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Abstract—Considering the dynamically changing nature of the
radio propagation environment, the envisioned battery lifetime
of the end device (ED) for massive machine-type communication
(mMTC) stands for a critical challenge. As the selected radio
technology bounds the battery lifetime, the possibility of choos-
ing among several low-power wide-area (LPWAN) technologies
integrated at a single ED may dramatically improve its lifetime.
In this paper, we propose a novel approach of battery lifetime
extension utilizing reinforcement learning (RL) policies. Notably,
the system assesses the radio environment conditions and assigns
the appropriate rewards to minimize the overall power consump-
tion and increase reliability. To this aim, we carry out extensive
propagation and power measurements campaigns at the city-scale
level and then utilize these results for composing real-life use-
cases for static and mobile deployments. Our numerical results
show that RL-based techniques allow for a noticeable increase
in EDs’ battery lifetime when operating in multi-RAT mode.
Furthermore, out of all considered schemes, the performance of
the weighted average policy shows the most consistent results
for both considered deployments. Specifically, all RL policies can
achieve 90 % of their maximum gain during the initialization
phase for the stationary EDs while utilizing less than 50 messages.
Considering the mobile deployment, the improvements in battery
lifetime could reach 200 %.

Index Terms—LPWAN; Multi-RAT; End-device lifetime; En-
ergy consumption optimization; Reinforcement learning

I. INTRODUCTION

Recently introduced heterogeneous networks, i.e., 5G mo-
bile systems, are envisioned to embrace multiple radio access
technologies (RATs) targeting to effectively manage com-
pletely redefined requirements of wireless data transmissions
for diverse types of EDs [1]. In this context, the low-power
wide-area networks (LPWANs) enable industrial communica-
tion, which has not been previously considered due to insuf-
ficient technical parameters [2]. Notably, as the first LPWAN
technologies reached the market during the last decade, it took
them time to mature to the point where the industry companies
were aware of these new opportunities. But there is not just a
single LPWAN technology as the silver bullet to cover all the
communication scenarios [3].

The concept of multi-RAT is reshaping the possible use
cases for all verticals of the 5G and beyond 5G (B5G),
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i.e., enhanced mobile broadband (eMBB), ultra-reliable low-
latency communication (URLLC), and massive machine-type
communication (mMTC) [4]–[6]. Combining multiple com-
munication technologies enables new types of device de-
sign [7]. However, the scope of today’s IoT-ready devices
mainly pertains to utilizing a single RAT. On the one hand,
this helps reduce the price tag of the devices, but on the
other hand, it limits the possible communication scenarios –
as it relies on a single LPWAN technology [8], [9]. Although
the increased complexity of the multi-RAT devices influences
the price of the devices, it may positively impact the main
operational parameter – the lifetime of the battery-powered
device.

The input assumption in this work builds upon the hy-
pothesis that the propagation conditions between the EDs
and the base station (BS) operating the LPWAN technologies
may drastically change over the EDs’ lifetime [10]. Various
changes in the surrounding environment (whether it is indoor
or outdoor and caused by nature or human-initiated), including
construction works, infrastructural changes, and weather con-
ditions, may drastically affect the communication parameters
in the frequency bands the LPWAN technologies operate in.
Furthermore, one may expect drastic variations in propagation
conditions in new IoT use-cases such as assets tracking on
the move, where EDs are installed on vehicles, such as cars,
busses, drones, etc. In both conventional deployments and new
use-cases, the combined demands for message delivery delay
of less than 10 s and message loss probability as low as 10%
need to be satisfied according to ITU-R [11].

In this paper, we consider and evaluate the utilization of
multiple RATs at a single ED aiming to dynamically switch
between utilized LPWAN technologies and employ the most
suitable one in terms of the radio propagation conditions.
Since the propagation conditions are not known in advance,
selecting the best RAT has to be conducted automatically
in response to environmental changes. One of the tools that
allow for a dynamic adaptation is reinforcement learning (RL),
where the system continuously assesses the environment and
assigns the weights to different options by attempting to
maximize its reward. In our case, the reward is related to
ED power consumption. We evaluate the proposed approach
by considering stationary and mobile, two distinctly different
deployment conditions. The input parameters are determined
by utilizing power consumption laboratory results combined
with field measurement campaigns and propagation conditions.

Notably, the application of RL policies while considering
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the utilization of mobile, battery-powered, and performance-
limited LPWA deployments represents a novel approach as it
was expected that the increased power consumption diminishes
the potential benefits of multi-RAT implementation. As the
power consumption of the LPWA devices is likely to be
at the scale of mA (while transmitting data), the correct
implementation of selected communication technology can
dramatically change the way the device is going to last
and provides its functionality. As presented in this paper,
even the most straightforward approach may significantly im-
prove performance over the single-RAT solution. In particular,
the implementation based on cumulative average allows for
keeping the computational demands low without negatively
impacting the battery life.

Our main contributions can be summarized as follows:
• Formalization of RL-based approaches for battery life-

time extension of LPWAN EDs supporting multi-RAT
capabilities in case of energy consumption and city-scale
propagation and mobility conditions.

• Detailed numerical comparison campaign for real-time
tracking applications in close-to-reality deployment sce-
nario on a city-scale with realistic street configurations
and empirical propagation measurements.

• Design of RL-based operations to extend the battery
lifetime. The performance of the weighted average policy
shows the most consistent results while Thompson sam-
pling outperforms ε-greedy, weighted average, and UCB
options in the stationary scenarios by exploiting up to
99.5% of the theoretical gains (when the best interface is
selected).

The rest of this text is organized as follows. In Section II, we
provide the background and motivation for our study, as well
as sketch the details of the utilized evaluation methodology.
Then, in Section III, we discuss the results of our propagation
and energy consumption measurements campaigns. Next, the
RL algorithms for battery lifetime extension are introduced in
Section IV. Numerical results are then discussed in Section V.
Finally, conclusions are drawn in the last section.

II. BACKGROUND AND UTILIZED METHODOLOGY

We start this section with a description of the envisioned
methodology and application scenarios. Then, the overview of
the current situation of multiple RATs utilization in a single
ED is given. Finally, the LPWAN technologies are further
detailed.

A. Methodology and Considered Scenarios

In this work, we evaluate the performance of RL-based
policies for two different types of EDs deployments. First,
we aim to capture the time-dependent characteristics of a
communication channel over multiple months. Our previous
work shows that signal fluctuation may be as high as 30 dB
even for stationary nodes [12]. Such a high signal variation
may lead to increased power consumption, decreased service
reliability, and a higher number of dropouts. We aim to
overcome this issue by employing a multi-RAT solution com-
plemented by suitable RL policies. The main idea behind this

approach is to select the optimal radio interface for message
transmission, i.e., the one with the lowest power consumption
at a given moment. Practically, such a solution can diminish
the negative impacts of multi-RAT solutions, including higher
power consumption while ensuring increased reliability.

For the second scenario, mobile EDs are intended for asset
tracking purposes. Input data for this scenario is derived from
the large-scale measurement campaign conducted in the city
of Brno, the Czech Republic. However, even such a large-
scale measurement campaign provides only a discrete set
of measurement points. Hence, scattered data interpolation
methods must be employed to derive nearly continuous traces
required for precise EDs tracking. The remaining steps of the
mobile scenario are identical to the stationary deployments.
However, for mobile EDs deployments, the signal fluctuations
are expected to be significantly higher. Also, the rate of signal
level changes is much faster compared to the stationary EDs
deployment. Hence, selecting the optimal radio interface for
the mobile deployments represents a more complex task than
in the case of stationary nodes.

To assess the multi-RAT performance from the perspective
of power consumption, we utilize the following methodology,
see Fig. 1. First, we characterize the considered LPWAN
technologies’ energy efficiency in the range of operational
radio conditions to obtain detailed power characteristics. In
the second step, we conduct two measurement campaigns for
(i) stationary and (ii) mobile EDs deployments. Further, the
resulting data from the first campaign is used to identify the
associated time-dependent propagation models using a doubly
stochastic Markov chain framework. Finally, we formulate
and apply the multi-armed bandit (MAB) RL framework by
employing the developed models and energy consumption.
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Fig. 1: Overview of our proposed methodology.

Notably, the coverage map in the case of mobile EDs
in the city-scale scenario represents a critical part of the
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developed methodology. First, scattered data from the city-
scale measurement campaign are converted to a uniform grid
with high resolution by employing the Kriging interpolation
algorithm. Then a single location close to the center of the
measured area representing the central point (warehouse) is
selected from which all the ED traces are routed. In the
final step, we apply the same MAB RL framework by com-
bining the energy consumption assessments with interpolated
RSRP/RSSI coverage map to assess its performance in mobile
deployment.

B. Multi-RAT functionality

The premise of multi-RAT builds upon the idea of combin-
ing multiple communication interfaces into a single device;
see Table I where the LPWAN technologies in question
are listed. However, the practical implementation and overall
functionality may be cumbersome. Moreover, the selection
of individual communication interfaces influences the overall
functionality of the multi-RAT device, i.e., power consump-
tion, communication range, and cost. Hence, the choice of
communication technologies that complement each other is
essential.

The multi-RAT device characteristics are strongly influ-
enced by their operation modes. Therefore, from the per-
spective of communication interfaces operations, multi-RAT
devices can be divided into three separate groups [8], [13]:

• Parallel: These devices are capable of communicating
over multiple RATs simultaneously. Modern smartphones
are typical representatives of this group by providing, e.g.,
cellular and Wi-Fi aggregation to improve communication
throughput and reliability. Contrary, the main drawbacks
of this solution are increased power consumption (both
average and peak) and increased requirements on compu-
tational resources. Thus, the device must simultaneously
control multiple data pipelines and radio transceivers,
which also yields higher costs for such devices.

• Selective: Even though the device supports multi-RAT
operations, only a single one is employed at a time.
Nevertheless, such a device still provides higher con-
nection versatility due to differences in spatial coverage
of respective communication technologies. In areas with
multi-technology coverage, the device may perform a se-
lection of the most suitable technology based on the best
power consumption, communication latency, data rate,
or message loss. Furthermore, in comparison with the
parallel operation mode, selective multi-RAT devices are
cheaper to implement due to less stringent computational
requirements. A part of the circuitry can be shared among
radio interfaces, leading to further cost reductions.

• Combined: This operational mode combines two former
groups and supports a certain level of parallel operations
but does not utilize all available radio interfaces to the full
extent. In practice, such a device may maintain network
synchronization using all available RATs while it trans-
mits data over a single interface. From the perspective of
complexity and power consumption, sequential devices
reside in-between the groups mentioned above. Thus, this

TABLE I: Key parameters of LPWAN technologies [14]–[19].

LoRaWAN Sigfox NB-IoT
Coverage (MCL) 157 dB 162 dB 164 dB
Technology Proprietary Proprietary Open LTE
Spectrum Unlicensed Unlicensed Licensed

Frequency 433, 868,
915 MHz

868,
915 MHz

700–2100 MHz

Bandwidth 125, 250,
500 kHz

100, 600 Hz 200 kHz

Max. EIRP UL 14 dBm1 14 dBm1 23 dBm
Max. EIRP DL 27 dBm1 14 dBm1 23 dBm
Downlink data rate 0.25-21.9 kbps2 0.6 kbps 0.5-27.2 kbps
Uplink data rate 0.25-11 kbps2 0.1-0.6 kbps 0.3-62.5 kbps3

Max. payload UL 242 B 12 B 1600 B
Max. payload DL 242 B 8 B 1600 B
Battery lifetime 10+ years 10+ years 10+ years
Module cost 6 $ 3 $ 12 $
Security AES-128 AES-128 LTE Security
1 The value is relevant for EU.
2 50 kbps for FSK modulation.
3 3GPP Release 13.

particular approach is optimal for applications requiring
a certain quality of service with devices constrained by
their energy consumption.

As the primary goal of this work is to extend the battery
lifetime, we put all our effort into implementing the multi-RAT
“selective” mode based on RL policies. It should allow us to
achieve a relatively good battery lifetime without the need for
complex computationally demanding algorithms.

C. Selected LPWAN Technologies

We chose three LPWAN technologies providing publicly
available services with country-scale coverage in the Czech
Republic for our consideration. These technologies include
NB-IoT, Sigfox, and LoRaWAN. Albeit targeting the market of
mMTC, all selected representatives possess unique properties
and mechanisms ensuring long-range communication with low
power consumption.

1) NB-IoT: This cellular technology represents one of the
first LPWAN standards operating in the licensed spectrum.
NB-IoT builds on top of the legacy LTE systems with which it
shares a significant amount of infrastructure and numerology.
For its operation, NB-IoT occupies a 200 kHz block in one
of 13 frequency bands (another 4 bands in Rel. 14 and 7
additional in Rel. 15) in the range from 700 to 2100 MHz. In
order to decrease the overall complexity of the system, NB-IoT
supports only half-duplex transmission with frequency division
duplex (FDD).

Aside from the reduced complexity, NB-IoT employs two
energy conservation mechanisms, namely power saving mode
(PSM) and extended discontinuous reception (eDRX), to ex-
tend battery lifetime. In addition, the utilization of licensed
bands allows for transmission power of up to 23 dBm (two
additional power classes limited to 20 and 14 dBm). The
maximum message size is 1600 B due to the size of the service
data unit (SDU) of the packet data convergence protocol
(PDCP). NB-IoT also reflects the LTE numerology in the
physical resource block (PRB) structure. The whole NB-IoT
bandwidth fits into a single PRB of 180 kHz with 15 or 3.75



4

(only in UL direction) kHz sub-carrier spacing. For UL, single-
carrier frequency multiple access (SC-FDMA) in combination
with π/2-BPSK or π/4-QPSK modulation is used. In contrast,
DL relies on orthogonal frequency multiple access (OFDMA)
with a single QPSK modulation scheme.

The key property of LPWAN technologies, i.e., long-range
communication with a link budget of 164 dB (+20 dB com-
pared with LTE), is achieved mainly via repetitions. In the case
of NB-IoT, both UL transmission and random access preamble
can be transmitted up to 128 times. Moreover, DL provides
an even more generous number of 2048 repetitions [18], [19].

2) LoRaWAN: It is representative of LPWAN technologies
utilizing license-exempt frequency bands. These bands include
traditional 433, 868, and 915 MHz frequencies with additional
region-specific bands such as 500 and 780 MHz. In addition,
LoRaWAN physical layer builds upon a proprietary long-range
(LoRa) modulation which provides impressive variability. The
spreading factor (SF) parameter allows adjusting the mod-
ulation’s robustness, directly influencing the throughput and
sensitivity. In total, six SF values ranging from SF7 to SF12
can be used. From the perspective of transmission time, each
increase in SF approximately doubles the time-on-air (ToA)
of the symbol

The LoRAWAN medium access control (MAC) technology
is an open standard. In Europe, it defines sixteen channels
in the 868 MHz band with a bandwidth of 125 or 250 kHz.
Furthermore, the utilization of an unlicensed band imposes
duty-cycle regulation of 1 % with a maximum radiated power
of 14 dBm. Hence, LoRaWAN message size is limited from
51 B for SF12 with a maximum of 242 B with SF7.

In the 915 MHz (US) band, LoRaWAN can operate with
72 channels, each occupying a bandwidth of up to 500 kHz.
A higher number of channels allows LoRaWAN to utilize fre-
quency hopping between messages. Nevertheless, it also limits
the dwell time to 400 ms per channel (with no subsequent
transmission in less than 20 s), allowing for a maximum SF10.
On top of that, listen before talk (LBT) is utilized for Japan
and South Korea. Thus, the device must verify that the whole
frequency band is free of signals stronger than -80 dBm [16],
[17].

3) Sigfox: Represents another license-exempt LPWAN
technology operating within the industrial, scientific, and
medical (ISM) spectrum around the center frequency of 868
or 915 MHz. Sigfox occupies 200 kHz bandwidth dependent
on geographical region. In most radio configurations (RC),
each differential binary-phase shift keying (D-BPSK) coded
message in UL covers 100 Hz of the total bandwidth. The
only exceptions are the US and Latin American regions, where
the message occupies 600 Hz of the bandwidth. Such an ultra
narrowband (UNB) modulation provides an excellent signal-
to-noise ratio (SNR) with extended coverage in order of tens
of kilometers. However, the main drawback of this solution is
the limited throughput of 100 or 600 bps (based on the used
bandwidth).

As in the case of other unlicensed LPWAN technologies, the
operation in the European ISM region restricts the maximum
duty cycle to 1 % of the total time. Furthermore, combined
with a throughput of 100 bps, it limits the Sigfox technology

to 140 UL messages with a maximum size of 12 B per
day. Transmissions in DL direction are restricted even more,
with only four messages carrying 8 B payloads per day. The
situation is different for regions utilizing the 600 Hz message
bandwidth as the datagram is broadcasted three times using
three different frequencies (frequency hopping). Also, the
transmission’s ToA must not reach 400 ms with a 20 s back-off
period. For Japan and South Korea, the LBT technique must
be employed [14], [15].

D. Reinforcement Learning
Machine learning (ML) algorithms play an essential role

in the upcoming 5G systems. The basic premise is that, by
observing and learning system behavior, which represents the
current state of the communication channel, one can achieve
improved power efficiency during the message transmission.
However, the dynamic radio conditions rule out a significant
share of ML algorithms from consideration (e.g., supervised
learning and other methods based on static models). On the
other hand, RL can overcome this issue by interacting with
the environment.

Over the recent years, RL gained momentum along with
other ML algorithms as enablers for computationally de-
manding tasks in modern heterogeneous communication sys-
tems. Notably, RL finds application in 5G networks allow-
ing for efficient resource utilization (radio, mac scheduling),
network slicing, and band allocation. However, due to the
immense complexity of these tasks, deep RL is used pre-
dominantly [20]–[22]. MAB learning is often utilized for
less demanding tasks, mainly for handover predictions and
communication scheduling [23], [24]. However, the latest
MAB-focused works also cover intelligent link configuration
for 5G mMTC, millimeter wave beamforming adaptation, and
mobile edge computing with task offloading [25]–[28].

In general, RL algorithms consider agents interacting with
the environment by observing its state and executing ac-
tions. Notably, these actions trigger an environmental re-
sponse recognized as a reward. Recurring action-reward events
consequently allow exploring system behavior. Explicitly, it
represents a search for the optimal action strategy. It must
be noted that the environment response informs about the
efficiency of the current action but not if it was the best
available action [29].

All interactions of RL with the environment take place in
a discrete-time, t = 0, 1, 2, . . . , n. It must be noted the actual
value of the time step can not be based on any common rule,
but it is usually defined as a compromise between complexity
and accuracy. At each run, an agent receives information
about the state of the environment St ∈ S, and employs
this information to select an action, At ∈ A, which yields a
measurable reward, Rt ∈ R. Such an interaction model is often
referred to as a Markov decision process (MDP). Notably, the
agent’s ultimate goal is to maximize the cumulative reward∑n

t=1 Rt with actions following the decision policy π. Also,
the RL methods specify how the agent adapts its policy based
on previous experience. In theory, this prior experience leads
to an optimal decision policy π∗ with maximum long-term
accumulated reward [29].
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Fig. 2: Workplace for NB-IoT energy measurements.

III. MEASUREMENT CAMPAIGNS

The cornerstone of both intended scenarios is knowledge of
LPWAN modules’ energy consumption under various radio
conditions. To this aim, we conducted a thorough power
consumption measurement campaign of all LPWAN modules
deployed on the multi-RAT prototype. All measurements were
realized in a controlled laboratory environment to achieve the
most coherent results.

Though the power measurement results are shared for both
stationary and mobile EDs scenarios, the remaining campaigns
were conducted differently. The stationary EDs deployment
measurements covered two multi-RAT prototypes transmitting
messages with a constant period in the time span of multiple
months. Contrary, the mobile EDs were transferred to a par-
ticular location, conveyed a pre-defined number of datagrams,
and moved to the next point.

A. Energy Consumption Measurements

The measurement campaign covered three selected LPWAN
technologies, i.e., NB-IoT, LoRaWAN, and Sigfox, in the
range of suitable signal levels. For example, in the case of
NB-IoT, it represents signal levels from −68 to −133 dBm,
covering all extended coverage level (ECL) classes from
ELC 0 to ECL 2.

As depicted in Fig. 2 the desired signal levels were achieved
via a step attenuator positioned between the remote radio unit
(RRU) and the measured NB-IoT module placed in the radio
frequency (RF) shield box. The electric current consumption
was measured via power analyzer Agilent N6705A with the
power sampling period of 0.0248 ms allowing to capture
even the shortest power consumption peaks. Together with
the known supply voltage of 3.3V and samples timestamps,
acquired current consumption samples’ served as an input of
trapezoidal integration. The product of this operation is the
exact value of energy consumption in Joules.

The whole process was repeated ten times for twelve
different signal levels. Notably, all LPWAN modules were set
to transmit 12 B UL messages without acknowledgment to be
in line with the limitation of Sigfox technology. In the case
of LoRaWAN, we conducted identical measurements for SF12
and SF9. Naturally, the highest SF allows achieving the most
extended communication range and sensitivity at the expense
of increased power consumption and duty cycle limitation
(DC). Prolonged ToA resulting in a low data rate of SF12 is the
main reason we also consider SF9 with worse sensitivity. With
our intended 30 s transmission period of 12 B messages, SF9
represents the highest suitable SF. The latter SF9 is also the
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Fig. 3: Results of power consumption measurements.

highest SF not violating 400 ms ToA policy for 12 B payload
from the perspective of the US region [17].

As a representative of NB-IoT technology, we selected
the communication module SARA N210 produced by the
company uBlox, which implements the Rel. 13 of 3GPP
standard. The module was set to utilize the highest power
class with a maximum transmission power of 23 dBm. It
is worth mentioning that each measurement cycle captures
actual payload transmission with tracking area update (TAU)
exchange. This combination represents the real-world scenario
the best, as TAU information must be transferred after each
cell handover and follows after awakening from PSM. Next,
the module designated as Microchip RN2483 represented
LoRaWAN technology. Finally, for Sigfox, we utilized the S2-
LP communication module produced by STMicroelectronics.
Both formerly mentioned modules were set to use the maxi-
mum transmission power of 14 dBm.

The measurement results shown in Fig. 3 verify that the
power consumption of LoRaWAN and Sigfox technologies
is constant for all intended signal levels. However, further
analysis reveals that Sigfox power consumption is even higher
than in the case of LoRaWAN utilizing SF12. This difference
is mainly caused by a long ToA interval of Sigfox messages
that are repeated three times. Thus, the total time of Sigfox
transmission equals 6.24 s for each message. On the other
hand, for LoRaWAN with SF12, the total ToA is less than
1.5 s. For SF9, it is slightly above 0.2 s. However, from
the perspective of Sigfox, it is still an impressive result as
even with a four times longer transmission period, the power
consumption is only about 30 % higher.

The most interesting results are observed for NB-IoT. Al-
though the consumption for the whole ECL 0 class is nearly
constant with minimal fluctuation, it starts to rise in ECL 1.
But, in ECL 2, the power consumption starts growing nearly
exponentially. From the signal level of −128 dBm also the
whiskers representing the 5th and 95th percentile vary sig-
nificantly. This phenomenon is primarily caused by message
retransmissions, which play a crucial role under poor signal
conditions causing massive energy consumption growth and
variations in the results. A side-by-side comparison of the ECL
classes reveals that the consumption in ECL 2 can be 15 times
higher as compared to ECL 0.
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Fig. 4: Measured signal levels in stationary conditions.

B. Stationary Nodes Measurement Campaign

The ultimate goal of this campaign was to evaluate the
time-dependent signal characteristics in different types of the
urban environment. The first sensor, deployed near the Brno
city center (BCC), represented a typical urban scenario of the
European city with mid-rise buildings. The second unit was
located at Brno University of Technology (BUT) premises on
the outskirts of the town. This scenario represented a typical
suburban environment with a less dense urban development.

Both devices were set identically to convey datagrams with
a 12 B payload every hour. Notably, messages were transmitted
via all interfaces in sequential order to minimize interference
among radio interfaces. It was crucial as both LoRaWAN
and Sigfox technology operate in 868 MHz ISM spectrum
with NB-IoT occupying the neighboring 800 MHz frequency
band. As in the case of power consumption measurements,
all modules were allowed to utilize the highest available
transmission power, i.e., 14 dBm for LoRaWAN and Sigfox,
and 23 dBm in the case of NB-IoT. On top of that, LoRaWAN
used the SF12 and coding rate of 4/5, which is the setup
with the most extended communication range available in the
European region [17].

The whole campaign spanned over two months, during
which we collected more than 1400 messages from each
interface and both measuring units. All measurements were
conducted in a publicly available consumer network with a
multi-gateway setup reflecting the real-world condition where
a sensor can connect to the best available base station (which
may change during the measurements). Considering the radio
evaluation parameters, for LoRaWAN and Sigfox, we used

RSSI as it represents the only available evaluation metric. On
the other hand, the more complex NB-IoT supports the RSRP
metric, which provides more accurate estimations by excluding
interference from the remaining antenna sectors.

The cursory analysis of measurement results depicted in
Fig. 4 verifies the general premise of signal propagation in
urban and suburban areas. The samples from the suburban
area indicate better results by 10 to 20 dB compared to the
urban ones. In the case of NB-IoT, the more detailed analysis
verifies the previous findings as the fluctuation of the BUT
sensor is at least two times lower. Interestingly, LoRaWAN
results in the urban environment display occasional short
bursts of improved signal values. The suburban scenario shows
similar behavior but in the opposite direction (decreased signal
strength). Moreover, this finding is also valid for the Sigfox
sensor in the city outskirt.

The rationale for this behavior is related to the core property
of LoRaWAN and Sigfox technologies – multi-gateway recep-
tion. In other words, the conveyed message can be received by
multiple gateways in the sensor’s reach. The internal network
mechanism filters the redundant datagrams and keeps only
one copy of the message. Based on the acquired results, the
messages are filtered based on the SNR value, which does not
have to correlate with the RSSI metric. Hence, the short peaks
representing lower RSSI values may stand for the samples with
the best SNR.

C. City-Wide Measurement Campaign

For the non-stationary mobile scenario, we conducted a sec-
ond measurement campaign focused on the city-wide coverage
assessment. Again, all the measurements were performed
using the same multi-RAT prototype with settings identical to
the former campaign. However, the measurement procedure
was different. Initially, the device was transferred to a specific
location and positioned approximately one meter above the
ground level, away from any building or constructions causing
outage conditions. When the testing unit was powered up, it
conveyed ten messages with a payload of 12 B. The duration
between each message was 30 s. As in the previous case,
the messages were transmitted sequentially to minimize inter-
technology interference.

Fig. 5: Locations of measurement points.
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Fig. 6: Relative frequency histogram of RSRP/RSSI samples.

Overall, the measurement campaign covered over 300
unique measurement points in the city of Brno and its out-
skirts; see Fig. 5. From the perspective of the geographical
size, it represents an area spanning over 12 km north to south
and 24 km east to west. Notably, the selected measurement
spots followed the public transport stops, as one of the target
applications falls in the smart transportation field.

By concentrating on the overall number of successfully
served points, we observe that all the LPWAN technologies
provided satisfactory results. From this perspective, the most
robust connectivity offers NB-IoT with only three unserved
locations. Sigfox, with 10 dropped points, lies in the middle,
followed by LoRaWAN with 16 unserved places. These values
represent the number of sites from which no message has been
received. From the cumulative packet delivery ratio (PDR)
perspective, the decline in LoRaWAN performance is even
more pronounced. On the other hand, the PDR of NB-IoT and
Sigfox is almost equal. Numerically expressed, it represents
the PDR of 0.958 for NB-IoT, 0.947 in the case of Sigfox,
and finally, 0.83 for LoRaWAN.

Similar to the previous metrics, NB-IoT also provides the
best results in terms of signal levels, with an average RSRP
of -76 dBm. On the other hand, the two remaining technolo-
gies display significantly lower values close to -100 dBm.
More specifically, RSSI values were -112 dBm for Sigfox
and -98 dBm in the case of LoRaWAN. These significant
differences in signal strength are related to the differences in
network topology, primarily due to differences in BSs density.
Logically, NB-IoT provides the densest BSs infrastructure
among all three technologies, with an average distance to the
nearest BS not exceeding 0.52 km. Contrary, the most sparse
deployment is provided by Sigfox, with a 3.45 km average
BS-ED separation. Finally, LoRaWAN lies between these two,
with an average distance of 1.86 km.

IV. REINFORCEMENT LEARNING FOR BATTERY LIFETIME

Though the ultimate goal of both scenarios is to achieve the
maximum battery lifetime by using RL policies, preprocessing
of input data differs significantly. In the case of time-dependent
modeling (stationary EDs), the input signal samples are ex-
panded by using a doubly stochastic Markov chain framework.
For the non-stationary EDs, a sufficient input data set was
generated using interpolation.

The remaining steps of the RL process were the same for
both scenarios. First, the input data was used to derive the
MAB rewards based on the signal level and corresponding
power consumption. Moreover, in the case of non-stationary
EDs, rewards were extended to cover also the dropout proba-
bilities. Finally, we applied MAB RL policies with the primary
goal of achieving the most extended battery lifetime possible.

A. Stationary Deployment Scenario

Albeit we collected more than 1400 messages from each
technology, it is not sufficient for considered RL algorithms.
Hence, we resorted to the development of a time-dependent
model building upon doubly stochastic Markov chains. This
model allows generating samples of unlimited length statisti-
cally equivalent to the original dataset.

At the first step of the model derivation, we identified the
classes of models suitable for RSRP/RSSI samples approxi-
mation. To this aim, we observed the first- and second-order
characteristics of samples, i.e., histogram and autocorrelation
function (ACF). The resulting histograms and ACF from the
BUT unit are depicted in Fig. 6 and Fig. 7, respectively.
As one may observe, the histogram of relative frequencies
has a specific structure that no available distribution can
accurately model. Going further, ACF is characterized by near-
exponential decay, which eventually approaches zero. Based
on these findings, we can make the following conclusions:
(i) the considered RSSI/RSRP process is ergodic in nature,
(ii) doubly stochastic Markov chain framework (also known
as the hidden Markov model) represents a promising candidate
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Fig. 7: ACFs for considered measurements.
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for the target assessment [30]–[32]. Notably, the doubly
stochastic Markov model offers a balance between the mod-
eling accuracy and the simplicity of the fitting algorithm.

The next step in parametrizing the doubly stochastic Markov
model is to determine the number of model states N . Then
the transition probabilities pij , i, j = 1, 2, . . . , N from
the current state i to the next one j and the conditional
probability mass function (PMFs) associated with each state
fi(j), i = 1, 2, . . . , N , j ≥ 0 can be derived. We used
the procedure based on the kernel density estimation (KDE)
function; however, one may use an arbitrary algorithm to fit
the double stochastic Markov model from statistical data. The
basic premise of utilizing the KDE function is to cluster the
input data and derive the number of states N from the resulting
curve [33]. Notably, this is a two-step process that includes
(i) estimation of kernel distribution, i.e., non-parametric rep-
resentation of probability density function (PDF), and (ii) data
clusterization based on local maxima evaluation. The PDF is
derived as

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
, (1)

where n represents the number of samples, h is the bandwidth,
x denotes the actual value, and xi stands for random samples
from an unknown distribution. As the Kernel density estimator
K, we used the normal kernel function, which is evaluated at
equally-spaced points xi, covering the whole input data set.
Notably, each local maximum of the resulting curve represents
one boundary of the Markov chain state.

Once the number of states is determined, we proceed to
derive the transition probabilities pij , i, j = 1, 2, . . . , N and
the PMFs associated with each state, fi(j), i = 1, 2, . . . , N ,
j ≥ 0 by using conventional statistical approaches. Having
defined the boundaries between individual states of the Markov
chain, we calculate the number of state transitions for the
particular value of i and j, i.e., changes between the previous
and current value in the trace. Finally, the number of state
changes is divided by the input trace length to obtain transition
probabilities.

Aiming to assess the proposed time-dependent model’s
performance, we generated an entirely new data set containing
ten thousand samples using the developed model. We used
histogram and ACF of both statistical and model data for the
performance comparison, as depicted in Figs. 6 and 8. As one
can observe, the samples generated by the module provide a
tight match with the measured data. Also, the exponentially
decaying behavior of the ACF is well captured for all con-
sidered LPWAN technologies. Notably, the χ goodness-of-fit
test performed with the significance level of 0.05 verifies that
both measured and generated samples statistically belong to
the same distribution. These findings allow us to conclude
that the proposed approach can be utilized for time-dependent
RSRP/RSSI modeling of LPWAN technologies.

B. Mobile Deployment Scenario

The process of samples derivation for mobile EDs vastly
differs from the stationary nodes. For mobile ED, it represents

a two-step process. First, measured data must be interpolated,
and then the ED tracks are derived from the location coordi-
nates.

1) RSRP/RSSI Model: The city-wide measurement cam-
paign included over 300 unique measurement points. Though
it represents an extensive data set, it is still not sufficient for
signal coverage predictions for the arbitrarily selected path. To
overcome this issue, we employed an interpolation algorithm
to fill the missing data. The resulting evenly spaced grid with
50 m resolution is sufficient for tracks planning.

Specifically, we used the Kriging interpolation algorithm,
which belongs to the class of geostatistical methods. These
methods can generate the predictions surface and also pro-
vide an assessment of the interpolation accuracy by itself.
According to the literature, Kriging accuracy is highest when
spatially correlated distance or directional bias is present in the
data [34]. The selection of the Kriging algorithm is based on
our previous research, where this method provided the most
promising results in terms of signal interpolation accuracy.

Similarly to other interpolation methods, according to the
Kriging algorithm, the value of the predicted point is calcu-
lated as a weighted sum, i.e.,

xq =

N∑
i=0

λi · zi, (2)

where N is the number of neighbors surrounding the sample,
zi is the point value, and λi represents the weight of each
element. However, the process of weights derivation differs as
it depends not only on the distance to the sample point but also
on the overall spatial arrangement. To this aim, the first step
of the Kriging procedure is the creation of an experimental
semi-variogram, given as

γ(h) =
1

2N(h)

N(h)∑
i=1

[z(xi)− z(xi + h)]2, (3)

where N(h) is the number of pairs separated by the distance
of h and z(xi) is the value of the input point [35].

The experimental semi-variogram represents only a discrete
set of points, which is insufficient for our purposes. To this
aim, we interlaced the experimental semi-variogram with a
Spherical model, which is defined as

γ(h) =

{
co + c1

[
3h
2a − 1

2

(
h
a

)3]
for 0 < h < a

co + c1 for h ≥ a
, (4)

where a is the range, c0 represents nugget variance, and c0+c1
stands for the sill. In the last step of the interpolation, we apply
the Ordinary Kriging to derive the value of desired points [36].
Such a system is stated as

λ1

...
λn

µ

 =


C11 · · · C1n 1

...
. . .

...
...

Cn1 · · · Cnn 1
1 · · · 1 0


−1 

C10

...
Cn0

1

 , (5)

where λi represents the point weight, µ is the Lagrange pa-
rameter, and C1n denotes the covariance between the location
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Fig. 8: Comparison of ACFs of modeled and empirical data.

Fig. 9: Illustration of the routes for delivery application.

of sample points x1 and xn. Next, the covariance for the C1n

is computed as follows

C1n = Cov(x1 − xn) = C(0)− γ(x1 − xn), (6)

where C(0) represents the semi-variogram sill; finally, λ is
the semi-variogram output for points x1 and xn.

2) Service Delivery Model: Once the signal coverage map
is obtained, we are in a position to proceed with defining
tracks for the mobile EDs. Thus, in a web map application,
we created several routes intersecting the city of Brno in all
possible directions, mimicking the delivery and transit paths.
These tracks, depicted in Fig. 9, were designed to start, end, or
cross a single transit point representing the central warehouse.
Finally, all constructed tracks were exported to GPS exchange
format (GPX) for the subsequent processing steps. Notably,
the GPX data was exported with points resolution ranging
between 30 and 100 m providing sufficient correlation with
the interpolation grid of the coverage map.

Continuing the process, we set the initial position of the
mobile ED to the central warehouse. From this point on, the
ED followed the random path from the list of available tracks.
After it reached the end of the selected way, it returned to the
central warehouse and randomly chose another route. Notably,
the ED was set to transmit a single 12 B message every 30 s.
Also, the ED speed was not assigned to a specific value, but it
ranged from 15 to 50 km/h to provide a city-like traffic pattern.

The signal value for the intended locations was generally
derived as follows. When the ED reached the point of message
transmission, which was derived using the actual ED speed
and distance to the previous point, we extracted the signal
value from the closest cell of the interpolated coverage map.
Notably, we constructed two coverage maps, one created using
the highest signal values and the second from the lowest signal
levels. These two maps allowed us to extend the soundness of
data further, as the samples are uniformly generated from the
range of maximum and minimum values at each location. This
process is repeated until all tracks are not covered, and in total,
it is relaunched 100 times.

C. Machine Learning Formalization

1) Solution Methods: One of the most popular RL ap-
proaches is called Q-learning. This solution implies that an
agent learns the action-value function Qπ(S,A) corresponding
to the expected accumulated reward when action A is taken
in the state S relying on the RL policy π. However, the
computational and memory requirements make the calculation
practically impossible when the state-action space becomes too
large. To overcome this issue, deep RL uses machine learning
models such as neural networks to approximate the immense
state-action space. The following action is then determined by
the maximum output of the underlying Q-network [29], [37].

Notably, in this work, the main focus is given to the MAB
problem. It simplifies the Q-learning problem as the agent
can choose only one of K actions at a given time instance
t, whereas the environment’s state St remains unchanged
for all time steps. It makes all the successive time steps
independent and identically distributed (IID). Utilization of
the MAB approach further simplifies the role of the time step
as it represents only how many actions have been taken to this
point. In our model, the action is taken every 30 seconds rep-
resenting the message transmission period. Nevertheless, the
primary goals stay the same, i.e., choose actions such that the
total reward received within a certain number of time instances
is maximized. This simplified approach can be formalized as
Ar ∈ 1, 2, 3 . . . ,K with a reward Rt ∼ N(µ, σ2) where k is
the action taken [29], [38].

Further, the bandit is allowed to pull a single arm at each
time instance t, i.e., represents a single action bandit with finite
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action space. Finally, it must be noted that due to the dynamic
characteristics of the radio propagation environment also, the
reward distribution is non-stationary. Hence RL policies have
to pay a cost for this fact [38].

The rewards are based on the amount of consumed energy
during the data transmission. Thus, the technology requiring
the least amount of energy is rewarded with a value of 1. The
second and third technology is awarded 0.5 and 0, respectively.
Notably, the consumed energy is directly derived from the
sample’s signal levels. To this aim, results from the energy
consumption measurements from Section III-A were used.

For the mobile EDs, the rewards generation is extended to
incorporate the probability of message loss. When the signal
level or SNR drops under a particular value, the message is
considered lost. In terms of signal strength, it means RSRP
less than −135 dBm for NB-IoT and RSSI under −142 dBm
in the case of Sigfox. For LoRaWAN, the borderline RRSI
values are delineated by −129 dBm for SF9 and −137 dBm
in the case of SF12. Considering the noise values, the NB-IoT
signal-to-interference plus noise ratio (SINR) limit is around
−8 dB. For Sigfox and LoRaWAN with SF12, the minimum
SNR is as low as −20 dB. Nevertheless, the minimum value
of SNR for LoRaWAN using SF9 is only −12 dB. Thus, when
any technology’s signal/SNR decreases below these thresholds,
it is associated with zero reward [14], [17], [39].

On top of that, the second mobile nodes scenario encom-
passes the message losses based on the measurement statistics.
Based on the PDR values introduced in section III-C, the
probability of successful message derivation is further reduced
by the loss probability accordingly. The possibility of message
loss is taken from the uniform distribution following the PDR
values as mentioned above.

D. Reinforcement Learning Policies

As mentioned in the previous section, the process of se-
lecting the action At with the ultimate goal of achieving the
maximum cumulative reward is driven by RL policies. In our
work, we tested four RL policies: ε-greedy, weighted average,
UCB, and Thompson sampling.

1) ε-greedy: This policy represents the simplest method of
addressing the MAB problem. Its operation is divided into the
exploration and exploitation phase. In the exploration phase,
the algorithm randomly selects the arms to pull with the
probability given by the parameter ε. This approach helps
ε-greedy policy to overcome issues with the local-optimum
solution and discover the arm with the actual highest rewards.
In the remaining time, i.e., exploitation phase (1 − ε), the
algorithm attempts to gain the highest rewards by pulling the
same arm repeatedly. To select the optimal radio interface,
the algorithm keeps statistics of average rewards from each
arm. However, the statistics are calculated incrementally to
save computational resources (due to the possibility of imple-
mentation on power-restricted devices). Using the incremental
averaging algorithm, the value of action Qk+1 is defined as

Qk+1 = Qk +
1

k + 1
[rk+1 −Qk] , (7)

where k is the order of current step, rk+1 is the current reward,
and Qk represents the average of the first k actions [40].

2) Weighted Average: In the case of a non-stationary envi-
ronment, the ε-greedy policy provides unsatisfactory results,
as all samples in statistics have the same weight. In other
words, the influence of each action on the resulting average
is identical. Nevertheless, in the dynamically changing en-
vironment, it is logical to increase the impact of the more
recent actions compared to more distant ones. To this aim,
the weighted average policy uses step-size constant α, which
controls samples’ weight. With this modification, the iterative
average is calculated as

Qk+1 = Qk + α [rk+1 −Qk] , (8)

where weight parameter α (0 < α ≤ 1) controls action
significance, Qk is average of k previous actions, and rk+1

represents current reward [40].
3) Upper Confidence Bound: Instead of relying on the

selection of arbitrary action in the exploration phase with
constant probability, UCB policy changes its exploration-
exploitation ratio as it gathers more knowledge about the
environment. In the beginning, UCB focuses primarily on
exploration when the actions tried the least number of times
are preferred. However, over time UCB moves towards ex-
ploitation, selecting the actions with the highest estimated
rewards.

With UCB, the value of the k + 1 action Qk+1 is given as

Qk+1 = Qk + c

√
ln k

Nk
, (9)

where Qk is the estimated value of the action at time step k,
Nk is the number of times the arm has been selected prior
to time k, and c represents a confidence value controlling the
exploration level.

The parameter Qk represents the exploitation part. In this
phase, the action that currently has the highest estimated
reward will be the chosen one. Conversely, the second part rep-
resents the exploration phase driven by the parameter c. If the
action has not been selected often or not at all, then Nk will be
small. As a result, it will lead to significant uncertainty, making
this action more likely to be chosen. However, the uncertainty
decreases with each action’s selection, making it less likely
to be selected in the exploration phase. Notably, when the
action is not selected, its uncertainty will grow slowly due to
logarithmic dependency. Conversely, the certainty proliferates
with each selection as the increase in Nk is linear. Thus,
as time progress, the exploration gradually decreases as the
second part of (9) goes to zero [38], [41].

4) Thompson Sampling: Unlike the other RL policies de-
scribed in this text, Thomson sampling is a probabilistic
algorithm based on Bayesian ideas. The sampling in its name
denotes that it picks samples from a probability distribution
for each arm. Usually, a Beta distribution for each arm based
on its number of attempts and successful rewards throughout
history is used. In other words, a random sample from the
posterior Beta distribution is taken at each iteration, and one
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with the maximum value is chosen. The value of k+1 action
Qk+1 is sampled from the Beta distribution defined as

Qk+1 = β(N1
k + 1, N0

k + 1), (10)

where N1
k is the number of times the action got a successful

reward prior actual round, whereas N0
k denotes the opposite

cases, i.e., when the reward was zero. This approach allows
the Thomson sampling to balance the exploration-exploitation
dilemma.

V. NUMERICAL RESULTS

In this section, we present the result for both stationary
and mobile EDs scenarios utilizing the RL policies mentioned
above. The stationary nodes results include average rewards
as well battery lifetime expectancy. Subsequent mobile EDs
scenarios add simulations with different SFs for LoRaWAN
technology and extend the results with outages probabilities.

A. Stationary End Devices

At the first step of the RL policies assessment, we focused
on their ability to select the best radio interface and achieve
maximum average rewards. To this aim, we generated input
data set of 5000 samples using the proposed time-dependent
model based on Markov chains. Moreover, we launched the
RL policies 200 times to improve statistical confidence and
averaged the results throughout all realizations. The same
time-dependent model was then used to generate a greatly
extended dataset intended for battery lifetime predictions.

1) Average Rewards: As depicted in Fig. 10, the simula-
tions were conducted for both locations, i.e., BUT campus
and BCC unit. Notably, the analysis of the BUT unit shows
surprising results. Albeit being the more advanced RL policy,
the UCB algorithm displays the second-worst results in terms
of average rewards, hardly overcoming a value of 0.65 at
maximum. The UCB policy probably exploited the local
optimum solution, which crippled its results. The only worse
policy is ε-greedy 1, which operates in exploration mode all
the time, providing a random selection of interfaces. On the
other hand, the ε-greedy 0.5 shows slightly better results than
the UCB policy. It suggests that exploitation is better for the
current scenario than exploration, as the ε-greedy 0.1 provides
the second-best performance. Notably, the weighted average
RL policy with α = 0.2 provides satisfactory results as it
holds third place with average rewards of more than 0.8 in its
steady-state. However, the first place with an average reward
of almost 0.85 belongs to Thompson sampling.

In the case of the BCC, the position of the UCB RL policy
is entirely different as it represents the best-performing algo-
rithm. Surprisingly, the UCB and weighted average policies
indicate overshoots in the initial phase of the algorithm runs
(first 100 steps, i.e., time instances t of the conducted action).
The UCB even achieves the average reward of 1, which
represents the maximum achievable value. This behavior is
most likely caused by the exploration phase with a certain level
of serendipity in selecting the correct radio interface. However,
with subsequent selections, the average rewards decrease to
expected levels. Regarding the remaining RL policies, their

(a) BUT campus

(b) Brno city center

Fig. 10: Average rewards of RL policies.

performance is similar to the BUT unit. Hence, the Thompson
sampling (holding second place) currently represents the most
reliable RL policy.

Lastly, it is essential to mention that all RL policies can
achieve 90 % of their maximum average rewards during the
initialization phase utilizing less than 50 messages. With the
UCB algorithm, it is possible to reach this value with only
25 messages. Though providing one of the best results in the
exploitation state, the convergence time of Thompon sampling
may be slightly longer. This fact is pronounced especially in
the case of the BUT unit, where the transition time is roughly
two times longer than for other policies. However, it must be
noted that the best performing RL policies allow for exploiting
up to 85 % of the theoretical maximum average reward defined
by the value one.

2) Expected Battery Lifetime: In the following assessment
step, we evaluated the expected battery lifetime of multi-RAT
devices. For this scenario, we considered a commonly utilized
lithium battery LS 14500, produced by the Saft company. This
primary cell provides a nominal voltage of 3.6 V and a capacity
of 2.6 Ah, which equals the total charge of 33696 J. Due to
the extensive battery capacity, the input sample data set had
to be extended to up to two million samples.

As in the previous case, the battery lifetime expectancy
results depicted in Fig. 11 reveal the most critical findings for
the BUT unit. At first sight, the battery lifetime prediction
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data show significant differences compared to the average
rewards depicted in Fig. 10. Notably, the first two policies,
i.e., Thompson sampling and ε-greedy 0.1, indicate expected
results and hold the same place in both figures. However, the
remaining UCB, weighted average, and ε-greedy 0.5 are in a
completely different order. Most surprisingly, the UCB policy
holds third place in terms of expected battery lifetime but is
the next to last in the case of average rewards. Conversely, the
performance of weighted average and ε-greedy 0.5 is under-
whelming, which may seem counter-intuitive. Nevertheless, a
more detailed analysis of the results reveals the reasons for
such behavior.

Although the UCB policy average rewards are not great, it
still manages to select the suboptimal interface represented by
the second best-performing technology. Notably, LoRaWAN
consumption is exceptionally close to the NB-IoT technology
leaving only a tiny gap between them. Hence, by selecting
the LoRaWAN or NB-IoT interfaces most of the time, UCB
penalization of low rewards diminishes. On the other hand,
more straightforward policies such as ε-greedy and weighted
average select the radio interfaces in the exploration phase
randomly, levering the Sigfox arm, which displays the highest
power consumption. This blind selection is the main reason
for the performance drop of these two policies in terms of
battery lifetime. From the perspective of the best performing
RL policies, Thompson sampling can exploit 99.5 % of the
theoretical maximum. This value delineated by the dashed line
represents the highest achievable battery lifetime when the best
performing radio interface is selected for every transmission.

In the case of the BCC, the results are much more pre-
dictable. In fact, the battery lifetime prediction follows the
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Fig. 11: Battery lifetime expectancy for all studied policies.

(a) Without losses.

(b) With losses.

Fig. 12: Average rewards of RL policies for LoRaWAN SF9.

average rewards. Notably, the UCB algorithm outperforms
Thompson sampling by a thin margin of 500 messages. The
generally positive results of Thompson sampling make this
policy a promising candidate for deploying in multi-RAT
devices.

B. Mobile End Devices

For the mobile EDs, we conducted a similar set of tests as
in the case of stationary units, i.e., we assessed the average
rewards and evaluated expected energy consumption. Notably,
the representation of energy consumption is slightly different
as the presented data displays the consumed charge in J for
the distance each node traveled on the considered traces. In
other words, these results provide a side-by-side comparison
of energy consumed by traversing the virtual trails, identical to
all RL policies. Finally, the last difference covers the inclusion
of message loss numbers.

We compare average rewards for two different LoRAWAN
SFs in the first phase, namely SF9 and SF12. Although
the SF12 allows LoRaWAN to achieve the most extended
communication range possible, DC limitations hamper its
usability for our scenario. In the case of the EU, it requires
almost 150 s of radio silence after 12 B message transmission.
However, it is not in line with our needed message period of
30 s. Furthermore, if we consider the US frequency band, the
SF12 can not be used at all due to a dwell limitation of 400 ms;
see Section II-C for more information. On top of that, we also
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(a) Without losses.

(b) With losses.

Fig. 13: Average rewards of RL policies for LoRaWAN SF12.

compare results from the perspective of including/excluding
outages. In the figures, where the outages are excluded, the
message loss can occur solely when RSRP/RSSI or SNR drops
under a certain level; see Section IV-C. Contrary, the results
that include message losses also cover the PDR statistics (see
Section III-C for details) to reflect the possibility of an outage.

1) Average Rewards: A cursory analysis of average rewards
for SF9 depicted in Fig. 12 reveals that the initial exploration
phase indicates higher variation than the stationary nodes.
However, when it reaches the steady-state, the results are com-
parable to stationary EDs. In the case of results without losses,
the average rewards are even higher than for stationary EDs.
Also, the order of individual policies is similar to the stationary
units, with Thompson sampling and UCB occupying front
positions. It is clear that the inclusion of outages brings some
uncertainty, resulting in lower average rewards. Remarkably,
the outages more pronouncedly influence advanced algorithms
like Thomson sampling and UCB, which still provide better
results, but the lead over simpler policies is smaller.

Proceeding further, one may conclude that the average
rewards for SF12 depicted in Fig. 13 follow the same pattern as
SF9 results. However, the level of rewards for both scenarios
is significantly higher compared to SF9. It has a logical
explanation, as the increased sensitivity of SF12 diminishes
the possibility of message loss due to low RSSI/SNR levels,
which is typical for SF9. Impressively, in the case of results

(a) Without losses.

(b) With losses.

Fig. 14: Average rewards of RL policies for LoRaWAN SF9.

without outages, the Thompson sampling and UCB policies
nearly reach the maximum value of average rewards. These
positive results are mainly caused by the fact that the energy
consumption of NB-IoT is superior to LoRaWAN in SF12,
with a very low loss probability. Hence, selecting the NB-
IoT technology frequently represents an optimal solution for
higher reliability scenarios where the private infrastructure is
not a deciding factor. Furthermore, the average rewards for
message outages are also high as the loss probability of NB-
IoT is less than 5 %.

2) Energy Consumption: The energy consumption results
depicted in Fig. 9 represent more than three thousand messages
in a single run. However, the process was relaunched 100 times
to improve accuracy by averaging. Notably, for the proper
understanding of the results, it is essential to describe the
meaning of the “Optimal consumption” line in Figs. 14 and 15.
This dashed red line represents the energy consumption value
if all the messages would be transmitted over the best interface
or, via the technology, ensuring successful delivery in the case
of an outage. It must be noted that this line does not have to
correspond with the combination of transmission providing the
lowest power consumption.

Analyzing the energy consumption results for SF9, see
Fig. 14, it is clear that the LoRaWAN holds first place in terms
of consumed energy. Also, the previously mentioned Thomp-
son sampling and UCB provide comparable results, with
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(a) Without losses.

(b) With losses.

Fig. 15: Average rewards of RL policies for LoRaWAN SF12.

expected consumption below the optimal value line. However,
a more detailed analysis reveals that all these choices indicate
a significant amount of outages. In the first case (Fig. 14a), the
outages are caused by insufficient RSSI/SNR levels. Therefore
the number of message losses is only marginal. Conversely,
when the losses are included (Fig. 14b), the number of outages
is significant. Due to the tendencies of Thompson sampling
and UCB policies to exploit the currently optimal solution,
they cannot react to these occasional dropouts. Surprisingly,
the weighted average policy can handle this issue with relative
success. In terms of energy consumption, it still provides better
results than the two remaining LPWAN technologies, and it is
in the middle of RL policies. On the other hand, it still allows
decreasing message loss by approximately 20 % as compared
to single LoRaWAN technology.

In the case of energy consumption results for SF12 depicted
in Fig. 15, the situation is radically different. The Thompson
sampling and UCB still provide the best results among all
policies, but the first place with the lowest power consumption
belongs to NB-IoT. The increased sensitivity of SF12 gives
the impression of zero outages when the message losses are
neglected. However, for the latter case, LoRaWAN displays
a high amount of outages, even for higher SF. Notably, the
performance of Thompson sampling is worth mentioning. It
provides nearly identical energy consumption as NB-IoT, but
it is able to decrease the number of outages slightly.

From the perspective of versatility, the performance of the

weighted average policy should be noted. Though it does not
perform the best, it still holds fourth place (considering only
RL policies) with only marginally higher consumption over
NB-IoT with a comparable number of outages. Moreover, the
weighted average policy displays consistent results for both
SFs regardless of loss probabilities inclusion.

VI. CONCLUSIONS

To improve the operational lifetime of end-user equipment
in LPWAN systems under dynamically changing propaga-
tion conditions, we considered the employment of the multi-
RAT approach at a single ED and the automatic selection
between available RAT throughout its operation. To facilitate
the radio selection process’s dynamic adaptation, we proposed
RL techniques. In this case, the system in question regularly
determines the environment conditions and assigns the weights
to different options attempting to achieve the maximum reward
level. To assess the performance of the system in realistic con-
ditions, we performed two large-scale measurement campaigns
targeting power consumption and radio signal propagation.
Furthermore, we verified the performance of the proposed
schemes in diverse, realistic conditions by modeling both sta-
tionary deployment and city-wide delivery service conditions.

Our numerical results indicate that the considered RL-based
techniques allow for a noticeable increase in EDs’ lifetime
when operating in multi-RAT mode. Out of all considered
schemes, the performance of the weighted average policy
shows the most consistent results for both stationary and
mobile deployments. For the stationary EDs, the best per-
forming RL policy, Thomspon sample, exploits up to 85 %
of the theoretical gains. In the case of mobile EDs, the RL
policies battery lifetime difference can be as high as 200 %.
These findings are of particular importance in deployments
with harsh or hard-to-reach conditions.
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