
Self-attention fusion for audiovisual emotion
recognition with incomplete data
Kateryna Chumachenko1, Alexandros Iosifidis2 and Moncef Gabbouj1
1Department of Computing Sciences, Tampere University, Tampere, Finland

2Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
Emails: {kateryna.chumachenko,moncef.gabbouj}@tuni.fi, ai@ece.au.dk

Abstract—In this paper, we consider the problem of multi-
modal data analysis with a use case of audiovisual emotion
recognition. We propose an architecture capable of learning from
raw data and describe three variants of it with distinct modality
fusion mechanisms. While most of the previous works consider
the ideal scenario of presence of both modalities at all times
during inference, we evaluate the robustness of the model in the
unconstrained settings where one modality is absent or noisy,
and propose a method to mitigate these limitations in a form of
modality dropout. Most importantly, we find that following this
approach not only improves performance drastically under the
absence/noisy representations of one modality, but also improves
the performance in a standard ideal setting, outperforming the
competing methods.

I. INTRODUCTION

Recognition of human emotional states is an important
task within the field of machine learning, enabling better
understanding of social signals in the wide range of appli-
cations ranging from robotics to human-computer interaction
[1], [2]. Multiple approaches and emotion models have been
proposed to date, ranging from the task of recognizing discrete
emotional states, such as ‘happy’, ‘angry’, or ‘sad’, to the
estimation of emotional attributes, such as arousal and valence
on a continuous scale [3], [4]. The task has been approached
from multiple angles with different data types used as input,
including text [5], speech [6], and images [7].

With the abundance of available data, a wide range of
methods aiming to fully take advantage of this data are
emerging, giving momentum to the development of multi-
modal methods [8], [9], [10]. Multi-modal methods are a
class of methods that operate jointly on multiple data types.
These include, among others, video data that consists of audio
and visual modalities [11], joint RGB and depth images [12],
and RGB and skeleton data [13]. Methods operating on such
multi-modal representations range from simple decision-level
fusion approaches to more advanced joint feature learning
approaches. Although fusion of intermediate features can
potentially yield better performance due to joint learning of
representations of multiple modalities, late or early fusion
remain a popular choice in modern architectures due to their
simplicity and versatility [8]. On the other hand, early fusion
is not suitable for fusion of drastically different data types,
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while late fusion primarily only considers features learnt in
each modality independently.

Most multi-modal methods developed to date assume full
presence of all the adopted modalities at all times during
inference, and only evaluate the performance of the models
in such a setting. Nevertheless, in real-world applications it
is often probable for one of the modalities to be missing or
having poor quality at certain times, hence robustness of the
model to such scenarios is an essential factor in building multi-
modal systems operating on real-world data.

In the task of multi-modal emotion recognition, especially
in the recent transformer-based architectures, the trend has
been largely in utilization of pre-extracted features that are
subsequently fused with a learnt model, rather than creating
end-to-end trainable models [14], [15], [16]. This limits the
applicability of such methods in real-world scenarios, as nec-
essary feature extraction is often challenging in unconstrained
settings and introduces another point of uncertainty to the
overall processing pipeline. This is especially the case for
the methods adopting language information [14], [15], as text
transcriptions of audio signals are rarely available in practical
applications and require separate estimation. We therefore
primarily target the task of audiovisual emotion recognition
that does not require separate feature learning.

In our work, we aim to address these limitations of existing
multi-modal emotion recognition methods by building an end-
to-end model that does not require prior feature learning, and
performing fusion at intermediate level, while being robust to
incomplete or noisy data samples. Our contributions can be
summarized as follows:

• We propose a new architecture for audiovisual emotion
recognition from facial videos and speech which does not
rely on separately learnt features and learns end-to-end
from raw videos;

• We employ several modality fusion approaches and pro-
pose an attention-based intermediate feature fusion ap-
proach that softly attends to modality-independent fea-
tures. To the best of our knowledge, such approach has
not been proposed before;

• We propose a new training scheme based on modality
dropout mechanisms aimed to improve the robustness
of the model under incomplete or noisy data of one
modality. We additionally find that the proposed approach



yields better performance also in the standard case under
presence of both modalities.

II. RELATED WORK

Emotion recognition has received a significant amount of
attention by the machine learning community, and a number of
methods aiming to solve this task have been proposed to date.
These methods operate on various data types, such as images
[7], speech [6], text [5], or biosignals [17]. At the same time,
methods combining these modalities have been proposed as
well [14], [16], [15] employing different multi-modal fusion
techniques.

Within the field of multimodal machine learning, generally,
three classes of multi-modal fusion approaches are identified:
early fusion, where the input data of multiple modalities are
simply combined via concatenation, addition, or any other
operation and further processed together; late fusion, where
modalities are treated independently and their features or
softmax classification scores are only combined in the very last
layers; and intermediate feature fusion, where feature sharing
is performed at middle layers of the network and hence the
feature representations of different modalities are learnt jointly.

A notable set of approaches in multimodal fusion rely on
utilization of self-attention [18]. Recall that self-attention is
formulated via calculating the dot-product similarity in the
latent space, where queries q, keys k, and values v are
learnt from input feature representation via learnable projec-
tion matrices Wq,Wk,Wv , and an attented representation is
calculated based on them:

An = softmax

(
qkT

√
d

)
v, (1)

where d is the dimensionality of a latent space. Considering
the task of fusion of two modalities a and b, self-attention
can be utilized as a fusion approach by calculating queries
from modality a and keys and values from modality b. This
results in representation learnt from modality a attending to
corresponding modality b and further applying the obtained
attention matrix to the representation learnt from modality b.

This idea has been extensively utilized for solving a plethora
of tasks involving multimodal fusion. In the context of emo-
tion/affect recognition, notable works include [14], [16], [15].
In [14] the authors propose a multimodal transformer-based
architecture for unaligned multimodal language sequences and
consider fusion of three modalities, namely, audio, vision,
and text. Data from each modality is first projected via a
1D convolutional layer to the desired dimensionality, and
further, a set of transformer blocks is applied. Specifically, two
transformer modules are utilized in each modality branch, with
each of the two modules being responsible for fusion of one
of the other modalities with the modality of the given branch
following the above-specified approach. These representations
are subsequently concatenated and another transformer module
is applied in each modality branch on joint representations.
The processed representations from each of three branches are
subsequently concatenated for final classification.

Another relevant work is [16] where audio and visual
modalities are considered for the task of emotion recognition.
There, each modality is first preprocessed with a separate
transformer block and representations learnt from each modal-
ity are fused with a transformer in a manner similar to Eq. (1).
Compared to previous work, only one modality is fused into
the other one, rather than performing fusion in a pair-wise
manner in separate branches.

Another work described in [15] considers emotion recog-
nition from speech and text modalities. Similarly, they first
perform modality-specific feature learning by means of convo-
lutional blocks, and further employ two cross-modal attention
blocks with one fusion audio into text, and the other one
performing fusion into opposite direction. The statistics is
pooled from each branch and concatenated for prediction.

As can be noticed, all the aforementioned methods are rather
similar in their fusion strategies in that the transformer fusion
is the building block of each of them, and the differences
between the architectures are rather nominal and dataset-
specific. At the same time, it can be noted that the models
focus on building multimodal fusion methods rather than
end-to-end emotion recognition systems, and often employ
features that require separate estimation, especially for the
vision modality. For example, [14] and [16] rely on facial
action units as features, and [14] and [15] utilize language
modality which requires separate annotation or estimation in
practical application.

It should also be noticed that all three mentioned methods
perform fusion in early or intermediate stages in the pipeline,
forcing joint representations to be learnt. While benefiting
from the joint feature learning, such fusion can become a
curse if the learnt fused representations are too co-dependent
and one of the modalities is noisy, incomplete, or simply non-
existing during inference. Indeed, common practice has been
to only evaluate the performance of the models under the ideal
scenario of both modalities being present and complete at all
times, while real-world applications do not necessarily reflect
such scenarios.

III. PROPOSED METHODS

Here we describe the overall architecture of the proposed
audiovisual emotion recognition model as well as three self-
attention based modality fusion methods. Further, we propose
an approach for accounting for missing data in one modality
during inference in a form of modality dropout. On a general
level, the model consists of two branches responsible for
learning audio and visual features, respectively, and fusion
modules placed either in the end or in the middle of the
two branches depending on the feature fusion type, as shown
in Figure 1. In both audio and visual branches, the 1D
Convolutional blocks that are applied in a temporal dimension
are primarily used.

A. Feature extraction

1) Vision branch: The vision branch consists of two parts,
with the first part being the visual feature extraction from



Fig. 1: Multimodal data fusion approaches.

individual video frames, followed by learning of joint rep-
resentation for the whole video sequence. To achieve an end-
to-end trainable model capable of learning from raw video, we
employ feature extraction as part of our pipeline and optimize
it jointly with the multimodal fusion module, unlike the vast
majority of existing works that separate feature extraction from
multimodal fusion and mostly utilize pre-extracted features,
such as facial landmark locations, facial action units, or head
pose information [14], [16]. We choose one of the recently
proposed facial expression recognition architectures, namely,
EfficientFace [7] and incorporate it for feature extraction from
individual frames prior to introducing them to subsequent 1D
convolutional blocks. Specifically, the 1D convolutional blocks
are added after average-pooled output of the last convolutional
block of EfficientFace.

Considering an input video sequence of k frames, each
of the k frames is processed independently by a 2D feature
extractor, resulting in a single vector descriptor for each frame.
These representations are further concatenated and processed
in a temporal dimension with the temporal convolution blocks
described further. We choose to follow this approach, as
opposed to directly employing 3D-convolutions as commonly
done in video tasks, as it provides a number of advantages in
the given task, with the first one being the lower computational
overhead brought by 2D convolutional layers compared to 3D
convolutions. It can also be argued that temporal relations
are of less importance in emotion recognition task, hence 1D
convolutional operations applied in temporal dimension are
sufficient to capture this information. Another major benefit of
following the proposed approach is the ability to employ 2D
feature extractor pre-trained on larger image-based emotion
recognition datasets, as such datasets are significantly less
common for videos that are necessary for pre-training 3D-
convolutional models.

Although we are primarily interested in building an end-to-
end pipeline that can learn from raw data, the first part, i.e.,
visual feature extraction can be decoupled from the model
and any other features can be used instead as input to the

Architecture of the visual branch
EfficientFace module

Stage1
Reshape

Conv1D [k=3, d=64, s=1] + BN1D + ReLU
Conv1D [k=3, d=64, s=1] + BN1D + ReLU

Stage2 Conv1D [k=3, d=128, s=1] + BN1D + ReLU
Conv1D [k=3, d=128, s=1] + BN1D + ReLU

Predict Global Average Pooling + Linear

Architecture of the audio branch

Stage1 Conv1D [k=3, d=64] + BN1D + ReLU + MaxPool1d [2x1]
Conv1D [k=3, d=128] + BN1D + ReLU + MaxPool1d [2x1]

Stage2 Conv1D [k=3, d=256] + BN1D + ReLU + MaxPool1d [k=2]
Conv1D [k=3, d=128] + BN1D + ReLU + MPool1D [k=2]

Predict Global Average Pooling + Linear

TABLE I: Architecture of the visual and audio modules

second part of the vision branch. That is, in the second part of
the architecture, we assume that certain feature representation
XN×d

v has been extracted from input visual data, where N
denotes the temporal dimension, and d denotes the feature
dimension. Here Xv can be represented by any feature types,
either deep features extracted using a pre-trained model, or
other features commonly used for emotion recognition, such
as facial action units or landmarks. We further apply a se-
quence of four convolutional blocks for learning a temporal
representation. Each convolutional block consists of an 1D
Convoluitonal layer with a 3×3 kernel, Batch Normalization,
and a ReLU activation. Further details can be seen in Table 1
that provides full details of vision branch, where k denotes the
kernel size, d denotes the number of filters in a convolutional
layer, and s denotes the stride. The convolutional blocks
are grouped into two stages for multimodal fusion described
further.

2) Audio branch: Similarly to the vision branch, the audio
branch operates on a feature representation, whether pre-
computed or optimized jointly, and applies four blocks of 1D
convolutional layers. Each block consists of a Convolutional
layer, Batch Normalization, ReLU activation, and MaxPooling,
with the specifications defined in Table 1. For audio, we



primarily use mel-frequency cepstral coefficients as features.
We observed no benefit in using other feature representation
types, such as chroma features or spectrograms.

B. Modality fusion approaches

In this section, we describe the considered fusion ap-
proaches. We will first describe the late transformer fusion
approach that is similar to previous works described in the
literature, and then describe the two proposed intermediate
fusion approaches.

1) Late transformer fusion: In this setup, features learnt
from two branches are fused with a transformer block. Specif-
ically, we employ two transformers at the outputs of each
branch, where fusion of one modality is performed into the
other one. The outputs of these transformer blocks are further
concatenated and passed to the final prediction layer. Formally,
this can be defined as follows.

Let Φa and Φv be the feature representations of audio and
vision modalities after the second feature extraction stage, i.e.,
after the fourth convolutional block. A transformer block is
added in each branch, taking representations of two modalities
as inputs. Considering the audio branch as an example, the
transformer block takes the vision branch representation Φv

as input and projects it to obtain keys and values, while queries
are computed from the audio branch features Φa. That is, self-
attention is calculated as

A = softmax

(
ΦaWqW

T
k Φ

T
v√

d

)
ΦvWv, (2)

followed by standard transformer block processing [18]. The
specific architecture of the transformer block is outlined in
Figure 2.

Φ̂ = Φv ⊙ vv, (3)

Fig. 2: Structure of the Transformer block.

The outputs of the two transformer blocks are concatenated
and passed to the final layer for prediciton.

2) Intermediate transformer fusion: We propose the uti-
lization of similar to the above-described transformer blocks
for fusion at intermediate feature layers. Specifically, fusion is
performed with a transformer block in each branch after the
first stage of feature extraction, i.e., after two convolutional
layers. Similar architecture to the one described in Figure 1

is used, and the fused feature representation is added to the
corresponding branch.

Since data from complementary modality is introduced
already at the earlier stage of the architecture, this allows to
learn the features that are jointly meaningful for the task at
hand between modalities during later convolutional layers.

3) Intermediate attention-based fusion: We further propose
a fusion approach that is based merely on dot-product simi-
larity that constitutes the attention in the transformer block.
Formally, this is defined as follows. Given the two feature
representations of different modalities Φa and Φb, we compute
queries and keys with learnt weights, similarly to conventional
attention. The scaled dot-product similarity is subsequently
calculated as

A = softmax

(
ΦaWqW

T
k Φ

T
v√

d

)
. (4)

Softmax activation promotes competition in the attention ma-
trix, hence highlighting more important attributes/timestamps
of each modality, and as a result providing the importance
score of each key with respect to each query, i.e., each
representation of modality a with respect to modality b. This
allows to calculate the relative importance of each attribute
of modality a by aggregating the scores corresponding to all
the attributes of modality b for each attribute of modality
a. As a result, we obtain an attention vector that can be
used to highlight more relevant attributes of the modality
a. Considering the dot-product attention between features of
audio and vision modalities shown in Equation 3, attention
vector of vision modality is given by vv =

∑
i=Nv

A[:, i].
Note that such a fusion approach does not directly fuse fea-

tures of the two modalities. Instead, it identifies the attributes
within each modality that are most relevant based to their
similarity scores with data of the other modality. As a result,
features that agree between the two modalities contribute the
most to the final prediction, hence guiding the model towards
learning modality-agnostic features or features with high level
of agreement between the modalities. Such approach enables
sharing of information between modalities, while not enforc-
ing strong co-dependency of the learnt features in different
branches as only attention scores are used for fusion.

C. Modality dropout

The vast majority of the multimodal learning methods
described to date assume the presence of both modalities at
all times during inference. Nevertheless, oftentimes in real-
world applications data of one or more modalities might not
be reliable or may be missing at times. In such scenarios,
conventional multi-modal approaches tend to fail. Here, we
aim to account for the potential cases of missing data and
propose the modality dropout as a way of mitigating it. As
will be shown further, utilization of this approach leads to
improved performance also in situations where both modalities
are present.

We propose the modality dropout, which randomly masks
out or attenuates data of one of the modalities during training.



Specifically, we consider three variants. In the first variant, dur-
ing training, data of one modality in each sample is randomly
selected and replaced with zeros, while the representation of
the other modality for a given sample is kept intact. This
approach imitates missing data and can also act as a regularizer
similarly to Dropout layer utilized in neural networks. Note
that in the case of the third fusion approach and absence of
bias terms, this results in zero dot similarity matrix in the
attention block, which after softmax and summation leads to
constant attention vector, hence no information transfer from
the zeroed modality.

In the second variant, for each pair of data samples we
generate a random scaling factor α in the range [0,1] [19]
and multiply one of the modalities by α, while the other
with 1 − α. The goal of this approach is to attenuate signals
from different modalities at different training steps, and hence
prevent the model from learning from strictly one modality. We
further refer to this approach as ‘soft’ modality dropout. The
third variant is aimed at the problem of noisy data, where the
input signal of one modality is corrupted. Here, the masking
is performed similarly to the first variant, except rather than
zero-masking, the data is randomly generated from a normal
distribution with zero mean and unit variance in one of the
modalities for each sample.

IV. EXPERIMENTS

In this section we describe the experimental protocol and
the data used for assessing the performance of the proposed
approaches. We report the results of the proposed model with
three fusion variants, as well as recent multimodal emotion
recognition methods, namely MULT [14] and multimodal
transformer [16]. Note that both methods report results on
datasets consisting of pre-extracted features. In addition, [14]
considers three modalities, and [16] does not provide details
on specific hyperparameters of the architecture, making direct
comparison infeasible. We therefore adopt our feature extrac-
tion and compare with competing works only in terms of the
fusion approaches described in these works. Specifically, to
compare with [16] we employ a transformer block on top of
our two convolutional branches that performs fusion either
from audio to video, or in the opposite direction, and replace
linear layers in the transformer block with 1D-convolutional
ones. Regarding MULT [14], we want to compare with purely
audiovisual model, so we remove the transformer blocks re-
sponsible for fusion from/to the language modality. This yields
the architecture that is similar to our late transformer fusion,
with additional single modality transformer blocks added in
each branch. Other hyperparameters, such as latent space
dimensionality, are kept identical between the methods for fair
comparison. Similarly to the comparison with [14], we add
our feature extraction blocks to the model. Unless otherwise
specified, we use a single transformer block with single head
everywhere to achieve a lightweight model. Naturally, better
performance can be expected from adding additional blocks
and parameters to the models. We used [20] for transformer
block implementation.

Subsequently, we perform experiments with modality
dropout in two settings. In the first one, we target the problem
of missing data from one modality and apply both soft and
hard modality dropout during training. That is, in this setting,
in each batch the data consists of the pairs of full data, pairs
without audio modality, pairs without video modality, and
pairs multiplied with random coefficients as described above.
We report the performance in the presence of both modalities
(denoted by ‘AV’), as well as in the full absence of one
modality (denoted by ‘A’ or ‘V’ for presence of only audio
and video modalities, respectively). We additionally report the
average metric over the three modality settings (denoted by
‘M’) to simplify the comparison between methods. In the
second setting, we consider robustness towards noise and apply
the third variant of modality dropout during training, and
replace one of the modalities with random noise during testing.

1) RAVDESS dataset: We choose RAVDESS dataset [21]
primarily due to availability of raw data in this dataset, as
opposed to others. The dataset consists of video recordings of
24 people speaking with different emotions and poses a task of
classification of emotional states into 7 classes: calm, happy,
sad, angry, fearful, surprise, and disgust. 60 video sequences
were recorded for each actor, and we crop or zero-pad them to
3.6 seconds, which is the average sequence length. For audio
processing, we extract 10 Mel-frequency cepstral coefficients
for further processing. For visual data, we select 15 uniformly
distributed frames from 3.6 second video, and crop the faces
of actors using a face detection algorithm [22]. Images are
resized into 224x224 pixels. We train the model on raw 15-
frame videos. We transfer the weights of EfficientFace pre-
trained on AffectNet dataset [4]. We split the data into training,
validation and test sets ensuring that the identities of actors
are not repeated across sets. Specifically, we used four actors
for testing, four for validation, and 16 for training, and report
the result averaged over five folds. The videos are scaled into
[0,1] scale, and random horizontal flip and random rotation
are used for data augmentation. All the models are trained for
100 epochs with SGD, learning rate of 0.04, momentum of
0.9, weight decay of 1e-3, and reduction of learning rate on
plateau of 10 epochs.

2) CMU-MOSEI dataset: We additionally conduct experi-
ments on CMU-MOSEI dataset. The dataset consists of 23,454
movie review video clips taken from YouTube and labeled by
human annotators with a sentiment score in the range [-3..3].
Note that we only consider audio and visual modalities in our
experiments. Since the dataset provides pre-extracted features
rather than raw data (specifically, 35 facial action units are
provided for vision modality and audio data is represented by
mfccs, pitch tracking, glottal source and peak slope parameters
resulting in 74 features), we omit the EfficientFace feature
extraction in the vision branch and training is performed
starting from convolutional blocks directly. We rely on the
implementation of [14] for the experimental protocol on
CMU-MOSEI dataset and adopt the training hyperparameters
described in therein.



RAVDESS. ACC MOSEI. ACC MOSEI. MAE
AV A V M AV A V M AV A V M

LT1 79.33 19.83 36.41 45.19 63.89 48.70 62.85 58.48 0.806 0.840 1.063 0.903
LT4 76.42 27.92 30.00 44.78 66.56 62.63 53.16 60.78 0.806 0.839 0.831 0.825
IT1 76.41 21.16 18.33 38.63 67.72 37.14 62.87 55.91 0.792 0.843 0.809 0.815
IT4 78.50 20.33 17.33 38.72 64.91 62.60 62.85 63.45 0.817 0.840 0.832 0.830
IA1 76.00 18.58 22.83 39.13 64.94 62.08 62.86 63.29 0.802 0.837 0.806 0.815
IA4 77.41 20.66 29.83 42.63 67.72 63.07 65.77 65.52 0.794 0.837 0.803 0.811
TAV 77.75 24.25 13.33 38.44 64.94 62.08 62.86 62.18 0.814 0.841 1.093 0.916
TVA 76.00 15.16 42.67 44.61 66.48 37.15 56.96 53.53 0.809 0.852 0.838 0.833
MLT 74.16 22.33 35.42 43.97 62.90 62.85 64.44 63.40 0.804 0.838 0.804 0.815

MODALITY DROPOUT
LT1 79.08 59.16 72.66 70.30 67.11 63.62 62.90 64.54 0.802 0.829 0.801 0.811
LT4 79.25 53.00 70.92 67.72 64.47 53.71 64.91 61.03 0.814 0.837 0.819 0.824
IT1 77.33 48.41 73.75 66.50 62.80 62.85 63.09 62.91 0.804 0.831 0.803 0.813
IT4 78.91 44.33 74.92 66.05 67.01 64.30 63.12 64.81 0.796 0.826 0.797 0.806
IA1 81.58 58.08 72.83 70.83 67.19 64.52 64.91 65.54 0.795 0.816 0.798 0.803
IA4 79.58 57.16 71.83 69.52 63.48 62.74 63.18 63.13 0.807 0.820 0.808 0.812
TAV 76.58 54.83 13.33 48.24 65.32 63.84 62.85 64.01 0.811 0.832 0.839 0.828
TVA 74.42 44.91 69.58 62.97 67.61 63.98 60.95 64.18 0.793 0.819 0.798 0.803
MLT 78.50 53.58 70.66 67.58 63.87 62.85 63.37 63.36 0.806 0.836 0.835 0.826

MODALITY DROPOUT with NOISE
LT1 77.08 53.16 68.50 66.24665.57 64.03 64.94 64.94 0.809 0.826 0.806 0.813
LT4 80.33 54.33 73.00 69.22 64.08 63.31 62.85 62.85 0.813 0.827 0.813 0.818
IT1 76.75 53.75 71.58 67.36 68.16 65.98 63.53 63.53 0.799 0.821 0.804 0.808
IT4 76.08 54.50 71.00 67.19 67.83 63.56 64.22 64.22 0.801 0.826 0.802 0.809
IA1 78.25 58.25 71.66 69.38 62.76 63.89 63.18 63.27 0.804 0.819 0.805 0.809
IA4 78.41 55.75 68.58 67.58 63.51 64.08 62.54 63.37 0.805 0.820 0.808 0.811
TAV 75.83 56.25 12.83 48.30 66.81 65.68 65.60 66.03 0.810 0.820 0.811 0.813
TVA 73.66 41.25 71.41 62.10 66.23 63.18 64.58 64.66 0.804 0.831 0.806 0.813
MLT 77.41 54.16 66.33 65.96 64.52 62.74 63.51 63.59 0.805 0.830 0.805 0.811

TABLE II: Performance of different fusion methods on
RAVDESS and MOSEI.

MOSEI. ACC MOSEI. MAE
AV A V M AV A V M

IT1 64.66 38.80 63.12 55.53 0.821 0.857 0.803 0.827
IT4 65.90 37.23 62.85 55.32 0.805 0.845 1.932 1.194
IA1 64.09 62.85 63.42 63.45 0.799 0.838 0.807 0.815
IA4 64.74 37.28 61.28 54.43 0.803 0.842 0.808 0.818
MLT 67.66 56.90 60.73 61.76 0.787 0.838 0.836 0.821

MODALITY DROPOUT
IT1 65.41 62.85 64.06 64.11 0.805 0.838 0.805 0.816
IT4 66.57 64.78 65.02 65.45 0.792 0.812 0.795 0.800
IA1 68.76 65.96 63.92 66.21 0.791 0.815 0.799 0.802
IA4 66.18 64.67 64.22 65.02 0.794 0.815 0.801 0.803
MLT 66.12 65.41 63.62 65.05 0.801 0.831 0.808 0.813

MODALITY DROPOUT with NOISE
IT1 64.72 54.07 66.34 61.71 0.798 0.839 0.797 0.812
IT4 64.69 64.33 61.83 63.61 0.801 0.826 0.799 0.808
IA1 67.25 64.96 64.74 65.65 0.794 0.813 0.799 0.802
IA4 63.40 63.23 62.85 63.16 0.806 0.820 0.806 0.811
MLT 66.18 64.19 64.39 64.92 0.790 0.813 0.791 0.798

TABLE III: Comparison with MULT [14].

A. Results and Discussion

Table II shows the results of the proposed approaches on the
RAVDESS and MOSEI datasets. Here, ‘LT1’ and ‘LT4’ denote
late transformer fusion with one and four heads, respectively,
and similarly ‘IT’ denotes intermediate transformer fusion,
‘IA’ denotes intermediate attention fusion, ‘TAV’ and ‘TVA’
refers to the fusion approaches described in [16], and ‘MULT’
refers to [14]. We report categorical accuracy on RAVDESS
dataset, and binary accuracy (positive vs negative sentiment)
on MOSEI dataset, as well as Mean Average Error between
the true and predicted sentiment scores.

As can be seen, in the setting without any type of dropout,
late transformer fusion achieves the best result on RAVDESS
dataset, while intermediate attention fusion achieves the best

result on MOSEI dataset on both the accuracy and MAE
metrics. Note that intermediate attention fusion is also the most
lightweight fusion approach compared to any of the methods
using full transformer blocks. At the same time, performance
under the presence of only one modality is extremely poor
on RAVDESS dataset. On MOSEI dataset the performance
drop is not drastic in the majority of cases, likely due to the
dataset consisting of already pre-extracted features, and hence
guaranteeing presence of meaningful independent features in
each modality even in the absence of the other one.

Further, it can be seen that utilization of modality dropout
improves the performance drastically under incomplete data of
one modality. This is the case for most fusion methods, while
intermediate attention fusion benefits from it the most. Be-
sides, the performance under the presence of both modalities is
improved as well, with the best result on RAVDESS achieved
by intermediate attention fusion. This is also the best result on
this dataset among all methods and dropout settings. Similar
conclusions can be made on MOSEI dataset; utilization of
modality dropout improves the performance in both single-
modality and two-modality case. Under the noisy setting, we
still observe the intermediate attention fusion performing best
on the average metric on RAVDESS.

To provide better comparison with state-of-the-art, we
additionally compare with full MULT model (omitting the
language modality), following the implementations provided
by [14] and using their convolutional layers, transformer block
implementations and other hyperparameters. Since in their
implementation several dense layers are added after the fusion
and prior to the output layer, we add similar dense layers to our
model for fair comparison. The results are provided in Table
III. As can be seen, while MULT outperforms the proposed
intermediate fusion approaches in the vanilla setting with both
modalities, intermediate fusion handles missing modalities
better, and especially under the presence of modality dropouts.
The best overall performance is achieved by intermediate
attention fusion with the first modality dropout variant.

As can be seen, in the majority of the cases the best per-
formance is achieved by the proposed intermediate attention
fusion combined with one of the proposed dropout approaches.
As in this approach no hard feature sharing is performed, the
learnt feature representations are less likely to be co-dependent
and therefore can be disentangled more easily, hence leading
to better robustness of the model in incomplete data settings.
This, in turn, leads to better generalization capabilities of the
model overall, leading to improved performance also under
the setting of both modalities.

V. CONCLUSION

We proposed a model for audiovisual emotion recognition
that learns end-to-end and an attention-based fusion method.
We evaluated the robustness of different modality fusion
approaches under the absence of, or noise present in, one of the
modalities and proposed an approach to improve the model’s
robustness. Importantly, the proposed approach also improves



the performance under the (ideal) standard setting where both
modalities are present.
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