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Severe testing with high-dimensional omics data for enhancing

biomedical scientific discovery

Frank Emmert-Streib @' ™

High-throughput omics experiments provide a wealth of data for exploring biomedical questions and for advancing translational
research. However, despite this great potential, results that enter the clinical practice are scarce even twenty years after the
completion of the human genome project. For this reason in this paper, we revisit problems with scientific discovery commonly
summarized under the term reproducibility crisis. We will argue that the major problem that hampers progress in translational
research is threefold. First, in order to establish biological foundations of disorders or general complex phenotypes, one needs to
embrace emergence. Second, there seems to be confusion about the underlying hypotheses tested by omics studies. Third, most
contemporary omics studies are designed to perform what can be seen as incremental corroborations of a hypothesis. In order to
improve upon these shortcomings, we define a severe testing framework (STF) that can be applied to a large number of omics
studies for enhancing scientific discovery in the biomedical sciences. Briefly, STF provides systematic means to trim wild-grown

omics studies in a constructive way.
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INTRODUCTION

During the last almost three decades, we have witnessed
unprecedented progress in biology and the biomedical
sciences'?. Triggered by technological advances of high-
throughput technologies and computing power, the analysis of
big omics data challenged our established method of scientific
discovery. Specifically, hypothesis-driven research, predominating
the physical sciences, seems to have been replaced by induction-
based research. Some pioneers of high-throughput technologies
even stated, "the patterns of expression will often suffice to begin
de novo discovery of potential gene functions™.

Looking back, it is undeniable that this past time period has
been very productive and one milestone thereof is the human
genome project®. However, it is also indisputable that there are
major problems that cast shadows on the initial euphoria,
especially in the context of translational research. In recent years,
an antagonist of the latter has been called the replication crisis>®.
But even before this, general concerns have been raised against
about omics studies with arguments centered around genetic
determinism’.

In this paper, we want to take a fundamental look at these
problems. That means instead of discussing problems within the
existing framework of omics studies, e.g., by addressing particular
issues with statistical methodologies, animal models, or data
quality®, we approach these via the method of scientific discovery.
Due to the fact that scientific discovery is usually largely omitted
from such considerations, we start with discussing major methods
thereof which will provide us with insights about limitations and
opportunities. Based on this, we will provide a discussion of
problems in general omics studies with complex phenotypes. We
will see that most contemporary genomics studies are designed to
perform what can be seen as incremental corroborations of a
hypothesis. Hence, such studies are by design prone to make little
advances. In order to improve upon these shortcomings, we
define a severe testing framework (STF) that can be applied to a

large number of omics studies for enhancing scientific discoveries
in the biomedical sciences by exploiting the full potential of high-
dimensional data.

SCIENTIFIC REASONING
Base forms of inference

There are three main forms of inference or reasoning to
distinguish: Induction, deduction, and abduction. In Fig. 1, we
show an overview of these three base inference forms. In order to
simplify the understanding of their complex meaning, we show
two different versions in Fig. 1A and B, respectively. Put simply,
inductive reasoning tries to infer from the “special” to the
“general”, whereas deductive reasoning tries to infer from the
“general” to the “special”. In contrast, abductive inference tries to
infer an explanation for a given hypothesis and data. According to
ref. %, Peirce describes the differences among the three inferences
types as follows: “deduction proves that something must be;
induction shows that something actually is operative; abduction
merely suggests that something may be”. This implies also that
new hypotheses or ideas can only be created by abduction'®. On a
brief historic note, we would like to mention that inductive
reasoning goes back to John Stuart Mill, deductive reasoning to
Rene Descartes, and abductive reasoning has been introduced by
Charles Sanders Peirce. Succinctly, one can summarize the above
inference methods as follows. Induction is data-driven, the
deduction is theory-driven, and abduction is explanation-driven
research'’.

Importantly, there seems to be no generally accepted meaning
of abductive reasoning. As a reason for this, it has been noted that
“Peirce went through a substantial change of mind”'2. Here, we
follow? corresponding to the latter view of Peirce on abduction.
An important consequence of this confusion is that abductive
reasoning has been falsely called “reasoning to the best
explanation”®. However, inference to the best explanation is
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Fig. 1 Overview of three different inference approaches and hypothetico-deductive reasoning. A, B The three base forms of inference:
inductive inference, deductive inference, and abductive inference. C Basic components and working mechanism of the hypothetico-deductive

(HD) method.

supposed to be the last stage of inquiry, whereas abduction
corresponds to the first stage of inquiry. Hence, abduction is a
method for arriving at hypotheses and selecting a hypothesis
to test.

One commonality of all three base forms of inference discussed
above is that they can be seen as one-step processes. That means
each one has a defined starting and a defined ending point (in Fig.
1A, B, this is indicated by the direction of the arrows), and no
iteration over the components occurs in the form of repetition.
With respect to the working mechanism of general scientific
discovery, this seems inadequate. For this reason, extensions to
these base forms of inference have been introduced.

Hypothetico-deductive method

Maybe the most important extension of the above three base
forms of inference is the hypothetico-deductive (HD) method'>.
The HD method has been popularized by Hempel and Popper'*'>
with early contributions dating back to William Whewell
(1794-1866), William Stanley Jevons (1835-1882), and Charles S.
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Peirce (1838-1914). The basic idea of the HD method is the
formulation of a testable hypothesis and its testing'®'”.

There are variations of the HD method, but its basic
components and working mechanism is as follows'8. (1) Conduct
an experiment to generate data, (2) generalize the observations
with inductive reasoning by (3) formulating a hypothesis, (4)
deduce new predictions from the hypothesis that can be
observed, and (5) conduct a new experiment to test if those
predictions are true. If they are true, accept the hypothesis and go
back to step 3 to deduce new predictions. If they are false, the
hypothesis is falsified (reject hypothesis), and one starts again at
step 1.

Despite the cyclic nature of the HD method, its side branches, as
shown in Fig. 1C, are frequently omitted, resulting in a linear
process'®. While this omission may not be deliberate most of the
current science is lacking explicit iterations. This lack of iterations
is observable in essentially every paper published. Instead, the
iteration is obtained over a series of published papers studying the
same underlying problem.
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Further extended models

Aside from the HD method discussed above, there are a number
of further extended methods aiming to improve upon the
hypthetico-deductive method. Exemplarily, we would like to
highlight the cyclic deductive-abductive (CDA) model proposed
in ref. 2°,

The CDA model combines a hypothetico-deductive and an
abductive epistemological framework in a cyclic way. That means
in the CDA framework, prediction and postdiction cycle con-
tinuously, whereas prediction follows the hypothetico-deductive
process, and the postdiction is abductive. All exploratory analyses
are abductive in nature, and all hypothetico-deductive experi-
ments start from a postdiction, i.e., preliminary evidence suggest-
ing one plausible hypothesis to be tested. By deduction,
hypotheses generate new data and findings that, by abduction,
refine the hypothesis space for the deduction. Applications and
discussions of the CDA method can be found in different domains,
e.g., refs. 2122,

Other examples for extended models include hypothetico-
inductive inference?3, strong inference?®, or allochthonous mod-
els®. It is important to highlight that regardless of the specific
form of a scientific method, each is based on (a subset of) the
three base forms of scientific reasoning: induction, deduction, and
abduction?®. The reason for this is that all aspects of inference, i.e.,
data-driven, theory-driven, and explanation-driven, seem to be
needed for corroborating a theory as good as possible with all
means available.

Key elements of scientific discovery: asymmetry, uncertainty,
and cyclicity

From the HD method and its extensions for scientific discovery,
one can identify three commonalities in addition to the three base
forms of inference. These common elements of the models are:

1. Asymmetry

2. Uncertainty

3. Cyclicity
In the following, we will briefly discuss these elements.

The ultimate goal of any scientific method is the verification of a
hypothesis. However, to this day, there is no solution known to
empirically verify a hypothesis, e.g., by experiments or observa-
tions, but only its falsification. This establishes an asymmetry
between verification and falsification in the empirical or experi-
mental sciences?”8, In turn, this asymmetry is related to the
uncertainty of inductive reasoning which does never result in
certain knowledge?®. The third common element of the
hypothetico-deductive (HD), hypothetico-deductive and abduc-
tive (CDA)?°, strong inference or other models is that they are
applied cyclicly or iteratively'>?°. The reason for this is related to
the uncertainty of inductive and abductive methods. That means a
test that does not lead to the falsification of a hypothesis
contributes only to its corroboration but not confirmation'=°,
Hence, by the iterative testing of such methods, the confidence in
a hypothesis can be slowly increased over many cycles.

From this discussion, one can see that the above key elements
do not provide independent dimensions of scientific discovery but
are intricately related to each other.

Asymptotic reasoning

In order to connect this discussion with the problems of omics
studies below, the cyclicity of scientific discovery is of special
importance. For this reason, we want to take a closer look at some
details. In Fig. 2, we depict an example showing the process of
corroboration of a hypothesis over time®. In the following, we
assume a hypothesis is dichotomous, i.e., it is either true or false. In
this figure, the two curves (blue and green) corresponding to two
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Fig.2 Confidence in a hypothesis over the number of conducted
tests (over time). If one of these tests falsifies the hypothesis (blue
curve), it needs to be abandoned, and a new hypothesis (green
curve) needs to be formulated.

different hypotheses, and the y axis gives confidence in a
hypothesis, conf,(H), at time t. Each test that does not falsify a
hypothesis, potentially contributes to a change in our confidence
about the correctness of the hypothesis.

Three points need to be highlighted. First, regardless of what

level of confidence in a hypothesis has already been reached, as
soon as a test falsifies a hypothesis it needs to be abandoned. An
example for this is represented by hypothesis 1 (blue curve) in
Fig. 2 which is falsified at time t. Second, the confidence in a
hypothesis reaches only certainty in the asymptotic limit after
infinite many tests have been conducted, i.e.,
#telsl{srloo confy(H) = 1. )
This implies it will take an infinite amount of time. In other words,
in reality, i.e., where a hypothesis can only be tested for a finite
number of times, certainty cannot be reached.

The third point we would like to emphasize is that due to our
inability to identify when a hypothesis has been proven, one
cannot quantify the confidence, i.e., conf,(H) in absolute terms, i.e.,
objectively. For this reason, conf,(H) corresponds to a psychological
confidence of an individual in hypothesis H, which is subjective.
This implies that the visualizations in Fig. 2 correspond merely to
hypothetical curves providing an exemplification for the effect of
tests on the confidence in a hypothesis but another individual
may assign different numbers of confidence to the conducted
tests. Importantly, the psychological confidence in a hypothesis
does not have to be monotonous until a disproof but a test can
reduce it, e.g, due to unmet expectations of an outcome.
Formally, this could be obtained by choice of different priors
when conducting a Bayesian inference®'=3* and defining “con-
fidence” as the probability of hypothesis H to be true. In the
statistics literature, such subjective or epistemic probabilities are
well-known giving a subjective status by regarding it as a measure
of the “degree of belief” of an individual®**°. For completeness,
we would like to add that in philosophy, the term verisimilitude,
meaning closeness to the truth or degree of truthlikeness, has
been introduced by Popper® as a means to order different
hypotheses with respect to their distance to the truth. However,
while its underlying idea is appealing, it has been strongly
criticized®”*8, and to this day no general agreement about its
quantification has been reached.

With regard to the structure of the hypothetico-deductive (HD)
method, see Fig. 1C, the blue curve in Fig. 2 until the point of
falsification reflects only the left part of the HD model. The
modification of a hypothesis due to a falsification, corresponding
to the right part of the HD model, starts a new process for the
corroboration of a new/revised hypothesis. In Fig. 2, this is
represented by the green curve corresponding to the new/revised
hypothesis 2. This description emphasizes that there are two
cycles in a HD method. One is contributing to the corroboration of
a hypothesis (blue curve), whereas the other falsifies it and
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initiates by this a new corroboration for a new/revised hypothesis
(green curve).

Severe testing

There is another topic that connects directly to cyclicity and
asymptotic reasoning, and that is the quality of a tested
hypothesis. In the previous section, we argued that consecutive
testing leads to an increase in our confidence in a hypothesis.
However, we did not discuss why the step heights of tests, as
shown in Fig. 2, are not equal.

The reason for unequal step heights in the corroboration of a
hypothesis is related to the quality of a tested hypothesis.
Specifically, Popper put great emphasis on the idea of a severe test
as opposed to tests that involve evidence similar to that already
gathered in support of a theory'>3°, In ref. %, he wrote:

Observations or experiments can be accepted as supporting
a theory (or a hypothesis, or a scientific assertion) only if
these observations or experiments are severe tests of the
theory—or, in other words, only if they result from serious
attempts to refute the theory, and especially from trying to
find faults where these might be expected in the light of all
our knowledge, including our knowledge of competing
theories.

It is clear that non-serious attempts to refute a hypothesis can
easily lead to a confirmation, however, such a confirmation does not
lead to a large increase in the confidence of a hypothesis. Hence,
from a scientific perspective, one should always strive to formulate a
hypothesis that provides a severe test for the underlying theory.

On a technical note, we would like to mention that Popper did
not provide a quantitative formulation of severe testing. Instead, a
realization in a statistical hypothesis testing framework has been
presented in ref. 47,

PROBLEMS WITH SCIENTIFIC DISCOVERY IN OMICS

After this general discussion of different forms of scientific
reasoning and its key elements, we now address specific problems
with this encountered in contemporary omics studies.

It is a well-known problem that the translation of biomedical
studies to clinical applications is challenging. A reason frequently
discussed in this context is the lack of reproducibility®*?. Most
notable examples for this include studies about biomarkers** or
drug discoveries**. The underlying problem is certainly multi-
faceted but one reason for such problems has been attributed to
in vivo animal models®.

From a more fundamental point of view, we hypothesize that a
cause of the above problems in omics research is related to
“emergence”. Put simply, emergence refers to a property of a
phenomenon that cannot be explained by the sum of its
constituting parts*®. Formulated differently, the idea of emergence
is that “as systems acquire increasingly higher degrees of
organizational complexity, they begin to exhibit novel properties
that in some sense transcend the properties of their constituent
parts, and behave in ways that cannot be predicted on the basis of
the laws governing simpler systems”*®. For biology and medicine,
this is of relevance for two reasons. First, both fields are on a higher
level of complexity than, e.g., physics and chemistry*’. Never-
theless, neither field can be explained by the laws of physics.
Second, biology and medicine connect a microscopic world with a
macroscopic world in the form of a genotype-to-phenotype (GP)
mapping*®4°. Hence, while it is unquestionable that genes and
cells are fundamental units of biology, animals and humans
express their phenotype on a macroscopic level that defies a
straightforward connection between both worlds. The reasons for
these problems are generally attributed to the lack of reductionism
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of biology®® and the multi-scale nature of the genotype-to-
phenotype mapping®'. Both problems give rise to emergence.

On a historical note, we would like to remark that Fisher made
the simplifying assumption that “genetic inheritance is mainly
additive and that all other genetic and environmental contribu-
tions to trait variation are deviations from this">2, Interestingly, the
assumption of additivity is in conflict with the meaning of
emergence. This seems to lead to a contradicting situation
because of the success of Fisher's work and the continued usage
of similar assumptions, e.g., in modern genome-wide association
studies (GWAS)>3. However, this contradiction is resolved when
one distinguishes Mendelian phenotypes from complex pheno-
types®*>>. While Mendelian phenotypes can be successfully
studied based on Fisher’s simplifying assumption, as exemplified,
e.g., by Cystic fibrosis or Huntington'’s disease, complex pheno-
types like diabetes, cancer or schizophrenia are different.

More abstractly, we can summarize the above discussion by the
following two hypotheses.

Hypothesis H1 (Mendelian phenotype): A few genes are
important in explaining a phenotype.

Hypothesis H2 (Complex phenotype): All interactions
between all genes and all environmental conditions explain
a phenotype.

We would like to remark that in omics (studies) usually no
explicit formulation of such hypotheses is given. Instead, the
tested hypothesis is buried in the conducted study. An immediate
consequence of this implicit nature of the underlying hypothesis
seems confusions between both which results in the erroneous
usage of hypothesis H1 for studies of complex phenotypes.
Examples of such studies are omnipresent, e.g., refs. °6-°,

We think that a possible reason for the confusion between H1
and H2 is in the misinterpretation of the difference between “a
few genes” and “all genes”, and “all interactions”. This difference is
crucial because the former cannot be used to study emergent
phenomena defying a reductionistic approach, as discussed
above. Hence, the problem of contemporary omics studies aiming
to investigate a complex phenotype is that they study this based
on hypothesis H1 that means reductionistically.

Appearance of networks

By looking at this problem from a different angle we can obtain a
network perspective. Specifically, suppose a study about a complex
phenotype found that three genes are playing an important role.
Due to the fact that these genes are part of integrated molecular
networks they have interaction partners in the form of other genes,
respectively, proteins or metabolites. Let's assume that each of the
initial three genes interacts with only five other genes than this
results already in a network consisting up to 18 = (3 X 5 + 3) genes.
Given that also those genes are part of regulatory networks, each
of those genes interacts with further genes. Assuming again five
interactions per gene this results in up to 93=(15%5+ 18)
interacting genes. This simple example demonstrates that by
considering only a few such steps, the resulting network can
contain hundreds of genes and by extending this even further than
the resulting network will span all active genes in a cell.

This behavior has been observed experimentally. For instance,
for the protein-interaction network of human, it has been shown
in ref. 59 that the average shortest path length is four and in ref. ©'
the diameter, which corresponds to the largest shortest path
length between two nodes, has been found to be 11. Hence, even
when starting from only one gene this gene pulls out a network
containing all active genes of a cell type. Interestingly, these
results consider only the protein-interaction network and not its
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integration with, e.g., the transcriptional regulatory network and
the metabolic network. Hence, one can expect the actual
interaction paths to be even shorter.

Another important example is given by studies that focus only
on one key gene. Similar to the arguments above, also this gene
interacts with a few other genes because otherwise, it could not
contribute to the functioning of a cell. In the most extreme case,
this gene would interact with only one other gene. However, why
would it be justified to emphasize only one of these two genes
when reporting results?

The reason for this seems to be historically motivated.
Specifically, for early studies of genetics, as conducted, e.g., by
Fisher, evolution was of central importance. However, for such
studies, the information stored in the DNA is of crucial importance
because only this information is directly inherited. In such a
context, it makes sense to emphasize the mutation in a gene.
Hence, on the DNA level, mutations can be used to single-out
individual genes in a sensible way. However, when studying active
genes, which translate into proteins or noncoding RNSs, this is no
longer possible. The reason for this is that for any type of molecular
network, e.g.,, protein-interaction network, transcriptional regula-
tory network, gene regulatory network, signaling network or
metabolic network52-%4, at least two entities are needed to form an
interaction. Hence, in any type of molecular network, single genes
cannot be emphasized without mentioning its interaction partners
because without those there would be no interaction and, hence,
no contribution of a gene to the functioning of a cell.

In summary, this discussion demonstrates that it is only justified
to emphasize individual genes of the DNA level while transcribed
or translated gene products form interactions with other gene
products and are part of various networks.

Minimal corroboration vs severe testing in omics

A consequence of the above discussion in the larger context of
scientific discovery is that many omics studies do only provide an
incremental corroboration for the underlying hypothesis while
severe testing occurs rarely®. As a reason, the academic incentive
structure has been identified favoring the publication of positive
results which “propagates an advocacy mindset that is in
opposition to the fundamental role of skepticism in science”®.

In our opinion, another important reason for this is the
confusion between the two hypothesis discussed above, i.e., H1
and H2, which is due to a lack of clarity of Mendelian and complex
phenotypes, active and inactive genes, and molecular networks.
Generally, those causes are summarized by the term “emergence”
which unfortunately seems more of a clouding than enlight-
enment for the broader community.

Given these problems, it is worth highlighting that there are
also examples of severe testing in omics studies. Specifically, the
study in ref. %7 investigated prognostic gene expression signatures
of breast cancer. In order to scrutinize the importance of proposed
prognostic biomarkers (PB) the study investigated 48 published
signatures, corresponding to established biomarker sets, by
generating random gene sets to form new signature sets, as in
ref. %8 Importantly, these random gene sets were drawn from a
gene pool that did neither contain the original signature genes
nor any gene involved in the same biological processes as the
signature genes, nor proliferation genes. Hence, any random gene
set was guaranteed to have no biological similarity to the genes in
a signature S. By means of survival analysis, it was shown that
many random gene sets can be found that have the same
prognostic prediction capabilities as the 48 published signatures.

The hypothesis tested by this study can be formulated in the
following way:

Hypothesis PB (Prognostic biomarkers): A (published) gene
expression signature S of prognostic biomarkers is
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important for the biological understanding of breast cancer
progression.

In hypothesis PB, biological understanding refers to the
collective interactions among all molecular and cellular entities,
including mRNAs and proteins and their resulting molecular
networks, e.g., protein-interaction network, transcriptional regula-
tion network and gene regulatory network. The key strategy of the
above testing is to utilize the (symmetric) association between
biological importance and predictability that is generally assumed
in biomarker studies®®~”". Specifically, for prognostic biomarkers
that means it is assumed when a signature S of prognostic
biomarkers is important for the biological understanding, e.g., of
breast cancer, then they also have prediction capabilities for the
patient's prognosis. Conversely, if one finds from a computational
analysis a signature S with prediction capabilities for patient
prognosis then one concludes that this signature is important for
the biological understanding. By substituting a (dedicated)
signature S with random genes sets, which have per construction
no biological similarity with the genes in S, hypothesis PB could be
falsified for the studied signatures.

We would like to emphasize that above test is severe because
the hypothesis is based on published gene expression signatures
and the generally assumed association between biological
importance and predictability which passed already several other
tests which were sufficient to justify the publication of the study.

In the following discussion, we will capitalize on these finding
when presenting severe testing for general omics studies.

A GENERAL APPROACH TO SEVERE TESTING

Given the discussion above, we can now formulate a severe
testing framework (STF) for omics. The framework consists of three
steps. (I) Identification of suitable studies, (Il) Identification of a
gene pool for severe testing, and (Ill) Severe testing.

Identification of suitable studies

In order to decide if a study is a candidate for severe testing, we
provide in Fig. 3 a checklist with five layers. Each of these layers
makes a decision if a study may benefit from severe testing,
according to our discussion above, or not. We would like to
emphasize that the path through this diagram discussed in the
following identifies only studies that are prime candidates for
severe testing. However, this does not ultimately exclude others.

The first layer is the phenotype distinguishing studies about
complex from Mendelian phenotypes. If the phenotype of the
study is (likely to be) complex instead of Mendelian, it is a
candidate for severe testing. The second layer uses the outcome
for a decision. For instance, overall survival, mortality or changes in
symptoms indicate a macroscopic level, e.g., for clinical studies,
whereas gene expression, protein binding, or mutations point to a
microscopic level of an organism. The third layer looks at the
timescale of a problem. Here, we distinguish short from long
durations of processes, whereas the latter means on an
evolutionary scale spanning of many (millions) of generations of
an organism. This layer is related to the previous one because for
studying the inheritance of genes mutations are playing a central
role. The fourth layer checks the available data. This is the only
layer effected by the experimental design of a study which is
modifiable by planning. For severe testing, genome-scale data are
required because only such data allow possibly to compensate the
activity of some mRNAs/proteins/metabolites by others. Finally,
the fifth layer decides about the testing type. While all studies
coming from the left side (following the red path) are prime
candidates for severe testing it is nevertheless possible to decide
against it to perform an incremental corroboration.
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Fig. 3 Classification of omics studies to identify prime candidates for severe testing. Each layer performs a decision based on the criterion

shown on the left (phenotype, outcome, time scale, data, and testing).

As a result from these successive classifications, one obtains
studies that are prime candidates for severe testing. We would like
to emphasize that this does not ultimately exclude other studies
but the justification in favor of severe testing would need to be
expanded compared to our arguments. For instance, in order to
justify severe testing for a study about a microscopic outcome,
shown on layer two in Fig. 3, e.g., about gene expression values,
one needs to replace our argument about emergence. Obviously,
a study focusing only on a microscopic outcome does not suffer
from the problems encountered when bridging from the
microscopic to the macroscopic world corresponding to the
genotype-to-phenotype mapping (see discussion above), and
neither can it make statements about it. If such an argument can
be given remains an open question. Since in this paper, our focus
is on studies that include an emergent behavior additional side
branches in Fig. 3 are not central to our discussion.

Identification of a gene pool for severe testing
After having identified if a study is a candidate for severe testing,
we need to identify which genes to use.
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In order to identify such candidate genes for severe testing, we
need to construct a gene pool (visualized in Fig. 4). Let's denote
the set of all available genes by G. Here, available genes do not
mean all genes that exist for an organism but all genes for which
information is available in our data (see layer four in Fig. 3). For
these genes G, we perform filtering by removing all proliferation
genes (indicated by set Gp). A reason for this is that it is well-
known that the source of variation provided by proliferation genes
can lead to a distortion of inference when trying to untangling
biological factors affecting cell behavior, e.g., for cell identifica-
tion”? or outcome prediction’3.

The next step removes all target genes. We indicate the target
genes by the set G;. For a study about biomarkers, this may be
signature genes (e.g., prognostic, diagnostic, or predictive) or
more generally any set of genes that appears of special interest.
Due to this characterization, the set of target genes G, is usually
very small, i.e., G, < G. Typical set sizes of G; range from merely
one gene to a few hundred. This leaves us with gene set G,
containing only genes that are non-proliferation and non-target
genes corresponding to G, = G\ {G, UG }.

Finally, we can remove further gene sets, indicated by G;
according to their biological similarity to the target genes in G;. In
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G: Available genes

None-proliferation genes
Gy =G\ G,

oo
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=

I
=
[y

G,: Proliferation genes

o
= Gyo: None-proliferation

[) Lo 4 .

E Non-target genes Gy Target genes

-

—= G;: Genes with the most similar biological
% Gl — {Gp ue:L Gl} =G\ {GL" + meaning to signature genes

3

v

v

GLi:G\{GpUGtUGl---UGi}

G;: Genes with intermediate similar biological
meaning to signature genes

Decreasing biological similarity

v

GLm:G\{Gpucsuclmuaimucm}

=
K]
>
[
)

G Genes with the least similar (or zero)
biological meaning to signature genes

Fig.4 Procedure for preparation of a gene pool for severe testing. Removal of proliferation genes, G, can be seen as filtering. The genes
resulting from each step thereafter (level 0 to m) can be used for severe testing, whereas the stringency increases with increasing levels, i.e.,
the genes on level 1 result in the least stringent test, whereas the genes on level m allow the most stringent test.

general, there are many ways to define biological similarity
between genes or sets of genes’4’%, For instance, in ref. 77 a
method is provided for obtaining genes associated with gene
ontology (GO) levels. This allows a hierarchical exploration of
genes that share common GO-terms with the target genes.
Regardless what measure is used, successive removal of such gene
sets allows to decrease the biological similarity between the
remaining genes, given by G, =G\ {G,UG,UG; --- UG;}, and
the target genes G,. For instance, in ref. %7 the final level contained
only genes in G;,, that had a vanishing biological similarity with G,
corresponding to no common GO-terms. Overall, the above
procedure (Fig. 4) allows to construct a gene pool with desired
properties which can then be used for severe testing.

Severe testing

In Fig. 5, we show the severe testing procedure, whereas Fig. 5A
shows the main components of a general analysis. Specifically, a
method (M) is applied to a data set (D) leading to results (R). The
method shall depend on the target genes, G;, by using these as
features, e.g., for a classification. In Fig. 5B, we show the same
analysis pipeline, however, using now so-called selected genes, G;.
The selected gene set G, has two properties. First, its size is the
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Data: D—— Method: M —— Results: R

T

Target genes: Gt

Identification Evaluation

Data: D —— Method: M —— Results: R’

T Properties:
G| = |G
Selection procedure Selected genes: G Gs] = |G|
G, C Gy,

G, ~Gyp,
B with gene pool: G,

Fig. 5 Severe testing for selected genes. A Dependency of analysis
results (R) on target genes G,. B Replication of the same analysis
(with the same method M and data D) by using selected genes, G,
from G;,. The results of both (R and R') are compared for evaluating
the effect of G;.

same as of the target genes, i.e., |G5| = |G,|. Second, G; is a subset
of the gene pool G, identified in the previous section, i.e.,
Gs C Gy,. Here L; corresponds to the level that has been found
appropriate.
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Now we can formulate the hypothesis of severe testing (ST):

Hypothesis ST (severe testing): The results of R (using G,)
and the results of R’ (using G;) are not the same.

The implication of hypothesis ST is that if we need to reject it
then the genes in G; and G, perform indistinguishably. However,
due to the different biological meaning of G; and G, (see the
discussion in the previous section) the biological explanation of
the target genes for the obtained results is no longer valid. In case
hypothesis ST is rejected, we call the genes in G, surrogate genes
because they provide surrogates for the prediction.

For the above discussion, we assumed that the surrogate genes,
G;, are already given. However, how do we obtain them if this is
not the case? In general, the selection of the genes in G, can be
seen as a feature selection or optimization problem, and its
implementation is problem-specific.

Another problem-specific part of the above STF is the
identification of the target genes (see Fig. 5A). However, this is
part of the original study we want to scrutinize and for this reason
this information is available. Still, for completeness, we would like
to mention that, usually, the target genes are found via a method,
eg., for identifying differentially expressed genes’®”° or hub
genes in a regulatory network®®8'. However, also biological
insights can be used which do not have to be strictly based on
formal methods.

CASE STUDIES

In order to demonstrate the validity of the proposed STF, we
discuss in the following two examples.

The first study investigated the prognostic gene expression
signatures of breast cancer®’. Specifically, 48 published signatures
corresponding to established biomarker sets from the literature
were studied by applying the SFT. For this, the random gene sets
were drawn from a gene pool according to the procedure in Fig. 4.
The gene pool did neither contain the original signature genes nor
any gene involved in the same biological processes as the
signature genes, nor proliferation genes. Hence, any random gene
set was guaranteed to have no biological similarity to the genes in
a target signature, G,, as measured by the overlap in GO-terms®2,
Application of survival analysis showed that for each published,
established biomarker set many surrogate gene sets can be found
that have the same prognostic prediction capabilities. Hence,
hypothesis ST needs to be rejected. This demonstrated that none
of the 48 studied signatures had a sensible biological interpreta-
tion. Furthermore, it is interesting to note that for each established
biomarker set not a few but a very large number of surrogate
signatures could be found that have the same prognostic
prediction capabilities indicating a high redundancy in breast
cancer cells. Specifically, it has been shown that this number is in
the order of 10" gene sets when making strict assumptions
(removing all genes with a GO-term overlap with G, and
proliferation genes) and 102** in the lenient case (remove only
the signature and proliferation genes).

The second study investigated the prognostic gene expression
signatures of prostate cancer®®. This study used 32 published
prognostic signatures of prostate cancer which were scrutinized
following a similar approach as in ref. 5 applying the SFT. Also,
this study demonstrated that none of the 32 published signatures
had a sensible biological meaning. Overall, both studies showed
that all 80 studied prognostic signatures serve only as black-box
models allowing sensible predictions of prostate cancer outcomes
but are not capable of providing causal explanations to enhance
the molecular biological understanding of breast and prostate
cancer.

Regarding the identification of the genes in G; it is interesting to
note that both studies®”#3 used a simple selection procedure that
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performed merely a random selection from the gene pool G;,.
While not every random selection resulted in surrogate genes, this
procedure was sufficient to find (many) surrogate gene sets G; as
mentioned above. However, other problems may be different, and
for this reason, the selection procedure needs to be studied case-
by-case.

THE GENERALITY OF SEVERE TESTING

We would like to emphasize that the STF discussed in this paper is
neither limited to prognostic biomarkers nor to cancer. Instead,
the two case studies®”#* discussed above should only be seen as
instances for its applicability. Importantly, the STF can be utilized
for high-dimensional omics studies centered around a few target
genes. Typically, such studies involve biomarkers which can be
prognostic, diagnostic, predictive, risk, pharmacodynamic/
response, safety or monitoring®®. Examples of high-dimensional
omics data other than transcriptomics data are genomics,
proteomics, and metabolomics. Hence, any combination of such
biomarkers with any type of high-dimensional omics data provide
suitable cases amenable for the STF.

Furthermore, any complex disease that cannot be explained by
a Mendelian phenotype could benefit from severe testing. Aside
from the many different cancer types, those are disorders like
Alzheimer’s, asthma, autoimmune, diabetes, multiple sclerosis,
Parkinson’s or schizophrenia. Overall, the combinations one can
form from (1) different types of biomarkers, (Il) different types of
high-dimensional omics data, and (lll) different complex diseases
are enormous, underlining the relevance of the proposed
framework.

DISCUSSION

The above-defined severe testing framework for omics has a few
key characteristics which are important to highlight. In the
following, we provide a brief discussion thereof.

® Severe testing is a computational framework: It is
important to note that the introduced severe testing frame-
work is purely computational. That means no additional
experiments have to be conducted which would be expensive
and time-consuming. Instead, severe testing is based on the
data already generated.

® Severe testing does not require additional methods:
Severe testing uses the same analysis method(s) as the
underlying study in utilizing the target genes G,. Schemati-
cally, this is highlighted in Fig. 5 where one can see that the
same method (M) is used for both cases, just the target genes
G; are substituted by the surrogate genes G,.

® Severe testing is a natural framework: It is unquestionable
(assuming ethical standards) that all studies strive for faithful
results. Hence, any test that helps reaching this goal is
supported. Put differently, if one would know a test that
would falsify a result, there is not only no reason of not
performing this test but it would even violate ethical
standards. In this sense, severe testing provides a natural
framework for putting results in omics to a test.

® Severe testing is a practical framework: When discussing
general approaches for scientific discovery, we have seen that
the different models are quite intricate theoretically. We have
also seen that none of those provides practical approaches but
rather general theoretical considerations. In contrast, severe
testing provides a practical framework that is directly applicable
to studies in omics based on high-dimensional data. Specifically,
it provides answers to the questions “what to test” (hypothesis
H1 vs H2) and “how to test” (incremental vs severe testing) by a
(practical) representation and (@ computational) implementation
of the abstract concept of falsifiability.
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® Severe testing is constructive: At first, this may be surprising
because falsification is the counterpart of verification and as such
usually perceived negatively. However, in contemporary omics
we are facing a different situation. Instead of starting from
nothing were a falsification could be seen as destroying
everything, we start based on the results obtained in the last
almost three decades. Specifically, from a Pubmed search one
finds over a million published articles about omics, i.e., genomics,
transcriptomics, proteomics, and metabolomics; many of which
are candidates for the STF. Hence, in omics, severe testing can be
seen as topiary by trimming wild-grown hedges to sculptures.

® Severe testing is different to meta-analysis: The STF is
considerably different to a meta-analysis because the STF does
not combine a number of previously obtained results. Instead, it
scrutinizes such results individually. Another difference is that in
a meta-analysis, a level of evidence would be considered, e.g., via
P values from hypothesis tests. Instead, for the STF the level of
evidence needed is an absolute—not relative—one. This means
for the STF it is sufficient if, e.g., a set of biomarkers has been
identified by a previous study as significant.

® Severe testing is not an exclusive approach to scientific
discovery: This point is related to the previous one highlighting
a different perspective. The STF does not aim to replace, e.g,, the
hypothetico-deductive method, instead, it complements it. That
means the STF does not deal with the process of creating results,
which is one part of scientific discovery, but with testing. Hence,
it builds on methods of the first part of scientific discovery
without restricting them in any way.

® Severe testing can alleviate reproducibility problems: Above,
we discussed problems with reproducibility in general omics
studies and especially in translational research. Application of the
STF can help in avoiding such problems because the testing aims
at falsifying results and not at confirming. Hence, problems could
be identified early, e.g,, before clinical trials are performed or
animal models are used. That means in order to be efficiently
used, the STF should be placed right at the beginning of, e.g., a
drug development pipeline after target genes have been
identified to avoid problems further downstream.

However, as a warning, we would like to note that the STF
cannot avoid all reproducibility problems. For instance, the STF
assumes the availability of published gene signatures which is
unfortunately not always the case. Hence, in such a situation, the
STF cannot be applied. We would also like to highlight that in the
reproducibility problems of studies are multi-facetted, and the
STF provides one additional factor to safeguard against it. Hence,
STF is not meant to be utilized in isolation but in combination
with other measures.

Regarding the last point, we would like to add that in our
opinion the replication crisis®® is also a lack of the falsification of a
hypothesis at an early stage of an investigation.

A final point, we want to highlight relates to a property of the
target gene set G;. Above, we mentioned that this set should be
small compared to all genes available in a omics data set, i.e.,
|G| < |G|. The implication from this is that the available omics
data need to be high-dimensional. This high dimensionality is
necessary to have a large search space available for the selection
procedure to potentially find a proper surrogate gene set G;.
Furthermore, it is interesting to note that the absolute size of the
target gene set, |Gy, is a coarse indicator if the underlying study
was aiming for a Mendelian or non-Mendelian explanation of a
phenotype because the extreme boundaries correspond to just
one gene (i.e., |G| =1) and all genes (i.e,, |G| =|G]).

CONCLUSIONS

In this paper, we discussed general problems with omics studies
for complex phenotypes, including translational research. While
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these problems are certainly multifactorial, we identified three key
factors; one relates to the nature of the problem, and two to the
nature of the method of scientific discovery. Specifically, each
question about a complex phenotype, defining a specific problem,
faces a genotype-to-phenotype mapping which is accompanied
by the challenges of emergence and interconnected molecular
networks. Furthermore, the two problems of “what to test”
(hypothesis H1 vs H2) and “how to test” (incremental vs severe
testing) are related to the method of scientific discovery.

For the last three decades, these three issues have been largely
ignored by the omics community favoring the generation of many
new results of which in retrospect many turned out to be false. In
the literature, this has been commonly summarized under the
term reproducibility crisis. In order to counteract such problems,
we introduced a severe testing framework (STF) that allows to put
high-throughput studies centered around a few target genes to
be scrutiny. The severe testing framework provides a (practical)
representation and (a computational) implementation of the
abstract concept of falsifiability and utilizes it in a constructive
manner. Particular areas that could benefit from the application of
the STF are related to biomarker studies and drug development.
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