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 741 

Summary 742 

A major challenge of genome-wide association studies (GWAS) is to translate phenotypic 743 

associations into biological insights. Here, we integrate a large GWAS on blood lipids 744 

involving 1.6 million individuals from five ancestries with a wide array of functional 745 

genomic datasets to discover regulatory mechanisms underlying lipid associations. We first 746 

prioritize lipid-associated genes with expression quantitative trait locus (eQTL) 747 

colocalizations, and then add chromatin interaction data to narrow the search for functional 748 

genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell 749 

types confirms the central role of the liver in lipid levels, and highlights the selective 750 

enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and 751 

triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci 752 

identifies TFs relevant in lipid biology. In addition, we present an integrative framework to 753 

prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal 754 

genes and variants with multiple layers of functional evidence. We highlight two of the 755 

prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional 756 

datasets supporting their roles in lipid biology. 757 

 758 

  759 
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Introduction 760 

 761 

Most GWAS findings have not directly led to mechanistic interpretations, largely because 762 

approximately 90% of GWAS associations map to non-coding sequences 1,2. Mechanistic 763 

interpretations in GWAS have proven challenging because the strongest signals identified in 764 

GWAS typically contain many variants in strong linkage disequilibrium (LD) 3 and 765 

functional mechanisms including genes of action are often not clear from GWAS data alone 766 

4,5. 767 

 768 

Linking trait-associated variants to genome function has emerged as a promising model for 769 

mechanistic interpretation of non-coding findings in GWAS. This 'variant-to-function' model 770 

is premised on recent observations that non-coding variants often affect a trait of interest 771 

through the regulation of genes and processes in trait-relevant cell types or tissues 2,6. 772 

Implementing this functional model in GWAS has become more feasible as large-scale 773 

functional genomic resources, such as epigenomic 7 and transcriptomic 8 catalogues, have 774 

been systematically generated across a wide range of human cell types and tissues. The 775 

integration of functional genomics with GWAS has identified regulatory mechanisms in 776 

variants associated with some flagship disorders such as obesity 9 and schizophrenia 10, 777 

yielding important functional insights into the genetic architecture of human complex traits.  778 

 779 

The history of the human genetics of lipids mirrors the successes and challenges of GWAS. 780 

Increasing sample size and genetic diversity has significantly boosted the power of discovery: 781 

the first lipid GWAS in 2008 with 8,816 European-descent individuals identified 29 lipid-782 

associated loci11 ; the latest study of 1.6 million individuals across five ancestries 12 found 783 

941. Despite the dramatic increase in the number of associations, our biological 784 
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understanding of many of these genetic discoveries remains limited. The causal gene has 785 

been confidently assigned at only a small fraction of these loci 2, and the regulatory 786 

mechanism connecting variant to phenotype has been conclusively characterized only for a 787 

handful of genes 5. Furthermore, systematic mapping of lipid-associated variants to their 788 

biological functions has been missing in the literature at the time of this study. 789 

 790 

Here we conduct a genome-scale integrative analysis on the largest published GWAS to-date 791 

of five lipid phenotypes (LDL, or low density lipoprotein; HDL, or high density lipoprotein; 792 

TC, or total cholesterol; nonHDL, or non-high density lipoprotein; and TG, or triglycerides) 793 

involving 1.65 million individuals from five ancestries 12. Combining the lipid GWAS with a 794 

wide array of functional genomic resources in diverse human tissues and cell types, we 795 

identify regulatory mechanisms of noncoding genetic variation in lipids with a full suite of 796 

computational approaches. Further, we develop a generalizable framework to understand how 797 

tissue-specific gene regulation can explain GWAS findings, and demonstrate its real-world 798 

value on lipid-associated loci. 799 

 800 

Material and methods 801 

 802 

GWAS 803 

 804 

We used the recently-published GWAS data for five blood lipid traits (LDL, HDL, TC, TG, 805 

and nonHDL) in 1.65 million individuals from five ancestry groups 12 (African and African-806 

admixed, East Asian, European, Hispanic, South Asian) at 91 million variants imputed 807 

primarily from the Haplotype Reference Consortium 13 or 1000 Genomes Phase 3 14. GWAS 808 
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of individual cohorts were based on the hg19 version of the human reference genome. MR-809 

MEGA 15 was used for meta-analysis across cohorts. 810 

 811 

We defined 'sentinel variants' as the most significant variant at independent trait-associated 812 

loci in the genome. The windows are the greater of 500kb or 0.25cM around the sentinel 813 

variant; genetic distances were defined using reference maps from HapMap 3 16. We 814 

performed a second round of conditional analysis, conditioning on the sentinel variants to 815 

identify and remove any significant windows that are shadow signals of (or dependent on) a 816 

neighboring locus to enforce independence of associated loci. 817 

 818 

For each sentinel variant, we defined credible sets of potentially causal variants within +- 819 

500kb region around the sentinel variant representing the set of variants harboring the causal 820 

variant with a 95% posterior probability. Full details of the credible set construction are 821 

reported in our recent GWAS publication 12. The credible sets are freely available (Web 822 

resources). 823 

 824 

Colocalization of GWAS associations with eQTLs 825 

 826 

We performed statistical colocalization of lipid GWAS with eQTLs obtained from GTEx v8 827 

across 49 tissues 8. For each of the five lipid traits, we used the same sentinel variants defined 828 

in the previous section to represent approximately independent GWAS-associated windows 829 

(also removing shadow signals as described before). For each such window, we ran eQTL 830 

colocalization with GTEx v8 single-tissue cis-eQTL summary statistics 8. For each of 49 831 

GTEx tissues, we first identified all genes within 1Mb of the sentinel SNP, and then restricted 832 

analysis to those genes with significant eQTLs (i.e., 'eGenes' as defined by GTEx) in that 833 
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tissue (FDR < 0.05). We used the R package 'coloc' (R version 3.4.3, coloc version 3.2.1) 17 834 

with default parameters to run colocalization between the GWAS signal and the eQTL signal 835 

for each of these cis-eGenes, using as input those SNPs in the defined window (greater than 836 

500kb or 0.25cM on either side of the lead variant) that are present in both datasets. eQTL 837 

summary statistics were in GRCh38, so we lifted over the GWAS summary statistics from 838 

hg19 to GRCh38 using liftOver 18. As in previous studies 19, we used a colocalization 839 

posterior probability of (PP3+PP4) > 0.8 to identify loci with enough colocalization power, 840 

and PP4/PP3 > 0.9 to define those loci that show significant colocalization, where PP4 841 

represents posterior probability of a single shared signal, and PP3 represents posterior 842 

probability of two unique signals in the GWAS and eQTL datasets. 843 

 844 

Overlap with promoter Capture-C data 845 

 846 

We used four promoter-focused Capture-C (henceforth Capture-C) datasets from three human 847 

cell types (Web resources) to capture physical interactions between gene promoters and their 848 

regulatory elements. The four Capture-C datasets are (1) three biological replicates of HepG2 849 

liver carcinoma cells (HepG2.1) 20; (2) another HepG2 dataset described in Selvarajan et al 850 

(HepG2.2) 21; (3) hepatocyte-like cells (HLC) produced by differentiating three biological 851 

replicates of iPSCs (which in turn were generated from peripheral blood mononuclear cells 852 

using a previously published protocol 22); (4) an adipose dataset obtained from Pan et al 23 853 

that was produced using primary human white adipocytes. Across the four datasets, the 854 

number of significant interactions on the same chromosome ranges from 67,819 (adipose) to 855 

126,565 (HLC). The bait end has a median size of 2,141 (HepG2.1) to 6,567 (HepG2.2) 856 

bases. The interacting end has a median size of 2,100 (HepG2.1) to 3,243 base pairs 857 

(HepG2.2) for all datasets. The median distance between the bait and interacting ends for all 858 
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interactions on the same chromosome ranges from 71,722 (HLC) to 285,140 base pairs 859 

(adipose).  860 

 861 

The detailed protocol to prepare HepG2 or HLC cells for the Capture-C experiment is 862 

described in Chesi et al20. Briefly, for each dataset, 10 million cells were used for promoter 863 

Capture-C library generation. Custom capture baits were designed using an Agilent 864 

SureSelect library design targeting both ends of DpnII restriction fragments encompassing 865 

promoters (including alternative promoters) of all human coding genes, noncoding RNA, 866 

antisense RNA, snRNA, miRNA, snoRNA, and lincRNA transcripts, totalling 36,691 RNA 867 

baited fragments. Each library was then sequenced on an Illumina HiSeq 4000 (HepG2) or 868 

Illumina NovoSeq (HLC), generating 1.6 billion read pairs per sample (50 base pair read 869 

length.) We used HiCUP v0.7.2 24 to process the raw FASTQ files into loop calls and 870 

CHiCAGO v1.6.0 25 to define significant looping interactions; we defined a CHiCAGO score 871 

of 5 as significant, as specified in the default parameters. 872 

 873 

Starting with Capture-C maps processed as described above, we re-annotated the baits to 874 

gene IDs from Gencode v19 26 to ensure uniformity of gene annotations with the rest of our 875 

pipeline. For each bait, we identified any gene whose transcription start site (TSS) from any 876 

transcript in Gencode v19 was within 175 base pair distance from the bait (to account for 877 

differing bait designs for external datasets which may not directly overlap the canonical 878 

TSS). We filtered all datasets to only include interactions in which the interacting end was 879 

not another bait. Enrichment with colocalized genes was robust to our choice of distance 880 

between bait and gene (enrichment with eQTL colocalized genes ranging from 2.94-2.96 for 881 

bait distances from 0-350 base pairs). 882 

 883 
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To identify genetic variants associated with any of the five lipid traits that physically interact 884 

with locations in the genome, we used the R package ‛Genomic Ranges’ version 1.30.3 27 to 885 

find overlap between credible sets for each trait’s GWAS and the previously annotated 886 

promoter Capture-C data. Given the bait end of a gene, we defined a GWAS locus as 887 

interacting with this gene if a variant in the credible set for this GWAS locus fell inside the 888 

interacting end. 889 

 890 

Presence of gene-variant pairs in same topologically associated domains 891 

 892 

To assess the frequency of colocalized gene-sentinel variant pairs in the same topologically 893 

associated domain (TAD), we used a list of 2,499 publicly-available TADs from human liver 894 

28 (Web resources). We computed as a fraction the number of colocalizations with the 895 

sentinel variant and colocalized gene in the same TAD divided by all colocalizations in which 896 

the sentinel variant lies in a TAD. To test if this fraction was statistically significant, we 897 

generated random TAD boundaries using ‘bedtools shuffle’ 1000 times and calculated the 898 

same fraction for these randomly-generated TAD boundaries. 899 

 900 

Pathway enrichment 901 

 902 

We used ClusterProfiler v3.6.0 29 to look for pathways over-represented in each gene list:  903 

genes with eQTL colocalization and genes interacting with variants in GWAS credible sets. 904 

We used the enrichKEGG function to look for enriched pathways in the latest version of the 905 

KEGG database 30. We first re-mapped gencode IDs to gene symbols using the Gencode v24 906 

annotation and then used the biomaRt R package v2.34.2 31 to convert gene symbols to 907 



38 

Entrez IDs. We ran enrichKEGG to identify enriched pathways that were significant at a 908 

Benjamini-Hochberg threshold of 0.05. 909 

 910 

Enrichment in known lipid-associated genes 911 

 912 

We calculated enrichment odds ratio of genes identified in our analysis with four known sets 913 

of lipid-associated genes using the Fisher’s exact test (R function ‘fisher.test’). First, we 914 

identified 33 Mendelian genes from ClinVar 32 with lipidemia-associated ICD10 codes (E78). 915 

Second, we used 35 genes with rare-coding variants associated with lipid levels 33. Third, we 916 

extracted 1,115 genes associated with ‘cholesterol’ or ‘lipidemia’ phenotypes in mouse 917 

knockouts from the Mouse Genome Informatics database 34. Fourth, we identified 4,008 918 

genes from a transcriptome-wide association study (TWAS) on the same GWAS and GTEx 919 

v8 summary statistics using the S-PrediXcan software 35 default setup. The TWAS method 920 

accounts for allelic heterogeneity and thus complements the eQTL colocalization approach 921 

that assumes one causal variant per locus.  922 

 923 

TF binding sites 924 

 925 

We extracted TF binding sites from ChIP-seq data of 161 TFs in 91 cell types from the 926 

ENCODE project 7 (Web resources). We included all cell types in our primary analysis 927 

because TFs were not comprehensively assayed in most cell lines. We also performed a 928 

secondary analysis using TF binding sites from HepG2 only. All TF binding sites were 929 

aligned to the hg19 version of human reference genome 930 

(https://www.encodeproject.org/chip-seq/transcription_factor/). 931 

 932 
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Stratified LD score (S-LDSC) regression analysis 933 

 934 

We used LDSC version 1.0.1 36 to estimate the enrichment of heritability explained using 935 

GWAS summary statistics in different epigenetic and transcriptomic annotations, including 936 

gene expression, chromatin marks, and TF binding sites. The gene expression and chromatin 937 

mark annotations across 205 datasets from more than 170 tissues and cell types and the 938 

corresponding LD scores were provided as 'Multitissuegeneexpr1000Gv3' and 939 

'Multitissuechromatin1000Gv3' databases in LDSC software (Web resources).  The LD 940 

scores for binding sites of each TF were estimated from 1000 Genomes Phase 3 European 941 

samples using ‘ldsc.py --l2’. We first converted the summary statistics for each phenotype to 942 

LDSC-formatted summary statistics using 'munge_sumstats.py'. Second, we ran 'ldsc.py' 943 

using the baseline_v1.2 baseline model on each annotation to estimate enrichment of 944 

heritability. For primary analyses, we used multi-ancestry GWAS summary statistics and LD 945 

scores estimated from 1000 Genomes Phase 3 European samples. For secondary analyses on 946 

East Asian (EAS) GWAS alone, we obtained EAS-specific LD scores for the same functional 947 

annotations 37. 948 

 949 

Genomic regulatory elements and GWAS overlap algorithm (GREGOR) analysis 950 

 951 

We used GREGOR 38 to estimate enrichment of sentinel variants for each lipid phenotype in 952 

TF binding sites for 161 TFs from ENCODE compared to a null distribution of variants 953 

matched for allele frequency. We ran GREGOR with default parameters, specifying 0.8 as 954 

the R2 threshold, window size of 1Mb, and ‘EUR’ as the population. Annotations with 955 

enrichment > 2 and FDR-adjusted P-value < 0.05 were considered significant. 956 

 957 
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Enrichment in single-cell expression data 958 

 959 

We overlapped our list of colocalized genes with publicly available single-cell RNA-960 

sequencing data of 8,444 cells from liver 39 and 38,408 cells from adipose (Web resources) in 961 

humans. For both datasets, we downloaded normalized TPM data and existing tSNE cluster 962 

annotations for each cell. For each cluster, we defined median expression for each gene 963 

across all cells in that cluster. Then for each cluster, we quantified the overrepresentation of 964 

our gene list in ranked genes for this cluster via an enrichment P-value computed by the 965 

‘fgsea’ 40 R package v1.4.1implemented in R 3.4.3. 966 

 967 

Results 968 

 969 

We systematically integrated lipid GWAS results 12 with multiple layers of functional 970 

genomic data from diverse tissues and cell types to understand regulatory mechanisms at 971 

lipid-associated loci (Figure 1). Specifically, we overlaid GWAS loci with eQTL and 972 

chromatin-chromatin interactions to identify causal genes. We assessed polygenic 973 

enrichments of tissue-specific histone marks to prioritize relevant tissues and examined 974 

GWAS loci at transcription factor (TF) binding sites to detect lipid-relevant TFs. Finally, we 975 

combined all these layers to prioritize functional variants at GWAS loci, providing a holistic 976 

view of gene regulation at lipid loci in relevant tissue and cell types. 977 

 978 

Colocalization with eQTLs identifies candidate lipid-relevant genes 979 

 980 

First, we identified shared association signals between lipid levels and expression of nearby 981 

genes, since most GWAS signals are presumed to influence complex traits through impact on 982 
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gene expression 41. To do so, we tested for colocalization of each significant lipid GWAS 983 

signal with significant cis-eQTL data across 49 human tissues from the GTEx consortium 8. 984 

The significant GWAS signals were 1,750 loci reaching genome-wide significance and 985 

corrected for shadow signals  in our multi-ancestry meta-analysis for at least one of five lipid 986 

traits. Credible set sizes ranged from 1 to 417 variants at the 1,750 examined loci, with a 987 

median size of 5 variants per credible set. 988 

 989 

Second, we restricted our analysis to loci most likely mediated through regulatory 990 

mechanisms as opposed to coding variation. Specifically, we excluded all loci with credible 991 

sets containing at least one missense variant (369 of 1,750 loci, 21% of credible sets). Of the 992 

remaining 1,381 GWAS loci, 696 significantly colocalized with eQTLs (the ratio of posterior 993 

probability of a shared signal to the posterior probability of two signals being > 0.9 19) in at 994 

least one of 49 tissues for at least one lipid phenotype. This resulted in 1,076 colocalized 995 

eGenes ranging from 1 to 16 genes per locus (Figure 2A, Table S1). Since with eQTL data 996 

alone it is difficult to disentangle a single functional gene from multiple functional (and likely 997 

coregulated) genes at a locus 42 we performed all downstream analyses with all 1,076 998 

colocalized genes, to further prioritize functional genes at loci with multiple eGenes. 999 

 1000 

Since lipid-associated genetic variants are often enriched in the liver and adipose 43,44, we 1001 

repeated the colocalization analysis on eQTLs only from liver or adipose. Compared to the 1002 

1,076 colocalized eGenes identified from all 49 tissues, the liver- and adipose-only analysis 1003 

identified 119 and 225 respectively (Figure 2A). The reduced discovery of colocalized 1004 

eGenes in the liver- and adipose-only analysis is likely due to the small sample sizes of liver 1005 

(N=208) and adipose (N=581) in GTEx v8 (Figure S1). Leveraging the large degree of tissue 1006 

sharing in eQTLs 19,45, our cross-tissue colocalization analysis enhanced the discovery power 1007 
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through the collectively large sample size across all 49 tissues (N=15,201). For example, 1008 

several well-documented lipid-relevant genes such as PPARA 46 and LPL 47 were not 1009 

identified in the liver- or adipose-only analysis but were identified as significant in our cross-1010 

tissue analysis.   1011 

 1012 

To acquire additional functional insights into the 1,076 colocalized genes, we assessed their 1013 

enrichments across existing biological and clinical gene sets (Figure 2B, Table S2, Table S3). 1014 

Colocalized genes showed enrichments in (a) 20 KEGG pathways 30 at FDR 5%, including 1015 

known lipid-related processes such as cholesterol metabolism, PPAR signaling, and bile 1016 

secretion; (b) 33 Mendelian genes from ClinVar 32 associated with lipid-related ICD10 codes  1017 

(11.61-fold enrichment, P=2.08e-06, including APOB, LPL, and APOE), suggesting the 1018 

shared genetic basis of Mendelian and complex lipid phenotypes 48; (c) 35 genes with rare-1019 

variant burden for lipid phenotypes in a recent multi-ancestry analysis 33 (30.82-fold 1020 

enrichment, P=1.77e-16, including APOB, LPL, LIPG and ANGPTL4), confirming shared 1021 

mechanisms of rare and common variation underlying lipid traits 48,49 ; (d) genes implicated 1022 

by cholesterol or lipidemia phenotypes in mouse knockouts (3.92-fold enrichment, P=2.18e-1023 

20), suggesting the shared genetic basis of lipid traits between human and mouse 50. 1024 

Colocalized genes also showed enrichment with genes implicated in TWAS (Table S4) run 1025 

on the same GWAS and eQTL summary statistics (20.14-fold enrichment, P<2.22e-308). 1026 

These enrichment results demonstrate the biological relevance of candidate functional genes 1027 

prioritized by our approach. 1028 

 1029 

Chromatin-chromatin interactions shortlist eQTL-based colocalization 1030 

 1031 
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Our eQTL-based colocalization analysis uses a linear sequence of DNA, and ignores physical 1032 

interaction between non-adjacent DNA segments, another regulatory layer underlying 1033 

complex human traits 51. To add this layer to our analysis, we generated Capture-C data from 1034 

HepG2 liver carcinoma cells (HepG2.1) and hepatocyte-like cells (HLC) derived from 1035 

differentiating iPSCs22, as well as publicly-available Capture-C datasets from HepG2 21 1036 

(HepG2.2) and white adipocytes 23. Based on the Capture-C data, we defined an interaction 1037 

between a GWAS locus and a gene as a significant interaction between the bait end 1038 

(promoter) for this gene and the interacting end that contains a variant in the credible set for 1039 

this GWAS locus. In total, 1,079 of 1,750 GWAS loci had at least one variant in the credible 1040 

set with a physical interaction with a gene promoter and 3,543 of 26,621 genes with 1041 

promoter-interactions had promoters physically interacting with at least one GWAS credible 1042 

set variant (Figure 2A,Table S5). 1043 

 1044 

Unlike eQTL-colocalized genes, genes interacting with GWAS credible sets were not 1045 

significantly enriched in lipid-relevant KEGG pathways (Table S2) and lipid-related genes 1046 

from ClinVar (Figure 2B, Table S3).These genes were significantly enriched in genes with 1047 

rare-variant lipid associations (5.36-fold enrichment, P=2.8e-05), genes with lipid-related 1048 

mouse knockouts (1.43-fold enrichment, P=2.8e-04),and TWAS-prioritized genes (5.05-fold 1049 

enrichment, P=2.5e-288), but their enrichments were consistently lower than enrichments of 1050 

eQTL-colocalized genes nonetheless (Figure 2B, Table S3).  1051 

 1052 

Since genes expressed in the liver are most likely to harbour genuine lipid-relevant variant-1053 

gene interactions, we repeated the enrichment analyses above restricting both eQTL 1054 

colocalization and Capture-C interactions to genes expressed in the liver (>0.1 TPM and ≥6 1055 

reads in at least 20% of GTEx liver samples). Reassuringly, we observed higher enrichments 1056 
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for each combination of two methods (eQTL, Capture-C) and four databases (ClinVar, Rare 1057 

Variant, Mouse Knockout, TWAS), when we restricted our analyses to genes expressed in the 1058 

liver (Figure 2B, Table S3). For the same database, we observed higher enrichments in eQTL 1059 

colocalized genes than Capture-C prioritized genes, consistent with the results based on all 1060 

genes. 1061 

 1062 

Genes physically interacting with GWAS loci significantly overlapped with eQTL 1063 

colocalized genes despite their reduced enrichments in lipid-related gene sets. Of 1,079 1064 

credible sets with promoter interactions, 224 also colocalized with eQTLs for the same gene. 1065 

Across 49 eQTL tissues and four Capture-C cell lines, 233 genes were implicated in both 1066 

eQTL colocalizations and Capture-C interactions (, Table S6), representing an enrichment of 1067 

3-fold compared to random chance (Figure 2C, P =3.11e-38). Because our Capture-C data 1068 

came from liver and adipose only, we observed a stronger enrichment in overlap when 1069 

restricting genes expressed in the liver or adipose (4.5-fold enrichment, P=2.89e-65). We 1070 

observed similar enrichment patterns when analysing liver and adipose Capture-C data 1071 

separately (Figure 2C). Together, the enrichments in overlap suggest that, despite a large 1072 

number of genes identified by Capture-C (Figure 2A), many of them are likely to harbour 1073 

functional interactions with GWAS loci. 1074 

 1075 

Chromatin-chromatin interactions helped shortlist functional genes from eQTL 1076 

colocalization. Among 224 loci with concordant eQTL colocalizations and Capture-C 1077 

interactions across all tissues, only 39% (88) mapped to a single gene using eQTL data alone, 1078 

whereas adding Capture-C information increased this fraction to 80% (180). We observed the 1079 

same trend in the adipose-only and liver-only analysis: 80% (12/15) and 79% (26/33) of loci 1080 

mapped to a single gene using adipose and liver eQTLs alone, compared to 93% (14/15) and 1081 
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97% (32/33) after the integration of adipose-only and liver-only Capture-C data respectively 1082 

(Figure 2D). These results showcase the potential value of combining eQTLs with physical 1083 

chromatin interactions to prioritize functional genes at GWAS loci. 1084 

 1085 

Since eQTLs are likely to reside in the same topologically associated domain (TAD) as the 1086 

genes they regulate 52, we examined TADs from an independent human liver dataset 28 at 1087 

lipid GWAS loci with eQTL colocalizations to confirm GWAS variant-target gene 1088 

colocalization within the same TAD. Of  eQTL-GWAS colocalizations in which the sentinel 1089 

variant resided within a TAD, 84.8% (1,040 out of 1,235) had the colocalized gene residing 1090 

in the same TAD (P < 0.001 with 1000 permutations). When we restricted to all 1091 

colocalizations concordant with Capture-C data in any cell type, 96.9% (252 out of 260) of 1092 

gene-variant pairs fell in the same TAD. This fraction further increased to 100% (33 out of 1093 

33) when we repeated the analysis using liver eQTLs and liver Capture-C interactions only. 1094 

These results add to the existing evidence for TAD boundaries being regulatory insulators in 1095 

the cell 53 and confirm our integration of chromatin interactions with eQTL colocalizations as 1096 

an effective strategy to hone in on functional genes. 1097 

 1098 

Tissue-specific enrichment of GWAS signals differentiates lipid traits 1099 

 1100 

Regulatory variants often affect complex traits in a tissue-specific manner 6, as shown in our 1101 

eQTL colocalization analysis. Specifically, by computing the ratio of the number of 1102 

colocalizations in a tissue to eQTL sample size in that tissue, we found that the liver was 1103 

universally enriched for colocalized eGenes with respect to sample size across all lipid traits 1104 

whereas adipose was selectively enriched in HDL and TG only (Figure S1). Motivated by 1105 
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these findings, we leveraged systematic approaches and additional data to identify relevant 1106 

tissues and cell types for each lipid trait.  1107 

 1108 

We implemented stratified LD score regression (S-LDSC) 36, a polygenic approach not 1109 

restricted to genome-wide significant variants, on tissue-specific transcriptomic and 1110 

epigenomic annotations across 205 datasets from more than 170 tissues and cell types, to 1111 

identify relevant tissues for each lipid trait. Consistent with previous studies43,44 and our 1112 

eQTL-based analysis, liver-related tissues (Table S7, Table S8) showed strong enrichments 1113 

across all lipid traits (S-LDSC enrichment p-values ranging from .001 in TG to .0001 in TC), 1114 

for both expression (Figure 3A) and chromatin annotations (Figure 3B). This result was 1115 

confirmed by analysis using two other approaches: DEPICT 54 (Figure S2, Table S9) and 1116 

RSS-NET 55 (Table S10). To assess the robustness of our S-LDSC results based on multi-1117 

ancestry GWAS, we applied S-LDSC to population-specific GWAS in European and East 1118 

Asian ancestry participants together with population-specific LD scores and obtained similar 1119 

results (Table S11, Figure S3, Figure S4).  1120 

 1121 

The S-LDSC results also highlighted tissues selectively enriched in certain lipid traits as 1122 

shown in the eQTL-based analysis. The most enriched category for HDL using chromatin 1123 

annotation is ‘Adipose H3K4me3’ (P=7.6e-04); for TG, enrichment in liver-related tissues 1124 

(P=1.2e-03) is similar to enrichment in adipose (P=2.7e-03). For LDL, TC, and non-HDL, 1125 

enrichment P-values for the liver were much more significant than for all other tissues 1126 

including adipose (Figure 3B). We observed the same pattern in S-LDSC results based on 1127 

gene expression (Figure 3A). This finding is consistent with the known influence of adipose 1128 

on plasma HDL levels 56, and the role of adipose as TG deposits 57. These results were 1129 

corroborated by eQTL colocalizations stratified by phenotype (Figure S1) and DEPICT 1130 
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analysis on gene expression 54 (Figure S2, Table S9).  Together, these results confirm the 1131 

liver as a tissue of action for all five lipid traits, and highlight the additional role of adipose 1132 

primarily in HDL and TG.  1133 

 1134 

Given the importance of the liver and adipose in modulating lipid levels, we further identified 1135 

the relevant cell types within these tissues. Using existing single-cell data from adipose and 1136 

liver 39, we performed gene-set enrichment analysis 58 to identify cell-type clusters enriched 1137 

for genes with eQTL colocalizations for any lipid trait. Out of 11 identified cell types in 20 1138 

clusters in the liver, only hepatocytes were enriched at FDR-adjusted P < 0.05 (Figure S5, 1139 

Table S12), consistent with previous results21. In adipose, only adipocyte clusters and 1140 

macrophage-monocyte clusters showed suggestive enrichment (nominal P < 0.05) in 1141 

colocalized genes (Figure S6, Table S12). Of note, the enrichment in adipocytes was 1142 

significant when we restricted this analysis to genes that were colocalized with HDL and TG 1143 

(FDR-corrected P < 0.05), consistent with the selective enrichments of adipose in HDL and 1144 

TG (but not the other lipid traits) from our S-LDSC analysis. Evaluations at cellular 1145 

resolution are required to understand the cell-type specific mechanisms underlying lipid 1146 

GWAS loci, but our results could form a useful basis for future studies. 1147 

 1148 

Overlapping GWAS signals with binding sites highlights lipid-relevant TFs 1149 

 1150 

TFs have been implicated as a key mediator of linking genetic variation to complex traits 59. 1151 

To understand lipid GWAS in the context of TF activity, we assessed enrichment of genome-1152 

wide significant variants at TF binding sites using GREGOR 38 and performed polygenic 1153 

enrichment analysis of TF binding sites using S-LDSC. Because TFs were not 1154 
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comprehensively assayed in most cell lines (Figure S7), we used all cell types in our primary 1155 

analysis presented below.  1156 

 1157 

Using ChIP-Seq data from 161 TFs across 91 cell types from the ENCODE project 7, 70.7% 1158 

of lipid credible sets overlapped with at least one TF binding site. Using GREGOR 38, we 1159 

identified 137 TFs whose binding sites were significantly enriched in GWAS lead SNPs for 1160 

at least one lipid phenotype (enrichment > 2; FDR adjusted P-value < 0.05; Figure 4A, Table 1161 

S13). We obtained similar results when repeating the GREGOR analysis on TF binding sites 1162 

derived from HepG2 only (Table S14). To assess the impact of GWAS power on TF 1163 

enrichments, we repeated the GREGOR analysis on the same TF binding sites using a 1164 

previous version of lipid GWAS 11, and we identified 54 enriched TFs (Table S15). Between 1165 

the two versions of lipid GWAS, the total sample size and number of GWAS loci increased 1166 

8.7-fold (from 188,577 to 1,650,000) and 11-fold (from 156 to 1750) respectively, but the 1167 

number of enriched TFs only increased 2.5-fold (from 54 to 137), suggesting that the large 1168 

number of enriched TFs is unlikely driven by the GWAS power alone. 1169 

 1170 

Among these 137 enriched TFs, 69 of them (50%) showed significant enrichments across all 1171 

five lipid phenotypes, suggesting a potential core regulatory circuit shared by all lipid traits 1172 

(Figure 4A, Table S13). The TF with the strongest enrichment in all phenotypes was ESRRA 1173 

(estrogen-related receptor alpha), a nuclear receptor active in metabolic tissues 60; ESRRA 1174 

has been implicated in adipogenesis and lipid metabolism, and ESRRA-null mice display an 1175 

increase in fat mass and obesity 60. 1176 

 1177 

The GREGOR analysis also highlighted 68 TFs significantly enriched in specific subsets of 1178 

(but not all five) lipid phenotypes (Figure 4A, Table S13). For example, we found 4 TFs 1179 
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(FOXM1, PBX3, ZKSCAN1, ZEB1) enriched in HDL and TG only, 4 TFs (EZH2, NFE2, 1180 

NFATC1, KDM5A) enriched in HDL only and 11 TFs (FOSL1, IRF3, JUN, MEF2C, 1181 

NANOG, PRDM1, RUNX3, SIRT6, SMC3, STAT3, ZNF217) enriched in TG only. Of these 1182 

TFs, the central role of ZEB1 in adiposity 61 and fat cell differentiation has been 1183 

demonstrated 62. These TF-centric findings corroborate the selective enrichments of adipose 1184 

in HDL and TG (but not the other lipid traits) identified in our previous tissue prioritization 1185 

analyses.  1186 

 1187 

We also performed polygenic enrichment analysis of TF binding sites using S-LDSC (Figure 1188 

4B, Table S16), which differed from GREGOR analysis by looking at not only the genome-1189 

wide significant associations but also the polygenic signal without GWAS P-value cutoff. On 1190 

the same 161 ENCODE TFs, this polygenic analysis identified 25 TFs whose binding sites 1191 

were significantly enriched in heritability explained (nominal P < 0.05) for at least one lipid 1192 

phenotype; reassuringly, 24 of 25 TFs were also significant in the GREGOR analysis. As a 1193 

sensitivity check, we repeated the analysis on TF binding sites derived from HepG2 only, and 1194 

we obtained similar results (Table S17). 1195 

 1196 

Among 24 enriched TFs identified by both GREGOR and S-LDSC identified by both 1197 

GREGOR and S-LDSC, eight  were significantly enriched in all five lipid traits (CEBPB, 1198 

CEBPD, FOXA2, HDAC2, HNF4G, NFYA, RXRA, SP1). RXRA (retinoid X receptor 1199 

alpha) is encoded by a colocalized gene (RXRA) near a GWAS hit (chr9:137,268,682). 1200 

RXRA is a ligand-activated transcription factor that forms heterodimers with other receptors 1201 

(including PPARG) and is involved in lipid metabolism 63. Moreover, 145 lipid GWAS loci 1202 

overlap RXRA binding peaks, and RXRA binds to the promoters of 26 colocalized genes (18 1203 

of which are protein-coding) (Figure 4C, Table S18), suggesting that the GWAS variants 1204 
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might affect lipids (partially) through affecting the binding activity of RXRA. While RXRA 1205 

has been previously implicated as a GWAS locus 64, our study demonstrates its role in lipid 1206 

biology through its regulatory influence on other lipid-associated genes.  1207 

 1208 

Multi-layer functional integration reveals regulatory mechanisms at GWAS loci  1209 

 1210 

Motivated by our finding that integrating chromatin interaction shortlisted eQTL 1211 

colocalizations, we further brought together multiple lines of functional evidence at each 1212 

GWAS locus for mechanistic inference. We started with the list of genes with evidence for 1213 

both eQTL colocalization and Capture-C interactions in the liver or adipose. We next 1214 

annotated each variant in the 95% credible set with various indicators of regulatory function, 1215 

including its open chromatin status in liver 20 or adipose-related cell types 65, its proximity to 1216 

a promoter or an enhancer 66, and its RegulomeDB regulation probability 67; see Table S19 1217 

for the complete list of annotations used. To account for complexities of regulatory 1218 

mechanisms and limitations of functional datasets, we combined evidence across these 1219 

datasets to prioritize variants at GWAS loci (Figure 5A). Specifically, we prioritized variants 1220 

with at least three independent lines of functional evidence (chromatin openness, physically 1221 

interaction with target genes, and promoter/enhancer status) in the liver or adipose, with at 1222 

least two being in the same tissue with colocalization with the target gene, and with a 1223 

RegulomeDB score > 0.5. Applying this simple procedure to lipid GWAS we prioritized 28 1224 

candidate loci with the strongest multi-layer evidence, 13 of which point to a single 1225 

functional variant (Table 1). We have also made the full results of variant prioritization freely 1226 

available (Web resources). Below we describe two examples to highlight key features of this 1227 

multi-layer integration framework. 1228 

 1229 
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RRBP1 (ribosomal binding protein 1) could be identified from eQTL colocalization alone, 1230 

but our multi-layer integration approach strengthened the conclusion via convergent evidence 1231 

from various sources (Figure 5B). The RRBP1 eQTL signals in the liver colocalize with LDL, 1232 

TC, and nonHDL GWAS signals. The credible set at this locus contains a single lead variant 1233 

(chr20:17,844,684). The 'T' allele of this lead variant decreases RRBP1 expression levels and 1234 

increases LDL, TC, and nonHDL levels. This lead variant is in open chromatin in HLC and 1235 

adipose, and physically interacts with the RRBP1 promoter (250kb away) in adipose. All 1236 

these data consistently point to RRBP1 as the functional gene underlying this locus. RRBP1 1237 

specifically tethers the endoplasmic reticulum to the mitochondria in the liver (an interaction 1238 

that is enriched in hepatocytes) and regulates very low density lipoprotein levels 68. Rare 1239 

variants in RRBP1 are associated with LDL in humans 69 and silencing RRBP1 in liver affects 1240 

lipid homeostasis in mice 68.  1241 

 1242 

CREBRF (CREB3 regulatory factor) further demonstrates the power of our multi-layer 1243 

integration framework in prioritizing functional variants (Figure 5C). The eQTL signals of 1244 

CREBRF colocalized with a GWAS locus for HDL with 30 candidate variants. In contrast, 1245 

our multi-layer approach identified a single candidate variant (chr5:172,566,698) at this locus 1246 

that physically interacts with the CREBRF promoter in adipose and is predicted to be a 1247 

regulatory element (RegulomeDB score=0.91). Consistent with the index variant 1248 

(chr5:172,591,337), the allele 'A' at this functional variant increased HDL levels and 1249 

increased CREBRF expression in adipose. Missense variants in CREBRF have been linked to 1250 

body mass index, and the gene has been linked to obesity risk in Samoans  70. 1251 

 1252 

Finally, to compare the power of functional fine-mapping with multi-ancestry fine-mapping, 1253 

we applied our prioritization rule to credible sets derived from European-only meta-analysis. 1254 
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The 111 variants prioritized by our rule described above (including multiple variants in the 1255 

same credible set) were all found in the multi-ancestry credible sets, representing a 3.7-fold 1256 

enrichment (P < 1e-04 based on 10000 permutations randomly sampling variants from the 1257 

European-only credible sets). This convergence of complementary approaches to the same 1258 

smaller set of fine-mapped variants highlights the power of multi-ancestry datasets as an 1259 

approach to narrow in on functional variants. 1260 

 1261 

Discussion 1262 

 1263 

Here we integrate the largest multi-ancestry lipid GWAS to date with a wide array of 1264 

functional genomic resources to understand how noncoding genetic variation affects lipids 1265 

through gene regulation. Specifically, we identify 1,076 genes whose eQTL signals 1266 

colocalize with lipid GWAS signals and demonstrate how physical chromatin interaction can 1267 

improve standard eQTL-based colocalization. We assess tissue-specific enrichments of lipid 1268 

GWAS signals and demonstrate the selective importance of adipose in HDL and triglyceride 1269 

biology. We examine binding site enrichments of 161 TFs in lipid GWAS and expand our 1270 

understanding of lipid GWAS loci (e.g., RXRA) in the context of TF activity. Finally, we 1271 

build a simple and interpretable prioritization framework that automatically combines 1272 

multiple lines of evidence from orthogonal datasets, pinpointing a single functional variant at 1273 

each of 13 lipid-associated loci (e.g., RRBP1 and CREBRF). While there are studies that 1274 

interpret lipid GWAS associations 21,71,72, the size of our multi-ancestry GWAS and multi-1275 

layer functional integration represent a comprehensive effort and an important step forward in 1276 

this direction.  1277 

 1278 
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Our multi-layer analysis has two key strengths. First, despite a large array of functional 1279 

genomic resources being embedded, our analysis produces results with high consistency. For 1280 

example, the selective enrichment of adipose in HDL and TG identified by S-LDSC is 1281 

confirmed by our eQTL-based colocalization and TF binding site overlap. Another example 1282 

of consistency is the multi-layer prioritization of RRBP1, which can be identified from eQTL-1283 

based colocalization alone and it is further validated by chromatin accessibility and 1284 

interaction. Such convergent evidence from various sources improves the confidence of our 1285 

findings. Second, our analysis highlights that combining multiple layers of regulatory 1286 

information can improve sensitivity to prioritize functional genes and variants. For example, 1287 

we refined eQTL colocalized genes (1,076) to a smaller set of functional genes (233) through 1288 

integration with promoter Capture-C data. Another example of sensitivity is CREBRF, where 1289 

eQTL-based colocalization implicates 30 candidate variants and adding other regulatory 1290 

layers points to a single functional variant. Moving forward, we expect these two features 1291 

will serve as useful guidelines for future integrative genomic analyses of other traits.  1292 

 1293 

Our results rely on the breadth and accuracy of functional genomic datasets used in our 1294 

analyses. First, unlike our lipid GWAS, current functional datasets 73 are limited both in 1295 

sample size and ancestral diversity, which can affect discovery and replication of regulatory 1296 

mechanisms in diverse populations. Second, some functional datasets are generated at limited 1297 

resolution. For example, our colocalizations are based on eQTLs from bulk tissue RNA-seq 1298 

8,74, which may miss detailed cell types and biological processes in which lipid-associated 1299 

SNPs regulate gene expression. Third, some functional datasets are not available across the 1300 

full spectrum of human tissues and cell types. One example is that our chromatin-chromatin 1301 

interaction analysis only examines a few cell types in two known lipid-related tissues, 1302 

producing results that may be biased towards known lipid biology. Another example is that 1303 
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ENCODE TF ChIP-Seq data are not available in adipose-related cell lines. Fourth, our results 1304 

are validated computationally but not experimentally. That said, our results provide a high-1305 

confidence list of regulatory mechanisms at lipid GWAS loci, forming a useful basis for 1306 

future experiments. As more comprehensive and accurate functional genomic resources are 1307 

becoming publicly available in diverse cellular contexts and ancestry groups, the resolution 1308 

and power of integrative analyses like ours will be markedly increased.  1309 

 1310 

Other limitations of this study stem from computational methods embedded in our 1311 

framework. First, the colocalization approach ‘coloc’ assumes one causal variant per locus, 1312 

whereas recent studies suggest extensive allelic heterogeneity 75 consistent with a model of a 1313 

milieu of related transcription factors binding within a single locus. Accounting for allelic 1314 

heterogeneity in summary statistics-based colocalization typically requires modelling 1315 

multiple correlated SNPs through LD matrix 76, which is computationally intensive in large-1316 

scale analyses derived from many cohorts with diverse ancestries, like the multi-ancestry 1317 

GWAS examined here. Second, due to restricted access to individual genotypes of 201 1318 

cohorts, we cannot produce multi-ancestry LD scores within GLGC but have to use 1319 

European-based LD scores in all S-LDSC analyses. This approach, though less rigorous in 1320 

principle, provides robust results in practice (as confirmed by our ancestry-specific analysis), 1321 

largely because 79% of cohorts in GLGC are of European descent 12. That said, we caution 1322 

that the same approach might fall short in ancestrally diverse studies with few European 1323 

individuals 77. Third, our multi-layer variant prioritization framework is built on a series of 1324 

simple rules that are easy to implement on large datasets. This approach could possibly be 1325 

formalized as statistical models (e.g., priors in Bayesian methods 55), but our approach 1326 

simplifies computation and allows for scalability of the underlying framework. Despite the 1327 



55 

technical limitations, our approach here can serve as a useful benchmark for future 1328 

development of methods with improved statistical rigor and computation efficiency. 1329 

In summary, mapping noncoding genetic variation of complex traits to biological functions 1330 

can benefit greatly from thorough integration of multiple layers of functional genomics, as 1331 

demonstrated in the present study. Although tested on lipids only, our integrative framework 1332 

is straightforward to implement more broadly on many other phenotypes, yielding functional 1333 

insights of heritable traits and diseases in humans.  1334 
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Figure titles and legends 

 

Figure 1. Schematic overview of the multi-layer functional genomic analysis. We integrate 

GWAS summary statistics for five lipid phenotypes with eQTL and chromatin interaction 

data to identify potential genes mediating the GWAS loci, and use epigenomic annotations to 

identify regulatory mechanisms at these loci. For a GWAS locus indexed by a lead variant 
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‘X’, A, B, and C represent nearby eGenes across tissues, and SNPs around SNP X represent 

variants in the credible set for this locus. 

 

Figure 2. Overlap between eQTL colocalized genes and Capture-C prioritized genes, and 

their enrichments in known lipid-associated genes. A. Numbers of genes identified by two 

approaches: eQTL colocalization and promoter Capture-C interaction. Capture-C interactions 

restricted to genes expressed in the tissue of interest (or in the union of adipose and liver for 

‘All Tissues) are shaded. B. Overlap between two list of prioritized genes (left: Capture-C 

prioritized genes; right: eQTL colocalized genes) with four external sets of genes previously 

associated with lipid biology (MGI knockout genes, ClinVar lipidemia-associated genes, 

genes implicated in rare burden of lipids, and genes from a lipid TWAS). Dashed lines 

represent enrichments using only genes expressed in the liver. C. Enrichment in overlap 

between eQTL colocalized genes and Capture-C prioritized genes against what is expected by 

chance, assuming both gene sets are independent. Dashed lines represent genes expressed in 

the tissue of interest (or in the union of adipose or liver for ‘All” ). Enrichment estimates and 

confidence intervals shown in Panels B and C are based on the Fisher’s exact test. D. Fraction 

of colocalized loci that point to a single candidate gene when using eQTL data alone or using 

both eQTL and Capture-C data. 

 

Figure 3. Tissue relevance of lipid-associated loci. Partitioning heritability of summary 

statistics on gene expression (A) and active chromatin marks (B) across tissues. Each plotted 

point represents a tested dataset for enrichment of heritability, with larger dots representing 

datasets with P-value < 0.05. Each color represents a tissue group (Table S6), and the y-axis 

represents -log10 P-value of enrichment of heritability.  
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Figure 4. TF enrichment identified by GREGOR and S-LDSC. A. Number of TFs enriched 

in the GREGOR analysis on GWAS loci for each of the five lipid traits. B. Number of TFs 

enriched in S-LDSC analysis on each of the five lipid traits. C. TF RXRA binds to the 

promoters of 26 colocalized genes (18 protein-coding); colors represent the subset of lipid 

phenotypes with colocalization. Larger node sizes represent smaller GWAS P-value of 

colocalized loci. 

 

Figure 5. Multi-layer functional integration to prioritize variants at GWAS loci. A. Variant 

annotation and prioritization scheme at each GWAS credible set. B. Evidence for gene 

RRBP1 from functional genomics data. The LDL GWAS locus at this region (first row) is an 

eQTL for gene RRBP1 in the liver (second row). Variants in the credible set of this locus 

interact with the gene promoter in both adipose and HepG2 Capture-C data (third row). The 

interacting variant is also in an open chromatin peak in three liver-related cell types (fourth 

row). C. Multiple sources of functional genomics data support CREBRF as a gene 

contributing to HDL levels. The HDL GWAS locus at this region (first row) is an eQTL for 

gene CREBRF in adipose (second row). Variants in the credible set at this locus interact with 

the CREBRF promoter in adipose (third row). The interacting variant is also in open 

chromatin in liver-related cell types (fourth row). 

 

Tables 
 
Table 1. Thirteen prioritized loci with highest confidence of a single functional variant in the 
credible set. The ‘Sentinel’ column represents the lead variant at the locus. The ‘Prioritized 
var’ column represents the prioritized variant in the credible set. Columns 5-8 represent 
overlap of the functional variant with open chromatin (‘Open’), capture-C (‘CapC’) 
interactions with the candidate gene, enhancer and promoter marks from Roadmap in liver 
(‘Liver’), adipose (‘Ad’), both or none of these tissues. The ‘RegDB’ column represents the 
RegulomeDB score of the prioritized variant. 
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Gene 
Tissue Sentinel Prioritized 

Var Open CapC Enhancer Prom
-oter RegDB 

Name 
CEP68 Adipose 2:65284231 65279414 Liver Liver None Ad 0.5896 
TIPARP Adipose 3:156797941 156795408 Both Both Ad Liver 0.705 
CREBRF Adipose 5:172591337 172566698 Liver Ad None Both 0.9124 
PALM2 Adipose 9:112556911 112556911 Both Ad Both None 0.6091 
MEGF9 Adipose 9:123481206 123421556 Liver Ad None Liver 0.9933 
GBF1 Liver 10:104142294 104107191 Ad Ad None Both 0.705 

MICAL2 Liver 11:12071855 12221016 Liver Liver None Liver 0.6018 
ACP2 Liver 11:47278917 47276350 Ad Liver Liver Ad 0.6091 
PTPRJ Adipose 11:48021778 48011180 Liver Ad Liver Ad 0.8797 

NFATC2IP Adipose 16:28899411 28883327 Liver Liver None Both 0.6091 
HELZ Liver 17:65109591 65156919 Liver Liver None Both 0.60906 

FAM210A Liver 18:13725674 13725674 Liver Liver None Both 0.7571 
RRBP1 Liver 20:17844684 17844684 Both Ad Both None 0.6091 
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