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ABSTRACT

High-Level Synthesis (HLS) is an automated design process that seeks to improve
productivity over traditional design methods by increasing design abstraction from
register transfer level (RTL) to behavioural level. Various commercial HLS tools
have been available on the market since the 1990s, but only recently they have
started to gain adoption across industry and academia. The slow adoption rate has
mainly stemmed from lower quality of results (QoR) than obtained with
conventional hardware description languages (HDLs). However, the latest HLS tool
generations have substantially narrowed the QoR gap.

This thesis studies the feasibility ofHLS in video codec development. It introduces
several HLS implementations for High Efficiency Video Coding (HEVC), that is the
key enabling technology for numerous modern media applications. HEVC doubles
the coding efficiency over its predecessor Advanced Video Coding (AVC) standard
for the same subjective visual quality, but typically at the cost of considerably higher
computational complexity. Therefore, real-time HEVC calls for automated design
methodologies that can be used tominimize theHW implementation and verification
effort.

This thesis proposes to use HLS throughout the whole encoder design process.
From data-intensive coding tools, like intra prediction and discrete transforms, to
more control-oriented tools, such as entropy coding. The C source code of the open-
source Kvazaar HEVC encoder serves as a design entry point for the HLS flow, and
it is also utilized in design verification. The performance results are gathered with
and reported for field programmable gate array (FPGA).

The main contribution of this thesis is an HEVC intra encoder prototype that
is built on a Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 14-core
Intel Xeon processors and two Intel Arria 10 GX FPGA Development Kits, that
can be connected to the server via peripheral component interconnect express (PCIe)
generation 3 or 40 Gigabit Ethernet. The proof-of-concept system achieves real-time
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4K coding speed up to 120 fps, which can be further scaled up by adding practically
any number of network-connected FPGA cards.

Overcoming the complexity of HEVC and customizing its rich features for a real-
time HEVC encoder implementation on hardware is not a trivial task, as hardware
development has traditionally turned out to be very time-consuming. This thesis
shows that HLS is able to boost the development time, provide previously unseen
design scalability, and still result in competitive performance and QoR over state-of-
the-art hardware implementations.
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TIIVISTELMÄ

High-Level Synthesis (HLS) on automatisoitu suunnitteluprosessi, joka pyrkii
parantamaan tuottavuutta perinteisiin suunnittelumenetelmiin verrattuna,
nostamalla suunnittelun abstraktiota rekisterisiirtotasolta (RTL)
käyttäytymistasolle. Erilaisia kaupallisia HLS-työkaluja on ollut markkinoilla aina
1990-luvulta lähtien, mutta vasta äskettäin ne ovat alkaneet saada hyväksyntää
teollisuudessa sekä akateemisessa maailmassa. Hidas käyttöönottoaste on johtunut
pääasiassa huonommasta tulosten laadusta (QoR) kuin mitä on ollut mahdollista
tavanomaisilla laitteistokuvauskielillä (HDL). Uusimmat HLS-työkalusukupolvet
ovat kuitenkin kaventaneet QoR-aukkoa huomattavasti.

Tämä väitöskirja tutkii HLS:n soveltuvuutta videokoodekkien kehittämiseen. Se
esittelee useita HLS-toteutuksia High Efficiency Video Coding (HEVC)
-koodaukselle, joka on keskeinen mahdollistava tekniikka lukuisille nykyaikaisille
mediasovelluksille. HEVC kaksinkertaistaa koodaustehokkuuden edeltäjäänsä
Advanced Video Coding (AVC) -standardiin verrattuna, saavuttaen silti saman
subjektiivisen visuaalisen laadun. Tämä tyypillisesti saavutetaan huomattavalla
laskennallisella lisäkustannuksella. Siksi reaaliaikainen HEVC vaatii
automatisoituja suunnittelumenetelmiä, joita voidaan käyttää rautatoteutus- (HW )
ja varmennustyön minimoimiseen.

Tässä väitöskirjassa ehdotetaan HLS:n käyttöä koko enkooderin
suunnitteluprosessissa. Dataintensiivisistä koodaustyökaluista, kuten intra-ennustus
ja diskreetit muunnokset, myös enemmän kontrollia vaativiin kokonaisuuksiin,
kuten entropiakoodaukseen. Avoimen lähdekoodin Kvazaar HEVC -enkooderin
C-lähdekoodia hyödynnetään tässä työssä referenssinä HLS-suunnittelulle sekä
toteutuksen varmentamisessa. Suorituskykytulokset saadaan ja raportoidaan
ohjelmoitavalla porttimatriisilla (FPGA).

Tämän väitöskirjan tärkein tuotos on HEVC intra enkooderin prototyyppi.
Prototyyppi koostuu Nokia AirFrame Cloud Server palvelimesta, varustettuna
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kahdella 2.4 GHz:n 14-ytiminen Intel Xeon prosessorilla, sekä kahdesta Intel Arria
10 GX FPGA kiihdytinkortista, jotka voidaan kytkeä serveriin käyttäen joko
peripheral component interconnect express (PCIe) liitäntää tai 40 gigabitin
Ethernettiä. Prototyyppijärjestelmä saavuttaa reaaliaikaisen 4K
enkoodausnopeuden, jopa 120 kuvaa sekunnissa. Lisäksi järjestelmän
suorituskykyä on helppo skaalata paremmaksi lisäämällä järjestelmään käytännössä
minkä tahansa määrän verkkoon kytkettäviä FPGA-kortteja.

Monimutkaisen HEVC:n tehokas mallinnus ja sen monipuolisten
ominaisuuksien mukauttaminen reaaliaikaiselle HW HEVC enkooderille ei ole
triviaali tehtävä, koska HW-toteutukset ovat perinteisesti erittäin aikaa vieviä.
Tämä väitöskirja osoittaa, että HLS:n avulla pystytään nopeuttamaan kehitysaikaa,
tarjoamaan ennen näkemätöntä suunnittelun skaalautuvuutta, ja silti osoittamaan
kilpailukykyisiä QoR-arvoja ja absoluuttista suorituskykyä verrattuna olemassa
oleviin toteutuksiin.
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1 INTRODUCTION

High-level synthesis (HLS) is an intriguing subject in the field of hardware (HW )
design. Even though various commercial HLS tools have been available on the
market since the 1990s, they have only recently started to gain adoption across
industry and academia [1]. One can argue that the slow adoption rate has mainly
stemmed from lower quality of results (QoR) than obtained with conventional
hardware description language (HDL) approaches. However, the latest HLS tool
generations have substantially narrowed the QoR gap. HLS has also traditionally
worked well with data-intensive designs, whereas implementing clock accurate
control structures has been more challenging due to the lack of explicit time
information in behavioural source code [2], [3].

Using HLS to fully implement a complex High Efficiency Video
Coding (HEVC) [4], [5] video encoder on HW should give good insight on how
HLS performs over traditional HDLs. HEVC is the key enabling technology for
numerous modern media applications. HEVC doubles the coding efficiency over
its predecessor Advanced Video Coding (AVC) standard for the same subjective
visual quality, but typically at the cost of considerable computational complexity.
Overcoming the complexity of HEVC and customizing its rich features for a
real-time HEVC encoder implementation on HW is not a trivial task, as HW
designs are traditionally very time-consuming. Thus, the development of modern
video encoders can make use of automated design methodologies that can be used
to minimize the HW implementation and verification effort.

This chapter gives the introduction for the thesis, including the motivation,
research questions and methods, and the summary of publications with author’s
main scientific contribution in them.
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1.1 The motivation and objectives of the research

The main motivation for this thesis is to evaluate whether HLS is a feasible
implementation approach for computation-intensive multimedia processing. In
practise, the analysis is carried out by implementing HLS solutions for HEVC
encoding and evaluating their QoR, performance, and development time on
field-programmable gate array (FPGA). The motivation is also to see if HLS is
suitable for implementing designs that require more accurate control structures.
This would enable the use of HLS for the whole system, and not just for
traditionally suitable data-intensive algorithms. HEVC [4], [5] video encoder is an
ideal application for the following reasons:

1. HEVC has gained a lot of traction in academia, so the obtained results can be
compared with many other scientific works;

2. it is a very complex application, which will minimize the effect of normal
variance in results (difference between HLS tools, synthesis results, etc.);

3. the complexity of HEVC is still reasonable for the scope this thesis;

4. HEVC has several independent units (coding tools, entropy coding, control
structures) making it possible to showcase potential productivity increase and
comparable QoR with HLS for single units and the whole system;

5. it also has characteristics that can be considered both strengths and weaknesses
of HLS, i.e., functionality that can be considered data-intensive or something
that needs of an accurate control structure; and finally,

6. HEVC is suitable for FPGA implementation, in order to enable performance
measurements outside of simulations.

HEVC is a widely deployed and researched topic in industry and academia. The
complexity of the HEVC [6] is very high, but HLS holds promise for better
design management over traditional design methods. HEVC adopts the
conventional hybrid video coding scheme (intra/inter prediction, transform
coding, and entropy coding) [5] from the prior MPEG/ITU-T video coding
standards. It offers a great variety of functionality, ranging from data-intensive
algorithms, like intra prediction and discrete sine/cosine transform, to more
control-intensive tools, such as intra search control and context-adaptive binary
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arithmetic coding (CABAC). The latest FPGAs are able to meet the capacity and
performance need for HEVC intra encoding, so they can be used as a real-life
proof-of-concept test platforms, in addition to simulation.

The objectives of the thesis are the following:

1. To implement single algorithms/coding tools of HEVC on FPGA, by using
Catapult HLS tool [7];

2. to integrate the implemented coding tools together and to add the associated
control logic, to enable a fully-fledged real-time 4K HEVC intra encoder on
FPGA; and

3. to make the encoder easily customizable for different media applications,
scalable for different performance requirements, and portable to different
platforms, from embedded devices to cloud environments.

The results of all these objectives are compared with prior art in existing scientific
publications.

The entire implementation process relies on the open-source HEVC encoder
called Kvazaar [8]–[10], that is used as a design entry point and as the reference
software (SW ) encoder. Although the implementation needs additional work to be
fully optimized for HW, the original source code can still be used as is for testing
purposes. Utilizing the existing Kvazaar C-code and C/C++ for the HW
implementations, removes the need for re-implementing the reference algorithm.
The automatic generation of register transfer level (RTL)-code with an HLS tool
also removes the need for manual writing of traditional HDL, like very high-speed
integrated circuit hardware description language (VHDL) and Verilog. This way, the
focus can be directed more on the behavioural code.

Even though this work focuses on the All-Intra (AI) [11] coding configuration of
HEVC Main Profile, the proposed design approach can be applied to other HEVC
profiles or video codecs as well.

1.2 Research questions and methods

This thesis aims to answer the following research questions:

1. Is HLS feasible for the implementation of a complex multimedia application,
like HEVC, that consists of multiple parallel units, and both control and data
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intensive algorithms?

2. Do the developed HLS implementations for HEVC intra coding show
comparable area and performance results with existing HW designs?

3. By combining and generalizing the first two questions, does HLS offer overall
improvement over traditional design methodologies in terms of development
time and QoR?

To answer these questions, the research in this thesis follows the principles of
the design science methodology [12], [13] that has established well-known
guidelines and evaluation methods for an iterative design process. The
implementation of the whole encoding system is constructed of individual HEVC
coding tools and control structures that are finally integrated together. The
iterative design process for each coding tool starts from the reference algorithm,
which is used for the first HW implementation and test bench. The design process
then continues with design space exploration (DSE) and code restructuring, in order
to optimize the area and performance of the HW design.

During the development, the individual units and the encoding system are
iterated, improved, and compared with prior art according to the following criteria:

1. Area. The area figures reported for proposed implementations include the
number of logic elements (LE), look-up table (LUT ), adaptive look-up
table (ALUT ), or adaptive logic module (ALM) [14], the amount of on-chip
memory, and the number of digital signal processing (DSP) units used for the
specified FPGA. For fair comparison, effort has been made to unify the area
figures with previous work, e.g., by using coefficients between the LEs
according to the functionality of the used LE, or by re-generating the results
for the same device using HLS and an appropriate synthesis tool.

2. Performance. The performance is measured for the developed individual
coding tools by applying the worst-case scenario. For a complete encoder,
several open-source 4K sequences [15] were used to obtain reliable and
consistent results. Again, effort has been made to calculate or estimate
missing values of the related work by extrapolating them from the published
information.

3. Coding quality. For proposed individual coding tools where the
implementation is one-to-one to Kvazaar [8]–[10], the need for such
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measurements can be omitted. If the Kvazaar reference code had to be
optimized in a way that it changed the original algorithm, this modification
was also implemented in the HEVC reference encoder, HEVC Test
Model (HM) [16], in order to report coding quality changes. Bjøntegaard delta
bitrate (BD-rate) [17] can be used as direct value for comparing the coding
quality between two codecs. It allows the measurement of bitrate reduction
by a codec or a codec feature while maintaining the same quality as measured
by objective metrics. In practise, the average peak signal-to-noise ratio (PSNR)
is measured for the anchor and the one being evaluated using same four
quantizers. BD-rate is then calculated for both curves [17]. Furthermore,
HM, using AI configuration [18], is used as an anchor for the proposed full
encoding system. The BD-rate gain, or loss, is reported for the test sequences
from [15]. Coding quality is also considered when comparisons are made to
related work.

4. Supported HEVC features. The supported features of individual coding tools
and the supported encoding configuration of the full encoding system is always
specified. The support or absence of features is listed for the related work.
Supporting all features will always produce the best coding quality, but by
removing some features, it can have a more positive affect on the area and
performance when compared to the negative effect on coding quality.

This thesis contributes to the debate for the feasibility of HLS and the promise
of overall improvement over traditional design methods by implementing a
complete HEVC intra encoder on FPGA, using solely HLS. The individual
publications included in this thesis illustrate the steps taken to achieve the goal and
give a detailed description of how HLS was used to implement individual units and
the final encoder.

1.3 Summary of publications

This section introduces all the publications included in this thesis. Figure 1.1
summarizes the main outcomes of these publications and the interconnections. The
figure is drawn from the perspective of the developed HEVC encoder.

Publication I describe the developed HLS flow and how it can be used to
develop HW- accelerated functions. The introduced HLS design flow is applied for
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Figure 1.1 Summary and connection of publications.

HEVC intra prediction to produce a HW implementation for FPGA. The
publication also presents a complete design of a real-time HEVC intra encoder on
system on chip (SoC)-FPGA, utilizing the implemented HW intra prediction for
encoding acceleration.

Publication II describes an HLS implementation of HEVC 2-D discrete cosine
transform (DCT )/discrete sine transform (DST ) on FPGA. The work reported in
Publication III stems from that of Publication II, as it describes the inverse version
of the same algorithm, 2-D inverse discrete cosine transform (IDCT )/inverse discrete
sine transform (IDST ). Both approaches implement the 2-D transforms by two
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successive 1-D transforms using a well-known row-column and even-odd
decomposition techniques. These two publications showed that the benefits of HLS
do not come at the cost of implementation overhead, as the HLS solutions
outperformed existing works in terms of performance and cost.

Publication IV is a survey of the state of HLS, based on the scientific literature
published since 2010. The literature survey was conducted by Sakari Lahti. Sakari
Lahti also wrote the majority of the text. The author contributed to this publication
with the planning, organization, analysis, and text for the case study, in which a test
group was given an assignment to implement HEVC 2-D DCT algorithm for 8 × 8
residual blocks with both HLS and traditional HDLs.

Publication V describes a 4K HEVC intra encoder partitioned between a
processor and a peripheral component interconnect express (PCIe)–connected FPGA.
It introduces the implementation and integration of the following data-intensive
Kvazaar coding tools: intra prediction, DCT, IDCT, quantization, and inverse
quantization. It also describes the HW implementation of the control-oriented
intra search process using HLS. CABAC and other control-intensive coding tools
are executed on SW. The publication also describes the implementation of the
HW/SW partitioning scheme between a central processing unit (CPU) and an
FPGA.

Publication VI describes the 2nd version of the Intra Search Core that has been
improved upon the 1st version presented in Publication V. The proposed speedup
techniques include optimizing the use of DSP-units, increasing the support of
parallel coding tree units (CTU) on HW, and duplicating time-sensitive resources.
Furthermore, the Linux kernel driver is upgraded to maximize the utilization of
both HW and SW and to support multiple PCIe-FPGA cards.

Publication VII is a demonstration publication. It showcases how the encoding
system presented in Publication VI can be utilized for real-life purposes. The
presented demonstration setup enables real-time HEVC encoding of three 4K
cameras simultaneously. The cameras send the RAW video data through
high-definition multimedia interface (HDMI) and the HDMI-capture cards transmit
the data to the encoder via universal serial bus (USB). Finally, the encoded video is
sent via Ethernet for live view on three laptops.

Publication VIII describes an approach to accelerate, distribute, and manage
video encoding services in large-scale cloud systems. The Intra Search Core
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presented in Publication VI is used as a proof-of-concept application. In the case of
cloud encoding, the usage of PCIe-FPGAs from the previous publications would
have limited the flexibility of the encoding system, as the FPGAs are bound to
servers and only 1-2 boards could be attached per cloud server. The given solution
is an advanced partitioning scheme for sharing execution between servers, FPGAs,
and software defined networking (SDN) switches. This combination allows the
deployment of practically any number of heterogeneous FPGAs and servers. The
implemented resource manager, which controls the SDN switches, is responsible
for allocation, deallocation, and load balancing of software and hardware resources
upon service requests, or changes in network infrastructure. The research also
includes HLS implementations for the Ethernet packet parsing and generation,
which was integrated to the HEVC accelerator logic presented in Publication VI.

Publication IX is another demonstration publication. It showcases how the
system presented in Publication VIII works in practice. The demonstration setup
includes a laptop that is connected to the cloud system. Through this connection,
several encoding services can be invoked with requests to the resource manager. A
run-time visualizer on the laptop illustrates in real-time the data provided by the
resource manager, such as the physical network structure, running services, and
performance of the network elements. The live encoded video stream can also be
viewed on the laptop screen.

Finally, Publication X describes the HLS development framework improved
upon Publication I, the 3rd version of Intra Search Core optimized from the
version described in Publication VI, and the HLS implementation of the CABAC
Core. The integration of intra search and CABAC cores is also presented, and the
needed changes in the kernel driver. This finally creates a complete HEVC intra
encoder on FPGA. This is the key publication of the thesis, and it shows that the
HLS proposal not only boosts development time, but also provides previously
unseen design scalability with competitive performance over the existing encoder
implementations.

The author served as the 1st author in publications Publication I, Publication II,
Publication IV, Publication V, Publication VIII, Publication IX, and Publication
X, and as the 2nd author in Publication III, Publication VI, Publication VII. The
author’s contribution in each publication is listed in Table 1.2. The table also lists
the work done in collaboration with co-authors.

8



Figure 1.2 Author’s main scientific contributions.
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1.4 Outline of the thesis

The introductory part of this thesis is organized as follows. Chapter 2 describes the
background of the thesis. It introduces the HLS design flow, the basics of HEVC
encoding, and the basic concept of an FPGA. Chapter 3 considers the related work
that is limited to HW HEVC approaches in academia. The related work consists of
HLS implementations for single HEVC coding tools, as well as dedicated CABAC
and entire encoder implementations done with handwritten HDLs. Chapter 4
summarizes the main results of the publications and gives the rationale for design
choices and implementation process. Finally, Chapter 5 concludes the thesis.

1.5 Acknowledgments

This work is supported in part by Nokia, the European Celtic-Plus projects
4KREPROSYS and VIRTUOSE, the European ECSEL project ADACORSA
(under the grant agreement 876019), the Tuula and Yrjö Neuvo Fund, Nokia
Foundation, and the Finnish Foundation for Technology Promotion.
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2 BACKGROUND

This chapter introduces the automated design process, HLS design flow, and their
advantages over traditional design methods. Secondly, the basics of HEVC
encoding are presented with common terminology used in the introductory part
and publications. Finally, the use of FPGA as the target technology is rationalized
and the basic concept of an FPGA is explained.

2.1 Automated design process: High-level synthesis (HLS)

HLS is an automated design process, where an HLS tool is used to automatically
generate the RTLHDL-code from a high-level program code. The higher abstraction
level offers technology-independent implementations, as the HLS tool can be used to
configure and optimize the design for different target technologies, e.g., application-
specific integrated circuits (ASIC) or FPGAs, without the need to rewrite the code.
The RTL-code generation is based on the behavioural code and constraints specified
by an HLS tool. Furthermore, to minimize the verification effort, HLS tools can be
used to verify both the high-level code and the generated RTL-code with a shared
high-level testbench.

There are numerous commercial and academic HLS tools [19] that support the
HLS design flow. According to the survey done in Publication IV, the most
popular HLS tool in academia was the Xilinx Vitis HLS [20] (previously Vivado
HLS/Autopilot). However, the range of different HLS tools used in the scientific
literature is wide, which argues that no single HLS tool is the best choice for every
situation.

2.1.1 HLS flow

Figure 2.1 depicts the conceptual block diagram of the HLS design flow. The HLS
tool is used for compiling the algorithmic specification of the system, most often
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written in C, C++, or SystemC. The user can specify the target technology and
provide micro-architectural constraints, such as directives for loop
pipelining/unrolling, desired clock frequency, number of clocks, clock-crossing,
the usage and depth of first in, first out (FIFO) memory components, and mapping
of arrays to registers or memories. The HLS tool then automatically allocates the
HW resources required by the specification, creates state machines, schedules the
operations, and binds the operations to physical resources specified in the target
technology library. The clock(s) and reset(s) in the generated RTL code are
completely inserted by the HLS tool, according to the architectural constraints.
The generated RTL HDL-code can then be used in the downstream logic synthesis
SW, for both FPGA and ASIC designs.
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2.1.2 Advantages of HLS over traditional hardware design methods

The main strength of HLS comes from the productivity increase, when compared
to traditional HW design methods. This is achieved by increasing design abstraction
from RTL to behavioural level [2], [3], [21]. HLS has been reported to provide 4-6
times increase in productivity [Publication IV], mainly because the behavioral code
is more readable, design and verification times are shorter, and the design reusability
is far better than that of handwritten HDL.

In particular, HLS offers advantages over manual RTL coding in the following
cases:

1. Data-intensive designs. HLS has traditionally worked well with
data-intensive designs, whereas implementing clock accurate control
structures has been more challenging due to the lack of explicit time
information in behavioural source code [3], [21]. However, a recent
work [22] has showed that even more demanding control structures could be
described with the latest HLS tools.

2. Algorithm and system architecture optimizations outperform
micro-architectural optimizations. Adopting HLS and high-level coding
techniques allows the designer to shift focus from fine-tuning single
algorithms to the whole system architecture, which tends to provide higher
performance gains than optimizing micro-architectures.

3. DSE. Although the system architecture optimizations can also be considered
as part of DSE, HLS tools also enable DSE for single units in the form of
architectural constraints. These can be applied via configuration scripts or by
embedded pragmas, like loop unrolling/pipelining options, in the code. The
process of finding the optimal trade-off between performance and area is
significantly faster with HLS than with hand-written RTL. In practice, a
comprehensive DSE cannot be conducted with conventional HDL
approaches, as each solution would require extensive rewriting of the code.

4. Reduced verification effort. Reducing the verification effort is an important
aspect of any design. Especially for digital system projects, it has become one
of the most time-consuming phase [23]. The verification process can be
significantly faster with HLS than verifying manually written RTL, as the
functional correctness of the high-level code and the automatically generated
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RTL code can be done using the same high-level testbench. The output of the
generated RTL can also be validated automatically against the behavioural
code. Most often, only the algorithm level verification is needed. In addition,
some corner cases, e.g., type casting or vector overflows, may require
additional effort. The testbench also synchronizes with the input and output
of the design under verification, which makes it tolerant of architectural
changes and removes the need for any code rewriting during the DSE.

5. Technology independency. HLS can offer better design reusability over
traditional design approaches. A technology-independent behavioral code
releases the designers from addressing the implementation details of the target
technology, such as timing, interfaces, and memory elements. In principle,
the same holds for the handwritten RTL code, but the design is usually
implemented with a specific technology and performance in mind. In
practise, when a new platform is selected with an HLS tool, a
platform-optimized RTL code is generated using the same existing source
code. In contrast, with manual RTL, time-consuming code restructuring is
typically needed because of new clock constraints or additional resource
sharing, caused by limited capacity of the new platform. Full technology
independency might not be achieved with every HLS tool, as different HLS
tools support a different range of target technologies.

6. Increased productivity.All previous advantages of HLS add to the compelling
productivity increase over traditional RTL design flows. Even though custom
RTL approaches tend to achieve better performance with less resources, the
literature survey in Publication IV indicates that the average development time
of an HLS project is only a third of that of the manual HDL project. The
average productivity of HLS is also reported to be more than 4× as high in
terms of the system performance with respect to the development time.

2.1.3 Catapult HLS tool

In this work, Catapult HLS [7] from Siemens (previously owned by Calypto and
Mentor) was used for its availability at the university where the research was
carried out. In addition, Catapult HLS was preferred over another available tool,
Xilinx Vitis, because Catapult HLS supports Intel FPGAs that were found

14



appropriate for this work. Several versions of the Catapult HLS tool were used
during the research and the version was updated upon availability of newer version.
Before the version 10.3 was released, the university only had access to a university
license (some limitations in features), after that a full license was available.

Catapult HLS provides a wide support for the features described in Section 2.1.2.
These features include:

• language support for C/C++/SystemC;

• support for both algorithmic and control logic synthesis;

• configuration scripts and embedded pragmas for architectural constraints;

• support for a unified testbench for the verification of both algorithmic code and
RTL, with automated verification of the generated RTL against the algorithmic
code;

• variety of target technologies ranging from ASIC technologies to different
FPGA vendors, including automated synthesis tool integration;

• possibility to have multiple clock domains in a hierarchical designs and
automatically generated clock crossing components;

• initial area and performance results without actual RTL synthesis; and

• a cycle accurate Gantt Chart of the scheduled operations for a visual
representation of the generated RTL.

2.1.4 HLS design example

Listing 2.1 exemplifies the basic HLS coding features supported by the Catapult
HLS tool. It shows how hierarchical designs, arrays, loops, pragmas, functions,
channels, look-up-tables, type definitions, bit accurate types, macros, and
compilation time calculated bit widths (nbits) can be used in HLS code. In this
producer-consumer implementation, the producer (chef) is hierarchically connected
to the consumer (tables) on the top-level function restaurant. These functions are
marked with pragmas hls_design and hls_desgin top. The top-level interface consists
of two parameters, orders and income. Both of these are defined as algorithmic C
(ac), datatypes, and more specifically channels. In Catapult, the channels can be
used to implement data transfers without, or with one or two handshake signals,
buffered input/output for a more pipelined behaviour, FIFOs with automatic or
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manually adjusted depth, and even clock crossing support between hierarchical
blocks. Bit accurate types (ac_int) are also used and defined with type definitions.

The implementation of the producer has three separate parts. First, a Tables
structure is read from the channel orders. The helper structure is necessary for
reading an array of data with one call. Secondly, a separate function called
calculate_number_of_orders() is used for calculating the number of non-zero orders
in a loop that is fully unrolled with pragma hlr_unroll. Thirdly, the chef starts
preparing the food in a loop for each table that has a non-zero recipe and writes the
correct price from a look-up-table price_of_food to the correct index in the array of
channels. This array will result in separate data paths for each index in the
generated RTL. The for loop is pipelined with pragma hls_pipeline_init_interval 1,
stating that a new iteration of the loop is started after one cycle. The possible
interval depends on the implementation and data dependencies. The
implementation of the for loop also shows how a break statement is used for an
optimized loop control, as a known number of loops is always better than an
unknown one. Breaking the loop when remaining iterations have no effect
improves the responsiveness. It also shows the usage of continue.

The implementation of the consumer has to parts. First part is the loop, which
is fully unrolled. All tables that get food, eat and pay for it. As the food parameter
of the function is an array of channels and all indexes need to be iterated, the loop
utilizes size() function of the channel to implement non-blocking reading. The other
alternative would be using nb_read(), but size() is used here for a more optimized
implementation. If the table is getting food (size() is not zero), the price for the food is
read from the channel and stored to cash. The cash is incremented to the cash_register
as zero or the read value. This loop shows the importance of data dependency in
a fully unrolled loop, as incrementing cash_register inside the if statement would
have resulted in a lower maximum frequency due to the dependency to cash_register
between iterations. After the loop the cash_register is given to the owner.

On top of the code, the compilation can be affected with a set of directives
(Tcl script), that can be modified directly in the directives file or via GUI. These
directives affect the outcome, i.e., area, latency, and slack. Pragmas are also
interpreted from the HLS code automatically as directives. Other important
directives include design goal latency/area, clocks, clock overhead, resource binding
(channels, wires, memories, registers), FIFO depths, and DSP extraction options.
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Listing 2.1 HLS example
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2.2 Application of Interest: High Efficiency Video Coding (HEVC)

Due to the increased usage of numerous modern media applications, i.e., Internet
video, video-streamed gaming, and video conferencing, video traffic has been
estimated to account for 82% of all global internet protocol (IP) traffic by 2022 [24].
HEVC [4], [5] is the latest widespread MPEG/ITU-T video coding standard. It
doubles the coding efficiency over its predecessor AVC [25] standard for the same
subjective visual quality, but typically at the cost of considerable computational
complexity overhead in the reference encoder HM [6] and practical encoders.

HEVC adopts the conventional hybrid video coding scheme [5] from the prior
MPEG/ITU-T video coding standards. The encoding model of HEVC is shown
in Figure 2.2. It can be divided into intra/inter prediction, transform coding, and
entropy coding. They are covered in the following sections. Although the focus of
this thesis is in HEVC intra encoding [11], inter encoding is also briefly covered.

2.2.1 Block partitioning structure

The coding structure of HEVC has been extended from the traditional macroblock
structure. It is an analogous block partitioning scheme with four different logical
units: CTU, coding unit (CU), prediction unit (PU), and transform unit (TU). For
4:2:0 color format, each of these consists of one luma and two chroma blocks that
cover the corresponding block areas: coding tree block (CTB), coding block (CB),
prediction block (PB), and transform block (TB). This new HEVC coding structure is
the primary factor for the improved coding gain over AVC. As a downside, it also
introduces majority of the computational overhead for both intra and inter encoding.

In HEVC, each raw input video frame is partitioned into CTU [26] quadtree
structures. The size of the CTU can be defined as 2NMAX × 2NMAX , where NMAX ∈
{8, 16, 32}. The CTU can be recursively split into four smaller square CUs until the
min CU size of 8×8 is reached. The size of the CU can be defined as 2N × 2N , where
N ∈ {4, 8, 16, 32}. Each CU in the CTU is predicted and transformed individually.

2.2.2 Intra prediction

Intra prediction utilizes spatial redundancy in compression. HEVC intra prediction
supports CBs from 32 × 32 pixels down to 8 × 8 pixels. In intra prediction, the PBs
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Figure 2.2 HEVC encoder model [6].

can be of the same size as the processed CB. In addition, HEVC supports partitioning
the CB into four equal sized PBs when the CB size equals the smallest allowed CB
size.

The intra prediction (IP) algorithm utilizes predefined prediction methods [5]
to estimate the current CU. HEVC supports 35 different IP modes (DC, planar,
and 33 angular modes) for each PB size. The intra prediction (Pintra) refers to the
reconstructed picture (Drec) from the current picture buffer (CPB), which is a storage
for the previously reconstructed CBs. In intra mode, the residual (D) is calculated
by subtracting Pintra from the original CB.

2.2.3 Inter prediction

Inter prediction utilizes temporal redundancy between different video frames.
HEVC inter prediction supports CBs of 64 × 64 pixels down to 8 × 8 pixels. In
addition to PBs of the same size as the processed CB, HEVC supports horizontal
and vertical partitioning of CBs into two equal size PBs, or into four equal sized
PBs when the CB size equals the smallest allowed CB size. Furthermore, by
utilizing asymmetric motion partitions (AMP), HEVC supports partitioning of CBs
into two asymmetric PBs [4], [5].

Inter prediction consists of motion compensation (MC), integer motion
estimation (IME), and fractional motion estimation (FME). MC produces inter
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predictions (Pinter) for PBs based on the result of motion estimation (ME) (IME,
FME). First, IME is used to search the best candidate for the PB of interest from
the decoded picture buffer (DPB), which is a storage for previously reconstructed
reference pictures (Dref). The motion vector (MV ) and reference picture index (idx)
produced by the IME is then forwarded to FME, which uses an 8-tap/4-tap
separable interpolation (IPOL) filter to produce 1/4-pixel luma samples and
1/8-pixel chroma samples. The initial MV generated by the IME can then be
refined to a sub-pixel accuracy.

When the encoder operates in inter mode, the Pinter produced by the MC is used
to compute the D, by subtracting Pinter from the original CB. If the CU is encoded
as skip mode, no D is computed, only PBs of size 2N × 2N are allowed, and motion
parameters are derived with merge mode [5]. The merge mode is used to derive the
motion parameters, including MV and one or two reference picture indices (idx), from
spatially or temporally neighboring blocks.

2.2.4 Transform coding

In HEVC, the transform (T ) stage utilizes 2-D DCT (TB sizes from 32 × 32 to
8 × 8) and 2-D DST (4 × 4 TBs) to transform D from spatial domain into frequency
domain transform coefficients (TCOEFF) [27]. The transform coding supports CB
sizes of 32 × 32 to 8 × 8 and further partitioning of square CBs into square sized TBs
until the size of 4 × 4 is reached. In frequency domain, high-frequency components
of the video can be removed in the quantization (Q) stage to produce quantized
transform coefficients (QTCOEFF) without significant quality loss, since human eye
is less sensitive to the high-frequency components.

The encoding loop also includes decoder-side functionality such as inverse
quantization (IQ) and inverse transform (IT ) stages, where QTCOEFFs are
dequantized into inversed transform coefficients (TCOEFF’) and then transformed
back into inversed residuals (D’), i.e., back from frequency domain to spatial
domain. The IT stage uses the corresponding inverse functions of the T stage, i.e.,
2-D IDCT and 2-D IDST [27]. The reconstructed D is then added to the
Pintra/Pinter to generate the final D’, which is stored in CPB. For example, in intra
mode, reconstructed CBs are needed in the intra prediction phase, where spatially
adjacent pixels are used as a reference for generating predictions for neighbouring
CBs. Furthermore, as the reconstructed pictures correspond to the images

20



generated and displayed by the decoder, they can also be used to measure the error
introduced by compression.

In addition, HEVC supports sequential in-loop filters, sample-adaptive
offset (SAO) and deblocking filter (DF), in the loop filtering (LF) stage. This stage is
used for filtering distortions and visible borders of blocks. Unlike intra mode,
which utilizes the Drec directly, inter mode utilizes the filtered Drec from DPB to
find the best temporal candidate for the processed PU and to generate the inter
prediction.

2.2.5 Entropy coding

In the last encoding phase, the QTCOEFFs, IP mode, and MV are processed by
the entropy coding (EC) stage to generate the final encoded bitstream. In this step,
the video signal is reduced to a series of syntax elements that contain properties of
the blocks, including prediction modes, quantization parameters, transform
coefficients, filter modes, and all other parameters required to describe how the
video signal should be reconstructed by the decoder.

These elements are ordered and compressed to generate an encoded video
bitstream. Entropy coding method in HEVC is called CABAC [28], which is a
lossless compression technique based on arithmetic coding. The compression is
achieved by utilizing statistical properties of symbols, i.e., more frequent symbols
are coded with less bits and less frequent symbols with more bits.

2.2.6 Techniques for HEVC encoder parallelization

HEVC supports parallel processing of multiple CTUs [29] in a single frame, as well
as parallelism between frames. As shown in Figure 2.3, the specified strategies include
(a) slices, (b) tiles [30], (c) wavefront parallel processing (WPP) [30], [31], and (d)
overlapped wavefront (OWF) [30], [32].

In its simplest, a slice in HEVC can contain the whole frame. For added
parallelism, a single frame can be encoded using several independent slices. The
minimum size of a slice is a single CTU. Each slice can consist of varying number
of CTUs per frame, and each frame can consist of varying number of slices.

With tiles, the frame can be divided into independently encoded rectangular
regions. This increases the capability of parallel processing of CTUs in a single
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Figure 2.3 Parallelization approaches supported by HEVC: (a) slices, (b) tiles, (c) wavefront parallel
processing, and (d) overlapped wavefront.

frame without the need for complex synchronizations.
When WPP is enabled, processing of adjacent CTU rows can always be started

when two CTUs from the preceding row have been encoded. Thus, the level of
parallelism withWPP increases row by row. Furthermore,WPPmay provide higher
coding performance than tiles by utilizing CABAC better, i.e., the CABAC state of
the previous row is always propagated to the next row with a delay of two CTUs.
This dependency does require better synchronization methods than with tiles.

OWF is the process of encoding multiple frames in parallel. This is
straightforward in all-intra mode, as the frames have no temporal dependencies, but
when using inter mode, additional synchronization is required for reference
pictures.

2.2.7 Open-source implementations for HEVC encoding

The most notable open-source HEVC encoder is the HEVC reference software
called HM [16]. The main purpose of HM is to implement and provide a reference
for all coding tools in the standard. On the other hand, HM has not been
optimized for speed, e.g., with multithreading, and thus it has a considerable
computational complexity, which severely limits its practical usage outside research.

There are also two notable open-source HEVC encoder implementations
addressing practical encoding, namely x265 [33] and Kvazaar [8]–[10]. Both of
them are highly optimized and support HEVC specified parallelism to achieve
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real-time SW encoding. The x265 encoder has primarily been written in C++, just
like HM. The development of x265 is coordinated by MulticoreWare. Kvazaar
encoder is presented in more detail in Section 2.2.8.

2.2.8 Kvazaar HEVC encoder

Kvazaar [8]–[10] is an academic open-source SW HEVC encoder developed by
Ultra Video Group at Tampere University. The open development of the encoder
was started in January 2014 and still continues actively. The encoder has
completely been implemented from scratch using C with additional advanced vector
extensions 2 (AVX2) optimizations. Kvazaar supports HEVC Main profile [18]
with ten presets from ultrafast to placebo [10]. Kvazaar architecture offers
multi-threaded coding scheme with rate-distortion optimized (RDO) mode decision
and HEVC parallelization strategies to achieve high rate-distortion (RD)
performance with reasonable coding time.

In almost all publications included in this thesis, Kvazaar is used as a reference
software for HEVC, i.e., as a design entry point for HLS implementations, for
testing purposes, and as the SW application running on CPU where applicable.
The wide usage of Kvazaar in this thesis is not only because Kvazaar has been
developed in the same research group as this thesis is being carried out, but also
because Kvazaar is a fully-fledged open-source HEVC encoder, which is
implemented completely in a hardware-friendly C-code, and has shown promising
results when compared with HM [16] or x265 [33].

2.3 Target device: Field-programmable gate array (FPGA)

FPGAs are re-programmable logic circuits that enable fast development and
real-time emulations for HW implementations. A simplified example of an FPGA
is illustrated in Figure 2.4. In the basic case, an FPGA is made up of an array of
programmable LEs, consisting of a classic 4-input LUT, carry logic, and a single
register. The FPGA also has programmable interconnections for connecting the
LEs. These interconnected LEs can be used to form designs from simple gates to
highly complex functions. In reality, the basic building block [14] of an FPGA
device depends highly on the FPGA vendor. These building blocks can consist of
several classic LEs, larger LUTs, multiple registers, or additional hard-coded
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Figure 2.4 Simplified example of an FPGA.
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Figure 2.5 High-level overview of the design flow from HLS code to FPGA programming.

functionality such as adders. The FPGA chips also usually contain on-chip
memory blocks and DSPs. The memory blocks are typically allocated for FIFOs
and single or dual-port memories. DSPs are mostly used for performing complex
mathematical functions. They can be used together with LEs and minimize the LE
usage in memory-intensive or arithmetic applications.

Figure 2.5 gives a high-level overview of the design flow from HLS code to
FPGA programming. The initial state of the LEs, memory blocks, DSPs, and the
connections between them are generated by an electronic design automation (EDA)
software. The EDA usually takes an HDL description of the design as an input and
the HDL code goes through synthesis, place & route, and finally bitstream
generation. The bitstream image can be used for programming the specific FPGA.
Because the code generated by the HLS tool is in HDL format (VHDL or
Verilog), the use of HLS should not affect the EDA tools used for FPGA synthesis.

FPGA is selected as the target device in almost every publication included in
this thesis, because it enables the construction of proof-of-concept systems, which
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is a step forward from calculations or simulations. Achieving realistic performance
evaluations is somewhat limited in simulations, as it might not consider all real-
life aspects and dependencies. Furthermore, FPGAs were also preferred to ASICs,
because the back-end flow for ASICs would have been too demanding for the scope of
this thesis, without the possibility to actually have the chip physically manufactured.

From the scope of the HLS flow and the generated RTL, the target technology
is not that important, as HLS offers technology-independent designs. This made it
possible to prioritize the device selection according to device and EDA software
availability/support. Hence, the chosen setup was Catapult HLS, Intel Quartus
Prime (previously Altera Quartus II) FPGA synthesis tool, and Intel (previously
Altera) FPGAs (Cyclone V, Arria V, and Arria 10 device families)

25



26



3 RELATED WORK

Since the advent of HEVC, a great number of individual HW components or
complete HW encoders have been designed for it on FPGAs and ASICs, both in
academia and industry. However, to the best of knowledge, none of the existing
HLS approaches, at least in literature [34]–[45], have proposed a complete HEVC
encoder but only individual HEVC coding tools.

All these existing HLS approaches considered only data-intensive coding tools
and skipped the control-intensive parts of HEVC, e.g., CABAC. This is because
data-intensive algorithms have traditionally been considered more suitable for HLS.
CABAC is part of the work presented in this thesis, and due to the lack of HLS
implementations of CABAC in literature, independent CABAC units implemented
with traditional RTL [46]–[52] are included in the related work for comparison.
Correspondingly, industrial and academic HEVC encoders developed with manual
RTL are considered as related work [53]–[67].

3.1 Existing HLS implementations for HEVC

As listed in Table 3.1, HLS implementations have been presented for different
HEVC encoding tools, including 1) IP [34]–[36]; 2) DCT/IDCT [37], [38]; 3)
interpolation [39]–[41]; and 4) sum of absolute transformed differences (SATD) [42].
Correspondingly, Table 3.2 lists the works for HEVC decoding tools [43]–[45].

3.1.1 Intra prediction

The authors in [34] used Xilinx Vivado HLS (now Xilinx Vitis HLS [20]) to
implement HEVC IP for Xilinx Virtex 6. It supported all PU sizes and was able to
process predictions for 1080p video at 35 fps (1080p@35fps) in the worst case.
Three prediction units are used to calculate angular, planar, and DC predictions at
32, 4, and 1 pixel(s) per clock cycle, respectively. The authors performed manual
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Table 3.1 Existing HLS approaches for HEVC encoding

Table 3.2 Existing HLS approaches for HEVC decoding

loop unrolling and several Vivado HLS specific optimizations to increase
performance.

The work in [35] addressed the mode decision (MD) process of intra predicted
PUs. It proposed to calculate the sum of absolute differences (SAD) [68], [69] only for
8 × 8 PUs and construct the larger CUs from them. The reconstruction dependencies
have also been removed by utilizing original pixels as reference for adjacent PUs.
This increased parallelism but decreased the MD accuracy. The presented HEVC
intra encoder was able to encode 1080p@29.7fps on the ARM platform.

Another HLS IP implementation was presented in [36]. The design included
six groups of 35 prediction modes and supported 8 × 8 PUs only. The design was
parallelized by removing the recursive search, accumulating the SADs of 8 × 8 PUs
for the larger PUs, and utilizing original pixels as reference for adjacent PUs instead
of reconstructions. The presented SoC FPGA (Xilinx ZCU102) solution was able
to encode 1080p@29fps. Both [35] and [36] utilized Kvazaar [8]–[10] as a reference
for their HLS designs.
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3.1.2 DCT and IDCT

The authors in [37] utilized HLS, HW/SW co-design, and a SoC FPGA (Xilinx
Zynq ZC702) to implement separate 2-D DCT/IDCT cores for 4 × 4 and 32 × 32
TUs for 1080p@30fps video coding. They also ported Kvazaar to the processor of
the SoC FPGA in order to verify the HLS-implemented HW in real-time testing.
Kvazaar was also used as reference for the implementation. The full 2-D HEVC
transform phase consisted of two 1-D DCT and 1-D IDCT units and a transpose
circuit between them. The authors also implemented the corresponding HDL design
for comparison with the HLS implementation.

The work in [38] presented three HLS implementations for 2-D IDCT that
supported all TU sizes. The used HLS tools were Vivado HLS, LegUp [70], and
MATLAB Simulink HDL Coder [71]. In addition, the authors have previously
implemented the same design using handwritten HDL supporting 2160p48fps,
which is compared with the HLS designs supporting 1080p@35fps to
1080p@55fps. The HLS designs consisted of two 1-D transforms for each TU size
and a transpose memory between the transforms. The results showed that real-time
performance is achievable for IDCT with several different HLS tools, with
significantly reduced design time.

3.1.3 Interpolation

Even though this thesis only considers the implementation of an intra HEVC
encoder, literature shows that HLS has also been applied for HEVC inter
encoding, i.e., interpolation filter for FME and MC. The authors in [39] used
Vivado HLS to create multiple versions for the interpolation HW. Each version
utilized different optimization techniques, ranging from Vivado HLS specific
optimizations and manual loop unrolling to different multiplierless designs. The
best design was able to process interpolations for 2160p@45fps video.

HEVC interpolation was also used in [40] as a proof-of-concept algorithm to
demonstrate the proposed Design Productivity evaluation when the same design was
implemented with VHDL and CAPH HLS [72].

The work in [41] considered fully accurate interpolation filters that were
implemented with Catapult HLS [7] and optimized for FME. The design was
profiled to be able to filter an adequate number of samples for 2160p@99fps video
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on Virtex 6.

3.1.4 Hadamard SATD

The work in [42] considered an HLS implementation for SATD [68], which is
used to calculate similarity between pixel blocks. The work combines previously
introduces techniques with HLS and introduced implementations for 4 × 4, 8 × 8,
and 16 × 16 blocks. The designs were profiled to provide adequate SATD
throughput for 2160p@60fps FME.

3.1.5 Decoding tools

Even though this thesis only considers HEVC encoding, HLS implementations for
HEVC decoders can also be found in literature. The authors in [43] used Impulse
C [73] to implement 2-D IDCT/IDST for all TU sizes. After the design was
optimizing using loop unrolling and pipelining, it supported decoding of
1080p@30fps.

The HEVC decoder has also been used as a case study for HLS in [44]. The
work proposed HW implementations for IP, dequantization, and IDCT using
Vivado HLS. These units are deployed on a SoC FPGA (Xilinx Zynq ZC702), and
the SW/HW design is profiled to be able to decode 1080p@17fps video. The same
authors [44] also published a dedicated HLS implementation for IP [45]. In this
work, they have utilized Vivado HLS and created multiple solutions by adding
optimized pragmas incrementally, finally achieving 1080p@51fps performance for
the standalone unit, and 1080p@15fps decoding speed with the entire SW/HW
design.

3.2 Existing hardware implementations for HEVC entropy coding

The related works for CABAC are listed in Table 3.3. The authors in [46]–[49]
presented the whole entropy encoder (both binarization and arithmetic encoding),
whereas the remaining works focused only on arithmetic encoding [50], [51] or
binarization [52]. All these works included various optimization techniques for
removing data dependencies, minimizing critical paths, multi-symbol processing,
and parallel processing of bypass-mode.
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3.2.1 Whole entropy encoder

The work in [46] described an architecture for the whole CABAC encoder. It
detailed how the context modeler and binarizer work in parallel with a connection
to the arithmetic encoder via a parallel-in/serial-out unit. The overall process was
controlled by a CABAC controller unit. The design aimed to reduce HW
resources by applying optimizations via adaptive binarization and memory
reduction in context selection. Separate area figures were reported for Virtex 6
FPGA and ASIC for 1600p@60fps video.

The authors in [47] also presented an architecture for the whole CABAC
encoder, including binarization, separated paths for regular bins and bypass bin,
and a multi-stage arithmetic encoding. Optimizations for the arithmetic encoding
were carried out by utilizing incomplete data dependencies considering range
updating and less probable symbol bins, shortening critical paths. The work also
presented a new architecture for context modeling and binarization, that were
developed to ensure an adequate output speed for arithmetic encoding.

In [48], the authors analyzed the challenges of CABAC and proposed
parallelism for binary coding and the renormalization of the least probable symbol.
The optimization of binarization is also considered by using eight heterogeneous
functional units. The design has been developed to support 4K content.

A full CABAC encoder was presented in [49], that supported the throughput
requirement of real-time 8K encoding. The architecture showed how the CABAC
processing was controlled by a top controlling unit with connections to context
modelling, binarization, and arithmetic encoding. The work described optimizations
for binarization in the form of pre-allocated context modelling, which simplified
the actual binarization of syntax elements. Optimizations for arithmetic encoding
included efficient utilization of bypass bins, by splitting them from the multistage
arithmetic encoding pipeline and merging them to a later stage.

3.2.2 Separate implementations for arithmetic encoding or binarization

The work in [50] presented an arithmetic encoding part of the full CABAC
process. It was designed for a low-power ASIC architecture that supported
real-time processing of 8K content. The low-power techniques applied for the
design included clock gating and operand isolation. They were used together with
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an analysis of the statistical behaviour of inputs.
An arithmetic encoding unit was also presented in [51]. The proposed

optimizations included: 1) a parallel four-path data flow for range evaluation
supporting high operating frequencies, 2) hardware usage of the four-path range
evaluation and actual range calculation is optimized to reduce complexity, 3)
modified processing order for updating low register, and 4) increased number of
symbols in bypass mode.

The same authors [51] also presented a corresponding binarization unit in [52].
It was designed to meet the high throughput of their arithmetic encoder via fast
implementations of binarization, context modeling, and probability model. The
work described the decomposition of the processing path into many parallel ones.
The proposal was targeted for real-time processing of high-quality 8K content.

3.3 Existing hardware implementations for complete HEVC
encoders

As listed in Table 3.4, commercial HW encoders have been unveiled for HEVC,
e.g., by NVIDIA (NVENC) [53], Xilinx (LogiCORE IP H.264/H.265 Video
Codec Unit) [54], VITEC (e.g. MGW Diamond) [55], ORIVISION (e.g.
ZY-EH901) [56], and AJA (Corvid HEVC) [57]. However, the publicly available
information of these confidential solutions tends to be limited, so only academic
works are considered in this thesis.

The existing academic HW HEVC encoders are listed in Table 3.5. They can
be further categorized as: 1) FPGA implementations [58]–[60]; 2) FPGA/ASIC
implementations [61]–[63]; and 3) ASIC implementations [64]–[67].

3.3.1 Academic HEVC encoders on FPGA

The authors in [58] presented an implementation capable of supporting both intra
and inter encoding for 1080p@60fps video. In addition, the used FPGA can be
mounted in a rack supporting as many as 17 FPGAs and 8K@60fps encoding.

An intra encoder for 1080p@30fps video was presented in [59]. It proposed to
reduce dependencies in the RDO loop and use Hadamard-based early decision
method for higher parallelism.
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Table 3.3 Existing CABAC implementations for HEVC

Table 3.4 Existing commercial HEVC encoders on HW

Table 3.5 Existing academic HEVC encoders on HW

An intra HEVC encoder capable of 1080p@60fps was presented in [60]. The
work introduced basic pixel-level processing elements for various fundamental
algorithm modules, from which the encoder was constructed.

3.3.2 Academic HEVC encoders on FPGA/ASIC

The authors in [61] presented an HEVC intra encoder for 1080p@60fps video.
The architecture takes advantage of a simplified RDO process, a separate 4 × 4
reconstruction loop, and an interleaved mode processing.
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The same authors in [62], [63] presented two intra encoders for 1080p@45fps
video with small differences. They proposed chroma reconstruction based on luma,
luma mode preselection, and simplified CABAC rate estimation.

In addition, the works in [61]–[63] also included ASIC results for 4K@30fps
video.

3.3.3 Academic HEVC encoders on ASIC

The authors in [64] presented an implementation for 8K@30fps video supporting
both intra and inter encoding. It was implemented without the complex 8 × 8 CUs
and 4 × 4 PUs. It also supported fully parallelized encoding of 64 × 64, 32 × 32, and
16 × 16 intra CUs to meet high throughput.

The work in [65] described an intra encoder capable of 1080p@44fps. The work
utilized CU/PU pre-decision to reduce the complexity, but the sequential processing
caused throughput degradation.

The ASIC HEVC encoder presented in [66] supported intra encoding of
1080p@60fps video. The work proposed multiple fast algorithms to remove data
dependencies and to reduce computational complexity. These fast algorithms
included fast rough mode decision (RMD), prediction mode interlaced (PMI) RDO
mode decision, parallelized context adaption, and chroma-free CU/PU decision.

The intra/inter HEVC encoder presented in [67] supported 4K@30fps video
encoding. The work utilized a pyramid motion estimation to reduce search
complexity, original pixels for intra mode decision to reduce pipeline stall, and
various low-power design techniques.

3.4 How to improve upon prior art

The solutions described in this thesis aim to improve upon the existing works with
the following means:

• The use of HLS not only for the data-intensive parts of HEVC (intra
prediction, discrete sine/cosine transform, quantization, inverse
quantization, inverse discrete sine/cosine transform , and reconstruction),
but also for more control-oriented tools, such as intra search control and
CABAC. Using HLS for the entire implementation is beneficial from the
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perspectives of design effort, complexity, re-usability, ease of modification,
and verification time.

• Support for parallel processing of multiple independent CTUs, in order to
efficiently fill the pipeline with independent CUs from different CTUs. This
approach maximises the utilization of the HW pipeline without breaking any
dependencies between adjacent CTUs in a frame or adjacent CUs in a CTU.
This way, it improves encoding speed without any negative effects on the
coding quality.

• This work is not limited to simulations or assessments of the potential
encoding performance. Most of the existing HEVC encoders on HW have
been implemented with ASIC technologies, but a proof-of-concept system
for real-life HEVC encoding is more easily achievable with FPGA. This also
makes it possible to benchmark the coding quality of the implemented HW,
instead of estimating the coding quality by introducing possible
optimizations or limitations to HM [16].
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4 RESULTS OF THE RESEARCH

The main results of this thesis are summarized in the following sections. Each
publication is addressed separately, except that two technical papers (Publications V
and VIII) are accompanied with associated demonstration papers (Publications VI
and IX). The purpose of these two demonstration papers is to describe the
technical setup used to validate the proposed functionality in practice.

Section 4.1 presents the results for single HEVC encoding tools. It includes the
implementations for intra prediction (Publication I), 2-D DCT/DST (Publication
II), and 2-D IDCT/IDST (Publication III). It also describes the results of the
conducted test group study (Publication IV). Section 4.2 presents the results for the
1st and 2nd generation versions of the Intra Search Core on an FPGA (Publications
V, VI, VII). Section 4.3 presents the results for the 2nd generation Intra Search
accelerator in a cloud environment (Publications VIII, IX). Finally, Section 4.4
presents the results for the full HEVC intra encoder, which includes the 3rd

generation Intra Search Core and the HLS implementation of CABAC
(Publication X). Comparisons to prior art that are not covered in this chapter are
included in respective publications.

4.1 HLS implementations of single HEVC intra encoding tools

4.1.1 Intra prediction

The HEVC encoder implementation was started with the HLS implementation of
IP described in Publication I. The area and performance results of the implemented
IP units are listed in Table 4.1. IP was chosen as the first coding tool for HLS
implementation according to the profiling results of Publication I, where IP was
shown to account for almost 68% of the whole intra encoding process when the
encoding was performed on the CPU.
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Table 4.1 HLS implemented HEVC intra prediction units with area and performance figures

The work included two versions of the unit. One capable of performing IP and
intra MD at a rate of one pixel per cycle, and a second one able to perform two
pixels per cycle. These versions could perform intra prediction for 1080p
resolution at 6 fps and 9 fps, respectively. The work also included a
proof-of-concept HEVC streaming system on a SoC-FPGA, where the
implemented HW Intra Prediction unit was used to accelerate the HEVC encoding
on CPU. Even though the performance of the coding tool did not achieve real-time
performance for 1080p resolution, the design served as a promising starting point
for utilizing HLS in fast development and accelerating SW HEVC encoding. In
hindsight, the speed was limited by not fully utilizing the internal encoding
pipeline for successive CUs, and the limited potential of the low-end Cyclone V
FPGA. Nevertheless, the work gave a positive outlook for continuing the
development of an embedded HW HEVC encoder.

4.1.2 Transform coding

The next coding tools after IP were DCT and IDCT, described in Publication II
and Publication III, respectively. Quantization/Inverse Quantization could have
also been selected for implementation, but as the quantization process is more
straightforward than DCT/IDCT, the added value of reporting such work would
have been limited. The area and performance results of the implemented HW
DCT and IDCT units are listed in Table 4.2 and Table 4.3, respectively. The target
device for these two works was upgraded from Cyclone V to a mid-end Arria II
FPGA device, removing the device performance limitation in Publication I.

The work in Publication II included two separate versions of 2-D DCT/DST
units that support all luma and chroma TBs. The individual units presented were
1) a separate 2-D DCT/DST unit dedicated for luma and chroma 4 × 4 TBs, 2) a
low-cost variant of 2-D DCT for larger luma and chroma TBs, and 3) a high-speed
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Table 4.2 HLS-implemented HEVC DCT/DST units with area and performance figures

variant of 2-D DCT for larger luma and chroma TBs. The individual units support
HEVC transform in the worst case at the rate of 2160p@30fps, 1080p@60fps, and
2160p@30fps, respectively. Table 4.2 also lists two combinations of these
individual units, creating a complete 2-D DCT/DST unit for all luma and chroma
TBs. A comparison to the existing manual RTL designs showed that the HLS
implementations were able to produce transformed coefficients with a much higher
rate and with better area to performance ratio.

The work in Publication III included two separate units for performing 2-D
IDCT/IDST, which are listed in Table 4.3. The first one is dedicated for 4 × 4
luma and chroma TBs and the second one for the rest of the larger TBs. These two
units were capable of performing HEVC inverse transform 2160p@68fps and
2160p@96fps, respectively. Again, the complete 2-D IDCT/IDST unit was able to
outperform and achieve better area to performance ratio than the prior art.

4.1.3 User study: HLS vs. manual RTL

To validate the findings of Publication II, a case study was organized in Publication
IV to better evaluate the efficiency of HLS and manual RTL design flows. The test
subjects were instructed to implement a specified algorithm with both manual RTL
and HLS. The coding tool of interest was HEVC 2-DDCT for 8 × 8 TBs and the
subjects were given the opportunity to start with either HLS or manual RTL. The
results of the study are summarized in Table 4.4, which shows the area, speed, and
hours used by each subject. The bolded values indicate the subjects that started with
the specific design flow.
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Table 4.3 HLS-implemented HEVC IDCT/IDST units with area and performance figures

Table 4.4 Area and performance figures from the test group study for HLS and RTL designs, with
quality and productivity comparison

This case study justified that the quality improvement achieved with HLS for
HEVC DCT (in Publication II) over the manual RTL implementations was not a
random occurrence. Table 4.4 shows that all subjects were able to produce a design
with better performance using HLS than with manual RTL. Only one subject got
better performance area ratio with manual RTL, but HLS still improved the
productivity in that case too. These results are well in line with the experiences of
the author and the results of the previously implemented HEVC coding tools.

4.2 FPGA-accelerated HEVC intra search on a compute server

The implementation of the HEVC encoder was continued by moving the focus
from single data-intensive coding tools to a complete intra search on FPGA. As the
most demanding coding tools of the intra search pipeline were already
implemented, Publication V and Publication VI addressed 1) the integration
aspects of the IP, DCT, and IDCT, 2) implementation of the missing
quantization/dequantization and reconstruction units, and 3) the whole control
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logic of intra search. This also shifted the focus from data-intensive algorithms to
more control-oriented implementations.

As intra search alone cannot produce the final HEVC bitstream from a direct
video input, a CPU of a server/PC was used for input processing, parallelization,
chroma coding (1st generation only), CABAC, and HEVC output bitstream
processing. Furthermore, in order to access the implemented Intra Search Core on
FPGA from CPU, a Linux kernel driver was implemented for sending and
receiving data to/from FPGA via PCIe 3.0 x4 and dedicated direct memory access
(DMA) units that are connected to FPGA memory blocks.

Table 4.5 tabulates the base encoding configuration used in benchmarking. In
addition, an intra depth range can be configured at run time as specified in Table 4.6.
The intra depth range can affect the encoding speed, i.e., larger blocks are more
data intensive, the number of smaller blocks is larger, and a larger range affects the
number of possible configurations.

4.2.1 1st generation Intra Search Core

The work carried out for the 1st generation Intra Search Core is described in
Publication V. This first complete HLS implementation of the Intra Search Core
was designed to process data at CTU level to maximize the internal parallelization
of CUs within a single core. This parallelization method was also chosen because it
does not break any adjacent CTU dependencies and thus does not degrade the
coding quality. The 1st generation Intra Search Core was able to perform intra
search for eighth individual CTUs in parallel. The number of parallel CTUs was
limited by the intra search control and the size of intra search memories. The
number of FPGAs per CPU was also limited to a single board by the initial Linux
kernel driver.

The area and performance figures of the 1st generation Intra Search Core are
given with the specified configurations in Table 4.7 and Table 4.8, respectively. A
single Arria 10 FPGA chip can accommodate two parallel Intra Search cores, and
the area is given for the whole design. The performance was separately benchmarked
with a single and two cores per FPGA using sequences from [15]. With the wider
intra depth range of 1-3 and quantization parameter (QP) of 32, the two cores were
able to perform 1080p encoding at 109 fps. Using the narrower intra depth range
of 2-3, the two cores were able to perform 2160p encoding at 41 fps. Although
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Table 4.5 Supported base configuration for the proposed HW HEVC intra encoder

Table 4.6 Corresponding intra depth ranges and luma PU and TU sizes

some HEVC encoding functionalities were implemented on CPU, the 1st generation
Intra Search Core was able to more than double the encoding speed over CPU only
encoding. Furthermore, the implementation showed competitive performance over
existing FPGA and ASIC implementations.

4.2.2 2nd generation Intra Search Core

The work for the 2nd generation Intra Search Core in Publication VI was motivated
by the bottlenecks found in the 1st generation core. The work thus described the
solutions for the encountered limitations, added support for HW chroma coding,
and proposed optimizations for faster encoding speeds.

The encoding system in Publication V utilized available CPU processing power
to maximize the coding speed because the 1st generation Intra Search Core only
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Table 4.7 The resource consumption of the proposed 1st and 2nd generation Intra Search Cores

Table 4.8 The performance of the proposed 1st and 2nd generation Intra Search Cores

came with limited parallelism and thus utilized only a portion of the CPUs threading
performance. To that end, the support of parallel CTUs in a single core was increased
from 8 to 16. In addition, the processing time in different parts of the HW pipeline
was equalized by separating the 2-D process of DCT and IDCT units into individual
pipeline stages. The operation of the Linux kernel driver was also upgraded to enable
multiple PCIe boards and interrupt handling. In addition, the overall optimizations
improved the HW utilization and enabled a higher clock frequency.

The area and performance figures of the 2nd generation core are also given in
Table 4.7 and Table 4.8, respectively. The duplication of the DCT and IDCT units
increased the number of ALUTs per core only minimally and decreased the
number of DSPs per core. The maximum clock frequency increased from 125
MHz to 175 MHz, which improved the coding speed by 40%. The performance of
the 2nd generation core was benchmarked using the base encoding configuration
with 1-3 intra depth range only. As three 2nd generation cores could now be
accommodated per FPGA, the maximum number of parallel Intra Search Cores in
the encoding system with two FPGAs increased from 2 to 6. This increased the
maximum number of parallel processed CTUs from 16 to 96. With the sequences
from [15], this system was able to encode 2160p video at 123 fps on average.
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4.2.3 Live demonstration of the Intra Search Core

The proof-of-concept encoding system proposed in Publication VI was also
validated with a live demonstration described in Publication VII. The
demonstration showcased how a single personal computer (PC) with two PCIe
FPGAs can encode three 4K streams in real time. The applied 4K cameras
supported raw video output via HDMI. The outputs were captured by HDMI
capture cards and transmitted to the PC via USB. The encoded videos were finally
streamed to three separate laptops for playback over a network using real-time
transport protocol (RTP).

4.3 FPGA-accelerated HEVC intra search in a cloud environment

Publication VIII is about adding support for a 40 Gigabit Ethernet (GbE)
connection for the 2nd generation Intra Search Core whereas publication IX
describes the live demonstration of the developed cloud encoding system. These
works were motivated by the objective of adding even more cores to the encoding
system, without a specialized motherboard that can fit and support multiple PCIe
boards. The combination of an Ethernet connection and a network switch enables
practically any number of heterogeneous FPGAs to be added to the system. The
challenge with the network connection resides in implementing a full protocol
stack for communication and application abstraction on FPGA. This effort was
minimized by utilizing SDN switches, in which the connections and data flows are
programmable by a separate controller. This allows the network interface on
FPGA to be at very low level, which in turn saved a major portion of the FPGA
resources and implementation time. The publication also describes the
implementation of a resource manager and how it controls the SDN flows. The
advanced utilization of these SDN flows also enabled the manager to modify the
used resources at run-time, i.e., allocate varying number of FPGAs per server,
switch FPGAs on the fly without disrupting the HEVC streaming, and
prioritizing different streams being encoded.

Table 4.9 shows the performance of the same 2nd generation Intra Search Core
when using either PCIe 3.0 x4 or 40 GbE. The benchmarking was carried out with
a single FPGA board, three cores, and the same server CPU. The intra depth range
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Table 4.9 The performance of proposed Intra Search Cores using PCIe and 40GbE

of 2-3 and the QP of 22 were used. The results show that the system with a 40 GbE
was also able to encode 2160p video at 61fps, with similar CPU utilization. The
performance of the network connected FPGA was mainly limited by the utilization
of 2 × 10 GbE connections on the server, in comparison with the 32Gbps PCIe
connection. Having access to a 40 GbE network card on the server would have
given identical performance.

4.4 Complete HEVC intra encoder on FPGA

The final publication, Publication X, describes the 3rd generation Intra Search
Core and the implementation of the CABAC coding tool. In all previous systems,
CABAC was performed on CPU, but in this work, CABAC was implemented as a
dedicated core that operates in parallel with the Intra Search Core. The
implementation of the intra search control logic and CABAC gave a thorough
understanding of HLS competitiveness with sequential and control-intensive
implementations.

The system architecture of the implemented HEVC Intra encoder is presented
in Figure 4.1. It depicts the interconnectivity of the CPU and FPGAs. Each Intra
Encoder instance consists of a single Intra Search Core and two parallel CABAC
Cores (TOP and BTM) that divide the CTU processing.

The optimizations of the 3rd generation Intra Search Core include the improved
pipelining of the IP unit to remove initial latencies of adjacent PUs and optimized
area and memory usage of the prediction buffer. The 2nd generation Intra Search
Core supported chroma coding, but only together with luma CBs. To skip the
processing of unused chroma CBs, the 3rd generation core reconstructs the
corresponding chroma results from the luma results. The resource utilization of the
3rd generation core is presented in Table 4.10. A single 3rd generation core now
utilizes 180k ALUTs (1 ALM ≃ 2 ALUTs) and 523 DSPs. For comparison,
previously a single 2nd generation core 4.7 utilized 184k ALUTs and 409 DSPs.
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Figure 4.1 System architecture of the proposed HEVC intra encoder on FPGA [Publication X].

Table 4.10 The area figures of the proposed fully HLS implemented HEVC intra encoder on FPGA

Table 4.11 Performance comparison of the proposed standalone CABAC Core [Publication X] to
related work

The maximum clock frequency also increased from 175 MHz to 190 MHz, which
further improved the performance by almost 9%.

The work describes in detail how both CABAC binarization and CABAC
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Table 4.12 The 2160p performance of the proposed prototype HEVC intra encoding system
[Publication X]

Table 4.13 Performance comparison with related work [Publication X]

arithmetic encoding have entirely been implemented with HLS. This was the first
HLS implementation for CABAC in literature. The area figures for a single
CABAC Core are listed in Table 4.10. The performance of the CABAC Core was
reported in the publication for different configurations, but individual comparison
with related work was omitted since the focus was on the overall HEVC encoding
performance. However, the omitted comparison is given here in Table 4.11. The
related work consists of only manual RTL implementations and a collection of
designs implementing either CABAC arithmetic encoding, binarization, or a full
CABAC entropy encoder. The whole CABAC processing power of the encoding
system (12 × CABAC Cores in total) presented in Publication X, benchmarked by
using the worst-case sequence (Beauty [15]), and averaged over every intra depth
range, had a throughput of 4152 Mbins/s and 15.6 Bins/cycle. The design shows
equal or higher performance in comparison with the related work.

As can be seen in Figure 4.1, two CABAC Cores are dedicated per a single Intra
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Search Core. This configuration was found to be ideal for the proposed system. The
number of CABAC cores per Intra Search Core can was made configurable in the
RTL synthesis tool, allowing optimization of area or performance for future designs.
Table 4.10 lists the area usage for three Intra Search Cores and six CABAC Cores
when fitted on a single FPGA.

Tables 4.12 and 4.13 report the performance of the entire encoding system, and
comparison to related work, of the work presented in Publication X. It consists
of two FPGAs, a Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 14-
core Intel Xeon processors, 6× Intra Search Cores, and 12× CABAC Cores. The
average coding speed is given with all 4K (3840 × 2160) test sequences [15], for four
different QP values and for each intra depth range. The base configuration is the
same as before (Table 4.5). The highlighted Fast and Ultrafast presets comply with
the original Kvazaar HEVC encoder [9], [10]. With these presets, the average coding
speed across all QP values is 2160p@122fps and 2160p@145fps, respectively.
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5 CONCLUSION

The main objective of this thesis was to examine the feasibility of HLS when
implementing an embedded HEVC intra encoder on FPGA. Real-time HEVC
encoding was selected as an application, because of its data and control-intensive
characteristics. HLS was shown to provide short implementation and verification
times, easy portability between FPGAs, increased design reusability and
customization, and competitive performance with prior art.

5.1 Discussion about lessons learned

In the beginning, the author was already familiar with programming languages like
C/C++, but also with traditional RTL design methods for FPGAs, which may
influence the views presented in this section. On the other hand, the author also
obtained some second-hand knowledge from designers with different backgrounds
and also from the group study organized in Publication IV. However, the actual
learning process of HLS was started from zero for this thesis. It did take some time
to learn the best practises to achieve good and consistent results, but even the first
designs created with somewhat limited HLS knowledge showed comparable results
against the related work. In the end, the time used for learning HLS was paid off, as
the design times of later designs were shortened significantly. Although HLS tends
to improve the QoR more than absolute performance, the results listed in this
thesis also showed competitive video coding speed over related work.

The HLS code for this work was written mostly using C for algorithms taken
from Kvazaar [10]. C++ was used for templates, template recursion, and classes,
instead of structures, where additional functionality is closely related to the
structured data, e.g., reading a configuration bit vector and parsing the data to class
variables. Furthermore, SystemC was utilized in Publication I, but for the purpose
of early system simulations of the first HEVC coding tool. The RTL of this coding
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tool was still generated using untimed C/C++. A more accurate control of the
outcome and introduction of clock in the design itself with SystemC was not found
necessary. The coding overhead (actual lines of code) with SystemC would have
also been larger than that of the purely untimed C/C++.

The original reference code was used as is in almost every test bench for
generating golden reference data with a random input. On the other hand, the
amount of modifications needed for the HLS implementations was dependent on
the coding tool. SAD, quantization, dequantization, and even non-time critical
parts of CABAC did not need a lot of effort, but some highly vectorized coding
tools like IP, DCT/IDCT, intra coding control, and time critical parts of
CABAC, needed substantial re-writing. The necessary modification for all units,
moving from the reference to the implementation, was the interface, integration to
the pipeline, and passing of necessary data for operation, i.e., data pointers to big
data structures cannot be reused from the original reference code as such.
Introducing parallelism to a single coding tool turned out to be the most
time-consuming part, especially when applying loop unroll for a loop was not
enough, e.g., IP predicting all modes and multiple pixels in parallel, DCT/IDCT
having parallel 1D transforms with a constant 32 pixel transform independent of
TB size, and CABAC with efficient coefficient binarization and arithmetic
encoding. As a downside, these modifications separate the HLS code from the
original reference code. Although the entire HW implementation is still executable
on CPU, it is no longer optimized for it.

For this thesis, the verification effort was minimized with the combination of a
ready-made reference code and Catapult HLS tool. Catapult supports the
utilization of a high-level C/C++ test bench that can be used for verification of
both the behavioural code and the generated RTL. In practice, only the verification
of the behavioural model was necessary, as the generated RTL preserves exactly the
same functionality. Some corner cases were found, e.g., issues with type casting and
overflows, but they can be removed with careful and proper coding style.
Furthermore, for the system-level verification, the HW and SW reference encoders
were run in parallel and validated for functionality.

The author sees that HLS code and tools provide a shorter path to HW design
than learning RTL design with traditional HDLs. However, experiences with HLS
might vary between HLS tools because they offer different features and target
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technologies. This is also true for downstream synthesis tools generating netlist
code from HDLs. The ease of verification also advocates the usage of HLS.

5.2 Research question 1: Feasibility of HLS for implementing the
HEVC encoder

It is notable that the main novelty of this thesis comes from the reported feasibility
and usability of HLS in implementing the HEVC intra encoder. To the best of
knowledge, this thesis presents the first known HEVC intra encoder that is fully
implemented through HLS, even though there are multiple prior HEVC intra
encoder implementations on ASIC and FPGA. Furthermore, when focusing solely
on the implemented HEVC intra encoder, the presented design offers unseen
scalability via number of server CPUs, accelerator FPGA boards, and HW encoder
instances per FPGA. In addition, it offers connectivity via PCIe or 40 GbE port
and flexibility to switch execution between SW and HW. This was also very
beneficial during design time, from component and connectivity/protocol
verification to more complex system verification.

The implemented encoding system shows competitive performance over the
existing FPGA and ASIC encoder implementations. Finally, the support for
network connectivity in the design together with SDN switches and a resource
manager, the coding performance can be easily scaled up by adding practically any
number of network-connected FPGA cards and servers to the system. This thesis
showed that the designer writing code for an HLS tool can translate behavioural
source code to structural RTL and optimize it efficiently.

5.3 Research question 2: Area and performance of the HLS
implementations against existing work

In the end, HLS was very feasible for the implementation of an HEVC intra
encoder on an FPGA and showed comparable or better results when compared to
prior art. The justification for this conclusion gathered from the included
publications is covered in the following paragraph. The area and performance of
the HLS-implemented coding tools and larger coding entities were reported and
compared with prior art in respective publications.
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The Publications I- III showed that HLS is very suitable for data-intensive
HEVC coding tools. The group study organized in Publication IV validated that
HLS can provide results for HW designs faster. Publications V - VII showcased
that HLS can also be used for more control-oriented designs. These publications
also stated that HLS does not only provide better QoR against manual RTL, but
also competitive performance. Publications VIII and IX demonstrated the
possibility to customize the interfacing logic for the FPGA and the HW encoding
architecture. In these works, HLS was specifically used for implementing the
Ethernet packet parser and generator. Finally, Publication X again showed the
feasibility of HLS for a control-oriented algorithm with the full implementation of
CABAC encoding and its integration with the existing Intra Search Core. This
publication also further showed how HLS produced better or comparable QoR
and performance against existing manual RTL works.

5.4 Research question 3: Final conclusion

The HEVC encoder, with its parallel HW instances, is a very complex design as a
whole and manually controlling all task allocations and scheduling would have been
very laborious. This thesis proves that with HLS, the shorter development time
and better complexity control does not come at the cost of coding performance or
increased logic area.
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Abstract—This paper presents a High-Level Synthesis 

(HLS) flow for mapping a software HEVC encoder into Altera 

CycloneV SoC-FPGA. The starting point is a C 

implementation of an open-source Kvazaar HEVC intra 

encoder, which is minimally refined for SystemC design space 

exploration and automatic Catapult-C RTL generation. The 

final implementation involves Kvazaar encoder executed in 

Linux on dual-core ARM, and HW accelerated intra prediction 

on FPGA. Changing the SW/HW partitioning or modifying the 

implementation takes hours instead of weeks with Catapult-C 

HLS. In addition, the design is portable to other platforms 

without major manual re-writing. We obtained 9 fps full-HD 

intra prediction speed with a single accelerator on Altera 

Cyclone V SX on Terasic VEEK-MT-C5SoC board including 

video capture and HEVC video streaming via Ethernet. To the 

best of our knowledge, this is the first reported HLS assisted 

implementation of HEVC encoder on SoC-FPGA. 

Keywords—High-Level Synthesis, C to RTL, Catapult-C, 

HEVC, Kvazaar, intra coding, SoC-FPGA, SystemC, Cyclone V 

I. INTRODUCTION 

The latest video coding standard, HEVC (High Efficiency 
Video Coding) [4], has been developed for the transmission 
and storage of next-generation video. Compared with its 
predecessor standard AVC [8], HEVC is able to halve the bit 
rate for the same subjective quality, but its encoding 
complexity tends to be at least doubled in practical encoders. 
Furthermore, HEVC coding is at the same time both control 
and data dependent, which makes its modeling and 
implementation difficult. A trade-off would be a combination 
of state-based and dataflow-oriented models of computation 
(MoC). In this approach, the most complex parts of the 
encoder are tackled by hardware and control-intensive tasks 
are mapped to processor cores. 

System-on-Chip FPGAs (SoC-FPGAs) integrate hard 
processor cores and programmable logic on a single chip, 
which makes them attractive to high-performance computing 
and application evaluation for HW/SW partitioning. The 
current design tools for SoC-FPGAs integrate traditionally 
separated SW development tools for processors and FPGA 
design tools. One challenge is the interface between these 
two domains. HW abstraction layers were written practically 
once for the traditional processor platforms, but this would 
be a weekly practice for SoC-FPGAs as the HW can easily 
be modified. Another challenge is the way the current tools 
operate. They follow the waterfall approach, and force 
starting over from the beginning for changes in the middle. 

This is very laborious for prototyping with HW/SW 
partitioning on SoC-FPGAs. For these reasons, we chose 
High-Level Synthesis (HLS) to speed up the design 
exploration, verification, and implementation [1][2]. 

The proposed HLS experiments have been carried out 
with an open-source Kvazaar HEVC encoder [6]. In this 
paper, the focus is on all-intra (AI) coding configuration [5] 
of Kvazaar. Our first platform is a low-range Altera Cyclone 
V chip on Terasic’s VEEK development board [11].  

Fig. 1 shows an overview of the prototype. The live video 
is captured with VEEK’s camera, displayed on a 
touchscreen, encoded on Cyclone V, streamed to PC, and 
decoded on PC. Kvazaar HEVC intra encoder runs on a dual-
core ARM@Linux with synthesized HW accelerators on 
FPGA. The overall design mission is very complex, and this 
paper reports how the implementation is accomplished. The 
new contributions of this paper are the following: 

1. The first reported streaming HEVC intra encoder 

implementation on SoC-FPGA 

2. HLS of HW accelerated HEVC intra encoding functions  

3. HW/SW interface accepting pointers in SW code and 

DMA transfers in HW for HLS 

The rest of this paper is organized as follows. Section 2 
presents Kvazaar HEVC encoder and prior-art FPGA 
implementations of HEVC intra encoder functions. The used 
HLS design flow is introduced step by step in Section 3. 
Section 4 and Section 5 illustrate the implemented HW and 
SW architectures. Section 6 compares the design time and 
obtained performance between the proposed and 
contemporary approaches. Section 7 concludes the paper. 

Camera

Compressed 
video stream over 
Ethernet to PC

HEVC live video encoding on 
CycloneV SX@VEEK-MT-C5SoC 

Video 
decoding@PC

 

Fig. 1. Prototype platform for SoC-FPGA based HEVC encoder. 



 

 

II.  RELATED WORK 

Currently, there exist three noteworthy practical open-
source HEVC encoders: x265 [12], Kvazaar, and f265 [13], 
out of which only x265 and Kvazaar are currently under 
active development. Compared to x265 written in C++, 
Kvazaar is more hardware-friendly being implemented in C 
from scratch. Therefore, Kvazaar is used in our experiments. 

A. Kvazaar HEVC intra encoder 

Kvazaar intra encoder supports HEVC AI coding of 8-bit 
video with 4:2:0 chroma sampling. Currently, Kvazaar 
includes two presets: RD1 for high-speed encoding and RD2 
for high-quality encoding [6]. The RD1 preset with 
parameters listed in Table 1 has been selected for the HLS 
flow. The involved encoder features are detailed in [6] and 
the source codes for Kvazaar can be found on its GitHub 
page [7]. Kvazaar version 0.24 is used in our experiments.  

Fig. 2 depicts a state-machine model of Kvazaar HEVC 
intra encoder to illustrate its computational complexity. Here, 
the focus is on a rapid implementation of the HEVC encoder 
through a HLS flow, which later enables fast 
implementations of more optimized designs. 

B. Existing HEVC implementations on FPGA 

To the best of our knowledge, this is the first reported 
HLS assisted implementation of a complete HEVC encoder 
on SoC-FPGAs. However, there exits some non HLS 
implementations for core functions like intra-prediction [9] 
that supports all block sizes from 4x4 to 32x32 and achieves 
17 frames per second on Altera Aria II. One of the existing 
FPGA implementations [14] is capable of real-time HEVC 
encoding of 8k video, but it has 17 boards, each having 3 
FPGA chips. One board is capable of encoding full-HD at 
60fps. Comparing our work to [14] would be difficult, due to 
lack of specifics on algorithm speeds, FPGA chips, and used 
area.  

There is also a couple of HLS assisted HEVC decoder 
implementations on FPGA such as [15]. In addition 
Verisilicon has created a WebM (VP9) video decoder for 
Google. They report less than 6 months of the development 
time, compared to a one year estimate for a traditional RTL 
approach [10]. The project includes 69k lines of C++ source 
code, which is much smaller compared to 300k lines of RTL 
source code. We can confirm similar order of speed-up in our 
development work. 

III. DESIGN FLOW AND TOOLS 

Fig. 3 depicts the main design steps and tools. The first 
phase, functional verification, is done on a PC using ready-
made make for Linux GCC compiler. The next step is 
profiling for early performance estimation, in which we use 
Gprof, gprof2dot, and Graphwitz. Potential functions for HW 
acceleration are selected by examining the Gprof results. 

According to our profiling with Cactus 1080p test 
sequence, the most time-consuming encoding functions are 
intra prediction, quantization, dst/dct, inverse dst/dct, and 
dequantization, whose respective shares of the encoding time 
are 67,74%, 8,54%, 4,69%, 3,78%, and 0,95%. Furthermore 
in Kvazaar intra prediction (search_intra_rough) the most 
time consuming function is intra_get angular with 35,75% of 
whole encoding process.  

Search_intra_rough function calls intra_get_pred 
function to calculate the prediction for all 35 modes, then 
calculates the Sum of Absolute Difference (SAD) for all these 
modes, and finally returns the costs for all modes through a 
pointer passed to the function (Fig. 2). These functions are 
the most potential candidates for HW acceleration.  

Get_predictors
Candidate_modes;
above_cu; left_cu;

Search_cu
depth; x; y;
pos[3..0];

Start

pos[depth]==0
----------------------
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Fig. 2 Kvazaar HEVC intra encoder modelled as a state machine.  

Table 1 Kvazaar HEVC coding parameters used in this work. 

Feature Kvazaar HEVC intra encoder 

Profile Main 

Internal bit depth, color format 8, 4:2:0 

Coding modes Intra 

Sizes of luma coding blocks 64×64, 32×32, 16×16, 8×8 

Sizes of luma transform blocks 32×32, 16×16, 8×8, 4×4 

Sizes of luma prediction blocks 64x64, 32×32, 16×16, 8×8, 4×4 

Intra prediction modes DC, planar, 33 angular 

Mode decision metric SAD 

RDO Disabled 

RDOQ Disabled 

Transform Integer DCT (integer DST for luma 4×4)  

4x4 transform skip Enabled 

Loop filtering DF, SAO 



 

 

To implement intra predictions and SAD calculations on 
HW, we need to modify search_intra_rough to transfer data 
to and from the HW accelerator. This has to be done with 
minimal changes to the original Kvazaar code to maintain 
good portability. 

A. High-level synthesis for estimation 

Kvazaar is primarily developed for general-purpose 
processors, so inputting Kvazaar C code as such to Catapult-
C [3] HLS would result in poor area and performance results. 
However, it is reasonable to utilize HLS of single functions 
for early area estimates, and use that information to partition 
Kvazaar for HW/SW implementations. 

Catapult-C offers good support for interfacing SW and 
HW. To prepare a single C function for HLS, the input 
arguments and return values are replaced by explicit 
communication channels. On the other hand, pointer data can 
be retained in the SW code and the actual memory region can 
be accessed by a HW module. Based on Gprof profiling 
results and HLS trials of Kvazaar functions, SystemC models 
are created for design space exploration and HW/SW 
partitioning.  

B. Untimed SystemC modeling 

 The next design step is separation of communication and 
computation in Kvazaar. The work is started with untimed 
SystemC model in which the intra prediction functions are 

divided into two main modules (kvazaar_core and 
kvazaar_ip_sub) as depicted in Fig. 4. We separated only the 
neeededdata used by the HW accelerator from the PC 
friendly data structure to minimize the data transfers.  

 At this point, a HW abstraction layer is prepared 
between Kvazaar and the SystemC modules for later 
implementation models. The Kvazaar main function is called 
in a SystemC thread, and interaction with other SystemC 
modules occurs through class member functions called 
mmap, ioctl, read, and write. By using these functions, 
moving from the SystemC model to C with Linux drivers is 
possible without remarkable modifications to the Kvazaar 
code. 

The HW accelerator (kvazaar_ip_sub) consists of four 
threads. The control thread waits until data is valid and then 
starts the prediction threads angular, dc, and planar which 
have the same implementations as in Kvazaar. Each 
prediction thread- calculates the prediction- and the 
corresponding SAD for it after which the control thread sorts 
the results and returns the best one to the Kvazaar module. 
Data is passed between Kvazaar module and the HW 
accelerator using TLM-2.0 transaction level modeling.  

C. Timed SystemC modeling 

The untimed model proved that the functionality did not 
change after separation of communication and introducing 
the hardware abstraction layer (HAL). The next step is to 
create a timed SystemC model to explore parallelization of 
the HW model. This is carried out by re-fining 
kvazaar_ip_sub, adding more modules, and by leaving the 
kvazaar_core intact.  

Actual functions calculating intra prediction pixels in 
Kvazaar are divided into intra_get_dc, intra_get_planar and 
intra_get_angular. In the untimed model, we created 
different processes for those, but still executed all 33 angular 
modes sequentially as in the original Kvazaar. However, 
none of the 35 intra prediction modes have data 
dependencies and can run in parallel. We also further divided 
the intra_get_angular to three separate functions 
get_ang_pos, get_ang_neg, and get_ang_zero to remove 
overlapping computation. This decision was based on 
Catapult-C HLS trials and area results. 

The complete timed SystemC model is depicted in Fig. 5. 
It includes reference pixel filtering in ip_ctrl, all 35 modes 
predicted in parallel with get blocks, and SAD for all modes 
in sad_parallel. The kvazaar_ip_sub is now different 
compared to the untimed model, also the naming for the IP  
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Fig. 3 HLS-based design flow for HEVC on SoC-FPGA 

 

Fig. 4 Untimed SystemC model of Kvazaar. 



 

 

ACC blocks has been changed to differ from original 
Kvazaar functions. In the untimed model, kvazaar_ip_sub 
did the intra prediction, but it is now substituted by a block 
that has the same interface to the kvazaar_core as before but 
is used as an abstraction between the IP ACC blocks and 
TLM2.0 transactions. SystemC test benches are created for 
all intra prediction SystemC modules and a system test for 
the full model.  

D. Platform modeling and performance estimation 

The next step is the FPGA platform modeling with 
measured benchmark values. This is used to annotate the 
timed SystemC model for more accurate performance 
estimation results. Benchmarking programs were written for 
Cyclone V to measure memory bandwidths and latency 
between HPS and the FPGA. In addition, we measured the 
performance of Kvazaar on ARM with Linux to get realistic 
annotations to the timed SystemC model. We compiled 
Kvazaar using the same makefile we used to compile it for 
Linux PC, only changing the compiler to ARMGCC. 

Time consumption estimates of different functions used 
SystemC function wait(), which suspends the thread or 
clocked thread process instance from which it is called. This 
turned out to increase the simulation time 15x in some cases. 
We solved this by using nanosecond counters for the 
functions, and using wait() only in the timed HW model. 

The timed SystemC model was annotated with the 
measured values from Kvazaar executed on ARM without 

any HW acceleration. We used the frame rate got from ARM 
and the distribution of time got from Gprof. In the non-HW 
accelerated SystemC model, the time usage of the 
intra_rough_search is adjusted to match to the measured.  

In the HW accelerated version, the time used for 
intra_rough_search is the clock accurate simulation time of 
the SystemC hardware model. Other functions run on ARM 
stay the same, thus giving the frame rate improvement. The 
simulation model could be easily modified for different 
FPGA boards by changing the benchmarked or estimated 
values. 

E. Implementation 

Next, we implemented the HW for our encoder. 
Generating the RTL for the HW accelerator only involves 
creating the top-level function required by Catapult-C and 
modifying the SystemC code to match Catapult-C code style. 
This phase could be omitted if there were a license for 
SystemC synthesis in Catapult-C. Since the created Kvazaar 
model in SystemC is close to the C in Catapult-C- it was 
very easy to change between the two without changes in 
functionality. Changes included differences in defining ports, 
writing to ports or Catapult-C channels, wait() calls removed 
and bit accurate types sc_int changed to ac_int. All of that 
could be automated. 

Catapult-C generates Verilog code, which was 
synthesized using Precision that generated netlist. The rest of 
the design flow follows a conventional SoC-FPGA 
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Fig. 5 Timed SystemC model of Kvazaar. 



 

 

development project. Qsys was used to include hard 
processor system (HPS) and components connected to the 
AXI3 bus, and Quartus to assemble HLS generated parts and 
library components. A ready-made Linux image was utilized 
without re-building, because the generated HW accelerator 
uses a standard HPS to FPGA interface.  

IV. HW ARCHITECTURE 

The final HW architecture on SoC-FPGA is depicted in 
Fig. 6. It consists of the fixed HPS with ARM cores, ready-
made Terasic camera subsystem with our own modifications, 
the HLS generated HW accelerator, and our custom interface 
blocks for DMA and configuration.  

A. HPS/FPGA interface 

The HPS has two ways to interface with the FPGA. 
Shared AMBA3 (AXI) interconnection is suitable for small 
data amounts like signaling. The second way is to use multi-
port DDR SDRAM controller and off-chip DDR3 memory. 

An important issue is to use non-cached memory in ARM 
and Linux to ensure data coherency between HW/SW. This 
way, we can use data through the original memory pointers 
in Kvazaar source code by mapping the memory to a 
physical location of our choosing. Transferring data to the 

HW accelerator only requires that the DMA is configured to 
read the right amount of data from DDR3. DMA is 
synthesized on FPGA and connected to the memory 
controller through the AXI bus. 

 HPS has fixed base addresses for generic interfaces for 
FPGA. Each IP-block using them gets address offset on top 
of the base. The resulting physical FPGA addresses are 
above the reserved Linux memory space in DDR3, which 
ensures Linux is not interfering with data. However, physical 
address is mapped to a Linux virtual address by a driver 
calling mem_map. This way, the Linux Device Tree is not 
needed to re-create every time the FPGA logic is modified.  

V. SW ARCHITECTURE 

CycloneV boots by first starting the HPS on boot ROM. 
It reads a preloader from the SD card that configures the 
FPGA part and starts the U-boot bootloader, which in turn 
starts Linux OS. The Linux image is built using Yocto 
project, in which design specific Linux Device Tree Source 
is obtained from the handoff files from Quartus. In our case, 
the interface between HPS and FPGA remains the same 
(FPGA bus base addresses are intact) and there is no need to 
rebuild Linux after redesigning the HW accelerator part (Fig. 
6). 
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Fig. 6. HEVC intra encoder architecture on CycloneV SoC-FPGA. 



 

 

A. HW abstraction 

We use run time loadable kernel driver modules for the 
HW abstraction. Two drivers are needed for FPGA: The 
camera and the Kvazaar HW accelerator (Fig. 6). Both 
consist mostly of functions mapped to system calls (SCs), 
and have an initialization and a clean up call for loading and 
removing the kernel module. Both do memory mapping and 
access HW via such memory regions. Both include about 1k 
LOC. For debugging, Altera Signal Tap was used to see how 
the interaction functioned from the HW side. 

The kernel modules are used in SW via file descriptors 
given as a parameter to system calls, such as open() and 
ioctl(). The other parameters are predefined when designing 
and implementing the driver. 

The drivers implement a function for each supported 
system call. Most important is mmap(), which maps a region 
of physical memory for the application utilizing the driver. 
This allows the application to access data directly in the 
DDR memory. This saves CPU time, as the alternative 
would be using a driver to copy data to kernel space, and 
then copy it again to the user space. Within the kernel 
module, remap_pfn_range is called to execute the mapping. 
ACU was not used, because we did not want to affect the L2 
cache, and to get parallel access to the memory controller. 

The memory mapping is applied only to large transfers 
such as pixel data, while ioctl is used for configuration and 
control signaling. Both may require some HW specific 
handling, such as acknowledging that data is read. This is 
done by an ioctl call before or after accessing a mapped 
region. The regions used for signaling are mapped for the 
kernel module by calling ioremap_nocache.  

For both mapping types, the physical HW specific 
addresses are defined in the kernel module. This way the 
application remains fully portable. An important issue is to 
mark the mapped regions non-cached. The transfers between 
HW/SW fail if the data is not truly in DDR at all times. 

B. HW/SW interaction 

Fig. 7 illustrates the message sequence chart of the 
complete system from camera to ethernet. Kvazaar supports 
multi-threading, and there can be multiple instances of the 
HW accelerator. For clarity, the threads are omitted and only 
one vertical line is displayed for each instance. On the top of 
the chart, the blue boxes are HW components and green are 
SW. 

The major components are Camera User, Kvazaar, IP 
Acc and Stream server. The rest are mostly used for transfers 
between other components. DDR is used for large transfers 
and on-chip memory and parallel io (PIO) are used for 
smaller signals and configuration data. DMA modules are 
used to control the transfers using DDR. Software accesses 
the HW via drivers.  

The execution sequence begins with initialization. 
System calls are used for user space software to access the 
kernel module drivers. Furthermore, Camera User, Kvazaar, 
and the Stream server are configurable with command line 
parameters. 

The camera feeds frames simultaneously for both LCD 
controller in RGB format and YUV format for the rest. 
Kvazaar expects 4:2:0 YUV, which is not HW accelerated 
but the Camera User must convert each frame before passing 
it to stdout. This is currently a known bottleneck with larger 
resolutions. The camera operates in a continuous mode, 
feeding frames as fast as it can. Also an interrupt driven 
mode is supported (not shown). 

Kvazaar reads a frame from stdin. For each LCU (Large 
Coding Unit), the HW accelerator is used to compute its 
SAD values. Each LCU is configured by sending the original 
block to the accelerator. The original block is first written to 
the HPS DDR and the Original block is signaled the address 
and length of the block in the DDR. After that, DMA 
proceeds to read the original block and pass it to the 
accelerator. 

The LCU contains multiple CUs. Each contains two 
unfiltered blocks, which are passed to the accelerator. 
However, each of these is preceded by additional 
configuration data passed directly to the accelerator, saved 
for a bridge between it and the AXI bus channel. For each 
LCU, a SAD value is computed in the accelerator. When 
done, the values are passed via on-chip memory. The driver 
polls the HW for a signal notifying that the values are 
available. The system also supports interrupts. After SADs 
are passed to Kvazaar, it proceeds with encoding. 

Output of Kvazaar in this system is passed via stdio to a 
streaming server application, which sends it over UDP to a 
stream client. A standard PC and Classic Media Player is 
used to receive and decode the video (not shown in chart). 

VI. EVALUATION 

 Altogether, Kvazaar 0.24 intra encoder has 19k lines of 
code, 300 functions, and 33 modules. Table 2 shows the lines 

Table 2 Lines of code in SystemC and generated Verilog RTL code. 

Module  SystemC Verilog 

kvazaar_core (untimed/timed) 289 - 

kvazaar_ip_sub (untimed) 357 - 

kvazaar_ip_sub(timed) 369 - 

ip_ctrl 553 9423 

get_planar 170 1824 

get_dc 186 1658 

get_ang_pos 150 1422 

get_ang_zero 149 1301 

get_ang_neg 178 2060 

sad_parallel 404 10976 

Table 3 Cycle counts of intra prediction on FPGA (version 1). 

Search Mode Execution count HW cycles/mode Total cycles 

4 74 074 159 11 777 766 

8 27 568 243 6 699 024 

16 7876 503 3 961 628 

32 1980 1403 2 777 940 

Total 111 498  25 216 358 

Table 4 Cycle counts of intra prediction on FPGA (version 2). 

Search Mode Execution count HW cycles/mode Total cycles 

4 74 074 110 8 148 140 

8 27 568 159 4 383 312 

16 7876 300 2 362 800 

32 1980 776 1 536 480 

Total 111 498  16 430 732 



 

 

of handwritten SystemC code and the lines of RTL Verilog 
code generated by Catapult-C for the implemented modules. 
The rest of Kvazaar functions stay unchanged so they are 
excluded.  

The untimed and timed SystemC models use the same 

kvazaar_core module, but the kvazaar_ip_sub modules have 

different timing abstractions. The timed modules include 

Kvazaar source code algorithms as such, only major 

difference being the cycle accurate interfaces between the 

blocks. 

Changes in Kvazaar C source code were transferred to 

the HW implementation with only minor effort. For 

example, reorganizing the DC filtering in Kvazaar from 

reconstruction to be also part of the intra prediction HW 

took about 4 hours. To create a single DCT or a quantization 

 

Fig. 7. HEVC intra encoder HW/SW message sequence chart. 



 

 

accelerator is estimated to take less than a day for the first 

implementation and another day for speed and area 

optimizations. 

A. Intra prediction performance 

Tables 3 and 4 report the cycle counts for two different 
versions of the implemented intra prediction on FPGA. The 
test sequence is Cactus 1920×1080. 

In version 1, one pixel is predicted at a time. The HW 
accelerator calculates intra predictions for all prediction 
modes and block sizes, and SAD for every prediction mode. 
The encoding speed of this design is 5.9 fps and the FPGA 
area occupied is 8345 ALMs. 

In version 2, two pixels are predicted simultaneously. 
This changes the 8+2 outputs of GET blocks in Fig. 6 to 
16+2 outputs, increases the area of the GET blocks and SAD 
PARALLEL block.In this case, SAD is calculated for all 
modes two pixels at a time. The encoding speed increased to 
9.1 fps and the area to 10815 ALMs, which is 25.8% of the 
total. CycloneV SX can accommodate two HW accelerators. 
The time to make such a change in the design took only 
about ten hours from C to verified execution on board. 

B. Discussion 

For comparison, the design presented in [9], uses 31.179 
ALUTs (15.589 ALMs) and achieves 17.52 fps. Contrary to 
our design, the presented result does not include SAD 
computation. The similar performance could be achieved 
with our design by, e.g., calculating four pixels at a time, 
decreasing time sending configurations, and sending more 
reference pixels from ip_ctrl to GET blocks at a time (Fig. 
7). More HW acceleration can also be included in the camera 
side, e.g., by formatting raw frames from 4:4:4 to 4:2:0 that 
is inefficient with SW. Furthermore, passing frames via stdio 
from Camera User to Kvazaar involves extra copying in SW. 
As the HPS side limits the performance, more functions 
could be HW accelerated in the remaining available area.  

Based on the annotated SystemC simulations, we can 
estimate the requirements for a Full-HD 30 fps performance. 
According to timed SystemC model, one alternative is to run 
the ARM at 3GHz and the HW accelerator at 500MHz with 
the design version 2. 

Our benchmark measurements for SystemC simulation 
annotations revealed some bottlenecks on the platform. For 
example, having two user space Linux threads reading and 
writing via L3 interconnect (without cache, forced DDR3) 
resulted in 28.81 MiB/s speed. For comparison, the read-
write speed between FPGA on-chip memories is 200 MiB/s 
with the FPGA side AXI bus running at 50MHz. The 
external DDR3 memory speed is dependent on the board 
design and thus out of scope of our research. 

VII. CONCLUSIONS 

We presented the design of a live streaming HEVC intra 
encoder on SoC-FPGA using High-Level Synthesis for HW 
accelerated functions. The design time and flexibility is 
significantly improved over traditional VHDL-based 
implementations. As a rough estimate, the HLS reduces the 
development time from weeks to days, especially for 

changes and modifications in the original source code. Since 
Kvazaar is under intensive development, it is essential to 
have a rapid design flow to carry out the algorithmic changes 
to HW implementations. In addition, fast porting of the 
encoder functionality onto different embedded platforms or 
for different HW/SW partitions is one of our main goals.  

Compared to reported HEVC implementations, our HLS-
based design flow produces comparable performance and 
area for the CycloneV device which has enough capacity for 
two intra search HW accelerators Our future work includes 
an implementation on Altera Arria SoC-FPGAs that can 
accommodate more encoder functionality on HW. 
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ABSTRACT 

 

This paper presents the first known high-level synthesis 

(HLS) implementation of integer discrete cosine transform 

(DCT) and discrete sine transform (DST) for High Efficiency 

Video Coding (HEVC). The proposed approach implements 

these 2-D transforms by two successive 1-D transforms using 

a well-known row-column and Even-Odd decomposition 

techniques. Altogether, the proposed architecture is 

composed of a 4-point DCT/DST unit for the smallest 

transform blocks (TBs), an 8/16/32-point DCT unit for the 
other TBs, and a transpose memory for intermediate results. 

On Arria II FPGA, the low-cost variant of the proposed 

architecture is able to support encoding of 1080p format at 60 

fps and at the cost of 10.0 kALUTs and 216 DSP blocks. The 

respective figures for the proposed high-speed variant are 

2160p at 30 fps with 13.9 kALUTs and 344 DSP blocks. 

These cost-performance characteristics outperform 

respective non-HLS approaches on FPGA.  

 

Index Terms— High Efficiency Video Coding (HEVC), 

Discrete cosine transform (DCT), Discrete sine transform 

(DST), High-level synthesis (HLS), Catapult-C, Field-
programmable gate array (FPGA) 

 

1. INTRODUCTION 

 

The latest video coding standard, High Efficiency Video 

Coding (HEVC) [1], has been developed to meet the 

transmission and storage needs of modern video applications. 

Compared with its predecessor standard AVC [2], HEVC is 

able to halve the bit rate for the same subjective quality, but 

its encoding complexity tends to be at least doubled in 

practical encoders. 
 HEVC adopts the conventional hybrid video coding 

scheme (inter/intra prediction, transform coding, and entropy 

coding) [3] from the prior MPEG/ITU-T video coding 

standards. As a new feature, the coding structure of HEVC 

has been extended from a traditional macroblock concept to 

an analogous block partitioning scheme that supports coding 

tree units (CTUs) of up to 64 × 64 pixels [4].  

This paper focuses on HEVC transform coding for which 

the sizes of transform blocks (TBs) and associated core 

transform matrices can be defined as N × N, where N ϵ {4, 8, 

16, 32}. Extending the sizes of transform matrices from that 

of AVC to N > 8 improves coding gain by around 5-7% but 

it also introduces the majority of complexity overhead in 

HEVC transform coding [5].  

HEVC specifies two-dimensional (2-D) integer discrete 

sine transform (DST) for intra coded luminance TBs of size 

4 × 4 pixels [6] and 2-D integer discrete cosine transform 

(DCT) for all other TBs [7]. Both of these 2-D transforms are 

separable so they can be computed by applying two N-point 

1-D transforms first row-wise and then column-wise [5]. This 

indirect approach is called a row-column decomposition 

technique and it is typically utilized by software [8]-[9] and 
hardware implementations [10]-[16] of HEVC DCT/DST. 

This work focuses on HEVC DCT/DST implementations 

on FPGA. Contrary to previous works [12]-[16], our proposal 

does not use traditional hardware (HW) description 

languages (HDLs), but High-Level Synthesis (HLS) [17] 

which is an emerging approach for raising the abstraction 

level in HW description. HLS is a way of using well-known 

programming languages such as C and C++ to describe the 

designs at behavioral level and automatically generating the 

HDL from it. This way, the code is more readable, design and 

verification times are shorter, and the design reusability is far 

better than with handwritten HDL equivalents. 
To the best of our knowledge, this is the first paper to 

describe an HLS implementation for HEVC DCT/DST. The 

proposed designs include low-cost and high-speed variants of 

the 8/16/32-point DCT unit for N ϵ {8, 16, 32} and a separate 

4-point DCT/DST unit for N = 4. They are all implemented 

on Arria II FPGA using Catapult C [18] HLS tool. 

The rest of this paper is organized as follows. Section 2 

describes the hardware-oriented DCT/DST algorithm 

implemented in this work. Section 3 proposes our HLS 

implementations for low-cost and high-speed DCT/DST 

computation. In Section 4, the proposed HLS 
implementations are compared with handcrafted prior-art. 

Section 5 concludes the paper. 

 

2. 2-D INTEGER DCT/DST ALGORITHMS IN HEVC 

 

In this work, the C implementations of DCT and DST 

algorithms are obtained from the open source Kvazaar HEVC 

encoder [8]. Basically, Kvazaar implements the same 

DCT/DST functionality than HEVC reference encoder (HM) 

[9] but the hardware-oriented C source code of Kvazaar 

provides a better starting point for HLS.  



 

 

2.1 Even-Odd decomposition algorithm  

 

In HEVC encoder, DCT and DST are used to convert spatial-

domain residual blocks into transform-domain coefficient 

matrices. A well-known row-column algorithm [5] executes 

these 2-D transforms with separable 1-D transforms in two 

consecutive stages. An N-point transform is first applied 1) to 

each row of a residual block of size N × N to generate an 

intermediate matrix of size N × N; and then 2) to each column 

of the intermediate matrix to generate a final transform 

coefficient matrix of size N × N. 

The number of arithmetic operations can be further 
reduced by implementing these 1-D transforms with Even-

Odd decomposition algorithm, a.k.a., Partial Butterfly 

algorithm [5]. It decomposes an input and core transform 

matrices of size N × N into two matrices of size N/2 × N/2 

according to even and odd rows/columns, respectively. The 

core transform matrices for each N (CN) are specified in [7]. 

Now, an N-point transform can be computed for even and odd 

cases separately with two N/2-point transforms. 

For a residual vector X = [x(0), x(1), …, x(N-1)], the even 

and odd vectors, E = [e(0), e(1), …, e(N/2-1)] and O = [o(0), 

o(1), …, o(N/2-1)], can be computed as  
 

𝑒(𝑖) = 𝑥(𝑖) + 𝑥(𝑁 − 1 − 𝑖 )    (1) 

𝑜(𝑖) = 𝑥(𝑖) − 𝑥(𝑁 −  1 −  𝑖 )    (2) 

 

where i = 0, 1, …, N/2 - 1. The output vector Y = [y(0), y(1), 

…, y(N-1)] of 1-D transform coefficients could be directly 

obtained by multiplying the vectors E and O by the associated 

transform matrices at this stage. However, the arithmetic 

operations can be further reduced by applying decomposition 

recursively. In this approach, the largest transform matrix 
also embeds the smaller transform matrices. 

Fig. 1 depicts the phases of Even-Odd decomposition for 

N = 32. First, the vectors E and O of size 16 are computed 

according to (1) and (2). The latter is an input to C32 × O 

multiplication and the former is recursively decomposed into 

smaller even and odd vectors as in (1) and (2), i.e., the vector 

E is divided into EE and EO vectors of size 8. The vector EO 

is multiplied by C16 whereas EE is decomposed into EEE and 

EEO vectors of size 4, and EEE to EEEE and EEEO vectors 

of size 2. EEO is multiplied by C8, EEEO by C4/O, and 

EEEE by C4/E. The corresponding structure can be used for 

all N by starting at depth (log2N) - 1. 

 

2.2 Proposed hardware-oriented algorithm optimization  

 

In the case of 8-bit video, the residual vector X contains 

9-bit signed integers for which the original Even-Odd 

decomposition algorithm produces 9 + (log2N + 6) –bit signed 
results [5] without any truncations. Our motivation is to 

optimize the algorithm for 18 × 18 multipliers on Arria II 

FPGA due to which 19-bit (N = 16) and 20-bit (N = 32) odd 

and even values are saturated to 18-bit signed values.  

The impact of this modification was tested with HM 16.12 

using test sequences from HEVC common test conditions 

(classes A-F) [19] and the average BD-rate overhead is 

0.002%. This negligible loss is preferred to using 20 × 20 –

bit multipliers that would increment the number of needed 

DSP blocks fourfold. 

 

3. PROPOSED DCT/DST ARCHITECTURE 

 

The proposed DCT/DST architecture is composed of 1) an 

8/16/32-point DCT unit for TBs of size 8 × 8, 16 × 16, and 

32 × 32; 2) a separate 4-point DCT/DST unit for TBs of size 

4 × 4; and 3) a transpose memory for intermediate results.  

 

3.1 8/16/32-point DCT unit  

 

Fig. 2 shows the block diagram of the 8/16/32-point DCT 

unit. It contains a control block (Ctrl8/16/32), 3-stage pipeline 

for DCT computation, and a transpose memory.  
 A 288-bit input to the Ctrl8/16/32 block is for up to 32 9-bit 

signed residuals. The Ctrl8/16/32 block sign extends each 9-bit 

residual to 16 bits and passes them through the 3-stage DCT 

computation via a 512-bit connection. The mapping of the 

v32[k][j] = c32[k][j] × o[j]

k, j ϵ [0, 15]

v16[k][j] = c16[k][j] × eo[j]

k, j ϵ [0, 7]

v8[k][j] = c8[k][j] × eeo[j] 

k, j ϵ [0, 3]

v4[k][j] = c4/E[k][j] × eeee[j]

v4[k+2][j] = c4/O[k][j] × eeeo[j]

k, j ϵ [0, 1]

y[i] += v32[k][j]

i ϵ [16, 31]; k, j ϵ [0, 15]

y[i] = (y[i] + round) >> shift

y[i] += v16[k][j]

i ϵ [8, 15]; k, j ϵ [0, 7]

y[i] = (y[i] + round) >> shift

y[i] += v8[k][j]

i ϵ [4, 7]; k, j ϵ [0, 3]

y[i] = (y[i] + round) >> shift

y[i] += v4[k][j]

i ϵ [0, 3]; k ϵ [0, 3]; j ϵ [0, 1]

y[i] = (y[i] + round) >> shift
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Figure 1. Even-Odd decomposition algorithm (N = 32). 



 

 

Even-Odd decomposition algorithm to three DCT stages is 

illustrated in Fig. 1. 

The DCT stage 1 performs the recursive Even-Odd 

decomposition for the 16-bit residuals and computes all even 

and odd vectors (E/O, EE/EO, EEE/EEO, and EEEE/ 

EEEO). It is implemented in C code as a recursive template 

function which is synthesized by Catapult-C to an adder tree 
The DCT stage 2 is for multiplication between transform 

matrices and odd vectors (C32 × O, C16 × EO, C8 × EEO, 

C4/O × EEEO, and C4/E × EEEE). On FPGA, this 

functionality is mapped to multipliers of DSP blocks to save 

logic cells. Catapult-C facilitates instantiation of DSP blocks 

in C code by providing a library for DSP blocks as C++ 

templates for different FPGA architectures.  

The DCT stage 3 finalizes the 1-D transform by 

accumulating the individual products of multiplication and 

scales the coefficients to 16 bits.  

The 8/16/32-point DCT unit performs the 2-D DCT in two 
successive passes and the intermediate data is stored in the 

transpose memory. The latency for both passes is 3 cycles 

because of the DCT pipeline. Finally, the 2-D 16-bit 

transform coefficients (tcoeffs) are sent via 512-bit output. 

This work proposes two alternate 8/16/32-point DCT 

units with different parallelization strategies:  

1) A low-cost unit processes N residuals (one row/column of 

a TB) in parallel. In this unit, the residuals enter the DCT 

stage 1 at depth (log2N) - 1. In addition, the DCT stages 2 

and 3 operate at double clock frequency to be able to 

compute the largest TB in two phases with the reduced 

number of DSP blocks. This approach halves the width of 
the largest multiplier array, without increasing latency.  

2) A high-speed unit processes 32 residuals (32/N 

rows/columns of a TB) in parallel so that a constant data 

rate with full hardware utilization is achieved. In this unit, 

the residuals enter the DCT stage 1 at depth 4. In addition, 

all DCT stages operate at the same frequency and the 

DCT stage 2 contains a full-width multiplier array. 

3.2 4-point DCT/DST unit  

 

Fig. 3 depicts a 4-point DCT/DST unit that operates in 

parallel with the 8/16/32-point DCT unit. A 144-bit input to 

the Ctrl4 block accepts a single 4 × 4 residual block at a time. 

The 9-bit residuals are sign extended to 16-bits and passed 

row-wise to the respective four DCT/DST blocks. The 

intermediate matrix is ready in one cycle after which it is sent 

back to the same DCT/DST blocks by picking the 

intermediate values from the registers in a transposed order. 

After these two passes, the unit outputs 16 16-bit coeffs. 

A separate 4-point DCT/DST unit increases the occupied 

resources on FPGA. However, this overhead is compensated 
by better load balancing since the share of 4 × 4 TBs is 

relatively high compared to the other TBs. 

 

3.3 Transpose memory 

 

Fig. 4 depicts the structure of the transpose memory used in 

the 8/16/32-point DCT unit. On FPGA, it is made of 32 dual-

port on-chip memory modules without registers. Each 

memory module has a 512-bit write (N coefficients) and a 16-

bit (1 coefficient) read port. The structure supports block 

transpose for N ϵ {8, 16, 32}.  
The memory utilization of the low-cost 8/16/32-point 

DCT unit depends on N. The intermediate matrix is written to 

the memory modules row by row and the module number is 

incremented from 0 to N accordingly. The right module is 

identified by a one-hot write enable (wen) signal. A matrix is 

read from the memory column by column by accessing a 

single coefficient per each module and incrementing the read 

address (raddr) by one after each read (from 0 to N). 

The high-speed 8/16/32-point DCT unit utilizes the whole 

memory for each N. To enable simultaneous reading of 32/N 

columns of the matrix without any access conflicts, the same 

rows are written to (32/N)2 modules. Let us use N = 8 as an 
example. The first four rows are written in the modules 0-3, 

8-11, 16-19, 24-27 after which the last four rows are written 

to the remaining modules respectively. Eight columns can 

now be read in two cycles by using raddr and offset. 

 

4. PERFORMANCE ANALYSIS 

 

Table 1 reports the cost-performance characteristics of the 

proposed and the most competitive prior-art FPGA 

implementations. The comparison is simplified by deriving 

Dual-port RAM 0

Dual-port RAM 1

Dual-port RAM 31

512 data

16

16

16

offsetwen

. . .

...waddr

data 512 raddr

. . .

 
Figure 4. Block diagram of the transpose memory. 
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Figure 2. Block diagram of the 8/16/32-point DCT unit. 
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Figure 3. Block diagram of the 4-point DCT/DST unit. 

 

 



 

 

normalized performance and cost figures for the 

architectures: sample rate as million tcoeffs processed per 

second (Mtcoeffs/s) and performance-cost ratio as logic cells 

per sample rate (cells/(Mtcoeffs/s)). The works in [12], [13], 

[15] only implement the 1-D transform. For fair comparison, 
their sample rates have been scaled (divided by two) to 

correspond to those of the 2-D transform architectures. 

 

4.1 Proposed architecture 
 

Table 1 tabulates the results for the proposed low-cost and 

high-speed variants of 8/16/32-point DCT units and for the 4-

point DCT/DST unit separately. Altogether, the combined 

resource usage of our proposal is (4.2 + 5.8) kALUTs = 10.0 

kALUTs and 216 DSP blocks in the low-cost case and (8.1 + 

5.8) kALUTs = 13.9 kALUTs and 344 DSP blocks in the 
high-speed case. The low-cost approach uses 28% less 

ALUTs and 37% less DSP blocks than the high-speed one 

which has, on the other hand, almost 2.4× better sample rate. 

The sample rate of our low-cost solution is adequate for 

transform coding of 4:2:0 1080p (1920 × 1080) video at 60 

fps. The speed is computed for the worst case where the 

DCT/DST is needed once for all TBs in a CTU. It is also 

assumed here that there are always residual blocks available 

for the architecture. A practical HEVC intra/inter encoder can 

meet these conditions by coding successive CTUs in parallel 

without rate-distortion optimization. Respectively, the high-

speed case is for 4:2:0 2160p (3840 × 2160) video at 30 fps.  
On FPGA, the functionality of the proposed design was 

validated as a part of Kvazaar HEVC intra encoder. 

 

4.2 Comparison with prior-art 

 

The architecture proposed by Jeske et al. [12] is limited to 

N = 16 whereas the work of Darji et al. [13] supports all TBs 

but results are given for N = 16 only. Hence, the features of 
these two works are not directly comparable with our 

proposal. Furthermore, Zhao et al. [14] support all TB sizes 

but with non-competitive cost-performance figures.  

The remaining approaches make also use of DSP blocks 

whose impact on the overall logic cell count is taken into 

account in Table 2. For the proposed designs, the total cell 

count is obtained by synthesizing them without the DSP 

blocks. The same cost per DSP block (72.5 ALUTs) is used 

when estimating the respective count for the related works. 

The fastest prior-art solution is presented by 

Arayacheeppreecha et al. [15] whose overall cell count is also 

the smallest. However, including the missing DST unit and 
transpose memory would add overhead in their cost-

performance figures. Furthermore, the cell counts of our both 

architectures are smaller if DSP blocks are available. Our 

high-speed architecture is also almost 1.5× faster.  

Pastuszak et al. [16] present an approach similar to ours 

by implementing separate units for N = 4 and N ϵ {8, 16, 32}. 

However, our low-cost architecture is slightly faster and 

consumes still 14% less resources. Our high speed approach 

needs around 31% more resources but is around 2.4× faster. 

 

5. CONCLUSIONS 
 

This paper presented the first known HLS implementation for 

HEVC 2-D DCT/DST on FPGA. The presented architecture 

implements a hardware-oriented even-odd decomposition 

algorithm whose C code is synthesized to HDL with HLS. A 

low-cost variant of the architecture is able to support 1080p 

video up to 60 fps and a high-speed variant 2160p video up 

to 30 fps. HLS reduces design and verification times over 

traditional handwritten approaches. This work shows that 

these benefits do not come at the cost of implementation 

overhead but our HLS solution outperforms the prior-art 

approaches in terms of performance and cost. 
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Table 1. Comparison of the proposed and related work. 

 

Architecture Transform N FPGA DSPs Freq. Mtcoeffs/s Cells/(Mtcoeffs/s)

Proposed (low-cost) 2-D DCT 8/16/32 Arria II 4 263 ALUTs 216 100 MHz 515 8.3

Proposed (high-speed) 2-D DCT 8/16/32 Arria II 8 114 ALUTs 344 160 MHz 1 224 6.6

Proposed (4×4) 2-D DCT/DST 4 Arria II 5 775 ALUTs 0 160 MHz 1 280 4.5

Jeske et al. [12] 1-D DCT 16 Stratix III 5 168 ALUTs 0 88 MHz *701 7.4

Darji et al. [13] 1-D DCT 16 Spartan 3E 3 419 LEs 0 48 MHz *384 **7.1

Zhao et al. [14] 2-D DCT 4/8/16/32 Cyclone IV 40 541 LEs 0 125 MHz 238 **136.3

Arayacheeppreecha et al. [15] 1-D DCT 4/8/16/32 Spartan 3A 15 677 LEs 77 205 MHz *820 **15.3

Pastuszak et al. [16] 2-D DCT 8/16/32 Arria II 6 928 ALUTs 256 100 MHz 512 13.5

Pastuszak et al. [16] 2-D DCT/DST 4 Arria II 4 256 ALUTs 0 100 MHz 400 10.6

*Scaled sample rate (divided by two) **1.25 × LE  = ALUT

Logic cells

Table 2. Logic cells (DSP blocks replaced by logic). 

 

Architecture Cells w/o DSPs Cells/(Mtcoeffs/s)

Proposed (low-cost) 25 698 36.3

Proposed (high-speed) 38 829 23.0

Arayacheeppreecha et al. [15] 18 124 22.1

Pastuszak et al. [16] 29 744 42.3
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Abstract— This paper presents efficient inverse discrete cosine 

transform (IDCT) and inverse discrete sine transform (IDST) 

implementations for High Efficiency Video Coding (HEVC). The 

proposal makes use of high-level synthesis (HLS) to implement a 

complete HEVC 2-D IDCT/IDST architecture directly from the C 

code of a well-known Even-Odd decomposition algorithm. The 

final architecture includes a 4-point IDCT/IDST unit for the 

smallest transform blocks (TB), an 8/16/32-point IDCT unit for the 

other TBs, and a transpose memory for intermediate results. On 

Arria II FPGA, it supports real-time (60 fps) HEVC decoding of 

up to 2160p format with 12.4 kALUTs and 344 DSP blocks. 

Compared with the other existing HLS approach, the proposed 

solution is almost 5 times faster and is able to utilize available 

FPGA resources better.  

Keywords— High Efficiency Video Coding (HEVC); Inverse 

discrete cosine transform (DCT); Inverse discrete sine transform 

(DST); High-level synthesis (HLS); Field-programmable gate array 

(FPGA) 

I.  INTRODUCTION 

High Efficiency Video Coding (HEVC/H.265) [1] is the 
newest international video coding standard published as twin 
text by ITU, ISO, and IEC as ITU-T H.265 | ISO/IEC 23008-2. 
It has been developed to address the increasing transmission and 
storage needs of modern video applications. HEVC is able to 
reduce the bit rate by almost 40% over the current mainstream 
standard AVC [2] for the same objective quality, but the 
respective encoding and decoding complexities tend to be at 
least 1.5 times higher [3]. The main reason for HEVC coding 
gain and complexity increase is a new HEVC coding structure 
that extends a traditional macroblock concept to an analogous 
block partitioning scheme with coding tree units (CTUs) of up 
to 64 × 64 pixels. 

This paper addresses HEVC transform coding [4] for which 
the sizes of transform blocks (TBs) and associated core 
transform matrices [5] can be defined as N × N, where N ϵ {4, 8, 
16, 32}. Increasing the sizes of transform matrices from that of 
AVC to N > 8 improves rate-distortion (RD) performance by 
around 5-7% but it also introduces the majority of complexity 
overhead in HEVC transform coding [4].  

HEVC standard specifies two-dimensional (2-D) integer 
inverse discrete sine transform (IDST) for intra coded luminance 
TBs of size 4 × 4 pixels and 2-D integer inverse discrete cosine 
transform (IDCT) for all other TBs [1]. Both of these separable 

2-D transforms can be computed by two successive N-point 1-D 
transforms, first column-wise and then row-wise [5]. This 
indirect approach is called row-column decomposition and it is 
a widely used technique in software [6]-[7] and hardware 
implementations [8]-[11] of HEVC IDCT/IDST.  

 This work deals with field-programmable gate array 
(FPGA) implementations of HEVC IDCT/IDST architectures. 
However, our design is not written in traditional hardware (HW) 
description languages (HDLs), but the abstraction level in HW 
description is raised by High-Level Synthesis (HLS) [12]. HLS 
tools support well-known programming languages such as C and 
C++ in design description from which they can automatically 
generate the HDL. This approach makes the code more readable, 
shortens design and verification times, and increases the design 
reusability over those of handwritten HDL equivalents.  

 In our recent work [13], we proposed to use HLS for HEVC 
DCT/DST. This work utilizes the same HLS flow than in [13] 
and applies it to IDCT and IDST algorithms. The created 2-D 
IDCT/IDST architecture includes an 8/16/32-point IDCT unit 
for N ϵ {8, 16, 32}, a separate 4-point IDCT/IDST unit for N = 
4, and a transpose memory for intermediate results. The 
architecture is implemented on Arria II FPGA using Catapult C 
[14] HLS tool. For the time being, only a single HLS 
implementation has been presented for HEVC IDCT [8] and 
none for HEVC IDST. Thus, this paper presents the first HLS 
implementation for a complete HEVC 2-D IDCT/IDST. 

The remainder of the paper is organized as follows. Section 
2 describes the adopted hardware-oriented IDCT and IDST 
algorithms. Section 3 proposes our HLS implementation for 
HEVC 2-D IDCT/IDST. In Section 4, performance 
characteristics of our proposal are reported and compared with 
the prior-art. Section 5 concludes the paper.  

II. 2-D INTEGER IDCT/IDST ALGORITHMS IN HEVC 

In this work, the C implementations of IDCT and IDST 
algorithms are taken from the open-source Kvazaar HEVC 
encoder [6]. Basically, Kvazaar implements the same 
IDCT/IDST functionality than HEVC reference encoder (HM) 
[7] but the hardware-oriented C source code of Kvazaar provides 
a better starting point for HLS. 



 

 

A. Even-Odd decomposition algorithm 

In HEVC codec, IDCT and IDST are used to convert 
transform-domain coefficient matrices back into spatial-domain 
residual blocks. A well-known row-column algorithm [4] 
executes these 2-D inverse transforms with separable 1-D 
inverse transforms in two consecutive stages. An N-point 
inverse transform is first applied 1) to each column of a 
transform-domain coefficient matrix of size N × N to generate 
an intermediate matrix of size N × N; and then 2) to each row of 
the intermediate matrix to generate a final spatial-domain 
residual block of size N × N. 

The number of arithmetic operations can be further reduced 
by implementing these 1-D inverse transforms with Even-Odd 
decomposition algorithm, a.k.a., Partial Butterfly algorithm [5]. 
It decomposes an input and core transform matrices of size N × 
N into two matrices of size N/2 × N/2 according to even and odd 
columns/rows, respectively. The core transform matrices for 
each N (CN) are specified in [5]. Now, an N-point inverse 
transform can be computed with two N/2-point transforms so 
that the matrix multiplication is done separately for even and odd 
cases after which the result is yielded with basic add and subtract 
operations. The respective decomposition can be applied 
recursively down to N = 4 to reduce arithmetic operations 
further. In this approach, the largest transform matrix also 
embeds the smaller transform matrices. 

B. Example: 32-point IDCT 

Fig. 1 depicts the Even-Odd decomposition of the 1-D 
inverse transform for N = 32. The transform coefficients of the 
input vector Y = [y(0), y(1), …, y(31)] are recursively 
decomposed into five parts which can be multiplied in parallel 
by transform matrices as shown by (1), (2), (3), and (4) in Fig. 
1. That is, {y(8), y(24)} are multiplied by C4/O, {y(0), y(16)} by 
C4/E, {y(4), y(12), y(20), y(28)} by C8, {y(2), y(6), … y(30)} by 
C16, and {y(1), y(3),…y(31)} by C32 to yield 2-point vectors 
EEEO and EEEE, a 4-point vector EEO, an 8-point vector EO, 
and a 16-point vector O, respectively. 

In the next stage, a 4-point vector EEE is computed from the 
vectors EEEE and EEEO with add and subtract operations as 
in (5). Correspondingly, an 8-point vector EE is derived from 

the vectors EEE and EEO as in (6), a 16-point vector E from 
the vectors EE and EO as in (7), and finally a 32-point vector V 
from the vectors E and O as in (8). The residual output vector X 
= [x(0), x(1), …, x(31)] is then formed by scaling the vector V. 
The scaling factor depends on the transform stage (column or 
row) and on the video bit depth (8 bits in our case) [5].  

III. PROPOSED IDCT/IDST ARCHITECTURE 

 The proposed IDCT/IDST architecture is composed of 1) an 
8/16/32-point IDCT unit for TBs of size 8 × 8, 16 × 16, and 32 
× 32; 2) a transpose memory for intermediate results; and 3) a 
separate 4-point IDCT/IDST unit for TBs of size 4 × 4. 

A. 8/16/32-point IDCT unit 

 Fig. 2 depicts a block diagram of the 8/16/32-point IDCT 
unit. It can be divided into three parts: 1) a control block 
(Ctrl8/16/32); 2) a 3-state IDCT computation pipeline; and 3) a 
transpose memory.  

 The Ctrl8/16/32 block has a 512-bit input for 32 16-bit signed 
transform coefficients (tcoeffs). It extends the coefficients with 
configuration bits and passes them to the IDCT computation. 
The configuration bits are used to define the block size and the 
scaling factor. After the first pass, the Ctrl8/16/32 block extends 
the transposed results with new configuration bits and sends 
them back to the IDCT computation. 

 The IDCT stage 1 performs multiplications between the 
transform matrices (C32, C16, C8, C4/O, and C4/E) and input (Y). 
To save logic cells on an FPGA, multiplications are mapped to 
DSP blocks. Catapult-C facilitates instantiation of DSP blocks 
in C code by providing a library for DSP blocks as C++ 
templates for different FPGA architectures. 

 The IDCT stage 2 includes three addition/subtraction levels 
to compose the final even vector (E) from the decomposed even 
and odd vectors (EEEO, EEEE, EEO, EEE, EO, and EE). Fig. 
1 depicts this for N = 32 in (5) – (7). For N < 32, all these levels 
are used to calculate 32/N rows or columns at a time. For 
example, for N = 8, four rows or columns are decomposed into 
the EEEO, EEEE, EEO, EO, and O vectors in parallel to take 
full advantage of the available adding and subtracting levels.  

 

o[k] += c32[k][j] × x[i]

i = 2×k+1; k, j ϵ [0, 15]

eo[k] += c16[k][j] × x[i]

i = 4×k+2; k, j ϵ [0, 7]

eeo[k] += c8[k][j] × x[i]

i = 8×k+4; k, j ϵ [0, 3]

eeeo[k] += c4/O[k][j] × x[i+8]

eeee[k] += c4/E[k][j] × x[i]

i  = 16×k; k, j ϵ [0, 1]

OEOEEOEEEO

EEEE

eee[i] = eeee[i] + eeeo[i]

eee[i+2] = eeee[1-i] - eeeo[1-i]

i ϵ [0, 1]

ee[i] = eee[i] + eeo[i]      ee[i+4] = eee[3-k] - eeo[3-i]      i ϵ [0, 3]

e[i] = ee[i] + eo[i] e[i+8] = ee[7-k] - eo[7-i] i ϵ [0, 7]

v[i] = e[i] + o[i] v[i+16] = e[15-k] - o[15-i] i ϵ [0, 15]

EEE

E

EE

V

y[i] = (v[i] + round) >> shift i ϵ [0, 31]
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Y

(1) (2) (3) (4)
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Fig. 1. Even-Odd decomposition algorithm for IDCT (N = 32). 

 



 

 

 The IDCT stage 3 finalizes the 1-D transform by combining 
the E and O vectors and by scaling the final result (V) to 16-bit 
signed residuals (X). Before outputting the final residual vector, 
it is permuted back to its original order.  

 The 8/16/32-point IDCT unit performs the 2-D IDCT in two 
successive passes and the intermediate data is stored in the 
transpose memory. 32 coefficients (32/N rows or columns of a 
TB) are processed in parallel to ensure a more constant hardware 
utilization. The latency for both passes is three clock cycles. 
Finally, the 32 16-bit residuals are sent via the 512-bit output. 
The same output is connected to the transpose memory.  

B. Transpose memory 

 Fig. 2 also shows the structure of the transpose memory used 
with the 8/16/32-point IDCT unit. On FPGA, it is made of 32 
dual-port on-chip memory modules without registers. Each 
memory module has a 512-bit write (32 coefficients) and a 16-
bit (1 coefficient) read port. The structure supports a block 
transpose for N ϵ {8, 16, 32}.  

 The 8/16/32-point IDCT unit utilizes the whole memory for 
each N. To enable simultaneous reading of 32/N rows of the 
matrix without any access conflicts, the same columns of the 
matrix are written to (32/N)2 modules. The right modules are 
identified by a write enable (wen) signal. Let us use N = 8 as an 
example. The first four columns are written in the modules 0-3, 
8-11, 16-19, 24-27 after which the last four columns are written 
to the remaining modules respectively. Eight rows can now be 
read in two clock cycles by using raddr and offset. 

C. 4-point IDCT/IDST unit 

 Fig. 3 depicts a 4-point IDCT/IDST unit that can operate in 
parallel with the 8/16/32-point IDCT unit. The 256-bit input to  
the Ctrl4 block accepts one 4 × 4 coefficient block at a time. The 
16 16-bit coefficients are passed column-wise to the respective 
four IDCT/IDST blocks. The intermediate matrix is ready in one 
clock cycle after which it is sent back to the same IDCT/IDST 
blocks by picking the intermediate values from the registers in a 
transposed order. After these two passes, the unit outputs 16 16-
bit residuals. 

 A separate 4-point IDCT/IDST unit increases the occupied 
resources on FPGA. However, this overhead is compensated by 
better load balancing since the share of 4 × 4 TBs is relatively 
high compared to the other TBs. 

IV. PERFORMANCE ANALYSIS 

 Table 1 reports the cost-performance characteristics of the 
proposed and the most competitive prior-art FPGA 
implementations.  

A. Proposed architecture 

 Table 1 tabulates results for the proposed 8/16/32-point 
IDCT unit and for the 4-point IDCT/IDST unit separately. 
Altogether, the combined resource usage of our proposal is (6.9 
+ 5.6) kALUTs = 12.4 kALUTs and 344 DSP blocks. The total 
cell count rises to 49.9 kALUTs if the DSP blocks are not used. 
It is assumed here that one DSP block (DSP18×18) equals to 109 
ALUTs. This relationship was obtained by synthesizing an 
equivalent DSP functionality using only logic cells. 

 The proposed design is capable of supporting 4:2:0 Ultra HD 
(3840 × 2160) video decoding at 68 frames per second (fps) and 
4:2:0 Ultra HD video encoding at 35 fps. The reported speeds 
are for the worst case scenarios: a decoded bit stream is assumed 
to contain TBs of size 8 × 8 pixels only and an encoder is 
assumed to encode all TBs in a CTU when searching for the best 
block partitioning.  

 The functionality of the proposed design was validated on 
FPGA, as part of Kvazaar HEVC intra encoder. 

B. Comparison with prior-art 

 Kalali et al. [8] present the first HSL implementations for 
HEVC IDCT. Altogether, they proposed three implementations 
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Fig. 2. Block diagram of the pipelined 8/16/32-point IDCT unit and a transpose memory. 
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Fig. 3. Block diagram of the separate 4-point 2-D IDCT/IDST unit. 

 



 

 

done with three different HLS tools. The best performance 
characteristics were obtained with MATLAB Simulink HDL 
Coder. It supports IDCT for all TB sizes but is missing the IDST 
unit. In addition, it is only capable of decoding 1080p video at 
55 fps. Our solution is 3.7 times larger when DSPs are 
normalized to logic cells, but also 5.0 times faster. 

 Pastuszak et al. [9] introduce an approach similar to ours by 
implementing separate units for N = 4 and N ϵ {8, 16, 32}. 
However, our approach is slightly faster and consumes around 
25% less resources when DSPs are normalized to logic cells. 
Our 4-point IDCT/IDST unit, compared with their counterpart, 
consumes 1.6 times more resources, but is three times faster. 

 Kalali et al. [10] also propose a handwritten Verilog RTL 
implementation, that is notably faster but also larger than their 
HLS implementation. Compared with our solution, the cell 
count is much higher as it does not utilize DSP blocks. With 
DSPs normalized to logic cells, our architecture is 1.3 times 
larger, but also 1.4 times faster.  

 Conceição et al. [11] present an implementation that 
supports IDCT for all TB sizes but not IDST. Their 
implementation does not utilize DSP blocks. When DSPs are 
normalized to logic cells, our proposal requires 1.4 times more 
logic cells, but is also 3.4 times faster. 

V. CONCLUSION 

 This paper presented the first complete HLS design for 
HEVC 2-D IDCT/IDST on FPGA. The proposed design 
implements a hardware-oriented Even-Odd decomposition 
algorithm whose C code is directly synthesized to HDL with 
HLS. The architecture supports 2160p video decoding up to 68 
fps at a cost of 12.4 kALUTs and 344 DSP blocks. It is almost 5 
times faster than the existing HLS implementation for IDCT and 
consumes less logic cells on an FPGA due to efficient mapping 
of computation to the available DSPs.  

 Compared with traditional approaches, HLS design 
techniques are known to increase design productivity, code 
readability, and design reusability. The presented results also 
show that our HLS solution is very competitive with the existing 
non-HLS IDCT/IDST solutions in terms of performance and 
cost. Hence, the main conclusion of this paper is that the 
manifold benefits of HLS do not come at the cost of 
implementation overhead.  

 

ACKNOWLEDGMENT 

This work was supported in part by the European Celtic-

Plus Project 4KREPROSYS and Academy of Finland (decision 

number 301820). 

REFERENCES 

[1] High Efficiency Video Coding, document ITU-T Rec. H.265 and 

ISO/IEC 23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013. 

[2] Advanced Video Coding for Generic Audiovisual Services, 

document ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), 

ITU-T and ISO/IEC, Mar. 2009. 

[3] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro, 

“Comparative rate-distortion-complexity analysis of HEVC and 

AVC video codecs,” IEEE Trans. Circuits Syst. Video Technol., 

vol. 22, no. 12 pp. 1885-1898, Dec. 2012. 

[4] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M. 

Sadafale, “Core transform design in the High Efficiency Video 

Coding (HEVC) standard,” IEEE J. Select. Topics Signal 

Process., vol. 7, no. 6, pp. 1029-1041, Dec. 2013. 

[5] A. Fuldseth, G. Bjøntegaard, M. Budagavi, and V. Sze “Core 

transform design for HEVC,” Document JCTVC-G495, Geneva, 

Switzerland, Nov. 2011. 

[6] Kvazaar HEVC encoder [Online]. Available: 

https://github.com/ultravideo/kvazaar 

[7] Joint Collaborative Team on Video Coding Reference Software, 

ver. HM 16.3 [Online]. Available: http://hevc.hhi.fraunhofer.de/ 

[8] E. Kalali and I. Hamzaoglu, “FPGA implementations of HEVC 

inverse DCT using high-level synthesis,” in Proc. Conf. Design 

and Architectures for Signal and Image Processing, Krakow, 

Poland, Sep. 2015. 

[9] G. Pastuszak and A. Abramowski, “Algorithm and architecture 

design of the H.265/HEVC intra encoder,” IEEE Trans. Circuits 

Syst. Video Technol., vol. 26, no. 1, pp. 210-222, Jan. 2016. 

[10] E. Kalali, E. Ozcan, O. M. Yalcinkaya, and I. Hamzaoglu, “A low 

energy HEVC inverse transform hardware,” IEEE Trans. 

Consumer Electron., vol. 60, no. 4, pp. 754-761, Nov. 2014. 

[11] R. Conceição, J. C. de Souza, R. Jeske, M. Porto, B. Zatt, and L. 

Agostini, “Power efficient and high troughtput multi-size IDCT 

targeting UHD HEVC decoders,” in Proc. IEEE Int. Symp. 

Circuits Syst., Melbourne, Australia, Jun. 2014. 

[12] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An 

introduction to high-level synthesis,” IEEE Des. Test. Comput., 

vol. 26, no. 4, pp. 8-17, Jul.-Aug. 2009. 

[13] P. Sjövall, V. Viitamäki, J. Vanne, and T. D. Hämäläinen, “High-

level synthesis implementation of HEVC 2-D DCT/DST on 

FPGA,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal 

Process., New Orleans, Louisiana, USA, Mar. 2017. 

[14] Catapult: Product Family Overview [Online]. Available: 

http://calypto.com/en/products/catapult/overview 
 

TABLE 1. COMPARISON OF THE PROPOSED AND RELATED IDCT/IDST ARCHITECTURES ON FPGA 

  

Architecture HLS Transform N FPGA Logic cells DSPs Cells w/o DSPs Freq. Speed (worst case)

Proposed YES 2-D IDCT 8/16/32 Arria II 6 859 ALUTs 344 44355 ALUTs 150 2160@68fps

Proposed (4x4) YES 2-D IDCT/IDST 4 Arria II 5 559 ALUTs 0 5559 ALUTs 150 2160@96fps

Kalali et al. [8] YES 2-D IDCT 4/8/16/32 Virtex 6 13 669 4-LUTs 0 *13669 ALUTs 110 1080@55fps

Pastuszak et al. [9] NO 2-D IDCT 8/16/32 Arria II 3 079 ALUTs 512 58887 ALUTs 200 2160@64fps

Pastuszak et al. [9] NO 2-D IDCT/IDST 4 Arria II 3 554 ALUTs 0 3554 ALUTs 100 2160@32fps

Kalali et al. [10] NO 2-D IDCT/IDST 4/8/16/32 Virtex 6 38 790 4-LUTs 0 *38790 ALUTs 150 2160@48fps

Conceição et al. [11] NO 2-D IDCT 4/8/16/32 Stratix V 17 340 ALMs 0 **34680 ALUTs 63 2160@20fps

*4-LUT = ALUT **ALM = 2×ALUT
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Abstract—To increase productivity in designing digital

hardware components, high-level synthesis (HLS) is seen as the
next step in raising the design abstraction level. However, the
quality of results (QoR) of HLS tools has tended to be behind those
of manual register-transfer level (RTL) flows. In this paper, we
survey the scientific literature published since 2010 about the QoR
and productivity differences between the HLS and RTL design
flows. Altogether, our survey spans 46 papers and 118 associated
applications. Our results show that on average, the QoR of RTL
flow is still better than that of the state-of-the-art HLS tools.
However, the average development time with HLS tools is only a
third of that of the RTL flow, and a designer obtains over four
times as high productivity with HLS. Based on our findings, we
also present a model case study to sum up the best practices in
comparative studies between HLS and RTL. The outcome of our
case study is also in line with the survey results, as using an HLS
tool is seen to increase the productivity by a factor of six. In
addition, to help close the QoR gap, we present a survey of
literature focused on improving HLS. Our results let us conclude
that HLS is currently a viable option for fast prototyping and for
designs with short time to market.

Index Terms—Electronic design automation (EDA) and
methodology, field programmable gate array (FPGA), hardware
description languages (HDL), high level synthesis (HLS),
reconfigurable logic

I. INTRODUCTION

OR DECADES now, register-transfer level (RTL) has been
the dominant method to describe very large scale

integration (VLSI) systems and their constituent intellectual
property blocks. Whereas the RTL tools have developed only
incrementally, the complexity of the VLSI systems has raised
exponentially, which has made the design and verification
process a bottleneck for productivity [1].

High-level synthesis (HLS) promises to alleviate this
problem by a variety of ways [2]–[5]. In HLS, the application
is described on a behavioral level, omitting implementation
details such as timing and the nature of interface and memory
elements. These details are determined using an HLS tool that
takes the behavioral description as an input. The designer can
select the target technology in the tool and map the interface
and memory variables to specified technology-dependent
elements. The HLS tool then produces an RTL description
based on the target technology and microarchitectural choices.

The promises of HLS are many.

1) Initial design effort is reduced by raising the
abstraction level. The designer can concentrate on
describing the behavior of the system without having
to spend time implementing the microarchitectural
details. Introduction of bugs in the code is also less
likely on a higher level of abstraction.

2) Verification is accelerated. The behavior of the design
can often be verified using software verification tools
that are faster and simpler to use than RTL simulation
tools. Furthermore, the RTL output of the HLS tool
can be verified by using the original behavioral test
bench, as the tool can check that the results of both
models are identical.

3) Design space exploration (DSE) is faster. The
microarchitecture can be explored by making choices
in the HLS tool, which require little or no
modifications to the code. Thus, several
transformations such as pipelining and various loop
unrolling factors can be explored in a matter of hours.
This is a tremendous improvement upon RTL
methodology, where these kind of changes would
require significant modifications to the source code.

4) Targeting new platforms is straightforward. If the
target platform changes, the HLS tool is able to
modify the RTL output accordingly. For example, if
the new platform has a different clock frequency, the
HLS tool reschedules operations according to the new
frequency.

5) HLS is accessible to software engineers. Whereas
RTL design requires knowledge of languages such as
VHDL and Verilog, HLS tools usually use familiar
languages such as C/C++. The HLS tool can take care
of most of the hardware specific implementation
details, so the threshold of software engineers to
tackle hardware projects is greatly reduced. That said,
to obtain optimal results, hardware expertise is still
useful when employing HLS.

Together, these benefits reduce the design and verification
time, push down the development costs, and lower the bar for
tackling hardware projects. Consequently, the time to market is
shortened, and using hardware acceleration on heterogeneous
systems becomes a more attractive option.

The rise of field-programmable gate arrays (FPGAs) is also
an enabling factor for HLS. FPGAs are ideal platforms for HLS
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designs, as they allow quick prototyping, have rapid design
cycle, and are inherently reprogrammable. Modern HLS tools
usually contain a wide library of FPGA technologies for design
targeting.

The history of HLS dates back to the 1970s and 1980s, but it
was not until the turn of the century that it became a viable
option for the industry [2]. One of the reasons for the slow
adoption is that the quality of results (QoR), such as resource
usage and performance, was initially poor compared with the
RTL approach. The QoR has improved with the newest
generation of HLS tools, but the results reported in individual
studies still vary, and it is unclear whether the QoR gap has been
closed yet.

The goal of this paper is to answer this question by a literature
review. We examine 46 recent papers that compare the QoR and
development effort of HLS and RTL approaches for the same
applications. Our work has four main contributions:

1) a comparative analysis of the QoR and design effort of
HLS and RTL reported in scientific articles;

2) a case study presenting the best practices for
comparing HLS and RTL approaches with a test group
that uses both flows to implement a part of a
HEVC/H.265 video encoder;

3) a survey of the literature suggesting research
directions and ways to improve HLS;

4) conclusions on the current state of the art in HLS.
To the best of our knowledge, this is the first comprehensive

quantitative study that uses a wide variety of sources to
compare the QoR and design effort of HLS and RTL flows.
Previous works have instead focused on comparing different
HLS tools to each other [6], [7]. Other papers have provided
insights on how to close the QoR gap against RTL or otherwise
improve HLS tools [5], [8]. A thorough quantitative analysis on
the current state of HLS has been missing, however, which this
paper amends.

The rest of the paper is structured as follows. Section 2
describes our criteria for selecting papers for this study. Section
3 contains a meta-analysis of the reviewed papers, summarizing
what kind of information was reported in them. In Section 4, we
show and analyze the results from the literature study, and
Section 5 describes our test group study with its results. Section
6 reviews papers that propose improvements to HLS, and
finally section 7 concludes the paper with some discussion of

the results.

II. QUALIFYING PAPERS

For this study, we examined papers published in 2010 or later
to get a comprehensive view of the latest HLS works.
Altogether, we found over a thousand candidate papers and
selected those articles for further study whose abstracts stated
that: 1) one or more applications were implemented using HLS;
and 2) the obtained results were compared with equivalent self-
made or referenced RTL applications.

We also required the qualifying papers to list one or more of
the following metrics for both the HLS and RTL versions of the
applications:

1) performance with an application specific metric;
2) execution time and/or latency;
3) maximum achievable clock frequency on target

platform;
4) area on application-specific integrated circuit (ASIC);
5) resource usage on FPGA;
6) power consumption;
7) development time;
8) lines of input source code (LoC).

In total, we found 46 qualifying papers out of which 39 were
from IEEE Xplore, two from Springer Link, one from ACM
Digital Library, two from arXiv.org, one from EBSCOhost, and
one from Science Direct. Basic information on all the reviewed
papers is given in Table IX in the Appendix. As can be seen
from the table, the range of applications is very diverse. This
makes it impractical to analyze the QoR results by the type of
application, which would otherwise give interesting insight on
the strengths and weaknesses of HLS. A qualitative analysis
like that would also benefit from access to the implementations’
source codes, which are seldom available.

Table I shows a breakdown of the number of qualifying
papers published each year. Because the number of papers from
each year is low, it is not feasible to use our data to check for a
possible trend in the QoR of HLS during these years. A longer
year range would also be preferable for that kind of study.

III. META-ANALYSIS

Table II gathers a summary of the metrics of interest and their
frequency of occurrence in the reviewed papers. In general, the
reviewed works have much variance in the reported details
about the experimental setup and results. The table counts only
those papers that report the results in exact terms either in
absolute values or in percentages. Inexact values, such as “the
execution time was less than 100 ms,” were excluded from our
quantitative analysis.

Twenty-two articles report results for more than one
application or experimental setup. In many works, multiple
different applications were implemented, often related to each
other (for example, [9]–[11]). Some authors compared different
HLS tools [12]–[14], whereas others compared various micro-
architectural optimizations, such as loop unrolling and
pipelining [15], [16], or different FPGA chips [17], [18]. The
data set is thus larger than the mere number of qualifying papers

TABLE I
NUMBER OF PAPERS PUBLISHED BY YEAR

Year Papers
2010 4
2011 5
2012 3
2013 8
2014 10
2015 8
2016 8
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would suggest. For brevity, we shall call each of these
individual results applications, regardless of whether they are
based on actual different applications, HLS tools, FPGA chips,
or other variations. The third column of Table II shows the total
number of applications for which the given metric is reported.

Development time is of great interest when comparing the
HLS and RTL methodologies. However, only a third of the
papers report the development time, which can be seen as a flaw
in the articles omitting it. Of the various QoR metrics, FPGA
resource usage is reported more often than the performance
values. Only four papers target ASIC implementation (instead
of FPGA), and thus there is not enough data to compare ASIC
area results. The same is true for power consumption.

Almost all papers report the used HLS tool. The remaining
works give no reason for not revealing the information, but
license agreements may have been the cause. However, even
those articles mention the HLS input language.

Table III shows a summary of the used HLS tools. The
second column tells the number of occurrences of each tool and
the third column their input languages. The table suggests that
Vivado HLS (formerly known as Autopilot) is the most popular
HLS tool, at least in academia. All the other tools gain only
scattered usage. Vivado’s popularity is probably due to Xilinx
being the leading FPGA vendor, whose design suite for FPGAs
includes Vivado HLS. The large number of used HLS tools also
speaks of the relative immaturity of the field.

Of the 46 qualifying works, 39 used self-made RTL
implementations for comparison with HLS and seven cited
RTL results from other research groups. There are additional
papers that would have qualified for this study, but they cite
papers with incompatible RTL implementations, which resulted
in their preclusion. For example, the FPGA chip used for RTL
was from a different family, which prevented fair resource

usage comparison.

IV. COMPARATIVE STUDY RESULTS AND ANALYSIS

A. On the QoR Metrics
The fundamental building block of FPGAs is a configurable

logic block (CLB) or a logic array block (LAB), depending on
the FPGA vendor and device. CLB/LAB consists of a few
logical cells that may be called logic cells (LCs), logic elements
(LEs), or adaptive logic modules (ALMs). These logical cells
are made of look-up tables and flip-flops. The reviewed papers
usually report one of these figures when synthesizing an
application for FPGA. For the purposes of this study, it is
irrelevant which figure was reported, since we are interested in
the ratio of resource usage between HLS and RTL. Thus, we
have grouped all of these resource metrics under the same term
called basic FPGA resources.

FPGAs also contain other resources such as DSP blocks and
on-chip block RAM (BRAM) memories, which cannot be
converted to CLB equivalents without sufficient data from the
FPGA vendors. This would require knowing the exact FPGA
chip type, but only about 60% of the reviewed papers report it,
and the others merely state the used FPGA family. Therefore,
we had no universal way to combine all the resource metrics
into a single resource usage value, which could be compared
across applications. Thus, we discarded this approach and chose
CLBs or its constituents as the basis for resource usage
comparisons.

The reviewed papers also use various different performance
metrics depending on the implemented application. These can
be divided into four categories: 1) performance, 2) execution
time, 3) latency, and 4) maximum frequency. In this context,
performance can be interpreted in several ways depending on

TABLE II
THE METRICS AND THE FREQUENCE OF THEIR OCCURRENCE IN THE REVIEWED PAPERS

Metric
Number of papers

reporting
(percentage of total)

Number of
applications for
which the metric

was reported
HLS tool 42 (91%) -
HLS input language 46 (100%) -
Lines of input code 13 (28%) 36
Development time 15 (33%) 25
Maximum frequency 24 (52%) 74
Latency 10 (22%) 17
Execution time 8 (17%) 14
Performance 15 (33%) 46
FPGA
LUTs/LCs/LEs/Slices

36 (78%) 92

FPGA Flip-flops 23 (50%) 63
FPGA DSP blocks 22 (48%) 50
FPGA BRAM 22 (48%) 55
ASIC area 4 (9%) 8
Power consumption 3 (7%) 7
Total papers 46

TABLE III
HLS TOOL USAGE BY PAPERS

HLS Tool N Tool language
AccelDSP 1 MATLAB
Altera OpenCL 3 OpenCL
Bluespec 2 Bluespec language
C2RTL 1 C
Cadence Stratus 1 C/C++/SystemC
CAPH Toolset 2 CAPH language
Catapult-C 2 C/C++/SystemC
Chisel 2 Scala
Cadence C-to-Silicon 2 C/C++/SystemC
Convey Hybrid-Threading 1 HT language
HCE 2 C
HIPAcc 2 HIPAcc language
Impulse C 1 C
LegUp 3 C
MATLAB Simulink HDL Coder 1 MATLAB functions, Simulink models
Maxeler MaxCompiler 1 Java
ROCCC 1 C
Xilinx System Generator for DSP 2 MATLAB Simulink
Xilinx Vivado HLS/Autopilot 18 C/C++/SystemC
Undisclosed 4 N/A
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the application. For example, for a video encoder, it would
mean frames per second, and for a cryptography module, it
would mean encrypted bits per second. For applications with a
clear start and finish, execution time is often reported, and some
papers report latency, i.e. the number of clock cycles for
processing a sample. The most often reported performance
metric is the maximum frequency for which the application can
be scheduled on the target FPGA.

We wanted to include as many performance metrics as
possible so all of them are used in our study. For papers that
report more than one metric, we prioritize performance over
execution time, execution time over latency, and latency over
maximum frequency. Thus, we use only one of these values per
application rather than try to create an arbitrary aggregate
performance metric. In the figures of the following subsections,
we shall call the selected value just performance. We have also
inverted execution time and latency values in calculations for
the figures so that a larger value is always better. The way to
examine the various data cloud figures in the following
subsections is not to compare individual data points to each
other but to concentrate on the center of gravity and dispersion
of the data.

B. Numerical Analysis
Table IV gathers the numerical aggregate data of our

findings. N denotes the number of applications for which the
corresponding data were reported. The third column reports the
mean of the ratios between HLS and RTL results. For all the
values except DSP blocks and BRAM, we used the geometric
mean rather than the arithmetic one, since the values in each
category can differ by orders of magnitude because of the wide
variety of applications. For DSP blocks and BRAM, the
geometric mean could not be calculated because of the zeros in
the data set, so arithmetic mean was used instead. Bolded mean
values favor HLS while unbolded values favor RTL. The fourth
column shows the geometric standard deviation (GSD). Note
that it is a multiplicative value: The lower bound is obtained by
dividing by the GSD and the upper bound is obtained by
multiplying by the GSD. The last column shows the percentage
of results for which the HLS application performed as well or

better than the corresponding RTL version.
As expected, HLS outperforms RTL in both development

time and lines of source code. The average development time is
only about a third of a corresponding RTL application. We also
examined the HLS to RTL development time ratio as a function
of the absolute development time to see if the scale of the project
had an effect on the ratio, but found no correlation. Thus, it
seems that for both large-scale and small-scale applications the
reduction in development time is the same. On the other hand,
the respective comparison with code size shows that for larger
applications (1,000 LoC or more), HLS code seems to be more
compact compared with RTL code. In fact, in all the cases
where there was more HLS LoC than RTL LoC, the code size
was less than 250 LoC. With smaller code size, non-behavioral
code takes a relatively larger part of the total, which seems to
favor RTL.

In performance and execution time, the HLS design is on
average clearly inferior, but in latency and maximum frequency
the difference is less prominent. The HLS approach also loses
in basic resource usage: On average, HLS uses 41% more basic
FPGA resources than RTL. With BRAM and DSP blocks, the
results are ambivalent. Based on papers, which report the
number of used BRAM blocks, HLS seems to use them more
efficiently, but with papers, which report BRAM usage in
kilobytes, RTL wins. In DSP block usage, HLS and RTL seem
similar.  .

We also examined how the HLS input language affects the
QoR. In [19], the HLS tools are divided into five categories
based on their style of describing the input: hardware
description language (HDL) like frameworks, C based
frameworks, high-level language (HLL) based frameworks
(these are highly abstract, usually object-oriented languages),
model based frameworks (using executable specification, e.g.
NI LabView and Matlab HDL Coder), and CUDA/OpenCL
based frameworks. In our study, we found five applications
implemented with HDL like, 77 with C based, 10 with HLL
based, six with model based, and 11 with CUDA/OpenCL
based frameworks. Since other than C based frameworks
receive only scattered usage, it is not prudent to compare all the
categories with each other. Instead, we compare the QoR of C
based frameworks and all the others. The results are shown in
Table V, where N denotes the number of comparable results. It
seems that C based frameworks produce designs with worse
performance than the other frameworks but save in basic
resource usage. Looking further into the data, we noticed that

TABLE IV
SUMMARY OF THE NUMERICAL DATA FROM THE PAPERS

Metric N
HLS/RTL

mean
Geometric
std. dev.

HLS better or
equal to RTL

Lines of code 36 0.52 2.26 75 %
Development time 25 0.32 2.59 88 %
Performance 46 0.47 5.50 39 %
Execution time 14 1.70 2.21 39 %
Latency 17 1.05 2.07 35 %
Maximum frequency 74 0.88 1.48 42 %
Basic FPGA resources 92 1.41 3.76 33 %
DSP blocks 50 1.11 - 68 %
BRAM blocks 29 0.49 - 45 %
BRAM (kB) 27 1.47 - 33 %
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the CUDA/OpenCL based frameworks were especially
resource consuming (3.56×) and produced the worst
performance (0.56×).

C. Comparisons between Resource Usage and Performance
 To better illustrate the QoR differences, Fig. 1 shows the

relative HLS/RTL performance against the relative HLS/RTL
basic resource usage for each application. Each “X” in the
figure represents a single application. The wider horizontal and
vertical lines denote break-even lines where the performance
and basic resource usage are the same for both HLS and RTL,
respectively. Most of the marks are clustered around the
intersection of the break-even lines, indicating that in the great

majority of cases the performance and basic resource usage
difference between HLS and RTL is relatively small.
Nevertheless, there are more marks towards the right and
bottom of the figure than in the opposite directions, showing
that RTL tends to outmatch HLS in both regards.

Another way to look at the same data is depicted in Fig. 2,
which shows the absolute performance and basic area usage
values for both HLS applications (“+”) and RTL applications
(“x”). The large, partially overlapping symbols show the
centers of gravity based on geometric means for both metrics
correspondingly. The data point clouds are largely overlapping,
and the centers of gravity lie close to each other. Thus, on
average there is no radical difference between the HLS and RTL
QoRs, but RTL fares somewhat better.

We also wanted to see, whether there exists any correlation
between the relative HLS/RTL performance and the absolute
numbers of basic resource usage. That is, does the relative
performance between HLS and RTL designs change as a
function of consumed FPGA resources. Our hypothesis was that
the HLS tools’ ability to optimize data path and control logic
might be more limited with larger applications. The results are
plotted in Fig. 3, which shows that there is no clear correlation,
and indeed, the Pearson correlation coefficient is only 0.10 for
this data set. Thus, the size of the design does not seem to affect
the HLS tools’ ability to optimize performance.

D. Comparisons Based on Design Effort
Fig. 4 shows the HLS/RTL development time ratio for

applications for which the development time was reported. In
all but three cases, the ratio is less than one, and in 72% of cases,
it is less than 0.5. The three applications, where the HLS
development time is larger than that of RTL, are from the same
work [13]. The authors stated that the difference in
development time was due to the time spent to learn to use the
HLS tool and the need to modify the reference C++ source code
to reach the required throughput.

TABLE V
COMPARISON OF QOR BY FRAMEWORK TYPE

N
HLS/RTL

performance
ratio

N
HLS/RTL

Basic resouce usage
ratio

C based framework 100 0.64 71 1.26
Other frameworks 51 0.84 36 1.50

Fig. 1.  Scatter graph of the HLS to RTL ratio between performance
and basic resource usage for different applications.
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Similarly, Fig. 5 depicts the LoC ratio between HLS and RTL
designs. Here, the HLS dominance is less prominent but still
significant. In 75% of cases, the HLS LoC is smaller than RTL
LoC.

We also investigated a possible correlation between the size
of the application in LoC and HLS/RTL performance. Fig. 6(a)
shows the data. When the three outliers in the top right corner
are eliminated from calculations, the Pearson correlation
coefficient is only 0.04. Thus, it seems that the size of the code
is no indication for the relative HLS/RTL performance. Fig.
6(b) shows the same data for the relative HLS/RTL basic
resource usage. The correlation is -0.08, so the code size does
not correlate with the basic resource usage ratio either. Taken
together, Figs. 3 and 6 indicate that the complexity of the
application has no effect on the relative HLS to RTL
performance or basic resource usage. However, as Fig. 6 shows,
the majority of the applications presented in the papers are
rather small in terms of LoC. Studying the respective behavior
with larger applications is omitted due to the absence of data.

One way to look at the usefulness of HLS relative to RTL is
to examine the performance obtained per design hour as
discussed in [11]. Fig. 7 shows the relative productivity for all
applications for which both performance and development time
is reported, by dividing the HLS/RTL performance by the

development time ratio. A value larger than one indicates that
the HLS approach gives more performance per design hour than
RTL. The average value is 4.4. RTL approach clearly wins in
cases 1 to 4. The methodologies are about equal in cases 5 and
6, and HLS is the better approach in the remaining cases. For
application 1, the bar is almost invisible, as the ratio is 0.05.

Fig. 4.  HLS/RTL development time ratio for different applications.
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This application is a sparse algorithm matrix multiplication [11]
with dynamic loop bounds, which are unsuitable for the
automatic optimizations that HLS tools perform to speed-up
computation. Despite that, the figure indicates that on average,
a designer gets more performance per design hour with HLS
tools.

V. TEST GROUP STUDY

This survey demonstrates that many prior works report the
results of HLS to RTL comparisons rather inadequately, which
also complicated our data collection. Therefore, we organized a
case study to demonstrate the best practices in setting up
appropriate tests for such comparisons and reporting the results.
A secondary purpose of the case study was to examine how
HLS and RTL flows differ from the user’s perspective and what
is the relative productivity of the flows. Most previous studies
have focused only on the QoR differences instead.

The case study was to implement a 2-dimensional discrete
cosine transform (DCT) [20] algorithm for 8 × 8 residual blocks
used in the High Efficiency Video Coding (HEVC) [21]
encoder. DCT was chosen because it is well known and of
suitable complexity for this study.

A. Test Group
The test group consisted of six participants having basic

knowledge on digital design and programming. As shown in
Table VI, they had written 1k to 100k lines of C or C++
previously. On average, they had about 15 months of
programming experience in work or hobby projects. The
participants were much less experienced in hardware design
with an average of 1k lines of VHDL or Verilog code and three
months of experience in such projects. Only one of the
participants had done a small tutorial with HLS before this
study, making this experiment the first introduction to HLS for
the rest.

We selected participants with limited hardware experience
but moderate software experience, as HLS promises to hide
away the hardware-specific implementation details. Thus,
programmers who are used to writing behavioral descriptions
in software projects are an ideal audience for HLS. Indeed, the
litmus test of HLS is that such users reasonably effortlessly can
produce acceptable results when designing relatively simple
hardware blocks.

To acquire sufficient background knowledge of HLS, the
participants self-studied the HLS basics and carried out five
small exercises implementing parts of an audio codec for

FPGA. Previously, they had done the same exercises using
VHDL RTL.

B. Test Case
In an HEVC encoder, DCT is used to convert 8 × 8 spatial-

domain residual blocks into 8 × 8 transform-domain coefficient
(tcoeff) matrices. A well-known row-column algorithm [20]
executes these 2-D transforms with separable 1-D transforms in
two consecutive stages. The transform is first applied to each
row of the residual block to generate an intermediate matrix and
then to each column of the intermediate matrix to generate the
final transform coefficient matrix.

The participants were assigned to implement this 2-D DCT
hardware unit for 8 × 8 residual blocks with RTL (VHDL or
Verilog) and HLS (C/C++ with Mentor Graphics’ Catapult-C
version 8.2m UV). Catapult-C supports the whole design flow
from writing the original source code to generating and
verifying the RTL code. In this study, no physical FPGA
implementation was made, but only the synthesis results were
used to obtain the QoR data. Performing place & route (P&R)
was omitted as we were interested in the relative HLS to RTL
results, and P&R should not affect the ratio significantly.

The provided DCT references included the HEVC
specification and its implementation in the HEVC reference
encoder (HM) [22]. The participants were also given a ready-
made SystemC test bench and requirements for the interfaces to
make the test bench work without modifications. Interface
requirements included the widths of the input and output data
buses and related control signals. The same test bench was used
for the RTL and HLS versions. It generated random residual
values for the first pass and performed the necessary transpose
for the second pass. The condition for successful
implementation was to pass the test bench validation.

The participants were also instructed to allocate their
working hours to five categories: designing, implementing,
searching information, simulating, and debugging. They were
allowed to choose whether to implement the HLS or RTL
version first or both simultaneously.

C. Results
Table VII shows the area and speed figures of the RTL and

HLS implementations for the individual test persons. The
HLS/RTL ratio shows the ratio between the results for HLS and
RTL. The bolding indicates when the HLS flow achieved better
results. The speed was calculated as million transform
coefficients per second (Mtcoeff/s) using the output
coefficients, latency, throughput, and frequency reported by the
participants.

Four test persons started the work with the RTL
implementation. All participants wrote the RTL code with
VHDL rather than Verilog. Even though the smallest area and
the highest frequency were achieved with RTL, the overall
trend was that the participants were able to get slightly smaller
area and slightly higher clock frequencies with the HLS tool.
Furthermore, the HLS designs are over 2.5× as fast as the RTL
designs, which also affected the speed to area ratios. For
example, person #4 achieved the best speed to area ratio of all
designs with HLS. On the other hand, person #3 was the only
one who got better speed to area ratio with RTL. All test persons

TABLE VI
BACKGROUND EXPERIENCE OF THE TEST GROUP

Person # LoC (SW)
SW experience

(months) LoC (HW)
HW experience

(months)
1 1k 18 1k 10
2 10k 3 1k 3
3 10k 18 1k 3
4 100k 50 1k 0
5 10k 3 1k 3
6 1k 1 1k 1
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used a multi-stage structure to calculate the DCT in RTL code,
but none of them implemented a more complex state machine
to use stage pipelining for consecutive inputs. The lack of
pipelining lowered throughputs in the RTL case. In comparison,
all persons were able to use loop unrolling and pipelining in
HLS to achieve much better throughput values than with RTL.

Table VIII tabulates productivity values for HLS and RTL
approaches. The productivity of all participants was clearly
better with the HLS tool, and the average productivity of HLS
was up to 6.0 times that of RTL. Hence, it is even higher than
that found in the survey results. We can speculate how the
productivity would have changed if the persons had
implemented stage pipelining in their RTL implementations. It
is still unlikely that the productivity levels had shifted to
support RTL over HLS, as the time usage would have increased
along with the throughput.

Fig. 8 shows the time usage of the participants in five
categories. On average, the persons used less time within all
categories when working with HLS. The grand total for
maximum, average, and minimum time usages with the RTL
flow was 37.7, 15.1 and 3.7 hours, respectively, whereas the
respective values for the HLS flow were 25.0, 10.1, and 1.6
hours.

As a conclusion, all participants had better productivity with
HLS than with RTL. Although the group size was small, and
the hardware background of the persons was very similar, this
study shows that it is easier to adopt HLS than RTL and receive
better results faster for people who have most of their
experience in software design. This result underlines the fact
that HLS is a useful tool for software engineers who want to
implement, for example, hardware accelerators.

It should be noted that our result differs from the typical
surveyed study, where the QoR of RTL was better than that of
HLS. The likely explanation for this is that in the surveyed
works, the designers had significantly more previous hardware
expertise than our test persons. On the other hand, our case
study is in line with the surveyed literature concerning
productivity, which favors HLS.

D. Feedback from the test persons
After completing the test assignments, the participants were

asked about the pros and cons of HLS and RTL design flows,
out of which they finally had to select their favorite. The
answers were split evenly (3-3) between HLS and RTL flows.

The persons favoring RTL over HLS hoped for more open
source support for HLS tools, as the flow is highly tool
dependent. This would allow more hobbyists to use HLS tools.

TABLE VIII
HLS AND RTL PRODUCTIVITY

Person # Hours Quality*/Hours Hours Quality*/Hours
1 2 80 4 14 5.9×
2 4 44 9 11 4.1×
3 12 19 21 17 1.1×
4 9 47 18 6 7.6×
5 5 60 9 6 9.4×
6 20 15 26 2 9.0×

Avg. 9 44 14 9 6.2×

*Mtcoeffs/kLUTs

HLS RTL HLS/RTL
Quality Ratio

Fig. 8. Maximum, minimum, and average time usage for different categories with RTL and HLS.
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TABLE VII
AREA AND PERFORMANCE FIGURES OF RTL AND HLS DESIGNS

HLS
Person # Area (LUTs) Freq. (MHz) Speed* Speed/Area** Started

1 1 860 214 258 139
2 3 161 101 588 186 x
3 2 814 211 675 240
4 2 273 167 972 427 x
5 2 768 137 797 288
6 2 463 211 750 305

Avg. 2 557 174 673 264
RTL

1 4 000 145 197 49 x
2 2 068 108 192 93
3 1 292 308 458 355 x
4 4 431 148 499 113
5 2 066 137 122 59 x
6 2 722 149 121 44 x

Avg. 2 763 166 265 119
HLS/RTL ratio

1 0.47× 1.48× 1.31× 2.81×
2 1.53× 0.94× 3.06× 2.00×
3 2.18× 0.69× 1.47× 0.68×
4 0.51× 1.13× 1.95× 3.80×
5 1.34× 1.00× 6.55× 4.89×
6 0.90× 1.42× 6.22× 6.87×

Avg. 0.93× 1.05× 2.54× 2.22×
*Mtcoeffs/s   **Mtcoeffs/kLUTs
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Some test persons also longed for more control in the HLS tool
over the resulting RTL in terms of cycle accuracy. For them,
RTL was easier to fine tune and it gave them a better
understanding of the problem at hand.

The persons favoring HLS over RTL liked the ease of HLS,
where unnecessary details such as automatic I/O handshaking
and pipelining support can be left as the responsibility of the
HLS tool. This let the participants to focus on defining the
behavioral description. They also felt that RTL was more time
consuming, required more planning, and would have been
harder to redesign.

The overall conclusion from the test persons was that HLS
vs. RTL compares to C vs. assembly languages in embedded
programming. They expressed the view that, a designer would
rather use HLS, the highest level of abstraction available, and
the lower level RTL should only be used in cycle critical
applications or if it is able to provide a noticeable increase in
performance.

E. Best Practices
We use our literature survey and this case study to sum up

the following best practices for conducting comparative studies
with RTL and HLS work flows:

1) A group of individuals should be used to implement the
same design to lessen the impact of designer experience
with the two flows.

2) The used HLS tools and languages should be reported
unless license agreements prevent that. These choices
have been shown to affect the QoR [12]-[14].

3) The same microarchitectures should be used in both
RTL and HLS designs when conducting a study that
concentrates on the QoR differences. If the emphasis is
on productivity or the usability of HLS, however, then
this restriction can be lifted.

4) For FPGA implementation, the exact FPGA chip model
and version should be reported to allow replication of the
results.

5) The time usage by each designer should be reported.
Additionally, the time spent in each work phase should
be reported to allow more insight into what parts are the
most time consuming with HLS and RTL versions.

6) Lines of input code should be reported to show the size
and complexity of the applications.

7) In addition to the basic QoR results, performance per
design time should be reported to show the difference in
productivity between the HLS and RTL flows.

VI. CLOSING THE QUALITY GAP

Our survey shows that more often than not, there still is a
QoR gap between the HLS and RTL methods for any given
application, usually favoring RTL. A large amount of literature
exists that has recognized the gap and proposes ways to close
it. In this section, we present a survey of that literature to
highlight it for the HLS researchers and developers. In addition,
we review papers that introduce novel improvements to the
existing HLS flows.

A. Research Directions for Tool Developers
The authors in [8] have several suggestions for the HLS tool

developers, for where to focus their efforts. They note that
resource sharing and scheduling are two major features in HLS
techniques that the current HLS tools still struggle with. For
example, they demonstrate that a HLS tool instantiates 31
hardware operators of a certain type when only 13 would be
needed with optimal sharing. They also note that the HLS tools
obfuscate the relationship between the source code and the
generated hardware, which in turn makes it hard to identify the
sub-optimal parts of the code. Furthermore, the authors call for
the industry to agree on a standard C-based input language for
HLS. This would allow an unambiguous way for the tool users
and the tools themselves to interpret the source code.

In [57], the authors recognize room for development in both
the usability and the QoR of HLS. Their study uses AutoPilot
(now Vivado HLS), but the advice is generalizable. The authors
propose automatic tradeoff analysis of loop pipelining and
unrolling to make the DSE faster. With complicated loop
structures, the number of possible optimization combinations
can be very high. In addition, the authors call for support for
BRAM port duplication directives, more robustness for
dataflow transformations, and support for streaming
computation for 2D access patterns. To improve the QoR, they
suggest that the tools should detect memory level dependence
between separate loops and functions, and automatically re-
order memory access to allow partitioning, streaming, and
better pipelining. The tools should also automatically create
buffers to improve memory access reuse.

The importance of optimized memory accesses in high-
quality designs is also recognized in [5]. The authors point out
that the HLS tools usually do not have support for memory
hierarchy nor do they abstract external memory accesses.
Therefore, the designer is required to pay attention to the details
of bus interfaces and memory controllers, which does not sit
well with the idea of behavioral design paradigm. The HLS
tools should hide external memory transfers from the designers
to fix this problem. The paper also notices the difficulty of
obtaining task-level parallelism from sequential C/C++
specifications, for which the authors suggest developing an
appropriate device-neutral programming model.

In [32], the lack of support for dynamic data structures in
HLS tools is brought forward. The authors implement the same
algorithm with a data-flow centric way and by using recursive
tree traversal, which uses dynamic memory allocation, and
observe a significant performance reduction using the latter
method. By applying several manual code transformations, the
authors can increase the performance, and conclude that the
HLS tools should automatically perform similar optimizations
with dynamic data structures.

B. Improvements to the HLS Flow
Since the writers of research articles typically have no access

to the source code of commercial HLS tools, most papers that
have improved upon the HLS results do so by introducing new
optimization steps to the design flow. Some promising results
falling in this category are reviewed in this sub-section.
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In [58], the authors propose using parallel pattern templates
to scale module implementation according to the properties of
the target device, exceeding the capability of the HLS tool to do
so. The authors show up to 2.8× speed-up over a standard HLS
tool flow. A template-based approach is also used in [59],
where composable and parameterizable templates of common
computation patterns optimized for hardware are used to
improve performance. These kind of templates could be
included in HLS tools for the users’ convenience.

In [60], the problem of memory access bottleneck in
massively parallel algorithms is discussed. The authors propose
an algorithm that schedules the memory accessed during
different pipeline stages reducing the simultaneous access
pressure. Their approach improves the pipelining performance
by 43% on average and reduces memory bank usage by 55%.
Another way to reduce memory access overhead is discussed in
[61]. The paper presents a novel algorithm to scalarize arrays
selectively to on-chip registers within certain area constraints.
The results indicate significant performance improvements.

One method to enable more efficient HLS is by identifying
custom operations that are merged from sequential basic
operations. This reduces the complexity of the data flow graph
of the synthesized algorithm, which in turn reduces synthesis
runtime and improves the QoR. This method has been studied
in [62], achieving significant improvements in area
consumption, performance, and code size. Therefore, HLS tools
should include custom operation identification as a pre-
processing step.

Resource allocation and operation binding are two of the
basic steps in HLS. Thus, their efficient implementation is of
critical importance in achieving good QoR. In [63], the effect
of register allocation has been investigated. The paper shows
that in most cases a naïve resource allocation strategy, i.e. one
register per variable without register sharing leads to the best
QoR results.

HLS tools use a software compiler to create an intermediary
representation (IR) of the input program. The IR is then used in
the HLS optimization steps. It is not surprising that the IR and
thus the compiler options affect the QoR. The authors in [64]
have studied the effect of different compiler options on the QoR
and developed a method to automatically select only those
options that improve the QoR, achieving on average a 16%
better performance compared to the usual –O3 optimization
level.

In [65], it is observed that significant area savings can be
achieved by merging different behavioral descriptions instead
of performing HLS for each of them separately. This is due to
allowing better resource sharing of functional units on FPGA
when the HLS tool can share them between descriptions. The
paper presents an algorithm for searching for optimal mergings
within given latency constraints.

C. Design Space Exploration
The HLS tools contain various directives that can guide the

hardware synthesis to generate designs that are more efficient.
These directives include pipelining and unrolling of loops and
array partitioning among others. Since most algorithms contain

numerous loops and data arrays, finding the group of Pareto
optimal directive settings can be a daunting task, yet it is
essential for good QoR. Exploring the design space for optimal
settings should therefore be automated, but currently the
leading HLS tools do not help the user in DSE. On the other
hand, there are a few academic papers that have studied the DSE
automation in HLS.

A straightforward automated iterative DSE methodology is
presented in [66]. The method, which focuses on area reduction,
achieves up to 50% improvement in the QoR when compared
to non-guided HLS flow. A more complicated DSE algorithm,
based on an adaptive windowing method, is shown in [67]. This
algorithm is shown to offer a good trade-off between running
time and finding the best QoR. A similar approach specializing
on applications with nested loops has demonstrated up to 235×
speed-up compared to exhaustive DSE, while achieving similar
results [68].

A sequential model-based optimization has been applied to
the DSE problem in [69]. The paper shows that the method can
find globally optimal points from a space of tens of thousands
of possible designs in reasonable time. In [70], a lightweight
pre-processing step has been added before HLS to perform
dynamic dependence analysis of the target algorithm. The
method can expose resource sharing opportunities that result in
better QoR when they are given as constraints to the HLS tool.

The specific but important question of finding the optimal
loop unrolling factor has been discussed in [71]. The authors
have developed an algorithm for finding the optimal unrolling
factor within given area constraint and show that it can provide
the best performance compared to other possible solutions.

D. Verification
Verification remains a time-consuming part of any design

project. Therefore, it is crucial that the HLS tools support the
verification flow on all stages. While the HLS flow allows for
efficient behavioral verification of single modules, the
generated RTL must still be verified for non-behavioral aspects
such as interface synthesis results and successful component
integration. Traditional RTL verification after HLS is difficult
since there is no direct relationship to the input source code [4],
[5], [8]. Nevertheless, verification time has been halved in
many cases using HLS [72].

The verification aspects of HLS have been extensively
discussed in a recent paper [72]. The author points out that logic
redundancy, which lowers test coverage, is a major problem
with HLS. Logic redundancies may be present in the source
specification but also introduced by the HLS tool in the RTL
generation. Thus, the developers of the HLS tools should strive
to eliminate the tendency to generate logic redundancy. Besides
that, formal tools can be used to identify the redundancies
during verification. The paper also promotes source linting as a
way to improve HLS. Not only can it be used to check for error
sources, but also to help with the design optimization by
proving properties such as FIFO sizes.

The authors in [5] present three noteworthy items to enable
most of the debugging to occur on the behavioral input
language level for on-chip validation: 1) the ability to add
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debugging logic with small overhead, 2) the ability to observe
critical buffers such as FIFOs, and 3) the ability to observe the
internal states of hardware blocks using breakpoints in the
source code. These important debugging features cannot be
implemented on the RTL level after performing HLS because
of the machine-generated RTL code.

Besides verification, engineering change orders (ECOs)
present difficulties with HLS [4]. When an ECO is issued, only
some small incremental changes are required, which are
typically not captured by the high-level behavioral description.
On the other hand, it has been noted that since the behavioral
source code can be extensively verified and the HLS tools
ensure that the generated RTL is correct, ECOs are uncommon
in HLS flows [66].

VII. CONCLUSION

In this paper, we examined 46 recent articles about
comparisons on the QoR and design effort between HLS and
RTL design flows. As HLS promises great productivity gains
over RTL, our aim was to see whether the contemporary HLS
tools are also able to produce results that can compete with hand
tuned RTL designs.

Our survey indicates that even the newest generation of HLS
tools does not provide as good performance and resource usage
as manual RTL does. However, there is a great variance in the
results and HLS is shown to equal or outperform RTL approach
in about 40% of the evaluated cases. Our own case study
demonstrates that a designer with limited hardware experience
can obtain better results with HLS, with 2.5 times more
performance and slightly lower FPGA resource usage. We also
examined whether the size of the design affected the relative
QoR between HLS and RTL, but found no correlation. Thus,
HLS seems as suited for small as large designs.

In design effort, the survey showed that HLS was clearly the
frontrunner as expected. On average, the HLS design time was
only a third of the corresponding RTL design time. In addition,
the size of the HLS input code was almost halved, being 52%
of the RTL code size on average. When taking into account both
the QoR and the design effort, we found out that a designer gets
on average 4.4 times as high performance per design hour using
HLS than RTL. Our own case study supported this argument by

reporting 6.0 times increase in productivity. Thus, HLS is a
particularly good choice when time to market is a dominant
issue and there is no compelling need to gain the ultimate
performance or smallest resource usage for the product. HLS
also offers tremendous time savings when architectural changes
are made to an existing design.

In our reference literature, there was often lacking
information, which made the HLS to RTL comparisons more
challenging. Therefore, our case study also demonstrated the
best practices in reporting HLS and RTL results for the same
application. Preferably, the test group should be larger than we
had at our disposal, but our test case still shows the essential
details that we recommend reporting in this kind of research. In
the future, a similar case study could be carried out with a test
group with more hardware expertise. While our study shows
that people with limited hardware experience can easily adopt
HLS and produce good results, it would also be interesting to
see how the productivity and QoR differences behaved with
hardware engineers as test persons.

Verification effort comparisons were also often missing from
the surveyed papers. Most often, there was only a brief note on
how HLS tools allow convenient use of behavioral test bench
in RTL verification. As verification is a major part of any
hardware project, this is a significant oversight in the state of
HLS research. Therefore, in the future, more quantitative
studies should be carried out on HLS vs. RTL verification
flows.

We also surveyed the literature for both suggestions and
completed research for improving the QoR and verification
flow of HLS. We found numerous papers that showed methods
to improve the QoR significantly by adding new steps to the
HLS design flow or by automating the design space
exploration.

With the progress achieved in HLS tools during the last
decade, we can conclude that the methodology is ready for
adoption by the industry in prototyping and fast product
development. If the next generation of HLS tools can close the
QoR gap entirely, then HLS will become the new standard
design method, and RTL can be targeted at similar limited fine-
tuning as assembly languages in software development today.

APPENDIX

TABLE IX
SUMMARY OF THE REVIEWED PAPERS

[#] Year HLS tools Modules or algorithms Number of
applications

LoC Dev.
time

Performance Basic FPGA
Resources

[5] 2011 AutoPilot Multi-I/O sphere decoder 1 x x
[8] 2016 Undisclosed AES encryption 1 x x
[9] 2014 Catapult-C K-means accelerator, histogram map/reduce,

matrix mult., word count
5 x x

[10] 2016 Vivado Data pinning, step row filter, Sobel filter 3 x x x
[11] 2013 Vivado Matrix multiplication 3 x x x
[12] 2015 Vivado, LegUp, Simulink HDL HEVC 2D IDCT 3 x x
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Abstract— This paper presents a real-time Kvazaar HEVC 

intra encoder for 4K Ultra HD video streaming. The encoder is 

implemented on Nokia AirFrame Cloud Server featuring a 2.4 

GHz dual 14-core Intel Xeon processor and Arria 10 PCI Express 

FPGA accelerator card. In our HW/SW partitioning scheme, the 

data-intensive Kvazaar coding tools including intra prediction, 

DCT, inverse DCT, quantization, and inverse quantization are 

offloaded to Arria 10 whereas CABAC coding and other control-

intensive coding tools are executed on Xeon processors. Arria 10 

has enough capacity for up to two instances of our intra coding 

accelerator. The results show that the proposed system is able to 

encode 4K video at 30 fps with a single intra coding accelerator 

and at 40 fps with two accelerators. The respective speed-up 

factors are 1.6 and 2.1 over the pure Xeon implementation. To the 

best of our knowledge, this is the first work dealing with HEVC 

intra encoder partitioned between CPU and FPGA. It achieves the 

same coding speed as HEVC intra encoders on ASIC and it is at 

least 4 times faster than existing HEVC intra encoders on FPGA. 

Keywords— High Efficiency Video Coding (HEVC), Kvazaar, 

Intra coding, Field-programmable gate array (FPGA), PCI Express 

(PCIe), Real-time  

I.  INTRODUCTION 

Internet video traffic is forecast to grow threefold in five 
years from that of 2015 and video is estimated to account for 
82% of all global consumer Internet traffic by 2020 [1]. This 
growth comes from new end users and multimedia applications 
entering the market but also from higher video dimensions, 
resolutions, frame rates, and color depths. Despite the fast 
progress of network capacities, the holistic increase of video 
volume makes more efficient video compression inevitable.  

High Efficiency Video Coding (HEVC/H.265) [2], [3] is the 
latest international video coding standard developed to meet 
video storage and transmission needs of modern multimedia 
applications. HEVC is published as twin text by ITU, ISO, and 
IEC as ITU-T H.265 | ISO/IEC 23008-2. This paper addresses 
all-intra (AI) coding configuration [4] of HEVC Main Profile. 
HEVC is shown to improve intra coding efficiency by 23% over 
that of the preceding state-of-the-art standard AVC/H.264 [5] for 
the same objective quality but at a cost of over 3 × encoding 
complexity [6]. Therefore, implementing a real-time HEVC 
intra encoder with a reasonable coding efficiency, 
implementation cost, and power budget requires efficient 
encoder optimizations and powerful computing platforms. 

The complexity of software (SW) HEVC encoders can be 
primarily tackled by two techniques: multithreading through 
data-level parallelism [7], [8] and single instruction multiple 
data (SIMD) optimizations [9], [10]. Further speedup and lower 
power dissipation can be obtained by offloading the compute-
intensive coding tools to hardware (HW) accelerators or 
implementing the entire HEVC encoder on HW [11]-[14]. 
Existing HW encoders include both application specific 
integrated circuit (ASIC) [11], [12] and field-programmable 
gate array (FPGA) implementations [12]-[14]. 

The main motivation of this work was to optimize our 
Kvazaar HEVC intra encoder [15], [16], for real-time 4K Ultra 
High Definition (UHD) coding on Nokia AirFrame Cloud 
Server. Airframe includes a 2.4 GHz dual 14-core Xeon 
processor an Arria 10 PCI Express (PCIe) FPGA accelerator 
card. Airframe rackmount server is easily expandable to large 
server farms and an accompanied FPGA brings lots of additional 
computing power for a single server. Cloud video encoding on 
servers like AirFrame has gained a lot of traction in the recent 
years because of the advent of cloud gaming, telco clouds, and 
edge computation in general.  

Our previous works have already investigated parallelization 
of Kvazaar intra encoder on multi-core processors [8] and SIMD 
optimizations of Kvazaar [10], so the main emphasis here is on 
1) HW/SW partitioning of Kvazaar; and 2) HW acceleration of 
Kvazaar on FPGA. The HW-oriented C source code of Kvazaar 
enables more straightforward HW/SW partitioning than other 
eligible open-source HEVC encoders [17], [18]. Kvazaar code 
is also written at a suitable abstraction level for high-level 
synthesis (HLS) [19] that enables automatic hardware 
description language (HDL) generation from C. In this work, 
our intra coding accelerator is implemented using Catapult C 
[20] HSL tool. Through HLS, the code is more readable, design 
and verification times are shorter, and the design reusability is 
far better than with handwritten HDL equivalents. 

The rest of this paper is organized as follows. Section 2 gives 
an overview of the adopted CPU + FPGA platform and the 
proposed SW/HW partitioning of Kvazaar on it. Section 3 
describes the Kvazaar functionality on CPU, Section 4 the 
communication between CPU and FPGA, and Section 5 the 
implemented intra coding accelerator on FPGA. In Section 5, the 
speedup of HW acceleration is benchmarked against SW only 
encoding using 2160p (3840 × 2160) and 1080p (1920 × 1080) 
test videos. Section 6 concludes the paper. 



 

 

II. SYSTEM OVERVIEW 

Fig. 1 shows the block diagram of the underlying CPU + 
FPGA platform on which Kvazaar encoder is implemented. The 
backbone of the system is Nokia AirFrame server [21] with two 
Xeon E5-2680 v4 processors and 256 GB of memory. Arria 10 
FPGA accelerator card is connected to the CPU via a PCIe bus. 
The operating system is CentOS 6.8.  

A. Kvazaar HEVC Intra Encoder 

Kvazaar [15] is an academic cross-platform open-source 
HEVC encoder. It contains all integral coding tools of HEVC 
and its modular code facilitates parallelization on multi and 
manycore processors as well as algorithm acceleration on HW.  

Kvazaar intra encoder supports HEVC Main profile for 8-bit 
4:2:0 video with ten presets out of which fast and medium presets 
are used in this work for their favorable cost-performance 
characteristics. Table I tabulates the settings of these presets. 
The medium preset is utilized without rate-distortion optimized 
quantization (RDOQ). Kvazaar implements a basic HEVC block 
partitioning structure in which the pictures are partitioned into 
coding tree units (CTUs) of size 64 × 64. CTUs can be optionally 
divided into four equal-sized blocks and the division can be 
recursively continued until the maximum hierarchical depth of 
the HEVC quadtree is reached. The leaf nodes of the quadtree 
are called coding units (CUs). 

The proposed implementation of Kvazaar offers two 
schemes for parallel CTU coding: 1) Wavefront Parallel 
Processing (WPP); and 2) picture-level parallel processing. 
These schemes can be enabled concurrently. 

B. Kvazaar Partitioning 

Kvazaar is run on the platform under AI coding 
configuration in which the main coding tools are intra prediction 

(IP), discrete cosine transform (DCT), quantization (Q), inverse 
Q (IQ), inverse DCT (IDCT), and context-adaptive binary 
arithmetic coding (CABAC). In this work, the most 
computationally intensive coding tools including IP, DCT, Q, 
IQ, and IDCT are implemented with HLS and synthesized to 
FPGA. CABAC and other control-intensive coding tools such a 
control for WPP and for picture-level parallelism are executed 
on CPU. In addition, CPU takes care of raw input video reading, 
chrominance coding, and outputting the encoded bit stream. 

Arria 10 FPGA has enough resources for two instances of 
our intra coding accelerator including the needed peripherals and 
on-chip memories. Mapping a major share of CTU coding to 
FPGA could be utilized to decrease power dissipation through 
lower CPU usage. However, we are aiming at the maximum 
HEVC coding speed, so encoding parallelism is increased by 
coding additional CTUs entirely in SW with released CPU 
resources.  

 
Fig. 1. Block diagram of the proposed encoder system with a single intra coding accelerator. 

TABLE I. IMPLEMENTED CODING TOOLS OF KVAZAAR INTRA ENCODER 

 

Feature Fast Medium (wo RDOQ)

Profile Main Main

Internal bit depth 8 8

Color format 4:2:0 4:2:0

Coding mode Intra Intra

Coding units 16×16, 8×8 64×64, 32×32, 16×16, 8×8

Prediction units 16×16, 8×8 32×32, 16×16, 8×8

Transform units 16×16, 8×8 32×32, 16×16, 8×8

IP modes 35 (DC, planar, 33 angular) 35 (DC, planar, 33 angular)

Intra Search Full Full

Transform Integer DCT  Integer DCT  

Mode decision Sum of absolute difference Sum of absolute difference

Parallelization WPP, Picture level WPP, Picture level

SAO Enabled Enabled

Signhide Disabled Disabled

Rate Control Disabled Disabled

RDO Disabled Disabled

RDOQ Disabled Disabled



 

 

III. FUNCTIONALITY ON XEON  

On Xeon processors, Kvazaar is run in the user space and the 
Linux driver in the kernel space. The Linux driver is used for the 
CPU-PCIe-FPGA interfacing. It is accessed by Kvazaar via 
ioctl, write, and read system calls. 

A. User Space: Kvazaar 

Kvazaar parallelization is implemented using a CPU thread 
pool with a single CTU as the smallest work unit. The CTUs are 
put in a queue in the order they would be processed in a single 
threaded case, and the free worker threads start processing the 
first CTU with no dependencies. In this work, a CTU search 
function of Kvazaar is modified to offload a majority of coding 
tasks to the HW accelerator on FPGA. Offloading is performed 
through system calls to the kernel driver. A worker thread sends 
its CTU data to the HW accelerator and sleeps until the 
accelerator notifies that the CTU coding on FPGA is completed. 
Then, the worker thread performs chrominance coding and 
CABAC coding for the CTU according to the results from 
FPGA. The threads not being able to be served by FPGA are 
encoded on CPU. Intra coding on FPGA has the highest priority 
for new CTUs and the CPU is used only when the pipeline of the 
HW accelerator is full. 

B. Kernel Space: Driver  

Fig. 2 shows the sequence chart of system calls between 
Kvazaar and the kernel driver. At first, Kvazaar calls the ioctl 
function to request a free index from the driver, which returns a 
nonnegative index if the HW accelerator can accept a new CTU 
for encoding. The driver uses semaphores initialized to the 
maximum CTU count supported by the accelerator. In the next 
step, Kvazaar calls the write function to copy all necessary data 
of the processed CTU to FPGA. The data being sent to FPGA is 
aligned in consecutive virtual memory addresses in the user 
space and in consecutive physical memory addresses in the 
kernel space. A worker thread uses the read function to request 
intra coding results for the CTU of interest. The thread will sleep 
in the kernel space until the CTU of interest has finished and the 
accelerator sends an interrupt signal. Both the write and read 
system calls return the amount of bytes (length) read or written 
successfully. 

IV. INTERFACE BETWEEN XEON AND FPGA 

Fig. 1 shows the FPGA interface made of the Avalon-MM 
Hard IP for PCIe, separate Direct Memory Access (DMA) blocks 
for reading and writing, and the on-chip memories of the intra 
coding accelerator. 

A. PCIe Interface 

The CPU communicates with the FPGA via the PCIe bus. 
The PCIe IP is configured to PCIe generation 3 × 4 with 128-bit 
interface and 250 MHz application clock. The IRQ Buffer block 
is used for generating the interrupt through the PCIe IP. The IRQ 
buffer detects the rising edges of the CTU ready signals from the 
intra coding accelerator and buffers them. The interrupt is 
delayed until the CPU acknowledges the previous interrupt. This 
is done in order to prevent two interrupts from happening in 
consecutive cycles, which is a limitation of the PCIe IP. 

B. DMAs 

A single intra coding accelerator consists of two DMA 
blocks. One DMA block is used for reading data from the shared 
memory and the other one is for writing data to the shared 
memory. This separation allows the DMA blocks to better utilize 
the bandwidth of the PCIe interface to the CPU memory. Our 
tests showed that this scheme increases the data transfer speed 
by 54% compared with sequential reading and writing.  

The accelerator utilizes Reader and Writer indexer blocks for 
address translation. The blocks are configured with the CTU 
index before the DMA transfers are started. The DMA blocks 
read and write to consecutive memory addresses, but the 
memory structure of the on-chip memories on FPGA requires 
non-consecutive addresses depending on the index of the CTU. 

C. On-Chip Memories 

For each CTU, the HW accelerator requires the 
corresponding reference pixels, information about the CU 
borders (reconstructed pixels and modes), as well as the CTU 
CABAC states. The reference pixels are used to calculate Sum 
of Absolute Difference (SAD) values for intra mode selection and 
Sum of Squared Differences (SSD) values for final mode 
decision. CTU border pixels are used to calculate intra 
predictions for the CUs on the CTU borders whereas border 
modes are used as candidate modes when selecting the best intra 
mode. The CABAC states are used for mode decision (MD). 

There are also on-chip memories for the final reconstructed 
pixels and quantized coefficients, which are flushed from the 
intermediate buffer. The CU info contains the resulting modes 
and depths from the accelerator. The RAM aligners are used as 
wrappers with the on-chip memories because the PCIe interface 
and the HW accelerator have different memory access widths.  

  
Fig. 2. Message sequence chart between Kvazaar and the kernel driver. 

 



 

 

V. INTRA CODING ON FPGA 

Fig. 3 shows a block diagram of the intra coding accelerator. 
It consists of the following units implemented with HLS. 

A. Intra Coding Control (Ctrl) 

The Ctrl unit receives instructions from the CPU. It is split 
into Initialization, Scheduler, Start, and End blocks. 

The Initialization block generates a full instruction set for 
processing a CTU. The instruction set contains operations for 
calculating IPs with different configurations and MD operations 
for selecting a CTU configuration. The HW generates the 
instruction set for each CTU individually. 

The Scheduler block is responsible for the CTU 
parallelization in the HW accelerator. It loads the valid 
instructions for each CTU and selects the ones with the highest 
priority for processing. The priority for each instruction is 
determined so that there will be a minimal delay on the intra 
coding pipeline. 

The Start block processes instructions from the Scheduler in 
order. It initializes the IP configuration for the CU according to 
the input instruction and sends CU information to the Get Border 
unit. It also notifies the CPU about finishing the CTU search if 
it receives the instruction for terminating the search. 

The End block is at the end of the intra coding pipeline, from 
where it receives the search results. The results include the 
selected intra mode, SSD, and the estimated coding cost of the 
CU coefficients. The End block uses the results to calculate the 
MD cost for every CU configuration and stores them to the 
internal memory. With the MD instructions, the End block 
determines the best CU partitioning for the CTU according to 
stored cost values and flushes the pixels and the coefficients for 
that configuration from the buffer. 

B. Get Reference Border (Get Border) 

The Get Border unit reads the reconstructed reference pixels 
and sends them to the IP unit. It operates according to the 
configuration data consisting of CU block size and coordinates 
of the CU in the CTU. The coordinates are utilized when reading 
reconstructed pixels, i.e., either the neighboring column on the 
left to the CU or the neighboring row above the CU. The 
reconstructed pixels are read from either the CTU memory or the 
CTU borders memory, depending on the location of the CU 
within the CTU.  

C. Intra Prediction (IP) 

The IP unit is composed of an IP control block, SAD block, 
and the following IP blocks that predict 35 IP modes in parallel: 
DC IP (mode 0), Planar IP (mode 1), Positive Angular IP (modes 
2-9, 27-34), Negative Angular IP (modes 11-25), and Zero 
Angular IP (modes 10, 26). All these IP blocks predict four 
pixels at a time, i.e., 32 × 32 block is predicted in 256 cycles, 16 
× 16 block in 64 cycles, etc. The IP unit used here is an improved 
version of our previous IP accelerator presented in [22]. 

The IP unit operates according to the configuration data 
consisting of the CU block size and the corresponding reference 
pixels from the Get Border block. The IP control block filters 
reference pixels if needed and configures all the IP blocks that 
perform the prediction algorithm for a proper CU size, and all 
angular IP blocks for the right angle. This configurability makes 
the IP blocks more generic and easy to instantiate. 

All angular IP blocks calculate the predicted pixels in 
original order, so additional transposing is not needed. The 
blocks also have a common control. Furthermore, IP modes with 
an equal distance to the horizontal (mode 10) and vertical (mode 
26) modes are computed by the same IP block. For example, 
modes 2 and 34 are calculated in the same Positive Angular IP 
block since 10 - 2 = 34 - 26. This allows a reduced number of 
intra prediction IPs and saves area. 

  
Fig. 3. The block diagram of the intra coding accelerator on FPGA. 

 



 

 

The SAD block reads the reference pixels of the processed 
CU from the corresponding on-chip memory. It also receives 
predicted pixels from the IP blocks and calculates the SAD in 
parallel for all modes. The SAD block sends all the predicted 
pixels and the reference pixels to a buffer, four pixel at a time. 
After the SAD calculation is done and the best mode is 
determined, SAD block notifies the buffer. The buffer 
recalculates the residual vector and reference pixels for the best 
mode and sends them to the DCT unit. 

D. Discrete Cosine Transform (DCT) 

The DCT unit equals the high-speed variant of our 8/16/32-
point DCT unit presented in-depth in [23]. The unit performs the 
2-D DCT in two successive passes and the intermediate data is 
stored in a transpose memory. It can process 32 residuals in 
parallel so that a constant data rate with full HW utilization is 
achieved. The latency for both passes is three cycles because of 
the DCT pipeline. After the 2-D transform, the 16-bit transform 
coefficients (tcoeffs) are passed to the Q unit.  

E. Quantization (Q) 

The Q unit operates according to the configuration data 
consisting of the block size and the quantization parameter. The 
unit receives one or several columns of tcoeffs from the DCT 
unit per write, depending on the block size. Then it performs the 
quantization to all tcoeffs in parallel and outputs the quantized 
tcoeffs to the IQ unit and the Coeff Cost unit. 

F. Inverse Quantization (IQ) 

The IQ unit operates according to the configuration data 
consisting of the block size and the quantization parameter. The 
unit receives one or several columns of quantized tcoeffs from 
the Q unit per write, depending on the block size. Then it 
performs the inverse quantization to all quantized tcoeffs in 
parallel and outputs them to the IDCT unit. 

G. Inverse Discrete Cosine Transform (IDCT) 

The IDCT unit equals the 8/16/32-point IDCT unit presented 
by us in-depth in [24]. The unit performs the 2-D IDCT in two 
successive passes and the intermediate data is stored in a 
transpose memory. The IDCT unit can process 32 tcoeffs in 
parallel to ensure a more constant HW utilization. The latency 
for both passes is three clock cycles. After the 2-D inverse 
transform, the 16-bit residuals are passed to the Rec unit. 

H. Coefficient Cost (Coeff Cost) 

The Coeff Cost unit operates according to the configuration 
data consisting of the block size. The unit reads all the columns 
of the quantized tcoeffs, which are transposed back to the 
original order. After the transpose, the block calculates the 
approximate coding cost for the CU coefficients, processing 32 
coefficients in parallel. 

I. Reconstruction (Rec) 

The Rec module reads the reconstructed residuals from the 
IDCT unit and the original and predicted pixels from the 
memory in parallel. It generates the final reconstructed pixels 
and calculates the SSD for the processed CU. The reconstructed 
pixels are stored to memory through a buffer in order to store the 
right CU in the CTU sized memory. 

VI. EXPERIMENTAL RESULTS 

Table II tabulates the characteristics of the proposed and 
other existing HEVC intra encoders on ASIC and FPGA. The 
real-time coding speed of the ASIC-based HEVC intra encoder 
in [11] is limited to 1080p video. The HEVC intra encoder in 
[12] supports real-time 2160p video encoding on ASIC but the 
respective FPGA implementation is limited to 1080p resolution. 
Similarly, the FPGA-based HEVC intra encoder in [13] is 
restricted to 1080p video coding. The intra/inter HEVC encoder 
in [14] is able to encode 1080p at 60 fps with a custom board of 
three separate FPGA chips. Higher resolutions are also 
supported but not without increasing the number of boards. To 
sum up, our proposal is the only FPGA-based implementation 
that supports real-time HEVC encoding up to 2160p resolution 
with a single board. 

 TABLE III. CODING SPEED WITH 2160P VIDEO (FAST PRESET) 

 

TABLE IV. CODING SPEED WITH 1080P VIDEO (MEDIUM PRESET) 

 

No acceleration

Speed (fps) Speed (fps) Speedup Speed (fps) Speedup

Beauty 20 31 1.6× 40 2.0×

Bosphorus 21 32 1.6× 42 2.1×

HoneyBee 19 31 1.6× 41 2.1×

Jockey 22 35 1.6× 47 2.1×

ReadySetGo 20 31 1.6× 41 2.0×

ShakeNDry 17 26 1.6× 35 2.1×

YachtRide 19 30 1.6× 40 2.1×

Average 20 31 1.6× 41 2.1×

Sequence 

(2160p)

1 accelerator 2 accelerators

No acceleration

Speed (fps) Speed (fps) Speedup Speed (fps) Speedup

Beauty 63 102 1.6× 136 2.2×

Bosphorus 51 82 1.6× 110 2.2×

HoneyBee 46 73 1.6× 98 2.2×

Jockey 52 84 1.6× 113 2.2×

ReadySetGo 51 79 1.6× 107 2.1×

ShakeNDry 44 70 1.6× 94 2.2×

YachtRide 49 78 1.6× 105 2.1×

Average 51 81 1.6× 109 2.2×

Sequence 

(1080p)

1 accelerator 2 accelerators

TABLE II. COMPARISON OF THE PROPOSED AND RELATED HEVC INTRA ENCODERS 

 

Architecture Technology Board HW Lang. Frequency Resolution Coding mode Cells DSPs

Proposed CPU + FPGA Arria 10 C/C++ 125 MHz 2160p@30fps Intra 308k ALUTs 862

Zhu et al. [11] ASIC - Verilog 357 MHz 1080p@44fps Intra 2296k gates -

Pastuszak et al. [12] ASIC - VHDL 200/400 MHz 2160p@30fps Intra 1086k gates -

Pastuszak et al. [12] FPGA Arria II VHDL 100/200 MHz 1080p@30fps Intra 93k ALUTs 481

Atapattu et al. [13] FPGA Zyng ZC706 Verilog 140 MHz 1080p@30fps Intra 84k LUTs 34

Miyazawa et al. [14] FPGA Custom 3xFPGA N.A. N.A. 1080p@60fps Intra/Inter N.A. -



 

 

Table III and Table IV report HEVC coding speed of the 
proposed system with fast and medium presets (Table I) using 
2160p and 1080p test videos, respectively. The 8-bit 4:2:0 2160p 
test sequences were taken from Ultra Video Group test sequence 
set [25] and scaled down to 1080p resolution for our tests. In 
both cases, the results are given for our system with 0, 1, and 2 
intra coding accelerators.  

The average results with the fast preset show that our 
implementation is able to encode 2160p video at 20 fps without 
HW acceleration, at 30 fps with a single accelerator, and at 40 
fps with two accelerators. The speedups obtained with one and 
two accelerators are 1.6× and 2.1× over the pure SW 
implementation, respectively. In 2160p case, real-time coding 
speed (30 fps) requires at least one accelerator. The coding 
speeds of 1080p test videos are approximately 2.6 times as high 
as those of 2160p sequences even though a more complex 
medium preset (without RDOQ) is used. Hence, real-time 
coding speed is attainable without any HW acceleration in 1080p 
case. Our implementation would also be able to encode three 
separate real-time 1080p sequences in parallel.  

VII. CONCLUSION 

This paper presented the first known 4K HEVC intra encoder 
partitioned between a processor and a PCIe-connected FPGA. 
The encoder functionality is based on C source code of Kvazaar 
HEVC intra encoder and HLS was used to implement the most 
compute-intensive Kvazaar coding tools on FPGA. For the first 
time, HLS was applied to the whole intra coding chain from intra 
prediction to block reconstruction. HLS is generally known to 
reduce design and verification times over a traditional HDL 
workflow. This work shows that these benefits do not come at a 
cost of coding performance. 

The proposed encoder implementation was prototyped on 
Nokia AirFrame Cloud Server composed of dual 14-core Intel 
Xeon processor and Arria 10 FPGA. On AirFrame, our solution 
is able to encode one 2160p video in real-time. The introduced 
HW acceleration roughly doubles coding speed over that of a 
pure SW encoder. Further performance boost could be easily 
obtained by inserting another FPGA card in the available slot in 
the server and replacing the current FPGAs with larger ones. 
This way, up to four times as high coding speed is anticipated.  
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Abstract— This paper presents a hardware-accelerated 

Kvazaar HEVC intra encoder for 4K real-time video coding at up 

to 120 fps. The encoder is implemented on a Nokia AirFrame 

Cloud Server featuring a 2.4 GHz dual 14-core Intel Xeon 

processor and two Arria 10 PCI Express FPGA accelerator cards. 

The presented encoder is a speed-optimized version of our 1st 

generation 4K40p HEVC intra encoder. The proposed speedup 

techniques include 1) Increasing the number of FPGA cards to 

two; 2) Remapping the simplest multiplications from DSP blocks 

to logic for better FPGA utilization; 3) Making task scheduling 

more flexible to improve utilization rate of hardware accelerators; 

and 4) Increasing the pipeline depth and duplicating time-sensitive 

resources in the hardware accelerator. As a result, up to three 

hardware accelerator instances can be accommodated in a single 

Arria 10 so the encoder is able to make use of six accelerators. 

According to our experiments, the proposed encoder obtains 

threefold speedup over our 1st generation encoder. Our proposal 

is also shown to outperform all other encountered FPGA and 

ASIC implementations. 

Keywords— High Efficiency Video Coding (HEVC); Ultra High 

Definition Television (UHDTV); Kvazaar Intra coding; field-

programmable gate array (FPGA); real-time  

I.  INTRODUCTION 

Live Internet video is forecast to grow 15-fold in five years, 
accounting for 13% of all Internet video traffic by 2021 [1]. This 
growth comes from a plurality of new end users and multimedia 
applications but also from higher spatial and temporal video 
resolutions that are rapidly gaining ground. For example, 4K 
Ultra High Definition Television (UHDTV) format features 3840 
× 2160 pixels (2160p) and frame rates up to 120 frames per 
second (fps) [2].  

Despite the fast progress of transmission and storage 
technologies, the holistic growth of video volume makes more 
efficient video coding inevitable. The latest international video 
coding standard, High Efficiency Video Coding (HEVC/H.265) 
[3], [4], is developed to address these needs. This work deals 
with all-intra (AI) coding configuration [5] of HEVC Main 
Profile. It is shown to improve intra coding efficiency by 23% 
over that of the preceding standard AVC/H.264 [6] for the same 
objective quality, but at a cost of over threefold increase in 
coding complexity [7]. Therefore, implementing a real-time 
HEVC intra encoder for UHDTV format with a reasonable 
coding efficiency, implementation cost, and power budget 
requires efficient encoder optimizations and powerful 
computing platforms. 

Multithreading [8] and single instruction multiple data 
(SIMD) optimizations [9] are primary design techniques for 

complexity reduction in software (SW) HEVC encoders. Further 
speedup and lower power dissipation is typically sought by 
offloading the compute-intensive coding tools to hardware 
(HW) accelerators or implementing the entire HEVC encoder on 
HW [10]-[13].  

Our recent work [14] shows that a pure SW implementation 
of HEVC intra encoder is able to attain real-time coding speed 
for 4K30p format and formats up to 4K60p can be supported by 
using several software encoder instances in parallel [15]. The 
respective speeds are also reported for HW accelerated intra 
encoders [11], [16] and high-end frame rates of 4K UHDTV 
format are only reached with several HW encoder instances [13].  

The main motivation of this work was to implement a real-
time HEVC intra encoder for up to 4K120p format. The 
presented solution is a direct continuation to our previous work 
[16] where Kvazaar open-source HEVC encoder [17] is 
accelerated to encode 4K video at 40 fps on Nokia AirFrame 
Cloud Server [18]. The adopted server setup included a 2.4 GHz 
dual 14-core Xeon processor and an Arria 10 PCI Express 
(PCIe) FPGA accelerator card. Servers like AirFrame have 
gained a lot of traction in the recent years due to the advent of 
cloud gaming, telco clouds, and edge computation. 

In this work, the same AirFrame server is equipped with two 
Arria 10 PCIe cards. In addition, up to three HW accelerator 
instances can be accommodated on a single FPGA by remapping 
the simplest multiplications to logic blocks and only allocating 
DSP blocks to the most compute-intensive multiplications. 
Individual HW accelerator instances are also boosted by using a 
higher pipeline depth and duplicated resources, whereas a 
proposed task scheduling improves the utilization rate of the 
instances. Together, the proposed techniques result in around 
threefold encoding speed over that of [16]. 

The original HW accelerator is implemented in [16] with 
Catapult C [19] high-level synthesis (HLS) [20] tool that enables 
automatic hardware description language generation from C 
source code of Kvazaar. The same approach is applied in this 
work since HLS offers much shorter design and verification 
times than manual design approaches. This is particularly true in 
resource remapping and pipeline modifications.  

The remainder of this paper is structured as follows. Section 
2 describes the applied platform and the selected SW/HW 
partitioning of Kvazaar on it. Section 3 presents the pipeline 
optimizations made for the HW accelerator instances. Section 4 
introduces the proposed task-scheduling scheme among the 
accelerator instances. In Section 5, 4K performance of the 
proposed encoder is benchmarked against our earlier solution 
and other prior-art. Section 6 concludes the paper. 



 

 

II. OVERVIEW OF THE PROPOSED SYSTEM 

Fig. 1 shows the block diagram of the underlying SW/HW 
platform. The backbone of the system is a Nokia AirFrame 
Cloud server [18] with two Xeon E5-2680 v4 processors and 256 
GB of memory. Two Arria 10 FPGA cards are connected to the 
CPU via a PCIe bus. The operating system is CentOS 6.8.  

A. Kvazaar Partitioning 

On Xeon processors, Kvazaar [17] is run in the user space 
and the Linux driver in the kernel space. The Linux driver is used 
for the CPU-PCIe-FPGA interfacing. A single Arria 10 FPGA 
has enough resources for three Intra Coding accelerator 
instances including the needed peripherals and on-chip 
memories. The FPGA interface is made of the Avalon-MM Hard 
IP for PCIe, separate Direct Memory Access (DMA) blocks for 
reading and writing, and the on-chip memories of the Intra 
Coding accelerator. A more detailed functionality of the 
platform is described in our previous work [16]. 

Kvazaar implements a basic HEVC block partitioning in 
which the pictures are partitioned into coding tree units (CTUs) 
of size 64 × 64. CTUs can be optionally divided into four equal-
sized coding units (CUs) and the division can be recursively 
continued until the maximum hierarchical depth of the HEVC 
quadtree is reached. The proposed encoder supports Kvazaar 
ultrafast preset [17] with extended coding tree depth so that CUs 
of size 32 × 32, 16 × 16, and 8 × 8 are supported. It also 
implements Wavefront Parallel Processing (WPP) and picture-
level parallel processing for parallel CTU coding. These 
schemes can be enabled concurrently. 

The most computationally intensive Kvazaar coding tools 
including intra prediction (IP), discrete cosine transform 
(DCT), quantization (Q), inverse Q (IQ), inverse DCT (IDCT), 
and reconstruction (Rec) are implemented with HLS and 
synthesized to FPGA. Context-adaptive binary arithmetic 
coding (CABAC) and other control-intensive coding tools are 
executed on CPU. In addition, the CPU takes care of raw input 
video reading and outputting the encoded bit stream. Mapping 
the major share of CTU coding to FPGA decreases the power 
dissipation through lower CPU usage and accelerates the whole 
encoding process. 

B. System Configuration 

In this work, the FPGA driver is upgraded to support 
practically any number of FPGAs, but the FPGA count is here 
limited to two by the available PCIe slots. Therefore, the system 
can contain six accelerator instances (Acc0 - Acc5) at maximum. 

The proposed system is also configurable at run time to the 
chosen number of Kvazaar instances without any performance 
compromises. This way, the user can choose whether to encode 
a single video with the maximum speed or several videos in 
parallel. Different Kvazaar instances can also encode input 
videos with different encoding parameters and resolutions at the 
same time. This is made possible by processing each CTU 
individually in the Intra Coding accelerators. 

III. PROPOSED HARDWARE PIPELINE 

Fig. 1 illustrates the processing flow of CTUs in Intra Coding 
accelerators. Each accelerator is able to take care of 16 CTUs 

 
Fig. 1. Block diagram of the proposed encoder and a processing flow of CTUs in Intra Coding accelerators. 

 



 

 

(0..15) simultaneously, so up to 96 CTUs can be under way in 
parallel with six accelerators. An eight-stage pipeline of a single 
accelerator can process eight blocks of separate CTUs at a time 
and the remaining eight CTUs are buffered for faster access. The 
processed blocks move sequentially through HEVC encoding 
stages. Altogether, each CTU can contain 4 + 16 + 64 = 84 
separate CUs at maximum when CUs of size 32×32, 16×16, and 
8×8 are supported. 

A. Intra Prediction Pipelining 

In our 1st generation encoder, IP and the creation of 

reference pixels were done in the same pipeline stage. 

Generating the reference pixels from the border pixels caused 

an overhead, which almost doubled the delay of the IP stage 

with 8×8 blocks. Therefore, the reference pixel generation was 

moved from the IP stage to the control stage. Now, the reference 
pixels of successive CUs from different CTUs are generated 

and buffered in advance. This way, the control stage is not 

blocked by the IP and the IP has an adequate small delay 

between predictions. 

B. DCT / IDCT Pipelining 

Our 1st generation encoder used only a single transform unit 
for the DCT and another unit for the IDCT, i.e., both algorithms 
ran the transform twice with the same transform unit. First from 
the input and second from the transpose memory. Although this 
design had sufficient speed for smaller number of parallel CTUs 
in a single Intra Coding accelerator, it caused a bottleneck when 
aiming higher CTU parallelism.  

In the proposed work, there are two transform units for both 

the DCT and IDCT. In addition, the memory size of the 

transpose memories was doubled, allowing all transform units 

to run at the same time and enabling successive block 

pipelining. This modification practically doubled the 

processing speed of DCT [21] and IDCT [22] and increased the 

overall hardware pipeline by two stages. Although this 

modification increased the area of the whole Intra Coding 
accelerator, the speed improvement was more significant. 

C. Remapping Multiplications from DSP to Logic 

Our prior encoder implementations relied heavily on DSPs, 
mostly because they were implemented on FPGAs having half 
the logic area but still ~75% of the DSPs of Arria 10. Hence, 

adding a third Intra Coding accelerator would have caused Arria 
10 to run out of DSPs.  

Even though the DCT and IDCT transform units were 
doubled in this work, we were able to fit a third Intra Coding 
accelerator in a single Arria 10 FPGA. This was achieved by 
replacing all DSPs in IP and DST transform as well as constant 
multiplications in DCT and IDCT with logic elements. More 
economic utilization of DSPs and other HLS code optimizations 
allowed for better routing of our design on FPGA and made it 
possible to increase the maximum frequency from 125 MHz to 
175 MHz. 

D. Other Optimizations 

In our 1st generation encoder, a single Intra Coding 
accelerator supported eight parallel CTUs and the CPU was used 
to encode CTUs whenever the accelerators had no space for a 
new CTU. In this work, the additional CPU encoding was not 
used anymore since the proposed improvements have made the 
accelerator much faster at processing a CTU than the CPU. In 
addition, the increase of parallel CTUs supported on a single 
Intra Coding accelerator from eight to 16, caused encoding even 
a single CTU with the CPU to bottleneck the system. Waiting 
for available processing time from the accelerators and waiting 
for the result is faster than encoding a CTU with SW.  

Performing the CTU encoding solely on the FPGA reduced 
the overall CPU usage and the CPU is now mostly waiting for 
results from the FPGA. This allows the CPU to perform other 
processing, even while encoding HEVC 4K120p. Further 
improving the CPU utilization and maximizing thread usage, the 
DMAs in the FPGA now generate interrupts when ready. 
Previously, the kernel driver polled the DMAs, but the increase 
in FPGAs and accelerators caused the locking mechanism in the 
kernel to use a major part of the processing time of a thread. With 
interrupts and semaphores, the thread can now sleep while 
waiting for the DMA completion and yield processing time for 
other threads. 

IV. TASK SCHEDULING AND RESOURCE MANAGEMENT 

Scheduling of intra coding tasks is also improved to make 
the most of Kvazaar SW instances on a CPU and Intra Coding 
accelerators on FPGA. 

A. CTU Load Balansing 

Fig. 2 shows the process of scheduling processing time for 
different Kvaazar instances and choosing the best available Intra 

 
Fig. 3. Block scheduling in Intra Coding accelerator. 

 

 
Fig. 2. CTU load balancing between Kvazaar instances and accelerators. 

 



 

 

Coding accelerator for a new CTU. The Linux driver is 
accessible by all Kvazaar instances, which request processing 
time on the FPGA from the driver. If there are no available 
resources, Kvazaar instances need to wait. Waiting instances are 
served in request order. The driver assigns new CTUs to 
different Intra Coding accelerators according to the CTU id 
provided by the driver. The CTU id is a running number limited 
by available resources, i.e., the number of Intra Coding 
accelerators and the number of CTUs per accelerator.  

B. Block Scheduling in Intra Coding Accelerator 

Fig. 3 shows how the Intra Coding accelerator determines 
the next block to the pipeline. For each CTU, a set of instructions 
are generated to signal the scheduler the encoding order of the 
blocks in a CTU. The next block of a CTU is valid for processing 
if the previous block of the same CTU is done. The scheduler 
assigns priorities to the valid blocks and chooses the one with 
the highest priority. The priority is higher when the next block 
in line is of equal size or larger than the previous one. This policy 
aims to keep the pipeline utilization high and it prevents larger 
blocks from bottlenecking smaller ones. 

V. CODING SPEED ANALYSIS 

Table I tabulates the obtained encoding speeds with different 
number of Intra Coding accelerators using the 8-bit 4:2:0 
4K120p test video sequences from [23]. The average results 
show that our implementation is able to reach 4K30p with two 
accelerators, 4K60p with three accelerators, and 4K120p with 
six accelerators. The maximum speed of the accelerated system 
is 6.8 times as high as that of the pure software version. Coarsely 
speaking, doubling the number of accelerators doubles the 
encoding speed.  

Our 1st generation encoder was able to encode 4K30p with 
a single Intra Coding accelerator but it was limited to use CU 
sizes of 8×8 and 16×16. In addition, it utilized the remaining 
CPU power for CTU encoding. Disabling 32×32 blocks in the 

current version would also increase its 4K coding speed to 30 
fps with a single accelerator even without utilizing the CPU. 
With medium preset [17] and rate-distortion-optimized 
quantization (RDOQ) disabled, our proposal is able to encode 
4K60p with six Intra Coding accelerators. 

Table II tabulates the performance figures of the proposed 
and existing HEVC intra encoders on ASIC and FPGA. To make 
comparison more straightforward, our proposal is configured to 
use only a single FPGA with which 4K format can be encoded 
up to 60 fps (Table I). Our 1st generation encoder was already 
able to outperform related FPGA implementations and compete 
equally with the existing ASIC implementations. The proposed 
2nd generation encoder even beats these ASIC approaches.  

VI. CONCLUSION 

This paper presented our 2nd generation HEVC encoder for 
real-time 4K intra coding. The proposed encoder was prototyped 
on Nokia AirFrame Cloud Server composed of a dual 14-core 
Intel Xeon processor and two Arria 10 FPGAs. On AirFrame, 
our solution is able to encode 4K video at 120 fps or four 4K 
videos at 30 fps.  

The implemented HW acceleration speeds up the encoder by 
6.8 times over the pure SW implementation and the obtained 
performance is three times as high as that of our 1st generation 
encoder. The speedup was achieved by increasing the number of 
FPGAs to two, improving FPGA utilization by allocating the 
simplest multiplications to logic, increasing the efficiency of 
pipeline in Intra Coding accelerator, and improving the 
utilization rate of the accelerators by better task scheduling. 

The Intra Coding accelerators of the encoder are entirely 
implemented with HLS tools from C source code of Kvazaar 
HEVC intra encoder. HLS is generally known to reduce design 
and verification times over traditional design flows. This work 
further shows that the shorter development time does not come 
at a cost of coding performance. 
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TABLE I. CODING SPEED OF 4K VIDEO WITH DIFFERENT NUMBER OF INTRA CODING ACCELERATORS 

 

TABLE II. COMPARISON OF THE PROPOSED AND RELATED INTRA ENCODERS 

 

Software

No acceleration 1 accelerator 2 accelerators 3 accelerators 2 accelerators 4 accelerators 6 accelerator

Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps)

Beauty 17 25 49 64 50 96 125

Bosphorus 20 27 53 65 54 102 127

HoneyBee 17 26 50 64 51 98 124

Jockey 21 29 54 65 58 104 126

ReadySetGo 19 27 52 64 53 99 123

ShakeNDry 16 22 44 63 45 85 115

YachtRide 18 26 51 64 51 98 123

Average 18 26 50 64 52 97 123

Sequence (2160p)

Single  FPGA Two FPGAs

Architecture Technology Frequency Resolution Cells DSPs

[10] ASIC 357 MHz 1080@44fps 2296k gates -

[11] ASIC 200/400 MHz 2160@30fps 1086k gates -

[11] Arria II 100/200 MHz 1080@60fps 93k ALUTs 481

[12] Zyng ZC706 140 MHz 1080@30fps 84k LUTs 34

[13] Custom 3x FPGA N.A. 1080@60fps N.A. -

[16] CPU + Arria 10 125 MHz 2160@40fps 308k ALUTs 862

Proposed CPU + Arria 10 175 MHz 2160@60fps 552k ALUTs 1227
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Abstract— This paper describes a demonstration setup for 

real-time 4K HEVC intra coding. The system is built on Kvazaar 

open-source HEVC encoder partitioned between 22-core Xeon 

processor and two Arria 10 FPGAs. The demonstrator supports 1) 

live streaming of up to three 4K30p videos; or 2) offline video 

streaming up to 4K100p format. Live feeds are shot by three 

cameras whereas offline video is accessed from a local hard drive. 

In both cases, encoded bit stream is sent over a wired connection 

and played back by laptop(s). The demonstrated HEVC coding 

speed is over three times as fast as that of a pure software solution. 

Keywords— High Efficiency Video Coding (HEVC); real-time 

intra coding; 4K; Kvazaar; field-programmable gate array (FPGA) 

I.  INTRODUCTION 

The explosive growth of live Internet video arouses a need 
for efficient real-time video compression. The latest video 
coding standard, High Efficiency Video Coding (HEVC/H.265) 
[1], brings about significantly higher coding efficiency but at the 
cost of substantially increased coding complexity over that of 
earlier standards. Therefore, implementing a real-time HEVC 
encoder with a reasonable coding efficiency requires efficient 
encoder optimizations and powerful computing platforms.  

This work focuses on the all-intra (AI) coding configuration 
of HEVC Main Profile. The setup is built on Kvazaar HEVC 
encoder [2] that is shown to be the fastest fully-fledged open-
source implementation for AI coding [3]. Our recent work [4] 
shows that a pure software implementation of Kvazaar is able to 
attain 4K30p coding speed on a 22-core 2.2 GHz Intel Xeon E5-
2699 v4 processor. This demonstrator setup more than triples the 
coding speed attained in [4] by accelerating the same processor 
with two Altera Arria 10 FPGA cards connected via PCIe buses.  

II. SETUP FOR KVAZAAR 4K100P HEVC ENCODING 

Fig. 1 depicts the demonstrator equipment showcased to the 
visitors. The implementation details of Kvazaar encoder are 
given in [5] on Nokia AirFrame Cloud Server which is, 
however, replaced by a more compact workstation in this 
demonstrator setup. 

In the case of live streaming, three Sony FDR X1000V 4K 
action cameras are used to shoot three 4K (3840×2160) streams 
at 30 frames per second (fps). These raw feeds are captured by 
Epiphan AV.io HDMI capture cards and converted by three 
FFmpeg instances from RGB to YUV 4:2:0 format. Three 
Kvazaar instances encode the converted YUV streams in real-
time on a FPGA-accelerated Xeon E5-2699 v4 processor. The 
encoded HEVC bit streams are then encapsulated by three 
FFmpeg instances to MPEG-2 TS format and sent over the 

Ethernet cables to three Asus VivoBook Pro 15 laptops for 4K 
playback. The average bit rate is ca. 21 Mb/s per stream. 

In the offline case, a single YUV 4K100p video is read from 
a local hard drive, encoded by a single Kvazaar instance at 100 
fps, converted to TS, and sent to Asus laptop for playback (with 
the frame rate limited to 60 fps). 

The demonstrator seeks to make the visitors understand the 
stringent requirements of live 4K HEVC encoding. The visitors 
can monitor Xeon CPU usage and Kvazaar coding statistics in 
real time. They can also move cameras to see how the texture 
of the video affects the bit rate and CPU load. 
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Fig. 1. Demonstration setup for Kvazaar live 3×4K30p HEVC intra coding. 
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Abstract—This paper presents a novel approach to 

accelerate, distribute, and manage video encoding services in 

large-scale cloud systems. A proof-of-concept application is 

Kvazaar HEVC intra encoder, whose functionality is 

partitioned between FPGAs and processors. Typically, only 1-2 

FPGA boards can be attached per cloud server, which severely 

limits the flexibility of the cloud systems. Our solution is based 

on Software Defined Networking (SDN), in which practically 

any number of FPGAs and servers can be deployed. The system 

features a resource manager that is responsible for allocation, 

deallocation, and load balancing of resources upon service 

requests or changes in network infrastructure. Our prototype 

cloud system is composed of three Intel Xeon servers, two HP 

SDN switches, and two Intel Arria 10 FPGAs. The servers and 

FPGAs have 20GbE and 40GbE connections to the SDN 

switches, respectively. The prototype system can encode two 4K 

HEVC streams at 60 fps and the performance is predicted to 

scale almost linearly with the number of servers and FPGAs. 

Keywords— High Efficiency Video Coding (HEVC), Kvazaar 

HEVC encoder, field-programmable gate array (FPGA), 

Software-defined networking (SDN), High-level synthesis (HLS) 

I. INTRODUCTION 

Video coding, deep neural networks, and data analytics are 
the main drivers of hardware acceleration in cloud computing. 
Kvazaar HEVC intra encoder has been previously accelerated 
on a field-programmable gate array (FPGA) [1], [2] using 
High Level Synthesis (HLS) [3], [4] and 4× increase in coding 
speed was obtained with two FPGAs. However, the FPGA 
boards were connected to the server via the PCIe bus, which 
limits the number of FPGAs per server. Moreover, PCIe 
FPGA cards cannot fully act as independent computing nodes.  

In this work, our ultimate goal is to deploy flexible 
combinations of servers and FPGAs, so that the same FPGA 
can be shared by many servers and vice versa. In addition, 
FPGA acceleration should act as a microservice for as easy 
deployment as software resources in cloud computing. The 
challenge is that implementing a full protocol stack for 
communication and application abstraction on an FPGA takes 
a major portion of the FPGA resources. Hence, it introduces 
too much overhead for an application. Our solution is to 
offload most of the network functionality from the FPGA by 
using software-defined networking (SDN), in which any data 
flow is programmable and the network interface can be at very 
low level [5]. Our main contributions are listed below: 

• Dynamic resource allocation for HEVC encoding services 

on a changing setup of software and hardware resources 

• Usage of SDN for offloading most network functions from 

the FPGA 

• An advanced partitioning scheme for sharing execution 

between servers, FPGAs, and SDN switches  

• HLS implementations for the network interface, control, 

and HEVC accelerator logic 

• A prototype system implementing real-time 4K HEVC 

intra encoder 

This paper is organized as follows. Section II considers the 
related work. Section III presents the proposed system 
consisting of Kvazaar FPGA accelerators, servers, and SDN 
switches. It also describes how the proposed resource manager 
and SDN are used to dynamically distribute HEVC encoding 
services between software and hardware resources. Section IV 
analyses the performance of the proposed system. Section V 
concludes the paper. 

II. RELATED WORK 

The mainstream approaches for cloud FPGA acceleration 
are based on PCIe boards that are attached to the host server 
[6]-[9] or connected via Ethernet [10]-[12]. However, the host 
PCIe was still needed in [10] and all server traffic was routed 
through an FPGA making it even more tightly coupled to a 
server than in the other proposals. In [11] and [12], a complete 
network interface was implemented on an FPGA, so the full 
FPGA independency was attained at the cost of FPGA area. 

For the time being, several HEVC encoders have been 
implemented on an FPGA [1], [2], [13]-[16], but none of them 
have utilized network interfaces between the processor and 
FPGA logic. To the best of our knowledge, this is the first 
paper that addresses fully independent FPGAs and servers in 
video encoding acceleration. 

  
Fig. 1. Snapshot of the server rack. 

 



III. PROPOSED SYSTEM PARTITIONING  

Fig. 1 and 2 show a snapshot and the corresponding 
network structure of our prototype cloud system, respectively. 
Table I tabulates the component specifications for Fig. 2. The 
SDN controller manages connections between the servers and 
FPGAs by modifying data flows in SDN switches. Each 
FPGA is connected to an SDN switch via one 40 Gigabit 
Ethernet (40GbE) link and each server with 2×10GbE links. 

A. Server Interfacing 

In the proposed system, the servers use Linux operating 
system, e.g., CentOS or Ubuntu. Each server has two 10GbE 
SFP interfaces, which are configured to use IEEE 802.3ad 
Dynamic link aggregation (802.3ad, LACP) that combines the 
interfaces into a single load-balanced logical link with an 
effective bandwidth of 20GbE. As the proposed system 
operates on Ethernet frames, the criteria for load balancing are 
derived from the source and destination MAC addresses and 
the Ethernet type. 

Because the proposed system utilizes the data link layer 
(layer 2), there are no built-in reliability mechanisms available 
with Ethernet frames. Therefore, the CPU and FPGA keep 
track on how many packets need to be received and sent for 
each coding tree unit (CTU) [20] in HEVC encoding. A lost 
packet causes a timeout and the same data is then re-sent to 
the FPGA for re-encoding. Using the IPv4 and UDP protocols 
from the network and transport layers (layer 3-4) would add 
some overhead in data rates and FPGA design complexity, but 
it would make it possible to send packets over different LANs. 
Wrapping the CTU payload inside the UDP packets would 
allow inclusion of UDP ports in the criteria for load balancing. 
These aspects will be addressed in the future.  

B. FPGA Interfacing 

Fig. 3 depicts the network interface on the FPGA. It 
includes Intel 40G Ethernet IP block and our own 
implementations of RX/TX Parsers and ETH Writer modules. 
The RX Parser decodes the Ethernet frames, ensures that the 
incoming frame is valid, and configures the correct accelerator 
instance. The TX Parser is responsible for generating the 

Ethernet headers, gathering the payload, and controlling the 
ETH Writer. The frame size and the number of Ethernet 
frames generated per CTU are configurable. Implementing 
these three modules in C and using Catapult-C HLS tool [21] 
simplified the design process on FPGA and lowered the bar 
for design iterations over the corresponding approaches with 
VHDL or Verilog. With HLS, these blocks could also be 
easily modified for any accelerator usage. 

The RX and TX parsers utilize a look-up-table for MAC 
addresses to identify which server sent the CTU for encoding. 
This way, the server MAC address can be translated and the 
results are sent back to the correct server. This approach also 
allows multiple servers to use the same FPGA at the same time 
and all results are forwarded back correctly. Fast FIFO 
memories compensate for differences in data widths and rates 
between the physical 40G Ethernet IP and our FPGA logic.  

C. Kvazaar Cloud FPGA Accelerator 

The execution of Kvazaar encoding is partitioned between 
CPUs and FPGA accelerators. First, the CTU structures of a 
video frame are initialized by the CPU and sent to the 
accelerator which implements most of the coding tools. Only 
the final steps, context-adaptive binary arithmetic coding 
(CABAC) and video stream construction, are left for the CPU. 
The implementation supports Kvazaar ultrafast preset [22] 
detailed in Table II.  

A block diagram of the accelerator architecture is also 
shown in Fig. 3. The core component is the Kvazaar HEVC 
intra coding unit [1], [2], which was implemented with 
Catapult-C HLS tool from Kvazaar [23] open-source C code. 
Altogether, three accelerator instances (Acc0, Acc1, and Acc2) 
can be placed on a single Arria 10 FPGA. Each accelerator is 
able to process up to 16 CTUs in parallel. Software parts of 
the encoder can be executed on any server running Linux.  

  
Fig. 2. Prototype cloud system.  

 

 

TABLE I. CLOUD SYSTEM SPECIFICATIONS

 

Device Type CPU Memory

Server1 HP Server Xeon E5-2630 96GB

Server2 Nokia Airframe Cloud server [17] Xeon E5-2680v4 256GB

Server3 Nokia Airframe Cloud server [17] Xeon E5-2680v3 256GB

Switch1 HPE FlexFabric 5900AF 48G 4XG 2QSFP+ - -
Switch2 HP Switch 5406Rzl2 - -
FPGA1 Intel Arria 10 GX FPGA Dev Kit [18] - -
FPGA2 Intel Arria 10 GX FPGA Dev Kit [18] - -
Controller HP VAN SDN Controller [19] - -

TABLE II. KVAZAAR INTRA CODING SETTINGS 

  

 

Feature [20] Kvazaar parametrization

Coding unit sizes 16×16, 8×8

Prediction unit sizes 16×16, 8×8

Transform unit sizes 16×16, 8×8

Intra prediction modes 35 (DC, planar, 33 angular)

Parallelization

Sample adaptive offset Disabled

Sign bit hiding Disabled

RD optimized quantization Disabled

Transform skip Disabled

Quantization parameter 22

Wavefront parallel processing 

Picture-level

Fig. 3. Proposed FPGA accelerator architecture. 



D. SDN 

The SDN-controlled switches make it easy to connect the 
FPGAs to the network. As the data flows are automatically set 
by the resource manager, the FPGA does not need to support 
a full set of Internet protocols. Different FPGAs are identified 
by their MAC addresses, which is sufficient for routing the 
packets correctly. For example, when the SDN controller sees 
a MAC address assigned to a certain FPGA, it routes all 
associated packets to it. The data from the FPGA is routed 
back to the server when the source refers to the FPGA and the 
destination is the MAC address of the server. 

E. Dynamic Resource Allocation Manager 

Fig. 4 shows a message sequence chart of how our 
dynamic resource allocation is used for an HEVC encoding 
service. First, a Kvazaar HEVC encoding service is started by 
a user request. The resource manager collects all the needed 
network components including devices, switches, and 
connections from the database. Then, it creates a network 
graph and defines the most economical paths for the 
components, e.g., the shortest paths from a video source to a 
server and from the server to an FPGA. The same server and 
FPGA can be allocated multiple times to different services, 
but by monitoring the resource usage, the manager tries to 
optimize resource utilization for the best performance.  

The manager also supports prioritization of services. 
Encoding speeds can thus be balanced by giving higher 
resolution videos a higher priority in FPGA acceleration. 
When a higher priority service is invoked and no FPGAs are 

available, the manager moves the execution of a lower priority 
service from the FPGA to the CPU, as shown in Fig. 4 with 
the option (1). 

After the manager has allocated the needed resources, it 
sets the necessary SDN flows by using the API of the SDN 
controller. For example, in Fig. 2, Server1 can access the 
FPGA2 connected to a different switch by using their original 
MAC addresses, without any Address Resolution Protocol 
(ARP) messages. After the setup is ready, the manager uses 
POST messages to inform the resources to start the service, 
maybe with some additional configuration information (e.g., 
IDs and encoding parameters). 

The manager brings robustness to the encoding process, 
e.g., the system is able to recover from FPGA removal. When 
an FPGA is switched off, the manager automatically switches 
the services from the removed FPGA to a CPU and starts 
checking equivalent replacements for the removed FPGA. 
This is illustrated in Fig. 4 by the option (2). Switching an 
encoding service from FPGA to CPU takes around one second 
due to the implemented encoder timeouts. Instead, switching 
between FPGAs and from CPU to FPGA take place 
instantaneously. 

After a service is completed, the manager deallocates the 
resources in use. If an FPGA is deallocated, it is automatically 
assigned to the next service having no assigned FPGA, as 
described in Fig. 4 with the option (3). The reallocation favors 
services with the highest priority and the longest running time 
on a CPU.  

  
Fig. 4. Message sequence chart of dynamic resource allocation for a HEVC encoding service. 

 



IV. PERFORMANCE ANALYSIS 

Table III reports the performance results for Kvazaar 
HEVC encoder on three different platforms: 1) CPU-only; 2) 
CPU with a single PCIe FPGA card [2]; and 3) the proposed 
prototype cloud system containing a single CPU and FPGA. 
For fair comparison, the resources of the cloud setup are 
unified with that of the PCIe approach. Furthermore, all these 
setups use an equivalent Intel Xeon CPU and the latter two 
equivalent Arria 10 FPGA for acceleration. 

According to our results, the proposed cloud approach 
speeds up HEVC encoding by 1.5-2 fold over that of the CPU-
only case. However, the average coding speed of our proposal 
is around 9 fps slower than that of the PCIe approach. There 
are three reasons for the slowdown: the usage of a 20Gbps 
Ethernet link in place of a 32Gbps PCIe bus, the overhead of 
Ethernet packets, and reduced parallelism due to longer 
waiting times of Ethernet frames. Nevertheless, our proposal 
is still able to encode 4K resolution test videos at 60 fps. 

It is notable that the average frame latency with the fiber 
connection is around 40% higher than that of the PCIe bus. On 
the other hand, the Ethernet interfacing still has 31% smaller 
average frame latency than with CPU-only encoding. The 
CPU utilization is nearly the same in the cloud and PCIe 
approaches. Both solutions accelerate HEVC encoding and 

still use around 50% less CPU resources than the CPU-only 
case. 

The proposed system is able to encode 4K video at 90 fps 
with two FPGAs and a single server (Fig. 2). In this case, the 
maximum speed is limited by the 20GbE connection. 
Alternatively, our system can encode two 4K sequences at 60 
fps with two servers and two FPGAs. Using 40Gbps network 
cards on the servers in place of 2×10GbE would remove this 
limitation and provide smaller latency as well as faster 
encoding speed. However, acquiring these network cards is 
left for the future.  

The system also appears to be robust, as Kvazaar 
execution can be switched between CPUs and FPGAs on the 
fly depending on the resource availability. This means, in 
practice, that the system can switch an encoding process 
between FPGA accelerators and recover from an FPGA 
removal, all without interrupting the encoding process. These 
features are visualized in [25]. 

Despite the minor performance penalty, the fiber 
connected FPGAs allow much better scalability than the 
dedicated PCIe-based approach. For example, both 
approaches would need three Kvazaar accelerator instances on 
FPGA for 4K60p encoding, but only the cloud approach is 
able to attain the same speed with three smaller FPGAs, each 
having a single accelerator instance.  

The proposed dynamic resource allocation and 
partitioning scheme leaves lots of room for further 
performance scaling. Fig. 5 predicts the total encoding 
performance of differently scaled up systems with the 40GbE 
links in servers. For example, the graphs show equal 
performance for the systems composed of 16 servers or 4 
servers with 8 FPGAs. A high-end system with 16 servers and 
32 FPGAs has potential to encode 64 HEVC streams at 4K30p 
or 16 streams at 4K120p simultaneously. 

V. CONCLUSION 

This paper presented an automated approach for managing 
services with a lightweight framework that connects multiple 
servers and FPGAs in an SDN based cloud. The combination 
of a dedicated resource manager and SDN makes it possible 
to have practically any number of independent FPGAs on the 
network without wasting FPGA resources for communication 
and application abstraction.  

Instead of using complicated network protocols, the 
proposed system uses the SDN controller and SDN switches 
for routing data. A dedicated SDN controller allows scaling 
the network to a large-scale cloud infrastructure without 
losing the speed and connectivity of a small network.  

The proposed system was also validated in practice with a 
proof-of-concept real-time 4K HEVC encoder 
implementation. It was shown to attain near the same speed as 
the previous PCIe equivalent implementation but with much 
better scalability and robustness. 

TABLE III. PERFORMANCE OF KVAZAAR HEVC INTRA ENCODER ON CPU, CPU + PCIE FPGA CARD [2], AND THE PROPOSED SYSTEM (CPU + FPGA)  

   
 

CPU only PCIe Proposed CPU only PCIe Proposed CPU only PCIe Proposed

Beauty 31 70 60 49 24 33 94 56 60

Bosphorus 43 70 62 33 18 25 94 33 35

HoneyBee 34 70 61 41 19 27 96 49 48

Average 36 70 61 41 20 28 95 46 48

Sequence [24] 

(2160p)

Avg. frame latency (ms) CPU utilization (%)Speed (fps)

 
Fig. 5. Predicted encoding performance with differently scaled setups. 
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Abstract—This paper describes a demonstration setup to 

visualize dynamic resource allocation for real-time HEVC 

encoding services in FPGA-accelerated cloud. The 

demonstrated application is Kvazaar HEVC intra encoder, 

whose functionality is partitioned between FPGAs and 

processors. During the demonstration, several encoding services 

can be invoked with requests to the resource manager, which is 

responsible for allocation, deallocation, and load balancing of 

resources in the network. The manager provides JSON data to 

the visualizer, which uses D3 JavaScript library to visualize 1) 

the physical network structure; 2) running services; and 3) 

performance of the network elements. This interactive 

demonstration allows users to request new video streams, view 

the encoded streams, observe the visualization of the network 

and services, and manually turn on/off resources to test the 

robustness of the system. 

Keywords— Data Center processing, High Efficiency Video 

Coding (HEVC), Kvazaar HEVC encoder, Field-programmable 

gate array (FPGA), Software-defined networking (SDN) 

I. INTRODUCTION 

The rapidly increasing popularity and complexity of video 
coding, deep neural networks, and data analytics call for 
hardware acceleration in cloud computing. In the mainstream 
cloud computing systems, field-programmable gate array 
(FPGA) acceleration is typically implemented by PCIe cards 
attached to host servers [1], [2]. However, this approach ties 
the number of FPGAs to the server counts.  

We solved this limitation by connecting FPGAs to servers 
via fiber and letting FPGAs act as independent nodes. We also 
replaced the full protocol stack implementations on the 
FPGAs with Software-Defined Networking (SDN). The SDN 
approach enables sharing any FPGA with any server through 
programmable data flows. The proposed system makes use of 
a proactive resource manager that dynamically switches 
between available software and hardware resources, without 
breaking up the live video stream.  

II. DEMONSTRATION SETUP 

Fig. 1 shows our cloud architecture. It consists of three 
Xeon servers, two Intel Arria 10 FPGAs, and two HP SDN 
switches with HP VAN SDN Controller. The network 
components are specified in Table I.  

Fig. 2 illustrates the demonstration setup. The prototype 
cloud is physically located at Tampere University (Fig. 2 (a)) 
and it is accessed over the network via VPN in the 
demonstration. A laptop (Fig. 2 (b)) is used for displaying the 
visualization interface, user interaction, and video playback. 

The demonstrated application is Kvazaar HEVC encoder 
[3] which can be executed as a CPU-only service or it can be 
partitioned between CPUs and FPGA accelerators [4], [5]. 
Kvazaar is a standard software encoder [6] written in C and its 
hardware accelerator is implemented with Catapult-C high-
level synthesis tool [7] from the C code. The inputs for all 

demonstrated encoding services are raw video files with 
different resolution. The output is in HTTP Live Streaming 
(HLS) format, which is decoded in live playback.  

III. RUN-TIME VISUALIZER 

The visualizer is written in JavaScript using D3 library. It 
gets input data in real time in JSON format from the manager. 
The visualizer illustrates dynamic deployment of HEVC 
encoding tasks in run time. It can work with an arbitrary set of 
resources and with varying number of encoding services. 

The physical view of the network is shown in Fig. 2 (c). 
The symbols correspond to the device type and the server 
symbol size to the number of CPU cores. The physical view 
also shows 1) the CPU load graph inside the server symbol; 2) 
details as tooltips; and 3) connection bandwidth with changing 
line width. The services are shown in Fig. 2 (d) by dividing 
them as input sources, software (Kvazaar_HEVC) and 
hardware (Kvazaar_HEVC_acc) encoding services, and 
output destinations. Encoding speeds and bitrates are also 
shown for every service.  

During the demonstration, existing computing resources 
can also be manually removed to see how the network self- 
organizes without breaking up video streaming. This can be 
seen from the visualization in real time. 

 
Fig. 1. Prototype cloud system 

 
TABLE I. CLOUD COMPONENT SPECIFICATIONS 

 

Device Type CPU Memory

Server1 HP Server Xeon E5-2630 96GB

Server2 Nokia Airframe Cloud server [8] Xeon E5-2680v4 256GB

Server3 Nokia Airframe Cloud server [8] Xeon E5-2680v3 256GB

Switch1 HPE FlexFabric 5900AF 48G 4XG 2QSFP+ - -
Switch2 HP Switch 5406Rzl2 - -
FPGA1 Intel Arria 10 GX FPGA Dev Kit [9] - -
FPGA2 Intel Arria 10 GX FPGA Dev Kit [9] - -
Controller HP VAN SDN Controller [10] - -



IV. CONCLUSION 

Our system with fiber connected FPGAs provides a new 
microservice based approach for hardware accelerated video 
encoding services in the cloud. This paper described a setup 
to demonstrate the basic operating principles of our proposal. 
In the demonstration, a special attention is paid to dynamic 
resource allocation for HEVC encoding services, switching 
service execution between CPUs and FPGAs, recovering from 
changes, and scalability of our architecture. The visualizer 
offers a real-time view of the available resources, running 
services, and performance. 
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1 INTRODUCTION 

Proliferation of media applications, omnipresent connectivity, and immersive extended reality (XR) technologies 

foster the phenomenal growth of video traffic, which is estimated to account for 82% of all global IP traffic by 

2022 [1]. The latest widespread MPEG/ITU-T video coding standard, High Efficiency Video Coding 

(HEVC/H.265) [2], [3], mitigates this growth by reducing the transmission and storage needs of modern video 

applications. HEVC halves the bit rate over the preceding Advanced Video Coding (AVC/H.264) [4] standard 

for the same subjective visual quality, but typically at the cost of considerable computational complexity 

overhead in practical encoders. Therefore, the deployment of HEVC calls for powerful implementations, which 

are able to tackle its computational complexity with acceptable coding efficiency and power budget. 

Multithreading and single instruction multiple data (SIMD) are commonly used optimization techniques in 

software (SW) HEVC encoders [5]-[7]. Further speedup and lower power dissipation are typically sought by 

offloading compute-intensive coding tools to hardware (HW) accelerators or implementing the entire HEVC 

encoder on HW [8]-[37]. However, HW design is traditionally very time-consuming, so the efficient development 

of modern video encoders calls for automated and agile design methodologies, efficient encoder optimization 

techniques, and specialized high-performance computing platforms. Our work addresses these requirements 

by using: 1) high-level synthesis (HLS) [38] as a design methodology, 2) a fully-fledged practical Kvazaar SW 

HEVC encoder [5] as a design entry point, and 3) a heterogeneous combination of general-purpose CPUs and 

field-programmable gate array (FPGA) accelerator cards as an underlying HW platform. 

Our primary motivation is to implement a real-time 4K HEVC intra encoder that is easily customizable for 

different media applications and scalable for different performance requirements. To this end, we propose to 

use Catapult HLS tool [39] that can automatically generate register-transfer level (RTL) code from C/C++ code. 

Thus, there is no need to manually rewrite the existing source code of Kvazaar to traditional hardware 

description languages (HDLs) like VHDL and Verilog. HLS has been reported to provide 4-6 times increase in 

productivity [40], mainly because the behavioral code is more readable, design and verification times are 

shorter, and the design reusability is far better over that of handwritten HDL. This work focuses on the all-intra 

(AI) [41] coding configuration of HEVC Main Profile but the proposed design approach can be applied to other 

HEVC profiles or video codecs as well. 

Unlike prior art, our HEVC encoder is completely implemented with HLS, i.e., the use of HLS is not only 

limited to data-intensive algorithms like HEVC intra prediction (IP), discrete sine/cosine transform (DST/DCT), 

quantization (Q), inverse Q (IQ), inverse DST/DCT (IDST/IDCT), and reconstruction, but it is also applied to 

control-intensive tools such as intra search control and context-adaptive binary arithmetic coding (CABAC). 

Even though all design decisions in this work have been taken from the perspective of using HLS for efficient 

FPGA implementations, HLS would also allow us to use the same Kvazaar source code to generate optimized 

RTL for application specific integrated circuit (ASIC) implementations, but this is beyond the scope of this paper. 

The rest of the paper is organized as follows. Sections 2 and 3 provide an overview of HEVC intra coding 

and the related work. Section 4 gives the motivation and rationale for selecting HLS as the proposed design 

methodology for fast HEVC encoder development and prototyping on FPGA. Section 5 presents the system-

level architecture and HW/SW partitioning scheme for the proposed intra HEVC encoder. The main HW 

components, the Intra Search Core and CABAC Core, are detailed in Section 6 and Section 7, respectively. 

Section 8 evaluates the performance of our proof-of-concept prototype system and compares it with prior art. 

Finally, Section 9 concludes the paper. 
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2 OVERVIEW OF HEVC INTRA CODING 

HEVC adopts the conventional hybrid video coding scheme (inter/intra prediction, transform coding, and entropy 

coding) [3] from the prior MPEG/ITU-T video coding standards. As a new feature, the coding structure of HEVC 

has been extended from the traditional macroblock concept to an analogous block partitioning scheme with four 

different logical units: coding tree unit (CTU), coding unit (CU), prediction unit (PU), and transform unit (TU). 

For 4:2:0 color format, each of these consists of one luma and two chroma blocks that cover the corresponding 

block areas: coding tree blocks (CTB), coding blocks (CB), prediction blocks (PB), and transform blocks (TB). 

This new coding structure is the primary factor for the HEVC coding gain, but it also introduces majority of the 

computational overhead over its predecessors. 

Each raw input video frame is partitioned into CTUs [42]. A CTU represents a root node of the quadtree and 

it can be up to 64 × 64 pixels at quadtree depth 0 (h = 0). It can be recursively split into four smaller square CUs 

until the maximum hierarchical depth (hMAX) of the quadtree is reached. The size of the CTU can be defined as 

2NMAX × 2NMAX, where NMAX ∈ {8, 16, 32} and the size of a CU as 2N × 2N, where N ≤ NMAX and N ∈ {4, 8, 16, 

32}, so NMIN = 4 and hMAX = 4. Each CU in the CTU is predicted and transformed individually. In intra coding, 

PUs and TUs are the same size as the parent CU, unless they are split further. For example, the smallest 8 × 

8 CU can be split once into four 4 × 4 -pixel PUs whereas TUs can be split recursively until the minimum size 

of 4 × 4. 

Actual block coding starts with a prediction phase, where an estimate of an image is generated by using 

predefined prediction methods. Intra prediction compresses blocks of a picture by exploiting its spatial 

redundancy. The prediction is subtracted from the original source image to generate a residual image. 

Transform coding transforms the residual image from spatial domain to frequency domain coefficients. In 

frequency domain, high-frequency components of the video can be removed with quantization without 

significant quality loss since human eye is less sensitive to the high-frequency components.  

In the last phase, the quantized transform coefficients and prediction modes are entropy coded to generate 

an encoded bitstream. In this step, the video signal is reduced to a series of syntax elements that contain 

properties of the blocks, including prediction modes, quantization parameters, transform coefficients, filter 

modes, and all other parameters required to describe how the video signal should be reconstructed by the 

decoder. These elements are ordered and compressed to generate an encoded video bitstream. Entropy coding 

method in HEVC is called CABAC, which is a lossless compression technique based on arithmetic coding. The 

compression is achieved by utilizing statistical properties of symbols, i.e., more frequent symbols are coded 

with less bits and less frequent symbols with more bits. 

The encoding loop also includes decoder-side functionality such as IQ and IDCT phases, where quantized 

transform coefficients are dequantized and transformed back to the spatial domain. This generates a 

reconstructed version of the residual image that is added to the prediction to generate the final reconstructed 

image. In Intra HEVC encoders, reconstructed images are needed in the intra prediction phase, where spatially 

adjacent pixels are used to generate the predictions. Furthermore, reconstructed pictures correspond to the 

images generated and displayed by the decoder so they can also be used to measure the error introduced by 

compression. 
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3 RELATED WORK 

Since the advent of HEVC, a plethora of HW accelerators or complete HW encoders have been designed for it 

on FPGAs and ASICs. However, to the best of our knowledge, none of the existing HLS approaches [8]-[22] 

implemented a complete HEVC encoder but only individual HEVC coding tools. Furthermore, all of them only 

addressed data-intensive coding tools and passed over CABAC and other control-intensive parts. 

3.1 Existing high-level synthesis approaches for HEVC 

In the literature, HLS implementations have been presented for HEVC intra prediction [8]-[11] , DCT [12], IDCT 

[13], and interpolation [14]-[16]. HLS has also been applied in HEVC decoding [17] for intra prediction, 

dequantization, and inverse transformation. Our own HLS implementations for HEVC encoding are presented 

in [18]-[22]. These include intra prediction, DCT/DST, IDC/IDST, and two earlier versions for intra search 

acceleration, respectively. 

3.2 Existing HEVC encoders on HW 

Commercial HW encoders have been unveiled for HEVC, e.g., by NVIDIA (NVENC) [23], Xilinx (LogiCORE IP 

H.264/H.265 Video Codec Unit) [24], VITEC (e.g. MGW Ace Encoder) [25], ORIVISION (e.g. ZY-EH901) [26], 

and AJA (Corvid HEVC) [27]. However, the publicly available information of these confidential solutions tends 

to be limited so only academic works are considered in this paper. The existing academic HW HEVC encoders 

can be found in [28]-[37]. These can be categorized as: 1) FPGA implementations [28], [29], [32]; 2) FPGA/ASIC 

implementations [30], [31], [36]; and 3) ASIC implementations in [33]-[35] and [37]. All these implementations 

are characterized in detail in Section 8, where the performance of our proposal is compared with them. 

 

Figure 1: HLS design flow. 
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4 METHODOLOGY  

HLS seeks to improve productivity over traditional design methods by increasing design abstraction from RTL 

to behavioural level [38], [44], [45]. Various commercial HLS tools have been available on the market since the 

1990s, but only recently they have started to gain adoption in the industry and academia [43]. The slow adoption 

rate has mainly stemmed from lower quality of results (QoR) than obtained with conventional HDL approaches. 

However, the latest HLS tool generations have substantially narrowed the QoR gap. 

4.1 Motivation for high-level synthesis 

Figure 1 depicts the conceptual diagram of the HLS design flow. The HLS tool accepts and compiles the 

algorithmic (behavioural) specification of the system, which is most often written in C/C++ or SystemC. The 

user specifies the target technology and provides micro-architectural constraints, such as directives for loop 

pipelining/unrolling and mapping of arrays to registers or memories. The HLS tool allocates the HW resources 

required by the specification, creates state machines, schedules the operations, and binds the operations to 

physical resources specified in the target technology library. Clock and reset are inserted by the HLS tool as 

per the designer’s choice for the target clock frequency and type of reset. The generated structural RTL 

architecture description in VHDL or Verilog can then be used in the downstream logic synthesis SW, both for 

FPGA and ASIC designs. 

In this work, we selected HLS over manual RTL coding for the following reasons: 

1) Application suitability. HEVC coding is mostly a data-intensive process with relatively simple control 

structures. HLS has traditionally worked well with data-intensive designs, whereas implementing clock 

accurate control structures has been more challenging due to the lack of explicit time information in 

behavioural source code [44], [45]. However, our previous work [46] showed that even more demanding 

control structures can be described with the latest HLS tools. This motivated us to implement HEVC entropy 

encoding and all other control-intensive coding tools of HEVC with HLS. Moreover, even the recursive 

HEVC quad-tree coding structure can be implemented with HLS because the level of recursion is known 

at compile time. 
2) Algorithm and system architecture optimizations outperform micro-architectural optimizations. 

Engineering hours should be spent where more gains can be reaped. Because of the immense complexity 

of HEVC, optimizing HEVC algorithm mapping to HW is encouraged. As the HEVC standard only defines 

the decoding process, there are several degrees of freedom to optimize nonnormative HEVC encoding 

tools. This leaves many design choices open at system level. By adopting HLS over RTL, most of the 

design effort can be concentrated on the system architecture, which tends to provide higher performance 

gains than optimizing the micro-architectures.  

3) Agile design-space exploration (DSE). DSE refers to the systematic search of the pareto-optimal 

solutions with different performance-area trade-offs. In HLS, this can be as straightforward as choosing 

different loop unrolling/pipelining options in the graphical user interface or by embedding pragmas in the 

code. This is significantly faster than with hand-written RTL, where implementing each candidate solution 

requires extensive rewriting of the code. In practice, a comprehensive DSE cannot be even conducted with 

conventional HDL approaches, but the optimal micro-architecture needs to be calculated before actual 

implementation, which is a non-trivial task. 
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4) Reduced verification effort. Verification is one of the most time-consuming phases of any digital system 

project [47]. HLS boosts the verification process significantly as it allows verifying the automatically 

generated RTL code against the behavioural source code. In practise, the same testbench can be used to 

verify the functional correctness of the algorithm and the generated RTL code. 

5) Platform independency. HLS also shines in the ease of adopting new target platforms for the system. 

When a new platform is selected with the HLS tool, a new RTL code for it is re-synthesized from the same 

source code. In contrast, with custom RTL, code restructuring is needed, e.g., if the state machine is 

changed to meet new clock constraints or if more resource sharing is required due to the limited capacity 

of the new platform. 

6) Increased productivity. All previous advantages of HLS result in compelling productivity increase over 

custom RTL. Even though custom HDL approaches tend to achieve better performance with less 

resources, our recent literature survey [41] indicated that the average development time of an HLS project 

is only a third of that of the manual HDL project. The average productivity of HLS is also reported to be 

more than 4× as high in terms of the system performance with respect to the development time. In fact, our 

recent HLS implementations for HEVC algorithms [18]-[22] have achieved equivalent or even better 

performance than the respective works with hand-written RTL. 

  

Figure 2: Proposed HLS development framework. 
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4.2 Proposed HLS development framework 

Figure 2 illustrates the proposed development framework that is used to develop, verify, and deploy HLS 

implementations for HEVC coding. The Kvazaar C/C++ code is used as an input to the RTL code generation 

but also as a golden reference to verify the HLS implementation at both algorithmic and RTL levels. Constraints 

and features are defined in a separate specification document and they are used as input parameters for the 

HLS tool. The reference code can also be used as a fully functional SW implementation on an FPGA softcore 

CPU or on a server CPU.  

The HLS generated RTLs are synthesized for FPGA. On-chip memories and an interface IP-block for the 

external CPU are instantiated manually. A monitor PC is used to compile the FPGA image, deploy the image 

and softcore CPU program, and analyze the internal FPGA signals while debugging. 

The framework also allows both unit and system level testing. The unit testing is performed during the HLS 

flow by executing the testbench at algorithm and RTL levels. Most often only the algorithm level verification is 

needed, which is one of the largest benefits of HLS. Only some corner cases, e.g., type casting or vector 

overflows, might need verification between the RTL and algorithmic code. The same unit testing can also be 

performed on FPGA by generating the same test feed for the synthesized RTL on FPGA and the reference 

code on the softcore processor. In addition, a logic analyzer can be used to get a real-time view of signals on 

FPGA like in RTL simulation. The content of the memories, connected via Avalon bus, can also be validated 

with the softcore processor.  

For system level verification, multiple independently verified RTL codes can be connected at top level. The 

process for verifying the created system is similar as that for a single unit. The corresponding reference codes 

are run on the softcore processor, a test feed is generated for the system, and the results are cross checked. 

The HW and SW co-processing also enables compilation time optimizations. As the system under verification 

becomes larger, the compilation time unavoidably increases. For testing purposes and faster compilation times, 

part of the HW system functionality can be replaced by executing the equivalent reference code on the softcore 

processor. This substitution allows the whole system to be executed on FPGA but does not necessary mean 

that the whole system is running on dedicated HW. 

The PCIe connection between the FPGA and external CPU is not necessary for the FPGA development but 

it enables offloading processing from the CPU to the FPGA. The CPU driver development can be started even 

before the RTL synthesis, because the verification of CPU-FPGA interfacing can be conducted by running the 

whole system on the softcore processor.  

The tools used in the design flow include: 

1) Catapult Ultra Synthesis 10.5a for HLS; 

2) ModelSim SE 10.6c for RTL simulation;  

3) Quartus Prime 20.1.0 Standard edition including Signal Tap Logic Analyzer for FPGA synthesis 

(compilation), programming (deployment) and logic analyzing; 

4) Eclipse IDE for C/C++ Developers 4.5.2 for programming the softcore CPU; and 

5) Linux OS (Ubuntu) for developing the external CPU driver. 
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5 PROPOSED ARCHITECTURE FOR INTRA HEVC ENCODER  

Figure 3 presents the system architecture of the designed Intra HEVC encoder. The underlying SW/HW platform 

is composed of a server CPU and practically any number of FPGAs. Each FPGA is connected to a server over 

a network switch using 40 Gigabit Ethernet (40GbE) link or directly via a PCI Express (PCIe) gen3 x4 bus. 

The server runs Linux OS, e.g., CentOS or Ubuntu, and the processing is partitioned into user and kernel 

spaces. Kvazaar [5] is run in the user space, which can contain multiple Kvazaar SW encoder instances. A 

dedicated Linux-driver in the kernel space was developed to connect the Kvazaar SW instances to the FPGA. 

The driver can be shared between multiple Kvazaar instances, which allows parallel encoding of multiple video 

streams. The driver implements ioctl, read, and write system calls to provide Kvazaar with the data transfer 

functionality.  

A single FPGA board may accommodate one or multiple HW Intra encoder instances, depending on its 

capacity. Each encoder instance is further divided into three independent units called Intra Search Core and 

CABAC Core BTM, and CABAC Core TOP. 

The proposed system can be configured from SW-only encoding to pure HW encoding. On the server, encoding 

can be carried out with one or multiple Kvazaar SW instances in parallel. In HW encoding, functionality is 

partitioned between the server and FPGA(s) so that the server only takes care of 1) raw video input 

management; 2) HEVC stream initialization; 3) CTU parallelization; 4) offloading intra encoding task to FPGA(s); 

and; 5) reading the encoded CTU bitstream and related parameters from the FPGA.  

In the following sections, the individual HW components are described in detail. All our design decisions 

were taken from the perspective of using HLS with the FPGA technology. The described functionality follows 

the HLS code almost directly and shows how everything was implemented with it. Catapult supports hierarchical 

HLS code, but it was not extensively used as the compilation time increases with design complexity. Instead, 

  

Figure 3: System architecture of the proposed HEVC Intra encoder.  
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the architecture was split into logical parts that were compiled in separate projects and connected manually. 

Initial area, latency, and throughput reports of the HLS tool were used in DSE to find the design configuration 

(design partitioning, code structure, etc.) that meets area and performance requirements.  

Supporting iterative design process is one of the major strengths of HLS. Furthermore, the flow of data is 

controlled by IO stalling and handshake signals, which are generated by the HLS tool automatically. This allows 

the parallel operation and synchronization of independent units. HLS also makes it easier to deploy these 

components as stand-alone IP-blocks in other system setups.  

6 INTRA SEARCH CORE 

Figure 4 depicts the Intra Search Core that performs HEVC intra search at CTU level. It consists of three sub-

components: 1) Ctrl Unit for controlling the search, scheduling of parallel CTUs, and performing mode decision 

(MD) at CTU level; 2) Intra Prediction Unit for performing intra prediction and intra MD for PUs; and 3) Transform 

Unit for generating transform coefficients and reconstruction images for CBs.  

A single Intra Search Core instance can cache 16 individual CTUs to on-chip memories for parallel 

processing. Every processing stage of the encoding pipeline works on the basis of CTU IDs, so the usage of 

the pipeline can be scheduled between 16 CTU IDs. The respective degree of parallelism would not be possible 

in a single CTU processing without breaking the dependencies between adjacent blocks [42]. The core interface 

includes memory interfaces to on-chip memories and direct data transmission with handshake signals. The 

Intra Search Core uses a 190 MHz clock in the proposed system. 

The start signal and additional configuration data are provided for the Intra Search Core via the Intra 

Configuration channel. The configuration data consists of 1) CTU ID, with a value from 0 to 15; 2) depth limits 

for intra search, i.e., h = {1, 2, 3, 4}; 3) identification if the CTU is partially outside the frame; 4) quantization 

parameter (QP); and 5) a lambda value. 

6.1 Memories and configuration for CTU intra search 

The memories of the Intra Search Core are presented in Table 1. They are divided into 1) external memories, 

that are instantiated outside the Core, and are necessary for the CTU intra search process and search results; 

    
Figure 4: Top-level structure, interfacing, and connections of the Intra Search Core. 
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and 2) internal memories, which are used for logic optimization and adjacent CU storage during the intra search. 

The table also shows the sizes and instantiation counts of these memories. If several units need access to a 

specific memory, multiple identical instances of it are generated. All memories are designed for the CTU ID 

based intra search and can accommodate 16 CTUs. For example, dividing the Reconstruction memory of size 

98 304 bytes by 16 gives 6144 bytes per CTU, of which 64 × 64 = 4096 pixels are needed for the Y channel 

and ¼th of Y (1024 pixels) for both U and V channels in an 8-bit YUV420 format. 

The external memories used for the intra search results are the following. The Reconstruction memory stores 

the final reconstructed CTU that is used as a reference when processing adjacent CTUs. The Coeffs memory 

is used to store the final entropy encoding coefficients of HEVC. The CU info memory is for the information of 

the final CTU structure, including the selected intra mode, chroma mode, depth, transform skip flag, and coded 

block flag (CBF) of each CU. It is also accessed when processing adjacent CTUs. The CU info top and left 

memories contain the bottom and right CU configurations of the neighbouring top and left CTU. The information 

contains the intra mode and CU depths. The CABAC context (CTX), needed for rate–distortion optimization 

(RDO), is stored in CABAC CTX RDO memory. This is not the full CABAC context, but it only contains the 

values needed by the Ctrl Unit for CU cost calculations when optimizing the CTU structuring. 

Reference top and left memories store the reconstructed bottom and right pixels of neighbouring CTUs on 

top and left of the CTU in search. These pixels are used to generate the reference border pixels for intra 

prediction. The Reference pixels memory stores the original pixels of a CTU. It is used for calculating similarity 

between the original pixels and predictions. The internal memories are explained in the respective sections. 

Table 1: Memory name, location, size, and instances needed for a single Intra Search Core 

  

Name Location Bytes Instances

Reconstruction External 98 304 1

Coefficients (Coeffs) External 196 608 1

CU Info External 16 384 1

CU Info top External 256 1

CU Info left External 256 2

CABAC CTX RDO External 256 1

Reference top External 4 096 1

Reference left External 4 096 1

Reference pixels External 98 304 1

CU Info Internal 4 096 2

RDO Config Internal 88 1

Exec Config Internal 32 1

Instructions Internal 23 552 1

Instructions cache (Inst$) Internal 14 720 1

CTU Stack Internal 840 1

Coefficients (Coeffs) Internal 131 072 1

Reconstruction (Rec) Internal 65 536 1

Reconstruction left (Rec Left) Internal 2 048 1

Reconstruction top (Rec Top) Internal 2 048 1

Reconstruction top (Rec Top) Internal 2 048 1

Reconstruction left (Rec Left) Internal 2 048 1

Reconstruction top left (Rec TopLeft) Internal 8 192 1
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6.2 Intra search control (Ctrl Unit) 

The structure of the Ctrl Unit is depicted in Figure 5. It consists of seven sub-units: 1) CTU Initialization, 2) 

Scheduler, 3) Execution, 4) RDO, 5) Stack Push and 6) Pull, and 7) Reference Border units, of which, units 1 

to 4 belong to the Ctrl Core, and 5 and 6 to CU Stack. 

The Ctrl Core is responsible for controlling the intra search. The HLS workflow made us implement the intra 

search control like in a CPU, i.e., the search is divided into smaller units that are performed sequentially. This 

approach also improves configurability and scalability. The basic operations of the implemented instructions are 

listed in Table 2. 

The execution of these instructions is split into two parts. Some of the operations are performed in the 

Execution unit before the intra search pipeline and the rest after the pipeline in the RDO unit. Along with the 

type, each instruction contains operation parameters and a skip address. The parameters carry common 

processing information like block size and coordinates. The skip address is used for moving the program counter 

to the correct position if a quadtree search process is terminated earlier, i.e., the processing of the smaller CUs 

is skipped when all coefficients are zero. 

The CU Stack is responsible for buffering the reconstructions, coefficients, and reconstructed borders of CUs 

for internal use. In addition, it updates the final reconstructions and coefficients in the external memories.  

   

Figure 5: Internal structure of the hierarchical Ctrl Unit. 

 Table 2: Intra search instruction set 

  

Instruction Description

STR Initialize CTU and start the program 

IP Perform intra search, build reconstruction for a PU and store it on a stack 

CMP Compare cost values of CUs in stack and select the best 

END End current program and send CPU interruption
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6.2.1 CTU Search Initialization (CTU Initialization) 

The CTU Initialization unit initializes two operations: 1) the luma search, which is started when the configuration 

information is received from the Intra Configuration channel; 2) the chroma reconstruction, which is started upon 

receiving the configuration information from the Execution unit after the whole luma search has been finished. 

The arbitration of these two configuration channels is achieved with HLS generated functionalities for channel 

stalling and non-blocking reading. 

When the CTU is fully inside the frame, a pre-calculated program can be selected from the cache, which 

matches the intra search depth limits configuration. This reduces the start latency. Instead, when the CTU is 

only partially searched, the instructions for the CTU are generated during runtime and stored in the internal 

Instructions memory. Due to the tree structure of a CTU, the generation of these instructions was implemented 

in HLS code by using limited template recursion, which simplified the tracking of depth and CB coordinates in 

Z-order. Once the program initialization is ready, the starting address of the selected program is sent to the next 

unit and the CTU search configurations are stored into internal Exec and RDO Config memories.  

With chroma reconstruction, the instructions are always generated during runtime based on CTU structure 

defined by the luma search. The chroma processing does not use the CMP instruction, because the 

reconstruction and coefficients of the chroma components are generated based on luma results. 

6.2.2 Scheduler 

The Scheduler unit schedules instructions when the Intra Search Core is processing multiple CTU IDs in 

parallel. After receiving the configuration, the Scheduler reads the instruction from the internal Instructions 

memory or from the predefined Instructions cache (Inst$) and stores it into an internal register. The register 

contains the latest instructions from all running processes, which can be either running or waiting. With this kind 

of mixed use of on-chip memories, look-up-tables, and registers, HLS improves code readability, as simple C-

arrays can be used for each case, but the resource-dependent addressing and timing is generated based on 

the resource mapping. For all waiting instructions, the Scheduler calculates a priority number and selects the 

one with the highest priority. The selected instruction is sent to the Execution unit and the cached copy is 

changed to an running state. The state is changed back to waiting when the processing for the CB has finished. 

This procedure ensures that the processing of adjacent CBs complies with all data dependencies. 

Due to the structure of the pipeline, CBs of different sizes move at different speeds. Larger CBs create 

congestion behind them and reduce efficiency. To minimize this, the Scheduler starts the processing of same 

size CBs with different CTU IDs in batches. This approach is only used for the IP instructions, because other 

instructions have very little effect on the pipeline and thus have a small, fixed priority. 

6.2.3 Execution 

The Execution unit starts processing CBs upon receiving IP instructions from the Scheduler. It builds a 

configuration vector, specified in Table 3, and sends it to the Reference Border unit. This vector contains all 

configuration parameters required throughout the pipeline until the RDO unit. The CTU ID, depth, color, and the 

Table 3: Configuration bit vector used in intra prediction pipeline 

 

 

Depth Color

0 4 8 12 16 24 32

CTU ID X Y Lambda / Prediction Mode Scaled QP
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coordinates are generic parameters used in the coding pipeline. Lambda, which is derived from the QP value, 

is applied when the similarity of the reference and intra prediction is computed [41] and is then replaced by the 

selected prediction mode. The scaled QP is needed in the quantization phase and it is forwarded to the RDO 

unit for further processing.  

The STR and CMP instructions require no processing in the Execution unit and are forwarded to the RDO 

unit. The END instructions are not forwarded, but when the program for luma search reaches the END 

instruction, the Execution unit sends a configuration for the CTU Initialization unit to start chroma reconstruction. 

When the program for chroma reconstruction reaches the END instruction, the unit sends a signal through the 

CTU ID done channel. 

6.2.4 Rate–Distortion Optimization (RDO) 

The RDO unit calculates the costs for CBs and compares them to select CUs for the final CTU configuration. 

The first instruction to arrive in the RDO unit is the STR instruction, which is used for resetting the CTU state of 

the specified CTU ID. 

These results of an IP instruction include the selected intra mode, Sum of Squared Differences (SSD) 

calculated in the Reconstruction unit, and estimation of bits to code the coefficients calculated in the Coefficient 

Cost unit. The final cost for the CB is then calculated from the SSD, coefficient cost, current and previous CB 

configurations, and the content of the CABAC RDO CTX memory. The final cost is stored into the internal CTU 

stack memory. If the search process reaches the configured depth limit or the CB is an all-zero coefficient block, 

there is no need to continue search. The CU Stack unit is then notified to flush the coefficients and the 

reconstruction of the CB through the external interface. Chroma CBs are always flushed.  

With a CMP instruction, the stored costs in the CTU stack are compared to achieve the best CU configuration. 

If a better configuration is found, the previously chosen configuration is overwritten via the CU Stack unit. 

After each instruction, in addition to the flush-flag, the RDO unit sends an instruction completion signal with 

a skip-flag to the Scheduler via the Stack Pull unit. If this skip-flag is set in RDO, the Scheduler reads the skip 

address field from the cached instruction and moves the program counter to that address accordingly. 

Otherwise, the next instruction is read from the following address. 

6.2.5 Build Reference Border (Reference Border) 

The Reference Border unit generates the reference samples for the intra prediction from the external Reference 

top and left memories or from the internal Rec Top, Left, and TopLeft memories. If border pixels are not 

available, i.e., CU is located at the top and left border of the frame, the last available pixel or a constant value 

is used instead. The unit is configured with the block size and CU coordinates by the Execution unit. The 

referenced borders are built and sent to the IP Ctrl unit. 

The three internal reconstruction memories are used to store the last reconstructed pixels from bottom and 

right borders, and one extra memory for all bottom right pixels of 4 × 4 blocks. Because the intra search of the 

coding tree works in Z-order from top to bottom, the reconstructed bottom and right border pixels of each CB 

can always overwrite previous pixels in the corresponding x and y coordinates in the Rec Top and Left 

memories. However, the corners need to be stored separately. This complies with all CB dependencies and 

minimizes the memory usage for the references. 
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6.2.6 CU Stack 

The CU Stack unit stores CUs temporarily before they are written into external memories. Buffering is needed 

because the final CU configuration can only be determined after all options have been compared. The CU Stack 

unit is built from Stack Push and Stack Pull units as well as from the internal Coeffs, Rec, and Rec Top, and 

Left memory modules between them.  

The memories store one CU of each size for all CTU IDs. This way, all CUs have a reserved buffer slot 

assigned by their size and CTU ID. The adjacent CU of the same size in the same CTU overwrite the old one 

in the buffer. This policy follows the computational order of the CTU coding tree. The CUs are either flushed to 

the external memory or discarded before moving to the next one of the same size, according to instructions 

from the RDO unit.  

6.2.7 Stack Push 

The Stack Push unit receives the reconstruction pixels and the SSD values from the Reconstruction unit. In 

addition, it gets the quantized transform coefficients and coding cost estimation from the Coefficient Cost unit. 

It writes the pixels and coefficients to the reserved slots in the Rec and Coeffs memories and simultaneously 

collects pixels of the bottom and right borders to the corresponding Rec Top and Left memories. Lastly, the 

SSD and coding cost estimations are sent to the RDO unit to signal the completion of the CB process. 

6.2.8 Stack Pull 

The Stack Pull unit is on the other side of the memories. It has no direct connection to the Stack Push and it 

receives its configuration data from the RDO unit. Based on the flush-flag sent from the RDO unit, the Stack 

Pull unit starts reading the CU from the internal memories and writes it into the external memories. While writing 

  

Figure 6: Internal structure of the hierarchical Intra Prediction Unit. 
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the CU, the Stack Pull unit performs two additional operations: transforming reconstruction from slices to rows 

and reordering coefficients to Z-order.  

Reconstructions in the internal and external memories are stored as slices of 32 pixels. The external memory 

is an array of 64 × 64 pixels. A 32-pixel wide data bus maximizes speed when writing the largest CUs. The large 

data bus requires smaller CUs to be shifted to a correct location and byte enables to assign writes to the correct 

pixels. The Rec Top, Left and TopLeft internal memories connected to the Reference Border unit are also 

updated during this process. 

The coefficients are written in Z-order. Compared with slices-to-rows transform, Z-ordering is a much simpler 

operation. The Z coordinate is calculated from x and y coordinates and coefficients are written to consecutive 

addresses.  

6.3 Intra Prediction and Mode Decision (Intra Prediction Unit) 

The Intra Prediction Unit calculates and selects the best prediction for a given CB. It does this by generating 

prediction images for all 35 modes and selecting the mode closest to the reference image. Figure 6 shows the 

internal structure of the Intra Prediction Unit. It consists of 23 sub-units: 1) Intra Prediction Control (IP Ctrl); 2) 

Mode Decision; 3) Prediction Push; 4) Prediction Pull; and 5-23) 19 parallel prediction units for all 35 prediction 

modes (Planar, DC, and Angular). The reference samples for all prediction units are stored in the internal 

References memories that are located between the IP Ctrl and prediction units. The memories can hold 

reference data for up to 4 PBs at a time and allow pipelined processing of predictions. 

6.3.1 Intra Prediction Control (IP Ctrl) 

The IP Ctrl unit receives the PB configuration data and the reference samples from the Reference Border unit. 

A smoothing filter is used for the reference samples in the IP Ctrl unit to reduce contouring artifacts [41]. 

Depending on the mode and the CB, either filtered or unfiltered pixels are written to the References memories. 

Writing data to multiple memory instances is implemented in HLS code as an unrolled loop that iterates a static 

array of pointers and either filtered or unfiltered pixels are written. 

After all pixels are read, filtered, and written to the memories, the IP Ctrl unit wakes up the prediction units 

and the Mode Decision unit by sending them their configuration data. Along with the common parameters of 

the PB size and an CTU ID, each prediction unit has own configuration parameters, which are dependent on 

the prediction mode, i.e., last pixels from top and left borders for planar prediction, a DC value for DC prediction, 

and an absolute angle for angular predictions.  

The References memories for the prediction units are needed to pipeline the intra prediction so that the 

control unit can filter reference samples for the next PB, while the prediction units are still generating predictions 

for the previous PB. Synchronization and overflow protection between the IP Ctrl unit and prediction units are 

managed with handshaking signals in configuration channels. 

6.3.2 Prediction units (Planar, DC, and Angular) 

All prediction units operate in parallel and are configured to predict four pixels per clock cycle, i.e., 32 × 32 block 

is predicted in 256 cycles and 16 × 16 block in 64 cycles. HLS is used to generate a pipeline for the entire 

prediction process so that the unit starts outputting predictions for the next PB immediately after the previous 

one ends. The pipelining removes the initial latency from new predictions when configurations are received at 
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a constant rate. This is especially important with smaller CBs, as the latency without pipelining can exceed the 

number of cycles needed for outputting the actual prediction. Successful pipelining requires paying attention to 

data dependencies even with HLS. Furthermore, the performance could be easily increased by predicting more 

than four pixels in parallel, but the area/performance ratio of the selected approach was found sufficient for this 

work.  

In addition, the angular predictions were split into the following three different modules according to direction 

of the prediction angle: positive angles 2-9 & 27-34, negative angles 11-25, and zero angles 10 & 26. This 

approach allowed removing unnecessary structures that are specifically needed for the specified angles. It also 

allowed reusing the units and operate configuration based. The corresponding horizontal and vertical prediction 

modes were also implemented in the same units. These two predictions make use of the same borders and 

have the same but opposite prediction angles, so they can share the same control logic. This way, all Angular 

units, except for mode 18, predict two modes simultaneously. For example, modes 2 and 34 are of equal 

distance from the middle, i.e., 18 - 2 = 34 - 18 so they are predicted simultaneously in one unit.  

Planar, DC, and zero Angular prediction units use two memory instances each, whereas the rest of the 

Angular units use 13 parallel memory instances. The memories of the same prediction unit share a common 

write port that is controlled by the IP Ctrl unit. A single prediction unit utilizes all read ports in parallel to support 

predicting 4 pixels at a time. 

6.3.3 Mode Decision 

The Mode Decision unit selects the prediction mode for luma PBs by calculating and comparing Sum of Absolute 

Differences (SAD) and entropy coding costs of all candidate modes. SAD is used as a measure of image 

similarity whereas the entropy coding cost estimates the number of bits needed to code the prediction mode 

into bitstream. The entropy coding values are calculated by multiplying a fixed entropy cost with lambda. This 

offset tends to affect the MD when two predictions are close to each other [41].  

For cost calculations, the unit receives four pixels from each prediction unit per cycle and it simultaneously 

reads the corresponding reference pixels from the external Reference pixels memory. The SAD is calculated in 

parallel for all modes, four pixels per cycle. The comparison of the 35 mode costs was implemented in HLS as 

a limited template recursion function that compares all mode costs in pairs and returns the best mode with its 

cost. The HLS code implements inputs from the prediction units with pointer arrays and reads them in unrolled 

loops, which helps with the code readability. In addition, loop unrolling does not break the synchronous reading 

of inputs during stalling. The unit is also fully pipelined with HLS, so that MD for next PB can start immediately 

after the previous one. The prediction data and corresponding reference pixels of each calculated mode are 

sent to the Prediction Push unit for buffering. In addition, the selection of the smallest mode cost is signaled to 

both Prediction Push and Prediction Pull units.  

6.3.4 Prediction Buffering (Prediction Push & Prediction Pull) 

The Prediction Push and Prediction Pull units 1) buffer all predictions while Mode Decision unit is selecting the 

prediction mode; 2) generate the residual image from the prediction and reference pictures; and 3) adjust the 

width of the pipeline data bus between four and 32 pixels. To implement them with HLS requires that all 
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reference and the prediction pixels are stored in a FIFO, which is located between the Mode Decision unit and 

the Prediction Push unit. The size of the FIFO is 256 × 1153-bits (35 modes × 4 predicted pixels × 8-bits + 4 

reference pixels × 8-bits + end bit = 1153-bits) to support the largest possible PBs. The main loop of the 

Prediction Push unit is pipelined to output data every cycle. It waits for the selected mode from the Mode 

Decision unit before it starts reading data from the FIFO and continues until the end bit of the current PB marks 

the completion. The mode is used as a parameter for shifting the input vector, so that correct prediction and 

reference pixels are forwarded to the Prediction Pull unit, which generates the residual and takes care of the 

output data width, i.e., a single line of 32 × 32 block, two lines of a 16 × 16 block, etc. 

6.4 Transform Unit 

The Transform Unit is depicted in Figure 7. It consists of 6 sub-units: 1) Discrete Cosine Transform (DCT) unit; 

2) Inverse Discrete Cosine Transform (IDCT) unit; 3) merged Quantization and DeQuantization (Quant 

DeQuant) unit; 4) Coefficient Cost unit; 5) Reconstruction unit; and 6) Transpose unit. The Transform Unit has 

three main functions: 1) generate the quantized transform coefficients from the residual pixels provided by the 

Intra Prediction Unit; 2) create the reconstruction from the prediction and residual pixels, which are dequantized 

and transformed back to the spatial domain from the quantized transform coefficients; and 3) calculate the 

estimation for the coefficient coding cost and the similarity between the reference and reconstruction. 

  

Figure 7: Internal structure of the hierarchical Transform Unit. 
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6.4.1 Transpose 

The Transpose unit performs row-column transpose for a square N × N block, where N ϵ {4, 8, 16, 32}. It 

operates on a constant data rate of 32 samples per cycle. It is used as a sub-unit in three different locations: 

between the 1-D transforms in DCT and IDCT units as well as between the Quant DeQuant and Coefficient 

Cost units. 

Internally, it is composed of two parallel units, Transpose Push and Transpose Pull, and a storage array 

between them. The Push unit writes data to the memory array and the Pull unit reads it. The memory array is a 

collection of 32 parallel memory modules with individual read and write ports. For illustration purposes, an 8 × 

8 variant of the Transpose unit is pictured in Figure 8 (a). It shows how the unit can transpose an 8 × 8 CB. The 

values in each cell represent the x and y coordinates of the 8 × 8 CB when all samples are written into the 

memory. 

The actual input rate is 32 samples per cycle. Depending on the CB size, the slice contains from one to eight 

rows, as the slice can contain up to two 4 × 4 blocks. The correct memory instance is determined by rotationally 

shifting the bit slice left, according to the starting index y of the slice. In other words, the first slice of a row is 

not shifted at all, and the following slices are shifted depending on how many rows have been stored already. 

For example, in Figure 8 (a) the first index y of the third slice is two and in Figure 8 (b) the first index y of the 

third slice is four. 

Simultaneously, the write address is determined by the number of rows in a slice and the corresponding 

index x of the sample. For example, in Figure 8 (a) each sample is written to the address x, and in Figure 8 (b) 

the samples are written to an address x divided by the number of rows written at once. The memory also 

operates as a circular buffer for a more pipelined operation. After the whole block is written to the memory, the 

Pull unit is notified that the memory is ready, and it can start reading the data.  

 

Figure 8: Visualization of pixel placement. (a) A slice containing a single row (example with an 8 × 8 variant of the 
transpose unit). (b) A slice containing multiple rows (example of 8 × 8 transpose with 16 × 16 variant of the transpose unit). 
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The Pull unit is less complex, as it reads data in a consecutive order from all memory instances. As the slices 

were shifted left in the Push unit, the Pull unit reverses this operation. Furthermore, when a slice contains 

multiple rows, the rows are scattered as shown in Figure 8 (b). As the order only depends on the number of 

rows written at once, the reordering is simply implemented as a four-port multiplexer. 

6.4.2 Discrete Cosine Transform (DCT) 

The DCT unit is composed of three main parts: 1) two 32-point DCT units; 2) a separate 4-point discrete sine 

transform (DST) unit for 4 × 4 luma TBs; and 3) a Transpose unit for row-column transpositions between the 

DCT units. In addition, the design contains small control units for input and output. The Input CTRL unit reads 

the residual values and passes on the luma 4 × 4 TBs to the 4-point 2-D DST unit, and all other TBs to the 32-

point DCT unit. Output values from the first 1-D DCT are row-column transposed in the Transpose unit and sent 

to the second 1-D DCT unit for a complete 2-D transformation. The Output CTRL unit collects the results from 

either the DST or DCT unit.  

The 1-D DCT unit performs the transform in a three-step pipeline: 1) recursive even-odd decomposition, 2) 

multiplication between the transform matrices and odd vectors, and 3) accumulation and scaling of the individual 

multiplication products to 16-bit coefficients. The algorithm used for the 1-D transform is a well-known even-odd 

decomposition algorithm, a.k.a., Partial Butterfly algorithm [48]. It decomposes the input and core transform 

matrices to half of their sizes according to even and odd rows/columns, respectively. The algorithm allows an 

N-point transform, where N ϵ {4, 8, 16, 32}, to be computed for even and odd cases separately with two N/2-

point transforms that reduce the number of arithmetic operations needed for the full transform. 

The implementation supports transform of 32/N rows/columns in parallel. For example, 8 × 8 TBs can be 

processed in only two parts. This is achieved by utilizing reordering of input and intermediate vectors and block 

size dependent look-up-tables for transform matrices [2].  

Every stage is built to support max 32 × 32 TBs. The recursive even-odd decomposition can be reused for 

multiple rows/columns by reordering the reading of the input vector, so that the data flows in the recursive adder 

tree separately for each row/column. The resulting odd vectors are multiplied with the corresponding transform 

matrices. To reuse the multiplication stage with multiple rows/columns, the odd vectors are reordered to utilize 

the block size dependent look-up-tables. Individual products of matrix multiplication are finally added together 

and scaled to 16-bits, and the output vector is ordered back to the original order. HLS was vital for the 

implementation of the multi row/column functionality, from the perspective of parameterization and verification. 

The 4 × 4 luma TBs are transformed in 4-point DST unit that operates in parallel with the 32-point DCT unit. 

The DST unit is composed of four parallel 1-D row-transform units that are connected back to each other in 

transposed order for a second transform. The 4 × 4 transpose requires no external components as it is possible 

to crosswire the outputs and inputs of the unit. The unit also supports transform skip, in which the transform 

phase is omitted. This is implemented by forwarding the residual pixels without any operations in the upper half 

of the 32-coefficient wide output vector. 

6.4.3 Quantization (Quant) and Inverse Quantization (DeQuant) 

The combined unit of Quantization and DeQuantization performs both quantization and dequantization of 

transform coefficients. Although they are different operations, they were implemented in one unit because they 

share the same overall structure and can have a shared control. This unit receives data from the DCT unit. 
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Quantized coefficients are forwarded to the Coefficient Cost unit and dequantized coefficients to the IDCT unit. 

The input configuration vector contains a scaled QP value used to define the quantization level. Both 

quantization and dequantization are done by multiplying coefficients by a scaler value, that is derived from 

scaled QP values and rounding the output.  

6.4.4 Inverse Discrete Cosine Transform (IDCT) 

The inverse transform of the IDCT unit shares the same top-level architecture as forward transform of the DCT 

unit. The IDCT unit was developed along with the DCT unit through the same HLS steps. The 1-D IDCT unit 

also uses the Partial Butterfly algorithm implemented as a three-stage pipeline.  

In the first stage, the input is multiplied with the transform matrices. The second stage has three 

addition/subtraction levels to compose the final even vector from the decomposed even and odd vectors. Lastly, 

the third stage combines the even and odd vectors and scales the final result to 16-bit signed residuals. To 

support the same multiple parallel rows with smaller block sizes as in the DCT unit, the inputs in each stage are 

reordered to match the structure of the stage. After the first 1-D transform, the intermediate data is transposed 

in the Transpose unit and sent to the second IDCT unit to complete the 2-D transform.  

In parallel with the 1-D IDCT units, a separate 4-point 2-D IDST unit is used for 4 × 4 luma CBs. The IDST 

unit performs the full 2-D transform internally without any external transpose. The support for transform skip 

was also added by forwarding the residuals without any operations in the upper half of the output vector.  

6.4.5 Coefficient Cost 

The Coefficient Cost unit calculates the estimated coding cost to encode the CB to the bitstream. The input 

coming from the Quant DeQuant unit is in transposed order, due to the transpose in the DCT unit. As the 

Coefficient Cost unit requires data in original order, an extra Transform unit was added between it and the Quant 

DeQuant unit.  

Look-up-tables were used for the XY coordinates of the quantized transform coefficients to find the 

equivalent coefficient group and scan order index of the pixel. The estimation uses a linear model for the cost 

by utilizing five different parameters derived from the quantized transform coefficients: total sum of coefficients, 

number of nonzero coefficient groups, number of coefficients with value of zero or one, and the index number 

of the last nonzero coefficient. Different weights are predefined according to data gathered from CABAC for 

each parameter and for each CB size. The final cost estimation is calculated by multiplying each parameter with 

its weight and added together. This algorithm produces slightly worse results than CABAC, as it only estimates 

the cost of coding, which might reduce the encoding quality with certain CBs. 

6.4.6 Reconstruction and SSD (Reconstruction) 

The Reconstruction unit receives the reconstructed residual pixels from the IDCT unit. It also receives the 

reference and predicted pixels from the Prediction Push unit. The unit uses residual pixels and prediction pixels 

to generate the final reconstructed image as on the decoder side. The reference pixels are used to 

simultaneously calculate the SSD value between the reconstruction and the original image.  

A reconstruction is calculated by adding the residual to the prediction pixel by pixel. In the case of an 

overflow, the output is clipped to the maximum or minimum value. Pixels inside a PB have no dependencies 
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with each other, so any number of pixels can be calculated in parallel. As the output from the IDCT contains 32 

coefficients, the Reconstruction unit was built to support that. 

With the smallest 4 × 4 luma CBs, an output vector from the IDCT unit contains two CBs. The lowest half 

contains a normal CB, and the top half contains the respective transform skip candidate for it. In reconstruction 

calculations, the ability to duplicate the lower half of the prediction to the upper half was added to cover this 

special case.  

SSD is calculated by deducting reconstruction from the original image, squaring the differences in pixel 

values, and adding them all together. The 4 × 4 luma CBs require SSD to be calculated in two halves, as 

separate SSD values are needed for both CBs. Utilizing the same structure for other CBs, the full SSD is 

produced by adding the two halves together. As an output, all three values, the two halves and the combined 

sum, with the reconstruction image are sent to the CU Stack. The SSD is used as an image quality metric in 

intra coding, and the best CU configuration is selected as a function of the image quality and the number of 

consumed bits from the Coefficient Cost unit.  

7 CABAC CORE 

The CABAC Core is the top-level component for performing context-adaptive binary arithmetic coding of HEVC. 

A single CABAC Core can cache 16 individual CTUs to on-chip memories for pipelined processing. The coding 

of a CTU is started upon receiving CTU ID ready signal from the Intra Search Core. Contrary to the Intra Search 

Core, the CABAC Core does not process different CTU IDs in parallel in different pipeline stages, but it 

processes CTUs in first in first out order. This is because the CABAC process is serial in nature and the time 

used in binarization varies highly based on the contents of the coefficients, which in turn depends on the input 

video, quantization factor, and prediction accuracy of the intra search process. The core interface includes 

memory interfaces to on-chip memories and direct data transmission with handshake signals. 

 
Figure 9: Top-level structure, interfacing, and connections of CABAC Core. 
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The CABAC Core is presented in Figure 9. It consists of two components: 1) Binarization Unit for binarization 

of the CTU structure and the coefficients of each CB, and 2) CABAC Encoding Unit for binary arithmetic 

encoding of the binarized syntax elements to the bitstream and updating the parameters and CABAC states in 

corresponding tables. 

The same iterative HLS process that was used for the Intra Search was also applied for CABAC. The initial 

design partitioning was done according to the CABAC functions in the Kvazaar reference code. The system-

level architecture was further optimized during the implementation and DSE was used to improve 

area/performance figures.  

The following sections present all HLS units implemented in the sub-hierarchical units with the required 

memories and configuration data for the CABAC process. The described functionality follows the HLS code 

almost directly and shows how the implementation of CABAC was made possible.  

7.1 Memories and configuration for CTU CABAC process 

The memories of the CABAC Core are presented in Table 4. They are divided into: 1) external memories, that 

are necessary for the binarization process, actual CABAC encoding, and the final HEVC bitstream; and 2) an 

internal memory, which is used to buffer the coefficient groups for the coefficient binarization. The table also 

shows the sizes and instantiation counts of these memories. If several units need access to a specific memory, 

multiple identical instances of it are generated. In the case of Coeff and CU info memories, the CABAC Core 

needs one identical instance in addition to the one instantiated in Intra Search Core. All memories are designed 

for caching 16 CTUs from the CTU ID based intra search. For example, dividing the Coeffs memory of size 196 

608 bytes by 16 gives 12 228 bytes per CTU, and as the coefficients are 16-bit, divided by two bytes gives 6114 

coefficients. Of these coefficients, 64 × 64 = 4096 are needed for the Y channel and ¼th of Y (1024 coefficients) 

for both U and V channels in an 8-bit YUV420 format.. 

The external interfaces used for the CABAC process are the following. The Coeffs memory stores the final 

coefficients of intra search and is read by the coefficient binarization process of CABAC. There are two CABAC 

parameters memories. One for receiving the current state and the other for storing the final state of the CABAC 

Table 4: Memory name, location, size, and instances needed for a single CABAC Core 

  

Name Location Bytes Instances

Coefficients (Coeffs) External 196 608 1*

CABAC Parameters External 256 2

CU Info External 16 384 1+1*

CU Info top External 256 2

CU Info left External 256 2

CABAC CTX External 4 096 1

Bitstream External 32 768 1
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Coefficient Groups (CGs) Internal 4 096 1
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*Shared with Intra Search Core

C
o

re

Core



23 

variables bits_left, buffered_byte, num_buffered_bytes, low, and range, and bitstream variables current_data, 

current_bit, and zerocount, which are detailed later. CU Info contains the CTU configuration determined by intra 

search, and CU Info top and CU Info left the CU configuration of neighbouring CTUs on top and left. CABAC 

CTX memory contains the full state of all CABAC tables. A single syntax element is 7-bits, of which the lower 

6-bits stores the least probable symbol (LPS) and the most signifigant bit (MSB) stores the most probable 

symbol (MPS). The memory uses 256 bytes per CTU ID for the 184 syntax elements [2]. The Bitstream memory 

stores the final HEVC bitstream. The internal memory is explained in the corresponding section later. 

The start signal for the CABAC Core and additional configuration data is provided via the CABAC 

Configuration channel. The configuration data consists of 1) CTU ID, 2) frame size, 3) offset of tile, 4) x and y 

coordinates of the CTU, 5) current QP value, 6) initial QP value for delta QP, and 7) bottom right CU 

configuration of the top left neighbouring CTU. 

7.2 Binarization Unit 

The Binarization Unit is presented in Figure 10. It consists of seven sub-units: 1) Encode Coding Tree, 2) 

Demuxer, 3) Encode Coding Blocks, 4) Coeff Group Arranging, 5) Coeff Group Scanning, 6) Coeff Binarization, 

and 7) Arbiter. These units are responsible for the whole binarization process of a CTU.  

The internal structure is divided into two clock domains: clock domain #1 is for non-time critical units; and 

clock domain #2 is for the more time critical process in the hierarchical Coeff Binarization Unit. By only 

overclocking the clock domain #2, the performance of the whole Binarization Unit increases without the need 

to route-optimize the clock domain #1. Clock crossing can be enabled manually via external dual clock FIFOs 

or automatically with internal clock crossing components generated by the HLS tool. The proposed system uses 

190 MHz for clock domain #1 and 266MHz for clock domain #2. 

The format of binarization commands sent via the CABAC BIN #NUM channels is presented in Table 5. The 

bit vector contains the necessary information to perform the bitstream encoding in the CABAC Encoding Unit. 

  
Figure 10: Internal structure of the hierarchical Binarization Unit. 
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The CMD field is for initializing the CABAC encoding process with START command and CTX Index field is for 

the CTU ID. With STOP command in the CMD field the rest of the fields are not used, and the CMD initiates 

flushing of CABAC encoding results. For actual binarization commands, CMD is used to identify if the command 

is for a single BIN (binary symbol mapped to a syntax element), equiprobable (EP)_BIN or multiple EP_BINS 

(bypass-coded bins). The CTX Index field is used for identifying the correct CABAC table for the command and 

Offset field to identify the correct state value in the corresponding table. The last two fields are used for the 

number of bins and the actual bins value.  

Table 6 presents the indexing order and size of each CABAC Table in the CABAC CTX memory. The 

binarization explained in the following sections complies with HEVC standard and is detailed in [2], [49].  

7.2.1 Encode Coding Tree 

The Encode Coding Tree unit is the main control unit of CABAC Core. It receives the configuration and the start 

signal for a CTU ID ready for binarization and CABAC encoding. When the process starts, the unit sends a start 

command to the CABAC BIN #1 channel through the Demuxer unit. This makes the CABAC Encoding Unit 

initialize the processing for a new CTU ID, which is used for indexing the correct CABAC CTX and Bitstream 

memories. In addition, the Encode Coding Tree unit reads the initial parameters from the CABAC Parameters 

memory according to the CTU ID and sends them to the CABAC Encoding Unit via a channel. The final write 

from the Encode Coding Tree unit, after the whole CTU is processed, is a stop command to the CABAC BIN #1 

channel. This instructs the CABAC Encoding Unit to flush the results to external memories. To keep the 

commands in order during HLS scheduling, the data for the CABAC BIN #1 channel and configuration to Encode 

Coding Blocks are combined into a single channel. The Demuxer unit then directs the data to the correct unit 

marked by the least significant bit, which is only included in the intermediate channel between the two units. 

Table 5: Bit vector used for binarization commands 

 

Table 6: CTX Index of CABAC Tables and the size of tables in bytes 

  

0 2 8 13 19 35

CMD CTX Index Offset Number of bins Bins

CTX Index CABAC Table Bytes CTX Index CABAC Table Bytes

0 sao_merge_flag_model 1 17 cu_ctx_last_x_chroma 15

1 sao_type_idx_model 1 18 cu_one_model_luma 16

2 split_flag_model 3 19 cu_one_model_chroma 18

3 intra_mode_model 1 20 cu_abs_model_luma 4

4 chroma_pred_model 2 21 cu_abs_model_chroma 2

5 inter_dir 5 22 cu_pred_mode_model 1

6 trans_subdiv_model 3 23 cu_skip_flag_model 3

7 qt_cbf_model_luma 4 24 cu_merge_idx_ext_model 1

8 qt_cbf_model_chroma 4 25 cu_merge_flag_ext_model 1

9 cu_qp_delta_abs 4 26 cu_transquant_bypass 1

10 part_size_model 4 27 cu_mvd_model 2

11 cu_sig_coeff_group_model 4 28 cu_ref_pic_model 2

12 cu_sig_model_luma 27 29 mvp_idx_model 2

13 cu_sig_model_chroma 15 30 cu_qt_root_cbf_model 1

14 cu_ctx_last_y_luma 15 31 transform_skip_model_luma 1

15 cu_ctx_last_y_chroma 15 32 transform_skip_model_chroma 1

16 cu_ctx_last_x_luma 15
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The quadtree CTU configuration is processed using limited template recursion function. The depth in the 

tree is increased until it matches the configuration of the current CU or maximum depth is reached. The process 

then continues moving up in the tree and to the next location according to Z-order. During this process, all 

SplitFlags (split=1, no split=0)) are binarized as BIN commands using the split_flag_model as the CTX. The part 

mode is binarized for all CUs as part_mode 2N × 2N (1), unless the 8 × 8 CU is split into four 4 × 4 blocks and 

part_mode N × N (0) is used. The part mode binarization is a BIN command with the part_size_model as the 

CTX. All bins here are written to CABAC BIN #1 channel. The unit is also responsible for configuring the Encode 

Coding Blocks when there is no longer a split or the max depth is reached. The configuration data contains the 

1) CTU ID, 2) x and y coordinates of the CU in the frame, 3) the x and y coordinates of the CU in the CTU, 4) 

current depth in the coding tree, 5) current QP value, 6) initial QP value, 7) luma mode of the CU, 8) block size 

of the CU, and 9) the configuration of the neighbouring top left corner CU. 

7.2.2 Encode Coding Blocks 

The Encode Coding Blocks is responsible for binarizing intra coding units and transform units. Based on the 

configuration received from Encode Coding Tree unit, the intra prediction mode is first compared with three 

predictors to find if it is a most probable mode (MPM). The predictor list is constructed according to the left and 

top neighbouring CUs. Prev_intra_luma_pred_flag, mpm_idx, and rem_intra_luma_pred_mode are then 

binarized according to the predictor list using BIN command for prev_intra_luma_pred_flag, EP_BIN for 

mpm_idx, and EP_BINS for rem_intra_luma_pred_mode. All these binarizations use the intra_mode_model as 

the CTX. As chroma is reconstructed in the Intra Search Core by using the luma intra prediction mode, 

intra_chroma_pred_mode is simply binarized as 0 with a BIN command using chroma_pred_model as the CTX. 

Next, the chroma CBFs cbf_cb and cbf_cr are binarized with BIN commands using qt_cbf_model_chroma 

as the CTX. The luma CBF, cbf_luma, is also binarized as a BIN command using qt_cbf_model_luma as the 

CTX. The CBF flags are read directly from the CU Info external memories.  

If one of the CBFs indicates that there are coefficients to be coded, the QP delta is first binarized if needed. 

The absolute QP delta is calculated based on the current QP value and the reference QP value. The prefix is 

binarized with BIN commands and the suffix (QP delta > 4) is binarized an EP_BINS command. Finally, the 

qp_delta_sign_flag is binarized with an EP_BIN command. The CTX is used for QP delta is cu_qp_delta_abs. 

During CBF binarization process, the Coeff Binarization Unit is configured according to the CBFs. The 

configuration consists of 1) CTU ID, 2) x and y coordinates of the CU in the CTU, 3) block size, and 4) color 

channel identifier. To keep the binarization commands in order with HLS between the Encode Coding Blocks 

and Coeff Binarization Unit, the Encode Coding Blocks waits for a feedback signal from the Coeff Binarization 

Unit. HLS stalls the internal pipeline with the blocking feedback read, until the Arbiter unit sends a ready signal. 

This is because all coefficients must be binarized for all color channels before the next CB can be started. 

7.2.3 Coeff Group Arranging 

Coeff Group Arranging unit is the first unit in the hierarchical Coeff Binarization Unit. This unit is responsible for 

reading the coefficients from the Z-order external memory and storing them in the internal Coefficient Groups 

(CGs) memory. The unit reads four coefficients from the external memory at a time and writes all 16 coefficients 

to the internal CGs memory at a time, so that the Coeff Group Scanning unit can read complete CGs at a time.  
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The reading of coefficients uses scan order specific look-up-tables for translating scan order indexes to XY-

index. During reading, the XY-index of last nonzero CG and the XY-index and scan order index for the last 

nonzero coefficient are gathered. The scan mode depends on the block size and color component. The scan 

order is always diagonal, except for 4 × 4 and 8 × 8 luma and 4 × 4 chroma CBs. For these CBs, angular modes 

6-14 cause the use of vertical scanning and angular modes 22-30 cause horizontal scanning. In addition, a flag 

is set for each CG if the CG has nonzero coefficients. 

The coefficients of a CB are stored to the memory in two alternating locations to allow pipelined arranging of 

adjacent CBs. After the arranging, configuration data is sent to the Coeff Group Scanning unit via a channel. 

This configuration contains 1) the starting location of CGs in the internal memory, 2) block size, 3) color channel, 

4) scan mode, 5) last nonzero coefficient position in scan order and raster order, 6) last nonzero CG in raster 

order, and 7) max 64-bit vector for identifying which CGs have coefficients. 

7.2.4 Coeff Group Scanning 

Before starting the CG scanning the last significant XY is first binarized in this unit. The binarization depends 

on the XY coordinates of the last nonzero coefficient. The prefixes are binarized first as BIN commands and the 

suffixes as EP_BINS if needed. The CTX for these depends on the coordinate and color channel and can be 

cu_ctx_last_y or _x for _luma and _chroma. 

The Coeff Group Scanning unit is mainly responsible for reading the CGs from the internal memories in 

correct CG scan order by using a look-up-table according to the scan mode from the configuration. Diagonal is 

scanned in zigzag, horizontal from left to right and vertical from top to bottom. The scanning is performed in 

reverse CG and coefficient order starting from the last nonzero CG and last nonzero coefficient. The unit 

performs pre-processing during the scanning of each CG. The unit calculates the absolute value for each 

coefficient; counts the number of nonzero coefficients; generates a 16-bit vector for the coefficient signs; 

determines the index of the last coefficient equal to 1 (c1) and the first index of a coefficient equal or greater 

than 2 (c2); and counts the number of c1 values after the first c2 and the total number of c2 values. The 

configuration data is then sent to the correct Coeff Binarization unit. The configuration is a combination of the 

pre-processed data and the configuration from the Coeff Group Arranging unit. 

An Arbiter unit is needed for the three different paths binarization commands can be sent from. After the last 

significant XY is binarized, the Coeff Group Scanning initializes the Arbiter unit to start reading data from the 

first Coeff Binarization unit, after which the unit is alternated.  

7.2.5 Coeff Binarization 

As the Coeff Group Scanning does most of the pre-processing, the structure of the Coeff Binarization is basically 

just comparing different values and coefficients to produce correct binarization. The loops that generate 

binarization commands for the coefficients go through all coefficients until they are binarized. The loops use the 

pre-processed values to determine if binarization is needed. The coefficient binarization is done in six different 

steps. Steps 1 to 4 use BIN commands and steps 5 and 6 used EP_BINS commands. 

1) The coded_sub_block_flag is binarized as 0 or 1 depending on if the CG has coefficients, except the 

last nonzero CG and the first CG in scan order, which are known to be one. This step uses the 

cu_sig_coeff_group_model as the CTX. 
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2) Next, if the CG has coefficients, the sig_coeff_flag is signaled in a loop, and is binarized as 1 for all 

nonzero coefficients and 0 otherwise. This is signaled for all 16 coefficients of the first CG in scan order, skipping 

the first coefficient when rest of the coefficients are zero, or starting from index before the last nonzero coefficient 

with the last nonzero CG. This step uses either cu_sig_model_luma or cu_sig_model_chroma as the CTX. 

3) Also, if the CG has coefficients, the coeff_abs_level_greater1_flag is signaled in a loop as 1 for all 

absolute coefficients that are greater than 1, 0 when they are one, and zero coefficients are not signaled. The 

binarization loop of coeff_abs_level_greater1_flag is ended if there are no longer nonzero coefficients in a CG 

or the maximum number of coeff_abs_level_greater1_flags reach the limit of eight. This step uses either 

cu_one_model_luma or cu_one_model_chroma as the CTX. 

4) The coeff_abs_level_greater2_flag is signaled once for the first index of c2. It is binarized as 1 when the 

absolute coefficient is larger than 2 and as 0 if it is 1 or 2. This step uses either cu_abs_model_luma or 

cu_abs_model_chroma as the CTX. 

5) The coeff_sign_flag is signaled for the coefficients if the CG contains nonzero coefficients. The bins sent 

is the vector pre-processed in the Coeff Group Scanning unit. This step uses the same CTX as step 3 or 4, 

depending on if coeff_abs_level_greater2_flag was signaled. 

6) Finally, if the CG contains more than eight nonzero coefficients or has a coefficient larger than 1, the 

coeff_abs_level_remaining is signaled in a loop. The remaining coefficients are signaled according to the index 

of nonzero coefficients, absolute coefficient value, and Rice parameter. This step uses the same CTX as step 

3 or 4, depending if coeff_abs_level_greater2_flag was signaled. 

After all coefficient binarization steps are done for a CG, the unit sends a notification bit for the Arbiter unit 

to start forwarding the binarization commands from the second Coeff Binarization unit. The unit then 

immediately continues the processing of next CG if available. Because the time spent in Coeff Binarization 

depends on the encoded content and the number of coefficients to binarize, it can vary highly between different 

CGs. In a single unit there might be some latencies between consecutive binarization commands because the 

different loops are scheduled independently, and loop iterations without bin writes can exist. The loops are fully 

pipelined to process a single coefficient per cycle and break the loop depending on break conditions, but each 

   

Figure 11: Internal structure of the hierarchical CABAC Encoding Unit. 
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loop has initial latencies. Merging the loops with HLS at top level and having a common pipeline for each loop 

was not suitable because of data dependencies. To counter this, and to minimize the waiting of binarization 

commands in the Arbiter unit, the combination of pre-processing in the Coeff Group Scanning unit and the two 

parallel Coeff Binarization units was developed. This aims to keep the FIFOs before the Arbiter unit more evenly 

full and a steadier flow of binarization commands to the CABAC Encoding Unit. 

7.3 CABAC Encoding Unit 

The CABAC Encoding Unit is presented in Figure 11. It consists of eight sub-units: 1) CABAC BIN Arbiter, 2) 

CABAC CTX Update, 3) Range & Encode Bin/s, 4) Bits Left, 5) Low, 6) Buffering Bytes, 7) Zerocount, Length 

& Feedback, and 8) Write to Bitstream. These units are responsible for the whole CABAC encoding process of 

a CTU. The internal structure is divided into three clock domains. Clock domain #1 and #2 are the clock domains 

from the Binarization Unit and are used for reading the data from the corresponding CABAC BIN #NUM channel. 

The clock crossing between these two clock domains and the clock domain #3 is done in the CABAC BIN Arbiter 

automatically with internal clock crossing components with the HLS tool. Depending on the target device and 

routing results, the clock domain #3 can be set to a different frequency than the other two domains. In the 

proposed system, 266 MHz is used due to limitations in the device PLL.  

The resulting design partitioning is the outcome of the iterative HLS development. The aim was to find best 

combination of performance and area usage. Excluding the CABAC BIN Arbiter, the partitioning is based on 

modifying specific CABAC variables per unit, including only necessary operations for modifying the 

corresponding variable. Each unit also forwards only the necessary data to the adjacent units. This helped 

simplifying data dependencies in each unit. Although not shown in the block diagram, all units send the needed 

data with a single write. If the write has multiple data sets or bytes for the next unit, this data is internally buffered 

and then sent in pieces. This helps the HLS tool to pipeline the top-level process in each unit better, as the 

there is no need to stall the pipeline for consecutive writes. This also keeps the whole CABAC pipeline fuller as 

some units might not write to output per read. 

7.3.1 CABAC BIN Arbiter 

The CABAC BIN Arbiter unit reads the CABAC BIN #NUM channels in reverse priority. For example, if there is 

data available in channel #2 and channel #3, the arbiter first reads all values from channel #3 before reading 

the values from #2. Furthermore, there is no internal buffering for the channels #1 and #2 during the clock 

crossing, which causes the writes from the corresponding unit to stall. This is to make sure the higher level 

binarization commands are made in order and no commands are missed before moving to the higher priority 

channel. The stalling of writes prevents the configurations to propagate, which in turn prevents the generation 

of new commands to higher priority channels before it is allowed. As the channel #3 generates the most 

commands and has the highest priority, there is also internal buffering during the clock crossing to compensate 

possible latencies in the data feed. HLS makes it easy to implement arbiter units that include prioritization, clock 

crossing, and internal buffering, as the complex functionality is generated by the HLS tool. 

7.3.2 CABAC CTX Update 

CABAC CTX update is the first unit in the actual CABAC encoding process. When the unit receives the START 

command, it reads the CABAC Parameters and initiates an internal initialization process where the CTU ID and 
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each parameter is updated to corresponding units in the CABAC pipeline. The vector with the CABAC 

parameters propagates through all units in the CABAC pipeline. Similarly, with the STOP command, the unit 

initiates a flushing process where each unit of the CABAC pipeline propagates the current corresponding 

CABAC parameter through all units in the CABAC pipeline.  

The CABAC CTX is read and updated only when the unit receives a command for encoding a single BIN. 

This state is not altered with EP_BIN and EP_BINS commands. It first reads the state from the external CABAC 

CTX memory according to the CTX and offset field of the command. The state is used for reading the LPS and 

the MPS from next state look-up-tables. The state is updated to the external memory with the next LPS state if 

the bin is not equal to the first bit of the current state. Next MPS state is written otherwise. The current state is 

also forwarded in place of CTX and offset with the original command to the next unit. 

7.3.3 Range & Encode Bin/s 

The Range & Encode Bin/s unit is responsible for modifying the range parameter according to the state and 

command from the previous unit. The range is updated only when the CMD is for a single BIN. With CMDs 

EP_BIN and EP_BINS, the range is only used for forwarding data to the next unit. 

With the BIN CMD, the range is updated by reading a value from the rangeLPS look-up-table [2] according 

to the LPS of the current state and the top two bits of the range. This table allows a multiplication-free 

approximation of the product range × LPS. This value is first subtracted from the current range value. If the bin 

is not equal to the MPS of the current state, the range is renormalized according to the top five bits of the value 

read from the rangeLPS table. This renormalization value is also read from a look-up-table that has 32 values. 

The value at index 0 is 6 and the value in the following indexes from 1 to 31 are 6 - (log2(index) + 1). The 

previously updated range is forwarded to the next unit with the renormalization value as the number of bits, 

after which the range is again updated to the value read from the rangeLPS table shifted left by the 

renormalization value. If the range was not renormalized and the previously updated range is less than 256, 

one bit zero is forwarded to the next unit. In this case the range is also shifted by one to the left. In addition, the 

order in which the low value is incremented and shifted in the next unit depends on if the range is renormalized. 

This is identified with the first bit in the forwarded data. 

With the CMD EP_BIN, the current range is forwarded to the next unit when the bin is one with a bit size of 

one. One bit zero is sent when the bin is zero. With the CMD EP_BINS, the forwarding of data is divided into 

two sets according to the number of bins. If the number of bins is greater than eight, the first set of data 

forwarded is the 8-bits with the product of bins multiplied with the current range. The second set of data 

forwarded is the remaining number of bins with the product of remaining bins multiplied with the range. 

7.3.4 Bits Left – Low – Buffering Bytes – Zerocount, Length & Feedback – Write to Bitstream 

Bits Left unit is used for generating the bitmask for the Low unit and tracking the number of bits in the low value. 

The bits_left variable is updated according to number of bits received from the Range & Encode Bin/s unit. The 

bitmask is a 32-bit vector of all-ones, unless the bits_left value drops below 12-bits. In that case the bitmask is 

a 24-bit vector of all-ones, shifted right with the number of bits left. The bitmask is then forwarded to the Low 

unit, along with the data received from Range & Encode Bin/s unit. 

The Low unit updates the low variable according to the data received from the previous units. The first bit of 

the data received is used to identify range renormalization. If the range was renormalized, the low value is first 
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incremented with it, after which the low value is shifted left according to number of bits in the data. If range was 

not renormalized, the low value is first shifted and then incremented. Finally, depending on the bitmask, the unit 

forwards the leading 9 bits of the low to the next unit and use the bitmask to zero them. 

The Buffering Bytes unit is used for forwarding correct bytes according to the CABAC variables buffered_byte 

and num_buffered_bytes. The bytes written depends on the buffered_byte, the msb of the leading 9 bits, and 

the num_buffered_bytes. If the num_buffered_bytes is zero, the buffered_byte is set with the leading byte, and 

the num_buffered_bytes is set to 1 with no data sent. If the num_buffered_bytes is larger than zero, the first 

byte written is the buffered_byte + msb of leading 9 bits. The buffered_byte is then updated with the leading 

byte. The number of num_buffered_bytes is written next as 0 or 255, depending on the msb of the leading 9 

bits. If the leading 9 bits represent a value of 255 only the num_buffered_bytes value is incremented. 

The Zerocount, Length & Feedback unit tracks the number of consecutive zero bytes. If the leading 6 bits of 

the byte are zero, after two zero bytes, an emulation prevention 3-byte is written to the bitstream before the 

actual byte. The length variable is updated according to the number of bytes forwarded to the final bitstream. 

When the CABAC Encoding Unit receives the STOP CMD, the CABAC parameters from the previous units 

propagate to this unit. The unit stores the CABAC parameters to the external memory according to the CTU ID, 

which was specified during the START CMD. The unit also generates a done signal with the CTU ID, to inform 

the finished CABAC process. 

The Write to Bitstream unit writes the received bytes into the external Bitstream memory one byte at a time. 

Because the 3-byte emulation prevention can cause two bytes to be written at once, the bytes are buffered in 

this unit and written one at a time. This way, the processing is not blocked in the previous unit by the memory 

write. 

8 PERFORMANCE EVALUATION OF THE PROPOSED CLOUD ENCODING SYSTEM 

Our proof-of-concept prototype was implemented on Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 

14-core Intel Xeon processors and two Intel PCIe FPGA accelerator cards. The applied FPGA chip was an Intel 

Arria 10 10AX115S2F45I1SG on Intel Arria 10 GX FPGA Development Kit, which supports both PCIe 

generation 3 x4 and 40GbE fiber connections. However, these two connections were not compiled together into 

a single project, but two compiled images exist for the same Intra Encoding unit, one with the DMA and the 

other with Ethernet blocks. The IP for either connection is provided by Intel Quartus Prime IP Catalog.  

Figure 12 depicts the proposed system on FPGA. The Arria 10 FPGA can accommodate three Intra Encoding 

instances (#1-3). One encoder instance consists of a single Intra Search Core and two CABAC Cores, of which 

CABAC Core BTM is used for the bottom 0-7 CTU IDs and CABAC Core TOP for the top 8-15 CTU IDs. Other 

functional and memory instances, as well as their connections, are also drawn. Duplicate memories are 

illustrated with memory stacks, where the memory count indicates the number of parallel connections to the 

unit. Furthermore, some memories are also divided into btm and top instances, that can both store data for 

eight CTU IDs used by the respective CABAC Core. 

The units implemented with VHDL include the Intra and CABAC config units, DMAs or Ethernet RX/TX for 

receiving and sending data, and CTU ID indexers. They are all directly connected to the Avalon bus. 
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8.1 FPGA Area Utilization 

Table 7 reports the area utilization of the HW units on FPGA. The results are reported as adaptive logic modules 

(ALMs), which have the flexibility to implement 2.5 logic elements (LEs) of a classic 4-input LUT. A single DSP 

equals to two 18 × 19 multipliers or one 27 × 27 multiplier, which are automatically inferred by the Quartus 

Prime tool from the generated RTL. 

A single Intra Encoding instance (see Figure 12) is made up of one Intra Search Core (90k ALMs with DSPs 

or 95k ALMs without DSPs in Intra Prediction), two CABAC Cores (22k ALMs), and Surrounding connectivity 

(13k ALMs). The area utilization of these modules is detailed in Table 7 (a) - (c), respectively. The sizes of 

internal buffers are not separately given, but are included in the total area of each hierarchical module.  

In total, each Intra Encoding unit takes around 125k ALMs with DSPs or 130k ALMs without DSPs in Intra 

Prediction. The Arria 10 FPGA can include three Intra Encoding units of which one is implemented without 

DSPs in Intra Prediction, so the total area utilization is around (125k + 125k + 130k) ALMs = 380k ALMs as 

reported in Table 7 (d).  

   

Figure 12: Proposed Intra Encoding System on FPGA. 
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8.2 HEVC Coding Speed 

Table 8 reports the coding speed of our Intra Encoding System over all 16 4K (3840×2160) test video sequences 

obtained from our UVG dataset [50]. The results are given for the base QP values of 22, 27, 32, and 37 as well 

as for ten different depth ranges of the HEVC quadtree. The depth ranges were denoted as “hmin-hmax”, where 

hmin and hmax equal the minimum and maximum depths, respectively. For example, only 32 × 32 blocks (N = 

32) are encoded with range “1-1” whereas N ϵ {4, 8, 16, 32} with “1-4”. The average frame rate values are color-

coded for clarity: dark green denotes 120 fps or more, light green 60 - 120 fps, and orange below 60 fps. 

The depth ranges of “1-3” and “2-3” highlighted in orange and blue comply with the fast and ultrafast presets 

of Kvazaar [5], [6]. With these presets, our system is able to encode 4K video over 80 fps in the worst case 

(QP=22) and over 100 fps on average. Respectively, the coding speed with the entire depth range (“1-4”) 

exceeds 30 fps in each test case and is 85 fps on average. 

The real-time presets of Kvazaar have intensively been optimized for speed [51]. In addition, the sum of 

absolute transformed differences (SATD) and accurate bin counting through CABAC were excluded from this 

proposal for simplicity. These optimizations add some overhead to coding efficiency, e.g., when compared with 

the HEVC reference encoder HM 16.23 [52] that implements practically all HEVC coding tools. With the UVG 

Table 7: Area utilization. (a) Intra Search Core. (b) CABAC Core. (c) Surrounding connectivity. (d) Intra Encoding System. 

 

ALMs DSP Blocks ALMs DSP Blocks

89 517 523 10 899 3

7 806 8 435 2

CTU Initialization 339 Encode Coding Tree 840

Scheduler 871 Demuxer 79

Execution 233 Encode Coding Blocks 1 751 2

RDO 1 767 Coeff Group Arranging 1 232

Reference Border 617 Coeff Group Scanning 2 387

Stack Push 1 607 Coeff Binarization 752

Stack Pull 1 842 Arbiter 211

Intra Prediction 17 909 119 2 093

IP Ctrl 469 CABAC BIN Arbiter 439

Prediction blocks
1 9 701 116 CABAC CTX Update 100

Mode Decision
2 5 132 3 Range & Encode Bin/s 221 1

Prediction Push 1 791 Bits Left 85

Prediction Pull 612 Low 351

63 407 404 Buffering Bytes 310

DCT 26 034 144 Zerocount, Length & Feedback 90

IDCT 26 331 180 Write to Bitstream 74

Quant/DeQuant 5 021 64

Transpose 3 675 ALMs DSP Blocks

Coefficient Cost 1 025 Surrounding connectivity 12719

Reconstruction 1 298 16
1
Without DSPs: 14 972 ALMs 

2
Without DSPs: 5 408 ALMs

ALMs DSP Blocks

Proposed Intra Encoding System

3× Intra Search Core*, 6× CABAC Core, 3× Surrounding connectivity 377 649 1468

*Intra Prediction DSPs are disabled for one Intra Search Core

Ctrl

Single Intra Search Core

Transform

Single CABAC Core

Binarization

(a)

(b)

(c)

(d)

CABAC Encoding
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dataset, HM Intra encoder achieves 19% better coding efficiency (BD-rate [53]) over the proposed system with 

“1-4” depth range. However, our solution is also 5832× as fast as the single-threaded HM. Furthermore, the bit 

rate penalty does not stem from the HLS approach, but the coding tool optimizations performed in the source 

code. 

Table 9 compares the average performance and resource consumption of our solution with the existing 

HEVC encoders on ASIC and FPGA. The results show that the proposed system consumes more resources 

than the respective FPGA approaches, but it is also able to attain higher performance with most depth ranges 

as shown in Table 8. The performance of our system could also be further scaled up by adding more FPGAs. 

Table 8: Encoding speed with the proposed Intra Encoding System (with the PCIe interface and two Arria 10 FPGAs) 

 

Fast preset   Ultrafast preset   fps > 120   60 ≤ fps ≤ 120   fps < 60 

 

 

4K Sequence [50] 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4

Beauty 105 99 89 43 92 82 47 61 45 35 169 150 105 48 152 129 53 99 50 54

Bosphorus 149 155 110 56 171 140 63 126 58 59 184 173 120 73 169 155 86 133 72 60

CityAlley 171 129 105 51 160 132 58 120 54 59 170 162 122 85 180 155 102 133 80 60

FlowerFocus 171 156 105 46 161 130 51 102 48 56 188 163 123 89 184 158 111 133 83 60

FlowerKids 174 160 108 56 165 126 64 114 59 59 177 159 120 77 179 150 91 131 75 60

FlowerPan 135 115 86 41 113 88 46 73 46 42 170 156 98 48 160 125 54 109 52 60

HoneyBee 136 131 97 43 128 108 47 82 46 46 173 161 107 62 169 141 72 131 64 60

Jockey 170 153 103 46 144 125 50 96 48 52 178 174 114 76 182 149 91 133 74 60

Lips 108 101 93 43 93 84 47 63 46 35 173 164 106 46 156 132 51 101 49 56

RaceNight 115 108 91 42 104 93 46 79 46 40 166 164 107 55 176 134 62 129 57 59

ReadySteadyGo 158 155 103 52 156 125 58 112 55 58 181 170 115 65 183 146 76 128 66 60

RiverBank 142 122 94 49 129 102 55 91 54 47 159 137 111 58 155 137 65 123 59 59

ShakeNDry 120 111 90 41 112 96 45 77 45 43 163 134 101 49 157 129 55 118 52 59

SunBath 167 148 119 76 160 136 90 124 75 59 153 162 126 95 132 158 118 124 89 59

Twilight 176 156 107 53 167 133 60 124 56 60 184 162 134 97 174 160 119 132 87 60

YachtRide 149 161 102 52 164 129 59 119 56 59 182 161 114 66 176 146 77 132 68 60

Average fps 147 135 101 50 139 115 56 98 53 51 174 160 114 69 168 144 81 125 68 59

4K Sequence [50] 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4

Beauty 155 167 121 91 178 148 112 131 84 60 188 177 175 167 181 175 162 133 116 60

Bosphorus 187 173 132 97 186 171 119 133 88 60 187 182 145 125 175 172 157 133 105 60

CityAlley 186 175 142 110 181 175 137 131 95 60 187 169 155 137 173 174 153 133 108 60

FlowerFocus 188 174 158 141 168 166 169 131 107 60 188 178 170 158 169 175 174 128 120 60

FlowerKids 181 175 133 94 171 160 114 133 85 60 190 170 148 114 170 168 135 131 97 60

FlowerPan 176 147 108 63 177 140 74 132 66 60 185 157 114 82 167 156 102 133 83 60

HoneyBee 184 165 124 95 167 133 119 133 87 60 181 177 122 118 180 175 149 132 102 60

Jockey 188 173 142 121 184 162 153 130 98 60 189 167 157 154 183 177 160 133 113 60

Lips 186 166 133 114 165 173 140 133 95 60 175 177 162 179 181 167 165 131 116 60

RaceNight 187 170 132 100 182 161 119 131 86 60 186 173 149 123 181 147 149 130 101 60

ReadySteadyGo 185 169 117 81 183 155 97 128 78 60 167 175 135 102 182 169 124 133 92 60

RiverBank 157 173 121 68 166 145 78 131 66 60 186 165 135 86 178 163 102 132 79 60

ShakeNDry 128 151 109 66 156 144 77 128 67 59 175 165 112 87 147 139 105 126 83 59

SunBath 174 166 132 116 168 161 145 125 100 59 169 153 138 134 166 151 158 130 110 59

Twilight 188 177 140 127 173 175 145 134 102 60 189 178 135 136 179 179 175 133 114 60

YachtRide 186 161 125 83 175 162 100 131 79 60 188 164 134 105 145 119 130 132 93 60

Average fps 178 168 130 98 174 159 119 131 87 60 184 171 143 126 173 163 144 132 103 60

QP22 QP27

QP32 QP37
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8.3 CABAC 

To the best of our knowledge, this is the first work that has implemented HEVC CABAC with HLS. Therefore, 

the results are separately given for CABAC processing in Table 10 by reporting the achieved throughput in 

Mbins per second (Mbins/s) and bins per cycle (bin/c). The selected test sequence and QP represent the worst 

case in Table 8. The performance averages 4152 Mbins/s and 15.6 bins/c for the 2× FPGA Encoding System, 

2076 Mbins/s and 7.8 bins/c for a single FPGA, and 346 Mbins/s and 1.3 bin/c for a single CABAC Core.  

Our previous work [54] showed that the use of Ethernet connection decreased coding speed by 13% over 

an equivalent PCIe system. The reduction was mainly caused by the limited 20GbE connection on the host 

server. The work also used an earlier version of the Intra Search Core, and CABAC was still performed on CPU. 

Therefore, the coefficients (12 288 bytes) were transferred from FPGA, which accounted almost 2/3rd of the 

payload. A fully functional Intra HEVC encoder on FPGA and 40GbE enabled server would achieve the same 

performance as listed in Table 8, with scalability of adding virtually unlimited number of FPGAs to the network. 

8.4 HLS Productivity 

The HLS approach speeded up the HW implementation significantly over manual RTL coding and proved to 

work in such a highly complex system, from data-intensive coding tools like intra prediction, discrete transforms, 

and quantization to more control-oriented tools such as CABAC. The HSL part of the codebase includes 5 major 

versions, the total number of repository commits is 480, and the number of code lines exceeds 48k LoC of which 

C/C++ HLS code accounts for 41k LoC. Furthermore, the Verilog RTL generated from the HLS code exceeds 

505k LoC, but it was not included in the repository. Manually written RTL takes up 7.5k LoC, which was only 

needed for instantiating and connecting the generated RTL (5.5k LoC) and VHDL units (2k LoC).  

Altogether, we executed the RTL synthesis from Catapult over 10k times, i.e., the development included 

thousands of iterations and refinements. We estimate 21 person months effort was spent on the HLS 

implementation. Our conclusion is that without HLS it would have been very challenging to manage the project 

schedule and the overall design complexity. 

Table 9: Performance comparison with related work  

 

 

Miyazawa [28] Atapattu [29] Zhang [30] Zhang [31] Ding [32] Tsai [33] Zhu [34] Huang [35] Pastuszak [36] Xu [37] Proposed

Technology FPGA/System FPGA FPGA/ASIC FPGA/ASIC FPGA ASIC ASIC ASIC FPGA/ASIC ASIC FPGA/System

Intra/Inter x/x x/- x/- x/- x/- x/x x/- x/- x/- x/x x/-

FPGA 

performance

1080                  

@60fps 

1080p         

@30fps

1080p        

@45fps

1080p               

@45fps

1080p    

@60fps
- - -

1080p             

@60fps
-

4K                   

@60fps

System/ASIC 

performance

8K                      

@60fps
-

4K              

@30fps

4K                     

@30fps
-

8K         

@30fps

1080p       

@44fps

1080p      

@60fps

4K                   

@30fps

4K                 

@30fps

8K                   

@30fps

Cells - - -
195 883    

ALUTs

63450    

LUTs
- - -

93 184   

ALUTs
-

377 649   

ALMs

DSPs - - -
1244          

DSPs

721        

DSPs
- - -

481          

DSPs
-

1468        

DSPs

Table 10: System, FPGA, and single CABAC Unit performance measured with the worst-case sequence 

 

1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4

Mbins/s 4234 5240 5941 3371 4804 5189 3475 3745 3210 2316

bins/c 15.9 19.7 22.3 12.7 18.1 19.5 13.1 14.1 12.1 8.7

Mbins/s 2117 2620 2971 1686 2402 2594 1738 1872 1605 1158

bins/c 8.0 9.8 11.2 6.3 9.0 9.8 6.5 7.0 6.0 4.4

Mbins/s 353 437 495 281 400 432 290 312 268 193

bins/c 1.3 1.6 1.9 1.1 1.5 1.6 1.1 1.2 1.0 0.7

QP22

2× FPGA Encoding System

1× FPGA Encoding System

Single CABAC Core

4K Sequence                   Beauty
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9 CONCLUSIONS 

This paper presented the architecture and HLS implementation of an embedded real-time 4K HEVC intra 

encoder. The HLS design approach made it possible to meet several design objectives at the same time: 

scalability as the number of server CPUs, accelerator FPGA boards, and HW encoder instances per FPGA as 

well as the flexibility to switch execution between SW and HW. The latter was found very beneficial at design 

time in protocol and interface verification as well as in developing the HLS synthesis and CPU SW 

simultaneously. The HLS synthesis took time to learn, but it speeded up the design iterations significantly. The 

productivity increase is challenging to justify, and HLS typically helps to improve the QoR more than absolute 

performance. However, our results show competitive video coding performance over related work, which 

indicate that the HLS tool was able to translate behavioural source code to structural RTL and optimize it 

efficiently. In particular, the implementation of CABAC is not trivial even with handwritten RTL. The HEVC 

encoder with its parallel HW instances is very complex as a whole and manually controlling all task allocations 

and scheduling would have been very laborious. This work proves that the shorter development time and better 

complexity control does not come at a cost of coding performance. 
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