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Skeletal dysplasias are often well characterized, and only a minority of the cases remain 
unsolved after a thorough analysis of pathogenic variants in over 400 genes that are 
presently known to cause monogenic skeletal diseases. Here, we describe an 11-year-old 
Finnish girl, born to unrelated healthy parents, who had severe short stature and a 
phenotype similar to odontochondrodysplasia (ODCD), a monogenic skeletal dysplasia 
caused by biallelic TRIP11 variants. The family had previously lost a fetus due to severe 
skeletal dysplasia. Exome sequencing and bioinformatic analysis revealed an oligogenic 
inheritance of a heterozygous nonsense mutation in TRIP11 and four likely pathogenic 
missense variants in FKBP10, TBX5, NEK1, and NBAS in the index patient. Interestingly, 
all these genes except TBX5 are known to cause skeletal dysplasia in an autosomal 
recessive manner. In contrast, the fetus was found homozygous for the TRIP11 mutation, 
and achondrogenesis type IA diagnosis was, thus, molecularly confirmed, indicating two 
different skeletal dysplasia forms in the family. To the best of our knowledge, this is the 
first report of an oligogenic inheritance model of a skeletal dysplasia in a Finnish family. 
Our findings may have implications for genetic counseling and for understanding the yet 
unsolved cases of rare skeletal dysplasias.
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INTRODUCTION

Skeletal dysplasias are genetically and phenotypically heterogenous diseases due to abnormal 
development of bone and cartilage. So far, the molecular etiology of over 92% of skeletal 
dysplasias has been explained by mutations in over 400 genes, and the conditions are 
mostly described as single-gene diseases (Mortier et  al., 2019). However, a small group 
of genetically unsolved cases can be  explained by mechanisms such as variable expressivity, 
incomplete or non-penetrance, methylation defects, somatic mosaicism, and di- or oligogenic 
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inheritance models. Some of these mechanisms have been 
shown to cause skeletal dysplasia in a rather small number 
of families (Maupetit-Mehouas et al., 2010; Thiel et al., 2011; 
Mortier et  al., 2019; Costantini et  al., 2020), indicating that 
different genetic mechanisms can result in phenotypes that 
are similar to the ones explained by Mendelian inheritance 
models. Although oligogenic inheritance was commonly 
accepted to explain complex disorders, cumulative effect of 
rare variants in two or more genes acting in the same 
network and tissues can cause a phenotype similar to a 
monogenic disease (Kim et  al., 2019).

Despite their phenotypic differences, achondrogenesis type 
IA (Smits et  al., 2010; ACG1A; MIM 200600) and 
odontochondrodysplasia (Wehrle et  al., 2019; ODCD; MIM 
184260) are both caused by mutations of thyroid hormone 
receptor interactor 11 (TRIP11), which encodes the Golgi-
associated microtubule-binding protein 210 (GMAP-210). 
GMAP-210 plays a pivotal role in maintaining the structure 
of the Golgi complex, in membrane tethering, and in vesicle 
trafficking (Smits et  al., 2010; Sato et  al., 2015). GMAP-210 
is also involved in protein trafficking from the Golgi to the 
primary cilium by interacting with the intraflagellar transport 
20 (IFT-20; Follit et  al., 2008). While biallelic loss-of-function 
mutations of TRIP11 lead to ACG1A (Smits et  al., 2010), 
compound-heterozygous hypomorphic TRIP11 mutations cause 
ODCD, a milder condition than ACG1A, which is usually 
perinatally lethal. Thus, ACG1A and ODCD are caused by a 
complete and a partial loss of GMAP-210 function, respectively.

In this report, we  describe a Finnish family in which a 
fetus and the index child are affected by seemingly two different 
skeletal dysplasias. The phenotypes of the fetus and the index 
patient are explained by monogenic and oligogenic inheritance 
models after a detailed bioinformatic analysis of the exome 
sequencing data.

SUBJECTS AND METHODS

Study Approval and Sample Collection
Our study was approved by the ethics committee of the Helsinki 
University Central Hospital and carried out according to the 
ethical principles of the Declaration of Helsinki (World Medical 
Association, 2013). The index patient was evaluated at the Children’s 
Hospital, Helsinki University Hospital for suspicion of skeletal 
dysplasia. Other available family members were also recruited. 
All subjects or their legal guardians gave an informed consent 
before participation in the study. Genomic DNA was extracted 
from the blood of the affected individual, healthy parents, and 
a sibling. Additionally, DNA was extracted from a formalin-fixed 
paraffin-embedded fetal tissue of the family’s deceased fetus.

Methods
Exome Sequencing
To identify the genetic cause of skeletal dysplasia in this 
family, we  carried out exome sequencing (ES). Libraries 
were prepared, and the data were processed as previously 
described (Taylan et  al., 2016). Minor allele frequency (MAF) 

from genome aggregation database (gnomAD; Karczewski et  al., 
2020) and SweGen (Ameur et  al., 2017) databases were used.

Variants were filtered for Mendelian inheritance models, 
MAF < 0.01 and impact severity equal to either high or medium 
in GEMINI (Paila et al., 2013). Additionally, a skeletal dysplasia 
panel (version 2.32) from Genomics England PanelApp (Martin 
et  al., 2019) was used to filter variants in known skeletal 
dysplasia genes (Supplementary Table S1).

The fetal sample was only used for Sanger sequencing to 
investigate the presence of one candidate variant.

Bioinformatic Analysis for Oligogenic Inheritance 
and Gene Network Analysis
The Oligogenic Resource for Variant AnaLysis (ORVAL) 
platform (Renaux et  al., 2019) was used, according to the 
developers’ recommendations, to predict the additive effect 
of rare variants affecting more than two genes and to provide 
evidence for oligogenic inheritance. Both heterozygous and 
homozygous rare variants in skeletal dysplasia genes were 
used as input (Supplementary Table S2), and data were 
analyzed in ORVAL according to the recommendations of 
the developers (Renaux et  al., 2019).

Candidate variants suggesting oligogenic inheritance were 
further evaluated for pathogenicity using VarSome (Kopanos 
et  al., 2019) and model organism aggregated resources for 
rare variant exploration (MARRVEL; Wang et al., 2017). Network 
analysis of the candidates was performed using GeneCodis 
4.0 (Tabas-Madrid et  al., 2012). Hypergeometric test and false 
discovery rate (FDR) < 0.05 were used to determine the enriched 
GO biological processes.

RESULTS

Clinical Report
The index girl is the first child born to healthy 
non-consanguineous Finnish parents who also have a healthy 
son. The couple’s first pregnancy was terminated at 21  weeks 
of gestation due to fetal ultrasounds showing extremely short 
tubular bones and narrow thorax; postmortem radiological 
findings were consistent with ACG1A (Figure  1A).

In the index patient, fetal ultrasounds detected short tubular 
bones, but head and thorax circumferences were normal. The 
pregnancy and delivery at 40 weeks of gestation were otherwise 
uneventful, and birth measurements were normal: weight 3,570 g 
(+0.1 SD), length 47  cm (−1.8 SD), and head circumference 
36.9 cm (+0.9 SD). She had a narrow thorax and short extremities, 
but skeletal features were not consistent with ACG1A. Abdominal, 
heart, and brain ultrasounds were normal. Genetic testing for 
FGFR3, RMRP, and COL2A1 mutations was negative.

She developed progressive short stature, and at the age of 
1.8  years, her length was 70.3  cm (−5.4 SD) and head 
circumference 49  cm (+0.6 SD). Her forehead was mildly 
prominent, but facial features were normal. The primary teeth 
were translucent and brownish consistent with dentinogenesis 
imperfecta (Figure  1B). During infancy, the limbs showed 
rhizomelic shortening, the thorax was narrow, and the ribs 
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short (Figure 1C). She had joint laxity and mild tibial bowing. 
Neurological, gross, and fine motor skills were normal. 
Radiographs revealed mild frontal bossing, trident configuration 
of the pelvis, lacy iliac wings, abnormal vertebrae with coronal 
clefts and severe metaphyseal abnormalities with cupping in 
the tubular bones (Figures  1D–J). Her spondylometaphyseal 
dysplasia with dentinogenesis imperfecta suggested the diagnosis 
of odontochondrodysplasia.

As a toddler, she had recurrent middle ear infections but 
no pneumonia or episodes of wheezing. The oscillometry was 
normal. Laboratory tests including full blood count, 
immunoglobulins, plasma phosphate, alkaline phosphatase, 
calcium, and serum 25-hydroxy vitamin D as well as kidney 
and liver function were all normal.

Her permanent dentition had no signs of dentinogenesis 
imperfecta (Figure 1K), but she developed mesomelic shortening 

FIGURE 1 | (A) Babygram of the deceased fetus shows extremely short tubular bones, very narrow thorax, horizontally oriented short ribs, and retarded ossification 
of the vertebrae. (B) Patient’s primary dentition showing dentinogenesis imperfecta. (C)  The index patient at 3.6 yrs has short neck and limbs, redundant skin folds in 
the arms, and protuberant abdomen. (D) The skull of the index shows mild frontal bossing. (E) Patient’s pelvis showing trident configuration of the acetubulum and lacy 
iliac wings as well as short femoral necks with metaphyseal irregularities. (F) Patient’s spine displaying abnormal vertebrae with coronal clefts.  (G–I) X-rays showing 
short and broad humerus with metaphyseal changes and shortening of the tibia and ulna as well as flared metaphyses. (J) The lower limb of the index patient displays 
short long bones, short femoral neck, marked metaphyseal irregularities, and normal epiphyses. (K) Patient’s permanent dentition with no signs of dentinogenesis 
imperfecta. (L) The index at the age of 8 yrs has normal facial features, short neck, redundant skin folds in the arms, narrow chest, prominent sternum, short limbs, 
mesomelic shortening of the upper arm and brachydactyly. (M) At 10.6 yrs, the index patient has marked metaphyseal irregularities of the tibia and ulna. (N) At 10.6 
yrs, overgrowth of the fibula is noticed. (O,P) Hands of the index at 1.8 and 10.6 yrs. Brachydactyly and distinctive changes with deeper cupping of the metaphyses 
are evident. Progressive metaphyseal changes of the distal radius and ulna are also seen at 10.6 yrs. F, fetus; P, index patient; wks, weeks; yrs, years.
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of the limbs and mild pectus carinatum (Figure 1L). Her thorax 
was narrow and short. Her neck was short and broad, but there 
was no instability of the cervical spine. Her thorax was narrow 
and short, her long bones featured metaphyseal irregularities 
(Figures  1M,N). Overgrowth of the fibula was also noticed 
(Figure  1N). Due to progressive lumbar kyphosis and scoliosis, 
brace treatment was started at 11  years. However, scoliosis 
progressed (Cobb angle of 44 degrees), and a spinal surgery 
has been scheduled. Proneness to respiratory infections alleviated 
at school age. Neuro-ophthalmological screenings and hearing 
have been normal.

At 11.7  years, she is in early puberty (Tanner M2), and 
her height is 114.7  cm (−5.3 SD). She has brachydactyly 
(Figures 1O,P), while her hair, eyelashes, and nails are normal. 

Her cognitive development has been normal with very good 
school performance.

Genetic Findings
Exome sequencing included the index patient, parents, and 
the healthy sibling (Figure 2A). Extensive analysis of the exome 
for Mendelian inheritance models identified rare variants fitting 
to autosomal recessive pattern with unknown significance in 
five genes not yet linked to skeletal dysplasia 
(Supplementary Table S3). Besides, one de novo variant of 
unknown significance was identified. Comprehensive evaluation 
of existing data on the function and expression pattern of 
each gene did not provide evidence for a connection between 
gene defects and patient’s phenotype.

A

D E

F

B C

FIGURE 2 | (A) Pedigree of the family and rare mutations identified in the genes presently linked to skeletal dysplasia. (B) Biallelic TRIP11 mutations that are 
presently known to cause ACG1A and ODCD. The mutation that has also been identified in the present study is marked with red. (C) Gene network showing the 
interaction between the genes in which rare mutations have been identified. (D) Genes affected by variants suggesting digenic inheritance. (E) Biological processes 
in which the genes suggesting oligogenic inheritance are involved. (F) Sanger sequencing of the TRIP11 region affected by the nonsense p.(Leu1321*) mutation. 
ACG1A, achondrogenesis type IA; ODCD, odontochondrodysplasia.
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Eighty-seven rare variants in skeletal dysplasia genes were 
identified (Supplementary Table S2), and seven of them 
(Supplementary Table S4) were classified as high or medium 
impact variant by Variant Effect Predictor (McLaren et  al., 
2016). However, none of them alone could explain the phenotype 
because no single variant in a gene was fitting into the expected 
inheritance model for the associated disease.

Based on suspicion of odontochondrodysplasia in the index 
patient and of achondrogenesis type 1A in the fetus, TRIP11 
was an obvious candidate gene. However, ES data indicated 
the presence of a monoallelic nonsense mutation, p(Leu1321*), 
in the index patient (Figure 2A), which was previously reported 
(Wehrle et  al., 2019; Figure  2B). As the initial analysis failed 
to identify a single causative gene for the patient’s phenotype, 
we  explored the potential digenic or oligogenic pathogenic 
effects of the 87 rare variants. Interestingly, five monoallelic 
variants in TRIP11, TBX5, NEK1, FKBP10, and NBAS showed 
high support scores (>65) in ORVAL (Figure  2C). Moreover, 
different digenic combinations of these genes predicted as 
disease causing with a high confidence (Figure  2D; 
Supplementary Table S5). As presented in Table  1, all the 
variants involved highly conserved amino acids and were predicted 
as deleterious or disease causing by many in silico prediction 
tools. The nonsense TRIP11 variant was either maternally or 
paternally inherited, as both parents were heterozygous for the 
same variant (Figure  2A). While FKBP10 and TBX5 variants 
were maternally inherited, NEK1 and NBAS variants were 
paternally inherited. The healthy brother inherited only the 
maternal FKBP10 and TBX5 variants. The missense variant in 
FKBP10 also affects the splice donor site in exon 4; thus, it 
is likely to lead to a splicing defect. As the parents and the 
brother are healthy, digenic combinations of these variants were 
excluded as having a pathogenic effect. Since a unique combination 
of these five variants exclusively exists in the patient, oligogenic 
inheritance could be the sole plausible model that could explain 
the peculiar phenotype of the patient (Figure  2C).

Enrichment analysis of the oligogenic combination network 
for biological processes showed the enrichment for cilium assembly, 
bone and cartilage development, cell projection organization, 
collagen fibril organization, in utero embryonic development, 
and chondrocyte differentiation involved in endochondral bone 
morphogenesis (Figure  2E; Supplementary Table S6).

As both parents were heterozygous carriers for the nonsense 
TRIP11 mutation, which has already been linked to ACG1A 
(Wehrle et al., 2019), the fetus was independently investigated 
by Sanger sequencing for the presence of this mutation. 
Not surprisingly, the fetus was homozygous for the TRIP11 
mutation and the ACG1A diagnosis, which was originally 
suspected on the radiological findings, and was finally 
confirmed at molecular level (Figure  2F).

DISCUSSION

Although skeletal dysplasias are both genetically and 
phenotypically heterogeneous (Mortier et  al., 2019), so far, the 
majority are described as monogenic. However, complex biological 

pathways participate in the development and maintenance of 
bone and cartilage tissue. Therefore, any minor disturbance 
caused by more than one gene can collectively have a noticeable 
impact on the skeletal phenotype.

Here, we describe five monoallelic variants affecting important 
pathways involved in bone development in an 11-year-old girl 
with a phenotype characterized by short stature, dentinogenesis 
imperfecta in the primary dentition, narrow thorax, short ribs, 
scoliosis, and mesomelic shortening of the limbs. The phenotype 
resembles ODCD, which is caused by biallelic TRIP11 mutations. 
Since the patient only harbored a heterozygous TRIP11 mutation, 
we  searched for other potential gene variants contributing to 
her skeletal dysplasia.

Some of the patient’s clinical features overlap with diseases 
caused by mutations in FKBP10, NEK1, TBX5, and NBAS 
(Supplementary Table S7). Biallelic mutations of FKBP10 
cause osteogenesis imperfecta (MIM 610968; Alanay et  al., 
2010) or Bruck syndrome (MIM 259450; Shaheen et al., 2010), 
two allelic conditions with bone fragility and skeletal 
impairments. FKBP10 encodes the 65-kDa FK506-binding 
protein, which acts as a molecular chaperon of type I collagen, 
the most abundant protein within the bone extracellular matrix 
(Barnes et  al., 2012). Monoallelic variants of the T-Box 
transcription factor 5 (TBX5) are responsible for the  
Holt-Oram syndrome (MIM 142900), which is characterized 
by skeletal impairments of the upper limbs as well as congenital 
heart defects (Li et  al., 1997). Since the mother and brother 
are healthy, and the patient does not have any heart-related 
problems, the TBX5 variant alone was excluded as being disease 
causing for the Holt-Oram syndrome in this family. However, 
this variant could act as a genetic modifier by altering the 
gene expression of the other genes as it has been shown in 
other families with diseases caused by oligogenic inheritance 
(Gifford et  al., 2019). Biallelic variants in both NEK1 and 
DYNC2H1 cause short-rib thoracic dysplasia (MIM 263520 
and 613091; Dagoneau et al., 2009; Thiel et al., 2011), a disease 
that resembles the one observed in the index patient. NEK1 
encodes the serine/threonine-protein kinase Nek1, and it plays 
a pivotal role in DNA damage repair, in regulating the cell 
cycle, as well as in the formation of the primary cilium (Shalom 
et al., 2008; Chen et al., 2011). Interestingly, digenic inheritance 
of a heterozygous NEK1 variant and a heterozygous variant 
in the cilia gene encoding a large dynein protein (DYNC2H1) 
has been reported in a patient with short-rib thoracic dysplasia 
(Thiel et  al., 2011). Biallelic variants of NBAS, encoding the 
neuroblastoma-amplified gene protein, are linked to SOPH 
syndrome (MIM 614800), characterized by short stature, optic 
nerve atrophy, and Pelger-Huet anomaly (Maksimova et  al., 
2010). This gene is involved in the Golgi-to-endoplasmic 
reticulum (ER) retrograde transport (Aoki et  al., 2009). None 
of the variants alone is sufficient to explain the phenotype 
of the patient, and the described OMIM phenotypes are not 
the same as the one seen in the patient. However, the synergistic 
cumulative effect of these variants could lead to the patient’s 
skeletal phenotype. In particular, the missense variant identified 
in FKBP10 has a high combined annotation dependent depletion 
(CADD) score, and it is classified as likely pathogenic according 
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TABLE 1 | Overview of the rare variants in skeletal dysplasia genes predicted to fit into oligogenic inheritance in the index patient.

Rare variants

Chromosome 17 14 2 4 12

Coordinate 39,976,713 92,470,358 15,470,841 170,520,286 114,837,349
Reference C A T T C
Alternative T T C C A
dbSNP id rs146422412 rs745372938 rs143724414 rs201350526 rs77357563
Gene FKBP10 TRIP11 NBAS NEK1 TBX5

OMIM Phenotype

Bruck syndrome 1 (MIM 259450)

Osteogenesis imperfecta, type XI 
(MIM 610968)

Achondrogenesis type 1A (MIM 
200600)

Osteochondrodysplasia  
(MIM 184260)

Infantile liver failure syndrome 2 
(MIM 616483)

Short stature, optic nerve atrophy, 
and Pelger-Huet anomaly  
(MIM 614800)

Short-rib thoracic dysplasia 6 with or 
without polydactyly (MIM 263520)

Holt-Oram syndrome  
(MIM 142900)

Variant at mRNA level NM_021939.4:c.1256C > T NM_004239.4:c.3962 T > A NM_015909.4:c.4228A > G NM_001199397.3:c.277A > G NM_181486.4:c.331G > T
Variant at amino acid level p.(Ser419Leu) p.(Leu1321Ter) p.(Thr1410Ala) p.(Asn93Asp) p.(Asp111Tyr)
Impact Missense, near splice site Stop-gain Missense Missense Missense
Impact severity Medium High Medium Medium Medium
ACMG Classification Likely pathogenic Pathogenic Uncertain significance Uncertain significance Benign
PolyPhen Probably damaging NA Possibly damaging Probably damaging Probably damaging
SIFT Deleterious NA Deleterious Deleterious Deleterious
EIGEN Pathogenic Benign Pathogenic Pathogenic Pathogenic
FATHMM-MKL Damaging Neutral Damaging Damaging Damaging
Mutation Taster Disease causing Disease causing Disease causing Disease causing Disease causing
BayesDel noAF Damaging Damaging Tolerated Tolerated Damaging
PROVEAN Damaging NA Damaging Damaging Damaging
M-CAP Damaging NA Damaging Damaging Damaging
CADD v1.4 35 35 23.4 24.6 25.9
DANN 0.9993 0.9676 0.9975 0.9981 0.9953
dbNSFP rank score 0.754 0.314 0.562 0.738 0.676
REVEL 0.539 NA 0.108 0.455 0.874
GERP 4.889999866 −1.470000029 4.449999809 5.909999847 4.739999771
MAF gnomad all 0.00110887 0.000146471 0.00144686 0.000618097 0.00337435
MAF gnomad Finnish 0.00131293 0.001526032 0.000852018 0.006269168 0.000852018
Heterozygous Mother, index, brother Father, mother, index, brother Father, index Father, index Mother, index, brother

OMIM, Online Mendelian inheritance in man; ACGM, American College of Medical Genetics; SIFT, sorting intolerant from tolerant; PROVEAN, protein variation effect analyzer; M-CAP, Mendelian clinically applicable pathogenicity; 
CADD, combined annotation dependent depletion; dbNSFP, database non-synonymous single-nucleotide variants; REVEL, rare exome variant ensemble learner; GERP, genomic evolutionary rate profiling; MAF, minor allele frequency; 
and gnomAD, genome aggregation database.
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to the American College of Medical Genetics (ACGM) guidelines. 
Thus, it could be  a major contributor to the disease together 
with the pathogenic variant in TRIP11.

The unique combination of the monoallelic pathogenic 
variants in these genes could play an important role in 
determining short stature and causing ODCD through disturbing 
essential pathways in bone and cartilage development, cilium 
assembly, collagen fibril organization, among many others. 
Interestingly, the function of GMAP-210 partly overlaps with 
the function of NEK1 and NBAS. Both GMAP-210 and NEK1 
play a role in the maintenance and assembly of the primary 
cilium, and both GMAP-210 and NBAS are involved in the 
protein trafficking to and from the Golgi. To the best of our 
knowledge, this is the first family where oligogenic inheritance 
model can explain the skeletal phenotype of a patient with a 
phenotype resembling ODCD.

Finally, we  confirm the diagnosis of ACG1A in the fetus, 
who inherited the same pathogenic nonsense variant in 
TRIP11 from the healthy parents. Since the parents harbor 
the same TRIP11 variant despite not being related, it is 
likely that they share a common ancestor. This phenomenon 
is very common among Finnish families due to recent 
bottleneck effects. Finland is, in fact, an isolated population, 
and several genetic variants that are rare among the general 
population have a higher minor allele frequency in the 
Finnish population (Norio, 2003).

In conclusion, by using an oligogenic inheritance approach 
to analyze the ES data, we  identified pathogenic variants in 
five skeletal dysplasia genes in a patient with a phenotype 
resembling ODCD and additionally found the genetic cause 
of disease in a fetus with ACG1A in the same family. The 
skeletal dysplasia in the index patient is likely due to a cumulative 
effect of pathogenic variants in multiple genes playing a pivotal 
role in bone development. Our findings may have valuable 
contributions to the field of bone diseases, implications in 
genetic counseling, and in understanding the still unsolved 
cases of rare skeletal dysplasias.
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