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ABSTRACT

In this work, we propose several attention formulations for multi-
variate sequence data. We build on top of the recently introduced
2D-Attention and reformulate the attention learning methodology by
quantifying the relevance of feature/temporal dimensions through la-
tent spaces based on self-attention rather than learning them directly.
In addition, we propose a joint feature-temporal attention mecha-
nism that learns a joint 2D attention mask highlighting relevant in-
formation without treating feature and temporal representations in-
dependently. The proposed approaches can be used in various archi-
tectures and we specifically evaluate their application together with
Neural Bag of Features feature extraction module. Experiments on
several sequence data analysis tasks show the improved performance
yielded by our approach compared to standard methods.

1. INTRODUCTION

Sequence data modeling became an important task in the field of ma-
chine learning, finding applications in a wide range of areas. These
include speech recognition [1], video processing [2], biosignal an-
laysis [3], and natural language processing [4]. Multiple methods
directed at solving sequence data analysis tasks were proposed to
date. Notable approaches include those based on Recurrent Neural
Networks, such as Gated Recurrent Units [4] or Long Short Term
Memory models [5] that aim to explicitly model the sequential na-
ture of the data with variable length and capture its temporal infor-
mation. In addition, methods based on Transformers have been pro-
posed as well, modelling the data representations as token sequences
with self-attention between tokens being the main driving force of
the model [6]. Besides, methods that were originally developed for
other types of data, such as Convolutional Neural Networks or Neu-
ral Bag of Features [7, 8], were shown beneficial in sequential data
analysis tasks.

Concurrent with the development of these methods, approaches
directed towards improving robustness of baseline models have been
emerging, with the attention modules [6] being one of the most no-
table ones. The goal of attention module is generally defined as
highlighting relevant information in the model while suppressing
less relevant one. This idea has been applied to a wide range of
base models, and explicit definitions of different attention variants
vary between specific models and data types. In CNNs, attention
is generally calculated in a form of a learned mask of weights that
is applied element-wise to the intermediate feature representation to
facilitate learning of stronger features, where mask can be applied
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both in channel or spatial dimensions [9, 10, 11]. Another relevant
incarnation of an attention model is that of multi-head self-attention
that serves as a building block in Transformer models. In this for-
mulation, relevance of features is quantified by their relations in the
learnt latent space.

Bag of Features (BoF) [12] model has been widely used for fea-
ture extraction from image data, later emerging to other data types as
well, including sequential data [13, 14]. The learning process of BoF
consists of two stages, with the first stage being dictionary learning,
during which a codebook of representative features (codewords) is
learnt. During the second stage of BoF, the learnt codebook is used
to quantize the low-level feature representation of data into a his-
togram. To facilitate more powerful feature extraction, Discriminant
Bag of Features approaches were proposed [15, 16], while Neural
Bag of Features (NBoF) was proposed as a neural network gener-
alization of BoF [7]. NBoF can be used as an independent feature
extractor or as a submodule of a bigger architecture, and can be op-
timized end-to-end in either case. Besides, an attention module for
Neural Bag of Features has been recently proposed to address some
of its limitations and increase the robustness of the model [17, 18].
Specifically, 2D Attention (2DA) proposed three attention types: in-
put attention, with the aim of addressing the noise present in input
data; codeword attention, with the aim of highlighting most relevant
codewords in a codebook; and temporal attention, with the aim of
highlighting most relevant temporal dimensions in the representa-
tion.

In this paper, we propose to reformulate the idea of 2D-Attention
in sequence data and evaluate it in Neural Bag of Features model.
Our contributions are summarized as follows:

• We revisit the definition of 2D-Attention, and propose self-
attention based alternatives capable of more powerful quan-
tification of feature relevance. We propose self-attention
based formulations of both temporal and codeword attention.

• We develop codeword-temporal self-attention to facilitate
learning of representation relevance in joint codeword-
temporal latent space, rather than treating codeword and
temporal attentions separately.

• We evaluate the developed methods on sequence data analy-
sis tasks, including acoustic scene classification and cardiac
disease recognition from ECG and PCG signals, and aciheve
competitive performance.

The remainder of the paper is organized as follows. Section 2
provides an overview of the related work, Section 3 describes the
proposed formulations of 2DA self-attentions, Section 4 provides ex-
perimental results evaluating their performance in a variety of time-
series analysis problems against related approaches, and Section 5
concludes the paper.
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2. RELATED WORK

Neural Bag of Features (NBoF) [19] is a neural extension of the
Bag of Features algorithm that can be utilized both as an indepen-
dent learning method, as well as incorporated into larger models to
facilitate more powerful feature extraction. NBoF consists of two
steps, namely, dictionary learning and feature quantization. Specif-
ically, NBoF model receives as input a variable-size representation
and quantizes it into a fixed-size histogram representation. Quanti-
zation is performed using a learned dictionary that can be optimized
jointly with the full model architecture in an end-to-end manner. Fur-
ther, aggregation step is performed, where the extracted histogram
representations, known as codewords, are aggregated by averaging.
To date, several feature quantization approaches have been proposed,
including those based on Radial Basis Function (RBF) [19] and hy-
perbolic kernel [8]. Here we revisit the original definition based on
RBF kernel.

Formally, NBoF with an RBF kernel is defined as follows.
Given a sequence of N feature representations X = [x1, . . . ,xN ] ∈
RD×N , the quantization layer produces a sequence of quantized fea-
tures Φ = [ϕ1, . . . ,ϕN ] ∈ RK×N , where ϕn = [ϕn,1, . . . , ϕn,K ]T ∈
RK is the quantized representation corresponding to feature xn. The
output of kth RBF neuron for feature xn is given as follows:

ϕn,k =
exp

(
− ∥(xn − vk)⊙wk∥2

)∑K
m=1 exp

(
− ∥(xn − vm)⊙wm∥2

) , (1)

where vk is the kth codeword, K is the total number of codewords,
and wk ∈ RD is a learnable parameter controlling the shape of the
Gaussian kernel.

Following the quantization step, the quantized features are ag-
gregated by averaging:

y =
1

N

N∑
n=1

ϕn. (2)

Although providing reasonable feature extraction capabilities
in a variety of problems, NBoF has a number of limitations. One
of such limitations is that each learned codeword is considered to
be equally important in the learned representation, and hence con-
tributes equally to the prediction, although it is reasonable to assume
that certain codewords have learnt more powerful features. With
respect to sequence data modeling, another limitation is that during
the aggregation step, quantized features are combined by simple
averaging, disregarding the relative importance of each timestamp.
Nevertheless, temporal information can be of great importance in a
variety of sequence learning tasks, such as speech command recog-
nition, or dynamic activity recognition, where order of learnt feature
representation can be a defining factor for the prediction.

To address these limitations, an attention mechanism for se-
quence data has been proposed with NBoF as a baseline in mind
[17]. Specifically, the method is referred to as 2D-Attention (2DA)
and defines three attention types: input attention, codeword atten-
tion, and temporal attention, that aim to emphasize the most relevant
input data features, quantized features, and temporal timestamps,
respectively.

Formally, 2DA is defined as follows. Given a feature represen-
tation Φ, 2DA learns an attention matrix A:

A = softmax(ΦW), (3)

where softmax(·) function is applied row-wise to encourage com-
petition between columns of Φ, and W is a learnable weight matrix

with diagonal elements fixed at 1
N

. The learnt attention matrix is
subsequently applied as:

Φ̃ = F2DA(Φ) = α(Φ⊙A) + (1− α)Φ, (4)

where α is a learnt parameter controlling the strength of attention
matrix and Φ̃ is the attended representation.

The first attention type introduced in 2DA is the codeword at-
tention, the aim of which is to highlight most relevant codewords
obtained at quantization step of the NBoF model while suppressing
the non-relevant ones. This is desirable under the assumption that
the output of each quantization neuron contributes differently to the
final prediction. Formally, given the output of the quantization step
Φ ∈ RK×N , an attention mask A ∈ RK×N of attention weights is
applied to the features Φ in order to highlight or suppress its rows,
i.e., codewords, by applying the 2DA to ΦT :

Φ̃CA = F2DA(Φ
T ). (5)

Similarly, 2DA can be applied directly on the input of NBoF
rather than its quantized output in order to improve the robustness of
the model towards noise. Since it is desired to highlight individual
series in the input data, the process is similar to that of codeword
attention, and 2DA is applied to XT :

X̃IA = F2DA(X
T ). (6)

This type of attention is referred to as input attention.
In turn, temporal attention aims to highlight relevant timestamps

in the sequence during the aggregation step of the NBoF model to
address the limitation of the representations being simply averaged
during the aggregation step. Formally, it is achieved by applying
2DA on columns of Φ:

Φ̃TA = F2DA(Φ). (7)

3. PROPOSED METHODS

Although the 2DA attention addresses certain limitations of the
NBoF model in terms of highlighting most relevant attributes in
the quantized feature representation, further improvement can be
achieved by reformulating the attention learning methodology.

One limitation of previously proposed 2DA attention mecha-
nism is that attention is applied separately to either codebook or
temporal dimensions. Even if both attention masks are learnt and
applied simultaneously, such approach does not take into account
potential relationships of learned codewords with the temporal rep-
resentations in the training phase as the masks are learned indepen-
dently. At the same time, they are not necessarily independent in
real-world problems, as certain codewords can have different impor-
tance at different timestamps. We therefore hypothesize that learning
of joint codeword-temporal attention map can be beneficial for learn-
ing better feature representations and therefore assist in classification
task.

3.1. Codeword-temporal self-attention

Formally, we define the codeword-temporal attention as follows,
building on top of the well studied self-attention module. Consid-
ering a NBoF-learned feature representation Φ ∈ RK×N , where
K denotes the number of codewords and N denotes the temporal
length, we obtain the attention matrix by quantifying the relations
between codeword and temporal features in a joint learnt space. For-
mally, we define two learnable projection matrices Wn

q ∈ d × N ,



Wn
k ∈ d × K and project the representation Φ temporally and

codeword-wise into a joint d-dimensional space.

qn = ΦWn
q
T , qn ∈ K × d,

kn = ΦTWn
k
T , kn ∈ N × d. (8)

Further, to quantify the relations of learnt features in the joint
space we calculate the scaled dot-product similarity between rep-
resentations learned from temporal dimension and the ones learned
from the codebook and apply an activation function σ, to scale
the values. Since at this time we do not aim to promote com-
petition within codewords or timestamps, but rather learn a joint
two-dimensional attention matrix, we choose the sigmoid activation
function to scale the values to desirable range. An alternative can
be using softmax over flattened 2D representation, but we empiri-
cally observed no benefit in following this approach. Further, the
learnt attention matrix is applied element-wise to the input feature
representation. Following the widely-used definition of multi-head
self-attention [6], n attention matrices can be calculated indepen-
dently, with the outputs of all heads subsequently concatenated. The
attention matrix An corresponding to the head n, feature represen-
tation Φ̃n, and the combined feature representation Φ̃ are therefore
given as:

An = σ(
qnk

T
n√
d

) ∈ K ×N, (9)

Φ̃n = αnΦ+ (1− αn)An ⊙Φ, (10)

Φ̃ = [Φ̃1, ..., Φ̃n]. (11)

3.2. Codeword self-attention

A similar idea can be further developed into enhancing the inde-
pendent codebook and temporal attentions in 2DA. In the standard
definition, the projection matrix W outlined in Eq. 3 is fully learnt
from scratch, with a role of highlighting relevant codewords or tem-
poral features in Φ. Although by design the aim of W is to con-
verge to the values that reflect the relevance of the corresponding
codewords/timestamps, being optimized from scratch, nothing en-
sures or guides W towards reflecting these relations. To account for
this, we propose to explicitly derive the attention matrix by means of
calculating dot-product similarity of codewords in the latent space.
That is, considering the codeword attention, we define two learnable
projection matrices Wn

q ∈ d × N and Wn
k ∈ d × N from which

latent representations of Φ are learnt as:

qn = ΦWn
q
T ∈ K × d,

kn = ΦWn
k
T ∈ K × d. (12)

Following this, we can calculate the codeword attention as a K ×K
matrix following Eq. 9, where we utilize softmax as σ to promote
competition between codewords.

Note that unlike 2DA, following this approach the learnable pa-
rameters are responsible for merely learning a latent space, where
relevance of the codewords is explicitly calculated by means of dot
product similarity, rather than directly learning the relevance of each
codeword as in 2DA. The learnt attention matrix is subsequently
multiplied with a feature representation Φ to highlight the most rel-
evant codewords and multi-head approach can be followed here as
well:

Φ̃n = αnΦ+ (1− αn)AnΦ (13)

Φ̃ = [Φ̃1, ..., Φ̃n]. (14)

3.3. Temporal self-attention

Following the same principle, temporal self-attention can be defined
by quantifying temporal relevance of the representation by calculat-
ing this in a latent space. To achieve this, temporal self-attention can
be calculated by simply operating on the transpose of the feature rep-
resentation Φ, leading to N ×N attention matrix encoding relative
importance of each temporal dimension. Specifically, the queries,
keys, and combined multi-head representation can be achieved as
follows:

qn = ΦTWn
q
T ∈ N × d

kn = ΦTWn
k
T ∈ N × d (15)

Φ̃n = αnΦ
T + (1− αn)AnΦ

T (16)

Φ̃ = [(Φ̃1)
T , ..., (Φ̃n)

T ] (17)

4. EXPERIMENTAL EVALUATION

In this section we report the experimental evaluation of the pro-
posed self-attention mechanisms and compare them with standard
2-DA attention. All the experiments are conducted with the logis-
tic formulation of Neural Bag of Features [7] that uses hyperbolic
kernel as a quantization layer and we use 256 codewords. We per-
form experiments on two tasks, namely, biosignal analysis and au-
dio analysis. We denote by 2DA-CA and 2DA-TA the conventional
2DA attention in its codebook and temporal formulations, respec-
tively, and by 2DA-CTSAd, 2DA-TSAd, and 2DA-CSAd - the pro-
posed variants of codebook-temporal self-attention, temporal self-
attention, and codebook self-attention with the dimensionality of the
latent space denoted by d. Note that d is a hyperparameter which
can be tuned, but we instead report the results across multiple val-
ues. Unless otherwise specified, single-head models are used.

4.1. Audio analysis

The first type of sequence data that we consider is audio. Specif-
ically, we evaluate the NBoF models with the proposed attention
approaches on the task of acoustic scene classification defined by
TUT-UAS2018 dataset [20]. The dataset poses a task of classifica-
tion of surrounding environments by their sounds, where 10 classes
of urban environments are defined: airport, shopping mall, metro sta-
tion, street pedestrian, public square, street traffic, tram, bus, metro,
park. We extract mel-spectrogram feature representations with 128
frequency bands that are used as an input to a set of convolutional
layers as defined in [17] to facilitate feature extraction, followed by
NBoF module. The models are trained for 90 epochs with Adam
optimizer and we use the batch size of 256. We utilize accuracy as
the performance metric and report the accuracy of validation set on
90th epoch averaged across three runs.

The results of the proposed attention models and competing
standard 2DA models are reported in Table I. Here and throughout
the paper, we highlight the best result in bold and underline the
results that outperform the baseline 2DA attention models. Specif-
ically, TSA, i.e., temporal self-attention is compared with TA, i.e.,
standard temporal attention, CSA is compared with CA, and CTSA
is considered to outperform standard 2DA if it outperforms both CA
and TA, i.e., both standard codeword and temporal attention models.

As can be seen in Table I, the best result is achieved by the
proposed temporal self-attention model that outperforms both 2DA
baselines. All of the proposed temporal self-attention models out-
perform the temporal 2DA, and similar result is achieved by code-
word self-attention that mostly outperforms codeword 2DA. All of



Table 1. Accuracies on TUT-UAS2018 dataset
Attention models TUT-UAS
2DA-CA 56.15 + 0.21
2DA-TA 56.09 + 0.51
2DA-CTSA512 56.20 + 1.11
2DA-CTSA256 57.53 + 1.28
2DA-CTSA128 56.84 + 1.07
2DA-CTSA64 56.56 + 0.59
2DA-TSA512 56.81 + 0.63
2DA-TSA256 57.55 + 1.40
2DA-TSA128 57.11 + 0.86
2DA-TSA64 56.91 + 0.91
2DA-CSA512 57.18 + 0.53
2DA-CSA256 55.62 + 1.11
2DA-CSA128 56.94 + 0.62
2DA-CSA64 56.74 + 1.44

the variants of the proposed codeword-temporal attentions outper-
form the baseline 2DA.

4.2. Biosignal analysis

The second type of sequence data considered by our approach is
biosignal data. Timely diagnosis of potential heart abnormalities,
such as atrial fibrillation or other cardiovascular diseases is an im-
portant problem in the modern world, with a multitude of solutions
proposed to address it. In our experiments addressed towards this
task, we consider two of the widely-adopted biosignals, namely,
Electrocardiogram (ECG) and Phonocardiogram (PCG). The first
dataset that we consider is the Atrial Fibrillation dataset (AF) that
poses the task of atrial fibrillation recognition from ECG signals
which are provided as the development data (training set) in the Phy-
sionet/Computing in Cardiology Challenge 2017 [21]. Specifically,
the task is formulated as a classification problem with 4 classes: nor-
mal sinus rhythm, atrial fibrillation, alternative rhythm, and noise.
Each ECG signal lasts between 9 to 60 seconds, which we clip or
zero-pad to achieve the length of 30 seconds. Further, prior to apply-
ing the NBoF module, we add several preprocessing convolutional
layers to the model to facilitate feature extraction. Specifically, we
utilize the same architecture as proposed in [17]. We perform 5-fold
cross-validation and report the average F1 score across the folds.
The rest of training hyperparameters are as described in audio clas-
sification task.

The second dataset considered for the task of biosignal analysis
is the PCG dataset of Phonocardiograms that come from the training
set provided in the Physionet/Computing in Cardiology Challenge
2016 [22]. Two different tasks are posed in this dataset: abnormal
phonocardiogram detection, and phonocardiogram quality evalua-
tion, where both tasks are binary classification problems. Due to
varying lengths of signals in the datset, we extract 5 second seg-
ments for classification similarly to [17]. For feature preprocessing,
we extract mel-spectrogram with 24 bands and a window of 25 ms,
which are subsequently fed to several preprocessing convolutional
layers similarly to [17] and then to NBoF model. Other training
hyperparameters are similar to those of AF dataset, except 3-fold
cross-validation is used due to the smaller daatset size.

The results of biosignal analysis tasks are shown in Table II. As
can be seen, in all three cases the best result is achieved by one of
the proposed variants. In PCG dataset, codeword-temporal variant
in high dimensions outperforms both codeword and temporal 2DA,

Table 2. F1 scores on biosignal datasets
Attention models PCG PCG-2 AF
2DA-CA 86.93 + 0.35 73.44 + 1.23 77.33 + 2.44
2DA-TA 87.45 + 0.74 73.39 + 1.16 76.71 + 2.06
2DA-CTSA512 87.75 + 0.78 73.75 + 1.81 77.56 + 1.75
2DA-CTSA256 87.46 + 1.30 73.50 + 0.77 77.55 + 2.42
2DA-CTSA128 87.74 + 0.65 73.62 + 1.80 76.96 + 1.24
2DA-CTSA64 87.07 + 1.02 73.38 + 1.36 77.87 + 1.71
2DA-TSA512 88.06 + 0.61 73.46 + 1.45 76.86 + 2.34
2DA-TSA256 87.26 + 0.52 74.14 + 1.77 76.87 + 1.86
2DA-TSA128 87.08 + 1.00 74.47 + 1.03 77.27 + 2.13
2DA-TSA64 87.77 + 0.61 73.31 + 1.58 76.99 + 1.74
2DA-CSA512 88.36 + 0.22 73.35 + 1.15 77.28 + 1.60
2DA-CSA256 88.38 + 0.55 73.95 + 0.90 77.70 + 1.90
2DA-CSA128 87.19 + 0.98 73.02 + 2.14 78.70 + 1.50
2DA-CSA64 87.71 + 0.44 72.79 + 0.67 77.96 + 1.88

and codeword self-attention significantly outperforms the codeword
2-DA. At the same time, in temporal representations the proposed
approach outperform the 2DA approach in quality evaluation task
on PCG dataset. Similar results are observed in AF dataset, where
proposed self-attention approaches outperform codeword and tem-
poral 2DA.

We further perform evaluation of the proposed methods with re-
spect to different parameters. Specifically, we evaluate utilization of
different number of heads in the models, as well as different Neural
Bag of Features formulations.

4.3. Self-attention with multiple heads

Using multiple heads in self-attention modules has been shown ben-
eficial in a variety of tasks, as learning multiple latent spaces in
parallel allows the model to jointly attend to information from dif-
ferent representation subspaces at different positions [6]. On the
other hand, using multiple heads yields additional model parameters.
Here, we evaluate the proposed self-attention modules with variants
consisting of 2 and 4 heads. In these variants, we use dropout of 0.2
on the attention matrix of codeword and temporal formulations as
defined in [6].

Table III shows the results on TUT-UAS dataset using 2 and 4
heads in multi-head self-attention. As can be seen, the proposed ap-
proaches mostly outperform the standard 2DA. Compared to single-
head variant, the multihead model with 4 heads perform the best,
leading to performance gain of tup to 2.5%. In terms of biosignal
datasets shown in Table IV, it can be seen that the overall results are
rather similar between the head numbers in terms of which variants
perform well in which datasets. In addition, utilization of multiple
heads bring an improvement similarly to the acoustic scene dataset.

4.4. Using other NBoF formulations

All experiments were performed with the logistic NBoF formulation
[7]. However, our proposed self-attention module can be equally
utilized with other formulations as well. Here, we evaluate our ap-
proaches and competing 2DA approaches using the temporal vari-
ant of NBoF that defines two codebooks, long-term and short-term
[8]. We refer to this method as TNBoF. Here we utilize the acous-
tic scene classification dataset and evaluate the TNBoF baseline with
our approaches with both single and multi-head variants, as shown in
Tables VI and VII. We can see that using this model, codeword self-



Table 3. Accuracies on TUT-UAS2018 dataset with 2 and 4 heads
Attention models TUT-UAS, h=2 TUT-UAS, h=4
2DA-CA 56.15 + 0.21 56.15 + 0.21
2DA-TA 56.09 + 0.51 56.09 + 0.51
2DA-CTSA512 57.23 + 1.00 57.04 + 0.80
2DA-CTSA256 56.15 + 1.17 58.52 + 0.70
2DA-CTSA128 57.48 + 0.64 58.02 + 0.45
2DA-CTSA64 54.91 + 1.22 58.07 + 1.92
2DA-CTSA32 57.21 + 0.29 56.31 + 0.74
2DA-TSA512 56.61 + 0.91 55.82 + 1.18
2DA-TSA256 55.80 + 0.98 56.07 + 0.48
2DA-TSA128 55.84 + 0.51 57.62 + 1.71
2DA-TSA64 57.83 + 0.16 56.71 + 0.81
2DA-TSA32 56.31 + 1.10 57.83 + 0.23
2DA-CSA512 57.40 + 0.23 57.13 + 1.20
2DA-CSA256 56.37 + 1.24 55.45 + 0.71
2DA-CSA128 55.62 + 1.18 56.91 + 1.31
2DA-CSA64 56.99 + 1.21 56.54 + 1.45
2DA-CSA32 56.04 + 1.06 56.26 + 1.53

Table 4. F1 scores on biosignal datasets with 2 heads
Models PCG-1 PCG-2 AF
2DA-CA 86.93 + 0.35 73.44 + 1.23 77.33 + 2.44
2DA-TA 87.45 + 0.74 73.39 + 1.16 76.71 + 2.06
2DA-CTSA512 87.80 + 0.73 74.57 + 1.14 76.43 + 2.78
2DA-CTSA256 87.84 + 0.12 73.14 + 0.70 76.60 + 1.70
2DA-CTSA128 87.24 + 0.74 73.77 + 1.02 77.06 + 1.39
2DA-CTSA64 88.04 + 0.52 73.73 + 1.16 76.98 + 1.92
2DA-CTSA32 87.63 + 0.83 73.69 + 0.98 77.79 + 2.00
2DA-TSA512 86.98 + 0.76 73.66 + 0.78 76.77 + 2.26
2DA-TSA256 87.61 + 0.70 73.32 + 1.15 76.31 + 1.59
2DA-TSA128 87.69 + 1.11 72.64 + 2.19 77.23 + 1.48
2DA-TSA64 87.09 + 0.60 73.55 + 0.80 77.21 + 1.95
2DA-TSA32 87.03 + 0.44 74.38 + 1.81 77.41 + 2.18
2DA-CSA512 87.47 + 0.78 72.97 + 0.72 77.88 + 1.43
2DA-CSA256 88.31 + 0.60 74.94 + 1.77 77.70 + 1.69
2DA-CSA128 87.33 + 0.68 74.46 + 0.62 77.47 + 0.96
2DA-CSA64 87.49 + 0.84 73.41 + 1.13 76.91 + 1.11
2DA-CSA32 87.72 + 0.57 73.08 + 0.60 76.69 + 1.22

Table 5. F1 scores on biosignal datasets with 4 heads
Attention models PCG-1 PCG-2 AF
2DA-CA 86.93 + 0.35 73.44 + 1.23 77.33 + 2.44
2DA-TA 87.45 + 0.74 73.39 + 1.16 76.71 + 2.06
2DA-CTSA512 87.88 + 0.56 74.34 + 0.85 77.09 + 1.24
2DA-CTSA256 88.04 + 0.53 73.37 + 1.94 78.26 + 1.69
2DA-CTSA128 86.91 + 0.29 72.60 + 1.18 77.51 + 1.75
2DA-CTSA64 86.65 + 0.57 73.62 + 1.58 77.87 + 2.29
2DA-CTSA32 87.74 + 0.67 73.12 + 0.13 77.61 + 1.66
2DA-TSA512 86.94 + 0.60 72.92 + 1.76 76.69 + 1.54
2DA-TSA256 87.45 + 0.71 73.59 + 0.89 77.13 + 1.84
2DA-TSA128 87.20 + 0.23 73.37 + 0.80 77.03 + 2.18
2DA-TSA64 87.29 + 0.39 74.07 + 1.11 76.94 + 2.47
2DA-TSA32 87.03 + 0.90 73.69 + 0.73 77.56 + 1.80
2DA-CSA512 88.27 + 0.63 73.29 + 1.51 77.77 + 1.72
2DA-CSA256 88.59 + 0.81 74.16 + 1.58 77.59 + 1.64
2DA-CSA128 87.67 + 0.41 72.82 + 1.82 77.30 + 1.60
2DA-CSA64 87.37 + 0.56 73.60 + 1.40 77.26 + 1.67
2DA-CSA32 87.12 + 0.66 74.35 + 0.97 76.73 + 1.77

Table 6. Accuracy scores on TUT-UAS2018 datast with TNBoF
model with 1 head

Attention models TUT-UAS, TNBoF
2DA-CA 56.79 + 0.60
2DA-TA 55.89 + 0.34
2DA-CTSA64 57.04 + 0.84
2DA-CTSA128 56.51 + 0.46
2DA-CTSA256 57.35 + 1.05
2DA-CTSA512 58.19 + 0.62
2DA-TSA64 56.94 + 0.63
2DA-TSA128 56.46 + 0.63
2DA-TSA256 56.32 + 0.26
2DA-TSA512 56.09 + 0.62
2DA-CSA64 55.70 + 0.20
2DA-CSA128 56.41 + 0.44
2DA-CSA256 56.83 + 0.57
2DA-CSA512 56.46 + 0.29

Table 7. Accuracy scores on TUT-UAS2018 dataset with TNBoF
model with 2 and 4 heads, respectively

Attention models TUT-UAS, TNBoF
h=2 h=4

2DA-CA 56.79 + 0.60 56.79 + 0.60
2DA-TA 55.89 + 0.34 55.89 + 0.34
2DA-CTSA512 56.26 + 0.92 56.36 + 0.82
2DA-CTSA256 57.08 + 0.86 56.57 + 0.65
2DA-CTSA128 57.77 + 0.91 57.31 + 1.01
2DA-CTSA64 56.51 + 1.89 56.42 + 0.22
2DA-CTSA32 57.25 + 0.91 57.38 + 0.79
2DA-TSA512 56.51 + 1.03 56.79 + 0.59
2DA-TSA256 57.45 + 0.97 56.98 + 1.79
2DA-TSA128 56.61 + 1.16 56.78 + 0.58
2DA-TSA64 55.95 + 0.99 56.24 + 1.24
2DA-TSA32 56.17 + 0.31 58.40 + 0.70
2DA-CSA512 55.89 + 0.52 56.15 + 1.47
2DA-CSA256 57.13 + 1.18 56.29 + 1.97
2DA-CSA128 57.04 + 1.11 55.45 + 0.41
2DA-CSA64 55.77 + 1.58 55.95 + 0.91
2DA-CSA32 55.60 + 0.68 57.09 + 0.71

attention mostly outperforms the basedline codeword 2DA, and the
other variants mostly outperform the baseline. At the same time, it
can be seen that overall the best performing variant is the single-head
one, hence utilization of additional heads degrades the performance
rather than improves it in this case.

5. CONCLUSION

In this paper, we revisited the standard formulation of a 2DA atten-
tion mechanism and proposed several ways of enhancing it. The pro-
posed ways are based on self-attention and allow to quantify code-
word and/or temporal relevances through latent spaces rather than
learning them directly. We evaluated the proposed approaches to-
gether with the Neural Bag-of-Features model on a few sequence
learning tasks. The experimental evaluation has shown the benefits
of the proposed approaches. Since the proposed attention models are
generic methods aimed towards multivariate sequence data, further
work into its applications with other architectures and tasks remains
as a future research direction.
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