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Abstract

Image denoising, demosaicing and super-resolution are
important problems of image restoration well studied in the
recent decades. Often, in practice, one has to solve these
problems simultaneously. A problem of finding a joint so-
lution of the multiple image restoration tasks just begun to
attract an increased attention of researchers. In this pa-
per, we propose an end-to-end solution for the joint de-
mosaicing, denoising and super-resolution based on a spe-
cially designed deep convolutional neural network (CNN).
We systematically study different solutions of this problem
and compared them with the proposed method. Extensive
experiments carried out on the large image datasets demon-
strate that our method outperforms the state-of-the-art both
quantitatively and qualitatively. Finally, we have applied
various loss functions in the proposed scheme and demon-
strate that by using the weighted mean absolute error as a
loss function, we can obtain superior results in comparison
to other cases.

1. Introduction

Image demosaicing, denoising, and super-resolution
(SR) are classical image restoration problems well studied
in the past decades. With the recent advancement of con-
volutional neural networks (CNNs), performances of image
restoration methods have significantly improved and several
CNN-based image restoration methods achieved the state-
of-the-art (SOTA) performance [17, 39, 35, 44].

Since in many practical applications an acquired image
is a subject of multiple degradations, the above mentioned
image restoration problems must to be solved simultane-
ously. A most natural choice for a combined solution is
to apply SOTA methods of individual restoration tasks in
the sequential order. Existing SOTA, however, are not per-
fect. Addressing a problem of image denoising, most of the
existing algorithms tend to smooth out high-frequency con-
tent, such as image details and texture, while eliminating

noise in the flat areas of the image. Image demosaicing and
super-resolution algorithms may generate color artifacts es-
pecially in the high-frequency texture regions and around
edges. Image reconstruction errors of individual reconstruc-
tion algorithms are accumulated even if one is using SOTA
algorithms in the sequential order.

To tackle this problem, joint solutions for the combined
problems have been proposed in the literature [3, 6, 7, 8, 16,
19, 23, 34, 41, 46]. However, the problem of finding a joint
solution for a triplet of problems of image demosaicing, de-
noising and SR has received much less attention [23, 27].

In this paper, we comprehensively study various solu-
tions to this combined problem. First we adjust the execu-
tion order, and then start to investigate possible joint solu-
tions under this execution order. Then we propose an end-
to-end learning for this joint problem by designing a very
deep network JDNDMSR. We carried out numerous ex-
periments to show that the proposed solution outperforms
other joint solutions quantitatively and qualitatively. To
further optimize the proposed solution, different loss func-
tions are used in the proposed scheme, and the comparative
analysis of the resulting solutions is demonstrated in Sec-
tion. 5.1. A comparison with the state-of-the-art method
TENet [27] and the ablation study (see Fig. 1) are presented
in Section. 5.2 and Section. 5.3, respectively.

2. Related work

Denoising. The existing image denoising methods can
be roughly classified into two categories, model-based
methods and deep learning methods. Among the model-
based methods, BM3D [4] is often regarded as a denois-
ing benchmark. In 2017, Zhang et al. have applied a deep
convolutional neural network (CNN) to the problem of de-
noising images corrupted by Gaussian noise. This method,
called DnCNN [39], adopts residual learning and batch nor-
malization on CNN for denoising and attains top perfor-
mance. Later on, a variety of machine-learning based meth-
ods [2, 14, 36, 39, 40] have been successfully used in de-
noising.
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(a) Image082 from B100.
σ = 0, sf = 2.

(b) Image008 from Urban100.
σ = 0, sf = 2.

(c) Image13 from McM.
σ = 10, sf = 2.

(d) kodim03 from Kodak.
σ = 10, sf = 2.

GT TENet Ours GT TENet Ours GT TENet Ours GT TENet Ours

Figure 1: Qualitative comparison between the SOTA model TENet and the proposed JDNDMSR
+.

Demosaicing. To reduce manufacturing costs, most dig-
ital camera sensors capture only one color (red, green and
blue) at each pixel. The camera sensor is covered by the
color filter arrays (CFAs). Image demosaicing is the process
of interpolating full-resolution color image from incomplete
color samples output by an image sensor. Most demosaicing
methods have been specifically designed for the Bayer CFA
which is the most popular CFA. Existing algorithms can be
also classified into two categories: model-based methods
[10, 11, 24, 29, 42], which recover images based on mathe-
matical models and image priors in the spatial-spectral do-
main; and learning-based methods [10, 30], based on pro-
cess mapping learned from abundant training data. The
deep learning methods [9, 15, 31] of image demosaicing
attain state-of-the-art performance.

Single image super-resolution. Single image super-
resolution aims at recovering a high-resolution (HR) im-
age from its corresponding low-resolution (LR) image. The
emergence of convolutional neural network has made the
performance of super-resolution methods advance by leaps
and bounds. In 2015, Dong et al. proposed SRCNN [5],
which utilizes a 3 layers CNN in a single image super-
resolution task. Inspired by VGG-net, Kim et al. have pre-
sented a very deep residual learning super-resolution net-
work, VDSR [17]. To reduce the occupation of memory
and accelerate the speed of computation, Shi et al. have
introduced a sub-pixel CNN ESPCN [28] to upscale fea-
ture maps to the desired solution. In 2017, Ledig et al.
[20] have applied ResNet architecture in SR and proposed
a SRResNet scheme. EDSR [21] further ameliorate the
residual block and develop a very deep and wide CNN
to enhance the performance of SR. In 2018, Zhang et al.
have presented RDN, which is a residual dense network for

SR. They have also proposed an attention-based network,
RCAN [44], which introduces the channel attention into
residual blocks (RCAB). Wang et al. [35] have proposed a
perceptual-driven method ESRGAN based on the proposed
Residual-in-Residual Dense Block (RRDB). In 2020, Liu et
al. [22] proposed the RFANet by improving the chain of
residual modules and adding an enhanced spatial attention
(ESA) block at the end of each residual block.

Joint solutions. In practical applications, multiple im-
age restoration problems appear simultaneously, resulting
in the combined problems that one needs to solve. Recently,
the combined solutions to the mixture problem of multiple
image distortions replace traditional sequential solutions.
Examples are joint denoising and SR [3, 6, 8, 16, 19], joint
demosaicing and SR [7, 34, 46], and joint denoising and SR
[41]. A research on the triplet of denoising, demosaicing
and SR is still lacking a special attention. In 2019, Qian et
al. [27] proposed a trinity network to jointly solve this com-
posite problem. In 2020, Liu et al. proposed the SGNet [23]
for joint image demosaicing and super-resolution, which
also can handle the mixture problem of denosing, demo-
saicing and SR.

In this paper, we propose the end-to-end solution of de-
mosaicing, denoising and SR, JDNDMSR, and compared
it with the sequential application of SOTA methods for each
of these subproblems, as well as with the state-of-the-art
method to solve this mixture problem.

3. Proposed method

In what follows, we first study the execution order of im-
age demosaicing, denoising and super-resolution. Then, all
joint solutions of this execution order are considered. Later,
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we propose a deep CNN for the mixture problem. Note that
we only consider the CNN-based methods in this paper.

3.1. Joint solutions

For the mixture problem of image demosaicing, denois-
ing and super-resolution, a clean high-resolution color im-
age IHR should be estimated from its noisy low-resolution
raw image ILRN

M
. For the execution order, demosaicing

should follow denoising, like in [27], to avoid complica-
tions in filtering correlated noise after demosaicing. In ad-
dition, the demosaicing should be performed before super-
resolution because the correlation across color channels can
be exploited when super-resolving color image. Besides
this reason, performing super-resolution on raw image will
destroy the original mosaic pattern, which increases the dif-
ficulty of demosaicing. Therefore, for the fixed execution
order: Dn → Dm → SR, the first solution is to sequen-
tially utilize three targeted methods to solve the correspond-
ing image restoration problems one by one:

ÎHR = MSR(MDm(MDn(ILRN
M

))). (1)

where M denotes image restoration method, Dn, Dm,
SR denote denoising, demosaicing and super-resolution,
respectively. and ÎHR is the estimation of high-resolution
image IHR.

Naturally, another approach is to combine two image
restoration tasks and then execute the remaining one:

ÎHR = MSR(MJDnDm(ILRN
M

)), (2)

and
ÎHR = MJDmSR(MDn(ILRN

M
)). (3)

where J indicates joint processing. Similarly, the third so-
lution is a fully combined end-to-end solution:

ÎHR = MJDnDmSR(ILRN
M

). (4)

A comparison of the solutions (Eqn. 1-4) is presented in
Section 4.2.

3.2. Network architecture

The proposed end-to-end solution of the mixture
problem is based on the deep CNN-based network,
JDNDMSR shown in Figure 2, consisting of three parts:
color extraction, feature extraction and reconstruction. In-
spired by the method presented in [8], the Bayer input is
first reshaped to a quarter-resolution multi-channel image,
which is concatenated with the noise level estimation input.
In this paper, we assume that a noise level is known or is
properly estimated in advance, thus, one can parametrize
a network with this. One way is to add a noise level in-
put σ, and replicate it spatially and concatenate it with the
packed mosaic vector. Every layer downstream depends on

it, which effectively parametrizes the learned filters. The
color extraction step includes one convolutional layer with a
big filter (256), and one deconvolutional layer to upscale the
feature maps to the prime resolution. The feature extraction
stage learns the residual features by several basic blocks
and a convolutional layer. The basic block can be any ef-
fective block applied in SOTA methods, such as residual
block (RB) [21], residual-in-residual dense block (RRDB)
[35], and residual group (RG) with residual channel atten-
tion block (RCAB) [44]. Through the ablation study of the
basic blocks (see Section 5.3), we utilize 4 residual groups
in the JDNDMSR network structure and each RG includes
20 RCABs. In the reconstruction part, the deconvolutional
layer is used again to convert the extracted features into
full resolution features. The following is the final convo-
lutional layer to generate the desired resolution color im-
age. The proposed JDNDMSR can be changed to a noise-
free version JDMSR by removing the noise level input
σ (σ = 0). The experiments presented in Chapter 4 will
demonstrate that the proposed JDNDMSR and JDMSR
achieve notable performance improvement in comparison
with the other joint solutions and the SOTA joint solution.

4. Experiments

4.1. Settings

For the training, we have applied Nvidia Tesla P100
GPU with 16 GB memory from the Tampere University
TCSC Narvi computing cluster. All testing experiments run
on a Linux desktop computer, with 3.4 GHz Intel i7-3770
CPU, 32 GB of RAM, and Nvidia GTX 1050Ti GPU with
4GB of memory.

Dataset. For training and validation of the network, we
used publicly available dataset DIV2K [1] which contains
900 2K resolution images (800 for training, 100 for vali-
dation) for image restoration tasks. We compared different
joint solutions on two public benchmark datasets, McMas-
ter [43] and Kodak, which are often used for benchmarking
in demosaicing. These two datasets are widely used in other
image restoration papers as well [8, 17, 27, 33, 37, 39].

Data preprocessing. For data preprocessing of denois-
ing, noisy input image is generated by adding Gaussian
noise with the noise levels (σ) 10, 20 and 30. For data pre-
processing of demosaicing, we mosaic the color image to
a single-channel image in the Bayer CFA pattern. For data
preprocessing of super-resolution, the HR image is BICU-
BIC down scaled with the scale factors (SF) 2.

Training details. Data augmentation is performed on
images, which are randomly rotated by 90◦, 180◦, 270◦

and flipped horizontally. For each training epoch, the mini-
batch size is 16, and the patch size is 64 × 64. All models
are implemented in Python with the platform Keras. For
the optimization of network parameters, we use Adam [18]
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Figure 2: Illustration of the proposed deep joint denoising, demosaicing and super-resolution network JDNDMSR.

with β1 = 0.9, β2 = 0.999 and the learning rate is initial-
ized to 0.001. All training continue 100 epochs. There are
2000 training steps and 200 validation steps in each epoch.
For the first 10 epochs, the learning rate is constant, then the
learning rate is decreased by 10 times for the remaining 90
epochs. Only the model with the smallest validation loss is
saved.

Loss function. The proposed JDNDMSR is opti-
mized with different loss functions. Given a training set
{Ii

LRN
M
, IiHR}Ni=1, which contains N low-resolution inputs

and their high-resolution counterparts, the goal of training
JDNDMSR is to minimize the loss function:

L(Θ) =
1

N

N∑
i=1

L(JDNDMSR(IiLRN
M

), IiHR). (5)

where Θ denotes the parameter set of JDNDMSR. The
models in this part are trained with mean squared error
(MSE). We also further optimize our network training it
with different error criteria and comparing the results by
different loss functions (see Section 5.1).

4.2. Comparison of solutions

In this section, we compare all joint solutions (Eqn. 1-
4) of the mixture problem of image demosaicing, denoising
and super-resolution. Except theMJDmSR in Eqn. 3 solved
by the proposed JDMSR, other methods in Eqn. 1-3 are
replaced by the state-of-the-art image restoration networks.
DnCNN [39], DJDD [8], and VDSR [17] are selected meth-
ods for denoising, demosaicing and super-resolution, re-
spectively. It should be noted that there are two versions
of DJDD [8] (for noisy and noise-free inputs). The noisy
version model is used in Eqn. 2 for joint demosaicing and
denoising (MJDnDm). In contrast, the noise-free version is
adopted in Eqn. 1 for MDn

. Here we mainly focus on the
comparison of various joint solutions, rather than aiming at
obtaining SOTA results. Therefore, we chose some simple
but effective methods instead of computationally more de-
manding ones with the better performances. Similar to [38],

we also introduce transfer-learning strategy to further im-
prove JDNDMSR (we name the transfer-learning method
as JDNDMSR

+). JDNDMSR
+ transfers the learned pa-

rameters from a trained model of JDMSR (see our supple-
mentary material) for joint ×2 super-resolution and image
demosaicing. The ablation study of transfer learning is also
included in Section 5.3.

Table 1: Quantitative comparison of different solutions on
the mixture problem of joint denoising, demosaicing and
super-resolution using datasets Kodak and McMaster [43].
The noise level is 10 and the scale factor is set to 2. The
best, second and third best results are highlighted with red,
blue and green, respectively.

Solution Pipeline McMaster Kodak
type cPSNR SSIM cPSNR SSIM

Eqn. 1 DnCNN→DJDD→VDSR 25.99 0.8522 26.18 0.7868
DnCNN∗ →DJDD∗ →VDSR∗ 29.14 0.9248 28.53 0.8913

Eqn. 2 DJDD→VDSR 28.40 0.9248 28.13 0.8812
DJDD∗ →VDSR∗ 28.88 0.9212 28.43 0.8887

Eqn. 3 DnCNN→ JDMSR 25.91 0.8522 26.11 0.7846
DnCNN∗ → JDMSR

∗ 29.51 0.9293 28.75 0.8948

Eqn. 4 JDNDMSR 29.34 0.9274 28.80 0.8942
JDNDMSR

+ 29.56 0.9296 28.80 0.8965

Quantitative results. Quantitative analysis was per-
formed with cPSNR and SSIM metrics, by calculating them
on full RGB image. The results are averaged over whole
dataset. For super-resolved image, the borders of the image
are shaved off, with the scaling factor as the width of the
shaved border.

Table 1 shows the quantitative comparisons of all so-
lutions for joint image demosaicing, denoising and super-
resolution. We fix the noise level to 10 and scale factor to
2. The loss function used in this comparison is mean square
error (MSE). Since CNN models are sensitive to the input
data, all models in the first three types of solutions (Eqn. 1-
3) are re-trained with the specific input and output pairs.
In order to reduce the interaction among different tasks, a
model should input the results of the previous model and
try to correct the errors produced by the previous process-
ing at the same time. These retrained models are marked
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by ∗. When compared with other solutions, our combined
solution JDNDMSR

+ performs the best on both datasets.
Even without transfer-learning, our next combined solution
JDNDMSR also outperforms most of the other compared
solutions. On the other hand, the re-trained models can ob-
tain better performance than the directly exploiting trained
models. We also presented the qualitative results in Fig. 3.
Our JDNDMSR

+ not only eliminates the noise but also
recovers more details in high frequency region.

Effects of combined solution. In Table 1, we can ob-
serve that our JDNDMSR is the third best joint solu-
tion. In contrast, the specific re-trained models of solu-
tion in Eqn. 3 achieves the second best performance. In
addition, the fourth best solution is the retrained version
of Eqn. 1. These two solutions both begin from the spe-
cific re-trained DnCNN model. Therefore, a specific trained
DnCNN model can support a good start for joint denoising,
demosaicing and SR.

However, our JDNDMSR can achieve a comparable
performance by the additional noise level estimation input.
Our JDNDMSR

+ demonstrates a superior performance.
This observation indicates that the combined solution can
avoid an accumulation of errors. Considering the storage of
models and weights, the combined solution is a good trade-
off between performance and operational complexity.

5. Optimization
5.1. Comparison on cost functions

In Section 4.2, the proposed JDNDMSR
+ surpasses

other joint solutions both quantitatively and qualitatively.
In order to further optimize JDNDMSR

+, we train several
models with different cost functions besides MSE. Inspired
by [45], we train the network with six different cost func-
tions: MSE, MAE, SSIM, MS-SSIM, Mix1 and Mix2. The
Mix cost functions are combinations of MS-SSIM with l1
or l2 loss. These six models are compared on four evalu-
ation metrics: cPSNR, SSIM, MS-SSIM and CSSIM [26].
The results of their comparison on McMaster and Kodak
datasets are shown in Table 2. As one can see, the model
trained with MAE (mean absolute error) cost function at-
tains the best performance for all image quality metrics and
on both datasets. Compared with the model trained with
MSE, the cPSNR values of MAE version is improved by
0.21dB on two datasets. The patch size during training was
32× 32, and the number of epochs is 100.

5.2. Comparison with State-of-the-Art

In this section we compare the proposed JDNDMSR
+-

MAE with the state-of-the-art method TENet [27] on four
datasets with four noise levels (see Table. 3). For a fair
comparison, we re-trained the TENet network and our
JDNDMSR

+-MAE on both DIV2K and Flickr2K [32]

Figure 3: Comparison of the joint solutions of denoising,
demosaicing and super-resolution. The scale factor is 2 and
noise level is 10. The upper half part is the Image01 from
McMaster dataset. The lower half part is the kodim19 from
Kodak dataset. The ground truth images are shown in the
left part, and the resulting images of different joint solu-
tions are shown in the right part. The sequence of resulting
images corresponds to the illustration in the lower right cor-
ner.

datasets with ×2 scale factor and the noise level randomly
sampled from [0, 20], called the resulting models as TENet-
df2k and JDNDMSR

+-df2k, respectively. In addition to
McMaster [43] and Kodak datasets, we also test them on
B100 [25] and Urban100 [13] datasets, which are often ap-
plied in the comparison of different super-resolution meth-
ods. The dataset B100 contains 100 human segmented nat-
ural images, and the dataset Urban100 contains 100 urban
images with many similar structures. For the pre-processing
of the test images, the scale factor is set to 2 and the noise
levels to 0, 10, 20 and 30. We use cPSNR and SSIM met-
rics for the quantitative evaluation. As shown in Table. 3,
our model outperforms the TENet over all noise levels on
all datasets. We also present the visual comparison both on
noisy and noise-free versions in Fig. 1. In comparison with
the resulting images of TENet, our JDNDMSR

+-df2k en-
ables to reconstruct the high resolution images more accu-
rately ((Fig. 1 (a,c))) without color artifacts (Fig. 1 (b)) and
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Table 2: Average value of different image quality metrics of JDNDMSR
+ trained with different cost functions. The three

values in a single cell are tested on McMaster, Kodak and the mix of these two datasets, respectively. The noise level is 10
and the sale factor is 2. For cPSNR, PSNRw, SSIM, MS-SSIM, and cSSIM the value reported here has been obtained as an
average of the three color channels. Best results are shown in bold.

Image quality metric Training cost function
MSE MSEw MAE SSIM MS-SSIM Mix1 Mix2

cPSNR 29.05/28.45/28.71 29.16/28.56/28.81 29.32/28.61/28.92 27.74/27.48/27.59 27.52/27.25/27.36 27.61/27.30/27.43 27.48/27.20/27.32
PSNRw 23.71/23.23/23.44 23.80/23.30/23.51 23.99/23.38/23.64 22.10/22.00/22.04 21.91/21.81/21.85 22.02/21.89/21.94 21.84/21.74/21.78
SSIM 0.9224/0.8889/0.9033 0.9232/0.8914/0.9050 0.9268/0.8933/0.9077 0.8948/0.8600/0.8749 0.8895/0.8549/0.8697 0.8936/0.8565/0.8724 0.8858/0.8473/0.8638

MS-SSIM 0.9539/0.9442/0.9483 0.9552/0.9456/0.9497 0.9572/0.9464/0.9511 0.9409/0.9326/0.9361 0.9400/0.9329/0.9360 0.9399/0.9316/0.9352 0.9398/0.9329/0.9359
CSSIM 0.9775/0.9707/0.9736 0.9783/0.9717/0.9745 0.9790/0.9723/0.9752 0.9696/0.9617/0.9651 0.9700/0.9625/0.9657 0.9700/0.9618/0.9653 0.9701/0.9622/0.9656

blur (Fig. 1 (d)).

5.3. Ablation Study

In order to study the effects of each components in the
proposed model JDNDMSR

+, we gradually modify the
baseline JDNDMSR

+ model and compare their differ-
ences. In this comparison, all models are trained for 50
epochs with 1000 training iterations per epoch, 100 valida-
tion iterations per epoch, and 32 × 32 patch size. During
the training, the scale factor was 2 and the noise level was
randomly sampled from [0, 20]. The evaluation is done by
calculating cPSNR values on McM dataset with noise level
10.

We start our investigation from a selection of the basic
module. We compare three types of residuals in residual
blocks, RRDB [35], RCAB [12] and RAB [44]. For a fair
comparison, we tuned the number of three basic modules to
keep all networks to have similar parameters. The compar-
ison is shown in Fig. 4 (a). With a similar model size, the
network with RCAB blocks performs better than those with
the other two basic modules. Based on the comparison re-
sult of the basic modules, we have decided to add the Long
Skip Connection (LSC) to our baseline. Fig. 4 (b) demon-
strates that the additional LSC improves the performance
of the network. In addition, we exploit the transfer learn-
ing, which transfers the well-learned parameters from the
pre-trained noise-free model JDMSR. The curves (yellow
and red lines) in Fig. 4 (b) prove that this kind of easy-to-
hard transfer learning strategy not only improves the perfor-
mance of network, but also supports a better starting point
(at least 1.5 dB higher cPSNR).

6. Conclusion

We have systematically and comprehensively compared
all joint solutions of the mixture problem of image demo-
saicing, denoising and super-resolution, under the fixed exe-
cution order. Extensive experiments have demonstrated that
the proposed combined version solution, JDNDMSR

+

surpasses other joint solutions, both quantitatively and qual-
itatively. Besides, the performance of JDNDMSR

+ is im-
proved by training with mean absolute error cost function,

(a) Comparison of basic
modules.

(b) Long skip connection and
transfer learning influence.

Figure 4: Comparisons to show the effects of each
component in JDNDMSR

+.

instead of mean square error. The performance of this op-
timized model surpassed the state-of-the-art method TENet
over four benchmark datasets on both noisy and noise-free
data. In the future, we will explore more prior information
to further improve the performance of joint image demo-
saicing, denoising and super-resolution.
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