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Abstract— In this article, by combining mobile robots, 

passive RFID, and machine vision in a unique way, we create a 

system that can take actions in preventing potential accidents by 

identifying, alerting, and helping a care home client at risk. We 

validated a laboratory version of the system, in which an RFID 

reader and machine vision equipped mobile robot identifies and 

greets a person wandering in the care environment at night, and 

gently guides the person back to the room for a safe night. 

According to our results, both RFID and machine vision systems 

integrated into a mobile robot were technically functional in a 

lit room, while the functionality of the machine vision system in 

a dark room needs further development. The main added value 

of this research was to bring together all this commercial 

equipment to validate the idea as proof-of-concept.  

Keywords— RFID applications, RFID in healthcare, mobile 

robot, machine vision 

I. INTRODUCTION 

Autonomous mobile robots (AMR) can be utilized in a 
variety of routine logistical tasks, but also additional tasks 
could be designed for them. In healthcare environments, they 
could free professionals from, e.g., transport [1], disinfection 
[2], and patient data collection [3] tasks, and allow people to 
focus on their core work [4][5]. AMR can navigate 
independently on their maps, plan the fastest or the most 
practical routes, and redesign the route if necessary. They can 
avoid and bypass collisions and contamination with humans 
and other moving, stationary, or contaminant objects, obey 
calls from different operators, give spoken instructions, and 
reorganize their actions according to the signals from the 
environment [6]-[9]. 

Passive RFID (radiofrequency identification) technology 
provides automatic identification of products and items 
[10][11], but also people [12][13], achieved with energy 
source-free and wirelessly addressable electronic tags. As 
each tag has a unique identification number (ID), it is possible 
to identify tagged people from a distance with an RFID 
reader, which can be attached for example to an AMR. The 
use of UHF (ultra-high frequency) enables working distances 
of several meters. 

This paper is based on an earlier conference publication 
[14], in which we described a use scenario concerning the 
above-mentioned technologies for improving elderly care 
nighttime safety. In the scenario, a wandering resident is 
identified by an RFID reader integrated into a mobile robot 
and guided back to the person’s room by the mobile robot. 
The focus of this paper is to also integrate machine vision to 
the system as an alternative solution to detect people without 
RFID tags but also enable the future use cases. The machine 
vision system detects if any untagged persons are near the 
robot, in the direction specified by the RFID reader. Based on 
the machine vision data the decisions on how to guide the 
person identified by the RFID reader are made. The untagged 
people detected by the machine vision system can be e.g., 
visitors, relatives or paramedics already guiding the 
identified person and thus no further guidance is given by the 
robot. The additional features of the machine vision system 
will also be used in future scenarios. Based on all this info, 
the data fusion system communicates with the database to 
figure out how all this information will affect the actions in 
this case. 

II. PRACTICAL IMPLEMENTATION 

In practice, when an RFID reader integrated in a mobile 
robot detects a lost or otherwise at the wrong time wandering 
person on the robot’s normal route, the robot can speak to ask 
the person to follow the robot back to their room while 
constantly monitoring, if the person follows. 

The RFID reader equipment consisted of CAENRFID 
Proton R4320P Long Range RAIN RFID Reader and 4 x 
LAIRD S8658PRJ RFID reader antennas. The reader used 
frequency of ETSI EN 302 208 v3.1.1 865.600-867.600 
MHz. The antennas were mounted one to each side of a 
wooden cabinet and the cabinet was mounted on top of a 
MiR250 mobile robot, as illustrated in Fig. 1. The mounting 
height of each antenna’s middle point was 0,63 m from the 
floor level. 

The research has been funded by the Academy of Finland (decisions 

337863 and 337861). 

mailto:mirka.leino@samk.fi
mailto:tommi.lehtinen@samk.fi
mailto:johanna.virkki@tuni.fi
mailto:joonas.kortelainen@samk.fi
mailto:pauli.valo@samk.fi
mailto:sari.merilampi@samk.fi


 
Fig. 1. The RFID reader antennas and machine vision cameras integrated into 
the mobile robot cabinet. 

Machine vision cameras were basic security cameras with 
integrated infrared illumination and solenoid-driven infrared 
filters. The solenoid-driven infrared filters gave the cameras 
the ability to image normal visible wavelength light when the 
environment is well lit, but they can also see on infrared 
wavelength when it is pitch-dark. These cameras are 
connected via a network switch to the data fusion computer 
that is aboard the mobile robot. There are a total of four 
cameras that are fastened 90 degrees apart from each other, 
as shown in Fig. 1. This gives a 360-degree field of view 
(FOV) to the system; hence one camera can see over 90 
degrees horizontally. Through this arrangement, the 
computer gets four 1920x1080 images, and stitches them as 
one wide picture that covers the whole 360 degrees FOV. 
After that, the mentioned image is uploaded to the OpenCV-
based program that recognizes human figures. 

The created machine vision system works by initially 
receiving a stream of images from the security cameras by 
OBS studio software. Four image streams from the four 
cameras are arranged side by side to create a panoramic view 
of the 360-angle area. These four image streams stitched 
together are then formed as an output of a virtual camera. This 
stream is used as an input of the machine vision algorithm. 
The algorithm used in this test version of the machine vision 
system was YOLO version 5, which is available in GitHub. 
YOLO is described as a collection of different object 
detection architectures and models that are pretrained using 
the COCO (Common Objects in Context) dataset. The MS 
COCO is a dataset to be used in detection and segmentation 
of objects seen in our daily, natural environments [15]. When 
using the YOLO in these preliminary tests, a dataset called 
Crowd Human with images of human characters was 
configured to be used instead of the COCO dataset. In these 
tests, one example (detect.py) of YOLO was utilized by 
configuring it to the purposes of our tests. 

III. VALIDATION MEASUREMENTS 

A. Mobile Robot-Integrated RFID System 

The purpose of the RFID system validation measurements 
was a) to validate the mobile robot-integrated RFID system’s 
reading performance in the use scenario and b) to initially test 

different placement for basic commercial RFID tags on 
human body. The measurements were performed in a corridor 
with commercial passive UHF RFID tags (Avery Dennison 
Shortdipole Monza 4D) placed in various places on the 
human body, as illustrated in Fig. 2. The chest was chosen to 
be one of the attachment points, as in this context tags could 
be hanging in a keychain, attached to a name tag, or 
integrated into clothing. A front pocket was taken as another 
placement, as it is also a potential place in case the tag is a 
key ring, for instance. Collar and shoe were selected as well, 
as they are further away from the lossy human body, and 
potentially readable from various directions. Upper back and 
calf were selected as potential places to clothing-integrated 
tags, as they can easily be made unnoticeable for the user 
(memory impaired users may be willing to detach tags from 
clothing). One tag was placed on the hem of the shirt, as it 
was only loosely on the body. The distances of the tags from 
the floor were: shoe 4 cm, calf 30 cm, pocket 70 cm, hem 80 
cm, chest 120 cm, and collar 135 cm. The test subject was 
female. 

In this preliminary experiment, the purpose was to test 
general, commercial tags in this setup in a real, lossy 
environment and with several tags in near proximity to each 
other (“the worst-case scenario”). The RFID system 
validation measurements were taken from distances of 1.2 m 
and 3 m and from four directions (0° = front, 90° = left, 180°= 

back and 270°= right). Each measurement was taken with the 

following protocol: Reading started at 7.15 dBm ERP 
(Efficient Radiating Power) and the power was raised in steps 
of 2 dBm up to maximum allowed transmit power. On each 
power step, RFID tags were queried once, and all obtained 
results were written to a database. On each tag the written 
result contained values of tag ID, Received Signal Strength 
Indicator, tag placement on body, antenna number, reading 
power, read step index, the orientation of the person, and read 
time. Each measurement was taken five times to be able to 
identify unreliable measurement results, which occasionally 
occur in real use environment due to reflections and other 
disturbances. 

 

Fig. 2. Passive UHF RFID tag placements on human body. 

B. Mobile Robot-Integrated Machine Vision System 

The purpose of the machine vision system validation 
measurements was to verify and confirm the functionalities 
of the machine vision system in the detection of human 
figures. The measurements were performed using three 
different procedures.   

The first procedure tested the detection of a human figure 
from three different distances. The distances between the test 
subjects and the machine vision system integrated in the 



mobile robot were 3 m, 5 m and 8 m. Each test subject in turn 
went 3 m from the machine vision system, first looking in the 
direction of the robot, then always turning 90 degrees to the 
right so that the human was imaged from the front, left, back 
and right. The same imaging was repeated for each test 
subject also at a distance of 5 m and 8 m. At the end of the 
test procedure, the same imaging was performed by one of 
the test persons with the support of a rollator, in which case 
the person turned the direction of travel of the rollator 
according to their own direction of travel each time they 
turned 90 degrees.   

In the second procedure, the tests of the first procedure 
were repeated, but under dark conditions. Lights were turned 
off from the lab room, but some light was glimmering from 
the hallway through the window.   

The third procedure further tested how the machine vision 
system recognizes people in different directions 
simultaneously. In the measurement situation, there were six 
different people on different sides of the robot, five of whom 
were standing, and one was sitting. All test subjects were 2-4 
m away from the robot. Program outputs, where the human 
figures are marked in the image with red dot, are shown in 
Fig. 3. From this information, the system also calculates 
where the identified person is with respect to the mobile 
robot. 

Seven people participated in the tests, three of whom were 
men, two women, and two children, as presented in Fig. 4. By 
repeating the tests with different test subjects, the aim was to 
ensure that the functioning of the system was not affected by 
the gender, size or age of the person being detected. Because 
the mobile robot, the integrated RFID reader, and the 
integrated machine vision system are also designed to work 
in crisis situations, the test subjects kept face masks on their 
faces throughout the validation measurements. This ensured 
that the use of a face mask would not prevent the detection of 
the human figure. 

 

Fig. 3. Detected human figure output with red dot. 

 

Fig. 4. Test subjects who participated in the validation measurements of the 
machine vision system. 

IV. RESULTS AND DISCUSSION 

A. Mobile Robot-Integrated RFID System 

The validation measurement results of the mobile robot-
integrated RFID system are presented in Table I, which 
presents the threshold power (minimum power required to 
read the RFID tag) for different RFID tag placements on 
body, in different orientations (the person is measured 
directly from front, back and both sides), and from different 
distances (1.2 m and 3 m). Red color without any 
measurement result indicates the tag was not readable. 

As can be seen from Table I, the RFID tags, which were 
placed on the chest and on the upper back were the easiest to 
detect. Similarly, the collar tag was easily detected in all other 
directions except from the opposite side of the body, as the 
collar tag was only added on the right side of the body.    

The shoe tag, the pocket tag, as well as the calf tag were 
also placed on this side, but they were not readable from all 
directions. The pocket tag as well as the calf tag were very 
tight on the body, which affects the losses and shortens the 
read range. Additionally, the shoe tag did not perform well, 
which may be caused by lossy shoe sole material, or its very 
close position related to the floor. Surprisingly, the hem tag 
also performed poorly. The potential tag placements for this 
use case on the human body were chest, upper back, and 
collar. To be able to detect the person from all directions, it 
would be advisable to attach tags on opposite sides of the 
body (back and front or right and left side).    

These measurement results do not reveal which reader 
antenna was detecting the RFID tag, as from the measurement 
purpose of this study, it was only relevant, if the tag was read. 
However, it is our future topic to study, as it affects the 
functioning of the total system and system integration with 
the machine vision system. 

TABLE I.  THE TAG’S THRESHOLD POWER ON HUMAN BODY 

 

B. Mobile Robot-Integrated Machine Vision System 

The validation measurement results of the mobile robot-
integrated machine vision system are shown in Table II and 
Table III. Partial detection in the table means that the subject 
is detected as a human figure from some but not from all 
directions (from front, left, back and right). As can be seen, 
in a fully lit room, at distances of 3 m and 5 m, the machine 
vision system detected all test subjects as humans when 
viewed from all four directions. The detection of a test subject 
dressed in dark clothing from 8 m was uncertain against a 
distant, uneven background, but all other test subjects were 
identified from 8 m from all directions. 

 



TABLE II.  MACHINE VISION VALIDATION RESULTS IN A LIT ROOM 

 

TABLE III.  MACHINE VISION VALIDATION RESULTS IN A DARK ROOM 

 

Detection of the test subject with a rollator was uncertain 
at distances of 5 m and 8 m, when the subject and the rollator 
were imaged from the side. The front and back of the subject 
were detected in these situations as well. 

In a dark room, detection was not as certain. The 
undetectable test subject at 3 m was the subject dressed in 
dark clothing, who was only partially detected in a fully lit 
room at 8 m. In the darker environment, the detection seems 
to be more clearly influenced by the clothing. At 3 m from 
each direction, the detected test subjects were those wearing 
the brightest colored shirts. Regarding partial detection, it 
was found that the system best detects a subject from a frontal 
image. The position of the legs was also found to be important 
for detection. If the subject was standing with legs apart, the 
system detected the subject as a human figure more easily 
than when standing legs together. This emerged in situations 
where detection was more uncertain. Finally, in a 
multisubject validation, all the test subjects positioned in 
different directions, 2-4 m away from the robot, were 
correctly detected. 

The validation measurement results showed that detection 
of human figures works. As the system also gives the 
direction in which the detected people are and since the size 
of a human figure gives a rough estimate of how far the 
detected subject is, the system has even more potential than 
presented in this first laboratory version. According to these 
initial results, detection of human figures in a dark 
environment is the most important target for further 
development. 

V. CONCLUSION 

Based on the validation measurements in the laboratory 
environment, it is concluded that both RFID and machine 
vision system integrated on a mobile robot were operating 
well, though further development is needed, for example, to 
improve the RFID tag readability at different situations and 
to develop machine vision-based detection of a person in a 
dark room by integrating a near infrared lighting to it. Our 
future work also includes further development of the data 
fusion protocol for seamless integration and interactions of 
the different sub-systems for this specific use case, as well as 
testing the system in a real use environment. Further, on-body 
RFID tags suitable especially for this purpose will be 
designed and detailed performance measurements will be 
carried out for individual tag placements. The results of this 
study form the basis for these next development steps. 
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