
Microprocessors and Microsystems 96 (2023) 104737

A
0

V
A
K
M
a

b

c

d

A

K
D
V
C
S

1

d
a
p
o
p
t
h
S
i
h

d
a
t
C
a

s
(

2

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

erification of Chisel Hardware Designs with ChiselVerify
ndrew Dobis a,c,∗, Kevin Laeufer b, Hans Jakob Damsgaard a,d,1, Tjark Petersen a,
asper Juul Hesse Rasmussen a, Enrico Tolotto a, Simon Thye Andersen a, Richard Lin b,
artin Schoeberl a

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA, United States of America
Department of Computer Science, ETH Zürich, Zürich, Switzerland
Electrical Engineering Unit, Tampere University, Tampere, Finland

R T I C L E I N F O

eywords:
igital design
erification
hisel
cala

A B S T R A C T

With the current ever-increasing demand for performance, hardware developers find themselves turning ever-
more towards the construction of application-specific accelerators to achieve higher performance and lower
energy consumption. In order to meet the ever-shortening time constraints, both hardware development and
verification tools need to be improved.

Chisel, as a hardware construction language, tackles this problem by speeding up the development of digital
designs. However, the Chisel infrastructure lacks tools for verification. This paper improves the efficiency
of verification in Chisel by proposing methods to support both formal and dynamic verification of digital
designs in Scala. It builds on top of ChiselTest, the official testing framework for Chisel. Our work supports
functional coverage, constrained random verification, bus functional models, and transaction-level modeling
in a verification library named ChiselVerify, while the formal methods are directly integrated into Chisel3.
. Introduction

General-purpose processors performance increase is down to single
igit percentage per year. This leads to a new golden age for computer
rchitects designing domain-specific hardware accelerators for future
erformance improvements [1]. The design of these accelerators is
ften complex, and their development is time-consuming and error-
rone. To mitigate this issue, we shall learn from software development
rends such as agile software development [2], and adapt to agile
ardware development [3]. One move in this direction is Chisel [4,5], a
cala-embedded hardware construction language, that was introduced
n order to move digital circuit description to a more software-like
igh-level language.

Hardware design is still dominated by the traditional hardware
escription languages, such as VHDL and SystemVerilog. SystemVerilog
dds object oriented features to the language. However, those fea-
ures are only available for test benches, not for describing hardware.
hisel goes one (or several) steps forward in hardware description,
s it enables object-oriented and functional programming to describe

∗ Corresponding author at: Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
E-mail addresses: andrew.dobis@inf.ethz.ch (A. Dobis), laeufer@berkeley.edu (K. Laeufer), hans.damsgaard@tuni.fi (H.J. Damsgaard),

186083@student.dtu.dk (T. Petersen), s183735@student.dtu.dk (K.J.H. Rasmussen), s190057@student.dtu.dk (E. Tolotto), simon.andersen@teledyne.com
S.T. Andersen), richard.lin@berkeley.edu (R. Lin), masca@dtu.dk (M. Schoeberl).

1 Hans Jakob Damsgaard carried out his work at the Technical University of Denmark. He is currently with Tampere University as part of the EU Horizon
020 APROPOS project, MSCA grant agreement No. 956090.

hardware. This allows one to not only concisely describe hardware, but
also to describe hardware generators. This elevates current practice of
Perl, TCL, or Python generating VHDL or SystemVerilog code to use the
powerful programming language Scala.

However, Chisel does not yet provide efficient verification tools or
libraries. The ChiselTest package [6] only provides primitives to write
classical test benches. Therefore, we build upon ChiselTest and add
verification features. Those features are inspired by the Universal Veri-
fication Method (UVM), but implemented by leveraging Scala’s concise-
ness and support for both object-oriented and functional programming.
ChiselVerify, supports both coverage-oriented and constrained random
verification flows with more features than those available in UVM. Ad-
ditionally, formal methods for verifying chisel designs using bounded
model checking are proposed enabling the formal verification of Chisel
designs based solely on a specification. These two proposals combined
make Chisel’s verification capabilities on par with industry standards
such as UVM.
vailable online 30 November 2022
141-9331/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2022.104737
eceived 30 April 2022; Received in revised form 22 October 2022; Accepted 28 N
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ovember 2022

https://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:andrew.dobis@inf.ethz.ch
mailto:laeufer@berkeley.edu
mailto:hans.damsgaard@tuni.fi
mailto:s186083@student.dtu.dk
mailto:s183735@student.dtu.dk
mailto:s190057@student.dtu.dk
mailto:simon.andersen@teledyne.com
mailto:richard.lin@berkeley.edu
mailto:masca@dtu.dk
https://doi.org/10.1016/j.micpro.2022.104737
https://doi.org/10.1016/j.micpro.2022.104737
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2022.104737&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.

c

For the evaluation, we use three designs: (1) the execution stage of
the Leros processor [7], (2) an arbitration circuit, and (3) an industrial
use case, a min-heap sorting circuit. We show that ChiselVerify can
check many features of the min-heap with few lines of verification code.

The contributions of this paper are:

• Tools for defining and gathering functional coverage information
about a Chisel design.

• A Domain Specific Language for constraint programming inside a
ChiselTest test bench.

• A Bus Functional Model for the AXI4 standardized interface.2
• Formal methods3 for verifying Chisel designs.

This paper is an extension of [8]. These extensions include the
following:

• A proposal of formal verification methods for verifying Chisel
designs.

• An additional functional coverage approach through implicit ver-
ification plans.

• An in-depth evaluation and comparison between our methods and
those available in UVM and cocotb [9].

The paper is organized into 7 sections. First, Section 2 describes
related work, and Section 3 covers background on hardware verifica-
tion. Section 4 describes our solution for enabling verification in Chisel,
called ChiselVerify. Section 5 presents an orthogonal approach to clas-
sic test driven verification by using formal methods for verification.
Section 6 evaluates ChiselVerify with three use cases, and Section 7
concludes the paper.

2. Related work

Most new designs are being described in SystemVerilog; an exten-
sion of traditional Verilog which introduces many non-
synthesizable elements. These extensions include various object-
oriented programming constructs and are intended to allow for writing
more advanced test benches. However, contrary to Chisel, the object-
oriented design approach cannot be used for hardware description.
SystemVerilog also offers constructs for gathering statement and func-
tional coverage information [10], but our solution differs from these in
several ways. In addition to SystemVerilog’s range- or transition-based
bins, ChiselVerify’s cover constructs support temporal relations as
well as generalized conditional bins based on user-defined predicates.

The temporal relation definition capabilities found in both Chis-
elVerify and its formal counterpart can also be seen in the Property
Specification Language (PSL) and the similar SystemVerilog Asser-
tions [11], which are two current solutions allowing for the use of
temporal logic in relation to both coverage and assertions. Our ap-
proaches, however, differ in many ways, but are still all based around
concepts taken from Linear-Temporal Logic (LTL) such as the past
operator [12]. For example, PSL bases itself on a wide variety of
Sequential-Extended Regular Expressions (SEREs), which define tempo-
ral relations between different boolean expressions. SEREs, however,
are quite complex and require the use of many operators to describe
potentially simple temporal relations. In contrast, our solution aims to
provide a simplified set of temporal constructs to express LTL. These
encompass a similar range of relations when used in conjunction with
different types of bins in our coverage tools.

Cocotb [9] is a Python-based verification framework for VHDL and
Verilog designs. It is enabled by extensions to Python for coroutine sup-
port and DUT interfacing using a very simple dut.port.value inter-
face. Cocotb was also extended with a library called cocotb-coverage,

2 All three available as part of ChiselVerify https://github.com/chiselverify/
hiselverify.

3 Available as part of ChiselTest https://github.com/ucb-bar/chiseltest.
2

which allows for functional coverage and constrained random verifica-
tion to be added to the Python-based test benches. This solution follows
the same goals as ours, since it aims to improve verification efficiency
by allowing for verification to take place in a high-level environment.
However, our solution aims to do so in a way that is more closely
integrated into the design flow, by allowing for a high-level design to
be verified in an equally high-level environment. Cocotb, in contrast,
makes verification happen in a completely separate environment as
the design process. In a later section, we will compare ChiselVerify’s
functionalities to those available in cocotb.

Adding to the verification features introduced in SystemVerilog,
designers also have access to the UVM, which was designed to be a
standardized way of writing SystemVerilog test benches by focusing on
both horizontal and vertical re-use [13]. Unfortunately, its generality
leads to an inherent verbosity, i.e., even simple tests require at least
around 800 lines of code. As a result, UVM imposes significant initial
time-investment demands but is re-usable once it gets up and running.
Moreover, newcomers may experience that UVM is less accessible than
simpler approaches such as ChiselVerify as its structure differs from
most traditional test benches.

Other works have focused on proposing different verification tools
for other HCLs, such as bluecheck [14] for the BlueSpec HDL, or
fault [15] which introduces verification components for the Magma
HCL. Similarly to ChiselVerify, these solutions propose verification
functionalities for their specific HCLs. Bluecheck focuses on enabling
the creation of generic testbenches, similarly to UVM, that are syn-
thesizable. Fault focuses on providing formal and constraint random
verification functionalities, similarly to ChiselVerify, but embedded in
Python.

Yosys [16] is an open-source tool for circuit synthesis. Claire Wolf
developed the Yosys Open SYnthesis Suite (Yosys) as part of her Bach-
elor thesis at the Vienna University of Technology [17]. The focus of
Yosys is on high-level digital synthesis. Yosys uses the open-source
logic synthesis tool ABC [18] for gate-level optimizations. Yosys is a
framework that can be extended. We can use Yosys for interactive
design investigation, circuit analysis, or symbolic model checking.

Beyond the general frameworks available in SystemVerilog and
UVM, other projects have proposed using software testing techniques
to do hardware verification. For example, RFuzz [19] is a generalized
method that enables efficient ‘‘coverage-guided fuzz mutational test-
ing’’. It relies on FPGA-accelerated simulation and novel techniques
for deterministic memory resetting to use fuzzing (i.e. randomized
testing with dynamic seeding based on achieved coverage results)
on digital circuits. Specifically, RFuzz automates collection of and
adjustments based on branch coverage. In comparison to RFuzz, Chi-
selVerify offers a different type of solution focusing on implement-
ing verification functionalities in a language while RFuzz offers an
efficient way of using these to ameliorate testing; particularly by us-
ing coverage tools to guide its randomized verification. For the sake
of completeness, we also mention another work of ours presenting
the use of ChiselVerify’s coverage tools for functional-coverage driven
mutation-based fuzzing [20], as well as a similar work, which proposes
a coverage-driven mutation-based fuzzer for SpinalHDL [21].

The SecChisel framework [22] adds security labels and static type
checking of information flow to the Chisel languages. The type checks
are performed using the Z3 SMT solver [23]. This is different from
bounded model checking which verifies user defined assertions over
signals and is able to find sound multi-cycle counter examples to failing
properties. However, bounded model checking is incomplete, meaning
we can miss bugs that only occur many cycles into the design execution.
Static information flow tracking only looks at the combinatorial logic
only to ensure that now information is leaked. This allows it guarantee
that no information will be leaked, but can lead to false positives where
the type check fails, but no bug exists.

To the best of our knowledge, ChiselVerify, along with the formal

methods proposed in this work, forms the only framework that provides

https://github.com/chiselverify/chiselverify
https://github.com/chiselverify/chiselverify
https://github.com/ucb-bar/chiseltest


Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.
Fig. 1. Overview of the Chisel compilation pipeline.
easy-to-use formal and dynamic verification functionalities which are
well-integrated into the Chisel and ChiselTest ecosystem.

The CHA library [24] implements temporal assertions similar to
SystemVerilog Assertions for Chisel designs. It builds upon the formal
verification framework which we discuss in Section 5.

3. Background

Before going into details of ChiselVerify, we provide a brief
overview of hardware verification, and Chisel and its related existing
verification techniques.

3.1. Verification of digital designs

Verification of digital designs refers to testing done before tape-out
through simulation or (FPGA-based) emulation [10]. SystemVerilog is
one of the main languages used for verification. It allows for engineers
to define constraint-driven randomized test benches and metrics to
gather functional coverage resulting for a suite of tests. We are in-
terested in three verification features: functional coverage, constrained
random verification, and bus functional modeling—all three of which
are available in SystemVerilog, but rather complex to use as they are
embedded in a low-level language.

3.1.1. Functional coverage
One of the most frequently used verification tools is test coverage

which enables measuring progress and effectiveness of testing pro-
cesses. In contrast to the common, quantitative statement coverage
metric, which measures how many lines of code have been tested,
functional coverage is qualitative and aims at answering which func-
tionalities have been tested [10]. This enables measuring how correctly
a design implements its specification, and it is measured relative to a
verification plan which includes the following:

• Bins that declare ranges of values that should be tested for
(i.e., expected values of a given port), and

• cover constructs specifying ports that need to be sampled in the
coverage report, defined using a set of bins.

3.1.2. Constrained random verification
Using constrained random verification features, a verification engi-

neer can create random variables constrained to specified sets of values.
In doing so, even a relatively small test suite can, statistically, cover
many functionalities of a design. Moreover, constraining inputs ensures
that no unnecessary tests are run for input combinations that would not
appear during regular operation [25].

A set of constrained random variables define a Constraint Sat-
isfaction Problem (CSP). In CSPs, problem entities are represented
as a finite, homogeneous collection of constraints. CSP solvers seek
solutions to such problems and, thus, serve as the basis for constrained
random verification.

Constrained random data types are native and declared with the
rand keyword in SystemVerilog. Implementations of SystemVerilog
simulators have a built-in CSP solver allowing for randomization
3

through its randomize method.
3.1.3. Bus functional models
Abstraction is often the key to solve complex problems. Bus func-

tional models represent such a technique. They implement models
of (standardized) interfaces, like the Advanced eXtensible Interface
version 4 (AXI4) from ARM [26], that enable interacting with either
master or servant components at a transaction level that abstracts away
bit-fiddling of individual wires. Digital hardware vendors often provide
IP generators whose output blocks are equipped with such interfaces.
Well-developed bus functional models enable simpler, safer, and less
verbose interactions with such components.

3.2. The Chisel hardware construction language

Chisel is a ‘‘hardware construction language’’ embedded in the gen-
eral purpose programming language Scala [5,27]. It allows designers to
effectively write Scala programs that generate hardware descriptions at
the Register Transfer Level (RTL). Compared to traditional hardware
description languages, like VHDL and Verilog, Chisel is much more
high-level and allows for object-oriented and functional programming
in the context of digital design. One popular open-source application is
the powerful RocketChip system on chip generator [28].

The user-facing API of Chisel is a Scala library with some syntactic
sugar that allows the user to generate RTL designs. These designs then
have to be converted into a format that is understood by simulators as
well as FPGA and ASIC synthesis tools. The lowering is done by the
FIRRTL compiler which converts a high-level Intermediate Representa-
tion (IR) into a normalized structural representation [29]. The low-level
representation is then exported into a subset of Verilog that was chosen
as a common subset supported by the majority of backend tools.

Besides serving as a convenient way to lower Chisel circuits into
Verilog, the FIRRTL IR and accompanying compiler infrastructure also
makes it easy to add circuit analysis and instrumentation passes, known
as transforms. Moreover, it is possible to simulate circuits described in
FIRRTL using the Treadle execution engine, before converting them
into (System)Verilog which can, of course, be simulated using commer-
cial or open-source tools like Verilator [30]. Fig. 1 shows an overview
of the Chisel compilation pipeline.

Being embedded in Scala, Chisel is executed on the Java virtual
machine (JVM) and can use existing Scala and Java libraries for design
and verification. The JVM also allows for the use of the Java native
interface for calling C functions, thus enabling co-simulation of Scala
testers, Chisel designs, and a C-based golden models. This is valuable
for companies wishing to keep their existing C models while using
Scala/Chisel for simulation.

3.3. Testing Chisel designs

A Chisel design can be tested with ChiselTest [6], a non-
synthesizable testing framework for Chisel that emphasizes simplicity
while providing ways to scale up complexity. Like Chisel, ChiselTest
is a Scala library that provides an interface into several simulators

through peek (read value from circuit), poke (write value to circuit),



Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.

f

4
a
p
u
g
a
s
w
a
m
f

1

L
g
o

e

P
P
P
=

=
P
P
P
P
=

f
t
p
i
t

i
c
p

4
o
g
C
t
l
s
d
t
s
m
t
i
t

and step (advance time) operations. Tests written with ChiselTest are
just imperative Scala programs that run one line after another.

However, ChiselTest is missing fundamental functionalities that
improve verification efficiency. For example, it does not provide either
of the three aforementioned features: functional coverage, constrained
random variables, or bus functional models, despite these features
being crucial for efficient verification.

4. Verification with chisel

As an extension of ChiselTest, we propose ChiselVerify, which intro-
duces verification functionalities to the Chisel ecosystem. ChiselVerify
bases itself on ChiselTest by using its design interfacing features in
order to enable various verification functionalities directly in Chisel,
such as functional coverage, constrained random verification, and bus
functional modeling. In the following subsections, we present how we
achieved our solution. We start by presenting its functional coverage
capabilities, using both implicit and explicit specifications. We then
propose constrained random verification tools for automating testing
of general designs. Finally, we look at how bus functional models can
increase testing ease, and demonstrate our method by creating a model
of the standardized AXI4 interface.

4.1. Coverage in chisel

ChiselVerify allows for functional coverage constructs to be defined
over a Chisel design directly in Scala. This is possible directly inside
of a ChiselTest test bench, and enables the gathering of information
about completeness of a test with relation to a given specification
defined using a verification plan. In order to enable functional cov-
erage in Chisel, we explore and define two methods for describing a
specification, using an implicit or an explicit verification plan. These
two methods are defined as follows:

• Implicit verification plan: Omit the verification plan, and obtain
coverage data through queries on the ports we want to check after
the test bench.

• Explicit verification plan: Declare the ports that will be sampled
before the test bench.

Both methods have their advantages and disadvantages, which we
will discuss in detail in a later section. In both cases, in order to define
our methods, we needed to be able to do the following:

• Create a verification plan, either implicitly using a Queryable-
Coverage object, which creates a verification plan containing
all of our device’s ports, or explicitly using cover constructs,

• sample our tested device’s ports, using ChiselTest’s interfacing
capabilities,

• keep track of the different sampled values that hit for each bin,
using a coverage database, and

• compile all of the results into a comprehensible and programmat-
ically useful coverage report.

We will describe how the two different solutions are used to gather
unctional coverage information.

.1.0.1 Implicit verification plans: As presented above, our solution en-
bles the gathering of functional coverage information without ex-
licitly having to define a specification. This is enabled through the
se of a QueryableCoverage object, which is simply defined on a
iven DUT. The object must be defined within a ChiselTest test bench,
llowing for the existence of a usable DUT. Once that is done, it must be
ampled throughout the test suite using its sample method. Doing so
ill store the current value of every port in the DUT, thus enable for
future coverage queries. Obtaining coverage information using this
ethod is done at the end of a test suite using coverage queries of the

orm of get(port, expectedHits, range), where the arguments
4

have the following meaning: t
• port represents the DUT port for which we want coverage
information.

• expectedHits is optional and represents a specification of
number of hits we would expect for this port.

• range is also optional and represents the range in which we want
to sample the port.

A query of this sort yields a CoverageResult case class that can then
be used either programmatically or to generate a readable report using
its print method. One can also simply print out a full report of all
ports in the DUT using the QueryableCoverage object’s printAll
method.

1 val coverage = new QueryableCoverage(dut)
2 for (fun <- 0 until 50) {
3 dut.io.a.poke(toUInt(fun))
4 dut.io.b.poke(toUInt(fun % 4))
5 coverage.sample()
6 }
7 coverage.get(dut.io.outA, 50).print()
8 coverage.get(dut.io.outB).print()
9 coverage.get(dut.io.outA, range = 0 to 4).print()
0 coverage.printAll()

isting 1: Example use of a QueryableCoverage object in order to
ain information about the DUT’s testing process. Note that outA and
utB simply output the values of a and b.

Listing 1 shows a basic use of the implicit coverage tool. The above
xample outputs the following coverage Report:

ort io_outA has 50 hits = 100.0% coverage.
ort io_outB has 4 hits.
ort io_outA for Range 0 to 4 has 5 hits
100.0% coverage.

======== COVERAGE REPORT =========
ort io_outB has 4 hits.
ort io_outA has 50 hits.
ort io_b has 4 hits.
ort io_a has 50 hits.
==================================

This report shows the coverage results from our simple test in the
orm of the number of hits associated to each port. Given a specifica-
ion for the amount of expected hits, the tool also shows a coverage
ercentage over the port. We can also see that given a range, the tool
s also able to output a coverage percentage using the range length as
he expected number of hits.

The QueryableCoverage object can be a useful tool for gather-
ng simpler coverage information on a DUT. However, in order to define
omplex specifications for our functional coverage, explicit verification
lans must be used.

.1.0.2 Explicit verification plans: As detailed in our previous work
n the topic [31], our solution allows for the definition of a tar-
et specification using a set of cover constructs defined inside of a
overageReporter. This reporter functions as a front-end element

hat allows for the definition of complex specifications using only high-
evel constructs. The main interface is the register method, which
tores cover construct to bin mappings inside of a CoverageDB
atabase object, and groups them as a single covergroup. After
he definition of the verification plan, the registered elements of the
pecification must be sampled explicitly by the user using the sample
ethod, which checks the value of the associated port at that simula-

ion cycle against the bins in order to determine if the specification
s met for that value or not. Once the sampling has been done, at
he end of a test suite, a functional coverage report is generated by

he reporter using the report method, which interprets the results



Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.

d

T
i
i

c
t
a
c
i
b
v
G
h
p
o
d

4
l
d
t
p
r
s
r
t
a
f
o
c
v

4

c
i
d
p
r

4

o
d
v
T
t
f
i
g
o

stored in the database and compiles them to into a Scala case class.
This report object can then be used to check for coverage thresholds,
i.e., whether or not the coverage has surpassed a specific amount, or
to guide the mutation of inputs in a mutation-based fuzzer, as was
explored in previous work [20].
1 val cr = new CoverageReporter
2 cr.register(
3 cover("accu", dut.io.accu)(
4 bin("lo10", 0 to 9),
5 bin("First100", 0 to 99)),
6 cover("test", dut.io.test)(
7 bin("testLo10", 0 to 9)),
8 cover("accuAndTest", dut.io.accu, dut.io.test)(
9 cross("both1", 1 to 1, 1 to 1))

Listing 2: Small verification plan defined using 3 cover constructs,
including one cross coverage construct

Listing 2 shows a basic verification plan defined using our functional
coverage tool. This example shows the use of cover constructs with
both a single and multiple ports. The use of multiple ports defines a
cross coverage relation between the two ports, meaning that sampled
values are considered a hit if they meet all specifications simultane-
ously [10]. Concretely, in our example, a hit would be considered if,
within the same cycle, both dut.io.accu and dut.io.test are
sampled with the value 1.

After defining our specification in the form of a verification plan, we
need to define the ideal location, within our test bench, to sample the
registered cover constructs using the reporter. The reporter’s sample
method can be used to sample either all groups simultaneously or
simply one group at a time, by specifying the id of the group we want
to sample in the method call. All cover constructs within a group
will always be sampled together. Sampling different groups at different
locations throughout the test suite can allow for more targeted cover-
age information to be gathered. Finally, once we are done sampling
throughout the test suite, we can print out a readable coverage report
by calling cr.printReport() which, for our example, results in the
following:

=============== COVERAGE REPORT ===============
================= GROUP ID: 1 =================
COVER_POINT PORT NAME: accu
BIN lo10 COVERING 0 to 9 HAS 8 HIT(S) = 80%
BIN First100 COVERING 0 to 99 HAS 9 HIT(S) = 9%
===============================================
COVER_POINT PORT NAME: test
BIN testLo10 COVERING 0 to 9 HAS 8 HIT(S) = 80%
===============================================
CROSS_POINT accuAndTest FOR POINTS accu AND test
BIN both1 COVERING 1 to 1 CROSS 1 to 1 HAS
1 HIT(S) = 100%
===============================================

This report shows the three cover constructs that we registered
and the associated hits that each of their bins has obtained. These
hits represent the number of times that registered port was sampled
with a unique value found within the given range. Each bin is then
given a coverage percentage, based on the ratio between the number
of hits obtained and the total number of possible values in the range.

In addition to the basic cover constructs presented until now,
our tool allows for the definition of more complex relations, including
delayed cross coverage, and purely conditional coverage. Inspired by
concepts from Linear Temporal Logic [12], delayed cross coverage
allows the user to define a relation between two ports sampled at
different clock cycles. The idea is similar to how a cross works, but
this time rather than sampling both points in the same clock cycle, we
compare one port, at the starting clock cycle, to another port sampled
a given number of clock cycles later. The temporal separation between
the two ports is defined using a delay, for which we have defined four
5

ifferent types: c
• Exactly, a hit is obtained if a value sampled from the second
port meets its specification, as defined in the bin, exactly the
given number of clock cycles after the first point was sampled.

• Eventually, a hit is obtained if the second port meets its
specification at any point within the given number of clock cycles
after the first point was sampled.

• Always, a hit is obtained if the second port meets its specifica-
tion at every clock cycle for a given number of clock cycles after
the first point was sampled.

• Never, a hit is obtained if the second port never has a sampled
value that meets its specification during any clock cycle for a
given number of clock cycles after the first point was sampled.

he use of timing-related bins is only possible if the coverage reporter
s used to step the clock instead of ChiselTest’s regular interface, since
t allows for the CoverageDB’s internal clock to remain correct.

Conditional coverage enables the definition of bins containing fully
ustom hit-consideration rules using a user-defined predicate. Using
his type of construct, one can check for arbitrary relations between an
rbitrary number of ports. For example, it is possible to create a bin that
hecks for every clock cycle where all fields in a vector are equal. This
s done by using a function of type Seq[BigInt] => Boolean in the
in declaration. The report then shows the number of distinct sampled
alues for which the predicate held throughout the testing process.
iven the unbounded nature of these bins, an ‘‘expected number of
its’’ argument is required for each condition in order to yield a final
ercentage alongside the number of hits. Using these different types
f cover constructs, one can express the specification of virtually any
esign.

.1.0.3 Explicit vs. Implicit verification plans: Comparing the two so-
utions, Explicit verification plans enable more precise and complex
efinitions of specifications than implicit verification plans. This is due
o the computational load inherently present in Implicit verification
lans. Since Implicit verification plans require sampling over the entire
ange defined by the bit-width of every port, it is limited to use with
impler designs. However, implicit verification plans do not require the
e-simulation of a design in order to obtain different coverage informa-
ion, while explicit verification plans do. All in all, these coverage tools
llow for the gathering of functional coverage directly in Chisel, thus
illing in one of the holes inside of Chisel’s ecosystem. Another tool
ur solution brings to Chisel, and enables one of the uses of functional
overage presented earlier in this section [20], is constrained random
erification, which is detailed in the following paragraph.

.2. Constrained random verification

A coverage-driven verification suite is not complete without ac-
ess to randomization tools. ChiselVerify thus provides a set of tools,
nspired by those available in SystemVerilog, which allow for the
eclaration and randomization of random objects. This is done by
roviding a ‘‘constraint programming’’ domain-specific language that
uns on an existing CSP solver named JaCoP [32].

.2.1. ChiselVerify’s constraint programming DSL
Our solution allows for the declaration of a constrained random

bject by defining a class that extends the RandObj trait. The newly
efined RandObj class contains all of the constraints and random
ariables that will later be used in our constrained random tests.
his information will be stored inside of a Model, that is given to
he RandObj on initialization. A Model is simply an object which
unctions as a database for our generated random number. It can be
nitialized with a seed to allow for predictable pseudo-random number
eneration. In total, there are two main elements that are used inside
f the object to drive the randomization process: random variables and

onstraints.



Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.

S
t
w
t
v
r

4
g
a
I
c
p
s

t
t
t
w

1

1
1
1
1
1
1
1
1

L
t
r

a
o
b
p
o
s
t
r

c
c
a

4.2.1.1 Random variables: The first element represents a random value
generator and is associated to constraints that will determine the set
of values that the random variable can take. Our DSL allows for the
declaration of two different types of random variables:

• Regular, can take any value that satisfies the associated con-
straints.

• Cyclic, cannot take the same values twice until the entire set of
valid values has been explored.

imilar to the interface designed for the functional coverage tools, both
ypes are declared using a single unified function call rand to which
e give a lower and an upper bound on the values the variable can

ake. As an example, rand(0, 5, Cyclic) will declare a random
ariable that will yield six distinct values in a row before starting to
epeat itself.

.2.1.2 Constraints: Our solution allows for the definition of both sin-
le constraints and ConstraintGroups. Constraints are defined by
pplying constraint operators on random variables. Additionally, the
fCond and ElseC constructs allow for the definition of conditional
onstraints. Every defined constraint may be enabled or disabled at any
oint in the test suite. This can also be done to multiple constraints
imultaneously by enabling or disabling a ConstraintGroup.

4.2.1.3 Using a RandObj: After declaring and filling random objects
with random variables and constraints, a RandObj must be instan-
tiated and then randomized using the randomize method within a
est bench. The randomize method’s return value is predicated on
he solvability of the constraints by the CSP solver. Once randomized
he random variables within a RandObj yield a valid random value
hen prompted with their respective value() methods.

1 class Packet extends RandObj(new Model(3)) {
2 val idx = rand(0, 10)
3 val size = rand(1, 100)
4 val len = rand(1, 100)
5 val payload: Array[Rand] = Array.tabulate(11)(
6 rand(1, 100)
7 )

9 // Example Constraint with operations
0 val single: Constraint = (payload(0) == (len - size))

2 // Example conditional constraint
3 val conditional = IfCon(len == 1) {
4 payload.size == 3
5 } ElseC {
6 payload.size == 10
7 }
8 val idxConst = idx < payload.size
9 }

isting 3: Example usage of a random object. rand(min, max,
ype=Normal) declares a random variable. Any operation on a
andom variable generates a constraint.

Listing 3 shows an example use of the different ways one can define
random variable with constraints. As seen in the example, collections
f random variables, such as arrays, can be defined and constraints can
e placed on the collections themselves. This approach is seen in the
ayload random variable, where a constraint is placed on the size
f an array of random variables. The conditional random variable
hows how conditional constraints can be declared. In our example,
he constraint placed on payload depends on the value of the len
andom variable.

These constrained random objects are a powerful tool that can be
ombined with the aforementioned coverage functionalities to create
overage-driven randomized tests. With the use of our solutions, such
setup greatly improves the automation capabilities of Chisel test
6

benches. However, these capabilities may be further improved by
abstracting away groups of wires and operating on an operation or
transaction level instead.

4.3. Verification with bus functional models

Component re-use, portability and flexibility are also interesting
in the context of digital designs. A good way to achieve these char-
acteristics is by equipping one’s designs with standardized interfaces.
Verification engineers can test such components at a transaction level
by combining constrained random verification and coverage measures
with bus functional models. As an example, we provide a bus functional
model for AXI4, an open standard by ARM [26].

4.3.1. Introduction to AXI4
The AXI4 protocol by ARM is a generic, flexible interconnect stan-

dard. It comprises five independent handshake-based channels; three
for write operations (Write Address, Write Data, and Write Response) and
two for read operations (Read Address and Read Data). Interconnect
operations, known as transactions, consist of sequences of transfers
across either set of channels. All channels share a common clock and
reset.

As an example, consider a write transaction of 16 data elements.
First, the manager provides the transaction attributes (e.g., target ad-
dress and data size) as a transfer on the Write Address channel. Next,
it transfers the data elements one at a time over the Write Data chan-
nel. Finally, the subordinate indicates transaction status on the Write
Response channel. Note that channel independence means that data
may be transferred before the transaction attributes and that the read
channels may operate at the same time [26].

4.3.2. Implementation
To enable easy verification of AXI4-interfaced components using

ChiselVerify, we provide definitions of channel wire bundles, abstract
manager and subordinate classes, and a transaction-based bus func-
tional model: the FunctionalManager class. Through parameter-
izing the manager with a Subordinate DUT provides a simple
interface to control the DUT. Its two most important methods are
createWriteTrx and createReadTrx to create and enqueue
write and read transactions, respectively.

Our bus functional model implementation utilizes ChiselTest’s mul-
tithreading features to allow for non-blocking calls to the aforemen-
tioned methods and for emulating the channel independence more
closely. When a write transaction is enqueued and no other write
transactions are in flight, the bus functional model spawns three new
threads, one for each channel. The threads handle the bit-fiddling
required to operate the channels.

4.3.3. A test example
Returning to the example of transferring 16 data elements, consider

the test for a module called Memory listed below. First, a write trans-
action with 16 data elements takes just one call to createWriteTrx
most of whose arguments have default values. It is equally simple to
create a subsequent read transaction. Depending on the DUT imple-
mentation and due to channel independence, not waiting for a write
to complete before initiating a read may return incorrect results.

1 class MemorySpec extends AnyFlatSpec with
ChiselScalatestTester {

2 behavior of "My␣memory␣module"
3 it should "write␣and␣read" in {
4 test(new Memory()) { dut =>
5 val bfm = new FunctionalManager(dut)
6 bfm.createWriteTrx(0, Seq.fill(16){0x7FFFFFFF},
7 len = 15, size = 2)
8 bfm.createReadTrx(0, len = 15, size = 2)

9 }



Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.

1
1

0 }
1 }

Listing 4: Using the AXI4 bus functional model with ChiselTest

4.4. Future work

In this paper our development stays mainly in the Chisel world and
comparing it against UVM. However, an interesting approach would be
to mix and mach different approaches and tools. The easiest combina-
tion is to use Chisel for the circuit description and UVM for verification.
Chisel generates standard Verilog code that can be integrated with an
UVM testing flow. SystemVerilog components can also be integrated
in Chisel as black boxes and we can verify them with ChiselVerify on
Verilator. However, the SystemVerilog code shall only include Verilog
code constructs that Verilator supports.

The most challenging approach would be to combine UVM and
ChiselVerify. For example, having an UVM test driver for the DTU, but
using ChiselVerify with a golden reference model written in Scala. We
consider this interesting development question as future work.

5. Formal verification

An alternative to exercising the circuit description with a set of
concrete inputs is to symbolically explore the circuit execution for
any inputs for a limited number of cycles. This technique is called
bounded model checking [33] and works by unrolling the circuit for 𝑘
cycles and then asking a Boolean satisfiability [34] or SMT [35] solver
whether there exists a set of inputs and starting states for the memories
and registers in the design, for which an assertion is violated. If the
solver returns a satisfying assignment to this query, we obtain a counter
example that can be expressed as a test bench that initialized the state
to concrete values from the solver and then drives the inputs for 𝑘 cycles
with the inputs obtained from the solver. If the solver returns that there
is no such assignment, we get a guarantee that our circuit will not hit
any assertion violation for the first 𝑘 cycles of its execution.

There has been a long tradition of open-source formal verification
systems from the academic community [36–38]. However, because of
the traditional academic incentive structure, these research systems
were hard to use or did not support enough features of the RTL
design language to be widely used by a community of open source
RTL designers. This changed with the introduction of the yosys [16]
tool which has become the de facto standard for processing Verilog
for synthesis or formal verification. Yosys allows academics to focus
on developing model checkers for the simple btor2 [39] or aiger [40]
formats without having to worry about supporting the much more
complicated Verilog standard. The open-source SymbiYosys [41] tool
wraps yosys as well as various formal verification engines in order to
allow users to verify their designs. All a user has to provide are the
Verilog sources of their design including assertions and assumptions as
well as a small configuration script. SymbiYosys translates any failing
traces it discovers into Verilog test benches and VCD waveform dumps
for the user to inspect.4

In this paper we describe our approach to providing Chisel users
with an easy way to formally verify their designs. We adapt many good
ideas from yosys and build several new convenience features on top
of them, taking advantage of the existing compiler infrastructure for
Chisel. We first present two introductory examples and then provide
details on how the formal backend was engineered to ensure that all
failures could be replayed in simulation to help debugging in Sec-
tion 5.3. We then discuss reset assumptions (Section 5.4) and a simple
approach to temporal assertions using an improved version of the past
statement which avoids common pitfalls compared to the equivalent
functionality in Verilog (Section 5.5).

4 With the open-source GHDL plugin, yosys now also supports formally
verifying VHDL circuits.
7

Fig. 2. Formal checks can be launched from a Scala IDE.

5.1. Example: Verifying a GCD circuit

We focus on a simple greatest common denominator (GCD) circuit
which is a standard Chisel example.5 Dynamic tests written with Chis-
elTest can be executed through a Scala IDE or from a shell with the sbt
test command. With our proposed extension, formal checks can be run
in a similar fashion. The user just needs to substitute the test(new De-
coupledGcd(16)) command with verify(new DecoupledGcd(16),
BoundedCheck(10)). If the user now clicks the test icon again or runs
the sbt test command, a formal bounded check will be executed for
ten cycles after reset instead of a simulation test. The only additional
program required is a copy of the open-source SMT solver Z3 [23].

Initially the check will always pass, no matter which changes we
make to our circuit. Since the GCD circuit contains no assertions, there
is nothing to tell the solver if the circuits misbehaves. In order to
actually verify something, an assertion needs to be added directly to
the circuit by using the Chisel assert statement. The decoupled GCD
circuit used as an example has an input and an output channel as
well as a 1-bit busy register. We expect that while the circuit is busy,
no new input is accepted:

when(busy) {
verification.assert(!input.fire())

}

This assertion will pass because the circuit does indeed fulfill the
property after reset.

We now introduce a small bug by connecting input.ready to
true.B and rerun the test. An assertion violation will be reported one
cycle after reset. The user is also presented with an error message
indicating the Scala line number of the failing assertion. To debug the
problem, they can find a VCD waveform dump in the standard test
directory created by the ChiselTest library. Since we replay the test on
a concrete simulator, the error message and VCD will be exactly the
same as if the user was running a simulation test.

A more advanced property we expect to hold is that if the input and
output channels are idle, the busy signal will remain the same in the
next cycle:

when(past(!input.fire() && !output.fire())) {
verification.assert(stable(busy))

}

Here we make use of our past function for temporal properties
which is described in detail in Section 5.5.

When working in a standard Scala IDE like the open-source IntelliJ
IDEA with the Scala plugin, the user can launch the formal check with
the press of a button. The success or failure will be communicated
the same way as any other unit test. A VCD waveform dump is au-
tomatically generated to help debug failing checks. This is illustrated
in Fig. 2.

5 The GCD code is part of the Chisel template: https://github.com/
freechipsproject/chisel-template.

https://github.com/freechipsproject/chisel-template
https://github.com/freechipsproject/chisel-template


Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.
Fig. 3. RTL code with inline assertion, formal test and counter example waveform for
a verification example.

5.2. Example: Verifying the read behavior of a RTL memory

The example shown in Fig. 3 verifies that when a Chisel memory
with synchronous read port and WriteFirst behavior has a read and
a write access to the same address, the new value will be returned.
The check fails if WriteFirst is substituted with ReadFirst or Un-
defined. It is based on a Verilog example from a popular blog.6 In the
Chisel version, the assertion is automatically delayed until at least one
cycle after reset, when there are valid past values available. A bounded
model check is executed by the verify command, which is called from
a standard Scala unit test. When the check fails, the failing inputs and
starting states are replayed on a simulator, resulting in a waveform file
that is identical to the output we would get from a dynamic verification
run. However, since we used bounded model checking to find the
failing trace, it will be as short as possible. In our example, two cycles
after reset are needed to fail the property. The first cycle contains the
read and write requests and the second cycle observes the arbitrary
result on the read port if we set the memory behavior to Undefined
for read/write conflicts. The included screenshot was obtained with the
open-source GTKWave waveform viewer.

5.3. A formal backend for FIRRTL

In order to implement the verify command, introduced in the pre-
vious sections, we need to convert the Chisel circuit into a format that
is understood by open-source model checkers or SMT solvers. We can
do this by using the FIRRTL compiler to convert the circuit to Verilog
and then using yosys to convert to the model checking formats. While
we initially used this approach, we eventually decided that it would
be better to add a formal backend to the FIRRTL compiler directly.
This way we can avoid the complicated Verilog semantics, model circuit
behavior in greater detail and easily replay counter example traces on
our FIRRTL simulator called treadle.

Users want their Chisel designs to be implemented with as little
hardware as possible. In order to allow for efficient implementations,
the FIRRTL specification was crafted to allow some operations to result
in arbitrary results. For example, a wire connected to DontCare or
to the result of a division by zero carries an arbitrary value. Reading
from a memory while the read port is disabled, reading from the same
address that another port is writing to or writing from two memory
ports to the same address all generate an arbitrary value result. Not
all of these behaviors are represented in the generated Verilog. The
compiler is free to substitute arbitrary values with (more) concrete
values, like always returning a memory read result even when the read
port is disabled or by assigning a priority to write operations so that at
least one of them will complete. Thus if we first generate Verilog and
then use yosys, we are only verifying one concrete translation of the
design, but there may be other legal translations that would violate the
property. This is relevant, e.g., in the context of memories when we
use an external SRAM compiler that might try to rely on the fact that

6 https://zipcpu.com/answer/2021/07/03/fv-answer15.html.
8

write–write collisions can have arbitrary results in order to generate
better hardware. This is the reason why we decided to carefully model
arbitrary values as part of the FIRRTL compiler’s new formal backend.

Once the formal engine finds starting states and inputs that lead to
an assertion violation, we need to help the user debug their design.
Since we do not have the large resources of a major EDA vendor, we
would like to reuse as much of the existing simulator infrastructure as
we can. If we can replay the failing trace on our existing simulator,
the VCD waveform dump and the error reporting will be of the same
quality as when writing a concrete test bench. In order to be able to
replay failures caused by arbitrary values, we carefully engineered two
FIRRTL passes that analyze the circuit and add wires to detect when
a result is arbitrary as well as a mux to substitute the result with a
connection to a DefRandom node in that case. The new DefRandom
construct provides a named arbitrary value that can change every
clock cycle, very much like a anyseq annotated wire in Verilog. The
formal backend implements DefRandom nodes as inputs that can be
freely chosen by the formal engine. To make DefRandom work with
our simulator, we replace the nodes with registers of the same type
that are never updated by the hardware. Instead we use the software
interface to our simulator to update these registers with the values
chosen by the formal engine in each cycle. Fig. 4 shows our compilation
flow in more detail. The verify command is implemented as part
of the ChiselTest library and uses several compiler passes that make
up the FIRRTL formal backend. We hook into the FIRRTL compiler to
model undefined behavior with DefRandom statements and to delay
temporal assertions as part of our safe past construct. We then add reset
assumptions, flatten the system, convert to a formal transition system
and then serialize the system to SMTLib or btor2. We provide bindings
to launch various formal engines from ChiselTest. If a counter example
is found, we convert the DefRandom nodes in the circuit to registers
before loading the circuit into the treadle simulator to replay the failure
and obtain a simulation quality VCD and error message.

The btor2 format does not support hierarchical circuits and we thus
always flatten the system by inlining everything into a single module. In
order to ensure that we produce a good waveform dump, the counter
example will be replayed on the non-inlined circuit. We make use of
the built-in annotation support of the FIRRTL compiler to automatically
track name changes of all registers and memories in the design as they
are inlined. This way we can map initial states found by the formal
engine back to their hierarchical names.

Once the circuit has been flattened, the conversion to a transition
system is fairly straight forward. We implemented a SMTLib and btor2
encoding that is very similar to the one pioneered by yosys. We used the
FIRRTL specification to accurately translate FIRRTL expressions to the
bit-vector expression language defined by the SMTLib format [42]. Our
backend supports memory and register initialization using the same
user annotations as the Verilog backend. Multi-clock support through
a clock stuttering pass is work in progress, for now only circuits with a
single clock domain are officially supported.

5.4. Reset assumptions

In Chisel, users rarely need to worry about resets. Registers with re-
set values are automatically connected to the default reset and module
instances just inherit their reset domain from their parent. In Verilog,
users have to manually ensure that assertions are only triggered after
the circuit was properly reset. We decided to provide sensible defaults
instead. Assertion statements are automatically disabled, just like it has
been the case for print and stop statements since the early days of
Chisel. As part of our formal verification support, we provide a FIRRTL
pass that automatically adds a constraint for the reset of the top level
module to be active during the first cycle of execution. Thus, by default,
users do not have to worry about reset. Their assumptions will only
fire after their circuit has been properly reset and hence we ensure
that there are no false positives. We do provide options for power-
users to write assertions that are active during reset and to disable reset
assumptions or increase the number of reset cycles.

https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html
https://zipcpu.com/answer/2021/07/03/fv-answer15.html


Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.
Fig. 4. Our formal verification flow.

Fig. 5. Hardware generated by our tool to implement the temporal assertion in Fig. 3.

5.5. Simple temporal assertions

While a simple assert statement allows us to specify a property
over signals during a single cycle, it is not enough to express properties
that require us to reason about multiple cycles. The traditional answer
to this problem are temporal assertion languages like SystemVerilog
Assertions [43]. However, these are complex to implement efficiently
and as of now there has not been a successful open-source implementa-
tion. The community around SymbiYosys has instead advocated for the
use of plain assertions with the Verilog past function. This function
returns the previous value of an expression and thus allows us to write
properties that span multiple cycles.

While conceptually simple, the past construct as defined by the
Verilog standard has one major problem: In the first cycle of the circuit
execution, there is no past value and the past function always returns
X. Thus the user has to take care to keep track of how many cycles
have passed since the verification started and only enable assertions
once all past values are valid. This particular pitfall is often the topic
of a popular formal verification quiz.

We made use of some of the unique capabilities offered by Chisel in
order to implement what we consider to be a safer version of the past
function. In the frontend, our past is a Scala function which creates
an appropriate amount of delay registers in the current clock and
reset domain. That alone provides functionality similar to the Verilog
version of past. We go further by annotating the delay register and
asking for a FIRRTL pass to be run when lowering the design. This
pass looks at a graph of all past delay registers and assertions in a
module. An edge indicates that the input to the assertion or register
is connected to the output of a delay register through combinatorial
logic. We traverse the resulting tree (by design there can be no cycles)
starting at each assertion to find the longest path of past delay registers
in order to determine the number of cycles the assertion needs to be
delayed. Finally we generate a cycle counter register and use its value
to guard the individual assertions. Since our past function only relies
9

on synthesizable hardware it can also be used in software and FPGA
based simulation testing [44].

Fig. 5 shows how the temporal assertion from Fig. 3 results in a
circuit with two registers created by the past function: One to delay
the condition from the when statement and the other to delay the input
data before it is compared to the current output data. By default an
assertion is only enabled when reset is inactive and the surrounding
when condition is true. Our compiler pass analyzes the connectivity
graph with the result that both the enable condition as well as the
predicate are delayed by a single past register. Thus the assertion enable
signal is automatically extended to include the condition that at least
1 cycle must have past since the last reset. The new enable condition
is derived from a synthesizable, saturating cycle counter which is
created by the compiler pass.

6. Evaluation

In order to evaluate the different verification tools provided by
ChiselVerify, we will be using three different example circuits, namely
an accumulator ALU from the Leros processor [7], an arbiter circuit,
and a priority queue provided by Microchip [45]. These are tested using
ChiselTest test benches augmented with our verification tools. The test
benches are then compared to similar tests written using SystemVerilog
with UVM, and cocotb, using the generated Verilog descriptions as a
DUT. We have selected UVM since it is an industry standard that can
be used to verify Verilog designs, and cocotb since it enables similar
verification functionalities in a high-level environment like what we
propose with ChiselVerify. The results are then compared in terms of
the verbosity of the verification code. As a final evaluation, we look at
the overhead induced by the use of ChiselVerify-specific functionalities,
such as functional coverage and constrained random verification, by
comparing the runtime of a bare ChiselTest test bench, to the same one
enhanced with our verification tools.

6.1. Evaluation circuits

We evaluate ChiselVerify on three distinct circuits, which we de-
scribe in the following paragraphs.

6.1.1. Leros accumulator ALU
The first circuit we will verify with our solution is an accumulator

ALU from the Leros processor. It supports operations such as add,
load, shiftRight and logic operations. In order to have a complete
test suite, we need to try all available operations and use all potential
input value corner cases. We will thus model our test bench to do so.

6.1.2. An arbitration circuit
Another one of the circuits we evaluate ChiselVerify on is an arbiter

circuit. The arbiter uses a ready/valid interface for the clients and the
shared resource. The arbiter is built as a binary tree, where each node
does a local arbitration and contains a register to store the data until
it can be communicated further up towards the root of the tree. Each
local 2 to 1 arbiter has a turn flag to be fair between the two requests.
The assumption is that this local fairness translates to a global fairness
of the full arbitration tree.

To test the arbiter, we specify properties that result in a verification
plan:

• Each request shall eventually be seen at the output (the root
node).

• No requests shall be ‘‘generated’’ in the tree (out of thin air).
• The maximum latency for a request shall be 𝑛 cycles without any

competing requests.
• The maximum latency for a request shall be 𝑚 cycles under full

load.

http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html
http://zipcpu.com/quiz/2019/11/16/quiz07.html


Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.

s

t
t
C

6

M
a
p
t
u

o

w
c

d
i
o
h
e

6
e
t
s
L
o
a

O
S

6
u
i
d
b
w
m
p

• The arbitration shall be fair, which means the bandwidth differ-
ence between clients shall be bound by 𝑥 %.

The values of 𝑛, 𝑚, and 𝑥, depend on the number of clients, i.e., the
ize of the arbitration circuit.

We have shown that the original implementation of reduceTree on
he Chisel Vec produces an unfair circuit. Therefore, we have improved
hat implementation in Chisel. The pull request7 is now available with
hisel Version 3.5.3.

.1.3. Sorting in hardware
The final application example builds on a use-case provided by

icrochip [45]. The use-case, which we implemented and verified, is
scheduling module for real-time systems built around a hardware

riority queue. A host system can insert deadlines in the form of
imestamps into the scheduling module which in turn presents the next
pcoming deadline.

The scheduling module is implemented as a state machine operating
n a set of memory banks. The memory contains a 𝑘-min-heap which

is used by the internal priority queue to efficiently determine the
next upcoming deadline. The implementation exploits parallelism to
improve performance when fetching nodes from the heap memory by
splitting siblings over separate memory banks. Furthermore, the search
for the minimum key between a parent node and its children, a key
operation when balancing the heap, can be parallelized by employing
a reduction tree.

The presented constrained random verification and functional cov-
erage functionalities of the ChiselVerify framework were used to verify
the scheduling system and its submodules. The circuit at a top level
allows for the insertion of deadlines into the scheduling system and the
removal of them. As such the interface is not very complex and only
consists of three flow-control pins as well as data pins used to provide
a new deadline and to refer to a deadline which should be removed.

The test benches used to verify the scheduling system make use
of random stimuli for the data pins and directed stimuli for the flow-
control. We use the functional coverage report to check how well the
stimuli driven on the DUT’s data pins are spread over the spectrum of
possible values, and to check whether certain input combinations are
applied to the DUT at some point throughout the test. As an example,
the timed coverage feature made it easy to check whether the valid
input of the DUT was revoked at some point within 10 clock cycles after
issuing an operation by adding the following cross-coverage group:

1 cover("timed_valid", dut.io.valid, dut.io.valid)(
2 Eventually(10))(
3 cross("revoked_valid_under_op", 1 to 1, 0 to 0))

Listing 5: A timed cover construct.

In order to check whether the DUT matches its specification, we
have implemented a reference model for each module. At the top level,
this model is written at a transaction level, while some submodules
are tested against cycle accurate reference models. In order to abstract
interaction with the DUT and provide an interface at the same abstrac-
tion level as the reference model, we employ bus functional model-like
wrappers.

6.2. Evaluation results

We can now take a look at the different results obtained during our
evaluation.

7 https://github.com/chipsalliance/chisel3/pull/2318.
10
6.2.1. Verification verbosity
We start by comparing the three verification languages in terms

verbosity, which is measured in ‘‘verification lines per source lines of
code’’, a metric used in other works to partially evaluate verification
languages [31,46,47]. We consider a verification line to be any explicit
declaration of a cover or bin construct, as well as any function call
or standard statement, and have formatted our listings accordingly.
For this, we measure the overhead of the functional coverage and
constrained random verification tools provided in ChiselVerify against
those provided in UVM and cocotb.

We start by adding functional coverage to the simple test bench
presented for the arbiter circuit. In order to do so, we need to define a
verification plan that correctly captures information about the expected
behavior of our DUT. The arbiter circuit takes as input a Vector of 𝑛
DecoupledIO elements, which expands to 3𝑛 ports in the generated
verilog. In order to conduct a coherent experiment, we set 𝑛 = 7, and

ill define our specification accordingly. Our verification plan will thus
over the inputs and output ready, valid, and bits (data) ports.

We now do the same for the priority queue. As described above, this
esign has two interfaces we will want to monitor during our testing,
.e. the cmd and head interfaces. Unlike the arbiter, these interfaces are
f fixed size and thus the chisel design and the generated Verilog will
ave similarly abstracted ports. Our verification plan will thus cover all
lements of both the cmd and head interfaces.

.2.1.1 Functional coverage in UVM: In order to gather functional cov-
rage information about our design using UVM, we have to work with
he generated Verilog description. Additionally, UVM requires a very
pecific test bench structure than spans multiple files and hundreds of
OC. Our focus is on the uvm_subscriber subclass, which is where
ur verification plan will be defined. For example, this is done for the
rbiter circuit using the following structure:

• Create a UVM-subscriber based coverage class.
• Instantiate the current DUT (Arbiter dut = new;)
• Declare the verification plan, where a single port is covered with:

1 covergroup cg_input0;
2 IN0_READY: coverpoint dut.io_in_0_ready {
3 bins zero = {0};
4 bins one = {1};
5 }
6 IN0_VALID: coverpoint dut.io_in_0_valid {
7 //Same bins as in IN0_READY
8 }
9 IN0_BITS: coverpoint dut.io_in_0_bits;

10 endgroup cg_input0
11 // [...] Repeat for each port

• Define build_phase and write functions.
• Define the coverage class constructor.

nly considering coverage-related code, this requires 158 lines of
ystemVerilog code.

.2.1.2 Functional coverage in cocotb: Gathering functional coverage
sing cocotb is also done using the generated Verilog description. This
s done by creating a Python-based test bench, which is linked to our
esign via a custom Makefile. We then define our verification plan
y creating a coverage_section inside of our test bench. Finally,
e link said verification plan to a cocotb.coroutine function to
ark it as our sampler. For example, the arbiter circuit’s verification
lan has the following structure:

1 range_relation = lambda val_, bin_ : bin_[0] <= val_ <=
bin_[1]

2 Arbiter_Coverage = coverage_section(
3 CoverPoint("top.io_out_ready",
vname="io_out_ready", rel = range_relation,

https://github.com/chipsalliance/chisel3/pull/2318


Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.

d
u

b
f
e
i
O
i

6
i
d
c
v
F
i
o

a
e
c
c

6
F
a
o
t
o
o

1
1
1

Fig. 6. Verbosity overhead comparison between verification plans written for three
esigns with ChiselVerify (CV), SystemVerilog (SV), and cocotb (PY). For SV, only the
vm_subscriber code is taken into account.

4 bins = [0, 1], bins_labels = ["ready0",
"ready1"]),

5 CoverPoint("top.io_out_valid",
vname="top.io_out_valid", rel =
range_relation,

6 bins = [0, 1], bins_labels = ["valid0",
"valid1"]),

7 # [...] Repeat for each port
8 )

Here the range relation lambda tells cocotb how to interpret the
ounds of a range. This can be compared to how ChiselVerify allows
or custom hit conditions to be defined. When a single number is give,
.g. 0, this is interpreted as a range 0 to 0, thus a hit is considered
f our relation holds for the sampled value, i.e. 0 <= val <= 0.
nly considering coverage-related code, the verification plan defined

n cocotb requires 82 lines of cocotb-coverage code.

.2.1.3 Functional coverage with ChiselVerify: Finally, using ChiselVer-
fy to gather functional coverage information about a design allows for
irect interaction with the Chisel design. In the case of designs with
omplex interfaces, such as the arbiter, this allows us to create generic
erification plans that function with any parametrization of the design.
or example, in the case of the arbiter, which has a variable number of
nputs, we can simply define our verification plan using a generic loop
ver all inputs in the design as follows:

1 dut.io.in.zipWithIndex.foreach((input:
DecoupledIO[UInt], idx: Int) => {

2 cr.register(
3 cover(s"in${idx}.ready", input.ready)(
4 bin("Ready0", 0 to 0),
5 bin("Ready1", 1 to 1)),
6 // [...] Continue the VP of a single input
7 )
8 })

Here, the zipWithIndex call allows us to concisely loop over our
rray with a foreach loop, while having access to the loop index,
nabling the creation of unique identifiers for our cover objects. Only
onsidering coverage-related code, this definition requires 26 lines of
ode for the arbiter’s complete verification plan.

.2.1.4 Summary: The results from our comparison are summarized in
ig. 6. It is important to keep in mind that these user-level comparisons
re not absolute, and are used to give the reader an idea of the amount
f code that is required to be written in the different languages to solve
he same problems. Fig. 6 shows that, with ChiselVerify, we obtain
n average a 70% reduction in LOC over UVM and a 38% reduction
ver cocotb. This is due to ChiselVerify’s capability of exploiting the
11
Fig. 7. Performance overhead of the different tools provided by ChiselVerify. 𝑁
represents the number of arbiter ports which also means the number of covergroups or
random variables. The overhead is computed as the ratio between the average runtimes,
over many runs, of the bare ChiselTest test bench and the same test bench augmented
with either functional coverage (FC) or constrained random verification (CRV) for a
given 𝑛.

high-level design constructs, such as vectors, directly in the verification
plan, while the other solutions need to rely on the unfolded generated
Verilog. For designs with simple interfaces such as the priority queue or
the Leros ALU, we obtain an increase of 30% over cocotb. This comes
from cocotb’s grouped bin declarations in a coverpoint. While it can
be more concise to declare coverpoints in cocotb with simple designs,
complex relations, often found in realistic designs, are more difficult to
model. It is more direct to access the ports from a Chisel description
using ChiselTest instead of UVM or cocotb, since we can use the Chisel
object as it was originally described, and not have to interface via a
more low-level generated Verilog description. This becomes especially
important for deeper nested structures of IO ports.

6.2.2. ChiselVerify performance overhead
In order to evaluate our proposed solutions more thoroughly, we

will look at the performance overhead that comes with using our
verification tools to augment a ChiselTest test bench. To do so, we
use our baseline a bare ChiselTest test bench without any functional
coverage or constrained random verification.

6.2.2.1 Functional coverage performance overhead: In order to analyze
the performance overhead over varying verification plan sizes, we will
be using our previously mentioned arbiter circuit, which has a variable
number of input ports. We start by measuring the performance of our
arbiter test bench with 𝑛 ranging from 2 to 256. We then measure
the performance of the same test bench, but this time augmented
with the verification plan presented earlier. Finally, we measure the
performance of our initial test bench, but where the inputs of the arbiter
are set using random variables from the following random object:

1 class ArbiterIn(n: Int) extends RandObj {
2 currentModel = new Model(seed)
3 val dins = for(_ <- 0 until n) yield(rand(0, n))
4 val consts = for(din <- dins) yield {
5 din dist (
6 0 to 0xF := 1,
7 0xF to 0xFF := 1,
8 )
9 }
0 // Enable all constraints
1 consts.foreach(_.enable())
2 }

The results from these measurements are summarized in Fig. 7.
These results show that the both the functional coverage and con-
strained random verification tools scale quite well, since their over-
heads seem to be almost independent of the size of the verification



Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.
Table 1
Various details about the processor used for our benchmarks.

Processor

Model Intel core m5-6Y54 CPU
μArch Skylake
Base frequency 1.20 GHz
Max frequency 2.7 GHz
N_Threads 4

Table 2
Runtime results obtained when running the random_test benchmark implemented
with UVM and with ChiselVerify.

Runtime [s] Mean Std-deviation Startup time

UVM 1.2 0.16 82.5
ChiselVerify 11.3 1.2 13.23

plan or the number of random variables used. They both show to have
an average overhead of 3.5% over ChiselTest independent of the scale
at which they are used. Such a low and scalable overhead shows that
ChiselVerify is an efficient addition to the Chisel verification ecosystem.

6.2.3. ChiselVerify and UVM performance comparison
Finally, we evaluate our solution’s performance by directly com-

paring the runtime of two tests, one implemented using SystemVerilog
with UVM and the other with ChiselVerify. The UVM testbench is run-
ning using Vivado,8 as Verilator has yet to support the full verification
functionalities required by UVM.

6.2.3.1 Benchmarking infrastructure: To evaluate the performance of
our solution, we run one of the tests of the Leros accumulator ALU
presented in a previous section. The relevant test, random_test,
stimulates the device under test using uniformly random inputs. This
test is run 50 times in order to obtain a non-biased runtime measured
in seconds. A description of the system used for our benchmarking can
be found in Table 1.

6.2.3.2 Benchmarking results: The results from running the test using
first UVM, and secondly using the various tools provided in ChiselVer-
ify, are compiled and summarized in Table 2.

These numbers show that ChiselVerify’s reliance on ChiselTest and
sbt gives it a rather slow runtime when testing, but with a much faster
startup time, making it ideal for smaller test suites. Recent work by
Iyer et al. [48] has shown that this might be due to the way ChiselTest
handles multi-threading, and efforts, also presented in part in said
work, are being made to alleviate this overhead.

6.2.4. Evaluation summary
As demonstrated above, ChiselVerify allows for the use of functional

coverage constructs, as well constrained random verification directly
inside of a ChiselTest test bench. Complex constructs can be defined
following the low verbosity of Chisel and ChiselTest, requiring on
average a 70% fewer LOC than the industry standard UVM and a 38%
fewer than cocotb. ChiselVerify improves upon these existing solutions
by enabling direct use of high-level aspects of a Chisel design. All of this
is done with a low performance overhead, averaging at 3.5% across the
different functionalities. Iyer et al. [48] have shown that ChiselTest’s
command api performs better than cocotb’s by a factor of 2x. However
we have seen that, given its low startup time, ChiselVerify still remains
slower, in terms of post-startup runtime, than UVM. With the efforts
presented in Iyer et al.’s work, we can expect the performance of
ChiselTest, and thus also ChiselVerify, to improve in the near future.

8 https://support.xilinx.com/s/article/1070861.
12
7. Conclusion

In this paper, we proposed well-integrated tools for verifying Chisel
designs directly inside of a ChiselTest test bench. These include func-
tional coverage and constrained random verification tools, as well as
bus functional models all under a single library named ChiselVerify.
We also proposed formal verification methods, which are directly in-
tegrated into Chisel3, allowing for bounded model checking to be
done in Chisel. Using these tools on three different designs of varying
complexity, we obtained similar results to those of using UVM or
cocotb, all while requiring less verification code. We also showed that
the additional use of our tools within a ChiselTest test bench induces
very little performance overhead. With this, we enabled functional
coverage, constrained random verification, bus functional models and
formal verification techniques to be used in the Chisel/Scala ecosystem.
This will hopefully improve current verification engineering efficiency
all while easing the way for software engineers to join the hardware
verification world.

Source access

This work is in open source and hosted at GitHub: https://github.
com/chiselverify/chiselverify. We plan also to regularly publish it on
Maven.9 The formal verification methods proposed in this work are
integrated into Chisel3: https://github.com/chipsalliance/chisel3

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data/code for this work is open source and freely available.

Acknowledgments

We would like to express our thanks to the members of the Chisel
community for their inspiration and help. In particular we are grateful
to Tom Alcorn, Daniel Kasza, Jack Koenig, Deborah Soung, Chick
Markley, Schuyler Eldridge and Jiuyang Liu. We would also like to
thank Clair Wolf for all she has done to advance the open-source
Verilog ecosystem. Without yosys as an inspiration we would have
never been able to conduct this work. This work was supported in
part by Semiconductor Research Corporation and through NSF, USA
grants CCF-1900968, CCF-1908870, and CNS-1817122. Any opinions,
findings, conclusions, or recommendations in this paper are solely those
of the authors and do not necessarily reflect the position or the policy
of the sponsors.

References

[1] W.J. Dally, Y. Turakhia, S. Han, Domain-specific hardware accelerators,
Commun. ACM 63 (7) (2020) 48–57.

[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R.C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, D. Thomas, Manifesto for Agile software
development, 2001, https://agilemanifesto.org/.

[3] J.L. Hennessy, D.A. Patterson, A new golden age for computer architecture,
Commun. ACM 62 (2) (2019) 48–60.

[4] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J.
Wawrzynek, K. Asanovic, Chisel: constructing hardware in a Scala embedded
language, in: The 49th Annual Design Automation Conference (DAC 2012), ACM,
San Francisco, CA, USA, 2012, pp. 1216–1225.

9 https://mvnrepository.com/artifact/io.github.chiselverify/chiselverify.

https://support.xilinx.com/s/article/1070861
https://github.com/chiselverify/chiselverify
https://github.com/chiselverify/chiselverify
https://github.com/chiselverify/chiselverify
https://github.com/chipsalliance/chisel3
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb1
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb1
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb1
https://agilemanifesto.org/
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb3
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb3
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb3
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb4
https://mvnrepository.com/artifact/io.github.chiselverify/chiselverify


Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.
[5] M. Schoeberl, Digital Design with Chisel, Kindle Direct Publishing, 2019,
available at https://github.com/schoeberl/chisel-book.

[6] R. Lin, K. Laeufer, Chiseltest, 2022, https://github.com/ucb-bar/chiseltest.
[7] M. Schoeberl, M. Petersen, Leros: The return of the accumulator machine, in: M.

Schoeberl, T. Pionteck, S. Uhrig, J. Brehm, C. Hochberger (Eds.), Architecture of
Computing Systems - ARCS 2019 - 32nd International Conference, Proceedings,
Springer, 2019, pp. 115–127.

[8] A. Dobis, T. Petersen, H.J. Damsgaard, K.J.H. Rasmussen, E. Tolotto, S.T. An-
dersen, R. Lin, M. Schoeberl, ChiselVerify: An open-source hardware verification
library for Chisel and Scala, in: 2021 IEEE Nordic Circuits and Systems Con-
ference (NORCAS): NORCHIP and International Symposium of System-on-Chip
(SoC), 2021.

[9] A.M. Smith, J. Mayo, R.C. Armstrong, R. Schiek, P.E. Sholander, T. Mei,
Digital/analog cosimulation using CocoTB and xyce, 2018, http://dx.doi.org/10.
2172/1488489, [Online]. Available: https://www.osti.gov/biblio/1488489.

[10] C. Spear, SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features, Springer Science & Business Media, 2008.

[11] PSL and SVA Assertion Languages, Springer Netherlands, Dordrecht, 2008, pp.
55–82, [Online]. Available: https://doi.org/10.1007/978-1-4020-8586-4_4.

[12] C. Dax, F. Klaedtke, M. Lange, On regular temporal logics with past, Acta Inform.
47 (4) (2010) 251–277, [Online]. Available: https://doi.org/10.1007/s00236-
010-0118-3.

[13] Accellera Systems Initiative (Accellera), Universal verification methodology
(UVM) 1.2 user’s guide, 2015, https://www.accellera.org/images/downloads/
standards/uvm/uvm_users_guide_1.2.pdf.

[14] M. Naylor, S. Moore, A generic synthesisable test bench, in: 2015 ACM/IEEE
International Conference on Formal Methods and Models for Codesign
(MEMOCODE), 2015, http://dx.doi.org/10.1109/MEMCOD.2015.7340479.

[15] L. Truong, S. Herbst, R. Setaluri, M. Mann, R. Daly, K. Zhang, C. Donovick,
D. Stanley, M. Horowitz, C. Barrett, P. Hanrahan, Fault: A python embedded
domain-specific language for metaprogramming portable hardware verification
components, in: S.K. Lahiri, C. Wang (Eds.), Computer Aided Verification,
Springer International Publishing, Cham, 2020, pp. 403–414.

[16] C. Wolf, Yosys Open SYnthesis Suite, https://github.com/YosysHQ/yosys.
[17] C. Wolf, Design and Implementation of the Yosys Open SYnthesis Suite (Bachelor

Thesis), Vienna University of Technology, 2013.
[18] R. Brayton, A. Mishchenko, ABC: An academic industrial-strength verification

tool, in: T. Touili, B. Cook, P. Jackson (Eds.), Computer Aided Verification,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 24–40.

[19] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, K. Sen, RFUZZ: Coverage-directed
fuzz testing of RTL on FPGAs, in: 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2018, pp. 1–8, http://dx.doi.org/10.1145/
3240765.3240842.

[20] A. Dobis, T. Petersen, M. Schoeberl, Functional coverage-driven fuzzing for
Chisel designs, in: Proceedings of the Fourth Workshop on Open-Source EDA
Technology (WOSET), 2021.

[21] K. Ruep, D. Groß e, SpinalFuzz: Coverage-guided fuzzing for SpinalHDL designs,
in: European Test Symposium, 2022.

[22] S. Deng, D. Gümüşoğlu, W. Xiong, S. Sari, Y.S. Gener, C. Lu, O. Demir, J. Szefer,
SecChisel framework for security verification of secure processor architectures,
in: Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy, 2019.

[23] L. De Moura, N. Bjø rner, Z3: An efficient SMT solver, in: International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, 2008.

[24] S. Yu, Y. Dong, J. Liu, Y. Li, Z. Wu, D.N. Jansen, L. Zhang, CHA: Supporting
SVA-like assertions in formal verification of Chisel programs (tool paper), in:
International Conference on Software Engineering and Formal Methods, Springer,
2022.

[25] A.B. Mehta, Constrained random verification (CRV), in: ASIC/SoC Functional
Design Verification: A Comprehensive Guide To Technologies and Methodologies,
Springer International Publishing, Cham, 2018, pp. 65–74, [Online]. Available:
https://doi.org/10.1007/978-3-319-59418-7_5.

[26] ARM, AMBA AXI and ACE protocol specification AXI3, AXI4, and AXI4-lite ACE
and ACE-lite, 2011, https://developer.arm.com/documentation/ihi0022/e/.

[27] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J.
Wawrzynek, K. Asanović, Chisel: Constructing hardware in a scala embedded
language, in: Design Automation Conference, 2012.

[28] K. Asanović, R. Avižienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H.
Cook, P. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J.
Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D.
Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, A. Waterman, The Rocket
Chip Generator, Tech. Rep. UCB/EECS-2016-17, 2016.

[29] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt,
C. Markley, J. Lawson, J. Bachrach, Reusability is FIRRTL ground: Hardware
construction languages, compiler frameworks, and transformations, in: 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2017,
pp. 209–216, http://dx.doi.org/10.1109/ICCAD.2017.8203780.

[30] Veripool, Verilator, https://www.veripool.org/wiki/verilator.
13
[31] A. Dobis, H.J. Damsgaard, E. Tolotto, K. Hesse, T. Petersen, M. Schoeberl,
Enabling coverage-based verification in Chisel, in: 27th IEEE European Test
Symposium (ETS 2022); Conference Location: Barcelona, Spain; Conference Date:
May 23-27, 2022; Conference lecture on May 25, 2022, 2022-05.

[32] K. Kuchcinski, R. Szymanek, JaCoP - Java constraint programming solver, in:
CP Solvers: Modeling, Applications, Integration, and Standardization, co-located
with the 19th International Conference on Principles and Practice of Constraint
Programming ; Conference date: 16-09-2013, 2013.

[33] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu, et al., Bounded model
checking, Adv. Comput. 58 (2003).

[34] J. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers,
in: Handbook of Satisfiability, 2021.

[35] C. Barrett, R. Sebastiani, S.A. Seshia, C. Tinelli, Satisfiability modulo theories,
in: Handbook of Satisfiability, 2008.

[36] K.L. McMillan, The SMV system, in: Symbolic Model Checking, 1993.
[37] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri, NuSMV: a new symbolic model

checker, Int. J. Softw. Tools Technol. Transf. (2000).
[38] A. Mishchenko, et al., ABC: A system for sequential synthesis and verification,

2007, URL http://www.eecs.berkeley.edu/alanmi/abc.
[39] A. Niemetz, M. Preiner, C. Wolf, A. Biere, Btor2, BtorMC and boolector 3.0, in:

International Conference on Computer Aided Verification, 2018.
[40] A. Biere, K. Heljanko, S. Wieringa, AIGER 1.9 and beyond, 2011.
[41] C. Wolf, SymbiYosys, [Online]. Available: https://github.com/YosysHQ/

SymbiYosys.
[42] C. Barrett, P. Fontaine, C. Tinelli, The SMT-LIB Standard: Version 2.6, Tech.

Rep., 2017, Available at www.SMT-LIB.org.
[43] IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and

Verification Language, IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012),
2018.

[44] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton,
E. Amaro, C. Schmidt, A. Chopra, et al., FireSim: FPGA-accelerated cycle-exact
scale-out system simulation in the public cloud, in: ISCA, 2018.

[45] Microchip, 2021, https://www.microchip.com/, Accessed: 2021-08-29.
[46] M. Eilers, P. Müller, Nagini: A static verifier for python, in: H. Chockler,

G. Weissenbacher (Eds.), Computer Aided Verification, Springer International
Publishing, Cham, 2018, pp. 596–603.

[47] P. Müller, M. Schwerhoff, A.J. Summers, Viper: A verification infrastructure for
permission-based reasoning, in: B. Jobstmann, K.R.M. Leino (Eds.), Verification,
Model Checking, and Abstract Interpretation (VMCAI), in: LNCS, vol. 9583,
Springer-Verlag, 2016, pp. 41–62.

[48] V. Iyer, K. Laeufer, K. Sen, B. Nikolić, A high performance multi-threaded RTL
testbench API, in: OSCAR22, 2022.

Andrew Dobis is a Masters student in Computer Science at
ETH Zurich. After obtaining his B.Sc. in Computer Science
from EPFL in 2020, he worked at the Technical University
of Denmark (DTU)’s Embedded Systems Group as a Research
Assistant. His research focused on improving the verification
capabilities of the Chisel Hardware Construction language,
which lead to the creation of the ChiselVerify verification
library. His current research interests are more geared
towards formal verification.

Kevin Laeufer is a Ph.D. candidate in the Department of
Electrical Engineering and Computer Sciences at UC Berke-
ley. He received a B.Sc. degree in electrical engineering
from RWTH Aachen University in 2015. He is interested in
designing new languages, compilers and tools to automate
programming, testing and design tasks. He is a major
contributor to Chisel, in particular to the FIRRTL hardware
compiler and the ChiselTest verification library.

Hans Jakob Damsgaard received the B.Sc. degree in elec-
trical engineering in 2019 and the M.Sc. degree in computer
science and engineering in 2021 as part of the Honours
programme at the Technical University of Denmark, DTU.
Currently, he is pursuing a Ph.D. on approximate reconfig-
urable accelerators for secure edge computing as part of the
APROPOS project at Tampere University. His research inter-
ests include approximate hardware accelerators for neural
networks, networks-on-chip, and computer architecture.

https://github.com/schoeberl/chisel-book
https://github.com/ucb-bar/chiseltest
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb8
http://dx.doi.org/10.2172/1488489
http://dx.doi.org/10.2172/1488489
http://dx.doi.org/10.2172/1488489
https://www.osti.gov/biblio/1488489
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb10
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb10
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb10
https://doi.org/10.1007/978-1-4020-8586-4_4
https://doi.org/10.1007/s00236-010-0118-3
https://doi.org/10.1007/s00236-010-0118-3
https://doi.org/10.1007/s00236-010-0118-3
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
http://dx.doi.org/10.1109/MEMCOD.2015.7340479
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb15
https://github.com/YosysHQ/yosys
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb17
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb17
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb17
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb18
http://dx.doi.org/10.1145/3240765.3240842
http://dx.doi.org/10.1145/3240765.3240842
http://dx.doi.org/10.1145/3240765.3240842
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb20
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb20
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb20
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb20
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb20
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb21
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb21
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb21
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb23
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb23
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb23
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb23
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb23
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb24
https://doi.org/10.1007/978-3-319-59418-7_5
https://developer.arm.com/documentation/ihi0022/e/
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb28
http://dx.doi.org/10.1109/ICCAD.2017.8203780
https://www.veripool.org/wiki/verilator
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb33
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb33
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb33
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb34
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb34
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb34
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb35
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb35
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb35
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb36
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb37
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb37
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb37
http://www.eecs.berkeley.edu/alanmi/abc
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb39
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb39
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb39
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb40
https://github.com/YosysHQ/SymbiYosys
https://github.com/YosysHQ/SymbiYosys
https://github.com/YosysHQ/SymbiYosys
http://www.SMT-LIB.org
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb43
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb43
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb43
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb43
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb43
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb44
https://www.microchip.com/
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb46
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb46
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb46
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb46
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb46
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb48
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb48
http://refhub.elsevier.com/S0141-9331(22)00266-6/sb48


Microprocessors and Microsystems 96 (2023) 104737A. Dobis et al.
Tjark Petersen is a student at DTU in the final semester
of the B.Sc. in electrical engineering. His research inter-
est mainly revolves around digital design using Chisel,
embedded systems and computer architecture.

Kasper Hesse is a Masters student in Computer Science and
Engineering at the Technical University of Denmark (DTU).
His work at DTU’s Embedded Systems Group was mainly on
exploring UVM and C-Scala co-simulation using the JNI.

Enrico Tolotto obtained an M.Sc. in Computer Science
from the Technical University of Denmark in 2021. For
his Masters thesis, Enrico worked on enabling constraint
programming directly in Scala.
14
Simon Thye Andersen obtained an M.Sc. in Computer
Science from the Technical University of Denmark in 2020.
After graduating, he worked on converting VHDL to Verilog
code to enable the use of VHDL with Chisel testbenches. He
now currently works at Teledyne RESON as a Firmware and
Hardware engineer.

Richard Lin obtained a Ph.D. in Computer Science from
UC Berkeley in 2021. His research focuses on open-
source electronics design with a programming languages
and human–computer interaction focus, and he is a major
contributor to Chisel and the ChiselTest framework. He is
currently a post-doctoral researcher at UCLA.

Martin Schoeberl is Professor at the Technical University
of Denmark (DTU), and has been since 2010. Before that,
he was an Assistant Professor at the Institute of Computer
Engineering at TU Vienna, where he had obtained his
Ph.D. in 2005. His research interests are mainly in time-
predictable computer architecture, real-time systems, and
more recently hardware verification. His work on time-
predictable architectures lead to the EC funded project
T-CREST (Time-predictable Multi-Core Architecture for Em-
bedded Systems). He is also a contributor to Chisel, and has
been teaching Chisel in his digital design courses at DTU.
He is the author of ‘‘Digital Design with Chisel’’.


	Verification of Chisel Hardware Designs with ChiselVerify
	Introduction
	Related Work
	Background
	Verification of Digital Designs
	Functional coverage
	Constrained Random Verification
	Bus Functional Models

	The Chisel Hardware Construction Language
	Testing Chisel Designs

	Verification with Chisel
	Coverage in Chisel
	Constrained Random Verification
	ChiselVerify's Constraint Programming DSL

	Verification with Bus Functional Models
	Introduction to AXI4
	Implementation
	A Test Example

	Future Work

	Formal Verification
	Example: Verifying a GCD Circuit
	Example: Verifying the Read Behavior of a RTL Memory
	A Formal Backend for FIRRTL
	Reset Assumptions
	Simple Temporal Assertions

	Evaluation
	Evaluation Circuits
	Leros Accumulator ALU
	An Arbitration Circuit
	Sorting in Hardware

	Evaluation Results
	Verification Verbosity
	ChiselVerify Performance Overhead
	ChiselVerify and UVM Performance Comparison
	Evaluation Summary


	Conclusion
	Source Access

	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


