
Citation: Araújo, T.B.; Stefanidis, K.;

Pires, C.E.S.; Nummenmaa, J.; da

Nóbrega, T.P. Incremental Entity

Blocking over Heterogeneous

Streaming Data. Information 2022, 13,

568. https://doi.org/10.3390/

info13120568

Academic Editor: Annalisa Appice

Received: 7 October 2022

Accepted: 2 December 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Incremental Entity Blocking over Heterogeneous
Streaming Data
Tiago Brasileiro Araújo 1,2,3,* , Kostas Stefanidis 3 , Carlos Eduardo Santos Pires 1 , Jyrki Nummenmaa 3

and Thiago Pereira da Nóbrega 1

1 Academic Unit of Systems and Computing, Federal University of Campina Grande,
Campina Grande 58429-900, Brazil

2 Federal Institute of Paraíba, Monteiro 58500-000, Brazil
3 Faculty of Information Technology and Communication Sciences, Tampere University,

33100 Tampere, Finland
* Correspondence: tiagobrasileiro@copin.ufcg.edu.br

Abstract: Web systems have become a valuable source of semi-structured and streaming data. In
this sense, Entity Resolution (ER) has become a key solution for integrating multiple data sources
or identifying similarities between data items, namely entities. To avoid the quadratic costs of the
ER task and improve efficiency, blocking techniques are usually applied. Beyond the traditional
challenges faced by ER and, consequently, by the blocking techniques, there are also challenges
related to streaming data, incremental processing, and noisy data. To address them, we propose a
schema-agnostic blocking technique capable of handling noisy and streaming data incrementally
through a distributed computational infrastructure. To the best of our knowledge, there is a lack of
blocking techniques that address these challenges simultaneously. This work proposes two strategies
(attribute selection and top-n neighborhood entities) to minimize resource consumption and improve
blocking efficiency. Moreover, this work presents a noise-tolerant algorithm, which minimizes the
impact of noisy data (e.g., typos and misspellings) on blocking effectiveness. In our experimental
evaluation, we use real-world pairs of data sources, including a case study that involves data from
Twitter and Google News. The proposed technique achieves better results regarding effectiveness and
efficiency compared to the state-of-the-art technique (metablocking). More precisely, the application
of the two strategies over the proposed technique alone improves efficiency by 56%, on average.

Keywords: entity resolution; incremental processing; parallel computing; schema-agnostic blocking
techniques; streaming data

1. Introduction

Currently, there is an increasing number of information systems that produce large
amounts of data continuously, such as Web systems (e.g., digital libraries, knowledge
graphs, and e-commerce), social media (e.g., Twitter and Facebook), and the Internet of
Things (e.g., mobiles, sensors, and devices) [1]. These applications have become a valuable
source of heterogeneous data [2,3]. These kinds of data present a schema-free behavior and
can be represented in different formats (e.g., XML, RDF, and JSON). Commonly, data are
provided by different data sources and may have overlapping knowledge. For instance,
different types of social media will report the same event and generate similar mass data. In
this sense, Entity Resolution (ER) emerges as a fundamental step to support the integration
of multiple knowledgebases or identify similarities between entities. The ER task aims to
identify records (i.e., entity profiles) from several data sources (i.e., entity collections) that
refer to the same real-world entity (i.e., similar/correspondent entities) [4–6].

The ER task commonly includes four steps: blocking, comparison, classification, and
evaluation [7]. In the former, to avoid the quadratic cost of the ER task (i.e., comparisons
guided by the Cartesian product), blocking techniques are applied to group similar entities

Information 2022, 13, 568. https://doi.org/10.3390/info13120568 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13120568
https://doi.org/10.3390/info13120568
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-6339-9117
https://orcid.org/0000-0003-1317-8062
https://orcid.org/0000-0001-7743-899X
https://doi.org/10.3390/info13120568
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13120568?type=check_update&version=3


Information 2022, 13, 568 2 of 38

into blocks and perform comparisons within each block. In the comparison step, the
actual entity pair comparison occurs, i.e., the entities of each block are pairwise compared
using a variety of comparison functions to determine the similarity between them. In
the classification step, based on the similarity level, the entity pairs are classified into
matches, non-matches, and potential matches (depending on the decision model used). In
the evaluation step, the effectiveness of the ER results and the efficiency of the process are
evaluated. This work focuses on the blocking step.

The heterogeneity of the data compromises the block generation (by the blocking
techniques) since the entity profiles hardly share the same schema. Therefore, traditional
blocking techniques (e.g., sorted neighborhood and adaptive window) do not possess satis-
factory effectiveness because blocking is based on a fixed entity profile schema [8]. In turn,
the heterogeneous data challenge is addressed by schema-agnostic blocking techniques,
which disregard attribute names and consider the values related to the entity attributes to
perform blocking [5]. Furthermore, we tackle three other challenges related to the ER task
and, consequently, the blocking techniques: streaming data, incremental processing, and
noisy data [9–11].

Streaming data are related to dynamic data sources (e.g., from Web systems, social
media, and sensors), which are continuously updated. When blocking techniques receive
streaming data, we assume that not all data (from the data sources) are available at once.
Therefore, blocking techniques need to group the entities as they arrive, also considering
the entities already blocked previously.

Incremental blocking is related to receiving data continuously over time and re-
processing only the portion of the generated blocks (i.e., that store similar entities) that
were affected by the data increments. For this reason, it commonly suffers from resource
consumption issues (e.g., memory and CPU) since ER approaches need to maintain a large
amount of data in memory [9,10,12]. This occurs due to the fact that incremental processing
consumes information processed in previous increments. Considering this behavior, it is
necessary to develop strategies that manage computational resources. In this sense, when
blocking techniques face these scenarios, memory consumption tends to be the biggest
challenge that is handled by incremental techniques [13,14]. Considering that streaming
data are frequently processed in an incremental way [2], the challenges are strengthened
when the ER task deals with heterogeneous data, streaming data, and incremental pro-
cessing simultaneously. For this reason, the development of efficient incremental blocking
techniques able to handle streaming data appears as an open problem [13,15]. To improve
efficiency and provide resources for incremental blocking techniques, parallel processing
can be applied [16]. Parallel processing distributes the computational costs (i.e., to block en-
tities) among the various resources (e.g., computers or virtual machines) of a computational
infrastructure to reduce the overall execution time of blocking techniques.

Concerning noisy data, in practical scenarios, people are less careful with the lexical
accuracy of content written in informal virtual environments (e.g., social networks) or when
they are under some kind of pressure (e.g., business reports) [17]. For these reasons, real-
world data often present noise that can impair data interpretations, data manipulation tasks,
and decision making [18]. As stated, in the ER context, noisy data enhance the challenge of
determining the similarities between entities. This commonly occurs in scenarios where
the similarity between entities is based on the lexical aspect of their attribute values, which
is the case in a vast number of blocking techniques [19–24]. In this sense, the two most
common types of noise in the data are considered in this work: typos and misspelling
errors [17].

Considering the challenges described above, this research proposes a parallel-based
blocking technique able to process streaming data incrementally. The proposed blocking
technique is also able to process noisy data without a considerable impact on the effec-
tiveness of the blocking results. Moreover, we propose two strategies to be applied in the
blocking technique: attribute selection and top-n neighborhood. Both strategies intend
to enhance the efficiency of the blocking technique by quickly processing entities (sent
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continuously) and preventing the blocking from consuming resources excessively. There-
fore, the general hypothesis of our work is to evaluate whether (or not) the application of
the proposed blocking technique is able to improve the efficiency of the ER task without
decreasing the effectiveness in streaming data scenarios.

Although the proposed blocking technique follows the idea behind token-based tech-
niques such as those in [21,22], the latter are neither able to handle streaming data nor
perform blocking incrementally. Since they were originally developed for batch data, they
do not take into account the challenges related to incremental processing and streaming
data. To the best of our knowledge, there is a lack of blocking techniques that address all
the challenges faced in this work. Among the recent works, we can highlight the work
in [19], which proposes a schema-agnostic blocking technique to handle streaming data.
However, this work presents several limitations related to blocking efficiency and excessive
resource consumption. Therefore, as part of our research, we propose an enhancement
of the technique proposed in [19], by offering an efficient schema-agnostic blocking tech-
nique able to incrementally process streaming data. Overall, the main contributions of our
work are:

1. An incremental and parallel schema-agnostic blocking technique able to deal with
streaming and incremental data, as well as minimize the challenges related to both sce-
narios;

2. An attribute selection algorithm, which discards the superfluous attributes of the
entities, to enhance efficiency and minimize resources consumption;

3. A top-n neighborhood strategy, which maintains only the n most similar entities (i.e.,
neighbor entities) of each entity, improving the efficiency of the proposed technique;

4. A noise-tolerant algorithm, which generates hash values from the entity attributes
and allows the generation of high-quality blocks even in the presence of noisy data;

5. An experimental evaluation applying real-world data sources to analyze the proposed
technique in terms of efficiency and effectiveness;

6. A real-world case study involving data from Twitter and Google News to evaluate
the application of the attribute selection and top-n neighborhood strategies over the
proposed technique in terms of effectiveness.

The rest of the paper is structured as follows: Section 2 formalizes the problem state-
ment related to the understanding of this work. In Section 3, we present the most relevant
works available in the literature related to the field addressed in this paper. Section 4
presents the parallel-based blocking technique and describes the workflow to process
streaming data. Section 5 describes the time-window strategy, which is applied in the pro-
posed technique to avoid the excessive consumption of computational resources. Section 6
presents the attribute selection strategy, which discards superfluous attributes in order to
improve efficiency. In Section 7, we discuss the experimental evaluation and in Section 8,
the results of the case study are addressed. Finally, Section 9 concludes the paper along
with directions for future works.

2. Problem Statement

Given two entity collections E1 ∈ D1 and E2 ∈ D2, where D1 and D2 represent two
data sources, the purpose of ER is to identify all matches among the entities (e) of the
data sources [5,7]. Each entity e ∈ E1 or e ∈ E2 can be denoted as a set of key-value
elements that models its attributes (a) and the values (v) associated with each attribute
e = [(a1, v1), (a2, v2), . . . , (an, vn)]. Given that sim(ei, ek) is the function that determines the
similarity between the entities ei and ek, and µ is the threshold (µ ∈ Q) that determines
whether the entities ei and ek are considered a match (i.e., truly similar entities), the task of
identifying similar entities (ER) can be denoted as ER(D1, D2) = {(ei, ek) | ei ∈ D1, ek ∈
D2 | sim(ei, ek) ≥ µ}.
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In traditional ER, entity comparisons are guided by the Cartesian product (i.e., D1 ×
D2). For this reason, blocking techniques are applied to avoid the quadratic O(n2) asymp-
totic complexity of ER. Note that the blocking output is a set of blocks containing entities
B = {b1, b2, . . . , b|B|} such that,

⋃
b∈B(b) = D1 ∪ D2. Thus, each block b can be denoted

as b = {(ei, ek) | ei ∈ D1, ek ∈ D2 | sim(ei, ek) ≥ κ}, where κ is the threshold of the
blocking criterion.

Since this work considers that the data are sent incrementally, the blocking is divided
into a set of increments I = {i1, i2, i3, . . . , i|I|}, where |I| is the number of increments and
each i ∈ I contains entities from D1 and D2. Given that the sources provide data in streams,
each increment is associated with a time interval τ. Thus, the time interval between two
increments is τ, i.e., time(ik)− time(ik−1) = τ, where time returns the timestamp that the
increment was sent and k ∈ [2, |I|] is the index of the increment i ∈ I. For instance, in a
scenario where data sources provide data every 30 s, we can assume that τ = 30 s.

For each i ∈ I, each data source sends an entity collection Ei = {e1, e2, e3, . . . , e|Ei |}.
Thus, Ei = EiD1 ∪ EiD2 , where EiD1 contains the entities of D1 and EiD2 contains the entities
of D2 for the specific increment i. Since the entities can follow different loose schemes,
each e ∈ Ei has a specific attribute set and value associated with each attribute denoted by
Ae = {〈a1, v1〉, 〈a2, v2〉, 〈a3, v3〉, . . . , 〈a|Ae |, v|Ae |〉} such that |Ae| is the number of attributes
associated with e. When an entity e does not present a value for a specific attribute, it
implies the absence of this attribute. For this reason, |Ae| can be different for a distinct
e. As stated in Section 1, an attribute selection algorithm, which discards the superfluous
attributes from the entities, is proposed in this work. Hence, when the attribute selection
algorithm is applied, the attributes in Ae may be removed, as discussed later in Section 6.
In this sense, the set of attributes after the application of the attribute selection is given by
AeΥ =

⋃
(〈a, v〉 | Υ(a) = f alse ∧ 〈a, v〉 ∈ Ae), where Υ represents the attribute selection

algorithm that returns true if the attribute (as well as its value) should be removed and
false otherwise.

In order to generate the entity blocks, tokens (e.g., keywords) are extracted from the
attribute values. Note that the blocking techniques aim to group similar entities (i.e., e ∈ E)
to avoid the quadratic cost of the ER task, which compares all entities of D1 with all entities
of D2. To group similar entities, blocking techniques such as token-based techniques can
determine the similarity between entities based on common tokens extracted from the
attribute values. For token extraction, all tokens associated with an entity e are grouped into
a set Λe, i.e., Λe =

⋃
(Γ(v) | 〈a, v〉 ∈ Ae), such that Γ(v) is a function to extract the tokens

from the attribute value v. For instance, Γ(v) can split the text of v using whitespace and
remove stop words (e.g., “and”, “is”, “are”, and “the”). The set of the remaining words is
considered the set of tokens. Stop words are not useful as tokens because they are common
words and hardly determine a similarity between entities. In scenarios involving noisy
data, we apply LSH algorithms to generate a hash value for each token. Therefore, a hash
function H should be applied to Γ(v), i.e., H(Γ(v)), to generate the set of hash values Λeh

instead of the set of tokens Λe. In summary, when noisy data are considered, Λe should be
replaced with Λeh =

⋃
(H(Γ(v)) | 〈a, v〉 ∈ Ae).

To generate the entity blocks, a similarity graph G(X, L) is created in which each e ∈ Ei
is mapped to a vertex x ∈ X and a non-directional edge l ∈ L is added. Each l is represented
by a triple 〈x1, x2, ρ〉 such that x1 and x2 are the vertices of G and ρ is the similarity value
between the vertices. Thus, the similarity value between two vertices (i.e., entities) x1 and
x2 is denoted by ρ = Φ(x1, x2). In this work, the similarity value between x1 and x2 is

given by the average of the common tokens between them Φ(x1, x2) =
|Λx1∩Λx2 |

max(|Λx1 |,|Λx2 |)
. This

similarity function is based on the functions proposed in [11,21]. In scenarios involving
noisy data, the similarity value between x1 and x2 is given by the average of the common
hash values between them. Since the idea is not to compare (or link) two entities from the
same data source, x1 and x2 must be from different data sources. Therefore, x1 is a vertex
generated from an entity e ∈ EiD1 and x2 is a vertex generated from another entity e ∈ EiD2 .
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The attribute selection algorithm aims to discard superfluous attributes in the sense
of providing tokens that will hardly assist the blocking task to find similar entities. For
instance, consider two general entities e1 ∈ EiD1 (i.e., e1 ∈ D1) and e2 ∈ EiD2 (i.e., e2 ∈ D2).
Let Ae1 = {〈a1, v1〉, 〈a2, v2〉, 〈a3, v3〉} and Ae2 = {〈a4, v4〉, 〈a5, v5〉}; if only the attributes a1
and a5 have the same meaning (i.e., contain attribute values regarding the same content),
the tokens generated from a2, a3, and a4 will hardly result in blocking keys that truly
represent the similarity between the entities. To this end, the attribute selection strategy
is applied.

The idea behind attribute selection is to determine the similarity among attributes
based on their values. After that, the attributes (and, consequently, their values) that
do not have similarities with others are discarded. Formally, all attributes associated
with the entities belonging to data sources D1 and D2 are extracted. Moreover, all values
associated with the same attribute (ai) are grouped into a set Vai =

⋃
e∈D(v | 〈ai, v〉 ∈ Ae).

In turn, the pair 〈ai, Vai 〉 represents the set of values associated with a specific attribute
ai. Let R be the list of discarded attributes, which contains the attributes that do not have
similarities with others. Formally, given two attributes ai ⊂ D1 and aj ⊂ D2, ai ∈ R ⇐⇒
@aj : sim(Vai , Vaj) ≥ β, where sim(Vai , Vaj) calculates the similarity between the sets Vai

and Vaj and β is a given threshold. In this work, we compute the value for β based on
the similarity value of all attribute pairs provided by D1 and D2. From the mean of the
similarity between the attributes, β assumes the value of the first quartile. Then, all attribute
pairs whose similarities are in the first quartile (i.e., comprise 25% of the attribute pairs
with the lowest similarities) are discarded. The choice of the β value was based on previous
experiments, which indicates a negative influence on the effectiveness results when the
β value is given after the first quartile. For this reason, β assumes the value of the first
quartile to avoid significantly impacting the effectiveness results. Then, the token extraction
considering attribute selection is given by Λe =

⋃
(Γ(v) | 〈a, v〉 ∈ Ae ∧ a /∈ R). Similarly,

when noisy data are considered, the token extraction considering attribute selection is given
by Λeh =

⋃
(H(Γ(v)) | 〈a, v〉 ∈ Ae ∧ a /∈ R).

In ER, a blocking technique aims to group the vertices of G into a set of blocks denoted
by BG = {b1, b2, . . . , b|BG |}. In turn, a pruning criterion Θ(G) is applied to remove entity
pairs with low similarities, resulting in a pruned graph G′. For pruning, a criterion is
applied to G (i.e., Θ(G)) so that the triples 〈x1, x2, ρ〉 whose ρ < θ are removed, generating
the pruned graph G′. Thus, the vertices of G′ are grouped into a set of blocks denoted
by B′G′ = {b

′
1, b′2, . . . , b′|B′

G′ |
}, such that ∀b′ ∈ B′G′(b

′ = {x1, x2, . . . , x|b′ |}), ∀〈x1, x2〉 ∈ b′ :

∃〈x1, x2, ρ〉 ∈ L and ρ ≥ θ, where θ is a similarity threshold defined by a pruning criterion
Θ(G). In Section 4.2.3, how a pruning criterion Θ(G) determines the value for θ in practice
is presented.

However, when blocking techniques deal with streaming and incremental challenges,
other theoretical aspects need to be considered. Intuitively, each data increment, denoted
by ∆Ei, also affects G. Thus, we denote the increments over G by ∆Gi. Let {∆G1, ∆G2, . . . ,
∆G|I|} be a set of |I| data increments on G. Each ∆Gi is directly associated with an entity
collection Ei, which represents the entities in the increment i ∈ I. The computation of BG
for each ∆Gi is performed on a parallel distributed computing infrastructure composed
of multiple nodes (e.g., computers or virtual machines). Note that to compute BG for a
specific ∆Gi, previous ∆G are considered, following the incremental behavior of G. In this
context, it is assumed that N = {n1, n2, . . . , n|N|} is the set of nodes used to compute BG.
The execution time using a single node n ∈ N is denoted by Tn

∆Gi
(BG). On the other hand,

the execution time using the whole computing infrastructure N is denoted by TN
∆Gi

(BG).
Execution time for parallel blocking. Since blocking is performed in parallel over the
infrastructure N, the whole execution time is given by the execution time of the node that
demanded the longest time to execute the task for a specific increment ∆Gi: TN

∆Gi
(BG) =

max(Tn
∆Gi

(BG)), n ∈ N.
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Time restriction for streaming blocking. Considering the streaming behavior, where each
increment arrives in each τ time interval, it is necessary to determine a restriction on the
execution time to process each increment, given by TN

∆Gi
(BG) ≤ τ.

This restriction aims to prevent the blocking execution time from overcoming the
time interval of each data increment. Note that the time restriction is related to streaming
behavior, where data are produced continuously. To achieve this restriction, blocking
must be performed as quickly as possible. As stated previously, one possible solution to
minimize the execution time of the blocking step is to execute it in parallel over a distributed
infrastructure.
Blocking efficiency in distributed environments. Given the inputs Ei, N, BG, ∆Gi, Γ, Φ,
and Θ, the blocking task aims to generate B′G′ over a distributed infrastructure N in an
efficient way. To enhance the efficiency, the blocking task needs to minimize the value of

∆T = |N| −
Tn

∆Gi
(BG)

TN
∆Gi

(BG)
. For instance, considering a distributed infrastructure with N = 10

nodes and 10 s as the required time to perform the blocking task using only one node (i.e.,
Tn

∆Gi
(BG)), the ideal execution time using all nodes (i.e., TN

∆Gi
(BG)) should be one second.

Thus, ideally, the best minimization is ∆T = 0. Due to the overhead required to distribute
the data in each node and the delay in the communication between the nodes, ∆T = 0 is
practically unreachable. However, the minimization of ∆T is important to provide efficiency
to the blocking task.

Table 1 highlights the goals regarding the stated problems, which are exploited
throughout this paper. Furthermore, Table 2 summarizes the symbols used throughout
the paper.

Table 1. Summary of the problem statement.

Input:
Generate:
Output:

〈D1, D2, I, ∆Gi, N, τ, Γ, Φ, Θ〉
BG, using Γ and Φ over N
B′G′ , using Θ over N

Minimize: max(Tn
∆Gi

(BG))

Following: TN
∆Gi

(BG) ≤ τ

Minimize: |N| −
Tn

∆Gi
(BG)

TN
∆Gi

(BG)

Maximize: Effectiveness(B′G′ )

Table 2. Summary of symbols.

Symbol Description

D1, D2 Input data sources

I Set of increments

i Increment for a specific moment

τ Time interval between increments

Ei Entity collection for the specific increment i

Ae Set of attributes with their associated values for the entity e

Υ Attribute selection function

Λe Tokens associated with an entity e

Γ Token extraction function

H Hash function

G Similarity graph
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Table 2. Cont.

Symbol Description

∆Gi Increments over G; each ∆Gi is associated with an entity collection Ei

Φ Similarity function applied to vertices of G

BG Blocks from the similarity graph G

Θ Pruning criterion function

G′ Pruned graph

B′G′ Blocks from the pruned graph G′

N Set of nodes in a distributed computing infrastructure

3. Related Works

According to the taxonomy proposed in [5], blocking techniques employed in the ER
task are classified into two broad categories: schema-aware (e.g., canopy clustering [25,26],
sorted neighborhood [27,28], and adaptive window [29]) and schema-agnostic (e.g., token
blocking [30,31], metablocking [21,22], attribute clustering blocking [8], and attribute-match
induction [11,20,32]). Concerning the execution model, several schema-agnostic blocking
techniques have been proposed to deal with heterogeneous data in standalone [20,31,33,34]
and parallel [11,16,22,35] modes. In this sense, the research focus of this work is to explore
open topics related to schema-agnostic blocking techniques.

3.1. Blocking for Heterogeneous Data

In the context of heterogeneous data, entities rarely follow the same schema. For this
reason, the block generation (in blocking techniques) is compromised. Therefore, traditional
blocking techniques (e.g., sorted neighborhood [27] and adaptive window [29]) do not
present satisfactory effectiveness since blocking is based on the entity profile schema [33]. In
this sense, the challenges inherent in heterogeneous data are addressed by schema-agnostic
blocking techniques, which ignore scheme-related information and consider the attribute
values of each entity [5].

Among the existing schema-agnostic blocking techniques, metablocking has emerged
as one of the most promising regarding efficiency and effectiveness [33]. Metablocking aims
to identify the closest pairs of entity profiles by restructuring a given set of blocks into a new
one that involves significantly fewer comparisons. To this end, this technique’s blocks form
a weighted graph and pruning criteria are applied to remove edges with weights below
a threshold, aiming to discard comparisons between entities with few chances of being
considered a match. Originally, the authors in [21] named the pruning step metablocking,
which receives a redundancy-positive set of blocks and generates a new set of pruned
blocks. However, to avoid misunderstanding, in this work, we call metablocking the
blocking technique as a whole and pruning the step responsible for pruning the blocking
graph. Recently, some works [16,22] have proposed parallel-based blocking techniques to
increase the efficiency of metablocking. However, these state-of-the-art techniques (either
standalone or parallel-based) do not work properly in scenarios involving incremental and
streaming data since they were developed to work with batch data [6].

3.2. Blocking in the Noisy-Data Context

To address the problem of noisy data, three strategies are commonly applied: n-
gram algorithms, Natural Language Processing (NLP), and Locality-Sensitive Hashing
(LSH) [36,37]. In the context of blocking techniques based on tokens, the application of
n-gram strategies negatively affects efficiency since n-gram algorithms increase the number
of tokens and consequently the number of blocks managed by the blocking technique.
Regarding NLP applications, word vectors and dictionaries can be applied in the sense of
fixing misspelled words and recovering the correct tokens. However, NLP also negatively
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affects the efficiency of the blocking task as a whole since it is necessary to consult the word
vector for each token. Thus, among the possible strategies to handle noisy data, LSH is the
most promising in terms of results [20,32,38].

Recently, the BLAST technique [20] has been applied to LSH to determine the linkages
between the attributes of two large data sources in order to address efficiency issues.
However, the BLAST technique does not explore noisy data as a contribution but introduces
the application of LSH in blocking techniques as a factor for improving effectiveness. More
specifically, this technique reduces the dimensionality of data through the application of
LSH and guides the blocking task to enhance the effectiveness results. Following the BLAST
idea, the work in [32] applies LSH in order to hash the attribute values and enable the
generation of high-quality blocks (i.e., blocks that contain a significant number of entities
with high chances of being considered similar/matches), even with the presence of noise
in the attribute values. In [38], the Locality-Sensitive Blocking (LSB) strategy is proposed.
LSB applies LSH to standard blocking techniques in order to group similar entities without
requiring the selection of blocking keys. To this end, LSH works in the sense of generating
hash values and guiding the blocking, which increases the robustness toward blocking
parameters and data noise.

In contrast to the previously mentioned works, our work not only focuses on noisy
data but also allows the proposed incremental blocking technique to handle streaming
and noisy data simultaneously. Although the works in [20,32,38] do not explore aspects
such as incremental processing or streaming data, the idea behind the application of LSH
to minimize the negative effects of noisy data on the blocking techniques can also be
applied to the proposed technique to expand its applications. Therefore, this work adapts
the application of LSH (in blocking techniques) to the contexts of distributed computing,
incremental processing, and streaming data.

3.3. Blocking Benefiting from Schema Information

Schema information can benefit matching tasks by enhancing efficiency without
compromising effectiveness. Works such as [39,40] suggest the application of strategies
able to identify the functional dependencies (FDs) among the attributes of a schema to
support data quality and data integration tasks. FDs are constraints that determine the
relationship between one attribute and another in a schema. Therefore, these relations
can guide matching tasks in order to compare values considering only the values from
similar attributes, which are determined by the FDs. Regarding ER, works such as [41,42]
propose extracting information from relational schemas (i.e., rigid schemas) based on
the matching dependencies, which are extensions of FDs. In this sense, the idea is to
select matching dependencies as rules that determine the functional dependencies among
attributes, where attribute values do not need to be exactly equal but similar. Thus, the
idea behind matching dependencies is to efficiently select the best subset of rules (i.e.,
dependencies among attributes) to support the ER task. However, this strategy does not
consider data heterogeneity, which does not follow a rigid schema, or the streaming context,
which demands processing entities following a time budget. Particularly, the approach
proposed in [42] can take several minutes to complete the process, even for data sources
with a few thousand entities.

For contexts involving blocking and heterogeneous data, we can identify the works
in [11,20,31,32], which propose blocking techniques that benefit from information related
to entity attributes. In the attribute-based blocking in [31], before the blocking step, there is
an initial grouping of attributes that is generated based on the similarities of their values.
External sources such as a thesaurus can be consulted to determine similar attributes.
Similarly, the idea behind [11,20,32] is to exploit the loose schema information (i.e., statistics
collected directly from the data) to enhance the quality of blocks. Then, rather than looking
for a common token regardless of the attribute to which it belongs, entity descriptions
are compared only based on the values of similar attributes. Hence, comparisons of
descriptions that do not share a common token in a similar attribute are discarded. To
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summarize, the main idea is to exploit the schema information of the entity descriptions in
order to minimize the number of false matches.

On the other hand, the attribute selection algorithm (proposed in the present work)
before the token blocking step identifies and discards superfluous attributes, which will
provide useless tokens that unnecessarily consume memory. Note that attribute selection
aims to minimize the number of false-positive matches and improve resource consumption.
Therefore, even though the related works extract information from the attributes, they do
not use this information to discard superfluous attributes; the idea is to perform a kind of
attribute clustering to guide block generation. Furthermore, the stated works deal with
neither streaming nor incremental data, whose challenges are addressed in our work.

3.4. Incremental Blocking

In terms of incremental blocking techniques for relational data sources, the authors
of [9,43–45] propose approaches that are capable of blocking entities incrementally. These
works propose an incremental workflow for the blocking task, considering the evolutionary
behavior of data sources to perform the blocking. The main idea is to avoid (re)processing
the entire dataset during the incremental ER to update the deduplication results. For
doing so, different classification techniques can be employed to identify duplicate entities.
Therefore, these works propose new metrics for incremental record linkage using collective
classification and new heuristics (which combine clustering, coverage component filters,
and a greedy approach) to further speed up incremental record linkage. However, the
stated works do not deal with heterogeneous and streaming data.

In terms of other incremental tasks that propose useful strategies for ER, we can
identify the works in [14,46,47], which present parallel and incremental models to address
the tasks of name disambiguation, event processing, and dynamic graph processing, re-
spectively. More specifically, in the ER context, the work in [48] proposes an incremental
approach to perform ER on social media data sources. Although such sources commonly
provide heterogeneous data, the work in [48] generates an intermediate schema so that
the extracted data from the sources follow this schema. Therefore, although the data are
originally semi-structured, they are converted to a structured format before being sent
to the ER task. For this reason, the approach in [48] differs from our technique since it
does not consider the heterogeneous data challenges and does not apply/propose blocking
techniques to support ER.

3.5. Blocking in the Streaming Data context

Streaming data commonly add several challenges, not only in the context of ER. The
works in [49,50], which address clustering and itemset frequencies, highlight the necessity
of developing strategies to continuously process data sent in short intervals of time. Even
if the works in [49,50] do not consider other scenarios, such as heterogeneous data and
incremental processes, both suggest the need to develop an appropriate architecture to deal
with streaming data, which is discussed in Section 4.

Regarding ER approaches that deal with streaming data, we can highlight the
works in [2,10,51]. These works propose workflows to receive data from streaming sources
and perform the ER task. In these workflows, the authors suggest the application of time
windows to discard old data and, consequently, avoid the growing consumption of resources
(e.g., memory and CPU). On the other hand, it is important to highlight that these works
apply time windows only in the sense of determining the entities to be processed together.
Hence, they do not consider incremental processing and, therefore, discard the previously
processed data. Thus, none of them deal simultaneously with the three challenges (i.e.,
heterogeneous data, streaming data, and incremental processing) addressed by our work.

In the ER context, we can highlight only the recent work proposed in [19], which
addresses challenges related to streaming data and incremental processing. The authors
of [19] propose a Spark-based blocking technique to handle heterogeneous streaming data.
As previously stated, the present research is an evolution of the work in [19]. Overall,
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it is possible to highlight the following improvements: (i) an efficient workflow able to
address the memory consumption problems present in [19], which decrease the technique’s
efficiency, as well as its ability, to process large amounts of data; (ii) an attribute selection
algorithm, which discards superfluous attributes to enhance efficiency and minimize
memory consumption; (iii) a top-n neighborhood strategy, which maintains only the “n"
most similar neighbor entities of each entity; (iv) a noise-tolerant algorithm, which allows
the proposed technique to generate high-quality blocks, even in the presence of noisy data;
and (v) a parallel architecture for blocking streaming data, which divides all the blocking
processes among two components (sender and blocking task) to enhance efficiency.

Based on the related works cited in this section (summarized in Table 3) and infor-
mation provided by several other works [5,52,53], it is possible to identify a lack of works
in different areas that address the challenges related to streaming data and incremental
processing efficiently. The same applies to ER approaches to heterogeneous data [19]. In
this sense, our work addresses an open research area, and it can be a useful schema-agnostic
blocking technique for supporting ER approaches in scenarios involving not only streaming
data and incremental processing but also noisy data.

Table 3. Related work comparison. Note, “X” means that the works address the research topic,
“-” otherwise.

Work (s) ER Heterogeneous Noisy Data Streaming Parallel Incremental
[14,46] - - - - X X

[47] - - - X X X
[41,42] X - - - - -
[9,43] X - - - - X

[44,45] X - - - X X
[8,20,31–34] X X - - - -

[38] X - X - - -
[20,32] X X X - - -

[11,16,22,35] X X - - X -
[2,10,48,51] X - - X X -
Proposed

work X X X X X X

4. Incremental Blocking over Streaming Data

Figure 1 illustrates the traditional steps involved in an ER process. However, it is
necessary to redesign this workflow to adapt it to the needs of the context addressed in this
work. The focus of this work is the blocking step; therefore, information about the data
processing step is limited throughout this section. When streaming data are considered, the
traditional ER workflow should include a pre-step responsible for organizing the micro-
batches to be processed. For this reason, the sender component was inserted into the
architecture to block streaming data, as depicted in Figure 2. Note that since streaming
data are constantly sent, the ER steps should be performed according to a time budget
(represented by τ in this work, as stated in Section 2). This behavior creates a challenge for
the workflow, which needs to be performed as fast as possible. To address this challenge, the
top-n neighborhood and attribute selection strategies were proposed to enhance blocking
efficiency without having a negative impact on effectiveness.
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Figure 1. ER workflow considering the streaming data and incremental context.

Regarding incremental blocking, the idea is to consider the coming streaming data and
generate incremental blocks during a time window. Therefore, the traditional ER workflow
should be updated to receive as input not only the data from the sources but also the blocks
previously generated in the previous increments. For the first increment, the received
entities are blocked similarly to the traditional ER workflow. However, from the second
increment, the received entities are blocked, merging/updating with the blocks generated
previously. To handle this behavior, we propose an incremental architecture able to store
the generated blocks and update them as the new entities arrive.

Since the data can present noise, which commonly minimizes blocking effectiveness,
we also propose a noise-tolerant algorithm to be applied to the ER workflow. The noise-
tolerant algorithm benefits from the idea behind LSH to generate high-quality blocks, even
in the presence of noisy data. In this sense, the sender component (see Figure 2) applies
this algorithm to the data in order to generate hash values instead of tokens. Thus, the
blocking step generates blocks using hash values as the blocking keys, as explained later in
this section.

Figure 2. Parallel architecture for blocking streaming data.

Throughout this section, we propose a parallel-based blocking technique able to
incrementally process streaming data. Furthermore, we describe a parallel architecture,
which hosts the components necessary to perform the blocking of streaming data, as well
as clarify how the proposed technique is coupled to the architecture.

4.1. Parallel Architecture for Blocking Streaming Data

The architecture is divided into two components: the sender and blocking task, as
depicted in Figure 2. The sender component, which is executed in standalone mode,
consumes the data provided by the data sources in a streaming way, buffers it in micro-
batches, and sends it to the blocking task component. Note that buffering streaming data
in micro-batches is a common strategy to process streaming data [47,54,55], even in critical
scenarios where data arrive continuously. Thus, it is possible to follow the τ time interval
and respect the time restriction for streaming blocking, as defined in Section 2. In the
blocking task component, blocking is performed over a parallel infrastructure. To connect
both components, a streaming processing platform, namely Apache Kafka, is applied.

The blocking task component is divided into three layers: streaming data management,
the blocking workflow, and the distributed infrastructure. The first layer is responsible
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for continuously receiving and manipulating the streaming data. Thus, the data provided
by the sender are collected and sent to the blocking workflow layer where blocking is
performed. Therefore, the data (i.e., entities) received in the first layer are processed
(i.e., blocked) in the blocking layer. In this layer, the proposed blocking technique is
coupled to the architecture. Note that different parallel-based blocking techniques can
be applied to the blocking workflow layer. The blocking layer is directly connected to
the distributed infrastructure, which provides all the distributed resources (such as the
MapReduce engines and virtual machines) needed to execute the proposed streaming
blocking technique. Finally, after blocking, the generated blocks are sent to the next steps
in the ER task (i.e., comparison and classification of entity pairs). Note that the scope of
this paper is limited to the blocking step.

When noisy data are considered, the noise-tolerant algorithm is applied. The algo-
rithm is hosted by the sender component. Thus, as the data arrive in a streaming way,
the noise-tolerant algorithm is applied to convert the tokens present in each entity (from
its attribute values) into hash values. To this end, the noise-tolerant algorithm applies
Locality-Sensitive Hashing (LSH) to the tokens from the entities in order to avoid the
issues generated by the noisy data [36]. In general, LSH is used for approximating the
near-neighbor search in high-dimensional spaces [56]. It can be applied to reduce the di-
mensionality of a high-dimensional space, preserving the similarity distances of the tokens
to be evaluated. Thus, for each attribute value, a hash function (e.g., MinHash [56]) converts
the attribute value into a probability vector called a signature (Minhash signature). Then,
the arriving entities are buffed in micro-batches and sent to the blocking task component.
Note that the execution of the noise-tolerant algorithm occurs in the order of milliseconds
per entity, which does not negatively impact the efficiency results of blocking as a whole,
as addressed in Sections 7 and 8.

Since the hash function preserves the similarity of the attribute values, it is possible to
take advantage of this behavior and obtain a similar hash signature for similar attribute
values, even in the presence of noise [56]. Then, the hash function can generate similar
signatures that will be used to guide the blocking task. To clarify how the noise-tolerant
algorithm works over the proposed technique, consider the following running example.
Given two entities from two different datasets e1 = {〈name, Linus Torvalds〉} and e2 =
{〈name, Lynus Tordalds〉}, where e1 and e2 represent the same entities in the real world but
there are typos in e2. Without the application of the noise-tolerant algorithm, the tokens
considered to block the entities will be “Linus” and “Torvalds” from e1, and, “Lynus” and
“Torvalds” from e2. Note that the token-based blocking will not group the entities e1 and e2 at
the same block since they do not share common tokens and, consequently, they will not be
considered a match. On the other hand, with the application of the noise-tolerant algorithm,
the attribute values of e1 and e2 will be converted into a probability vector with the same
size as their token sets. Then, e1 could be converted to e1 = {〈name, 8709973 6431654〉} and
e2 could be converted to e2 = {〈name, 8709973 7338779〉}. After the execution, the entities
e1 and e2 (with their hash signatures) are sent to the blocking task component. Since the
hash function preserves the similarity of the attribute values, it is important to highlight
that it is common to obtain the same hash value, even in the presence of noise on the data
(as occurs with the tokens “Linus” and “Lynus”). In this sense, instead of considering tokens
during the blocking task, the noise-tolerant algorithm allows the proposed technique to
take into account the hash signatures and applies them to the block. Therefore, entities that
share a common hash value (in the hash signatures) should be grouped at the same block.
For this reason, e1 and e2 will be grouped at the same block due to the hash value “8709973”.

4.2. Incremental Blocking Technique for Streaming Data

To address the challenges previously stated, the proposed blocking technique is based
on a MapReduce workflow. The workflow is composed of two MapReduce jobs (Figure 3),
i.e., one fewer job than the method available in [22] (further details can be found in the
token extraction step below). In addition, the proposed workflow does not negatively
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affect the effectiveness results since the block generation is not modified. The workflow is
divided into three steps as depicted in Figure 3: token extraction, blocking generation, and
pruning. It is important to highlight that for each increment, the three blocking steps are
performed following the workflow depicted in Figure 3.

Figure 3. Workflow for the streaming blocking technique.

4.2.1. Token Extraction Step

This step is responsible for extracting the tokens from the attribute values (of the input
entities), where each token will be used as a blocking key, as illustrated in Algorithm 1.
Technically, the token step can be considered a map function through the application of the
Flink function called flatmap. Thus, each entity will generate a set of key–value pairs where
the key is represented by the token (blocking key) and the value is the entity in question.

Algorithm 1: Token Extraction
Input: EiD1 and EiD2 : increments provided by input data sources
Output: B: blocks based on tokens

1 B← ∅;
2 tokenBlocking(EiD1);
3 tokenBlocking(EiD2);
4 return B
5 Function tokenBlocking(EiD) do
6 foreach e in EiD do
7 foreach t in Λe do
8 B.put(t, 〈e, Λe, D〉);
9 end

10 end
11 end

For each increment i, the blocking receives a pair of entity collections EiD1 and EiD2
provided by data sources D1 and D2 (lines 2 and 3). For each entity e ∈ EiD1 ∪ EiD2 (lines 6
to 10), all tokens Λe associated with e are extracted and stored. Each token in Λe will be
a blocking key that determines a specific block b ∈ B, and the set Λe will be applied to
determine the similarity between the entities in the next step. Similarly, when noisy data
are present, Λe is replaced with Λeh . Note that, as stated, |Λe| = |Λeh |. Then, each hash
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value in Λeh will be a blocking key that determines a specific block b ∈ B, and the set Λeh

will be applied to determine the similarity between the entities in the next step. From now
on, to facilitate the understanding, we will consider only Λe. Therefore, note that the hash
values in Λeh work in a similar way to the tokens in Λe.

It is important to highlight that from this step, every entity e contains information
regarding its tokens (blocking keys) Λe and the data source D that it comes from (lines 7 and
9). From the Λe stored in each entity during the token extraction step, it is possible to avoid
one MapReduce job (compared with the workflow proposed in [22]). In [22], the workflow
applies an extra job to process the entities in each block and determine all the blocks that
contain each entity. In other words, an extra job is used to compose the Λe. On the other
hand, our blocking technique determines Λe in this step and spreads this information to
the next steps, avoiding the necessity of another MapReduce job. Note that although the
work in [22] presents various strategies for parallelizing each pruning algorithm of the
metablocking, the avoided MapReduce job is related to the token extraction step (i.e., before
the pruning step). Thus, the proposed workflow tends to enhance the efficiency of blocking
as a whole.

The time complexity of the token extraction step is directly related to the generation
of the blocking keys. This step evaluates all tokens in Λe of each entity e ∈ Ei (i.e.,
Ei = EiD1 ∪ EiD2 ) to generate the blocking keys. Therefore, the time complexity of this step
is O(||ΛEiD1

||+ ||ΛEiD2
||), where ||ΛEiD1

|| is given by ∑e∈EiD1
|Λe| and ||ΛEiD2

|| is given
by ∑e∈EiD2

|Λe|. We guarantee that the produced blocking keys are the same as the ones
produced by metablocking using the following lemma.

Lemma 1. Considering the same entity collection Ei = EiD1 ∪ EiD2 as input, if the proposed
technique and metablocking apply the same function Γ(v) to extract tokens from attribute values,
then both techniques will produce the same blocking keys Λe.

Proof. In the token extraction step, the proposed technique receives as input the entity
collection Ei. During this step, the entities provided by Ei are processed to extract tokens,
applying a function Γ. For each entity e ∈ Ei, a set of blocking keys Λe is produced
from the application of Γ(v) to the attribute values v of e. If metablocking receives the
same Ei and applies the same Γ(v) to the attribute values v of e ∈ Ei, the technique will
produce the same tokens and, consequently, the same blocking keys Λe, even if the parallel
workflows differ.

In Figure 3, there are two different increments (i.e., Increment 1 and Increment 2)
containing the entities that will be processed by the blocking technique. For the first
increment (top of the figure), D1 provides entities e1 and e2, and D2 provides entities e3 and
e4. From entity e1, the tokens A, B, and C are extracted. To clarify our example, e1 can be
represented as e1 = {〈name, Linus Torvalds〉 〈creator, Linux〉}. Thus, the tokens A, B, and
C represent the attribute values “Linus”, “Torvalds”, and “Linux”, respectively. Since the
generated tokens work as blocking keys, the entities are arranged in the format 〈k, e〉 such
that k represents a specific blocking key and e represents an entity linked to the key k.

4.2.2. Blocking Generation Step

In this step, the blocks are created and a weighted graph is generated from the blocks in
order to define the level of similarity between entities, as described in Algorithm 2. From the
key–value pairs generated at the token extraction step, the values (i.e., entities) are grouped
by key (i.e., blocking key) to generate the entity blocks. The entity blocks are generated
through a groupby function, provided by Flink. Note that the first MapReduce job, which
started in the token extraction step, concludes with the groupby function. Moreover, during
the blocking generation step, another MapReduce job is started. To compute the similarity
between the entities, a flatmap function generates pairs in the format 〈eD1 , 〈eD2 , ρ〉〉, which
will be processed in the pruning step.
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Algorithm 2: Blocking Generation
Input: B: blocks generated in the token extraction step
Output: G: blocking graph

1 G ← ∅;
2 foreach k in B.keys do
3 entities← B.get(t);
4 while entities is not ∅ do
5 e1 ← entities.pop();
6 foreach e2 in entities do
7 if e1.D is not e2.D then
8 ρ← Φ(e1.Λe1 , e2.Λe2);
9 G.put(e1, 〈e2, ρ〉);

10 G.put(e2, 〈e1, ρ〉);
11 end
12 end
13 end
14 end
15 return G
16 Function Φ(Λe1 , Λe2 ) do

17 ρ← |Λe1∩Λe2 |
max(|Λe1 |,|Λe2 |)

;

18 return ρ

19 end

Initially, the entities are arranged in the format 〈e, Λe〉; implicitly, Λe denotes the blocks
that contain entity e. In scenarios involving noisy data, the entities assume the format
〈e, Λeh〉, where Λeh also represents the blocks that contain entity e. Based on the blocking
keys (i.e., tokens or hash signatures), all entities sharing the same key are grouped in the
same block. Then, a set of blocks B is generated so that a block b ∈ B is linked with a key k
and all 〈e, Λe〉 ∈ b share (at least) the key k (lines 2 to 14). For instance, in Figure 3, b1 is
related to the key A and contains entities e1 and e4 since both entities share the key A. The
set of blocks B generated in this step is stored in memory to be used for the next increments.
In this sense, new blocks will be included or merged with the blocks previously stored.

Afterward, entities stored in the same block are compared (lines 3 to 13). Thus, entities
provided by different data sources (line 7) are compared to define the similarity ρ between
them (line 8). The similarity is defined based on the number of co-occurring blocks between
the entities. Note that co-occurring blocks are a well-known strategy for defining similarity
between entities in scenarios involving token-based blocking. The works in [21,57,58]
formalize and describe the effectiveness of defining entity similarity based on the number
and frequency of common blocks. After defining the similarity between the entities, the
entity pairs are inserted into the graph G (lines 9 and 10) such that the weight of an edge
linking two entities is given by the similarity ρ (computed in lines 16 to 18) between them.
The blocking generation step is the most computationally costly in the workflow since the
comparison of the entities is performed in this step. The time complexity of this step is
given by the sum of the cost to compare the entity pairs in each block b ∈ B. Therefore,
the time complexity of the blocking generation step is O(||B||) such that ||B|| is given by
∑b∈B ||b|| and ||b|| is the number of comparisons to be performed in b. Furthermore, to
guarantee that the graphs generated by our technique and metablocking are the same, the
following lemma states the conditions formally.

Lemma 2. Assuming that the proposed technique and metablocking apply the same similarity
function Φ to the same set of blocks B (derived from the blocking keys Λe), both techniques will
produce the same set of vertices X and edges L. Therefore, since the blocking graph G is composed of
vertices (i.e., X) and edges (i.e., L), the techniques will generate the same graph G.
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Proof. During the blocking generation step, the set of blocks B (based on the blocking keys
Λe) is given as input. The goal of this step is to generate the graph G(X, L). To this end,
each entity e ∈ b (such that b ∈ B) is mapped to a vertex x ∈ X. Thus, if the metablocking
technique receives the same set of blocks B, the technique will generate the same set of
vertices X. To generate the edges l ∈ L (represented by 〈x1, x2, ρ〉) between the vertices, the
similarity function Φ(x1, x2) (such as x1 and x2 ∈ X) is applied to determine the similarity
value ρ. Therefore, assuming that the metablocking technique applies the same Φ to the
vertices of X, the set of edges L produced by the proposed technique will be the same. Since
both techniques produce the same X and L sets, the generated blocking graph G will be
identical, even though they apply different workflows.

In Figure 3, b1 contains entities e1 and e4. Therefore, these entities must be compared
to determine their similarity. Their similarity is one since they co-occur in all blocks in
which each one is contained. On the other hand, in the second increment (bottom of the
figure), b1 receives entities e5 and e7. Thus, in the second increment, b1 contains entities e1,
e4, e5, and e7 since all of them share token A. For this reason, entities e1, e4, e5, and e7 must
be compared with each other to determine their similarity. However, since e1 and e4 were
already compared in the first increment, they should not be compared twice. This would
be considered an unnecessary comparison.

Technically, the strategies used to avoid redundant comparisons are conditional re-
strictions implemented at the flatmap function of the blocking generation step. During
incremental blocking, three types of unnecessary comparisons should be avoided. First,
due to the block overlapping, an entity pair can be compared in several blocks (i.e., more
than once). Since this type of comparison is commonly related to metablocking-based
techniques, we apply the Marked Common Block Index (MaCoBI) [16,22] condition to
avoid this type of unnecessary comparison. The MaCoBI condition aims to guarantee that
an entity pair will be compared in only one block. To this end, it uses the intersection of
blocking keys (stored in both entities) to select the block in which this entity pair should be
compared. Thus, based on the intersection of blocking keys, the comparison is performed
only in the first block in which both entities co-occur, preventing the comparison from
being performed more than once (on the other blocks).

The second type of comparison is related to incremental blocking. For a specific
increment, it is possible that some blocks may not suffer updates. This occurs due to the
fact that the entities provided by this specific increment may not be related to any of the
preexisting blocks and, consequently, do not update them. Therefore, the entities contained
in these blocks that did not suffer updates must not be compared again. To solve this
issue, the proposed workflow applies an update-oriented structure to store the blocks
previously generated. This structure, commonly provided and managed by MapReduce
frameworks (e.g., Flink (https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/
stream/state/state.html, accessed on 28 September 2022)), loads only blocks that have been
updated for the current increment. Note that the blocks that did not suffer updates are not
removed; they just are not loaded into memory for the current increment. The application
of update-oriented structures assists the technique as a whole to improve the consumption
of computational resources. Moreover, the application of an update-oriented structure
(e.g., stateful data streams (https://flink.apache.org/stateful-functions.html, accessed on
28 September 2022) provided by Flink) allows the technique to maintain all the blocks
during a time window. Thus, it is possible to add new blocks and update the pre-existing
blocks (i.e., add entities from the current increment) over the structure, which satisfies the
incremental behavior of the proposed blocking technique. In Section 5, we discuss the
time-window strategy, which discards entities from the blocks based on their arrival time.

The third type of comparison is also related to incremental blocking. Since the blocking
technique can receive a high (or infinite) number of increments and the blocks can still exist
for a huge number of increments, it is necessary to take into account the comparisons that
have already been performed in previous iterations (increments). Note that even updated
blocks contain entity pairs that have been compared in previous iterations, which should

https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/state/state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/state/state.html
https://flink.apache.org/stateful-functions.html
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not be compared again. For this reason, our blocking technique marks the entity pairs that
have already been compared. This mark works like a flag to decide if the entity pair was
compared in previous iterations. Thus, an entity pair must only be compared if at least one
of the entities is not marked as already compared.

To illustrate how our technique deals with the three types of unnecessary comparisons,
we consider the second iteration (bottom of Figure 3). The entity pair 〈e1, e4〉 should be
compared in blocks b1, b2, and b3, which represents the first type of unnecessary comparison.
However, the MaCoBi condition is applied to guarantee that 〈e1, e4〉 is compared only once.
To this end, the MaCoBi condition evaluated the intersection of blocks (i.e., b1, b2, or b3)
between both entities and determined that the comparison should be performed only in
the first block of the intersection list (i.e., b1). Considering the second type of unnecessary
comparison, the blocks b1, b2, b3, b4, and b5 are considered pre-existing blocks since they
were generated in the first iteration. In the second iteration, only block b1 is updated. In
addition, blocks b6, b7, and b8 are created. To avoid the blocks that did not suffer updates
(i.e., b2, b3, b4, and b5) from being considered in the second iteration, the update-oriented
structure only takes into account blocks b1, b6, b7, and b8. Therefore, this strategy avoids
a huge number of blocks from being loaded into memory unnecessarily. To avoid the
third type of unnecessary comparison, during the first iteration (top of Figure 3), entities e1
and e4 are marked (with the symbol *) at block b1 to indicate that they have already been
compared. Therefore, since an entity pair is only compared if at least one of the entities is
not marked, the pair 〈e1, e4〉 will not be compared again in the second iteration.

Top-n neighborhood strategy. Incremental approaches commonly suffer from re-
source issues [9,10], for instance, the work in [19] highlights problems related to memory
consumption such as a lack of memory to process large data sources. To avoid excessive
memory consumption, we propose a top-n neighborhood strategy to be applied during
the creation of the graph G (i.e., in the blocking generation step). The main idea of this
strategy is to create a directed graph, where each node (i.e., entity) maintains only the n
most similar nodes (neighbor entities). To this end, each node will store only a sorted list of
its neighbor entities (in descending order of similarity).

Note that the number of entities and connections between the entities in G is directly
related to the resource consumption (e.g., processing and memory) since G needs to be
processed and stored (in memory) during the blocking task. Considering incremental
processing, this resource consumption needs to be treated since G also needs to maintain
the entities according to incremental behavior (i.e., in an accumulative way). For this reason,
a limitation on the number of entity neighbors is useful in the sense that it helps to reduce
the number of connections (i.e., edges) between the entities. Furthermore, it is necessary
to remember that entities (nodes) without any connections (edges) should be discarded
from G (following the metablocking restrictions). Therefore, the application of the top-n
neighborhood strategy saves memory and processing by minimizing the number of entities
and connections in G. On the other hand, it decreases the effectiveness of the blocking
technique since truly similar entities (in the neighborhood) can be discarded. However,
as discussed later in Section 7, it is possible to increase efficiency by applying the top-n
neighborhood strategy without significant decreases in effectiveness.

For instance, consider the first increment in Figure 3 e1 has {〈e4, 1〉, 〈e2, 1/3〉, 〈e3, 1/3〉}
as the set of neighbor entities. The neighbor entities of e1 are sorted in descending order
of similarity ρ. Thus, for each increment, the top-n neighbor entities of e1 can be updated
according to the order of similarity. To maintain only the top-n neighbor entities, the less
similar neighbor entities are removed. If we hypothetically apply a top-1 neighborhood,
entities e2 and e3 will be removed from the set of neighbor entities. Considering large graphs
generated from large data sources or as a result of incremental processing, reducing the
information stored in each node will result in a significant decrease in memory consumption
as a whole. Therefore, the application of the top-n neighborhood strategy can optimize the
memory consumption of our blocking technique, which enables the processing of large
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data sources. In Section 7, we discuss the gains in terms of resource savings of the impact
on the effectiveness results when different values of n are applied.

4.2.3. Pruning Step

The pruning step is responsible for discarding entity pairs with low similarity values,
as described in Algorithm 3. To generate the output (i.e., pruned blocks), the pruning step
is composed of a groupby function, which receives the pairs 〈eD1 , 〈eD2 , ρ〉〉 from the blocking
generation step and groups the entities by eD1 . Thus, the neighborhood of eD1 is defined
and the pruning is performed. Note that the second MapReduce job, which started in
the blocking generation step, concludes with the groupby function, whose outputs are the
pruned blocks.

Algorithm 3: Pruning
Input: G: graph generated in block generation step
Output: B′: pruned block

1 B′ ← ∅;
2 B′ ←WNP(G);
3 return B’
4 Function WNP(G) do
5 foreach e in G.keys do
6 neighbors← G.get(e);
7 sum← 0;
8 foreach pair in neighbors do
9 sum← sum + pair.ρ;

10 end
11 θ ← sum

|neighbors| ;

12 foreach pair in neighbors do
13 if pair.ρ ≥ θ then
14 B′.put(e, pair);
15 end
16 end
17 end
18 end

After generating the graph G, a pruning criterion is applied to generate the set of
high-quality blocks B′ (lines 1 to 3). As a pruning criterion, we apply the WNP-based
pruning algorithm [33] since it has achieved better results than its competitors [22,33]. The
WNP is a vertex-centric pruning algorithm, which evaluates each node (of G) locally (lines
5 to 17), considering a local weight threshold (based on the average edge weight of the
neighborhood—lines 6 to 11). Therefore, the neighbor entities whose edge weights are
greater than the local threshold are inserted into B′ (lines 12 to 16). Otherwise, the entities
(i.e., whose edge weights are lower than the local threshold) are discarded. Note that the
application of the top-n neighborhood strategy (in the previous step) does not make the
pruning step useless. On the contrary, the top-n neighborhood can provide a refined graph
in terms of the high-quality entity pairs and smaller neighborhood to be pruned in this step.

The time complexity of this step is given by the cost of the WNP pruning algorithm,
which isO(|X| · |L|) [33], where |X| is the number of vertices and |L| is the number of edges
in the graph G. Therefore, the time complexity of the pruning step is O(|X| · |L|). Finally,
the following lemma and theorem state the conditions to guarantee that the proposed
technique and metablocking produce the same output (i.e., B′) and, therefore, present the
same effectiveness results.
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Lemma 3. Considering that the proposed technique and metablocking apply the same pruning
criterion Θ for the same input blocking graph G, both techniques will produce the same pruned
graph G′. Since the output blocks B′ are directly derived from G′, both techniques will produce the
same output blocks B′.

Proof. In the pruning step, the proposed technique receives as input the blocking graph
G(X, L). This step aims to generate the pruned graph G′ according to a pruning criterion
Θ(G). To this end, the edges l ∈ L (represented by 〈x1, x2, ρ〉), whose value of ρ < θ are
removed, and the vertices x ∈ X that have no associated edges are discarded. Note that θ
is given by a pruning criterion Θ(G). Therefore, if the metablocking technique receives the
same blocking graph G(X, L) as input and applies the same pruning criterion Θ(G), both
techniques will generate the same pruned graph G′ and, consequently, the same output
blocks B′.

Theorem 1. For the same entity collection Ei = EiD1 ∪ EiD2 , if the proposed technique and
metablocking apply the same function Γ(v) to extract tokens, the same similarity function Φ(x1, x2),
and the same pruning criterion Θ(G), both techniques will generate the same output blocks B′.

Proof. Based on Lemma 1, with the same Ei and Γ(v), the proposed technique and
metablocking will generate the same blocking keys Λe and, consequently, the same set of
blocks B. Based on Lemma 2, if both techniques receive the same set of blocks B and apply
the same Φ(x1, x2), they will generate the same blocking graph G. Based on Lemma 3,
when the proposed technique and metablocking prune the same graph G using the same
Θ(G), both techniques generate the same pruned graph G′ and, consequently, the same
output blocks B′.

5. Window-Based Incremental Blocking

In scenarios involving streaming data, data sources provide an infinite amount of
data continuously. In addition, incremental processing consumes information processed in
previous increments. Therefore, the computational resources of a distributed infrastructure
may not be enough for the accumulative sum of entities to be processed in each increment.
Considering these scenarios, memory consumption is stated as being one of the biggest
challenges faced by incremental blocking techniques [14,19,43]. Time windows are at the
heart of processing infinite streams since they split the stream into buckets of finite size,
reducing the memory consumption (since entities that exceeded the time threshold are
discarded) of the proposed technique [59]. For this reason, a time window is used in
the blocking generation step of our technique, where blocks are incrementally stored in
the update-oriented data structure (see Section 4.2). In addition to being one of the most
commonly used strategies in incremental approaches [9,14], time windows emerged as a
viable solution for the experiments and case study developed in this work since time is a
reasonable criterion for discarding.

For instance, in a scenario involving incremental and streaming data, the entities arrive
continually over time (e.g., over hours or days). Therefore, as time goes by, the number
of entities increases due to incremental behavior. In other words, the number of blocks
and the number of entities arriving in the blocks increase. On the other hand, commonly,
the amount of computational resources (especially memory and CPU) is limited, which
hampers the techniques to consider all entities during blocking. For this reason, a criterion
such as a time window for removing entities becomes necessary. The application of a
time window is a trade-off between the effectiveness results (since it discards entities) and
rational use of computational resources (since a large number of entities can overload the
available resources). Note that the idea behind time windows is to discard old entities
based on the principle that entities sent in a similar period of time have a higher chance of
resulting in matches [9,14,59].
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In this work, we apply a sliding (time)-window strategy, which defines the time interval
for which the entities should be maintained in the update-oriented data structure, preventing
the structure from excessively consuming memory. For instance, consider the example in
Figure 4, where the entities are divided into three increments and sent at three different time
points T1, T2, and T3. The size of the sliding window (i.e., the time threshold) is given by the
time interval of two increments. Therefore, entities that exceeded the time equivalent to the
time of two increments will be discarded. In other words, these entities will no longer be
considered by the blocking technique. In the first increment, i.e., T1, e1 and e3 are blocked,
generating blocks b1, b2, and b3. In T2, e2 and e4 are blocked. Considering the blocks previously
created, e2 and e4 are added to b1 and b3. Since the size of the window is equivalent to two
increments, for the third increment, the window slides for the next increment (i.e., T3). For this
reason, entities e1 and e3 (sent in the first increment) are removed from the blocks that contain
them. Block b2 is discarded since all entities contained in it were removed. Regarding the
entities of the third increment, entity e5 is inserted into b1 and b3, and e6 is also inserted
into b1, triggering the creation of a new block b4.

Figure 4. Time-window strategy for incremental blocking.

6. Attribute Selection

Real-world data sources can present superfluous attributes, which can be ignored by
the blocking task [5]. Superfluous attributes are attributes whose tokens will generate low-
quality blocks (i.e., with entities with low chances of matching) and, consequently, increase
the number of false matches. To prevent the blocking task from handling unnecessary
data, which consumes computational resources (processing and memory), we propose the
attribute selection algorithm to remove the superfluous attributes.

Although some works [11,20,31,32] exploit attribute information to enhance the quality
of blocks, none of them proposes the disposal of attributes. Therefore, in these works, the to-
kens from superfluous attributes are also considered in the blocking task and, consequently,
they consume computational resources. On the other hand, the discarding of attributes
may negatively affect the identification of matches since tokens from discarded attributes
can be decisive in the detection of these matches. Therefore, the attribute selection should
be performed accurately, as discussed in Section 7. To handle the superfluous attributes,
we developed an attribute selection strategy, which is applied to the sender component
(see Figure 2). Note that, the sender component is executed in a standalone way.

For each increment received by the sender component, the entity attributes are eval-
uated and the superfluous ones are discarded. Thus, the entities sent by the sender are
modified by removing the superfluous attributes (and their values). As stated, discarding
attributes may negatively impact effectiveness, since the discarded attributes for a specific
increment can become relevant in the next increment. To avoid this problem, the attribute
selection strategy takes the attributes into account globally, i.e., the attributes are evaluated
based on the current increment and the previous ones. Moreover, the applied criterion to
discard attributes focuses on attributes whose tokens have a high chance of generating
low-quality blocks, which is discussed throughout this section. Based on these two aspects,
the discarded attributes tend to converge as the increments are processed and do not
significantly impact the effectiveness results, as highlighted in Section 7.2. Note that even if
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a relevant attribute is discarded for a specific increment it can return (not be discarded) for
the next increments.

In this work, we explore two types of superfluous attributes: attributes of low repre-
sentativeness and unmatched attributes between the data sources. The attributes of low
representativeness are related to attributes whose contents do not contribute to determining
the similarity between entities. For example, the attribute gender has a low impact on the
similarity between entities (such as two male users from different data sources) since its
values are commonly shared by a huge number of entities. Note that the tokens extracted
from this attribute will generate huge blocks that consume memory unnecessarily since
these tokens are shared by a large number of entities. Hence, this type of attribute is dis-
carded by our blocking technique to optimize memory consumption without a significant
impact on the effectiveness of the generated blocks.

To identify the attributes of low representativeness, the attribute selection strategy
measures the attribute entropy. The entropy of an attribute indicates the significance of the
attribute, i.e., the higher the entropy of an attribute, the more significant the observation of
a particular value for that attribute [11]. We apply the Shannon entropy [60] to represent the
information distribution of a random attribute. Assume a random attribute X with alphabet
χ and the probability distribution function p(x) = Pr{X = x}, x ∈ χ. The Shannon entropy
is defined as S(X) = −∑x∈χ p(x) log p(x). The attributes with low entropy values (i.e., low
representativeness) are discarded. In this work, we removed the attributes whose entropy
values were in the first percentile (i.e., 25%) of the lowest values. As stated in Section 2, the
use of this condition was based on previous experiments.

Unmatched attributes between the data sources are attributes that do not have a
corresponding attribute (i.e., with similar content) in the other data source. For instance,
assume two data sources D1 and D2, where D1 contains the attributes full name and age, and
D2 the attributes name and surname. Since full name, name, and surname address the same
content, it is possible to find several similar values provided by these attributes. However,
D2 does not have any attributes related to age. That is, age will generate blocks from its
values but these blocks will hardly be relevant to determining the similarities between
entities. It is important to highlight that even though some metablocking-based techniques
remove blocks with only one entity, the blocks are generated and consume resources until
the blocking filter removes them. For this reason, this type of attribute is discarded by our
blocking technique before the block generation.

Regarding the unmatched attributes, attribute selection extracts and stores the at-
tribute values. Hence, for each attribute, a set of attribute values is generated. Based on
the similarity between the sets, a similarity matrix is created denoting the similarity be-
tween the attributes of D1 and D2. To avoid expensive computational costs for calculating
the similarity between attributes, we apply Locality-Sensitive Hashing (LSH) [61]. As
previously discussed, LSH is commonly used to approximate near-neighbor searches in
high-dimensional spaces, preserving the similarity distances and significantly reducing the
number of attribute values (or tokens) to be evaluated. In this sense, for each attribute, a
hash function converts all attribute values into a probability vector (i.e., hash signature).

Since the hash function preserves the similarity of the attribute values, it is possible to
apply distance functions (e.g., Jaccard) to efficiently determine the similarity between the
sets of attribute values [56]. Then, the hash function can generate similarity vectors that
will feed the similarity matrix and guide the attribute selection algorithm. This similarity
matrix is constantly updated as the increments arrive. Therefore, the similarity between
the attributes is given by the mean of the similarity per increment. The matrix is evaluated
and the attributes with no similarity to attributes from the other data source are discarded.
After removing the superfluous attributes (and their values), the entities are sent to the
blocking task. Note that instead of only generating hash signatures as in the noise-tolerant
algorithm, LSH is applied in the attribute selection to reduce the high-dimensional space of
the attribute values and determine the similarity between attributes based on a comparison
of their hash signatures.
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7. Experiments

In this section, we evaluate the proposed blocking technique in terms of efficiency and
effectiveness, as well as the application of the attribute selection and top-n neighborhood
strategies to the proposed technique. To conduct a comparative experiment, we also
evaluate the proposed technique against a baseline one, which is described in Section 7.1.
Moreover, we present the configuration of the computational cluster, the experimental
design, and the achieved results.

The experiments address the following research questions:

• RQ1: In terms of effectiveness, is the proposed blocking technique equivalent to the
state-of-the-art technique?

• RQ2: Does the noise-tolerant algorithm improve the effectiveness of the proposed
blocking technique in scenarios of noisy data?

• RQ3: Regarding efficiency, does the proposed blocking technique (without the at-
tribute selection and top-n neighborhood strategies) outperform the baseline tech-
nique?

• RQ4: Does the attribute selection strategy improve the efficiency of the proposed
blocking technique?

• RQ5: Does the top-n neighborhood strategy improve the efficiency of the proposed
blocking technique?

7.1. Baseline Technique

As stated in previous sections, state-of-the-art blocking techniques do not work prop-
erly in scenarios involving incremental and streaming data. For this reason, a comparison
of our technique with these blocking techniques is unfair and mostly unfeasible. Thus,
in this work, to define a baseline to compare with the proposed blocking technique, we
implemented a metablocking technique capable of dealing with streaming and incremen-
tal data called streaming metablocking. This section provides an overview of streaming
metablocking in terms of implementation and how it applies to the context of this work
(i.e., streaming and incremental data).

Streaming metablocking is based on the parallel workflow for metablocking proposed
in [22]. However, it was adapted to provide a fair comparison with our technique in terms
of effectiveness and efficiency. The first adaptation was related to addressing incremental
behavior, which needs to update the blocks to consider the arriving entities (i.e., new
entities). Using a brute-force strategy, after the arrival of a new increment, streaming
metablocking needs to rearrange all blocks including the blocks that were not updated (e.g.,
insertion of new entities). This strategy is costly in terms of efficiency since it performs a
huge number of unnecessary comparisons that have already been performed. To avoid
this, streaming metablocking only considers the blocks that were updated for the current
increment. Note that the original workflow proposed in [22] did not consider incremental
behavior; therefore, the idea to (re)process the blocks generated previously was considered
in this work.

The second adaptation of metablocking was related to streaming behavior. Streaming
metablocking was implemented following the MapReduce workflow proposed in [22].
However, note that this parallel-based workflow was developed to handle batch data at
once. Therefore, the workflow was redesigned to consider incremental behavior and allow
the processing of streaming data. To this end, streaming metablocking was implemented
using the Flink framework (i.e., MapReduce), which natively supports streaming behavior,
as described in Section 4. In this sense, streaming metablocking applies a data structure
to store the blocks previously generated and also avoids comparisons between entities
previously compared (i.e., unnecessary comparisons).

On the other hand, it is necessary to highlight that the blocking technique proposed
in this paper applies a different workflow, which reduces the number of MapReduce jobs
compared to the streaming metablocking workflow described in Section 4. Moreover, the
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proposed strategies (i.e., attribute selection and top-n neighborhood) are not applied in
streaming metablocking.

7.2. Configuration and Experimental Design

We evaluated our approach (https://github.com/brasileiroaraujo/ER_Streaming, ac-
cessed on 4 December 2022) in terms of effectiveness and efficiency. We ran our experiments
in a cluster infrastructure with 21 nodes (one master and 20 slaves), each with one core.
Each node had an Intel(R) Xeon(R) 2.10GHz CPU, 4GB memory, running on the 64-bit
Ubuntu/Linux 16.04.5 OS with a 64-bit JVM, Apache Kafka (https://kafka.apache.org/, ac-
cessed on 4 December 2022) 2.1.0, and Apache Flink (https://flink.apache.org/, accessed on
4 December 2022) 1.7.1. Note that both the proposed technique and streaming metablocking
applied Flink [62] as the MapReduce framework. The application of Flink was motivated
by its better efficiency results compared to other frameworks such as Apache Spark in
streaming scenarios [63,64]. Regarding the streaming processing platform to connect the
sender and blocking task components (in the architecture), Apache Kafka [55] was applied.
We used three real-world pairs of data sources, which are available in the project’s reposi-
tory, as described in Table 4: (i) Amazon-GP, which includes product profiles provided by
amazon.com and google.com; (ii) IMDB-DBpedia, which includes movie profiles provided
by imdb.com and dbpedia.org; and (iii) DBPedia1-DBPedia2, which consists of two different
versions of the DBPedia Infobox dataset (https://wiki.dbpedia.org/Datasets, accessed
on 4 December 2022, snapshots from October 2007 and 2009, respectively). Table 4 also
shows the number of entities (D) and attributes (A) contained in each dataset, as well as
the number of duplicates (i.e., matches—M) present in each pair of data sources.

Table 4. Data source characteristics.

Pairs of Datasets |D1| |D2| |M| |A1| |A2|

Amazon-GP 1354 3039 1104 4 4

IMDB-DBpedia 27,615 23,182 22,863 4 7

DBpedia1-DBpedia2 100,000 200,000 76,424 13,492 23,284

Blocking large data sources requires a huge amount of resources (e.g., memory and
CPU) [19,29]. Moreover, it is necessary to highlight that a high number of attributes
commonly tends to increase the amount of information and, consequently, the number of
tokens related to each entity, which also increases resource consumption [5,13]. To avoid
problems involving a lack of resources in our cluster, DBPedia1-DBPedia2 is a sample from
the whole data source containing millions of entities. In addition, since the cluster used
in this experiment was able to process at most tens of thousands of entities per increment,
data sources containing millions of entities would significantly increase the number of
increments (by several hundred) unnecessarily. Then, we randomly selected a sample
of 100,000 entities from DBPedia1 and 200,000 entities from DBPedia2. It is important to
highlight that the samples maintain proportionality in terms of the number of duplicates
and the difference in the number of entities between the data sources.

To simulate streaming data behavior, a data-streaming sender was implemented. This
sender reads entities from the data sources and sends entities in each τ time interval
(i.e., increment). In this work, τ = 1 min (i.e., one increment per minute) is used for all
experiments. To measure the effectiveness of the blocking, we use the (i) pair completeness
(PC = |M(B′)|

|M(D1,D2)|
), which estimates the portion of matches identified, where |M(B′)| is the

number of duplicate entities in the set of pruned blocks B′ and |M(D1, D2)| is the number
of duplicate entities between D1 and D2; (ii) pair quality (PQ = |M(B′)|

||B′ || ), which estimates
the executed comparisons that result in matches, where ||B′|| is the number of comparisons
to be performed in the pruned blocks; and (iii) reduction ratio (RR = 1− ||B′ ||

||B′Metablocking ||
),

https://github.com/brasileiroaraujo/ER_Streaming
https://kafka.apache.org/
https://flink.apache.org/
https://wiki.dbpedia.org/Datasets
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which estimates the comparisons avoided in B′ (i.e., ||B′||) with respect to the comparisons
produced by the baseline technique (i.e., metablocking). PC, PQ, and RR take values in
[0, 1], with higher values indicating a better result. It is important to highlight that schema-
agnostic blocking techniques (even state-of-the-art techniques) yield high recall (i.e., PC) but
at the expense of precision (i.e., PQ) [5,11]. For schema-agnostic blocking techniques, the
low PQ is due to the unnecessary comparisons defined by the generated blocks: redundant
comparisons entail the comparison of entities more than once and superfluous comparisons
entail the comparison of non-matching entities [11].

For efficiency, we comparatively evaluate the maximum number of entities processed
per increment for the proposed technique and streaming metablocking. To measure the max-
imum number of entities processed per increment, we monitored the back pressure (https://
ci.apache.org/projects/flink/flink-docs-stable/monitoring/back_pressure.html, accessed
on 28 September 2022) metric. This metric takes values in the interval [0, 1], where a high
back pressure (i.e., higher than 0.5) means that the task is producing data faster than the
downstream operators (in the cluster) can consume. In other words, a high back-pressure
value denotes that the cluster does not have enough resources to process the amount of data
sent by the sender component per increment. Thus, from the back pressure, it is possible
to define the computational limit (in terms of the number of entities per increment) of the
cluster for each blocking technique.

To evaluate the impact of the number of neighborhood entities in the top-n neighbor-
hood strategy, we conducted experiments varying the value n. The value n starts with a
small number of neighborhood entities (i.e., 25 entities) and increases to a large number of
neighborhood entities (i.e., 6400 entities). Thus, it is possible to compare the effectiveness
and efficiency results for different values of n. We did not increase the value of n to over
6,400 entities because the achieved results did not present significant gains in terms of
effectiveness. These results are discussed in Section 7.3. Following, we use the acronyms
PT for the proposed technique, SM for streaming metablocking, AS for attribute selection,
top-n for the top-n neighborhood strategy, and NT for the noise-tolerant algorithm.

7.3. Effectiveness Results

In Figure 5, the evaluation of the effectiveness of the PT and SM can be seen. The
effectiveness results of the PT (without AS and top-n) are similar to the results achieved
by the technique proposed in [19]. This occurred due to both techniques following the
same blocking workflow and applying the same pruning algorithm (i.e., WNP). Since
the window size is a limitation of streaming processing and interferes with effectiveness
(true matches will never be compared if they are not covered by the window size), we
implemented the sender to always send true matches (according to the ground truth) in a
time interval covered by the window size. Note that the effectiveness of SM and the PT
are exactly the same (Theorem 1) when the PT does not apply the top-n neighborhood
and/or attribute selection strategies. Therefore, part of the research question RQ1 (i.e.,
Regarding effectiveness, is the proposed blocking technique with/without the proposed strategies
comparable to the existing state-of-the-art technique?) is answered since the PT and SM present
the same effectiveness.

For the PQ and RR, the application of the top-n neighborhood and attribute selection
strategies in the PT outperformed the results of SM for all data sources. This occurred
due to the fact that the application of these strategies decreased the number of entity pairs
to be compared within the blocks. Note that the top-n neighborhood aims to reduce the
number of neighbor entities in the similarity graph. For this reason, the size of the blocks
(in the number of entities) tends to decrease and, consequently, the number of entities to be
compared after the blocking step. The attribute selection strategy decreases the number
of blocks since it discards some tokens that would generate new blocks. Therefore, it is
important to highlight that the attribute selection strategy works as a controller of the block
amount, which is one of the challenges faced by token-based blocking techniques [65]. Then,
the application of these strategies improves the PQ and RR, which are directly related to the

https://ci.apache.org/projects/flink/flink-docs-stable/monitoring/back_pressure.html
https://ci.apache.org/projects/flink/flink-docs-stable/monitoring/back_pressure.html
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number of comparisons generated from the blocks (i.e., ||B′||). We can also analyze the RR
as an efficiency metric since it estimates the number of comparisons to be executed in the ER
task. In this sense, we can identify the efficiency gains (for the ER task as a whole) provided
by the application of both strategies, which produces blocks with fewer comparisons.

Figure 5. Effectiveness results of the techniques for the data sources: (a) Amazon vs. Google Product,
(b) IMDB vs. DBpedia, and (c) DBpedia1 vs. DBpedia2.

When analyzing the PQ and RR, notice that as the value of n in the top-n neighborhood
strategy decreased, these metrics achieved better results. This behavior occurred due to the
reduction in the number of neighbor entities, which decreased the number of entities to be
compared in ER task. For this reason, low values of n implied good results for the PQ and
RR. However, the PC decreased when the top-n neighborhood was applied; in the worst



Information 2022, 13, 568 26 of 38

case, for Amazon-GP, the PC achieved was 0.72 for n = 25. Thus, the top-n neighborhood
significantly decreased the PC to very low n values (e.g., n = 25). On the other hand, we
identified that, even for large data sources (e.g., DBPedia1-DBPedia2), n values between
100 and 400 presented reasonable PC values (PC higher than 0.95) for all data sources. For
instance, the top-n neighborhood, with n = 400, decreased the PC by only 1.6 percentage
points, on average, for all data sources. In this experiment, we selected the best top-n value
to be applied together with the attribute selection (i.e., PT + AS + top-n). In this sense, the
application of both strategies maintained efficiency, enhancing the RR and PQ with a small
decrease in the PC compared to the baseline technique.

When attribute selection was applied, the PC decreased, the worst being for IMDB-
DBpedia, by 1.5 percentage points. Thus, it is possible to infer that AS discards only
those attributes that do not significantly interfere with the PC results (i.e., superfluous
attributes). Regarding the PQ and RR, the application of attribute selection showed small
improvements in these metrics since this strategy reduced the number of generated blocks
and, consequently, the number of comparisons to be performed in the ER task. The
application of the top-n neighborhood and attribute selection together achieved reasonable
results in terms of effectiveness for all data sources since the PQ and RR increased compared
to the PC, which suffered a decrease of only one percentage point, on average. Therefore,
based on the results highlighted in this subsection, it is possible to affirm that the proposed
blocking technique with the application of the proposed strategies is comparable to SM in
terms of effectiveness, answering the question in RQ1.

Noisy data scenario. To evaluate the effectiveness results of the proposed techniques
with the application of the noise-tolerant algorithm, we inserted synthetic typos and
misspellings (i.e., noise) into the attribute values of the entities to simulate scenarios of
noisy data. For each dataset pair described in this section, the noise was inserted in the
first dataset (the datasets with noise are available in the project repository). To simulate
the occurrence of typos/misspellings [36], for all attribute values (from an entity), one
character of each value (i.e., token) was randomly exchanged for another or additional
characters were inserted into the attribute value. The noise level in the dataset varied
between 0 to 1, where 0 means no noise was inserted into the dataset and 1 means noise
was inserted into the attribute values of all entities in the dataset. Hence, a noise level of
0.6 indicates that 60% of the entities (contained in the first dataset) had noise inserted into
their attribute values.

Figure 6 illustrates the effectiveness results of the proposed technique (with/without
the noise-tolerant algorithm) for each pair of datasets. In this sense, a comparative analysis
was conducted to evaluate the application of the noise-tolerant algorithm to the proposed
technique. To this end, a combination of the proposed technique with the attribute selection
and top-n neighborhood strategies, which achieved the best effectiveness results in the
experiment addressed in this section, was considered. The following scenarios were
selected throughout this experiment: PT+AS+top -400 for Amazon-GP, PT+AS+top-100 for
IMDB-DBpedia, and PT+AS+top-400 for DBPedia1-DBPedia2.

Regarding the PC metric, the application of the NT increased the PC in all scenarios
with the presence of noise. Even for different scenarios of noise levels, the application of
the noise-tolerant algorithm to the proposed technique presented better results for all pairs
of datasets. It is important to highlight that as the noise level increased, the effectiveness
metrics (i.e., PC and PQ) decreased in both scenarios (with/without NT). This occurred
due to the fact that the noise on the data negatively impacted the block generation, as
already discussed in Sections 3 and 4. However, the effectiveness metrics decreased rapidly
when the NT was not applied. Thus, the application of the NT amortized the decrease in
effectiveness. Even for the highest level of noise (i.e., a noise level of 1.0), the application
of the noise-tolerant algorithm to the proposed technique achieved a pair completeness
greater than 60% for all pairs of datasets.
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Figure 6. Effectiveness results in the context of noisy data for the data sources: (a) Amazon vs. Google
Product, (b) IMDB vs. DBpedia, and (c) DBpedia1 vs. DBpedia2.

In terms of the PQ metric, in scenarios with the presence of noise, the application
of the NT almost doubled the PQ results, on average. The main reason for this was the
generation of multiple tokens per entity attribute (based on a particular attribute value)
as blocking keys when the NT was not applied. Since non-matching entities eventually
share multiple tokens, they were included in the same block erroneously. On the other
hand, the NT algorithm generated a hash value based on a particular attribute value. Thus,
non-matching entities sharing the same hash value were harder to find than non-matching
entities sharing tokens in common. For this reason, the NT enhanced the PQ metric.
Therefore, based on the results highlighted in this experiment, it is possible to affirm that
the application of the noise-tolerant algorithm to the proposed technique enhances the
effectiveness in scenarios involving noisy data, answering the research question RQ2 (i.e.,
Does the noise-tolerant algorithm improve the effectiveness of the proposed blocking technique in
scenarios of noisy data?).

7.4. Efficiency Results

Since the PT is an evolution of the technique proposed in [19], it is possible to affirm
that the PT overcomes the technique in terms of efficiency. As stated in [19], due to excessive
resource consumption, the technique was not able to process the IMDB-DBpedia pair with
fewer than 12 nodes, each with 6GB of memory. The nodes applied in [19] also had an
Intel(R) Xeon(R) 2.10GHz CPU and ran on a 64-bit Debian GNU/Linux OS with a 64-bit
JVM. On the other hand, our technique was able to process the same data source pair
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with one node with 4GB of memory. Moreover, the PT was also able to process larger
data sources such as DBpedia1-DBpedia2. This occurred due to the application of the AS
algorithm, top-n strategy, and Flink (instead of Spark), which enhanced efficiency. For this
reason, the focus of our experiments was to evaluate the impact of the AS and top-n on
the PT.

To evaluate the proposed technique against SM (Figure 7), we applied a sliding
window with a size of four minutes to all data sources since this size achieved reasonable
effectiveness results even if the entities were sent in the order stored in the data sources.
To evaluate efficiency, we measured the maximum number of entities processed by the
techniques per increment, varying the number of nodes between 1 and 20. Note that the
maximum number of processed entities denotes the efficiency of the techniques in terms of
resource management (e.g., CPU and memory). Since the pair Amazon-GP was composed
of small data sources, we varied the number of nodes up to four. After that, the number of
nodes did not interfere with the results and all data from the data source were consumed
in only one increment.

Based on the results shown in Figure 7, the PT outperformed SM for all data sources,
even without the application of the top-n neighborhood or attribute selection strategies due
to the reduction in MapReduce jobs (see Section 4.2), which saved computational resources
and improved efficiency. On average, the PT increased the number of processed entities by
12% compared to SM. Thus, these results answer the research question RQ3 (i.e., Regarding
efficiency, does the proposed blocking technique (without attribute selection and top-n neighborhood
strategies) outperform the baseline technique?).

Since the attribute selection strategy aims to reduce the number of tokens and, conse-
quently, the number of generated blocks, we evaluated the application of attribute selection
regarding the reduction in the number of tokens. Therefore, evaluating the PT with at-
tribute selection (i.e., PT + AS), the removal of attributes resulted in a reduction of 10%
for Amazon-GP, 34% for IMDB-DBpedia, and 2% for DBpedia1-DBpedia2 in terms of the
number of generated tokens compared to when attribute selection was not applied. It is im-
portant to highlight that the 2% reduction for DBpedia1-DBpedia2 resulted in 18,000 fewer
tokens. In other words, attribute selection avoided the creation of more than 18,000 blocks
during the blocking phase. Specifically, attribute selection discarded the following number
of attributes for each data source: one from Amazon, one from GP, one from IMDB, four
from DBpedia, 3,375 from DBpedia1, and 5,826 from DBpedia1. These reductions in the
number of blocks directly affected the number of entities processed per increment since it
reduced resource consumption. Therefore, based on the results presented in Figure 7, it can
be stated that the PT + AS outperformed the PT for all data sources. On average, the PT +
AS increased the number of entities processed per increment by 20% compared to the PT,
which answers the research question RQ4 (i.e., Does the attribute selection strategy improve
the efficiency of the proposed blocking technique?).

Regarding the top-n neighborhood strategy, we evaluated the PT with the top-100 and
top-400, the two most promising values in terms of effectiveness. Low values of “n” (in
top-n) negatively impacted the PC since the small number of neighbor entities reduced
the chance to find true matches. On the other hand, high “n” values did not decrease
the PQ metric since high “n” values achieved the original number of neighbor entities
for each entity. Thus, the application of high “n” values tended to achieve similar results
(in terms of effectiveness) to the PT without the top-n neighborhood strategy. Regarding
efficiency, the lower the “n” values (in top-n), the greater the number of entities processed
per increment. This occurred due to the reduction in the neighbor entities linked to each
node (i.e., entity) in the similarity graph and, consequently, the reduction in the consumed
computational resources. For this reason, in DBpedia1-DBpedia2, the PT applying the
top-100 neighborhood increased the number of entities processed per increment by 85%,
on average, compared to the PT, whereas the application of the top-400 increased the
number of processed entities by 47%. Thus, it is possible to answer research question
RQ5 (i.e., Does the top-n neighborhood strategy improve the efficiency of the proposed blocking
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technique?) since the achieved results show that the top-n neighborhood strategy improved
the PT’s efficiency.

Figure 7. Efficiency results of the techniques for the data sources: (a) Amazon vs. Google Product,
(b) IMDB vs. DBpedia, and (c) DBpedia1 vs. DBpedia2.
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The application of the attribute selection and top-n neighborhood strategies to the PT
enabled us to achieve better results in terms of efficiency for all data sources. For instance,
in DBpedia1-DBpedia2, the combination of attribute selection and top-400 neighborhood
provided the PT with an increase of 56%, on average, in terms of the number of entities
processed per increment. On the other hand, the PT + AS increased the number of processed
entities by 20%, whereas with the PT + top-400, these were increased by 47%. Therefore,
based on the results presented in Figure 7, we highlight the efficiency improvements
promoted by both strategies for all data sources. The efficiency gains are due to the reduced
number of blocks and the generation of smaller blocks, which reduce resource consumption
and increase the capacity to process more entities per increment.

Regarding scenarios where the noise-tolerant algorithm was applied to the proposed
technique, there was no impact in terms of efficiency. The noise-tolerant algorithm was
performed in the sender component (as described in Section 4) and produced the same
amount of hash values as the proposed technique produced tokens (as stated in Section 2).
In this sense, during all the experiments conducted in this Section, the execution time
of the noise-tolerant algorithm did not exceed the time interval τ, which represents the
time between two consecutive increments sent by the sender component (as described in
Section 4). Moreover, since the computational costs to compare hash values were similar to
comparing tokens during the blocking task and the number of generated hash values (when
the noise-tolerant algorithm was applied) was the same as the number of generated tokens
(when the noise-tolerant algorithm was not applied), the execution time of the proposed
technique did not suffer significant interference to the noise-tolerant algorithm in terms
of efficiency.

8. A Real-World Case Study: Twitter and News

Streaming data are present in our daily lives in different contexts including personal
devices (mobile phones and wearable devices such as smartwatches), vehicles (intelli-
gent transportation systems, navigation, theft prevention, and remote vehicle control),
day-to-day living (tracking systems, various meters, boilers, and household appliances),
and sensors (weather data temperature, humidity, air pressure, and measured data) [10].
Particularly, for social data, in a single minute, 456,000 tweets are posted, 2,460,000 pieces of
content are shared on Facebook, Google conducts 3,607,080 searches, the weather channel
receives 18,055,555 forecast requests, Uber riders take 45,787.54 trips, and 72 h of new
videos are uploaded to YouTube and 4,146,600 videos are watched [66]. Streaming data can
be utilized in various areas of study as they are linked with a large amount of information
(oil price, exchange rate, social data, music, videos, and articles) that is found on the Web.
Such data may also provide crucial information about product prices, consumer profiles,
criminality, diseases, and disasters for companies, government agencies, and research
agencies in real time [54]. For example, a company can evaluate (in real time) the public
perception of its products through streaming data provided by social networks. In this
context, ER becomes a fundamental task to integrate and provide useful information to
companies and government agencies [4]. Particularly, blocking techniques should be used
to provide efficiency to the ER task since it is necessary to handle a large amount of data in
a short period of time.

News can be easily found on websites or through RSS feeds. For instance, RSS (Really
Simple Syndication) feeds have emerged as an important news source since this technology
provides real-time content distribution using easily consumable data formats such as XML
and JSON. In this sense, social media (e.g., Twitter, Facebook, and Instagram) have become
a valuable data source of news for journalists, publishers, stakeholders, and consumers. For
journalists, social networks are an important channel for distributing news and engaging
with their audiences [67]. According to the survey in [68], more than half of all journalists
stated that social media was their preferred mode of communication with the public.
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Over social networking services, millions of users share information on different as-
pects of everyday life (e.g., traffic jams, weather, and sporting events). The information
provided by these services commonly addresses personal points of view (e.g., opinions,
emotions, and pointless babble) about newsworthy events, as well as updates and discus-
sions of these events [69]. For instance, journalists use social media frequently for sourcing
news stories since the data provided by social media are easy to access by elites, regular
people, and people in regions of the world that are otherwise isolated [70]. Since semantic
standards enable the web to evolve from information uploaded online, this kind of data
can benefit Web systems by aggregating additional information, which empowers semantic
knowledge and the relationships between entities [71].

Among the social networking sites, we can highlight Twitter. Twitter is a popular
micro-blogging service with around 310 million monthly active users, where users can post
and read short text messages (known as tweets), as well as publish website links or share
photos. For this reason, Twitter has emerged as an important data source, which produces
content from all over the world continually, and an essential host for sensors for specific
events. An event, in the context of social media, can be understood as an occurrence of
interest in the real world that instigates a discussion-associated topic at a specific time [72].
The occurrence of an event is characterized by a topic and time and is often associated with
entities such as news. Hot-topic events are grouped by Twitter and classified as trending
topics, which are the most commented topics on Twitter. Twitter provides the trending
topics list on its website and API, where it is possible to filter the trending topics by location
(for instance, a specific city or country).

The main objective of this experimental evaluation was to validate (in terms of effec-
tiveness) the application of the top-n neighborhood strategy, attribute selection strategy,
and noise-tolerant algorithm to the proposed blocking technique in real-world streaming
scenarios. More specifically, the real-world scenarios considered in this study were related
to tweets and news. In this sense, it is important to note that the idea of this case study
was to apply the proposed technique in order to group tweets that presented similarities
regarding news published by media sites. In other words, given a set of news records
provided (in a streaming way) by a news data source, the proposed technique should
identify and group into the same block the tweets that address the same topic as a news
record. In this aspect, our technique can be useful for journalists and publishers who are
searching for instant information provided by tweets related to a specific event. Moreover,
stakeholders, digital influencers, and consumers can benefit from the application of the
proposed technique in the sense of analyzing tweets (for instance, applying a sentiment
analysis approach) related to a specific topic described in a news article such as a novel
product, the reputation of a brand, or the impact of media content.

8.1. Configuration and Experimental Design

Concerning the news data, we collected data provided by the Google News RSS feed
(https://news.google.com/rss/, accessed on 28 September 2022), whereas the tweets were
collected from the Twitter Developer API (https://developer.twitter.com/, accessed on
28 September 2022). For both data sources (a copy of the collected data is available in the
project repository.), the data were filtered for the USA location (i.e., tweets and news in
English) to avoid cross-language interference in the experiment. Considering that tweets
and news can provide a huge number of tokens and since the number of tokens is directly
related to the efficiency of the blocking technique (as discussed in Section 7), the framework
Yake! [73] was applied as a keyword extractor. Yake! is a feature-based system for multi-
lingual keyword extraction, which presents high-quality results in terms of efficiency and
effectiveness compared to the competitors [73]. The application of Yake! is also useful in
the sense of removing useless words (e.g., stop words) and extracting relevant words (i.e.,
keywords) from long texts such as a news item. Note that the words extracted from tweets
and news items become tokens during the blocking task.

https://news.google.com/rss/ 
https://developer.twitter.com/
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One of the challenges of this real-world experiment was computing the effectiveness
results since the generation of the ground truth was practically unfeasible. In this scenario,
for each news item, the ground truth consisted of a set containing all tweets that were
truly related to the news item in question. To produce the ground truth regarding tweets
and news, it was necessary to use a group of human reviewers to label the hundreds of
thousands of tweets for the hundreds of news items collected during the experiment, which
represents a high-cost and error-prone demand task in terms of time and human resources.

To minimize the stated challenge, we applied the strategy used in [74,75], which
generates the ground truth based on the hashtags contained in the tweets. In this sense,
we collected the trending topic hashtags from the Twitter Developer API that referred
to the most commented topics on Twitter at a specific time. From the trending topic
hashtags, a search was performed on the Google News RSS feed using each hashtag as the
search key. In turn, Google News returned a list of news related to the hashtag topic. To
avoid old versions of the news items, we considered news published on the same day the
experiment was conducted. In this way, it was possible to define a link between the news
and the hashtags (topics). When the tweets were collected, the hashtags were extracted in
the sense of correlating the tweet with one of the trending topic hashtags. Hence, based
on the trending topic hashtags as a connection point, it was possible to link tweets and
news that addressed the same topic. For instance, from the hashtag “#BlackLivesMatter”,
it was possible to link tweets that contained this hashtag to news related to this topic
provided by the Google News search using the hashtag as the search key. By doing this,
we generated a ground truth that was able to support the effectiveness evaluation of the
proposed blocking technique.

Regarding the computational infrastructure, we ran our experiments in a cluster with
six nodes (one master and five slaves), each with one core. Each node had an Intel(R)
Xeon(R) 2.10 GHz CPU, 3 GB memory, running on a 64-bit Windows 10 OS with a 64-bit
JVM, Apache Kafka 2.1.0, and Apache Flink 1.7.1. This experiment was conducted between
May 12 and May 16 2021 and was divided into 15 different moments at 3 different times
each day. During this experiment, 483,811 tweets and 776 news items were collected and
processed using the proposed technique. We applied a time window of 20 min with two
minutes of sliding. These parameters were chosen to maximize the effectiveness results
without back pressure problems (as discussed in Section 7.2).

To evaluate the top-n neighborhood, attribute selection, and noise-tolerant algorithm,
we conducted experiments combining the application (or not) of these strategies to the
proposed technique. Regarding the top-n neighborhood, we applied the top-400 and top-
1600, since these parameters achieved better effectiveness results without back pressure
problems. Concerning the attribute selection strategy, we performed experiments with
and without its application. In terms of the noise-tolerant algorithm, we applied it to the
scenario where the top-1600 and attribute selection were applied since this combination
achieved the best effectiveness results. Note that from the Twitter data, the attributes were
text, user name, user screen name, hashtags, cited users, and created at. The attributes from
Google News included title, text, published at, and list of links. When the attribute selection
was ignored, all the stated attributes were considered during the blocking. On the other
hand, when attribute selection was applied, only the attributes text and hashtags from
tweets and title and text from news items were considered. In all scenarios in the study
case, the results of the attribute selection converged in the sense of achieving the same
discarded attributes.

8.2. Results and Discussion

Assuming the configuration set previously described, we evaluated the effectiveness
of the proposed technique (PT) when the top-n neighborhood strategy, attribute selection
(AS) strategy, and noise-tolerant algorithm (NT) were applied, resulting in seven different
combinations: PT, PT + AS, PT + Top-400, PT + AS + Top-400, PT + Top-1600, PT + AS
+ Top-1600, and PT + AS + Top-1600 + NT. Note that to evaluate the PQ metric, it was
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necessary to conduct a human evaluation. This occurred due to the fact that, even when
applying the strategy to generate a ground truth based on the hashtags, the proposed
technique can correlate tweets and news that truly address the same topic. However, these
correlations may not have been included in the ground truth because the tweets did not
present hashtags. Therefore, due to the challenges of generating the ground truth, only the
PC metric was applied during the experiment.

Overall, based on the results illustrated in Figure 8, the PT combination achieved an
average of 84% for the PC (considering all the moments). Moreover, the PC value was
enhanced when the AS was applied. Specifically, as depicted in Figure 9, the PT + AS
presented a PC value of 92% and the PT + AS + Top-1600 achieved a PC value of 91%, on
average. In Figure 8, it is possible to see that the application of the AS tended to increase
the PC results of the PT in all evaluated moments. These results can be explained due to the
discarding of superfluous attributes, which may have disturbed the effectiveness results, as
discussed in Section 6 and evaluated in Section 7.2. Considering the collected attributes
from tweets (i.e., text, user name, user screen name, hashtags, cited users, and created at) and
news items (i.e., title, text, published at, and list of links), when the AS was applied, only text
and hashtags from tweets and title and text from news items were considered. Regarding
the discarded attributes, we observed that created at and published at were removed by the
entropy rule since all the values presented a small variation considering that the tweets and
news items were collected at similar time intervals. Regarding user name, user screen name,
and cited users from tweets and list of links from news items, we observed that they were
discarded based on the unmatched attribute rule since none of these attributes presented a
relation among them (or with any other attribute). Thus, the application of the AS discarded
the superfluous attributes and, consequently, tended to generate high-quality blocks. It
also improved effectiveness, as discussed in Section 6.

Figure 8. Effectiveness results of the proposed technique for the 15 different moments involving
news and Twitter data.



Information 2022, 13, 568 34 of 38

Figure 9. Average of effectiveness results of the proposed technique for news and Twitter data.

Based on the results depicted in Figure 8, it is possible to identify a pattern regarding
the application of the top-n neighborhood and attribute selection. Notice that the appli-
cation of the top-n neighborhood tended to decrease the PC metric compared to the PT
(without top-n) results. More specifically, the application of the top-1600 decreased the PC
metric by 3 percentage points on average and the top-400 decreased the PC metric by 8 per-
centage points on average, as depicted in Figure 9. These results were expected since they
were also obtained in the experiments presented in Section 7.3. The top-n neighborhood
was developed to enhance efficiency without significant interference in the effectiveness
results, which was achieved when the top-1600 was applied (i.e., with only a 3% decrease).
In contrast, when the top-n neighborhood and attribute selection were applied together,
the PC results tended to increase and achieved similar results when only attribute selection
was applied. For instance, the PT + AS achieved a PC value of only one percentage point
higher than the PT + AS + Top-1600 on average, as illustrated in Figure 9.

Regarding the application of the noise-tolerant algorithm, the combination of the PT
+ AS + Top-1600 + NT achieved the best results among the other combinations in 12 of
the 15 moments, as described in Figure 8. Only in three moments did the combinations
PT + AS + Top-1600 or PT + AS outperform the PT + AS + Top-1600 + NT. However,
in these three moments, the difference between the PC results was only one percentage
point. Specifically, as depicted in Figure 9, the PT + AS + Top-1600 + NT presented a PC
value of 93% on average, which was one percentage point higher than the PC average
for the combination of the PT + AS. Based on these results, it is important to highlight
that the application of the noise-tolerant algorithm tended to enhance the effectiveness of
the proposed technique. This occurred due to the fact that the noise-tolerant algorithm
allowed the proposed technique to handle data in the presence of noise, which is common
in real-world scenarios. In other words, the noise-tolerant algorithm enabled the proposed
technique to find matches that were not identified due to the noisy data.

It is important to highlight the effectiveness results achieved by the proposed technique
during the case study. Moreover, although efficiency was not the main evaluation objective,
with the application of the configuration set stated in Section 8.1, the proposed technique
did not present back pressure problems. Taking into account the real-world scenario
involved in this case study, the impact of superfluous attributes is clearer. As exposed
by the works in [11,31], tokens provided by superfluous attributes tend to generate low-
quality blocks. Furthermore, when data are provided by social networks, this challenge
is strengthened [72]. For instance, a tweet may be linked to a news item that addresses
a topic about “Black Lives Matter” only because the tweet presents “Lives” as a value in
the attribute user name (since both share the token “Lives”). This link based only on the



Information 2022, 13, 568 35 of 38

token “Lives”, has a high chance of being a false-positive result. Although the experiments
described in Section 7 also considered the application of attribute selection, an important
result of this case study is the application of attribute selection in the sense of improving
the effectiveness of real-world data sources. In this sense, the case study scenario presented
several superfluous attributes (i.e., created at, user name, user screen name, cited users, published
at, and list of links), which negatively interfered with the quality of the generated blocks.
For this reason, based on the achieved results in this case study and the comparative
experiments in Section 7, the attribute selection strategy emerges as an important ally for
blocking techniques in the sense of enhancing not only effectiveness but also efficiency.

9. Conclusions and Further Work

Blocking techniques are largely applied as a pre-processing step in ER approaches in
order to avoid the quadratic costs of the ER task. In this paper, we address the challenges
involving heterogeneous data, parallel computing, noisy data, incremental processing, and
streaming data. To the best of our knowledge, there is a lack of blocking techniques that
address all these challenges simultaneously. In this sense, we propose a novel schema-
agnostic blocking technique capable of incrementally processing streaming data in parallel.
In order to enhance the efficiency of the proposed technique, we also propose the attribute
selection (which discards superfluous attributes from the entities) and top-n neighborhood
(which maintains only the top “n” neighbor entities for each entity) strategies. Furthermore,
the noise-tolerant algorithm was proposed in order to enhance the effectiveness results of
the proposed technique in scenarios involving noisy data. Based on the experimental results,
we can confirm that our technique presents better efficiency results than the state-of-the-art
technique (i.e., streaming metablocking) without a significant impact on effectiveness. This
main result was achieved due to the reduction in the number of MapReduce jobs in the
proposed workflow. Moreover, as addressed in Sections 7 and 8, the application of the
proposed strategies improved the results achieved by our blocking technique in terms of
efficiency and effectiveness in scenarios involving real-world data sources.

In future work, we intend to study different kinds of window strategies (i.e., not
only time-window strategies) that can be applied to the proposed technique, for instance,
maintaining (and prioritizing) blocks constantly updated during increments. Moreover, we
would like to highlight the possibility of adapting other existing blocking techniques to
our parallel workflow such as progressive blocking techniques [65,76] and blocking based
on machine learning concepts [12,77]. Thus, through the proposed workflow, it is possible
that such techniques can handle streaming data.

One aspect that can be explored in future works is related to the lack of balance in
data increments. In this context, the number of entities contained in each micro-batch to
be processed by blocking techniques varies over time. This behavior commonly occurs in
streaming sources that present load peaks. For instance, traffic sensors commonly send
a high amount of data during rush hour. On the other hand, the amount of produced
data is reduced during low-traffic hours. In this sense, parallel-based blocking techniques
should be able to consume resources dynamically. Dynamic schedulers that provide an
on-demand allocation of resources in distributed infrastructures could be applied [78,79].
These schedulers control the number of resources (e.g., number of nodes) according to the
amount of data received by the blocking technique in question. Since the lack of balance in
data increments is a problem faced by incremental techniques, the development of dynamic
schedulers for blocking techniques has emerged as an open area to be explored.
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