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Abstract: Biomedical Named-Entity Recognition (BioNER) has become an essential part of text
mining due to the continuously increasing digital archives of biological and medical articles. While
there are many well-performing BioNER tools for entities such as genes, proteins, diseases or species,
there is very little research into food and dietary constituent named-entity recognition. For this
reason, in this paper, we study seven BioNER models for food and dietary constituents recognition.
Specifically, we study a dictionary-based model, a conditional random fields (CRF) model and a
new hybrid model, called FooDCoNER (Food and Dietary Constituents Named-Entity Recognition),
which we introduce combining the former two models. In addition, we study deep language models
including BERT, BioBERT, RoBERTa and ELECTRA. As a result, we find that FooDCoNER does not
only lead to the overall best results, comparable with the deep language models, but FooDCoNER is
also much more efficient with respect to run time and sample size requirements of the training data.
The latter has been identified via the study of learning curves. Overall, our results not only provide a
new tool for food and dietary constituent NER but also shed light on the difference between classical
machine learning models and recent deep language models.

Keywords: biomedical named-entity recognition; food and dietary constituents extraction; conditional
random fields; dictionary modeling; machine learning; deep language models; nutrition-entity
extraction; phytochemical extraction

1. Introduction

The term “Named Entity” was first introduced in 1996 in the Sixth Message Understand-
ing Conference (MUC-6) [1] with relation to textual information extraction for commercial
and defense purposes. In general, Named-Entity Recognition (NER) is concerned with
the automatic scanning through unstructured digital text in order to locate “entities” and
classify them into categories/classes. In the linguistic domain, such classes can correspond
to person names, organizations (e.g., companies), government organizations, committees,
location names (e.g., cities or countries) or date/time expressions [2].

In contrast, biomedical named-entity recognition (BioNER) involves different types
of terms that correspond to biologically important entities. Such entities can range from
genes/proteins, drugs/chemicals/toxins, diseases, organs, metabolites and species to
adverse drug effects, SNPs (single-nucleotide polymorphisms), pathways, DNA/RNA
sequences, mutations or MeSH (Medical Subject Headings) [3]. NER started becoming
prominent in biomedicine because the biological fields continue to produce a vast amount
of digital data on online platforms as journal articles and biological databases [4]. As of 2020,
PubMed [5] reports housing over 30 million citations and abstracts, while Medline [6] claims

Mach. Learn. Knowl. Extr. 2022, 4, 254–275. https://doi.org/10.3390/make4010012 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make4010012
https://doi.org/10.3390/make4010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-9907-5939
https://orcid.org/0000-0001-8454-5857
https://orcid.org/0000-0003-0745-5641
https://doi.org/10.3390/make4010012
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make4010012?type=check_update&version=2


Mach. Learn. Knowl. Extr. 2022, 4 255

to hold over 25 million references to life science and biomedicine articles in their databases.
Undoubtedly, such large masses of literature can make it impossible for researchers to keep
up, even in more specialized biomedical topics, such as the influence of diet on diseases.
Furthermore, BioNER is also a primitive step in mining interactions and associations
between biological entities, automated diagnosis systems, healthcare support chatbots
and other biomedical text mining tasks [7]. Hence, using computational methods to narrow
down the search space through BioNER can reduce the tediousness of analyzing the digital
biomedical literature.

There are currently several sophisticated BioNER tools that can tag biomedical entities
such as genes, proteins, diseases, chemicals, species, cell types and cell lines. However,
systems that can annotate articles for food and dietary constituents are scarce. Currently,
there exist only a few food named-entity recognition tools for this task: namely, FoodIE [8],
NCBO Annotator [9], and the UCREL Semantic Analysis System (USAS) [10]. Even these
systems are only capable of tagging general food names but not terms that relate to nutrition
(e.g., calcium, iron, riboflavin, biotin) or phytochemicals (non-nutritive dietary constituents
such as alkaloids, organosulfides, carotenoids and flavonoids). While general food NER ap-
plications might be content with simple food named-entity extraction, specific biomedical
domain applications may need higher-level dietary constituent identification. For example,
currently, there is much attention paid to understanding how dietary constituents such as
phytochemicals can interact with chronic diseases such as diabetes [11,12] and cardiovas-
cular disease [13] and how different food constituents such as anti-oxidants can promote
health benefits for general well-being [14–18]. In order to explore such research areas,
with the help of the biomedical literature, it is vital to have a food and dietary named-entity
system capable of extracting both nutritive and non-nutritive constituents in food.

In general, modeling methods in BioNER can be divided into four categories: rule-
based models, dictionary-based models, machine learning based models and hybrid mod-
els [19]. However, in the last decade, the focus has shifted toward using either entirely
machine learning approaches or hybrid models combining rules or dictionaries with ma-
chine learning methods. The main disadvantage of rule-based approaches is that, unlike
decision trees or statistical modeling, rules are handcrafted from scratch, which is time-
consuming, laborious and subjective. However, if the categories are well defined with
low ambiguities, it is possible to create a meticulous and thorough rule-based system that
produces high-quality results. Interestingly, the current state-of-the-art (SOTA) food anno-
tator FoodIE [8] also belongs to this model category. Specifically, FoodIE uses a rule-based
approach to extract generic food named entities from food recipes. In this approach, the text
is first tagged for part-of-speech (POS) using two taggers and then tagged for semantic tags
using the UCREL Semantic Analysis System (USAS). Hence, FoodIE creates sets of rules to
tag food entities using semantic tags.

In contrast, a dictionary-based method uses domain-specific taxonomy sources such
as databases and ontologies to detect and extract named-entities. Widely used in hybrid
SOTA biomedical NERs due to their simple design yet high precision, this approach only
requires a well-developed biomedical entity dictionary and well-defined matching criteria.
These dictionaries may contain direct terms, spelling variations, trigger words or access to
ontologies to improve coverage. Furthermore, the matching criteria can be exact, partial
or fuzzy to accommodate term variations. While precision is usually high in these systems,
recall tends to depend on the dictionary’s quality and quantity used for the system. This is
a general drawback of a dictionary approach [20]. A prominent dictionary-based BioNER
model that can tag several types of biological entities is Polysearch [3]. It contains several
thesauri instead of only dictionaries for each class of entities, such that term normalization
is also possible using matching criteria. As an example that can also annotate food entities,
the NCBO (National Center for Biomedical Ontology) Annotator [9] is an ontology-based
biomedical named entity tagger that can also tag food. This system allows the option to
specify which ontology/UMLS (Unified Medical Language System) concept to use for the
tagging. Furthermore, it includes several food-related ontologies to select from.
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When it comes to machine learning approaches, supervised learning dominates the
literature heavily, while few semi-supervised and unsupervised learning-based approaches
can be found. The earliest machine learning approaches for BioNER focused on Support
Vector Machines (SVM) [21], Hidden Markov Models (HMM) [22] and Naive Bayesian
methods [23]. However, most BioNER research currently focuses on hybrid models. Hence,
such BioNER systems are primarily hybrids of machine learning with either rules or dic-
tionaries [7,24]. Incidentally, the milestone publication by [25] about Conditional Random
Fields (CRFs) has presented one of the simplest yet most powerful approaches for named-
entity recognition. CRFs are a class of conditionally trained finite state machines that result
in graphical models similar to Hidden Markov Models (HMM). However, they differ from
HMMs due to their undirected graph structure and the conditional probability that consid-
ers the dependencies between input data instead of assuming them to be independent as in
the HMM learning approach. In general, it is known that CRFs perform well with sequen-
tial data [26]. Interestingly, despite the recent interest in deep learning approaches, the only
method for food entities is BuTTER [27], which is based on a bidirectional long-short term
memory (LSTM).

However, recently, there has been a general shift towards deep learning neural net-
work models and hence in BioNER as well [7,28]. So far, feed-forward neural networks
(FFNN) [29], convolution neural networks (CNN) [30] and recurrent neural networks
(RNN) have been applied successfully in the BioNER domain. However, RNN models
such as LSTMs and bidirectional LSTMs have been in the limelight recently because they
perform well with sequential data and language modeling [31]. Interestingly, recent ap-
proaches have also combined Bi-LSTM with CRF to produce models that can identify term
boundaries [32–37]. In general, the majority of the SOTA BioNER tools are hybrid models
using combinations of the three approaches mentioned above to annotate the text. Since
dictionary and rule-set methods produce high precision and machine learning approaches
show higher recall, a carefully designed hybrid approach can produce better F-scores.

In this paper, we introduce three BioNER models for food and dietary constituents
named-entity recognition. Specifically, we study a dictionary-based model, a conditional
random fields (CRF) model and a hybrid model, called FooDCoNER (Food and Dietary
Constituents Named-Entity Recognition), which combines the former two models. We
study these together with four deep language models: BERT, BioBERT, RoBERTa and
ELECTRA. In addition, we compare our results with models from the literature, including
FoodIE [8], NCBO Annotator [9] and BuTTER [27]. These models cover the most fre-
quent analysis paradigms for BioNER systems; i.e., dictionary-based, rule-based, machine
learning-based and hybrid approaches. For all models, we conduct a comparative analysis.
From estimating learning curves for the BioNER models, we obtain insights about the
generalization error of the models and their learning efficiency with respect to the size of
the training data [38].

We organize the paper as follows. In the next section, we present our materials and
methods, describing the model architectures for each model in detail, and further illustrate
the steps used in the development of the models. The section following illustrates the
results for the individual models, the hybrid model and the transfer learning models. Then,
a discussion addresses the main observations and the outcome of all models, with our
conclusion addressing possible future work.

2. Methods

In this section, we discuss the data and models used for our analysis. Specifically, we
start by discussing the data and then the error measures for assessing the models. Finally,
we describe three different models we use as dietary named-entity recognition systems.
The general overview of the analysis pipeline of a BioNER system is visualized in Figure 1.
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Figure 1. The main steps in designing a BioNER system (with an excerpt from PubMed abstract
PMID:29194424).

2.1. Data

For training the conditional random fields and for the overall evaluation of all BioNER
systems, we used the FoodBase [39] corpus. In order to create a dictionary with as many
terms as possible, we selected three sources:

1. Food-Biomarker Ontology (FOBI) [40]: The Food-Biomarker Ontology (FOBI) is an on-
tology composed of two inter-connected ontologies: food entities and their metabolic
constituents or phytochemical bio-markers. The database contains 1197 terms in
13 food top-level classes and 11 biomarker top-level classes. We incorporated all the
terms in our dictionary, including over 350 food item names.

2. Food database (FooDB) [41]: The FooDB database claims to be the world’s largest
and most comprehensive database on food and dietary constituents, with each food
entry containing the composition, physiological and biochemical information of food.
It is noteworthy to mention that this database contains 675 scientific food names
and 797 food terms, both of which are included in our final dictionary. FooDB also
houses a vast collection of terms for chemical and metabolic compounds found in
food, with over 70,926 entries.

3. Food database (Food Data Central) [42]: The Food Data Central database, managed
by the United States’ Agricultural Research Services, is a database that includes
information on food and nutrients in several categories including 159 foundation food
terms, 7793 standard reference legacy food terms and 64 food and nutrient terms for
dietary studies, all of which have been incorporated in our dictionary.

All of the chosen entities from these three databases were manually checked, cleaned
and normalized to prevent repetitions and typos. Overall, our dictionary contains 20,000 en-
tries, with 600 scientific terms, over 1000 generic food and flavor terms, 4500 phytochemical
and nutrition terms and 14,000 chemical compound names identified in food collectively
extracted from the above sources.

For training the machine learning model and to evaluate our entire BioNER system,
we use the FoodBase corpus [39] with 1000 annotated recipe articles. The dataset consists of
200 articles, each from five categories—namely, appetizers and snacks, drinks, dessert, dinner
and breakfast and lunch—with over 12,500 annotations and 2100 unique food items. It is
considered a gold-standard for food-related machine learning tasks [8,39,43]. Figure 2
shows the number of entities in the FoodBase corpus depending on their occurrence
frequency. As one can see, the majority of entities occur less than 100 times.
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Figure 2. Number of food entities in the FoodBase corpus depending on their occurrence frequency.
This figure limits the frequency to 20 for clarity because the maximal frequency is 442.

2.2. Error Measures

In order to compare the models studied in this paper, we use various error measures.
In the following, we describe some frequently used scoring metrics used for NER.

Specifically, F-score, precision and recall are general error measures for binary classifi-
cation [2,44]. These metrics are defined as follows [45]:

Precision =
Relevant NEs Recognized

Total NEs Recognized
=

True Positives(TP)
True Positives(TP) + False Positives(FP)

(1)

Recall =
Relevant NEs Recognized
Relevant NEs in Corpus

=
True Positives(TP)

True Positives(TP) + False Negatives(FN)
(2)

F-score = 2× Precision× Recall
Precision + Recall

(3)

Despite the frequent usage of these error measures, it is known that in cases of un-
balanced data, they lead to biased results. This is also of relevance for our study; e.g., for
predicting boundaries of named entities in the IOB format. Here, the IOB format corre-
sponds to (Inside–Outside–Beginning) of named entities, giving a multi-segment repre-
sentation. Naturally, the number of “O” (outside) segments is greater than “I” (inside) or
“B” (beginning). Hence, the class numbers in “I”, “O” and “B” are strongly unbalanced.
To alleviate this problem, one can use the balanced accuracy for each class (I, O, B); i.e., one
forms a binary classification predicting “one” against the “rest”. The balanced accuracy is
defined as

Balanced Accuracy =
Sensitivity + Specificity

2
. (4)

Here, the sensitivity is the recall (or the true positive rate) of the system, and the
specificity is the true negative (TN) rate of the system [46]. The balanced accuracy gives a
less biased overall score for the unbalanced problem in contrast to the F-score.

Interestingly, for assessing NER systems, there is an additional problem which is
related to the “degree of correctness” of a prediction. Specifically, for a general classification
problem, one can either have a true positive (TP), false positive (FP), false negative (FN) or
true negative (TN). That means that a prediction leads only to one of these four entities but
not multiple ones. However, for NER systems, the situation is a bit different. To illustrate
this problem, let us consider the food named-entity “baked Parmesan chicken”. If we only
require the system to return generic food items, returning a single term such as “Parmesan”
or “chicken” would be considered a true positive. However, if we are concerned with
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the preparation of food—i.e., “baked chicken” vs. “fried chicken” for health purposes—then
returning only “chicken” cannot be considered a true positive.

One solution to the above problem is to relax the matching criteria; e.g., allowing
partial, left or right matching, depending on the requirements of our application [47].
Practically, a multi-segment representation model can be used to detect term boundaries
leading to a model that tags each word as Inside, Outside, Beginning, Ending, Single, Rear
or Front, to indicate where the named entities start and end. Previously used multi-segment
representation models are IOB, IOBES, IOE, IOE or FROBES [48,49]. In this study, we use
the IOB format.

2.3. Dictionary-Based Model

The dictionary-based method uses domain-specific taxonomy sources such as databases
and ontologies to detect and extract named entities. Widely used in hybrid SOTA biomed-
ical NERs due to their simple design yet high precision, this approach only requires a
well-developed biomedical entity dictionary and well-defined matching criteria. These
dictionaries may contain direct terms, spelling variations, trigger words or access to on-
tologies to improve coverage, whereas the matching criteria can be exact, partial or fuzzy
to accommodate term variations. While precision is higher in these systems, recall tends
to depend on the quality and quantity of the dictionary used for the system, which is one
major drawback of the dictionary approach. The reason for implementing a dietary entity
recognition system with a dictionary-based model first was encouraged by the current lack
of labeled data sets with annotations for food constituents and nutrition information, as
mentioned above. Figure 3 illustrates a summarized step-by-step look into the process
used for the dictionary model.

As explained earlier, we first composed an exhaustive list of possible food and di-
etary constituents, including naturally available food ingredients (vegetables, fruits, herbs,
grains) and their scientific names, natural food flavoring (such as garlic, ginger, vanilla
beans), artificial generic and branded food ingredients (sweeteners, flavoring agents),
prepared food and ingredients (such as sauces, dips, types of pasta, noodles, dishes and
types of bread), nutritional constituents (such as vitamins and minerals) and organic food
constituents (such as acids, sugars, tannin, carotene).

The pipeline structure for the model contains three feature extraction steps where rich
text articles are cleaned, tagged for parts-of-speech (POS) labels and cleaned semantically.
Since the corpus already contains sentence structures ideal for parts-of-speech analysis,
the text cleaning step retains the majority of sentence syntax, including standard punctuation.
It only removes unrecognizable characters and whitespaces (including tabs and newlines
separating paragraphs) before converting the text into the lowercase format.

Next, the POS tags are extracted for the tokens using SpaCy [50]—an industrial-
strength open-source natural language processing (NLP) tool for python with a R wrapper
spacyr. Given that, generally, named entities tend to appear in the text as nouns or noun-
phrases, we use SpaCy to extract common nouns, proper nouns and noun phrases in each
document. Since extra-long noun phrases can result in false positive or false negative
annotations, only noun phrases up to three-grams are used. By checking the FoodBase
database, we find that 99.6% of the annotations are three-grams or shorter, and only 55
out of the 12,844 annotations are over three-grams. Hence, this filtering does not have a
severe influence. Finally, we clean the extracted list of nominal phrases for stopwords using
the English stopword list in the R package quanteda [51] and generate the lemma for each
word using spacyr. Both original and lemmatized versions of the nominal phrases are then
added to a nominal phrases list.

The modeling step for the dictionary model consists of defining the matching criteria
between terms and dictionary items. Thus, we separate the matching step into two stages.
First, the words in the nominal phrase list are directly matched with the dictionary items.
The second step is slightly complicated in the sense that we try to see if the directly
matched terms, in the above step, could still be partially available in the nominal phrase
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list. For example, if the noun cheese is a direct match, other expressions in the text such as
cream cheese, provolone cheese, blue cheese, even if not matched directly to the dictionary, must
be considered as an NE term. As such, partial matching assures that such terms are not
missed. Unfortunately, at this point, the system does not resolve mismatches due to typos
or different spelling.

The post-processing step here aims at resolving linguistic issues that occur during
the feature extraction steps that otherwise might possibly lead to false positives. It also
scans for named entities that have been discovered before but are not tagged in repeated
locations. Finally, the model returns the text, with annotated terms and their positions, as a
data frame.

2.4. Conditional Random Fields Model

Conditional random fields (CRFs) are discriminative graphical models that have
shown excellent results for other biomedical entity recognition tasks [52,53]. For this reason,
we implemented a CRF model for our food entity recognition task (used individually and
as a hybrid model with dictionaries; see next section).

Assume that X = X1, X2, X3, . . . , Xn represents the random variable of the data se-
quence to be labeled and Y = Y1, Y2, Y3, . . . , Yn is the random variable representing the
label sequence of X. Y is assumed to range over a all possible values of the labels y. For ex-
ample, if X is a sequence of a natural language text, and Y is the sequence of labels that
defines the part-of-speech (POS) tag for each word in the text sequence, where y will be
all possible part-of-speech tags. As such, given a text sequence X = {X1, X2, . . . , Xn} and
its corresponding POS tag Y = {Y1, Y2, . . . , Yn}, the conditional probability of state Y for a
given X can be expressed as

P(Y|X) =
1

ZX
exp

( n

∑
i=1

m

∑
j=1

λj f j(Yi−1, Yi, X, i)
)

(5)

Here, Yi represents one of the POS tags in y corresponding to a word in Xi (such
as a proper noun or an adjective), f j(Yi−1, Yi, X, i) is the feature function and λj is the
weight vector of f j. Ideally, the learned λj for f j must be positive for features that correlate
to a target label, negative for non-correlation and zero for irrelevant features. Overall,
the learning process for a given training set D = {〈X, l〉1, 〈X, l〉2, . . . , 〈X, l〉n} (where l
is the label for each X data instance and n is the number of training instances) can be
expressed as a log likelihood maximization problem given by

LL(D) =
n

∑
i=1

log{P(l(i)|x(i))} −
m

∑
j=1

λ2
j

2σ2 (6)

Here, LL(D) the is log likelihood for the training set D. Using the modified Viterbi
algorithm assigns respective labels for the new data after the training process [25].

Figure 3B summarizes the steps involved in the training and evaluation of the CRF
model. The raw data with recipe texts and an annotated entity list are used to create the
training instances and corresponding labels in the form D = {〈X, l〉1, 〈X, l〉2, . . . , 〈X, l〉n},
where X represents the token, and l represents the label for each token; e.g., “B”, “I” or “O”.
Next, selected features (described below) are extracted for each instance, using which the
CRF model is trained and evaluated. Depending on the evaluation, we further selected or
removed features to improve the model error scores.

Due to the fact that a CRF model is a supervised learning model, one needs to use
labeled data to train the model. Hence, the FoodBase corpus was used since it is the only
available gold-standard corpora for food named-entities. However, the text corpus was
available as XML nodes consisting of each recipe text with its set of annotations (and
position indices within the text), without a direct training instance to label mappings.
For training a machine learning model, we need training instances with a set of features
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and a corresponding label for each instance; therefore, we first transformed the anno-
tations into a form that could be used for our supervised learning model. Specifically,
we split the text into tokens of words and used each word as one training instance, thus
splitting the 1000 articles results into nearly 108,000 instances. Each instance was labeled
using the annotation position data from the XML nodes for cross-reference. Two types
of corresponding labels were extracted: a multi-segment representation of the form IOB
(Inside–Outside–Beginning), and binary labels where “0”s correspond to non-entity words
and “1”s signify named-entity words.

Figure 3. Overview of the architecture of the (A) dictionary model, (B) CRF model and (C) the Hybrid
model (FooDCoNER) that uses a partial dictionary model as part of the feature extraction process.

Since most biomedical NER systems use rich features such as POS tags and dependency
relations with CRFs, we also use both as primary features for our CRF model. Furthermore,
we included two simple features: namely, words categorized as a noun POS and words
that are part of a noun-phrase. This choice was motivated by our observation for the
dictionary-based method, where nouns and noun-phrases played an important role in
identifying named entities. Other features that signify contextual information including
predecessor and successor tokens of each instance, two previous and next neighbors’ POS
tags and finally the dependency type of the current token and its immediate dependents
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were added to the attribute list of the CRF model. Hence, in total, we used 12 features for
training: namely “is a noun”, “if a nounphrase, the segments in IOB”, “current dependency
relation”, “dependency relation of the preceding token”, “current (t) token text”, “previous
(t − 1) token”, “next (t + 1) token”, “current (p) POS tag”, “previous (p − 1) POS tag”,
“previous (p − 2) POS tag”, “next (p + 1) POS tag” and “next (p + 2) POS tag”.

For the implementation and the training of the model, we used the CRFSuite pack-
age [54], because it provides an excellent training algorithm and an efficient implementation,
resulting in fast training and tagging. CRFSuite uses a data frame as input, whereas the
features correspond to columns and the labels to rows, and then learns a linear-chain CRF
model using forward and backward learning to incorporate both current and previous
context for the learning. We train the CRF models for 200 iterations with the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm [55] and both L1 and L2
regularization because our numerical analysis showed that using both at 0.1 gives more
stable and higher F-scores. In contrast, only using L1 gave worse results, and using only
L2 gave higher standard errors. We set the minimum frequency of a feature value to two;
i.e., features that occurred only once were not used for training the model (for example, if a
POS tag, e.g., NOUN, PUNC, VERB, DET, CONJ or PROPN, only appeared in one training
instance, it would not be used for the training of the CRF model).

2.5. Hybrid Model: FooDCoNER

Our final model, FooDCoNER (Food and Dietary Constituents Named Entity Recogni-
tion), used for our analysis is a hybrid model. FooDCoNER combines a CRF model with
a dictionary plugged-in at the feature extraction step, indicating which terms are in the
dictionary and which terms are not. The idea of using such a hybrid model was encouraged
by tools such as Chemspot [56], DNorm [53] and Gimli [52], because all of these use a
CRF model with a taxonomy dictionary and they achieve remarkable performance results.
The overall architecture of our hybrid model is illustrated in Figure 3C. Specifically, there
are two parallel layers in the model. The first (top layer in Figure 3C) is for the dictionary
feature extraction from the text using a partial dictionary model, and the second (bottom
layer in Figure 3C) is for the CRF model feature extraction and evaluation (similar to
Figure 3B). The dictionary features are plugged-in at the CRF features extraction step.

With the addition of the dictionary layer as a feature for the modeling pipeline, we are
able to reduce the size of the feature space. Hence, the previous 12 features were reduced to
8: namely “if a noun/nounphrase, the segments in IOB”, “current (t) token text”, “previous
(t − 1) token”, “next (t + 1) token”, “current (p) POS tag”, “previous (p − 1) POS tag”,
“next (p + 1) POS tag” and “is domain specific term”. By using dictionary only as a feature
and reducing feature space, the efficiency of our hybrid model improved, even slightly
more than the CRF-only model, as indicated in Table 6.

The training of FooDCoNER model proceeds as follows. From the preprocessed
data, which are in the form of training instances and corresponding labels (see Figure 3B),
the training instances—i.e., token text—are sent through the dictionary model pipeline.
In this pipeline, the text is cleaned for irrelevant characters, converted to lowercase, and pro-
cessed by stopword cleaning and lemmatizing steps. Then, we match the words in the
training data exactly with the dictionary data, and the results are utilized as features for
the training instances. Furthermore, we also process the data with the feature extraction
steps as explained in the CRF section. Both dictionary and CRF features are then used for
training the CRF in the FooDCoNER model. For this, the same parameters are used as for
the individual CRF model.

2.6. Fine-Tuning of Language Models Based on Deep Learning

The last years have seen a rapid interest in developing deep learning-based language
models that are applicable for a vast number of natural language understanding tasks.
A language model, in general, is a predictive model that creates probability distributions
of a given sequence of words to appear in a natural language. In this paper, we study
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BERT (Bidirectional Encoder Representations from Transformers) as well as two BERT-
based models: RoBERTa and BioBERT. Additionally, we discuss the ELECTRA model,
an extension of BERT that requires fewer resources than BERT. All of these models were
fine-tuned using the same FoodBase corpus mentioned in Section 2.1.

Bidirectional Encoder Representations from Transformers (BERT) [57] is a deep bidi-
rectional language representation model based on an attentive neural transformer archi-
tecture [58]. There are two stages in the BERT framework: pre-training and fine-tuning.
During the pre-training step, the model is trained on a large corpus of unlabeled text
over different tasks to learn the representation of the sentence from both left and right
context in all layers. The semi-supervised tasks used in the pre-training step are masked
language modeling and next sentence prediction. During masked language modeling
(MLM), 15% of the input tokens are randomly masked before pushing the sequences into
the process. After being chosen, the token is masked with the [MASK] token 80% of the
time, replaced with a random token 10% of the time, and unchanged in the remaining
10% of cases. The training data generator processes masked sentences and chooses 15% of
the masked tokens to predict based on its context. BERT uses a next sentence prediction
(NSP) objective to jointly pretrain text-pair representations. The model concentrates on two
masked sentences, A and B, to learn the relationship between them. B is the next sentence to
A in the original text 50% of the time and is replaced by a sentence that is randomly selected
from the corpus the rest of the time. In the NER task, sentence B is the corresponding tag of
the entities occurring in sentence A. BERT has been pre-trained using two corpora: English
Wikipedia (2.500 billion words) and BooksCorpus (800 million words). In the fine-tuning
stage, the input and output of the tasks are plugged into the model, and the pre-trained
parameters are fine-tuned using labeled data.

RoBERTa is a derivation of the BERT model with modifications in the model structure
and dataset used in the pre-training step [59]. The model is trained longer using bigger
batches and longer sequences. This model also uses a dynamic mask method, in which
the masked token is dynamically generated every time a sentence is fed into the model
to increase the number of masked tokens. In addition, the model uses alternative training
formats instead of the next sentence prediction objective. RoBERTa was pre-trained using
three corpora: BookCorpus, OpenWebText and a novel dataset, CC-NEWS, containing
63 million English news articles collected from the CommonCrawl News dataset.

BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical
Text Mining) [60] is a domain-specific variation of the BERT model that is additionally pre-
trained on two large-scale biomedical corpora: PubMed Abstracts (4.500 billion words) and
PMC Full-text articles (13.500 billion words). Its model architecture and tasks are almost the
same as for BERT. By being pre-trained on both general and biomedical corpora, this model
can comprehend biomedical terms, which is a challenge for a general language model.

Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELEC-
TRA) is a further modification based on the BERT model [61]. ELECTRA proposes an
alternative method for Masked language modeling objective called ‘replace token detection’
which makes the pre-training step more efficient. The chosen token is replaced by a token
which is generated from a smaller masked language model. The model detects if the token
is the original one in the corpus. Therefore, ELECTRA learns from all the inputs, instead of
a subset of them.

For our analysis, we use the transformers library of HuggingFace for fine-tuning
model. HuggingFace offers pre-training and fine-tuning scripts of transformer-based
models, includes BERT, ELECTRA and RoBERTa [62]. The model is optimized with a batch
size of 32 sequences for 10 epochs with a learning rate of 4 × 10−5 . After each epoch,
the model is evaluated, and the best performing checkpoint is used as the final prediction
model. As the input for the BERT model, we use the FoodBase curated dataset—a corpus
of 7840 input sentences. The corpus is separated into three subsets with the ratio of 8:1:1.
The largest subset is used as the training set, while the others two sets are used for the
model evaluation after each epoch and testing. Note that the corpus is split randomly, so
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the content of the subsets is different each time, but the number of sentences in each subset
is constant. A maximum length of 64 tokens is applied for the model. Sentences that are
longer than the limited length are split into separated input sequences for the network.
This may occasionally split entities in a sentence into separated units.

3. Results

In this section, we present numerical results for a dictionary-based model, a conditional
random fields model and a hybrid model we call FooDCoNER. Furthermore, we study
four deep language models: BERT, BioBERT, RoBERTa and ELECTRA. For the evaluation
of the models, use data from the FoodBase corpus, which consists of 1000 recipe articles
with gold-standard annotations (for details, see Materials and Methods).

3.1. Dictionary-Based Model

For the dictionary-based model, the performance depends entirely on the quality and
coverage of the data in the compiled dictionary. To assess how the quality and quantity of
dictionary affects error metrics when evaluated with the FoodBase corpus, we performed
two validation tasks. The first task evaluated the standard error of the system’s mean scores
with respect to the variations in the test data. Hence, the FoodBase corpus was randomly
split into 10 folds, and one fold at a time was used to evaluate the system’s precision, recall
and F-score continuing through all 10 folds. We also assessed the stability of the dictionary
model on two modified corpus instances with entities that occurred only once and were
twice removed. The standard error was used to assess how stable the mean scores of the
system were with respect to varying data. The second task was aimed at assessing how
the size of the dictionary would affect system performance. Hence we tested the system
using the whole test corpus for 12 dictionary sizes randomly sampled from the original
dictionary as 1%, 2.5%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%. In order to
estimate the variability of the results, each percentage was repeated 50 times, each time
with a randomly sampled dictionary that was similar in size. Altogether, 600 instances
were tested for precision, recall and F-score metrics and plotted in a boxplot graph, with
the x-axis as dictionary size and y-axis as the evaluation metric.

In Figures 4–6, we show the results for various scoring metrics depending on the per-
centage of dictionary terms. The median F-score and recall decrease steeply with a reduction
in the dictionary size. The interquartile ranges (IQR) for both F-score and recall are higher
where smaller dictionary sizes are used and converge as the dictionary reaches its maximal
size. Interestingly, while the F-score well surpasses 0.95 (see also the summary in Table 1),
it never reaches 1. This can be explained by the fact that dictionary methods’ performance
depends on the thoroughness of the dictionary and the accuracy of the matching criteria.

Precision =
Number of Relevant Terms Retrieved

Number of All Terms Retrieved
(7)

Since the “number of retrieved terms” and the “portion of relevant terms in retrieved
terms” both reduce proportionally to the dictionary’s size, precision remains mostly stable
despite the variations in the quality of the dictionary terms. Thus, the mean precision at
all dictionary sizes remains over 0.95, which emphasizes the primary advantage of the
dictionary-based methods: the high precision.

Table 1 shows a summary of results obtained for a number of different data sets. For all
data sets, the entire dictionary was used; i.e., no subsampling has been applied. Specifically,
results are shown for (i) the full data set, (ii) data where entities have been removed that
appear just once and (iii) data where entities have been removed that appear just once
or twice (see Materials and Methods for details). One can see that the dictionary-based
model achieves over 0.95 precision, recall and F1-score for all three data sets. Importantly,
removing rare words—i.e., words occurring once or twice in the corpus—improves the
performance of the recall and the F-score, while the results for precision show a decline.
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Overall, the best results for the precision and F-score are obtained for data set (ii), whereas
recall is best for data set (iii). However, the differences are small.

Table 1. Results for the dictionary-based model evaluated with 10-fold CV. The rows correspond
to three different data sets: (i) full dataset (corresponding to the FoodBase corpus), (ii) data where
entities have been removed that appear just once and (iii) data where entities have been removed
that appear just once or twice.

Data
Description

F-Score Recall Precision

Mean Standard
Error Mean Standard

Error Mean Standard
Error

(i) Full Dataset
(FoodBase corpus) 0.9565 0.0603 0.9600 0.0711 0.9531 0.0699

(ii) Entities that appear
once in corpus removed 0.9600 0.0856 0.975 0.0884 0.946 0.1234

(iii) Entities that appear
once or twice in the
corpus removed

0.959 0.0917 0.976 0.1027 0.942 0.1178
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Figure 4. Learning curves based on F-score for the dictionary model, CRF model, hybrid model,
BioBERT model and ELECTRA model. The line represents the mean F-score, and the shaded area
represents the inter-quartile range (IQR).

Furthermore, it is interesting to note that the mean precision of the model does not
change much with the dictionary size, as one can see in Figure 6, despite the IQR showing a
similar behavior to before. This behavior can be explained using the equation for precision,
given by;

Precision =
Number of Relevant Terms retrieved

Number of All Terms Retrieved
(8)
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Figure 5. Learning curves based on recalls for the dictionary model, CRF model, hybrid model,
BioBERT model and ELECTRA model. The line represents the mean F-score and shaded area
represents the inter-quartile range (IQR).
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Figure 6. Learning curves based on precision for the dictionary model, CRF model, hybrid model,
BioBERT model and ELECTRA model. The line represents the mean F-score and the shaded area
represents the inter-quartile range (IQR).
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The highest standard errors (SE) occur for the reduced corpora—i.e., data set (ii)
and (iii)—indicating a higher variability in the resulting scores. This variability can be
attributed to a main observation; when each reduced corpus is split into 10-folds randomly,
the number of food entities in each fold of recipes can differ; i.e., one fold may have recipes
with more entities while another fold may have less number of entities in its recipes. Since
the data folds are smaller, this variability is more visible, especially when models are tested
with one fold.

3.2. Conditional Random Fields Model

In contrast to the dictionary model, we evaluate model scores against the quantity and
quality of the training data for the CRF model. First, to assess the effect of data quantity, we
trained 15 CRF models using 900 recipes from FoodBase; each iteration uses a percentage of
the training data from 1%, 2.5%, 5%, 7.5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%
and 100%. The training at each percentage was repeated 50 times with random sampling
to reduce variance. All the 750 models were evaluated on the remaining 100 test recipes
set apart at the beginning of the experiment. We plotted the F-score, precision and recall
values in box plot graphs, with data percentages on the x-axis and evaluation statistics
on the y-axis. In the second part of the evaluation, we assessed the effect of training data
quality on the model scoring by performing 10-fold cross-validation. We calculated the
standard error of precision, recall and F-score for the 10-folds to illustrate how the mean
scores vary in proportion to data quality.

In Figures 4–6, we show the results for the CRF model. As one can see, the F-score
and recall behave similarly as for the dictionary-based model. In contrast, the precision
shows a steadily increasing performance for increasing amounts of training data. All three
median scores increase proportionally when increasing the recipe counts, in a steady curve
with wider IQRs at lower training data sizes and rapidly thinning IQRs as the data amount
increases. The F-score, recall and precision values finally converge at 0.9683, 0.9667 and
0.9699, respectively, at full training data size. Focusing on the training data size 1%, which
only includes 10 documents, the precision and recall vary the most at this instance, ranging
from less than 0.75 to slightly over 0.90. This IQR range is indicative of how the quality of
the training set affects the CRF modeling when there are less data for learning. However,
the mean F-score remaining closer to 0.80 also illustrates how powerful the CRF modeling
can be, even with fewer well-represented training instances.

In Table 2, we summarize the 10-fold CV F-scores, recalls, precisions and their standard
errors for eight versions of the FoodBase corpora: (i) the full data set, (ii) data with entities
that appear just once are removed, (iii) data with entities that appear just once or twice are
removed and (iv) appetizers and snacks, (v) breakfast and lunch, (vi) desserts, (vii) dinner
and (viii) drinks. In contrast to the dictionary-based model, the highest recall, precision
and F-score are all achieved when the full dataset is used. This is interesting because the
results indicate that the CRF model can learn to perform with higher recall and F-scores
even with rare terms in the corpus. Furthermore, it confirms that the CRF approach is more
sensitive to the training data size than quality. Compared with the dictionary-based model,
the standard error of the CRF model is smaller, indicating a reduced variability.

3.3. Hybrid Model: FooDCoNER (Food and Dietary Constituents Named Entity Recognition)

Finally, similar to the CRF model, we performed the training data quantity and quality
versus error scores assessment for the hybrid model to investigate if adding the dictionary
component improves the curves in Figures 4–6. Thus, the first evaluation trained 750 models
of 15 training data sizes repeated 50 times, ranging from 1% to 100% (900 articles), similar
to CRF evaluation. The resulting F-score, precision and recall values were plotted in box
plot charts. The second evaluation assessed the effect of training data quality on the hybrid
model. The 10-fold CV was performed on eight FoodBase corpus variations; (i) the full
data set, (ii) data with entities that appear just once are removed, (iii) data with entities that
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appear just once or twice are removed and (iv) appetizers and snacks, (v) breakfast and
lunch, (vi) desserts, (vii) dinner and (viii) drinks.

Table 2. Results for the CRF model assessed with a 10-fold CV. Datasets include (i) full corpus data,
(ii) data with entities that appear just once are removed, (iii) data with entities that appear just once or
twice are removed and (iv) appetizers and snacks, (v) breakfast and lunch, (vi) desserts, (vii) dinner
and (viii) drinks.

Data Description
F-Score Recall Precision

Mean Standard Error Mean Standard Error Mean Standard Error

(i) Full Dataset 0.9683 0.000785 0.9667 0.00076 0.9699 0.000966

(ii) Entities that appear
once in corpus removed 0.9629 0.000129 0.9616 0.000115 0.9654 0.000245

(iii) Entities that appear once
or twice in corpus removed 0.9594 0.000146 0.9553 0.000276 0.9638 0.000218

(iv) Appetizers and snacks 0.9486 0.001261 0.9470 0.001702 0.9505 0.001799

(v) Breakfast and lunch 0.9501 0.001617 0.9471 0.001837 0.9533 0.002242

(vi) Dessert 0.9458 0.001391 0.9361 0.00164 0.9558 0.001496

(vii) Dinner 0.9605 0.001028 0.9599 0.001328 0.9612 0.001261

(viii) Drinks 0.9420 0.002331 0.9411 0.002433 0.9432 0.002795

Figures 4–6 show the results for the hybrid model called FooDCoNER. Here F-score,
recall and precision are again shown depending on the size of the training data. Compared
to the dictionary-based model and the CRF model, the most noteworthy difference is how
stable the curves are, even for the smallest training sizes. Furthermore, the IQR was reduced
significantly compared to the dictionary and CRF models. Importantly, the median error
scores are always above 0.75 for all training sizes. Hence, the overall performance of the
hybrid model improves over the dictionary-based model and the CRF model in all aspects.

In Table 3, we show the results for FooDCoNER for eight different data sets: (i) full
corpus data, (ii) data with entities that appear just once are removed, (iii) data with entities
that appear just once or twice are removed and (iv) appetizers and snacks, (v) breakfast and
lunch, (vi) desserts, (vii) dinner and (viii) drinks. One can see that combining a dictionary-
based model with a CRF model improves the F-score, precision and recall for all eight data
sets, resulting in noticeable improvements in the recalls. Interestingly, in contrast to the
CRF model, FooDCoNER gives also better results for the F-score for dataset (ii) (entities
that appear once in corpus removed). This improvement can be attributed to the dictionary
features since the dictionary-based model also showed a significant improvement in F-score
and recall for the removal of rare entities (see Table 1). For the food category-specific
data (datasets (iv) to (viii)), one can see that similar to the CRF model, the standard errors
are slightly higher for the full dataset but show no significantly lower values than the
CRF model for the same datasets, whereas the improvement of the model as a result of
dictionary features is reflected in the food category-specific dataset as well, with higher
mean F-score, precision and recall in all five datasets.

Similar to the CRF model, one can see that the standard error (SE) is lower for the full
data corpus compared to the seven smaller corpora, thus confirming that the stability of
the machine learning model improves with the size of the training data. However, overall,
the SE values for F-score, recall and precision are significantly lower in the hybrid model in
comparison to both the dictionary-based model and the CRF model.
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Table 3. Results for the hybrid model, FooDCoNER, assessed with a 10-fold CV. Datasets include
(i) full corpus data, (ii) data with entities that appear just once are removed, (iii) data with entities
that appear just once or twice are removed and (iv) appetizers and snacks, (v) breakfast and lunch,
(vi) desserts, (vii) dinner and (viii) drinks.

Data Description
F-Score Recall Precision

CV Mean Standard Error CV Mean Standard Error CV Mean Standard Error

(i) Full Dataset 0.9740 0.000322 0.9732 0.000417 0.9748 0.000513

(ii) Entities that appear once
in corpus removed 0.9761 0.000716 0.9772 0.000860 0.9751 0.001087

(iii) Entities that appear once
or twice in corpus removed 0.9723 0.000587 0.9732 0.001111 0.9715 0.000602

(iv) Appetizers and snacks 0.9659 0.001493 0.9656 0.001942 0.9665 0.001844

(v) Breakfast and lunch 0.9693 0.000967 0.9719 0.001017 0.9668 0.001553

(vi) Dessert 0.9578 0.001272 0.9544 0.002230 0.9616 0.001444

(vii) Dinner 0.9724 0.000595 0.9695 0.001150 0.9755 0.000945

(viii) Drinks 0.9562 0.000881 0.9567 0.001290 0.9559 0.001556

Furthermore, in Table 4, we show the results of the hybrid model for boundary
detection in food named entities (NE) using a multi-segment NE representation model, as
described in the Error Measures used for Evaluation section. In this approach, each token
is given a label indicating if it is part of named entity or not, using a combination of
Inside, Outside, Beginning, Ending, Single, Rear or Front. The labels enable the capture of
boundaries of named entities comprised of several tokens.

Table 4. F-score and balanced accuracy for detecting term-boundaries using the IOB-segment rep-
resentation. The meaning of IOB corresponds to (B)—beginning token of a named entity, (I)—any
named entity token that comes after B, (O)—all other tokens that are not named entities. Evaluations
are performed for (i) full corpus data, (ii) data with entities removed that appear just once and (iii)
data with entities removed that appear just once or twice.

Data Description
F-Score Balanced Accuracy

Beginning
(B)

Inside
(I)

Outside
(O)

Beginning
(B)

Inside
(I)

Outside
(O)

(i) Full Dataset 0.9668 0.9575 0.9947 0.9806 0.9781 0.9844

(ii) Entities appearing only
once in corpus removed 0.9698 0.9631 0.9952 0.9838 0.9793 0.9862

(iii) Entities appearing once or
twice in the corpus removed 0.9695 0.9646 0.9954 0.9837 0.9813 0.9867

Here, we focus on the IOB multi-segment representation of NE phrases, i.e., Inside (I),
Outside (O) and Beginning (B), because these are the most informative labels. For general
NER problems, the number of tokens labeled as “O” is much larger than the labels “B” or
“I ”. This is causing an imbalance in the resulting classes and, hence, effects all error scores
including the F-score. The reason for this is that the IOB labels can be considered as classes
for which a label assignment, in form of a classification, is assessed. For this reason, we
did not only estimate F-scores but also the balanced accuracy which compensates for the
imbalance in the classes.

From analyzing FooDCoNER, we obtain the results for IOB as shown in Table 4.
Interestingly, the F-score for the “O” label is over 0.99 for all three datasets—i.e., (i), (ii),
and (iii)—while the F-scores for “B” and “I” drop to 0.96 and 0.95, respectively. As one can
see, the results for “I” vary most with respect to the three datasets (i), (ii) and (iii). In order
to see if these changes are due to the class imbalances, we repeat this analysis assessing the
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balanced accuracy (see Equation (4)) instead of the F-score. As a result, the errors for the
IOB labels are now more closely together (see Table 4).

An additional noteworthy observation here is that when trained with corpora where
rare entities are removed—i.e., dataset (ii)—FooDCoNER performs slightly better compared
to the other datasets. This effect is even stronger for the “I” label and holds for the balanced
and unbalanced errors. One possible explanation for this behavior is that some named
entities containing several tokens are removed as rare, resulting in a higher boundary
detection. For instance, “balsamic vinegar–root beer mixture” or “Amish Friendship Bread
Starter” are two annotated named entities in the FoodBase corpus that appear only once,
having five and four tokens, respectively, in the entity. By removing such terms, the model
does not have to detect several “I”s that are following a “B”, thus improving the F-score
and balanced accuracy for “I”.

In order to demonstrate that the FooDCoNER model also has the capability to extract
nutritional constituents such as minerals and vitamins (zinc, calcium, folic acid, riboflavin)
and non-nutritive phytochemicals (e.g., alkaloids, organosulfides, flavonoids), allowing it
to be used, e.g., for identifying disease-diet networks for biomedical research, we perform
one additional analysis. Specifically, for this reason, we manually annotated 50 PubMed
abstracts with generic food, nutrition entities and dietary chemical constituents. In total,
the data we generated this way consist of 519 annotations including 138 unique nutritional
and dietary chemical names. As a result, we find that FooDCoNER extracts 102 of the
138 nutritional and dietary chemical entities and 410 out of the 519 total annotations.
The overall F-score of the hybrid model for the 50 PubMed abstracts is 0.830 with a recall of
0.790 and a precision of 0.874 (with 59 false positives). In summary, this demonstrates that
FooDCoNER is capable of extracting nutritive and non-nutritive constituent names.

4. Discussion

General BioNER systems—e.g., for genes, proteins or disorders—have been widely
studied, and there are abundant benchmark data available for such tasks [7,63]. However,
for food, nutritive and non-nutritive bio-marker entities, the situation is different, and cur-
rently there are no established benchmark data. For this reason, we used the FoodBase [39]
corpus, having only annotations for food entities, to analyze BioNER methods for food
and dietary constituents named-entity recognition. In addition, we manually annotated
50 PubMed abstracts to generate a data set containing information about nutritional and
phytochemical entities and dietary chemical constituents.

In order to conduct a rigorous evaluation, we assessed all models with a 10-fold
cross validation and various dedicated subsets of the FoodBase data. Specifically, we not
only assessed the performance of the models for the full corpus but for meaningful food
categories—e.g., appetizers, breakfast and dessert (see, e.g., dataset (iv), (v) and (vi) in
Table 2)—and subsampled training data, allowing us to quantify the impact of the size
of training data on the performance via learning curves [38]. Specifically, from analyzing
the influence of the size of the training data on the F-score and the recall, we find that the
hybrid model, FoodCoNER, is less sensitive with respect to size changes than the dictionary-
based model and the CRF model, whereas the dictionary-based model is most sensitive.
Furthermore, the IQR of the hybrid model is smaller compared to the other two models.
Hence, the hybrid model benefits from the combination of a dictionary-based model and
a CRF model, resulting in improved performance metrics. A particular improvement is
obtained for very small training sizes—see the left-hand side of Figures 4 and 5—because
both the F-score and the recall assume values over 0.75.

A comparison of the learning curves for the F-score in Figure 4 allows the identification
of several key differences. First, the convergence of the F-score with respect to the size
of the training data is fastest for the hybrid model (FoodCoNER). As one can see, for the
dictionary-based model, there is no strong convergence, which means the full size of the
training data is needed. In contrast, for the CRF model and the hybrid model, percentages
of 50% and 30% of the total size of the training data are sufficient. Another key difference is
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with respect to the IQR. Interestingly, the dictionary-based model and the CRF model have
IQRs of a similar size, although for increasing sizes of the training data, the IQRs for the
CRF model are slightly smaller. In contrast, the IQRs of the hybrid model are significantly
smaller. For the deep language models (BioBERT and ELECTRA), one can see that they
converge also to the best results, however, using larger sizes of the training data. That
means that asymptotically, FooDCoNER, BioBERT, ELECTRA, BERT and RoBERTa (both
are not shown in Figure 4 in order to increase the clarity of the figure) perform similarly,
but FooDCoNER is more efficient in dealing with small sample sizes of the training data.

While all three error scores (i.e., the F-score, recall and precision) increase with an
increasing size of the training data, the precision of the dictionary-based model shows
only a very small increase. As explained in the Results section, a decreasing number of the
terms in the dictionary predominantly affects the number of false negatives but not the
number of false positives or true positives. Since the precision is only estimated based on
true positives and false positives, the precision remains in the same range while the recall
and F-score can vary strongly. In contrast, the precision of the hybrid model shows the best
results compared to the other two models.

An overall summary of our results for the FoodBase database is shown in Table 5 and
respective run time complexities in seconds are shown in Table 6. Table 5 shows the F-score,
recall and precision for all models studied in this paper. In addition, we show results
from the literature for BuTTER [27] (which used five-fold CV for the evaluation), FoodIE
and NCBO Annotator [43], whereas FoodIE [8] is currently the SOTA model providing the
best results known. As one can see from Table 5, FooDCoNER achieves the highest F-score
together with RoBERTa and BioBERT, and also BERT and ELECTRA perform similarly. We
would like to note that the numbers in brackets in Table 5 correspond to the standard error
(SE). As one can see, the standard errors are quite small, indicating that the performances
of the different methods are not overlapping. Finally, it is worthwhile to note that also the
simple dictionary-based model achieves respectable results, especially for the recall, and its
F-score is even within one SE from FoodIE.

Table 5. Comparison of F-score, precision and recall for (i) hybrid model FooDCoNER, (ii) RoBERTa,
(iii) BioBERT, (iv) BERT, (v) ELECTRA, (vi) conditional random fields model and (vii) dictionary-
based model. All models were studied for the FoodBase Corpus. Also included are results for
models from the literature: (vii) FoodIE, (ix) BuTTER and (x) NCBO Annotator. SE corresponds to
the standard error and NA means no values available.

Model F-Score Recall Precision

FooDCoNER hybrid Model (Dictionary + CRF) 0.974 (SE = 0.0003) 0.973 0.975

RoBERTa 0.974 (SE = 0.0004) 0.980 0.969

BioBERT 0.974 (SE = 0.0006) 0.978 0.970

BERT 0.973 (SE = 0.0008) 0.978 0.969

ELECTRA 0.973 (SE = 0.0005) 0.967 0.975

Conditional Random Fields (CRF) model 0.968 (SE = 0.0008) 0.967 0.970

Dictionary-based Model 0.957 (SE = 0.0603) 0.960 0.953

NCBO Annotator [43] (using FoodOn as oncology) 0.639 0.535 0.792

FoodIE [8] 0.961 0.944 0.978

BuTTER [27] (5-fold CV) 0.946 NA NA
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Table 6. Comparison of run times (in seconds) for training of the models and testing. (i) Hybrid model
FooDCoNER, (ii) conditional random fields model and (iii) dictionary-based model, (iv) RoBERTa, (v)
BERT, (vi) BioBERT, and (vii) ELECTRA. The models used a 1.59 GHZ Tesla T4 GPU.

Model Average Run Time
(Training) in s

Average Run Time
(Testing) in s

Hybrid Model (FoodCoNER) 4.49 2.12

CRF Model 4.73 2.31

Dictionary Model No training 116.50

RoBERTa 424.18 3.20

BERT 377.02 2.91

BioBERT 378.78 2.82

ELECTRA 196.67 2.76

Regarding the deep learning model BuTTER [27], which is based on a Bidirectional
LSTM, it is interesting to see that this model underperforms compared to all other models
except NCBO Annotator. A possible explanation for this may be that even the (full) training
data set is still not large enough to learn the LSTM or that this architecture is less suited
for the task, e.g., compared to the transformer-based BERT models. For completeness, we
would like to note that all models in Table 5 were trained and tested for the same data.

Aside from the performance results summarized in Table 5, the run time of the models
is also important. As one can see from Table 6, FoodCoNER and the CRF model are fastest in
training and testing. All the deep language models require much more time and resources
for training, and the slowest model, RoBERTa, needs 96 times longer than FoodCoNER
for the training. Interestingly, ELECTRA, the fastest deep learning model, is still 43 times
slower than FoodCoNER for the training. We would like to highlight that the run time
of the deep learning models does not even include time for the pre-training but only for
fine-tuning. Hence, the overall differences are even larger because pre-training can take
several days. Furthermore, it is interesting to note that the training time for FoodCoNER
is even slightly shorter than for the CRF model because the number of features used by
FoodCoNER is 8 while the CRF model uses 12. Hence, the CRF model and the CRF model
that is part of the hybrid model are slightly different from each other.

The testing times show little differences with the exception of the dictionary model.
It is clear that the dictionary model is much slower than all other models because each
noun, noun phrase and their stem strings need to be directly or partially matched with
the 20,000 elements in the dictionary. The reason why FoodCoNER is much faster than
the dictionary model despite the fact that it contains also a dictionary is similar to the
reason given above for the CRF model. The dictionary model is different to the dictionary
used by FoodCoNER, which is only a partial dictionary (hence it is much smaller). This is
accomplished by simpler string matching criteria by giving more weight to terms that are
food domain-specific. Overall, this leads to a reduction in the search space upon which the
hybrid model is based compared to both the CRF model and the dictionary model.

5. Conclusions

In this paper, we introduced a new hybrid model, called FooDCoNER, to capture
food, nutrition and phytochemical entities and their boundaries. We conducted an in-
depth comparative analysis with a dictionary-based model for a baseline comparison,
a CRF model and four deep language models (BERT, BioBERT, RoBERTa and ELECTRA)
to study characteristics of the corresponding models and to understand their behavior in
different situations.

For our analysis, we considered three main metrics: (1) performance of a model
(measured by the F-score, precision and recall), (2) run time of a model (time needed for
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training/fine-tuning and validation) and (3) training size requirement of a model (studied
via learning curves). Considering all metrics, we found that FooDCoNER is the best
performing model because (1) its performance is on par with the deep language models,
(2) its run time is fastest together with the CRF model and (3) its training size requirement
is best compared to all studied models. This makes FooDCoNER a suitable model for food
NER problems where only a limited sample size is available and when execution time is
crucial without compromising the prediction performance.

On a more fundamental level, our results shed light on differences between classical
machine learning models and recent deep language models. While our results underline
the well-known competitiveness of general deep learning models regarding their prediction
performance, they also show that this is not the only metric. With respect to NER problems
and general text mining tasks, our results might indicate a niche for classical machine
learning models when it comes to the run time requirements and sample size limitations of
the training data.
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