •Hardware~Integrated circuits~Reconfigurable logic and

FPGAs~Hardware accelerators •Computing methodologies~Computer graphics~Image compression

Additional Keywords and Phrases: High-level synthesis (HLS), High Efficiency Video Coding (HEVC), Field-

programmable gate array (FPGA), video encoding, Kvazaar intra encoder

ACM Reference Format:

2

1 INTRODUCTION

Proliferation of media applications, omnipresent connectivity, and immersive extended reality (XR) technologies

foster the phenomenal growth of video traffic, which is estimated to account for 82% of all global IP traffic by

2022 [1]. The latest widespread MPEG/ITU-T video coding standard, High Efficiency Video Coding

(HEVC/H.265) [2], [3], mitigates this growth by reducing the transmission and storage needs of modern video

applications. HEVC halves the bit rate over the preceding Advanced Video Coding (AVC/H.264) [4] standard

for the same subjective visual quality, but typically at the cost of considerable computational complexity

overhead in practical encoders. Therefore, the deployment of HEVC calls for powerful implementations, which

are able to tackle its computational complexity with acceptable coding efficiency and power budget.

Multithreading and single instruction multiple data (SIMD) are commonly used optimization techniques in

software (SW) HEVC encoders [5]-[7]. Further speedup and lower power dissipation are typically sought by

offloading compute-intensive coding tools to hardware (HW) accelerators or implementing the entire HEVC

encoder on HW [8]-[37]. However, HW design is traditionally very time-consuming, so the efficient development

of modern video encoders calls for automated and agile design methodologies, efficient encoder optimization

techniques, and specialized high-performance computing platforms. Our work addresses these requirements

by using: 1) high-level synthesis (HLS) [38] as a design methodology, 2) a fully-fledged practical Kvazaar SW

HEVC encoder [5] as a design entry point, and 3) a heterogeneous combination of general-purpose CPUs and

field-programmable gate array (FPGA) accelerator cards as an underlying HW platform.

Our primary motivation is to implement a real-time 4K HEVC intra encoder that is easily customizable for

different media applications and scalable for different performance requirements. To this end, we propose to

use Catapult HLS tool [39] that can automatically generate register-transfer level (RTL) code from C/C++ code.

Thus, there is no need to manually rewrite the existing source code of Kvazaar to traditional hardware

description languages (HDLs) like VHDL and Verilog. HLS has been reported to provide 4-6 times increase in

productivity [40], mainly because the behavioral code is more readable, design and verification times are

shorter, and the design reusability is far better over that of handwritten HDL. This work focuses on the all-intra

(AI) [41] coding configuration of HEVC Main Profile but the proposed design approach can be applied to other

HEVC profiles or video codecs as well.

Unlike prior art, our HEVC encoder is completely implemented with HLS, i.e., the use of HLS is not only

limited to data-intensive algorithms like HEVC intra prediction (IP), discrete sine/cosine transform (DST/DCT),

quantization (Q), inverse Q (IQ), inverse DST/DCT (IDST/IDCT), and reconstruction, but it is also applied to

control-intensive tools such as intra search control and context-adaptive binary arithmetic coding (CABAC).

Even though all design decisions in this work have been taken from the perspective of using HLS for efficient

FPGA implementations, HLS would also allow us to use the same Kvazaar source code to generate optimized

RTL for application specific integrated circuit (ASIC) implementations, but this is beyond the scope of this paper.

The rest of the paper is organized as follows. Sections 2 and 3 provide an overview of HEVC intra coding

and the related work. Section 4 gives the motivation and rationale for selecting HLS as the proposed design

methodology for fast HEVC encoder development and prototyping on FPGA. Section 5 presents the system-

level architecture and HW/SW partitioning scheme for the proposed intra HEVC encoder. The main HW

components, the Intra Search Core and CABAC Core, are detailed in Section 6 and Section 7, respectively.

Section 8 evaluates the performance of our proof-of-concept prototype system and compares it with prior art.

Finally, Section 9 concludes the paper.

3

2 OVERVIEW OF HEVC INTRA CODING

HEVC adopts the conventional hybrid video coding scheme (inter/intra prediction, transform coding, and entropy

coding) [3] from the prior MPEG/ITU-T video coding standards. As a new feature, the coding structure of HEVC

has been extended from the traditional macroblock concept to an analogous block partitioning scheme with four

different logical units: coding tree unit (CTU), coding unit (CU), prediction unit (PU), and transform unit (TU).

For 4:2:0 color format, each of these consists of one luma and two chroma blocks that cover the corresponding

block areas: coding tree blocks (CTB), coding blocks (CB), prediction blocks (PB), and transform blocks (TB).

This new coding structure is the primary factor for the HEVC coding gain, but it also introduces majority of the

computational overhead over its predecessors.

Each raw input video frame is partitioned into CTUs [42]. A CTU represents a root node of the quadtree and

it can be up to 64 × 64 pixels at quadtree depth 0 (h = 0). It can be recursively split into four smaller square CUs

until the maximum hierarchical depth (hMAX) of the quadtree is reached. The size of the CTU can be defined as

2NMAX × 2NMAX, where NMAX ∈ {8, 16, 32} and the size of a CU as 2N × 2N, where N ≤ NMAX and N ∈ {4, 8, 16,

32}, so NMIN = 4 and hMAX = 4. Each CU in the CTU is predicted and transformed individually. In intra coding,

PUs and TUs are the same size as the parent CU, unless they are split further. For example, the smallest 8 ×

8 CU can be split once into four 4 × 4 -pixel PUs whereas TUs can be split recursively until the minimum size

of 4 × 4.

Actual block coding starts with a prediction phase, where an estimate of an image is generated by using

predefined prediction methods. Intra prediction compresses blocks of a picture by exploiting its spatial

redundancy. The prediction is subtracted from the original source image to generate a residual image.

Transform coding transforms the residual image from spatial domain to frequency domain coefficients. In

frequency domain, high-frequency components of the video can be removed with quantization without

significant quality loss since human eye is less sensitive to the high-frequency components.

In the last phase, the quantized transform coefficients and prediction modes are entropy coded to generate

an encoded bitstream. In this step, the video signal is reduced to a series of syntax elements that contain

properties of the blocks, including prediction modes, quantization parameters, transform coefficients, filter

modes, and all other parameters required to describe how the video signal should be reconstructed by the

decoder. These elements are ordered and compressed to generate an encoded video bitstream. Entropy coding

method in HEVC is called CABAC, which is a lossless compression technique based on arithmetic coding. The

compression is achieved by utilizing statistical properties of symbols, i.e., more frequent symbols are coded

with less bits and less frequent symbols with more bits.

The encoding loop also includes decoder-side functionality such as IQ and IDCT phases, where quantized

transform coefficients are dequantized and transformed back to the spatial domain. This generates a

reconstructed version of the residual image that is added to the prediction to generate the final reconstructed

image. In Intra HEVC encoders, reconstructed images are needed in the intra prediction phase, where spatially

adjacent pixels are used to generate the predictions. Furthermore, reconstructed pictures correspond to the

images generated and displayed by the decoder so they can also be used to measure the error introduced by

compression.

4

3 RELATED WORK

Since the advent of HEVC, a plethora of HW accelerators or complete HW encoders have been designed for it

on FPGAs and ASICs. However, to the best of our knowledge, none of the existing HLS approaches [8]-[22]

implemented a complete HEVC encoder but only individual HEVC coding tools. Furthermore, all of them only

addressed data-intensive coding tools and passed over CABAC and other control-intensive parts.

3.1 Existing high-level synthesis approaches for HEVC

In the literature, HLS implementations have been presented for HEVC intra prediction [8]-[11] , DCT [12], IDCT

[13], and interpolation [14]-[16]. HLS has also been applied in HEVC decoding [17] for intra prediction,

dequantization, and inverse transformation. Our own HLS implementations for HEVC encoding are presented

in [18]-[22]. These include intra prediction, DCT/DST, IDC/IDST, and two earlier versions for intra search

acceleration, respectively.

3.2 Existing HEVC encoders on HW

Commercial HW encoders have been unveiled for HEVC, e.g., by NVIDIA (NVENC) [23], Xilinx (LogiCORE IP

H.264/H.265 Video Codec Unit) [24], VITEC (e.g. MGW Ace Encoder) [25], ORIVISION (e.g. ZY-EH901) [26],

and AJA (Corvid HEVC) [27]. However, the publicly available information of these confidential solutions tends

to be limited so only academic works are considered in this paper. The existing academic HW HEVC encoders

can be found in [28]-[37]. These can be categorized as: 1) FPGA implementations [28], [29], [32]; 2) FPGA/ASIC

implementations [30], [31], [36]; and 3) ASIC implementations in [33]-[35] and [37]. All these implementations

are characterized in detail in Section 8, where the performance of our proposal is compared with them.

Figure 1: HLS design flow.

5

4 METHODOLOGY

HLS seeks to improve productivity over traditional design methods by increasing design abstraction from RTL

to behavioural level [38], [44], [45]. Various commercial HLS tools have been available on the market since the

1990s, but only recently they have started to gain adoption in the industry and academia [43]. The slow adoption

rate has mainly stemmed from lower quality of results (QoR) than obtained with conventional HDL approaches.

However, the latest HLS tool generations have substantially narrowed the QoR gap.

4.1 Motivation for high-level synthesis

Figure 1 depicts the conceptual diagram of the HLS design flow. The HLS tool accepts and compiles the

algorithmic (behavioural) specification of the system, which is most often written in C/C++ or SystemC. The

user specifies the target technology and provides micro-architectural constraints, such as directives for loop

pipelining/unrolling and mapping of arrays to registers or memories. The HLS tool allocates the HW resources

required by the specification, creates state machines, schedules the operations, and binds the operations to

physical resources specified in the target technology library. Clock and reset are inserted by the HLS tool as

per the designer’s choice for the target clock frequency and type of reset. The generated structural RTL

architecture description in VHDL or Verilog can then be used in the downstream logic synthesis SW, both for

FPGA and ASIC designs.

In this work, we selected HLS over manual RTL coding for the following reasons:

1) Application suitability. HEVC coding is mostly a data-intensive process with relatively simple control

structures. HLS has traditionally worked well with data-intensive designs, whereas implementing clock

accurate control structures has been more challenging due to the lack of explicit time information in

behavioural source code [44], [45]. However, our previous work [46] showed that even more demanding

control structures can be described with the latest HLS tools. This motivated us to implement HEVC entropy

encoding and all other control-intensive coding tools of HEVC with HLS. Moreover, even the recursive

HEVC quad-tree coding structure can be implemented with HLS because the level of recursion is known

at compile time.
2) Algorithm and system architecture optimizations outperform micro-architectural optimizations.

Engineering hours should be spent where more gains can be reaped. Because of the immense complexity

of HEVC, optimizing HEVC algorithm mapping to HW is encouraged. As the HEVC standard only defines

the decoding process, there are several degrees of freedom to optimize nonnormative HEVC encoding

tools. This leaves many design choices open at system level. By adopting HLS over RTL, most of the

design effort can be concentrated on the system architecture, which tends to provide higher performance

gains than optimizing the micro-architectures.

3) Agile design-space exploration (DSE). DSE refers to the systematic search of the pareto-optimal

solutions with different performance-area trade-offs. In HLS, this can be as straightforward as choosing

different loop unrolling/pipelining options in the graphical user interface or by embedding pragmas in the

code. This is significantly faster than with hand-written RTL, where implementing each candidate solution

requires extensive rewriting of the code. In practice, a comprehensive DSE cannot be even conducted with

conventional HDL approaches, but the optimal micro-architecture needs to be calculated before actual

implementation, which is a non-trivial task.

6

4) Reduced verification effort. Verification is one of the most time-consuming phases of any digital system

project [47]. HLS boosts the verification process significantly as it allows verifying the automatically

generated RTL code against the behavioural source code. In practise, the same testbench can be used to

verify the functional correctness of the algorithm and the generated RTL code.

5) Platform independency. HLS also shines in the ease of adopting new target platforms for the system.

When a new platform is selected with the HLS tool, a new RTL code for it is re-synthesized from the same

source code. In contrast, with custom RTL, code restructuring is needed, e.g., if the state machine is

changed to meet new clock constraints or if more resource sharing is required due to the limited capacity

of the new platform.

6) Increased productivity. All previous advantages of HLS result in compelling productivity increase over

custom RTL. Even though custom HDL approaches tend to achieve better performance with less

resources, our recent literature survey [41] indicated that the average development time of an HLS project

is only a third of that of the manual HDL project. The average productivity of HLS is also reported to be

more than 4× as high in terms of the system performance with respect to the development time. In fact, our

recent HLS implementations for HEVC algorithms [18]-[22] have achieved equivalent or even better

performance than the respective works with hand-written RTL.

Figure 2: Proposed HLS development framework.

7

4.2 Proposed HLS development framework

Figure 2 illustrates the proposed development framework that is used to develop, verify, and deploy HLS

implementations for HEVC coding. The Kvazaar C/C++ code is used as an input to the RTL code generation

but also as a golden reference to verify the HLS implementation at both algorithmic and RTL levels. Constraints

and features are defined in a separate specification document and they are used as input parameters for the

HLS tool. The reference code can also be used as a fully functional SW implementation on an FPGA softcore

CPU or on a server CPU.

The HLS generated RTLs are synthesized for FPGA. On-chip memories and an interface IP-block for the

external CPU are instantiated manually. A monitor PC is used to compile the FPGA image, deploy the image

and softcore CPU program, and analyze the internal FPGA signals while debugging.

The framework also allows both unit and system level testing. The unit testing is performed during the HLS

flow by executing the testbench at algorithm and RTL levels. Most often only the algorithm level verification is

needed, which is one of the largest benefits of HLS. Only some corner cases, e.g., type casting or vector

overflows, might need verification between the RTL and algorithmic code. The same unit testing can also be

performed on FPGA by generating the same test feed for the synthesized RTL on FPGA and the reference

code on the softcore processor. In addition, a logic analyzer can be used to get a real-time view of signals on

FPGA like in RTL simulation. The content of the memories, connected via Avalon bus, can also be validated

with the softcore processor.

For system level verification, multiple independently verified RTL codes can be connected at top level. The

process for verifying the created system is similar as that for a single unit. The corresponding reference codes

are run on the softcore processor, a test feed is generated for the system, and the results are cross checked.

The HW and SW co-processing also enables compilation time optimizations. As the system under verification

becomes larger, the compilation time unavoidably increases. For testing purposes and faster compilation times,

part of the HW system functionality can be replaced by executing the equivalent reference code on the softcore

processor. This substitution allows the whole system to be executed on FPGA but does not necessary mean

that the whole system is running on dedicated HW.

The PCIe connection between the FPGA and external CPU is not necessary for the FPGA development but

it enables offloading processing from the CPU to the FPGA. The CPU driver development can be started even

before the RTL synthesis, because the verification of CPU-FPGA interfacing can be conducted by running the

whole system on the softcore processor.

The tools used in the design flow include:

1) Catapult Ultra Synthesis 10.5a for HLS;

2) ModelSim SE 10.6c for RTL simulation;

3) Quartus Prime 20.1.0 Standard edition including Signal Tap Logic Analyzer for FPGA synthesis

(compilation), programming (deployment) and logic analyzing;

4) Eclipse IDE for C/C++ Developers 4.5.2 for programming the softcore CPU; and

5) Linux OS (Ubuntu) for developing the external CPU driver.

8

5 PROPOSED ARCHITECTURE FOR INTRA HEVC ENCODER

Figure 3 presents the system architecture of the designed Intra HEVC encoder. The underlying SW/HW platform

is composed of a server CPU and practically any number of FPGAs. Each FPGA is connected to a server over

a network switch using 40 Gigabit Ethernet (40GbE) link or directly via a PCI Express (PCIe) gen3 x4 bus.

The server runs Linux OS, e.g., CentOS or Ubuntu, and the processing is partitioned into user and kernel

spaces. Kvazaar [5] is run in the user space, which can contain multiple Kvazaar SW encoder instances. A

dedicated Linux-driver in the kernel space was developed to connect the Kvazaar SW instances to the FPGA.

The driver can be shared between multiple Kvazaar instances, which allows parallel encoding of multiple video

streams. The driver implements ioctl, read, and write system calls to provide Kvazaar with the data transfer

functionality.

A single FPGA board may accommodate one or multiple HW Intra encoder instances, depending on its

capacity. Each encoder instance is further divided into three independent units called Intra Search Core and

CABAC Core BTM, and CABAC Core TOP.

The proposed system can be configured from SW-only encoding to pure HW encoding. On the server, encoding

can be carried out with one or multiple Kvazaar SW instances in parallel. In HW encoding, functionality is

partitioned between the server and FPGA(s) so that the server only takes care of 1) raw video input

management; 2) HEVC stream initialization; 3) CTU parallelization; 4) offloading intra encoding task to FPGA(s);

and; 5) reading the encoded CTU bitstream and related parameters from the FPGA.

In the following sections, the individual HW components are described in detail. All our design decisions

were taken from the perspective of using HLS with the FPGA technology. The described functionality follows

the HLS code almost directly and shows how everything was implemented with it. Catapult supports hierarchical

HLS code, but it was not extensively used as the compilation time increases with design complexity. Instead,

Figure 3: System architecture of the proposed HEVC Intra encoder.

9

the architecture was split into logical parts that were compiled in separate projects and connected manually.

Initial area, latency, and throughput reports of the HLS tool were used in DSE to find the design configuration

(design partitioning, code structure, etc.) that meets area and performance requirements.

Supporting iterative design process is one of the major strengths of HLS. Furthermore, the flow of data is

controlled by IO stalling and handshake signals, which are generated by the HLS tool automatically. This allows

the parallel operation and synchronization of independent units. HLS also makes it easier to deploy these

components as stand-alone IP-blocks in other system setups.

6 INTRA SEARCH CORE

Figure 4 depicts the Intra Search Core that performs HEVC intra search at CTU level. It consists of three sub-

components: 1) Ctrl Unit for controlling the search, scheduling of parallel CTUs, and performing mode decision

(MD) at CTU level; 2) Intra Prediction Unit for performing intra prediction and intra MD for PUs; and 3) Transform

Unit for generating transform coefficients and reconstruction images for CBs.

A single Intra Search Core instance can cache 16 individual CTUs to on-chip memories for parallel

processing. Every processing stage of the encoding pipeline works on the basis of CTU IDs, so the usage of

the pipeline can be scheduled between 16 CTU IDs. The respective degree of parallelism would not be possible

in a single CTU processing without breaking the dependencies between adjacent blocks [42]. The core interface

includes memory interfaces to on-chip memories and direct data transmission with handshake signals. The

Intra Search Core uses a 190 MHz clock in the proposed system.

The start signal and additional configuration data are provided for the Intra Search Core via the Intra

Configuration channel. The configuration data consists of 1) CTU ID, with a value from 0 to 15; 2) depth limits

for intra search, i.e., h = {1, 2, 3, 4}; 3) identification if the CTU is partially outside the frame; 4) quantization

parameter (QP); and 5) a lambda value.

6.1 Memories and configuration for CTU intra search

The memories of the Intra Search Core are presented in Table 1. They are divided into 1) external memories,

that are instantiated outside the Core, and are necessary for the CTU intra search process and search results;

Figure 4: Top-level structure, interfacing, and connections of the Intra Search Core.

10

and 2) internal memories, which are used for logic optimization and adjacent CU storage during the intra search.

The table also shows the sizes and instantiation counts of these memories. If several units need access to a

specific memory, multiple identical instances of it are generated. All memories are designed for the CTU ID

based intra search and can accommodate 16 CTUs. For example, dividing the Reconstruction memory of size

98 304 bytes by 16 gives 6144 bytes per CTU, of which 64 × 64 = 4096 pixels are needed for the Y channel

and ¼th of Y (1024 pixels) for both U and V channels in an 8-bit YUV420 format.

The external memories used for the intra search results are the following. The Reconstruction memory stores

the final reconstructed CTU that is used as a reference when processing adjacent CTUs. The Coeffs memory

is used to store the final entropy encoding coefficients of HEVC. The CU info memory is for the information of

the final CTU structure, including the selected intra mode, chroma mode, depth, transform skip flag, and coded

block flag (CBF) of each CU. It is also accessed when processing adjacent CTUs. The CU info top and left

memories contain the bottom and right CU configurations of the neighbouring top and left CTU. The information

contains the intra mode and CU depths. The CABAC context (CTX), needed for rate–distortion optimization

(RDO), is stored in CABAC CTX RDO memory. This is not the full CABAC context, but it only contains the

values needed by the Ctrl Unit for CU cost calculations when optimizing the CTU structuring.

Reference top and left memories store the reconstructed bottom and right pixels of neighbouring CTUs on

top and left of the CTU in search. These pixels are used to generate the reference border pixels for intra

prediction. The Reference pixels memory stores the original pixels of a CTU. It is used for calculating similarity

between the original pixels and predictions. The internal memories are explained in the respective sections.

Table 1: Memory name, location, size, and instances needed for a single Intra Search Core

Name Location Bytes Instances

Reconstruction External 98 304 1

Coefficients (Coeffs) External 196 608 1

CU Info External 16 384 1

CU Info top External 256 1

CU Info left External 256 2

CABAC CTX RDO External 256 1

Reference top External 4 096 1

Reference left External 4 096 1

Reference pixels External 98 304 1

CU Info Internal 4 096 2

RDO Config Internal 88 1

Exec Config Internal 32 1

Instructions Internal 23 552 1

Instructions cache (Inst$) Internal 14 720 1

CTU Stack Internal 840 1

Coefficients (Coeffs) Internal 131 072 1

Reconstruction (Rec) Internal 65 536 1

Reconstruction left (Rec Left) Internal 2 048 1

Reconstruction top (Rec Top) Internal 2 048 1

Reconstruction top (Rec Top) Internal 2 048 1

Reconstruction left (Rec Left) Internal 2 048 1

Reconstruction top left (Rec TopLeft) Internal 8 192 1

In
tr

a

Prediction references Internal 76 544 1

D
C

T

Transpose Internal 8 192 1

ID
C

T

Transpose Internal 8 192 1

C
o

e
ff

C
o

s
t

Transpose Internal 8 192 1

780 352Core

C
tr

l

C
U

 S
ta

c
k

T
ra

n
s
fo

rm

C
o

re

11

6.2 Intra search control (Ctrl Unit)

The structure of the Ctrl Unit is depicted in Figure 5. It consists of seven sub-units: 1) CTU Initialization, 2)

Scheduler, 3) Execution, 4) RDO, 5) Stack Push and 6) Pull, and 7) Reference Border units, of which, units 1

to 4 belong to the Ctrl Core, and 5 and 6 to CU Stack.

The Ctrl Core is responsible for controlling the intra search. The HLS workflow made us implement the intra

search control like in a CPU, i.e., the search is divided into smaller units that are performed sequentially. This

approach also improves configurability and scalability. The basic operations of the implemented instructions are

listed in Table 2.

The execution of these instructions is split into two parts. Some of the operations are performed in the

Execution unit before the intra search pipeline and the rest after the pipeline in the RDO unit. Along with the

type, each instruction contains operation parameters and a skip address. The parameters carry common

processing information like block size and coordinates. The skip address is used for moving the program counter

to the correct position if a quadtree search process is terminated earlier, i.e., the processing of the smaller CUs

is skipped when all coefficients are zero.

The CU Stack is responsible for buffering the reconstructions, coefficients, and reconstructed borders of CUs

for internal use. In addition, it updates the final reconstructions and coefficients in the external memories.

Figure 5: Internal structure of the hierarchical Ctrl Unit.

 Table 2: Intra search instruction set

Instruction Description

STR Initialize CTU and start the program

IP Perform intra search, build reconstruction for a PU and store it on a stack

CMP Compare cost values of CUs in stack and select the best

END End current program and send CPU interruption

12

6.2.1 CTU Search Initialization (CTU Initialization)

The CTU Initialization unit initializes two operations: 1) the luma search, which is started when the configuration

information is received from the Intra Configuration channel; 2) the chroma reconstruction, which is started upon

receiving the configuration information from the Execution unit after the whole luma search has been finished.

The arbitration of these two configuration channels is achieved with HLS generated functionalities for channel

stalling and non-blocking reading.

When the CTU is fully inside the frame, a pre-calculated program can be selected from the cache, which

matches the intra search depth limits configuration. This reduces the start latency. Instead, when the CTU is

only partially searched, the instructions for the CTU are generated during runtime and stored in the internal

Instructions memory. Due to the tree structure of a CTU, the generation of these instructions was implemented

in HLS code by using limited template recursion, which simplified the tracking of depth and CB coordinates in

Z-order. Once the program initialization is ready, the starting address of the selected program is sent to the next

unit and the CTU search configurations are stored into internal Exec and RDO Config memories.

With chroma reconstruction, the instructions are always generated during runtime based on CTU structure

defined by the luma search. The chroma processing does not use the CMP instruction, because the

reconstruction and coefficients of the chroma components are generated based on luma results.

6.2.2 Scheduler

The Scheduler unit schedules instructions when the Intra Search Core is processing multiple CTU IDs in

parallel. After receiving the configuration, the Scheduler reads the instruction from the internal Instructions

memory or from the predefined Instructions cache (Inst$) and stores it into an internal register. The register

contains the latest instructions from all running processes, which can be either running or waiting. With this kind

of mixed use of on-chip memories, look-up-tables, and registers, HLS improves code readability, as simple C-

arrays can be used for each case, but the resource-dependent addressing and timing is generated based on

the resource mapping. For all waiting instructions, the Scheduler calculates a priority number and selects the

one with the highest priority. The selected instruction is sent to the Execution unit and the cached copy is

changed to an running state. The state is changed back to waiting when the processing for the CB has finished.

This procedure ensures that the processing of adjacent CBs complies with all data dependencies.

Due to the structure of the pipeline, CBs of different sizes move at different speeds. Larger CBs create

congestion behind them and reduce efficiency. To minimize this, the Scheduler starts the processing of same

size CBs with different CTU IDs in batches. This approach is only used for the IP instructions, because other

instructions have very little effect on the pipeline and thus have a small, fixed priority.

6.2.3 Execution

The Execution unit starts processing CBs upon receiving IP instructions from the Scheduler. It builds a

configuration vector, specified in Table 3, and sends it to the Reference Border unit. This vector contains all

configuration parameters required throughout the pipeline until the RDO unit. The CTU ID, depth, color, and the

Table 3: Configuration bit vector used in intra prediction pipeline

Depth Color

0 4 8 12 16 24 32

CTU ID X Y Lambda / Prediction Mode Scaled QP

13

coordinates are generic parameters used in the coding pipeline. Lambda, which is derived from the QP value,

is applied when the similarity of the reference and intra prediction is computed [41] and is then replaced by the

selected prediction mode. The scaled QP is needed in the quantization phase and it is forwarded to the RDO

unit for further processing.

The STR and CMP instructions require no processing in the Execution unit and are forwarded to the RDO

unit. The END instructions are not forwarded, but when the program for luma search reaches the END

instruction, the Execution unit sends a configuration for the CTU Initialization unit to start chroma reconstruction.

When the program for chroma reconstruction reaches the END instruction, the unit sends a signal through the

CTU ID done channel.

6.2.4 Rate–Distortion Optimization (RDO)

The RDO unit calculates the costs for CBs and compares them to select CUs for the final CTU configuration.

The first instruction to arrive in the RDO unit is the STR instruction, which is used for resetting the CTU state of

the specified CTU ID.

These results of an IP instruction include the selected intra mode, Sum of Squared Differences (SSD)

calculated in the Reconstruction unit, and estimation of bits to code the coefficients calculated in the Coefficient

Cost unit. The final cost for the CB is then calculated from the SSD, coefficient cost, current and previous CB

configurations, and the content of the CABAC RDO CTX memory. The final cost is stored into the internal CTU

stack memory. If the search process reaches the configured depth limit or the CB is an all-zero coefficient block,

there is no need to continue search. The CU Stack unit is then notified to flush the coefficients and the

reconstruction of the CB through the external interface. Chroma CBs are always flushed.

With a CMP instruction, the stored costs in the CTU stack are compared to achieve the best CU configuration.

If a better configuration is found, the previously chosen configuration is overwritten via the CU Stack unit.

After each instruction, in addition to the flush-flag, the RDO unit sends an instruction completion signal with

a skip-flag to the Scheduler via the Stack Pull unit. If this skip-flag is set in RDO, the Scheduler reads the skip

address field from the cached instruction and moves the program counter to that address accordingly.

Otherwise, the next instruction is read from the following address.

6.2.5 Build Reference Border (Reference Border)

The Reference Border unit generates the reference samples for the intra prediction from the external Reference

top and left memories or from the internal Rec Top, Left, and TopLeft memories. If border pixels are not

available, i.e., CU is located at the top and left border of the frame, the last available pixel or a constant value

is used instead. The unit is configured with the block size and CU coordinates by the Execution unit. The

referenced borders are built and sent to the IP Ctrl unit.

The three internal reconstruction memories are used to store the last reconstructed pixels from bottom and

right borders, and one extra memory for all bottom right pixels of 4 × 4 blocks. Because the intra search of the

coding tree works in Z-order from top to bottom, the reconstructed bottom and right border pixels of each CB

can always overwrite previous pixels in the corresponding x and y coordinates in the Rec Top and Left

memories. However, the corners need to be stored separately. This complies with all CB dependencies and

minimizes the memory usage for the references.

14

6.2.6 CU Stack

The CU Stack unit stores CUs temporarily before they are written into external memories. Buffering is needed

because the final CU configuration can only be determined after all options have been compared. The CU Stack

unit is built from Stack Push and Stack Pull units as well as from the internal Coeffs, Rec, and Rec Top, and

Left memory modules between them.

The memories store one CU of each size for all CTU IDs. This way, all CUs have a reserved buffer slot

assigned by their size and CTU ID. The adjacent CU of the same size in the same CTU overwrite the old one

in the buffer. This policy follows the computational order of the CTU coding tree. The CUs are either flushed to

the external memory or discarded before moving to the next one of the same size, according to instructions

from the RDO unit.

6.2.7 Stack Push

The Stack Push unit receives the reconstruction pixels and the SSD values from the Reconstruction unit. In

addition, it gets the quantized transform coefficients and coding cost estimation from the Coefficient Cost unit.

It writes the pixels and coefficients to the reserved slots in the Rec and Coeffs memories and simultaneously

collects pixels of the bottom and right borders to the corresponding Rec Top and Left memories. Lastly, the

SSD and coding cost estimations are sent to the RDO unit to signal the completion of the CB process.

6.2.8 Stack Pull

The Stack Pull unit is on the other side of the memories. It has no direct connection to the Stack Push and it

receives its configuration data from the RDO unit. Based on the flush-flag sent from the RDO unit, the Stack

Pull unit starts reading the CU from the internal memories and writes it into the external memories. While writing

Figure 6: Internal structure of the hierarchical Intra Prediction Unit.

15

the CU, the Stack Pull unit performs two additional operations: transforming reconstruction from slices to rows

and reordering coefficients to Z-order.

Reconstructions in the internal and external memories are stored as slices of 32 pixels. The external memory

is an array of 64 × 64 pixels. A 32-pixel wide data bus maximizes speed when writing the largest CUs. The large

data bus requires smaller CUs to be shifted to a correct location and byte enables to assign writes to the correct

pixels. The Rec Top, Left and TopLeft internal memories connected to the Reference Border unit are also

updated during this process.

The coefficients are written in Z-order. Compared with slices-to-rows transform, Z-ordering is a much simpler

operation. The Z coordinate is calculated from x and y coordinates and coefficients are written to consecutive

addresses.

6.3 Intra Prediction and Mode Decision (Intra Prediction Unit)

The Intra Prediction Unit calculates and selects the best prediction for a given CB. It does this by generating

prediction images for all 35 modes and selecting the mode closest to the reference image. Figure 6 shows the

internal structure of the Intra Prediction Unit. It consists of 23 sub-units: 1) Intra Prediction Control (IP Ctrl); 2)

Mode Decision; 3) Prediction Push; 4) Prediction Pull; and 5-23) 19 parallel prediction units for all 35 prediction

modes (Planar, DC, and Angular). The reference samples for all prediction units are stored in the internal

References memories that are located between the IP Ctrl and prediction units. The memories can hold

reference data for up to 4 PBs at a time and allow pipelined processing of predictions.

6.3.1 Intra Prediction Control (IP Ctrl)

The IP Ctrl unit receives the PB configuration data and the reference samples from the Reference Border unit.

A smoothing filter is used for the reference samples in the IP Ctrl unit to reduce contouring artifacts [41].

Depending on the mode and the CB, either filtered or unfiltered pixels are written to the References memories.

Writing data to multiple memory instances is implemented in HLS code as an unrolled loop that iterates a static

array of pointers and either filtered or unfiltered pixels are written.

After all pixels are read, filtered, and written to the memories, the IP Ctrl unit wakes up the prediction units

and the Mode Decision unit by sending them their configuration data. Along with the common parameters of

the PB size and an CTU ID, each prediction unit has own configuration parameters, which are dependent on

the prediction mode, i.e., last pixels from top and left borders for planar prediction, a DC value for DC prediction,

and an absolute angle for angular predictions.

The References memories for the prediction units are needed to pipeline the intra prediction so that the

control unit can filter reference samples for the next PB, while the prediction units are still generating predictions

for the previous PB. Synchronization and overflow protection between the IP Ctrl unit and prediction units are

managed with handshaking signals in configuration channels.

6.3.2 Prediction units (Planar, DC, and Angular)

All prediction units operate in parallel and are configured to predict four pixels per clock cycle, i.e., 32 × 32 block

is predicted in 256 cycles and 16 × 16 block in 64 cycles. HLS is used to generate a pipeline for the entire

prediction process so that the unit starts outputting predictions for the next PB immediately after the previous

one ends. The pipelining removes the initial latency from new predictions when configurations are received at

16

a constant rate. This is especially important with smaller CBs, as the latency without pipelining can exceed the

number of cycles needed for outputting the actual prediction. Successful pipelining requires paying attention to

data dependencies even with HLS. Furthermore, the performance could be easily increased by predicting more

than four pixels in parallel, but the area/performance ratio of the selected approach was found sufficient for this

work.

In addition, the angular predictions were split into the following three different modules according to direction

of the prediction angle: positive angles 2-9 & 27-34, negative angles 11-25, and zero angles 10 & 26. This

approach allowed removing unnecessary structures that are specifically needed for the specified angles. It also

allowed reusing the units and operate configuration based. The corresponding horizontal and vertical prediction

modes were also implemented in the same units. These two predictions make use of the same borders and

have the same but opposite prediction angles, so they can share the same control logic. This way, all Angular

units, except for mode 18, predict two modes simultaneously. For example, modes 2 and 34 are of equal

distance from the middle, i.e., 18 - 2 = 34 - 18 so they are predicted simultaneously in one unit.

Planar, DC, and zero Angular prediction units use two memory instances each, whereas the rest of the

Angular units use 13 parallel memory instances. The memories of the same prediction unit share a common

write port that is controlled by the IP Ctrl unit. A single prediction unit utilizes all read ports in parallel to support

predicting 4 pixels at a time.

6.3.3 Mode Decision

The Mode Decision unit selects the prediction mode for luma PBs by calculating and comparing Sum of Absolute

Differences (SAD) and entropy coding costs of all candidate modes. SAD is used as a measure of image

similarity whereas the entropy coding cost estimates the number of bits needed to code the prediction mode

into bitstream. The entropy coding values are calculated by multiplying a fixed entropy cost with lambda. This

offset tends to affect the MD when two predictions are close to each other [41].

For cost calculations, the unit receives four pixels from each prediction unit per cycle and it simultaneously

reads the corresponding reference pixels from the external Reference pixels memory. The SAD is calculated in

parallel for all modes, four pixels per cycle. The comparison of the 35 mode costs was implemented in HLS as

a limited template recursion function that compares all mode costs in pairs and returns the best mode with its

cost. The HLS code implements inputs from the prediction units with pointer arrays and reads them in unrolled

loops, which helps with the code readability. In addition, loop unrolling does not break the synchronous reading

of inputs during stalling. The unit is also fully pipelined with HLS, so that MD for next PB can start immediately

after the previous one. The prediction data and corresponding reference pixels of each calculated mode are

sent to the Prediction Push unit for buffering. In addition, the selection of the smallest mode cost is signaled to

both Prediction Push and Prediction Pull units.

6.3.4 Prediction Buffering (Prediction Push & Prediction Pull)

The Prediction Push and Prediction Pull units 1) buffer all predictions while Mode Decision unit is selecting the

prediction mode; 2) generate the residual image from the prediction and reference pictures; and 3) adjust the

width of the pipeline data bus between four and 32 pixels. To implement them with HLS requires that all

17

reference and the prediction pixels are stored in a FIFO, which is located between the Mode Decision unit and

the Prediction Push unit. The size of the FIFO is 256 × 1153-bits (35 modes × 4 predicted pixels × 8-bits + 4

reference pixels × 8-bits + end bit = 1153-bits) to support the largest possible PBs. The main loop of the

Prediction Push unit is pipelined to output data every cycle. It waits for the selected mode from the Mode

Decision unit before it starts reading data from the FIFO and continues until the end bit of the current PB marks

the completion. The mode is used as a parameter for shifting the input vector, so that correct prediction and

reference pixels are forwarded to the Prediction Pull unit, which generates the residual and takes care of the

output data width, i.e., a single line of 32 × 32 block, two lines of a 16 × 16 block, etc.

6.4 Transform Unit

The Transform Unit is depicted in Figure 7. It consists of 6 sub-units: 1) Discrete Cosine Transform (DCT) unit;

2) Inverse Discrete Cosine Transform (IDCT) unit; 3) merged Quantization and DeQuantization (Quant

DeQuant) unit; 4) Coefficient Cost unit; 5) Reconstruction unit; and 6) Transpose unit. The Transform Unit has

three main functions: 1) generate the quantized transform coefficients from the residual pixels provided by the

Intra Prediction Unit; 2) create the reconstruction from the prediction and residual pixels, which are dequantized

and transformed back to the spatial domain from the quantized transform coefficients; and 3) calculate the

estimation for the coefficient coding cost and the similarity between the reference and reconstruction.

Figure 7: Internal structure of the hierarchical Transform Unit.

18

6.4.1 Transpose

The Transpose unit performs row-column transpose for a square N × N block, where N ϵ {4, 8, 16, 32}. It

operates on a constant data rate of 32 samples per cycle. It is used as a sub-unit in three different locations:

between the 1-D transforms in DCT and IDCT units as well as between the Quant DeQuant and Coefficient

Cost units.

Internally, it is composed of two parallel units, Transpose Push and Transpose Pull, and a storage array

between them. The Push unit writes data to the memory array and the Pull unit reads it. The memory array is a

collection of 32 parallel memory modules with individual read and write ports. For illustration purposes, an 8 ×

8 variant of the Transpose unit is pictured in Figure 8 (a). It shows how the unit can transpose an 8 × 8 CB. The

values in each cell represent the x and y coordinates of the 8 × 8 CB when all samples are written into the

memory.

The actual input rate is 32 samples per cycle. Depending on the CB size, the slice contains from one to eight

rows, as the slice can contain up to two 4 × 4 blocks. The correct memory instance is determined by rotationally

shifting the bit slice left, according to the starting index y of the slice. In other words, the first slice of a row is

not shifted at all, and the following slices are shifted depending on how many rows have been stored already.

For example, in Figure 8 (a) the first index y of the third slice is two and in Figure 8 (b) the first index y of the

third slice is four.

Simultaneously, the write address is determined by the number of rows in a slice and the corresponding

index x of the sample. For example, in Figure 8 (a) each sample is written to the address x, and in Figure 8 (b)

the samples are written to an address x divided by the number of rows written at once. The memory also

operates as a circular buffer for a more pipelined operation. After the whole block is written to the memory, the

Pull unit is notified that the memory is ready, and it can start reading the data.

Figure 8: Visualization of pixel placement. (a) A slice containing a single row (example with an 8 × 8 variant of the
transpose unit). (b) A slice containing multiple rows (example of 8 × 8 transpose with 16 × 16 variant of the transpose unit).

19

The Pull unit is less complex, as it reads data in a consecutive order from all memory instances. As the slices

were shifted left in the Push unit, the Pull unit reverses this operation. Furthermore, when a slice contains

multiple rows, the rows are scattered as shown in Figure 8 (b). As the order only depends on the number of

rows written at once, the reordering is simply implemented as a four-port multiplexer.

6.4.2 Discrete Cosine Transform (DCT)

The DCT unit is composed of three main parts: 1) two 32-point DCT units; 2) a separate 4-point discrete sine

transform (DST) unit for 4 × 4 luma TBs; and 3) a Transpose unit for row-column transpositions between the

DCT units. In addition, the design contains small control units for input and output. The Input CTRL unit reads

the residual values and passes on the luma 4 × 4 TBs to the 4-point 2-D DST unit, and all other TBs to the 32-

point DCT unit. Output values from the first 1-D DCT are row-column transposed in the Transpose unit and sent

to the second 1-D DCT unit for a complete 2-D transformation. The Output CTRL unit collects the results from

either the DST or DCT unit.

The 1-D DCT unit performs the transform in a three-step pipeline: 1) recursive even-odd decomposition, 2)

multiplication between the transform matrices and odd vectors, and 3) accumulation and scaling of the individual

multiplication products to 16-bit coefficients. The algorithm used for the 1-D transform is a well-known even-odd

decomposition algorithm, a.k.a., Partial Butterfly algorithm [48]. It decomposes the input and core transform

matrices to half of their sizes according to even and odd rows/columns, respectively. The algorithm allows an

N-point transform, where N ϵ {4, 8, 16, 32}, to be computed for even and odd cases separately with two N/2-

point transforms that reduce the number of arithmetic operations needed for the full transform.

The implementation supports transform of 32/N rows/columns in parallel. For example, 8 × 8 TBs can be

processed in only two parts. This is achieved by utilizing reordering of input and intermediate vectors and block

size dependent look-up-tables for transform matrices [2].

Every stage is built to support max 32 × 32 TBs. The recursive even-odd decomposition can be reused for

multiple rows/columns by reordering the reading of the input vector, so that the data flows in the recursive adder

tree separately for each row/column. The resulting odd vectors are multiplied with the corresponding transform

matrices. To reuse the multiplication stage with multiple rows/columns, the odd vectors are reordered to utilize

the block size dependent look-up-tables. Individual products of matrix multiplication are finally added together

and scaled to 16-bits, and the output vector is ordered back to the original order. HLS was vital for the

implementation of the multi row/column functionality, from the perspective of parameterization and verification.

The 4 × 4 luma TBs are transformed in 4-point DST unit that operates in parallel with the 32-point DCT unit.

The DST unit is composed of four parallel 1-D row-transform units that are connected back to each other in

transposed order for a second transform. The 4 × 4 transpose requires no external components as it is possible

to crosswire the outputs and inputs of the unit. The unit also supports transform skip, in which the transform

phase is omitted. This is implemented by forwarding the residual pixels without any operations in the upper half

of the 32-coefficient wide output vector.

6.4.3 Quantization (Quant) and Inverse Quantization (DeQuant)

The combined unit of Quantization and DeQuantization performs both quantization and dequantization of

transform coefficients. Although they are different operations, they were implemented in one unit because they

share the same overall structure and can have a shared control. This unit receives data from the DCT unit.

20

Quantized coefficients are forwarded to the Coefficient Cost unit and dequantized coefficients to the IDCT unit.

The input configuration vector contains a scaled QP value used to define the quantization level. Both

quantization and dequantization are done by multiplying coefficients by a scaler value, that is derived from

scaled QP values and rounding the output.

6.4.4 Inverse Discrete Cosine Transform (IDCT)

The inverse transform of the IDCT unit shares the same top-level architecture as forward transform of the DCT

unit. The IDCT unit was developed along with the DCT unit through the same HLS steps. The 1-D IDCT unit

also uses the Partial Butterfly algorithm implemented as a three-stage pipeline.

In the first stage, the input is multiplied with the transform matrices. The second stage has three

addition/subtraction levels to compose the final even vector from the decomposed even and odd vectors. Lastly,

the third stage combines the even and odd vectors and scales the final result to 16-bit signed residuals. To

support the same multiple parallel rows with smaller block sizes as in the DCT unit, the inputs in each stage are

reordered to match the structure of the stage. After the first 1-D transform, the intermediate data is transposed

in the Transpose unit and sent to the second IDCT unit to complete the 2-D transform.

In parallel with the 1-D IDCT units, a separate 4-point 2-D IDST unit is used for 4 × 4 luma CBs. The IDST

unit performs the full 2-D transform internally without any external transpose. The support for transform skip

was also added by forwarding the residuals without any operations in the upper half of the output vector.

6.4.5 Coefficient Cost

The Coefficient Cost unit calculates the estimated coding cost to encode the CB to the bitstream. The input

coming from the Quant DeQuant unit is in transposed order, due to the transpose in the DCT unit. As the

Coefficient Cost unit requires data in original order, an extra Transform unit was added between it and the Quant

DeQuant unit.

Look-up-tables were used for the XY coordinates of the quantized transform coefficients to find the

equivalent coefficient group and scan order index of the pixel. The estimation uses a linear model for the cost

by utilizing five different parameters derived from the quantized transform coefficients: total sum of coefficients,

number of nonzero coefficient groups, number of coefficients with value of zero or one, and the index number

of the last nonzero coefficient. Different weights are predefined according to data gathered from CABAC for

each parameter and for each CB size. The final cost estimation is calculated by multiplying each parameter with

its weight and added together. This algorithm produces slightly worse results than CABAC, as it only estimates

the cost of coding, which might reduce the encoding quality with certain CBs.

6.4.6 Reconstruction and SSD (Reconstruction)

The Reconstruction unit receives the reconstructed residual pixels from the IDCT unit. It also receives the

reference and predicted pixels from the Prediction Push unit. The unit uses residual pixels and prediction pixels

to generate the final reconstructed image as on the decoder side. The reference pixels are used to

simultaneously calculate the SSD value between the reconstruction and the original image.

A reconstruction is calculated by adding the residual to the prediction pixel by pixel. In the case of an

overflow, the output is clipped to the maximum or minimum value. Pixels inside a PB have no dependencies

21

with each other, so any number of pixels can be calculated in parallel. As the output from the IDCT contains 32

coefficients, the Reconstruction unit was built to support that.

With the smallest 4 × 4 luma CBs, an output vector from the IDCT unit contains two CBs. The lowest half

contains a normal CB, and the top half contains the respective transform skip candidate for it. In reconstruction

calculations, the ability to duplicate the lower half of the prediction to the upper half was added to cover this

special case.

SSD is calculated by deducting reconstruction from the original image, squaring the differences in pixel

values, and adding them all together. The 4 × 4 luma CBs require SSD to be calculated in two halves, as

separate SSD values are needed for both CBs. Utilizing the same structure for other CBs, the full SSD is

produced by adding the two halves together. As an output, all three values, the two halves and the combined

sum, with the reconstruction image are sent to the CU Stack. The SSD is used as an image quality metric in

intra coding, and the best CU configuration is selected as a function of the image quality and the number of

consumed bits from the Coefficient Cost unit.

7 CABAC CORE

The CABAC Core is the top-level component for performing context-adaptive binary arithmetic coding of HEVC.

A single CABAC Core can cache 16 individual CTUs to on-chip memories for pipelined processing. The coding

of a CTU is started upon receiving CTU ID ready signal from the Intra Search Core. Contrary to the Intra Search

Core, the CABAC Core does not process different CTU IDs in parallel in different pipeline stages, but it

processes CTUs in first in first out order. This is because the CABAC process is serial in nature and the time

used in binarization varies highly based on the contents of the coefficients, which in turn depends on the input

video, quantization factor, and prediction accuracy of the intra search process. The core interface includes

memory interfaces to on-chip memories and direct data transmission with handshake signals.

Figure 9: Top-level structure, interfacing, and connections of CABAC Core.

22

The CABAC Core is presented in Figure 9. It consists of two components: 1) Binarization Unit for binarization

of the CTU structure and the coefficients of each CB, and 2) CABAC Encoding Unit for binary arithmetic

encoding of the binarized syntax elements to the bitstream and updating the parameters and CABAC states in

corresponding tables.

The same iterative HLS process that was used for the Intra Search was also applied for CABAC. The initial

design partitioning was done according to the CABAC functions in the Kvazaar reference code. The system-

level architecture was further optimized during the implementation and DSE was used to improve

area/performance figures.

The following sections present all HLS units implemented in the sub-hierarchical units with the required

memories and configuration data for the CABAC process. The described functionality follows the HLS code

almost directly and shows how the implementation of CABAC was made possible.

7.1 Memories and configuration for CTU CABAC process

The memories of the CABAC Core are presented in Table 4. They are divided into: 1) external memories, that

are necessary for the binarization process, actual CABAC encoding, and the final HEVC bitstream; and 2) an

internal memory, which is used to buffer the coefficient groups for the coefficient binarization. The table also

shows the sizes and instantiation counts of these memories. If several units need access to a specific memory,

multiple identical instances of it are generated. In the case of Coeff and CU info memories, the CABAC Core

needs one identical instance in addition to the one instantiated in Intra Search Core. All memories are designed

for caching 16 CTUs from the CTU ID based intra search. For example, dividing the Coeffs memory of size 196

608 bytes by 16 gives 12 228 bytes per CTU, and as the coefficients are 16-bit, divided by two bytes gives 6114

coefficients. Of these coefficients, 64 × 64 = 4096 are needed for the Y channel and ¼th of Y (1024 coefficients)

for both U and V channels in an 8-bit YUV420 format..

The external interfaces used for the CABAC process are the following. The Coeffs memory stores the final

coefficients of intra search and is read by the coefficient binarization process of CABAC. There are two CABAC

parameters memories. One for receiving the current state and the other for storing the final state of the CABAC

Table 4: Memory name, location, size, and instances needed for a single CABAC Core

Name Location Bytes Instances

Coefficients (Coeffs) External 196 608 1*

CABAC Parameters External 256 2

CU Info External 16 384 1+1*

CU Info top External 256 2

CU Info left External 256 2

CABAC CTX External 4 096 1

Bitstream External 32 768 1

B
in

a
ri

z
a

ti
o

n

Coefficient Groups (CGs) Internal 4 096 1

58 880

*Shared with Intra Search Core

C
o

re

Core

23

variables bits_left, buffered_byte, num_buffered_bytes, low, and range, and bitstream variables current_data,

current_bit, and zerocount, which are detailed later. CU Info contains the CTU configuration determined by intra

search, and CU Info top and CU Info left the CU configuration of neighbouring CTUs on top and left. CABAC

CTX memory contains the full state of all CABAC tables. A single syntax element is 7-bits, of which the lower

6-bits stores the least probable symbol (LPS) and the most signifigant bit (MSB) stores the most probable

symbol (MPS). The memory uses 256 bytes per CTU ID for the 184 syntax elements [2]. The Bitstream memory

stores the final HEVC bitstream. The internal memory is explained in the corresponding section later.

The start signal for the CABAC Core and additional configuration data is provided via the CABAC

Configuration channel. The configuration data consists of 1) CTU ID, 2) frame size, 3) offset of tile, 4) x and y

coordinates of the CTU, 5) current QP value, 6) initial QP value for delta QP, and 7) bottom right CU

configuration of the top left neighbouring CTU.

7.2 Binarization Unit

The Binarization Unit is presented in Figure 10. It consists of seven sub-units: 1) Encode Coding Tree, 2)

Demuxer, 3) Encode Coding Blocks, 4) Coeff Group Arranging, 5) Coeff Group Scanning, 6) Coeff Binarization,

and 7) Arbiter. These units are responsible for the whole binarization process of a CTU.

The internal structure is divided into two clock domains: clock domain #1 is for non-time critical units; and

clock domain #2 is for the more time critical process in the hierarchical Coeff Binarization Unit. By only

overclocking the clock domain #2, the performance of the whole Binarization Unit increases without the need

to route-optimize the clock domain #1. Clock crossing can be enabled manually via external dual clock FIFOs

or automatically with internal clock crossing components generated by the HLS tool. The proposed system uses

190 MHz for clock domain #1 and 266MHz for clock domain #2.

The format of binarization commands sent via the CABAC BIN #NUM channels is presented in Table 5. The

bit vector contains the necessary information to perform the bitstream encoding in the CABAC Encoding Unit.

Figure 10: Internal structure of the hierarchical Binarization Unit.

24

The CMD field is for initializing the CABAC encoding process with START command and CTX Index field is for

the CTU ID. With STOP command in the CMD field the rest of the fields are not used, and the CMD initiates

flushing of CABAC encoding results. For actual binarization commands, CMD is used to identify if the command

is for a single BIN (binary symbol mapped to a syntax element), equiprobable (EP)_BIN or multiple EP_BINS

(bypass-coded bins). The CTX Index field is used for identifying the correct CABAC table for the command and

Offset field to identify the correct state value in the corresponding table. The last two fields are used for the

number of bins and the actual bins value.

Table 6 presents the indexing order and size of each CABAC Table in the CABAC CTX memory. The

binarization explained in the following sections complies with HEVC standard and is detailed in [2], [49].

7.2.1 Encode Coding Tree

The Encode Coding Tree unit is the main control unit of CABAC Core. It receives the configuration and the start

signal for a CTU ID ready for binarization and CABAC encoding. When the process starts, the unit sends a start

command to the CABAC BIN #1 channel through the Demuxer unit. This makes the CABAC Encoding Unit

initialize the processing for a new CTU ID, which is used for indexing the correct CABAC CTX and Bitstream

memories. In addition, the Encode Coding Tree unit reads the initial parameters from the CABAC Parameters

memory according to the CTU ID and sends them to the CABAC Encoding Unit via a channel. The final write

from the Encode Coding Tree unit, after the whole CTU is processed, is a stop command to the CABAC BIN #1

channel. This instructs the CABAC Encoding Unit to flush the results to external memories. To keep the

commands in order during HLS scheduling, the data for the CABAC BIN #1 channel and configuration to Encode

Coding Blocks are combined into a single channel. The Demuxer unit then directs the data to the correct unit

marked by the least significant bit, which is only included in the intermediate channel between the two units.

Table 5: Bit vector used for binarization commands

Table 6: CTX Index of CABAC Tables and the size of tables in bytes

0 2 8 13 19 35

CMD CTX Index Offset Number of bins Bins

CTX Index CABAC Table Bytes CTX Index CABAC Table Bytes

0 sao_merge_flag_model 1 17 cu_ctx_last_x_chroma 15

1 sao_type_idx_model 1 18 cu_one_model_luma 16

2 split_flag_model 3 19 cu_one_model_chroma 18

3 intra_mode_model 1 20 cu_abs_model_luma 4

4 chroma_pred_model 2 21 cu_abs_model_chroma 2

5 inter_dir 5 22 cu_pred_mode_model 1

6 trans_subdiv_model 3 23 cu_skip_flag_model 3

7 qt_cbf_model_luma 4 24 cu_merge_idx_ext_model 1

8 qt_cbf_model_chroma 4 25 cu_merge_flag_ext_model 1

9 cu_qp_delta_abs 4 26 cu_transquant_bypass 1

10 part_size_model 4 27 cu_mvd_model 2

11 cu_sig_coeff_group_model 4 28 cu_ref_pic_model 2

12 cu_sig_model_luma 27 29 mvp_idx_model 2

13 cu_sig_model_chroma 15 30 cu_qt_root_cbf_model 1

14 cu_ctx_last_y_luma 15 31 transform_skip_model_luma 1

15 cu_ctx_last_y_chroma 15 32 transform_skip_model_chroma 1

16 cu_ctx_last_x_luma 15

25

The quadtree CTU configuration is processed using limited template recursion function. The depth in the

tree is increased until it matches the configuration of the current CU or maximum depth is reached. The process

then continues moving up in the tree and to the next location according to Z-order. During this process, all

SplitFlags (split=1, no split=0)) are binarized as BIN commands using the split_flag_model as the CTX. The part

mode is binarized for all CUs as part_mode 2N × 2N (1), unless the 8 × 8 CU is split into four 4 × 4 blocks and

part_mode N × N (0) is used. The part mode binarization is a BIN command with the part_size_model as the

CTX. All bins here are written to CABAC BIN #1 channel. The unit is also responsible for configuring the Encode

Coding Blocks when there is no longer a split or the max depth is reached. The configuration data contains the

1) CTU ID, 2) x and y coordinates of the CU in the frame, 3) the x and y coordinates of the CU in the CTU, 4)

current depth in the coding tree, 5) current QP value, 6) initial QP value, 7) luma mode of the CU, 8) block size

of the CU, and 9) the configuration of the neighbouring top left corner CU.

7.2.2 Encode Coding Blocks

The Encode Coding Blocks is responsible for binarizing intra coding units and transform units. Based on the

configuration received from Encode Coding Tree unit, the intra prediction mode is first compared with three

predictors to find if it is a most probable mode (MPM). The predictor list is constructed according to the left and

top neighbouring CUs. Prev_intra_luma_pred_flag, mpm_idx, and rem_intra_luma_pred_mode are then

binarized according to the predictor list using BIN command for prev_intra_luma_pred_flag, EP_BIN for

mpm_idx, and EP_BINS for rem_intra_luma_pred_mode. All these binarizations use the intra_mode_model as

the CTX. As chroma is reconstructed in the Intra Search Core by using the luma intra prediction mode,

intra_chroma_pred_mode is simply binarized as 0 with a BIN command using chroma_pred_model as the CTX.

Next, the chroma CBFs cbf_cb and cbf_cr are binarized with BIN commands using qt_cbf_model_chroma

as the CTX. The luma CBF, cbf_luma, is also binarized as a BIN command using qt_cbf_model_luma as the

CTX. The CBF flags are read directly from the CU Info external memories.

If one of the CBFs indicates that there are coefficients to be coded, the QP delta is first binarized if needed.

The absolute QP delta is calculated based on the current QP value and the reference QP value. The prefix is

binarized with BIN commands and the suffix (QP delta > 4) is binarized an EP_BINS command. Finally, the

qp_delta_sign_flag is binarized with an EP_BIN command. The CTX is used for QP delta is cu_qp_delta_abs.

During CBF binarization process, the Coeff Binarization Unit is configured according to the CBFs. The

configuration consists of 1) CTU ID, 2) x and y coordinates of the CU in the CTU, 3) block size, and 4) color

channel identifier. To keep the binarization commands in order with HLS between the Encode Coding Blocks

and Coeff Binarization Unit, the Encode Coding Blocks waits for a feedback signal from the Coeff Binarization

Unit. HLS stalls the internal pipeline with the blocking feedback read, until the Arbiter unit sends a ready signal.

This is because all coefficients must be binarized for all color channels before the next CB can be started.

7.2.3 Coeff Group Arranging

Coeff Group Arranging unit is the first unit in the hierarchical Coeff Binarization Unit. This unit is responsible for

reading the coefficients from the Z-order external memory and storing them in the internal Coefficient Groups

(CGs) memory. The unit reads four coefficients from the external memory at a time and writes all 16 coefficients

to the internal CGs memory at a time, so that the Coeff Group Scanning unit can read complete CGs at a time.

26

The reading of coefficients uses scan order specific look-up-tables for translating scan order indexes to XY-

index. During reading, the XY-index of last nonzero CG and the XY-index and scan order index for the last

nonzero coefficient are gathered. The scan mode depends on the block size and color component. The scan

order is always diagonal, except for 4 × 4 and 8 × 8 luma and 4 × 4 chroma CBs. For these CBs, angular modes

6-14 cause the use of vertical scanning and angular modes 22-30 cause horizontal scanning. In addition, a flag

is set for each CG if the CG has nonzero coefficients.

The coefficients of a CB are stored to the memory in two alternating locations to allow pipelined arranging of

adjacent CBs. After the arranging, configuration data is sent to the Coeff Group Scanning unit via a channel.

This configuration contains 1) the starting location of CGs in the internal memory, 2) block size, 3) color channel,

4) scan mode, 5) last nonzero coefficient position in scan order and raster order, 6) last nonzero CG in raster

order, and 7) max 64-bit vector for identifying which CGs have coefficients.

7.2.4 Coeff Group Scanning

Before starting the CG scanning the last significant XY is first binarized in this unit. The binarization depends

on the XY coordinates of the last nonzero coefficient. The prefixes are binarized first as BIN commands and the

suffixes as EP_BINS if needed. The CTX for these depends on the coordinate and color channel and can be

cu_ctx_last_y or _x for _luma and _chroma.

The Coeff Group Scanning unit is mainly responsible for reading the CGs from the internal memories in

correct CG scan order by using a look-up-table according to the scan mode from the configuration. Diagonal is

scanned in zigzag, horizontal from left to right and vertical from top to bottom. The scanning is performed in

reverse CG and coefficient order starting from the last nonzero CG and last nonzero coefficient. The unit

performs pre-processing during the scanning of each CG. The unit calculates the absolute value for each

coefficient; counts the number of nonzero coefficients; generates a 16-bit vector for the coefficient signs;

determines the index of the last coefficient equal to 1 (c1) and the first index of a coefficient equal or greater

than 2 (c2); and counts the number of c1 values after the first c2 and the total number of c2 values. The

configuration data is then sent to the correct Coeff Binarization unit. The configuration is a combination of the

pre-processed data and the configuration from the Coeff Group Arranging unit.

An Arbiter unit is needed for the three different paths binarization commands can be sent from. After the last

significant XY is binarized, the Coeff Group Scanning initializes the Arbiter unit to start reading data from the

first Coeff Binarization unit, after which the unit is alternated.

7.2.5 Coeff Binarization

As the Coeff Group Scanning does most of the pre-processing, the structure of the Coeff Binarization is basically

just comparing different values and coefficients to produce correct binarization. The loops that generate

binarization commands for the coefficients go through all coefficients until they are binarized. The loops use the

pre-processed values to determine if binarization is needed. The coefficient binarization is done in six different

steps. Steps 1 to 4 use BIN commands and steps 5 and 6 used EP_BINS commands.

1) The coded_sub_block_flag is binarized as 0 or 1 depending on if the CG has coefficients, except the

last nonzero CG and the first CG in scan order, which are known to be one. This step uses the

cu_sig_coeff_group_model as the CTX.

27

2) Next, if the CG has coefficients, the sig_coeff_flag is signaled in a loop, and is binarized as 1 for all

nonzero coefficients and 0 otherwise. This is signaled for all 16 coefficients of the first CG in scan order, skipping

the first coefficient when rest of the coefficients are zero, or starting from index before the last nonzero coefficient

with the last nonzero CG. This step uses either cu_sig_model_luma or cu_sig_model_chroma as the CTX.

3) Also, if the CG has coefficients, the coeff_abs_level_greater1_flag is signaled in a loop as 1 for all

absolute coefficients that are greater than 1, 0 when they are one, and zero coefficients are not signaled. The

binarization loop of coeff_abs_level_greater1_flag is ended if there are no longer nonzero coefficients in a CG

or the maximum number of coeff_abs_level_greater1_flags reach the limit of eight. This step uses either

cu_one_model_luma or cu_one_model_chroma as the CTX.

4) The coeff_abs_level_greater2_flag is signaled once for the first index of c2. It is binarized as 1 when the

absolute coefficient is larger than 2 and as 0 if it is 1 or 2. This step uses either cu_abs_model_luma or

cu_abs_model_chroma as the CTX.

5) The coeff_sign_flag is signaled for the coefficients if the CG contains nonzero coefficients. The bins sent

is the vector pre-processed in the Coeff Group Scanning unit. This step uses the same CTX as step 3 or 4,

depending on if coeff_abs_level_greater2_flag was signaled.

6) Finally, if the CG contains more than eight nonzero coefficients or has a coefficient larger than 1, the

coeff_abs_level_remaining is signaled in a loop. The remaining coefficients are signaled according to the index

of nonzero coefficients, absolute coefficient value, and Rice parameter. This step uses the same CTX as step

3 or 4, depending if coeff_abs_level_greater2_flag was signaled.

After all coefficient binarization steps are done for a CG, the unit sends a notification bit for the Arbiter unit

to start forwarding the binarization commands from the second Coeff Binarization unit. The unit then

immediately continues the processing of next CG if available. Because the time spent in Coeff Binarization

depends on the encoded content and the number of coefficients to binarize, it can vary highly between different

CGs. In a single unit there might be some latencies between consecutive binarization commands because the

different loops are scheduled independently, and loop iterations without bin writes can exist. The loops are fully

pipelined to process a single coefficient per cycle and break the loop depending on break conditions, but each

Figure 11: Internal structure of the hierarchical CABAC Encoding Unit.

28

loop has initial latencies. Merging the loops with HLS at top level and having a common pipeline for each loop

was not suitable because of data dependencies. To counter this, and to minimize the waiting of binarization

commands in the Arbiter unit, the combination of pre-processing in the Coeff Group Scanning unit and the two

parallel Coeff Binarization units was developed. This aims to keep the FIFOs before the Arbiter unit more evenly

full and a steadier flow of binarization commands to the CABAC Encoding Unit.

7.3 CABAC Encoding Unit

The CABAC Encoding Unit is presented in Figure 11. It consists of eight sub-units: 1) CABAC BIN Arbiter, 2)

CABAC CTX Update, 3) Range & Encode Bin/s, 4) Bits Left, 5) Low, 6) Buffering Bytes, 7) Zerocount, Length

& Feedback, and 8) Write to Bitstream. These units are responsible for the whole CABAC encoding process of

a CTU. The internal structure is divided into three clock domains. Clock domain #1 and #2 are the clock domains

from the Binarization Unit and are used for reading the data from the corresponding CABAC BIN #NUM channel.

The clock crossing between these two clock domains and the clock domain #3 is done in the CABAC BIN Arbiter

automatically with internal clock crossing components with the HLS tool. Depending on the target device and

routing results, the clock domain #3 can be set to a different frequency than the other two domains. In the

proposed system, 266 MHz is used due to limitations in the device PLL.

The resulting design partitioning is the outcome of the iterative HLS development. The aim was to find best

combination of performance and area usage. Excluding the CABAC BIN Arbiter, the partitioning is based on

modifying specific CABAC variables per unit, including only necessary operations for modifying the

corresponding variable. Each unit also forwards only the necessary data to the adjacent units. This helped

simplifying data dependencies in each unit. Although not shown in the block diagram, all units send the needed

data with a single write. If the write has multiple data sets or bytes for the next unit, this data is internally buffered

and then sent in pieces. This helps the HLS tool to pipeline the top-level process in each unit better, as the

there is no need to stall the pipeline for consecutive writes. This also keeps the whole CABAC pipeline fuller as

some units might not write to output per read.

7.3.1 CABAC BIN Arbiter

The CABAC BIN Arbiter unit reads the CABAC BIN #NUM channels in reverse priority. For example, if there is

data available in channel #2 and channel #3, the arbiter first reads all values from channel #3 before reading

the values from #2. Furthermore, there is no internal buffering for the channels #1 and #2 during the clock

crossing, which causes the writes from the corresponding unit to stall. This is to make sure the higher level

binarization commands are made in order and no commands are missed before moving to the higher priority

channel. The stalling of writes prevents the configurations to propagate, which in turn prevents the generation

of new commands to higher priority channels before it is allowed. As the channel #3 generates the most

commands and has the highest priority, there is also internal buffering during the clock crossing to compensate

possible latencies in the data feed. HLS makes it easy to implement arbiter units that include prioritization, clock

crossing, and internal buffering, as the complex functionality is generated by the HLS tool.

7.3.2 CABAC CTX Update

CABAC CTX update is the first unit in the actual CABAC encoding process. When the unit receives the START

command, it reads the CABAC Parameters and initiates an internal initialization process where the CTU ID and

29

each parameter is updated to corresponding units in the CABAC pipeline. The vector with the CABAC

parameters propagates through all units in the CABAC pipeline. Similarly, with the STOP command, the unit

initiates a flushing process where each unit of the CABAC pipeline propagates the current corresponding

CABAC parameter through all units in the CABAC pipeline.

The CABAC CTX is read and updated only when the unit receives a command for encoding a single BIN.

This state is not altered with EP_BIN and EP_BINS commands. It first reads the state from the external CABAC

CTX memory according to the CTX and offset field of the command. The state is used for reading the LPS and

the MPS from next state look-up-tables. The state is updated to the external memory with the next LPS state if

the bin is not equal to the first bit of the current state. Next MPS state is written otherwise. The current state is

also forwarded in place of CTX and offset with the original command to the next unit.

7.3.3 Range & Encode Bin/s

The Range & Encode Bin/s unit is responsible for modifying the range parameter according to the state and

command from the previous unit. The range is updated only when the CMD is for a single BIN. With CMDs

EP_BIN and EP_BINS, the range is only used for forwarding data to the next unit.

With the BIN CMD, the range is updated by reading a value from the rangeLPS look-up-table [2] according

to the LPS of the current state and the top two bits of the range. This table allows a multiplication-free

approximation of the product range × LPS. This value is first subtracted from the current range value. If the bin

is not equal to the MPS of the current state, the range is renormalized according to the top five bits of the value

read from the rangeLPS table. This renormalization value is also read from a look-up-table that has 32 values.

The value at index 0 is 6 and the value in the following indexes from 1 to 31 are 6 - (log2(index) + 1). The

previously updated range is forwarded to the next unit with the renormalization value as the number of bits,

after which the range is again updated to the value read from the rangeLPS table shifted left by the

renormalization value. If the range was not renormalized and the previously updated range is less than 256,

one bit zero is forwarded to the next unit. In this case the range is also shifted by one to the left. In addition, the

order in which the low value is incremented and shifted in the next unit depends on if the range is renormalized.

This is identified with the first bit in the forwarded data.

With the CMD EP_BIN, the current range is forwarded to the next unit when the bin is one with a bit size of

one. One bit zero is sent when the bin is zero. With the CMD EP_BINS, the forwarding of data is divided into

two sets according to the number of bins. If the number of bins is greater than eight, the first set of data

forwarded is the 8-bits with the product of bins multiplied with the current range. The second set of data

forwarded is the remaining number of bins with the product of remaining bins multiplied with the range.

7.3.4 Bits Left – Low – Buffering Bytes – Zerocount, Length & Feedback – Write to Bitstream

Bits Left unit is used for generating the bitmask for the Low unit and tracking the number of bits in the low value.

The bits_left variable is updated according to number of bits received from the Range & Encode Bin/s unit. The

bitmask is a 32-bit vector of all-ones, unless the bits_left value drops below 12-bits. In that case the bitmask is

a 24-bit vector of all-ones, shifted right with the number of bits left. The bitmask is then forwarded to the Low

unit, along with the data received from Range & Encode Bin/s unit.

The Low unit updates the low variable according to the data received from the previous units. The first bit of

the data received is used to identify range renormalization. If the range was renormalized, the low value is first

30

incremented with it, after which the low value is shifted left according to number of bits in the data. If range was

not renormalized, the low value is first shifted and then incremented. Finally, depending on the bitmask, the unit

forwards the leading 9 bits of the low to the next unit and use the bitmask to zero them.

The Buffering Bytes unit is used for forwarding correct bytes according to the CABAC variables buffered_byte

and num_buffered_bytes. The bytes written depends on the buffered_byte, the msb of the leading 9 bits, and

the num_buffered_bytes. If the num_buffered_bytes is zero, the buffered_byte is set with the leading byte, and

the num_buffered_bytes is set to 1 with no data sent. If the num_buffered_bytes is larger than zero, the first

byte written is the buffered_byte + msb of leading 9 bits. The buffered_byte is then updated with the leading

byte. The number of num_buffered_bytes is written next as 0 or 255, depending on the msb of the leading 9

bits. If the leading 9 bits represent a value of 255 only the num_buffered_bytes value is incremented.

The Zerocount, Length & Feedback unit tracks the number of consecutive zero bytes. If the leading 6 bits of

the byte are zero, after two zero bytes, an emulation prevention 3-byte is written to the bitstream before the

actual byte. The length variable is updated according to the number of bytes forwarded to the final bitstream.

When the CABAC Encoding Unit receives the STOP CMD, the CABAC parameters from the previous units

propagate to this unit. The unit stores the CABAC parameters to the external memory according to the CTU ID,

which was specified during the START CMD. The unit also generates a done signal with the CTU ID, to inform

the finished CABAC process.

The Write to Bitstream unit writes the received bytes into the external Bitstream memory one byte at a time.

Because the 3-byte emulation prevention can cause two bytes to be written at once, the bytes are buffered in

this unit and written one at a time. This way, the processing is not blocked in the previous unit by the memory

write.

8 PERFORMANCE EVALUATION OF THE PROPOSED CLOUD ENCODING SYSTEM

Our proof-of-concept prototype was implemented on Nokia AirFrame Cloud Server equipped with 2.4 GHz dual

14-core Intel Xeon processors and two Intel PCIe FPGA accelerator cards. The applied FPGA chip was an Intel

Arria 10 10AX115S2F45I1SG on Intel Arria 10 GX FPGA Development Kit, which supports both PCIe

generation 3 x4 and 40GbE fiber connections. However, these two connections were not compiled together into

a single project, but two compiled images exist for the same Intra Encoding unit, one with the DMA and the

other with Ethernet blocks. The IP for either connection is provided by Intel Quartus Prime IP Catalog.

Figure 12 depicts the proposed system on FPGA. The Arria 10 FPGA can accommodate three Intra Encoding

instances (#1-3). One encoder instance consists of a single Intra Search Core and two CABAC Cores, of which

CABAC Core BTM is used for the bottom 0-7 CTU IDs and CABAC Core TOP for the top 8-15 CTU IDs. Other

functional and memory instances, as well as their connections, are also drawn. Duplicate memories are

illustrated with memory stacks, where the memory count indicates the number of parallel connections to the

unit. Furthermore, some memories are also divided into btm and top instances, that can both store data for

eight CTU IDs used by the respective CABAC Core.

The units implemented with VHDL include the Intra and CABAC config units, DMAs or Ethernet RX/TX for

receiving and sending data, and CTU ID indexers. They are all directly connected to the Avalon bus.

31

8.1 FPGA Area Utilization

Table 7 reports the area utilization of the HW units on FPGA. The results are reported as adaptive logic modules

(ALMs), which have the flexibility to implement 2.5 logic elements (LEs) of a classic 4-input LUT. A single DSP

equals to two 18 × 19 multipliers or one 27 × 27 multiplier, which are automatically inferred by the Quartus

Prime tool from the generated RTL.

A single Intra Encoding instance (see Figure 12) is made up of one Intra Search Core (90k ALMs with DSPs

or 95k ALMs without DSPs in Intra Prediction), two CABAC Cores (22k ALMs), and Surrounding connectivity

(13k ALMs). The area utilization of these modules is detailed in Table 7 (a) - (c), respectively. The sizes of

internal buffers are not separately given, but are included in the total area of each hierarchical module.

In total, each Intra Encoding unit takes around 125k ALMs with DSPs or 130k ALMs without DSPs in Intra

Prediction. The Arria 10 FPGA can include three Intra Encoding units of which one is implemented without

DSPs in Intra Prediction, so the total area utilization is around (125k + 125k + 130k) ALMs = 380k ALMs as

reported in Table 7 (d).

Figure 12: Proposed Intra Encoding System on FPGA.

32

8.2 HEVC Coding Speed

Table 8 reports the coding speed of our Intra Encoding System over all 16 4K (3840×2160) test video sequences

obtained from our UVG dataset [50]. The results are given for the base QP values of 22, 27, 32, and 37 as well

as for ten different depth ranges of the HEVC quadtree. The depth ranges were denoted as “hmin-hmax”, where

hmin and hmax equal the minimum and maximum depths, respectively. For example, only 32 × 32 blocks (N =

32) are encoded with range “1-1” whereas N ϵ {4, 8, 16, 32} with “1-4”. The average frame rate values are color-

coded for clarity: dark green denotes 120 fps or more, light green 60 - 120 fps, and orange below 60 fps.

The depth ranges of “1-3” and “2-3” highlighted in orange and blue comply with the fast and ultrafast presets

of Kvazaar [5], [6]. With these presets, our system is able to encode 4K video over 80 fps in the worst case

(QP=22) and over 100 fps on average. Respectively, the coding speed with the entire depth range (“1-4”)

exceeds 30 fps in each test case and is 85 fps on average.

The real-time presets of Kvazaar have intensively been optimized for speed [51]. In addition, the sum of

absolute transformed differences (SATD) and accurate bin counting through CABAC were excluded from this

proposal for simplicity. These optimizations add some overhead to coding efficiency, e.g., when compared with

the HEVC reference encoder HM 16.23 [52] that implements practically all HEVC coding tools. With the UVG

Table 7: Area utilization. (a) Intra Search Core. (b) CABAC Core. (c) Surrounding connectivity. (d) Intra Encoding System.

ALMs DSP Blocks ALMs DSP Blocks

89 517 523 10 899 3

7 806 8 435 2

CTU Initialization 339 Encode Coding Tree 840

Scheduler 871 Demuxer 79

Execution 233 Encode Coding Blocks 1 751 2

RDO 1 767 Coeff Group Arranging 1 232

Reference Border 617 Coeff Group Scanning 2 387

Stack Push 1 607 Coeff Binarization 752

Stack Pull 1 842 Arbiter 211

Intra Prediction 17 909 119 2 093

IP Ctrl 469 CABAC BIN Arbiter 439

Prediction blocks
1 9 701 116 CABAC CTX Update 100

Mode Decision
2 5 132 3 Range & Encode Bin/s 221 1

Prediction Push 1 791 Bits Left 85

Prediction Pull 612 Low 351

63 407 404 Buffering Bytes 310

DCT 26 034 144 Zerocount, Length & Feedback 90

IDCT 26 331 180 Write to Bitstream 74

Quant/DeQuant 5 021 64

Transpose 3 675 ALMs DSP Blocks

Coefficient Cost 1 025 Surrounding connectivity 12719

Reconstruction 1 298 16
1
Without DSPs: 14 972 ALMs

2
Without DSPs: 5 408 ALMs

ALMs DSP Blocks

Proposed Intra Encoding System

3× Intra Search Core*, 6× CABAC Core, 3× Surrounding connectivity 377 649 1468

*Intra Prediction DSPs are disabled for one Intra Search Core

Ctrl

Single Intra Search Core

Transform

Single CABAC Core

Binarization

(a)

(b)

(c)

(d)

CABAC Encoding

33

dataset, HM Intra encoder achieves 19% better coding efficiency (BD-rate [53]) over the proposed system with

“1-4” depth range. However, our solution is also 5832× as fast as the single-threaded HM. Furthermore, the bit

rate penalty does not stem from the HLS approach, but the coding tool optimizations performed in the source

code.

Table 9 compares the average performance and resource consumption of our solution with the existing

HEVC encoders on ASIC and FPGA. The results show that the proposed system consumes more resources

than the respective FPGA approaches, but it is also able to attain higher performance with most depth ranges

as shown in Table 8. The performance of our system could also be further scaled up by adding more FPGAs.

Table 8: Encoding speed with the proposed Intra Encoding System (with the PCIe interface and two Arria 10 FPGAs)

Fast preset Ultrafast preset fps > 120 60 ≤ fps ≤ 120 fps < 60

4K Sequence [50] 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4

Beauty 105 99 89 43 92 82 47 61 45 35 169 150 105 48 152 129 53 99 50 54

Bosphorus 149 155 110 56 171 140 63 126 58 59 184 173 120 73 169 155 86 133 72 60

CityAlley 171 129 105 51 160 132 58 120 54 59 170 162 122 85 180 155 102 133 80 60

FlowerFocus 171 156 105 46 161 130 51 102 48 56 188 163 123 89 184 158 111 133 83 60

FlowerKids 174 160 108 56 165 126 64 114 59 59 177 159 120 77 179 150 91 131 75 60

FlowerPan 135 115 86 41 113 88 46 73 46 42 170 156 98 48 160 125 54 109 52 60

HoneyBee 136 131 97 43 128 108 47 82 46 46 173 161 107 62 169 141 72 131 64 60

Jockey 170 153 103 46 144 125 50 96 48 52 178 174 114 76 182 149 91 133 74 60

Lips 108 101 93 43 93 84 47 63 46 35 173 164 106 46 156 132 51 101 49 56

RaceNight 115 108 91 42 104 93 46 79 46 40 166 164 107 55 176 134 62 129 57 59

ReadySteadyGo 158 155 103 52 156 125 58 112 55 58 181 170 115 65 183 146 76 128 66 60

RiverBank 142 122 94 49 129 102 55 91 54 47 159 137 111 58 155 137 65 123 59 59

ShakeNDry 120 111 90 41 112 96 45 77 45 43 163 134 101 49 157 129 55 118 52 59

SunBath 167 148 119 76 160 136 90 124 75 59 153 162 126 95 132 158 118 124 89 59

Twilight 176 156 107 53 167 133 60 124 56 60 184 162 134 97 174 160 119 132 87 60

YachtRide 149 161 102 52 164 129 59 119 56 59 182 161 114 66 176 146 77 132 68 60

Average fps 147 135 101 50 139 115 56 98 53 51 174 160 114 69 168 144 81 125 68 59

4K Sequence [50] 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4

Beauty 155 167 121 91 178 148 112 131 84 60 188 177 175 167 181 175 162 133 116 60

Bosphorus 187 173 132 97 186 171 119 133 88 60 187 182 145 125 175 172 157 133 105 60

CityAlley 186 175 142 110 181 175 137 131 95 60 187 169 155 137 173 174 153 133 108 60

FlowerFocus 188 174 158 141 168 166 169 131 107 60 188 178 170 158 169 175 174 128 120 60

FlowerKids 181 175 133 94 171 160 114 133 85 60 190 170 148 114 170 168 135 131 97 60

FlowerPan 176 147 108 63 177 140 74 132 66 60 185 157 114 82 167 156 102 133 83 60

HoneyBee 184 165 124 95 167 133 119 133 87 60 181 177 122 118 180 175 149 132 102 60

Jockey 188 173 142 121 184 162 153 130 98 60 189 167 157 154 183 177 160 133 113 60

Lips 186 166 133 114 165 173 140 133 95 60 175 177 162 179 181 167 165 131 116 60

RaceNight 187 170 132 100 182 161 119 131 86 60 186 173 149 123 181 147 149 130 101 60

ReadySteadyGo 185 169 117 81 183 155 97 128 78 60 167 175 135 102 182 169 124 133 92 60

RiverBank 157 173 121 68 166 145 78 131 66 60 186 165 135 86 178 163 102 132 79 60

ShakeNDry 128 151 109 66 156 144 77 128 67 59 175 165 112 87 147 139 105 126 83 59

SunBath 174 166 132 116 168 161 145 125 100 59 169 153 138 134 166 151 158 130 110 59

Twilight 188 177 140 127 173 175 145 134 102 60 189 178 135 136 179 179 175 133 114 60

YachtRide 186 161 125 83 175 162 100 131 79 60 188 164 134 105 145 119 130 132 93 60

Average fps 178 168 130 98 174 159 119 131 87 60 184 171 143 126 173 163 144 132 103 60

QP22 QP27

QP32 QP37

34

8.3 CABAC

To the best of our knowledge, this is the first work that has implemented HEVC CABAC with HLS. Therefore,

the results are separately given for CABAC processing in Table 10 by reporting the achieved throughput in

Mbins per second (Mbins/s) and bins per cycle (bin/c). The selected test sequence and QP represent the worst

case in Table 8. The performance averages 4152 Mbins/s and 15.6 bins/c for the 2× FPGA Encoding System,

2076 Mbins/s and 7.8 bins/c for a single FPGA, and 346 Mbins/s and 1.3 bin/c for a single CABAC Core.

Our previous work [54] showed that the use of Ethernet connection decreased coding speed by 13% over

an equivalent PCIe system. The reduction was mainly caused by the limited 20GbE connection on the host

server. The work also used an earlier version of the Intra Search Core, and CABAC was still performed on CPU.

Therefore, the coefficients (12 288 bytes) were transferred from FPGA, which accounted almost 2/3rd of the

payload. A fully functional Intra HEVC encoder on FPGA and 40GbE enabled server would achieve the same

performance as listed in Table 8, with scalability of adding virtually unlimited number of FPGAs to the network.

8.4 HLS Productivity

The HLS approach speeded up the HW implementation significantly over manual RTL coding and proved to

work in such a highly complex system, from data-intensive coding tools like intra prediction, discrete transforms,

and quantization to more control-oriented tools such as CABAC. The HSL part of the codebase includes 5 major

versions, the total number of repository commits is 480, and the number of code lines exceeds 48k LoC of which

C/C++ HLS code accounts for 41k LoC. Furthermore, the Verilog RTL generated from the HLS code exceeds

505k LoC, but it was not included in the repository. Manually written RTL takes up 7.5k LoC, which was only

needed for instantiating and connecting the generated RTL (5.5k LoC) and VHDL units (2k LoC).

Altogether, we executed the RTL synthesis from Catapult over 10k times, i.e., the development included

thousands of iterations and refinements. We estimate 21 person months effort was spent on the HLS

implementation. Our conclusion is that without HLS it would have been very challenging to manage the project

schedule and the overall design complexity.

Table 9: Performance comparison with related work

Miyazawa [28] Atapattu [29] Zhang [30] Zhang [31] Ding [32] Tsai [33] Zhu [34] Huang [35] Pastuszak [36] Xu [37] Proposed

Technology FPGA/System FPGA FPGA/ASIC FPGA/ASIC FPGA ASIC ASIC ASIC FPGA/ASIC ASIC FPGA/System

Intra/Inter x/x x/- x/- x/- x/- x/x x/- x/- x/- x/x x/-

FPGA

performance

1080

@60fps

1080p

@30fps

1080p

@45fps

1080p

@45fps

1080p

@60fps
- - -

1080p

@60fps
-

4K

@60fps

System/ASIC

performance

8K

@60fps
-

4K

@30fps

4K

@30fps
-

8K

@30fps

1080p

@44fps

1080p

@60fps

4K

@30fps

4K

@30fps

8K

@30fps

Cells - - -
195 883

ALUTs

63450

LUTs
- - -

93 184

ALUTs
-

377 649

ALMs

DSPs - - -
1244

DSPs

721

DSPs
- - -

481

DSPs
-

1468

DSPs

Table 10: System, FPGA, and single CABAC Unit performance measured with the worst-case sequence

1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4

Mbins/s 4234 5240 5941 3371 4804 5189 3475 3745 3210 2316

bins/c 15.9 19.7 22.3 12.7 18.1 19.5 13.1 14.1 12.1 8.7

Mbins/s 2117 2620 2971 1686 2402 2594 1738 1872 1605 1158

bins/c 8.0 9.8 11.2 6.3 9.0 9.8 6.5 7.0 6.0 4.4

Mbins/s 353 437 495 281 400 432 290 312 268 193

bins/c 1.3 1.6 1.9 1.1 1.5 1.6 1.1 1.2 1.0 0.7

QP22

2× FPGA Encoding System

1× FPGA Encoding System

Single CABAC Core

4K Sequence Beauty

35

9 CONCLUSIONS

This paper presented the architecture and HLS implementation of an embedded real-time 4K HEVC intra

encoder. The HLS design approach made it possible to meet several design objectives at the same time:

scalability as the number of server CPUs, accelerator FPGA boards, and HW encoder instances per FPGA as

well as the flexibility to switch execution between SW and HW. The latter was found very beneficial at design

time in protocol and interface verification as well as in developing the HLS synthesis and CPU SW

simultaneously. The HLS synthesis took time to learn, but it speeded up the design iterations significantly. The

productivity increase is challenging to justify, and HLS typically helps to improve the QoR more than absolute

performance. However, our results show competitive video coding performance over related work, which

indicate that the HLS tool was able to translate behavioural source code to structural RTL and optimize it

efficiently. In particular, the implementation of CABAC is not trivial even with handwritten RTL. The HEVC

encoder with its parallel HW instances is very complex as a whole and manually controlling all task allocations

and scheduling would have been very laborious. This work proves that the shorter development time and better

complexity control does not come at a cost of coding performance.

ACKNOWLEDGMENTS

This paper is part of the ADACORSA project that has received funding within the ECSEL JU in collaboration

with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under

grant agreement 876019. Other supporters include Nokia Foundation and the Finnish Foundation for

Technology Promotion.

REFERENCES

[1] Cisco Systems. (Dec. 2018). Cisco Visual Networking Index: Forecast and Trends 2017-2022. Accessed on: June 15, 2021. [Online].

Available: http://web.archive.org/web/20181213105003/https:/www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/white-paper-c11-741490.pdf

[2] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Nov. 2019.

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Trans.

Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[4] Advanced Video Coding for Generic Audiovisual Services, document ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), ITU-T and

ISO/IEC, Mar. 2009.

[5] A. Lemmetti, M. Viitanen, A. Mercat, and J. Vanne, “Kvazaar 2.0: fast and efficient open-source HEVC inter encoder,” in Proc. ACM

Multimedia Syst. Conf., Istanbul, Turkey, June 2020.

[6] Ultra Video Group. Kvazaar HEVC encoder. Accessed on: June 15, 2021. [Online]. Available: https://github.com/ultravideo/kvazaar

[7] MulticoreWare. x265 HEVC Encoder / h.265 Video Codec. Accessed on: June 15, 2021. [Online]. Available:

https://bitbucket.org/multicoreware/x265/downloads

[8] E. Kalali and I. Hamzaoglu, “FPGA implementation of HEVC intra prediction using high-level synthesis,” in Proc. Int. Conf. Consum.

Electronics - Berlin, Berlin, Germany, Sept. 2016.

[9] Z. Cui, J. Xia, Y. Wang, G. Shi, and W. Yan, “Design of HEVC intra model decision based on Zynq,” in Proc. Int. Conf. Real-time Comput.

Robot., Irkutsk, Russia, Aug. 2019.

[10] A. B. Atitallah and M. Kammoun, “High-level design of HEVC intra prediction algorithm,” in Proc. Int. Conf. Adv. Technol. Signal Image

Process., Sousse, Tunisia, Sept. 2020.

[11] W. Chen, Q. He, S. Li, B. Xiao, M. Chen, and Z. Chai, “Parallel implementation of H.265 intra-frame coding based on FPGA heterogeneous

platform,” in Proc. Int. Conf. High Perform. Comput. Commun.; Int. Conf. Smart City; Int. Conf. Data Sci. Syst., Yanuca Island, Cuvu, Fiji,

Dec. 2020.

[12] B. Mohamed, A. Elsayed, O. Amin, E. Khafagy, M. Abdelrasoul, A. Shalaby, and M. S. Sayed, “High-level synthesis hardware

implementation and verification of HEVC DCT on SoC-FPGA,” in Proc. Int. Comput. Eng. Conf., Cairo, Egypt, Dec. 2017.

[13] E. Kalali and I. Hamzaoglu, “FPGA implementations of HEVC Inverse DCT using high-level synthesis,” in Proc. Conf. Des. Architectures

Signal Image Process., Krakow, Poland, Sept. 2015.

36

[14] F. A. Ghani, E. Kalali, and I. Hamzaoglu, “FPGA implementations of HEVC sub-pixel interpolation using high-level synthesis,” in Proc.

Int. Conf. Des. Technol. Integr. Syst. Nanoscale Era, Istanbul, Turkey, Apr. 2016.

[15] W. Ahmad, J. Iqbal, M. Martina, and G. Masera, “High level synthesis based FPGA implementation of H.264/AVC sub-pixel luma

interpolation filters,” in Proc. Eur. Modelling Symp., Pisa, Italy, Nov. 2016.

[16] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry, “Design productivity of a high level synthesis compiler versus HDL,” in Proc. Int.

Conf. Embedded Comput. Syst.: Architectures, Modeling and Simul., Agios Konstantinos, Greece, July 2017.

[17] M. Kammoun, A. Ahmed, A. Karim, and A. Rabie, “Case study of an HEVC decoder application using high-level synthesis: intraprediction,

dequantization, and inverse transform blocks,” J. Electronic Imaging, vol. 28, no. 3, pp. 1-11, May 2019.

[18] P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen, “High-level synthesis design flow for HEVC intra encoder on SoC-FPGA,” in

Proc. Euromicro Symp. Digit. Syst. Des., Funchal, Madeira, Portugal, Aug. 2015.

[19] P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen, “High-level synthesis implementation of HEVC 2-D DCT/DST on FPGA,” in

Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process., New Orleans, Louisiana, USA, Mar. 2017.

[20] V. Viitamäki, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “High-level synthesized 2-D IDCT/IDST implementation for HEVC codecs on

FPGA,” in Proc. IEEE Int. Symp. Circuits Syst., Baltimore, Maryland, USA, May 2017.

[21] P. Sjövall, V. Viitamäki, A. Oinonen J. Vanne, and T. D. Hämäläinen, “Kvazaar 4K HEVC intra encoder on FPGA accelerated air-frame

server,” in Proc. IEEE Int. Workshop Signal Process. Syst., Lorient, France, Oct. 2017.

[22] P. Sjövall, V. Viitamäki, J. Vanne, T. D. Hämäläinen, and A. Kulmala, “FPGA-powered 4K120p HEVC intra encoder,” in Proc. IEEE Int.

Symp. Circ. Syst., Florence, Italy, May 2018.

[23] NVIDIA: Video Codec SDK, Accessed on: Sept. 14, 2021. [Online]. Available: https://developer.nvidia.com/nvidia-video-codec-sdk

[24] Xilinx: Video Processing Subsystem, Accessed on: Sept. 14, 2021. [Online]. Available: https://www.xilinx.com/products/intellectual-

property/v-vcu.html#overview

[25] VITEC: MGW Ace Encoder, Accessed on: Sept. 14, 2021. [Online]. Available: https://www.vitec.com/product/MGW-Ace

[26] ORIVISION: HDMI Video Encoder, Accessed on: Sept. 14, 2021. [Online]. Available: https://www.orivision.com.cn/collections/hdmi-video-

encoder

[27] AJA: Corvid HEVC, Accessed on: Sept. 14, 2021. [Online]. Available:https://www.aja.com/products/corvid-hevc

[28] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K. Iguchi, A. Ichigaya, and S. Sakaida, “Real-time hardware

implementation of HEVC video encoder for 1080p HD video,” in Proc. Picture Coding Symp., San Jose, California, USA, Dec. 2013.

[29] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real time all intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf.

Appl.-specific Syst. Architectures Processors, London, UK, July 2016.

[30] Y. Zhang and C. Lu, “Efficient algorithm adaptations and fully parallel hardware architecture of H.265/HEVC intra encoder,” IEEE Trans.

Circuits Syst. Video Technol., vol. 29, no. 11, Nov. 2019, pp. 3415-3429.

[31] Y. Zhang and C. Lu, “High-performance algorithm adaptations and hardware architecture for HEVC intra encoders,” IEEE Trans. Circuits

Syst. Video Technol., vol. 29, no. 7, July 2019, pp. 2138-2145.

[32] D. Ding, S. Wang, Z. Liu, and Q. Yuan, ”Real-time H.265/HEVC intra encoding with a configurable architecture on FPGA platform,”

Chinese J. Electron., vol. 28, no. 5, Sept. 2019, pp. 1008-1017.

[33] S.-F. Tsai, C.-H. Tsai, and L.-G. Chen, “Encoder Hardware Architecture for HEVC,” High Efficiency Video Coding (HEVC), Springer,

2014, pp. 209-274

[34] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, ”HDTV1080p HEVC intra encoder with source texture based CU/PU mode pre-decision,”

in Proc. Asia South Pacific Des. Automat. Conf., Singapore, Jan. 2014.

[35] X. Huang, H. Jia, B. Cai, C. Zhu, J. Liu, M. Yang, Don Xie, and W. Gao, “Fast algorithms and VLSI architecture design for HEVC intra-

mode decision,” J. Real-Time Image Process., vol. 12, 2015, pp. 285-302.

[36] G. Pastuszak and A. Abramowski, ”Algorithm and architecture design of the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video

Technol., vol. 26, no. 1, Jan. 2016, pp. 210-222.

[37] K. Xu, Yu. Li, B. Huang, X. Liu, H. Wang, Z. Wu, Z. Yan, X. Tu, T. Wu, and D. Zeng, ”A low-power 4096x2160@30fps H.265/HEVC video

encoder for smart video surveillance,” in Proc. Int. Symp. Low Power Electronics Des., New York, NY, USA, July 2018.

[38] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction to high-level synthesis,” IEEE Des. Test. Comput., vol. 26, no. 4,

July 2009, pp. 8-17.

[39] Catapult: HLS-verification, Accessed on: June 20, 2021. [Online]. Available: https://www.mentor.com/hls-lp/catapult-high-level-

synthesis/hls-verification

[40] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there yet? a study on the state of high-level synthesis,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 38, no. 5, May 2019, pp. 898-911.

[41] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of the HEVC standard,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 22, no. 12, Dec. 2012, pp. 1792-1801.

[42] I. K. Kim, J. Min, T. Lee, W. J. Han, and J. Park, “Block partitioning structure in the HEVC standard,” IEEE Trans. Circuits Syst. Video

Technol., vol. 22, no. 12, pp. 1697-1706, Dec. 2012.

[43] G. Martin and G. Smith, “High-level synthesis: Past present and future,” in IEEE Des. Test. Comput., vol. 26, no. 4, July/Aug. 2009, pp.

37

18-25.

[44] H. Ren, “A brief introduction on contemporary high-level synthesis,” in Proc. Int. Conf. IC Design Technol., Austin, Texas, USA, June

2014.

[45] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-level synthesis for FPGAs: from prototyping to deployment”,

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4, Apr. 2011, pp. 473-491.

[46] S. Lahti, J. Vanne, and T. D. Hämäläinen, “Designing a clock cycle accurate application with high-level synthesis,” in Proc. Annu. Conf.

IEEE Ind. Electronics Soc., Florence, Italy, Dec. 2016.

[47] H. Foster, The 2018 Wilson Research Group Functional Verification Study, Siemens, 2018, Accessed on: June 16, 2021. [Online].

Available : https://blogs.sw.siemens.com/verificationhorizons/2018/12/04/part-3-the-2018-wilson-research-group-functional-verification-

study/

[48] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M. Sadafale, “Core transform design in the High Efficiency Video Coding (HEVC)

standard,” IEEE J. Select. Topics Signal Process., vol. 7, no. 6, pp. 1029-1041, Dec. 2013.

[49] V. Sze and M. Detlev, “Entropy Coding in HEVC”, High Efficiency Video Coding (HEVC), Springer, 2014, pp. 209-274

[50] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4K sequences for video codec analysis and development,” in Proc. ACM

Multimedia Syst. Conf., Istanbul, Turkey, June 2020.

[51] A. Lemmetti, A. Koivula, M. Viitanen, J. Vanne, and T. D. Hämäläinen, “AVX2–optimized Kvazaar HEVC intra encoder,” in Proc. IEEE

Int. Conf. Image Processing, Phoenix, Arizona, USA, Sept. 2016.

[52] Joint Collaborative Team on Video Coding Reference Software, ver. HM 16.23. Accessed on: Sept. 9, 2021. [Online]. Available:

http://hevc.hhi.fraunhofer.de/

[53] G. Bjøntegaard, “Calculation of average PSNR differences between RD curves” Document VCEG-M33, Austin, TX, USA, pp. 1-4, Apr.

2001.

[54] P. Sjövall, A. Oinonen, M. Teuho, J. Vanne, and T. D. Hämäläinen, “Dynamic resource allocation for HEVC encoding in FPGA-accelerated

SDN cloud,” in Proc. IEEE Nordic Circuits Syst. Conf., Helsinki, Finland, Oct. 2019.

Tampere University Dissertations 751

751/2023
PA

N
U

 SJÖ
VA

LL Feasibility Study of H
igh-Level Synthesis

Feasibility Study of
High-Level Synthesis

Implementation of a Real-Time HEVC
Intra Encoder on FPGA

PANU SJÖVALL

	Tyhjä sivu
	TUNI_Sjövall_Panu_sisus.pdf
	Preface
	Abstract
	Abbreviations
	Original publications
	Introduction
	The motivation and objectives of the research
	Research questions and methods
	Summary of publications
	Outline of the thesis
	Acknowledgments

	Background
	Automated design process: High-level synthesis (HLS)
	HLS flow
	Advantages of HLS over traditional hardware design methods
	Catapult HLS tool
	HLS design example

	Application of Interest: High Efficiency Video Coding (HEVC)
	Block partitioning structure
	Intra prediction
	Inter prediction
	Transform coding
	Entropy coding
	Techniques for HEVC encoder parallelization
	Open-source implementations for HEVC encoding
	Kvazaar HEVC encoder

	Target device: Field-programmable gate array (FPGA)

	Related work
	Existing HLS implementations for HEVC
	Intra prediction
	DCT and IDCT
	Interpolation
	Hadamard SATD
	Decoding tools

	Existing hardware implementations for HEVC entropy coding
	Whole entropy encoder
	Separate implementations for arithmetic encoding or binarization

	Existing hardware implementations for complete HEVC encoders
	Academic HEVC encoders on FPGA
	Academic HEVC encoders on FPGA/ASIC
	Academic HEVC encoders on ASIC

	How to improve upon prior art

	Results of the research
	HLS implementations of single HEVC intra encoding tools
	Intra prediction
	Transform coding
	User study: HLS vs. manual RTL

	FPGA-accelerated HEVC intra search on a compute server
	1st generation Intra Search Core
	2nd generation Intra Search Core
	Live demonstration of the Intra Search Core

	FPGA-accelerated HEVC intra search in a cloud environment
	Complete HEVC intra encoder on FPGA

	Conclusion
	Discussion about lessons learned
	Research question 1: Feasibility of HLS for implementing the HEVC encoder
	Research question 2: Area and performance of the HLS implementations against existing work
	Research question 3: Final conclusion

	References
	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI
	Publication VII
	Publication VIII
	Publication IX
	Publication X

	Tyhjä sivu

